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Abstract

In the context of Autonomous Driving (AD), Simultaneous Localization and Map-
ping (SLAM) algorithms are of fundamental importance in enabling vehicles to
navigate and interact with the surrounding environment, with no input from a hu-
man driver. These algorithms are used to construct a map of the surroundings
while estimating, at the same time, the position and trajectory of the vehicle inside
of it.

This thesis, developed as a collaboration between Politecnico di Torino and
Italdesign Giugiaro, aims to adapt some of the best open-source SLAM algorithm
to an internal AD project of the company, the autonomous vehicle prototype called
TechDemo.

The focus of this work is to integrate the algorithms in the software of the
TechDemo to generate a map of the surroundings and conduct benchmark testing
finalised at selecting the best one for the application.



Chapter 1

Introduction

Motorized transportation played a fundamental role in shaping the modern world,
revolutionizing the transport system and allowing people and goods to travel vast
distances in short time. From the advent of steam engines to the development of
electric motors, the evolution of the transportation system has been characterized
by innovation, progress and social impact. In recent years, the incredible develop-
ment made in micro-computing and sensor advancement has shaped the way for a
modern-day revolution: Autonomous Driving (AD).

1.1 Autonomous Driving

Autonomous Driving (AD) technology has emerged as a focal point of innovation
within the automotive industry. Advanced Driving Assistance Systems (ADAS) and
active safety systems are already present in the most recent commercially available
vehicles, and since their introduction, they have played a pivotal role in reducing
accidents and increasing road safety.

These systems represent the first step towards AD. However, fully autonomous
vehicles are currently limited by today’s technology, legal regulations, and social
perception, making their launch in today’s market unlikely. Nevertheless, advance-
ments in Artificial Intelligence (AI), sensors, and computing power hold the promise
of changing this situation in the next few decades.

1



Introduction

Figure 1.1: SAE J3016 level of automation [1]

This promising progress in AD technology led the Society of Automotive En-
gineers (SAE) to draft the normative SAE J3016 [1], which defines six levels of
automation, as reported in Figure 1.1 and briefly summarized below:

• Level 0 - No automation: The driver is fully responsible for driving opera-
tion. The vehicle may have driving assistance features like warnings, but they
do not perform any driving tasks.

• Level 1 - Driver Assistance: The vehicle can assist with steering or ac-
celeration/deceleration, but not simultaneously. Simple ADAS falls into this
level. The driver is still fully responsible for driving operation.

• Level 2 - Partial Automation: The vehicle can assist with steering and ac-
celeration/deceleration simultaneously under certain conditions. However, the

2



1.2 – Thesis outline

driver must remain engaged and monitor the systems and is fully responsible
for driving operation.

• Level 3 - Conditional Automation: The vehicle can perform every driving
operation under certain conditions and environments. The driver can dis-
engage from driving operation but must be available to take control when
prompted by the vehicle.

• Level 4 - High Automation: The vehicle can fully operate driving tasks,
and the driver is not required, but only in controlled environments. The system
can handle most situations but may require human intervention if beyond its
Operational Design Domain (ODD).

• Level 5 - Full Automation: The vehicle can operate without human inter-
vention in all conditions and every environment. Manual driving controls are
not required, and it can be operated without a human driver.

1.2 Thesis outline
In the context of AD, localization and mapping algorithms play a pivotal role in
enabling level 3 and up of automation. The aim of this thesis is to analyze and
integrate some of the best and available open-source algorithms to the AD project
of the company.

The work is structured as follows:

• Chapter 2 introduces the company’s AD prototype, explaining its systems
and architecture.

• Chapter 3 presents the Simultaneous Localization and Mapping (SLAM)
algorithms analyzed, reporting their features and general functioning.

• Chapter 4 explains the application in which the algorithms will be integrated.

• Chapter 5 presents the testing procedure and reports the results comparing
them.

• Chapter 6 is the final chapter, which contains a summary of this thesis and
presents future work.
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Chapter 2

System architecture

The autonomous prototype TechDemo was developed and built internally in 2018 by
the original team at Italdesign as the company’s first SAE Level 4 (section 1.1) AD
project. The project was then suspended until mid-2022, when a new and smaller
team resumed its development. However, some of the original documentation was
missing, and the new team has since made significant efforts to reverse-engineer the
prototype and develop new and improved systems and software.

Therefore, the first objective of this work was to achieve a comprehensive under-
standing of the TechDemo: its construction, architecture and operational systems.

In what follows, a complete description of the prototype’s systems will be pre-
sented.

Figure 2.1: TechDemo rendering

5
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2.1 Hardware
The vehicle frame utilized for the prototype is based on a Volkswagen UP!, which
has been modified to accommodate all the essential components required for AD.
The architecture description will primarily concentrate on the AD-related compo-
nents. A rendering of the vehicle is depicted in Figure 2.1.

2.1.1 Processing Units

The prototype integrates two main processing units: a dSPACE MicroAutoBox
II (Figure 2.2) and an NVIDIA Jetson Orin (Figure 2.3).

The dSPACE MicroAutoBox II is a real-time embedded system designed
for control and prototyping in automotive development. A complete model of the
vehicle can be loaded into its memory and utilized as the interface between the
actuation commands (steering input, torque input, brake input) and the actuators.
It serves the same purpose as a conventional Electronic Control Unit (ECU), with
the advantage of being easily re-programmable according to the system’s require-
ments. Moreover, it is capable of communicating using various network protocols,
thereby facilitating message exchange between different types of devices.

In our system, the MicroAutoBox II communicates via Controller Area Network
(CAN) with the vehicle control network, enabling access to diagnostic messages
(Battery Management System (BMS) data, steering position, etc.) and sending
actuation commands to the motors, braking and steering ECUs. Additionally,
it communicates through Ethernet via User Datagram Protocol (UDP) with the
other processing unit, sending diagnostic and informational messages and receiving
actuation requests.

Figure 2.2: dSPACE MicroAutoBox II

6



2.1 – Hardware

The second processing unit is the NVIDIA Jetson Orin shown in Figure 2.3.
It is an AI platform designed for autonomous machines and edge computing. It
integrates multiple Central Processing Unit (CPU)s and Graphics Processing Unit
(GPU)s, along with dedicated AI and computer vision hardware accelerators, deliv-
ering outstanding processing power while still being optimized for energy efficiency.
Its exceptional capabilities and advanced features make it the perfect candidate for
perception, path-planning, and decision-making processing unit.

In our system, the NVIDIA Jetson Orin serves as the on-board computer where
every AD-related feature is computed. This is where all the data from the sensors
is gathered and processed to gain knowledge of the surroundings, including obstacle
and object recognition through AI models, trajectory planning, and state estima-
tion. This unit is then responsible for sending suitable acceleration, braking, and
steering requests to the dSPACE MicroAutoBox II.

Figure 2.3: NVIDIA Jetson Orin

2.1.2 Sensors

The TechDemo is equipped with various sensors that allow it to perceive its sur-
roundings and navigate safely. These sensors provide essential data about the sur-
rounding environment and are used to detect the presence of other vehicles, people,

7
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road signs, traffic lights, lane markings, etc. Some of the sensors are also utilized
by the SLAM algorithms to map the environment and estimate the vehicle’s pose.

Figure 2.4 provides an overview of the sensors on board of the vehicle.

Figure 2.4: TechDemo sensors overview

• Light Detection And Ranging (LiDAR)

This is the primary sensor used for localization. Lidar sensors emit laser beams
and use the reflection time to measure the distance of surrounding objects from
the sensor, providing a cloud of points used to reconstruct a 3D map of the
environment, as shown in Figure 2.6.

In our system, the Velodyne VLP-16 lidar shown in Figure 2.5 is used. This
sensor is a 16-channel 360° horizontal field 30° vertical field lidar capable of
delivering up to 300,000 points per second, translating to a complete 360°
environmental scan at a rate of 10 Hz.

This sensor is used for mapping, state estimation, and object detection.

• Camera

The TechDemo integrates several cameras. The primary one is the Intel
RealSense D435 stereo-camera shown in Figure 2.7, which is a Full-HD
combined depth and RGB camera delivering a video feed of up to 90 fps.

The camera is used to capture visual data about the surroundings of the vehi-
cle, which is used by computer vision algorithms and AI models to detect and

8
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Figure 2.5: Velodyne VLP-16 Lidar sensor

Figure 2.6: Point cloud map generated through Velodyne VLP-16

recognize objects, obstacles, vehicles, traffic lights, road signs, and pedestrians.
Figure 2.8 shows an example of object detection through the camera.

• Global Positioning System (GPS)

Global Positioning System (GPS) receivers provide a global and absolute mea-
sure of the vehicle’s position. Although not sufficient by itself due to its pre-
ciseness, it can be used in combination with other sensors.

The GPS system in use is part of the complete solution Applanix LV POS
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Figure 2.7: Intel RealSense D435 camera

Figure 2.8: Object Detection through camera

420 shown in Figure 2.9, which also includes an Inertia Measurement Unit
(IMU) and Distance Measurement Unit (DMI) sensor. This sensor is primarily

10
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used for pose initialization when combined with a geo-referenced map. It is
also used in SLAM algorithms to correct the state estimation error.

Figure 2.9: Applanix LV POS 420 system

• Inertia Measurement Unit (IMU)

IMU sensors provide information about the vehicle’s acceleration, angular rate,
and, in some models, orientation.

The sensor in use is a 9-Axis IMU integrated into the Applanix system shown
in Figure 2.9, capable of 3-Axis acceleration, 3-Axis angular rate, and 3-Axis
orientation measurements. The Applanix Position and Orientation System
(POS) solution also integrates the POS Computer System (PCS), which is a
computational unit that processes the data coming from the related sensors
and delivers it to the AD processing unit via Ethernet. The data obtained this
way is filtered and more reliable.

The data is used in SLAM and sensor fusion algorithms for navigation, plan-
ning, and state estimation.

• Distance Measurement Unit (DMI)

The DMI is a wheel sensor used to estimate vehicle speed and traveled distance.

11
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It is included in the Applanix system and is used in combination with IMU
and GPS sensors by the PCS, but is not directly used in any AD algorithm.

The TechDemo includes other sensors, such as long-range and short-range Radio
Detection And Ranging (RADAR), which are currently not utilized.

2.1.3 Others

Other hardware components not strictly related to AD include a Netgear Eth-
ernet Switch, used to connect and exchange data between the sensors and the
processing units, and a Power Supply Unit (PSU), which delivers power to the
low-voltage components, providing the constant voltage required by each compo-
nent to operate.

2.2 Software

Software plays a critical role in achieving autonomous driving capabilities, enabling
vehicles to make decisions based on the surroundings and navigate safetly. In this
section, the software used in the TechDemo will be described.

2.2.1 dSPACE Software

The dSPACE software was developed as a Master’s thesis at Politecnico di Torino by
the author of [5]. This software is responsible for receiving messages from various
inputs and controlling the vehicle systems by sending commands via CAN. It is
implemented as a MATLAB/Simulink model, which is then converted to C-Code,
compiled, and uploaded to the memory by a dSPACE proprietary application. For
a detailed explanation of the software’s functioning, refer to [5].

Autonomous Driving software
The AD computer, NVIDIA Jetson Orin, runs a Linux-based Operating System
(OS), which is an NVIDIA-optimized version of Canonical’s Ubuntu 22.04. On this
platform, various software components are utilized, as described below.

12
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2.2.2 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source framework specifically de-
signed for robot applications, including autonomous driving vehicles. It provides
a set of Python and C++ software libraries and tools aimed at simplifying the
development of complex robotic systems.

One of the key features of ROS is its publish-subscribe messaging system, which
facilitates communication between different hardware actors (such as sensors and
processing units) and software modules. This enables seamless integration and co-
ordination of distinct hardware and software components, allowing for a completely
modular design. Developers can select which components to use at each stage of
development, facilitating testing of different modules without interfering with the
functioning of the system.

Additionally, ROS includes a set of tools aimed at development and debugging,
providing valuable support to developers and allowing them to focus on higher-level
features.

ROS is available in two versions, each with its own distributions. The legacy
version, referred to as ROS1, is nearing its End-of-Life (EOL) in May 2025. How-
ever, the new and improved version, ROS2, is becoming the standard for future
robot applications.

Although it is recommended to develop for ROS2, the SLAM algorithms dis-
cussed in chapter 3 and used for offline-map generation are all ROS1-based. This
decision was made because these algorithms have been in development for a longer
time, and ROS2-based alternatives are not yet as mature. On the other hand, the
software running on the AD processing unit of the TechDemo is based on ROS2,
as it is expected to become the standard for future robot applications.

2.2.3 Sensors drivers

The measurements coming from the sensors are delivered as a stream of binary
data through different network protocols. As a result, software interfaces, known
as drivers, are necessary to facilitate communication between the sensors and the
processing unit.

All the AD algorithms are developed within the ROS framework, so the drivers
must be designed to work seamlessly with ROS. Typically, manufacturers provide
ROS drivers directly for their sensors, or community-developed drivers are available
for widely used sensors. This is the case for every sensor used in the TechDemo,

13
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except for the Applanix LV POS 420 driver, which lacked a ROS2 version. Conse-
quently, the driver was developed internally based on the ROS1 version to ensure
compatibility with the TechDemo’s ROS-based environment.

2.2.4 Autoware
At the core of the TechDemo’s AD capabilities is Autoware [6]. Autoware is an
open-source platform based on ROS2, developed by the Autoware Foundation, with
the goal of democratizing AD technology by making it accessible to developers and
researchers. To achieve this, Autoware provides a comprehensive set of modules
and tools, including algorithms, libraries, and frameworks, enabling developers to
efficiently build AD systems.

A notable feature of Autoware is its modularity, which facilitates the devel-
opment of autonomous vehicles by breaking down functions into dedicated and
interchangeable components. This approach allows for efficient testing and devel-
opment.

Autoware’s architecture consists of two main modules: the Core module and
the Universe module. Each module provides components that are designed to be
reusable and interchangeable.

Autoware Core

The Core module contains basic components that provide the fundamental function-
alities required by AD systems. These components are developed and maintained
directly by the Autoware Foundation and serve as a solid foundation for building
any autonomous application.

Autoware Universe

The Universe module contains components that extend the functionality and ca-
pability of the Core module. While the Autoware Foundation hosts a wide variety
of Universe components and supervises their quality control, it does not directly
develop them. These components may be provided, for example, by sensor or
hardware manufacturers to implement their products in the Autoware framework.

Developers also have the option to design their own Autoware Universe compo-
nents to integrate, enhance, or even replace Core components, depending on their
specific requirements.

A qualitative overview of the Core/Universe concept is depicted in Figure 2.10.
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Figure 2.10: Autoware Core/Universe architecture
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Chapter 3

SLAM Algorithms

In this chapter, the features and workings of each algorithm will be explained. The
following algorithms are analyzed and utilized in this work:

• Lidar-Inertial Odometry via Smoothing and Mapping (LIO-SAM)

• Lightweight and Ground Optimized Lidar Odometry and Mapping (LeGO-
LOAM)

• HDL Graph SLAM

• Fast Lidar-Inertial Odometry (FAST-LIO)

Since many of the algorithms presented here are based on the so-called graph-
based SLAM,a brief introduction of this concept will be given before describing
the algorithms.

3.1 Introduction to graph-based SLAM
Graph-based methods have emerged as one of the most prevalent approaches for
fulfilling SLAM challenges. In this method, the problem is formulated as a graph,
where the nodes represent the poses of the system at various points in time, and
the edges represent the relationships or constraints between these poses [7]. These
constraints, often referred to as factors, provide information about the spatial re-
lationships between poses, such as relative distances or angles.

The construction of the map in a graph-based SLAM system involves finding the
spatial configuration of the nodes that best satisfies all the constraints, optimizing

17
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an objective function that balances the alignment of the poses with the imposed
constraints. These constraints can originate from measurements acquired by sensors
onboard the robot, or vehicle, such as lidars, cameras, or inertial measurement
units (IMUs). However, they can also be derived from the internal dynamics of the
system, for instance, by detecting loop closures when the robot revisits a previously
visited location (3.2.2).

To illustrate the concept of graph-based SLAM, consider the architecture de-
picted in Figure 3.3. In this illustration, each node in the graph represents the
state of the robot at a specific time instance, depicted in blue. The edges between
nodes represent the constraints derived from sensor measurements or odometry
information. Through iterative optimization processes, the system refines the po-
sitions of the nodes to minimize the discrepancies between observed measurements
and predicted poses.

18



3.2 – LIO-SAM

3.2 LIO-SAM

LIO-SAM is an efficient tightly-coupled lidar-inertial odometry framework built
atop a factor graph, developed by the authors of [2] for robot applications, which
take advantage of a lidar and an IMU sensors, and optionally of a GPS antenna.

3.2.1 Features

Sensor fusion

The framework exploits raw IMU measurements to estimate the sensor motion
during a lidar scan and use this information for point cloud deskew. The obtained
lidar odometry is then used to estimate the bias of the IMU.

In addition to local IMU and lidar measurements, the algorithm is able to in-
corporate global measurements, such as GPS positioning and compass heading, if
and when they are available.

Feature extraction and Keyframe selection

Lidar odometry is usually performed by comparing two subsequent scan frames
via scan-matching algorithm and finding the relative transformation between the
two. However, comparing two full point clouds can be computationally inefficient
and highly time consuming. To solve this problem, a popular approach is using
feature-based matching methods. LIO-SAM adopts this method: instead of directly
compare two subsequent lidar scan, whenever a new scan frame is ready, it performs
the so called feature extraction.

Edge and planar features are extracted by evaluating the roughness of points
over a local region: points with high roughness are classified as edge features, while
points with small roughness are classified as planar features. [2]

With the objective of reducing the computational cost of the algorithm, LIO-
SAM exploits also the concept of keyframe selection. Processing every lidar scan
frame which, with our sensor, are delivered at 10 Hz is indeed unfeasable. For that
reason, the algorithm select the next lidar frame Fi+1 to be processed only when the
change in the robot pose xi+1 exceed a certain user-defined threshold if compared
to the previous state xi. All the other frames within two keyframes are discarded.
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Loop closure

A loop closure feature is also present, which allows for correction of the trajectory
when the robot reaches a spot previously mapped. This is particularly useful when
a GPS is not available and particularly effective in correcting the trajectory altitude
drift.

Figure 3.1 shows an example of the loop closure feature.

Figure 3.1: LIO-SAM trajectory loop closure detail

Real time application

Due to the reasons described in 3.2.1, this algorithm is particularly computationally
efficient, which makes it an optimal candidate for online and real time usage, i.e.
using the algorithm to allow an autonomous vehicle to drive in an unexplored before
area.

Although this use case is not the objective of neither Autoware nor the TechDemo,
it certainly is a big advantage for future development.

3.2.2 Working principle

LIO-SAM seeks to estimate the state and the trajectory of a system by observation
of data coming from the sensors (Lidar, IMU and, optionally, GPS). The problem
can be formulated as a Maximum a posteriori (MAP) problem [2]. This problem
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is modelled as a factor graph with four factors and one variable (the state xi)
attributed to the nodes of the graph.

An overview of the factor graph is presented in Figure 3.2, taken directly from
the original paper [2].

In what follows, a brief description of the factors is given. For a more detailed
description and mathematical formulations, refer to the original LIO-SAM paper
[2].

Figure 3.2: Factor Graph Overview [2]

IMU Preintegration factor

The first factor is obtained from processing the raw data delivered by the IMU. From
the raw measurement of the IMU, it is possible to calculate the angular velocity
and the acceleration of the system. A simple integration of the measurement over
∆t is performed, thus obtaining the velocity, position and rotation of the system
at time t + ∆t. The authors apply then the IMU preintegration method explained
in [8] to obtain the relative motion between two consecutive time steps.

The result obtained by IMU preintegration is the first constraint of the factor
graph, i.e. IMU preintegration factor.

Lidar Odometry factor

This factor is obtained by processing data coming from the lidar.
Whenever a new scan is delivered from the lidar, the procedure described in 3.2.1

is performed: if the frame is considered a keyframe is kept and feature extraction [9]
is obtained. The lidar odometry factor is then derived from the keyframe through
three steps:
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1. Sub-keyframes for voxel map

Instead of using just the last keyframe for estimation, the first user-defined
n most recent keyframes are used. This set of n keyframes is called sub-
keyframes. The set of sub-keyframes is merged into a single voxel map Mi,
which is composed of two voxel sub-maps, each containing the points classified
as edges or surfaces. Then the voxel map Mi is downsampled as to avoid
duplicates of the same feature falling in the same voxel cell (the dimensions of
the voxel cell are user-defined).

2. Scan-matching

This is where the feature based comparison between a new keyframe Fi+1 and
the past voxel map Mi is performed. The scan-matching algorithm used by
LIO-SAM is described in [9]

3. Relative transformations

Once each feature has been matched against its correspondent in the voxel
map, the distance between the new pose and the last one can be computed.
The transformation between the state xi and the next xi+1 can be found by
solving the optimization problem using the Gauss-Newton method.

The relative transformation between a state xi and the next state xi+1 is the
lidar odometry factor.

GPS factor

Up to now, the pose and trajectory of the system has been obtained through in-
tegration of local measurements coming from lidar and IMU sensors. This means
that if the measurements present errors, and in principle they always do, even the
errors are integrated, leading to drift of the estimated trajectory with respect to
the actual one. By adding a global measurement factor, i.e. the GPS factor, the
trajectory can be corrected and aligned to the real one.

However, since the drift of a lidar-inertial odometry grows really slowly, it is not
always necessary to use the GPS factor and, in some cases, it can be even avoided.
This is useful because the computational cost of incorporating the GPS factor in
the graph is not negligible.

Nevertheless, using GPS data in the algorithm can be an important benefit since
it allows a precise orientation of the generated point cloud map in the global world
frame.
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Loop closure factor

Whenever a new state xi+1 is added to the factor graph, LIO-SAM first searches the
graph for prior states that are close, in global coordinates, to it. If a candidate is
found, compares the new frame Fi+1 with a sub-keyframes set of the neighbours of
the candidate’s corresponding keyframe Fc±m, where m is a user defined parameter.

Then, similarly to 3.2.2, the relative transformation between xi+1 and the can-
didate state xc is added to the graph.

This factor is particularly useful when no GPS factor is used or to correct the
trajectory altitude when the GPS altitude readings are bad.
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3.3 LeGO-LOAM
LeGO-LOAM [3] is a lightweight and ground-optimized SLAM algorithm developed
by the same authors as LIO-SAM [2]. Its primary objective is computational cost
optimization, enabling real-time operation on low-power embedded systems. It
utilizes a lidar sensor and an IMU sensor. However, unlike LIO-SAM, the presence
of the IMU sensor is optional.

3.3.1 Features

Feature extraction

Similar to LIO-SAM (3.2.1), a feature extraction algorithm is used to classify points
from a point cloud in edge and planar features based on the roughness of said points.
This allows to reduce the intensity of the computation.

Ground optimization

LeGO-LOAM relies on the presence of a ground plane for segmentation and opti-
mization. This is particularly useful in the segmentation step to filter noise.

Loop closure

LeGO-LOAM integrates the ability to perform loop closure, in a similar way of LIO-
SAM, allowing to correct the trajectory and minimize the drift, even in absence of
a global measurement provider, such as GPS.

Real time application

Since LeGO-LOAM is built to be lightweight, that makes it particularly suitable
for real time applications. Again, this goes beyond the scope of our application,
but allows for future development.

3.3.2 Working principle

LeGO-LOAM aims at providing a lightweight system able to output a 6 Degrees
of Freedom (DOF) pose estimation, as well as a point cloud of the mapped envi-
ronment, receiving input data from a lidar sensor. To achieve this, the system is
divided into five modules which are reported in Figure 3.3. In what follows, a brief
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explanation of the modules and how they work together is reported. For detailed
description and mathematical formulation, refer to the original paper [3].

Figure 3.3: LeGO-LOAM system overview [3]

Segmentation module

The first step is performed by the segmentation module. This module takes a scan
from the lidar as input and projects the 3D point cloud into a 2D range image.
Each pixel in the range image represents a unique point in the point cloud and to
each pixel in the image a value ri is associated, which represents the distance of
the corresponding point from the sensor. The first operation done on the obtained
image is the ground plane estimation, which is performed as a column-wise evalua-
tion [3]. Points obtained in this way are labeled as ground points and are not used
for further segmentation.

Then, the proper segmentation is performed, used the method proposed in [10].
Points in the range image are now organized in clusters, that can be used to filter
noise or small, movable and unreliable from a pose estimation point of view, objects,
e.g. leaves, and use only fixed and reliable objects, e.g. buildings or trees, to perform
the pose estimation. This method is extremely efficient as it greatly reduces the
computational effort of point cloud processing.
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Feature extraction module

The filtered image is then passed to the feature extraction module, exploiting the
method proposed in [9]. The feature extraction algorithm is, however, applied to
the segmented points and ground points, instead of the whole point cloud. At
the end of the procedure, the image will be divided in sub-images with edges and
planar features. LeGO-LOAM further reduce the computational cost of the next
steps by selecting a user-defined number of edge features, which do not belong to
the ground, and planar feature, which must belong to the ground.

Lidar odometry module

In this module two consecutive lidar scans (after processing) are compared through
the scan-matching algorithm described in [9], seeking to estimate the transformation
between a pose of the sensor and the previous one.

The algorithm compares the two scans and searches for two corresponding fea-
tures in each scan. However, in view of computational efficiency a few changes have
been made by the authors of [3] with respect to [9]:

1. Label matching

Remembering that at this step two segmented images are being compared,
to each feature is also associated a certain label. Therefore, the search for a
feature’s correspondent in the next scan is performed only on features that
shares the same label. Aside improving performance, this method also helps
with feature matching accuracy.

2. Two-steps L-M optimization

LeGO-LOAM applies the two-steps Levenberg-Marquardt (L-M) method [3],
which consists on dividing the 6 DOF in two sets of 3 DOF, using the planar
features to obtain the transformation of the first set [tz, θroll, θpitch] and the
edge features for the remaining DOF [tx, ty, θyaw]

Lidar mapping module

The lidar mapping module is used as aid to further refine the pose estimation. Here
the features are compared through a scan-matching algorithm, similar to 3.3.2, to a
pre-saved whole point cloud map of the surrounding. The map is obtained by saving
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a point cloud from all previous feature sets. This procedure is certainly less com-
putationally efficient, however the whole performance of the system is maintained
since this operation is performed with low frequency.

Transform integration module

The last module fuses the pose estimation results coming from the lidar odometry
and lidar mapping modules and provides the final pose estimation.

27



SLAM Algorithms

3.4 HDL Graph SLAM
HDL Graph SLAM is an offline SLAM graph optimization-based algorithm devel-
oped by the author of [11] as a component of a bigger suite that seeks to recognize
and track people inside a point cloud. Differently from the other algorithms seen
so far, it is designed not to be used as a real time pose estimator, but to generate
an offline map to be used as ground truth in the other modules of the suite.

HDL refers to model of the lidar sensor used for testing by the original authors,
a Velodyne HDL32e.

3.4.1 Features

Sensor fusion

HDL Graph SLAM only need a lidar sensor to function properly. However, it
supports usage of other sensors such as IMU and GPS. Nevertheless, the IMU
sensor is used only to rotate the pose aligning the gravity vector, which is useful to
correct orientation error, but it is not used as a motion estimation constraint. The
user can decide which sensor to utilize based on the needs, giving this algorithm an
excellent flexibility and thus it is greatly system-agnostic.

Loop closure

Similar to LIO-SAM and LeGO-LOAM, this algorithm implements a loop closure
feature, which is especially useful as trajectory correction when no other global
measurements are available.

IMU orientation constraint

If an IMU sensor with embedded magnetic orientation sensor (i.e. 9-axis IMU
sensor) is available, HDL Graph SLAM can take advantage of it, by using the data
as graph constraint concerning 3D rotation. This is useful, in conjunction to loop
closure, to reduce and correct trajectory drift.

Floor detection

The algorithm integrates a floor detection feature, which is used as constraint in the
graph, assuring that each pose node have the same oriented floor. This is effective
to reduce the orientation error, especially in large flat environment. This is used
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in conjunction to loop closure constraint to correct the pose estimation when no
other measurement is available.

People detection

As specified before, this algorithm is a module of a bigger suite, designed with
people detection in mind. This is worth of mention, since it can be really useful for
future applications.

3.4.2 Working principle

The algorithm uses the graph method to solve the SLAM problem. In the graph,
each node represents the parameters to be estimated, which in this case are sensor
poses and landmark positions, and the edges are the constraints, mainly relative
positions between the nodes.

In what follows, a brief description on how the constraints are constructed is
presented. For a more detailed description and mathematical formulation, refer to
[11].

Odometry constraint

The odometry constraint is obtained processing data coming from the lidar sensor.
The sensor trajectory is estimated by comparing two consequent lidar scan frames
through the Normal Distribution Transform (NDT) scan-matching algorithm de-
scribed in [12]. Differently from other algorithms, no feature extraction optimiza-
tion is performed and the whole point cloud is compared. However, this is by choice
since the algorithm is designed for offline use and not real time applications which
demand a certain efficiency.

Loop Closure constraint

In the next step, an algorithm is used to detect loops in the trajectory that can be
added as graph edge to correct the accumulated error of the odometry constraint.
The algorithm is similar to the one described in 3.2.2: first, loop candidates are
detected by searching the graph for nodes which are closed, in the Euclidian space,
to the newly pose. Then, the NDT scan-matching algorithm is applied between
the lidar scan associated to the two nodes and, if a correspondance is found and is
below a user-defined threshold, the loop is added to the graph as constraint. Each
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time a loop closure constraint is added to the graph, the graph is updated such to
minimize the objective function (i.e. minimize the estimation error). [11].

Floor Detection constraint

This constraint is added to compensate the bend of the generated map due to the
accumulated rotation error of the scan-matching algorithm. This is particularly
effective in case of large flat environments, e.g. indoor applications. Every 10
seconds, the Random Sample Consensus (RANSAC) algorithm [13] is applied to
the incoming lidar scan and, if the normal vector to the detected plane is under a
certain threshold, i.e. the normal is vertical, the plane is classified as floor. The
floor associated to the new scan is then compared to a fixed horizontal plane and
the error between the two is added to the graph. Again, the graph is updated in
order to minimize the objective function.

GPS constraint

If the ground is not flat, the constraint introduced in 3.4.2 is not effective, so a
global measurement constraint, i.e. GPS factor, can be used to compensate for the
estimation error. Whenever a GPS fix is available, it is associated (prior Universal
Transverse Mercator (UTM) coordinates to Cartesian coordinates transformation)
to the pose which is the closest in time. The error between the estimated, local pose
and the global coordinates is then added as edge to the graph. Since in principle
there is no way to associate GPS data to a pose, except from timestamp, it is crucial
that GPS and lidar scans are synchronized, either by hardware or software means.
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3.5 FAST-LIO

FAST-LIO [14] is a lidar-inertial odometry framework developed with computa-
tional efficiency and robustness in mind. It is originally designed to work in em-
bedded systems operating in fast-motion and noisy environments, providing robust
navigation by fusing lidar and IMU data through a tightly-coupled iterated ex-
tended Kalman filter [14].

3.5.1 Features

Feature extraction

Similar to 3.2 and 3.3, FAST-LIO integrates a feature extraction algorithm to
decrease the processing computational effort. However, it can be disabled to allow
direct odometry on raw lidar scans, achieving better mapping accuracy.

Online lidar-IMU calibration

FAST-LIO integrates a calibration algorithm to online estimate the extrinsics ma-
trix between lidar and IMU frames. This could be really useful when this parameter
is not known, as calculating it could be time consuming.

Real-time application

Thanks to it’s lightweight, FAST-LIO is particularly suitable for real-time applica-
tions, even in case of low-power embedded systems, like robots or drones.

3.5.2 Working principle

In this section the pipeline that is the core of the algorithm is briefly explained. For
detailed explanations and mathematical formulations refer to [14]. An overview of
the system is showed in Figure 3.4.
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Figure 3.4: FAST-LIO system overview

Points accumulation and Feature extraction

The sequentially sampled lidar points are accumulated for a variable period of time,
user-defined, to complete a scan. For 360 degree lidar, the period of accumulation
should be the inverse of the spinning frequency, to make the scan concede with a
complete revolution. If the option is enabled, at this step the feature extraction is
performed, finding edge and planar features in the scan.

State estimation

To estimate the states, an iterated extended Kalman filter is used [14]. Whenever
IMU data is received, forward propagation is performed and a predicted state is
saved. Then, before fusing the propagated state with the lidar scan, backward
propagation is performed to compensate for motion [14]. The state is then updated
by calculating and fuse the residual with the predicted state following the algorithm
described in [14].

Map update

Using the state update calculated in the state estimation module, each point in
the scan is projected and transformed in the global frame. These points are then
appended to the saved map containing points from all previous scans.
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Usecase description

The biggest challenge of this work was to develop software in order to integrate
each algorithm to our system. The core code is open-source and can be found in
each algorithm’s paper, but it was modified and adapted to meet our specific needs.

In this chapter, the adaptation process will be described, showing which were
the requirements of the project and how they were met.

4.1 Project overview
The TechDemo project was developed with some pre-defined ODD in mind, mean-
ing that it is designed to work to work in specific environment and AD applications,
in which the surroundings are known. Such applications include autonomous shut-
tle service, airport or facilities transportation system or Autonomous Valet Parking
(AVP).

With that in mind, Autoware is the perfect software framework candidate, as it
seeks to do exactly that.

The focus of this work will be on the localization component, so in the following
its working principle will be briefly explained.

4.1.1 Autoware localization component
Autoware high modularity allows for disparate sensor architectures to be used
within its framework. The sensor configuration we seek to integrate is mainly a
3D-LiDAR + point cloud map + vector map configuration, which is partic-
ularly suitable for our application. Other sensors, such as GPS and IMU, are also
integrated.
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Figure 4.1 shows a diagram of the architecture.

Figure 4.1: Localization architecture

With this architecture, Autoware relies on a pre-generated point cloud map
which will be used as "ground truth" by scan-matching algorithms for pose estima-
tion and odometry, as well as detecting changes and facilitate object detection and
classification.

On a large scale, dedicated Mobile Mapping Systems (MMSs) are used to gen-
erate highly accurate point cloud maps. However, MMSs are notably expensive,
since they require high-end sensors and systems. The aim of this work is to pro-
vide accurate enough pre-generated point cloud map, using SLAM algorithms and
exploiting already owned sensors, greatly reducing the economic effort.

In the view of a real world case, the workflow would be the following:

1. Perform a 3D mapping of the surroundings by manually driving the vehicle in
the working area

2. Process the obtained map, adding a vector map that includes roads and virtual
traffic rules (traffic lights, road signs, etc.)

3. Autonomous operation
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4.2 Geo-referenced map

A key requirement of the application was the need for a geo-referenced map, i.e. a
point cloud map which points are expressed in global coordinates. This will allow
for automatic localization when the vehicle is started and it can be particularly
useful when the vehicle is designed to work in different ODDs to automatically
know in which of them it is and automatically localize.

Although online generation of global-coordinates map is technically possible,
using SLAM algorithms that use a GPS sensor, storing and dealing with big coor-
dinates causes performance and accuracy issues.

At first, an attempt was made to develop software that would integrate this
feature and generate an online geo-referenced map, but after the issues described
above, it was agreed that it was more convenient to generate a local map and geo-
reference it later with offline methods. To do so, different open-source software
tools were used, including QGIS [15], CloudCompare [16] and the C++ library
PDAL [17]. In some cases, geospatial data from Google Maps [4] was used.

The method used to obtain a geo-referenced map is the Ground Control Points
(GCP) method.

4.2.1 GPC Method

The GCP method is a technique to geo-reference point cloud map by establishing
reference points on the ground which GPS coordinates are known and matching
them to corresponding points in the point cloud. Here is reported the workflow:

1. Select (or put) GCP

A minimum of three reference points are selected in the area of the map. Those
should be easily recognizable in the point cloud. If easily identifiable points
are not available, they should be put for the purpouse (e.g. placing spheres).

2. Measuring GCP

The GPS coordinates of the reference points should be measured. This was
done by a mix of geospatial data from Google Maps and direct measurements
with smartphone’s GPS antenna.

3. Matching GPS in the point cloud and transform it based on the
coordinates
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The set of software tools reported in section 4.2 is used to perform this oper-
ation.

Figure 4.2: GCP in CloudCompare

Figure 4.2 shows the alignment of GCP between the point cloud and Google
Maps performed with CloudCompare.
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Benchmark

This chapter delineates the process for testing and benchmarking the algorithms
described in chapter 3. The discussion unfolds by explaining the general setting
and workflow, followed by a qualitative analysis of each algorithm’s performance.
Finally, a comparative evaluation of the results is presented in section 5.6.

5.1 Setting and workflow
The setting and workflow structure is outlined as follows:

1. Test scenario. The first step was to define the test scenario. For the reasons
described in chapter 4, and for convenience and repeatability, the open-air area
surrounding the company, depicted in red in Figure 5.1, was selected as the
working scenario. The original idea was to test in different areas, with different
conditions and different paths. However, shortly after the beginning of this
work, the access to company outdoor area was forbidden due to renovation.
Fortunately, by that time, usable data was collected with the method described
in item 2. For the sake of this work and our application, this scenario is
sufficient, but for real-time and broader real-world applications, it is necessary
to define more scenarios that should cover different conditions, such as lighting,
road condition, dynamic object, etc.

2. Data collection. After the scenario was set, the subsequent step is to gather
data from the sensors. This includes, for our purposes, scans from the lidar
sensor, IMU measurements and GPS fixes. A ROS built-in tool called Rosbag
is used, which allows to register messages published on each topic in a single
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Figure 5.1: Aerial view of the working area [4]

file, called Bag. The Bag file can then be played, simulating the robot as if it
was running in real time.

3. Pre-processing. In the next step, data is pre-processed to enable seamless
and consistent testing for each algorithm. This include topic filtering to extract
only the useful data, reducing file dimensions and computational cost, and data
correction.

4. Algorithm implementation. In this step SLAM algorithms are imple-
mented repeatedly to process the data and the output of each of them is
saved.

5. Results evaluation and comparison The results coming from each algo-
rithm are then analysed and compared in order to find the most suitable
algorithm for the application.

The analysis of the results is focused on two factors:

• Performance of the algorithm in terms of run-time and computational
cost, to evaluate feasibility on reduced power hardware.
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The performance of the algorithms may depend from the power of the device in
which they are ran. For portability and consistency, the algorithms were not tested
on the AD processing unit of the TechDemo, but on a personal company laptop.
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5.2 LIO-SAM

The first algorithm that was tested is LIO-SAM [2]. As stated in section 3.2, LIO-
SAM allows to integrate GPS data in the factor graph, so the test was performed
both with and without GPS data. For each case, several iterations of the test was
carried out. For sake of simplicity and readability, only some relevant ones are
reported here. However, the algorithm never failed and always delivered usable
output.

5.2.1 Accuracy evaluation

Figure 5.2 shows the point cloud map obtained without the use of GPS data,
compared with the aerial view of the area.

Figure 5.2: LIO-SAM: Generated map (no GPS)

Overall, the results were satisfactory. However, as shown in Figure 5.3, a strong
misalignment in the left part of the map is noticeable, when compared to the aerial
view. The experiment shown here is specifically chosen to highlight this aspect:
in some of the other iterations of the same test, the misalignment is not present.
However, in most of them it is, and in the view of automating the map generating
procedure, this could cause concern and is therefore worth of notice.
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Figure 5.3: LIO-SAM: Generated map (no GPS) - top view

Enabling the GPS factor, the accuracy of the map greatly increase. An
overview of the generated map is showed in Figure 5.4.

Figure 5.4: LIO-SAM: Generated map (GPS)

Figure 5.5 shows the top view of the map compared to the aerial view of the
area. It is evident how, with GPS factor, the misalignment between the two almost
disappear. In Figure 5.6, it is showed the comparison of the detail between GPS
and no GPS.

The drift in the map is further showed in the trajectory plot in Figure 5.7.
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Figure 5.5: LIO-SAM: Generated map (GPS) - top view

(a) No GPS (b) GPS

Figure 5.6: LIO-SAM: No GPS vs. GPS
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Figure 5.7: LIO-SAM: Trajectory plot

5.2.2 Performance evaluation

The performance of the algorithm was evaluated with two concepts:

1. Single-scan processing time. The average time necessary for processing
a single lidar scan. Note that, since the lidar is delivering scans at 10 Hz, a
processing time higher than 100 ms would require dropping frames for real-time
usage.

2. Stress test. Taking inspiration from the authors of [2], a stress test was
performed to evaluate the computational heaviness of the algorithms. The
test consists in feeding data to the algorithm progressively faster than real-
time and evaluate at which rate it would stop delivering satisfactory results.

The results of the performance tests are reported in Table 5.1
In both cases, the runtime to register a single lidar frame exceeds 100 ms. How-

ever, as stated in section 3.2, LIO-SAM do not need to process every scan thanks
to its keyframe selection feature. This allows the algorithm to work in real-time.
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Options Runtime (ms) Stress test

No GPS 111.2 11x
GPS 112.6 2x

Table 5.1: LIO-SAM: Performance results

There is irrelevant difference between the runtimes of the two cases, however,
with GPS enabled, the algorithm failed the stress test just above 2x real time. This
is probably due to the heavy graph update rather than processing time of a scan.

Nevertheless, LIO-SAM with GPS can still be used in real-time, and is preferable
since it provides more accurate maps.
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5.3 LeGO-LOAM

The next algorithm in test is LeGO-LOAM. Different tests were carried out and
here is showed the best among them. However, results were extremely consistent
among the tests and overall similar.

5.3.1 Accuracy evaluation

Figure 5.8 and Figure 5.9 show an overview of the generated map. The algorithm
is able to provide satisfactory results but, due to the missing of a global measure-
ment in the graph, an incremental drift on long distances, as shown in the left of
Figure 5.9. Figure 5.10 shows the drift in detail.

Figure 5.8: LeGO-LOAM: Generated map
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Figure 5.9: LeGO-LOAM: Top view

Figure 5.10: LeGO-LOAM: Drift detail
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Moreover, the generated map shows a drift also in the z direction, resulting in
a bent map in the same region. Figure 5.11 shows this behavior.

Figure 5.11: LeGO-LOAM: Bent detail

5.3.2 Performance evaluation
Similarly to 5.2.2, the performance is now evaluated by measuring the execution
time of each lidar scan and feeding data faster than real time. Table 5.2 reports
the obtained results.

Runtime (ms) Stress test

157.1 17x

Table 5.2: LeGO-LOAM: Performance results

This algorithm performs really well in the stress test. However, the higher the
feed rate is, the lower is the number of the registered points, reducing the density,
and therefore resolution, of the map.
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5.4 HDL Graph SLAM

As stated in section 3.4, this algorithm is highly modular and can be used with a
wide set of sensor architectures. The tests were then performed in order to explore
the different configurations. However, whenever an attempt to integrate data from
the IMU was made, the algorithm would always fail. For that reason, none of the
reported results include IMU data.

5.4.1 Accuracy evaluation

With only the lidar sensor active, the results are not satisfactory. As shown in
Figure 5.12 and 5.13, the generated map is heavily bent and misaligned in more
than one point, thus making it useless in any application.

Figure 5.12: HDL Graph SLAM: Bent map detail
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Figure 5.13: HDL Graph SLAM: Misalignment detail

The algorithm includes some solution to reduce the problem of bending, mainly
floor detection and GPS constraint.

Firstly, floor detection is tested. The results concerning the flatness of the map
are clearly better (Figure 5.14), but are still not perfect. On the other hand, the
map is still greatly misaligned with respect to the aerial reference, as shown in
Figure 5.15.
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Figure 5.14: HDL Graph SLAM: Floor detection

Figure 5.15: HDL Graph SLAM: Floor detection - Misalignment
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With GPS constraint, the elevation issue disappears almost completely, with the
exception of the area reported in Figure 5.16. However, the misalignment problem
persists, as showed in Figure 5.17.

Figure 5.16: HDL Graph SLAM: GPS - Bending detail
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Figure 5.17: HDL Graph SLAM: GPS - Misalignment

The last test was performed enabling both GPS and floor detection constraints.

When used in conjunction, GPS and floor detection are able to provide great
results in both directions. While the misalignment issue is completely solved (Fig-
ure 5.18 and 5.19), the flatness issue is still present (Figure 5.20). Nevertheless, it
is a great improvement with respect to the first tests.
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Figure 5.18: HDL Graph SLAM: GPS + Floor

(a) No GPS, no Floor detection (b) GPS + Floor detection

Figure 5.19: HDL Graph SLAM: Alignment comparison
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Figure 5.20: HDL Graph SLAM: GPS + Floor - Bending issue

5.4.2 Performance evaluation
Just like in subsection 5.2.2, the performance will be assessed by measuring the
execution time of each lidar scan and feeding data at a pace faster than real time.
Table 5.3 reports the results for each test.

Options Runtime (ms) Stress test

Only LiDAR 174.9 FAIL
LiDAR, Floor detection 180.4 FAIL

LiDAR, GPS 188.5 FAIL
LiDAR, GPS, Floor detection 197.5 FAIL

Table 5.3: HDL Graph SLAM: Performance results

The GPS constraint is particularly heavy, increasing greatly the runtime of each
scan. In none of the cases the execution is below 100 ms, meaning that the algorithm
is not able to process every lidar scan.

Interestingly, the algorithm failed the stress test in every condition. Nevertheless,
as stated in section 3.4, the algorithm was never designed with performance in mind,
so similar results should have been expected.
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5.5 FAST-LIO

The last algorithm that was tested is FAST-LIO. The algorithm was designed to
be lightweight and efficient and it provided outstanding results.

Figure 5.21 shows an overview of the generated map.

Figure 5.21: FAST-LIO: Generated map overview

5.5.1 Accuracy evaluation

The algorithm performed really well in terms of accuracy, showing reliable results
in mapping accuracy when compared to the aerial view of the area (Figure 5.22).

Figure 5.22: FAST-LIO: Top view
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Unlike other algorithms, it didn’t suffer from map bending. However, a slight
misalignment of the map is present, as showed in Figure 5.23. Nevertheless, the
algorithm provided incredible results, especially when considering its outstanding
scan registration time reported in Table 5.4.

FAST-LIO also reported the highest point cloud density of all the tested algo-
rithms.

Figure 5.23: FAST-LIO: Misalignment detail

Although the generated map showed excellent results, the trajectory estimation
was not as successful. Figure 5.24 shows the trajectory plot. It can be seen how the
return path manifests a drift with respect to the first one, which was not present
in the actual path.
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Figure 5.24: FAST-LIO: Trajectory plot

5.5.2 Performance evaluation

As stated before, FAST-LIO was designed to be computational efficient and lightweight.
The results reported in Table 5.4 are a proof of that.

Runtime (ms) Stress test

14.7 7x

Table 5.4: FAST-LIO: Performance results

The runtime for each scan is outstandingly low, an order of magnitude less than
the other algorithms, allowing for true real-time operation with no dropped frames.

FAST-LIO cannot be forced to run in real time, meaning that if a new scan
is available before the processing of the last one ends, it is simply put in queue,
instead of being discarded, and it is processed whenever possible.

Therefore, the algorithm is able to process in real-time, according to the pro-
cessing time reported in Table 5.4, valid for our set-up, for data rate up to 68 Hz,
or about 7x in our stress test. However, as long as there is memory available in the
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processing device, the algorithm never fails even for feed rate higher than that.
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5.6 Results
In this section, a comparison between the results of the proposed algorithms is
presented.

1. LIO-SAM. LIO-SAM demonstrated robust performance in both mapping ac-
curacy and computational efficiency, especially when using GPS. It is fast
enough to allow the system to work in real-time, and it is able to generate
high resolution maps.

2. LeGO-LOAM. LeGO-LOAM shows competitive mapping accuracy compa-
rable to LIO-SAM. However, it showcased slightly higher computational heav-
iness, as well as greatly lesser dense generated maps. Nevertheless, the satis-
factory results and its ability to work without an IMU make it flexible and a
good candidate for a wide range of applications.

3. HDL Graph SLAM. The algorithm performs adequately when used in
smaller environments, but it showed limitations both in mapping accuracy
and computational needs. Indeed, the only usable map was possible to ob-
tain only with large usage of the resources, almost double with respect to
LIO-SAM.

4. FAST-LIO. FAST-LIO excelled in both processing speed and mapping ac-
curacy, providing outstanding results in the generated map. It is the only
algorithm, aside from LIO-SAM, which does not suffer from map bending,
and shows lesser drift when compared to non-GPS aided algorithms. It also
produced the denser point cloud among the tested algorithms.

Table 5.5 reports the results of each algorithm compared within each other. The
values refer to the best test, in terms of mapping accuracy, between all the tests
performed. A measurement of the density of the point cloud is also introduced, in
the form of number of points of the generated map. The number reported below is
the average of all of the tests between each algorithm.

Figure 5.25 shows a comparison between the trajectories obtained from each
algorithm. Again, HDL Graph SLAM performed lesser than the other two. LIO-
SAM and LeGO-LOAM show comparable results, leaning slightly towards LIO-
SAM. However, this is remarkable from LeGO-LOAM, since it did not rely on GPS
sensors. FAST-LIO, although provided one of the highest mapping accuracy, lacked
in trajectory estimation.
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Algorithm Runtime (ms) Stress test Points

LIO-SAM 112.6 2x 7,353,209
LeGO-LOAM 157.1 17x 1,388,068

HDL Graph SLAM 197.5 FAIL 6,466,458
FAST-LIO 14.7 N/A 31,228,676

Table 5.5: Results comparison

Figure 5.25: Trajectory comparison

LIO-SAM and FAST-LIO emerged as the top-performing algorithms, excelling
in both processing time and mapping accuracy. While FAST-LIO demonstrated
quicker processing speed and generated maps with higher density, it performed
slightly worse in mapping accuracy due to the absence of a global measurement
factor capable of rectifying trajectory drift. Given the critical importance of accu-
racy and reliability in the intended application, LIO-SAM emerged as the preferred
choice. Additionally, the map resolution provided by LIO-SAM proved sufficient to
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yield satisfactory outcomes in the application. Consequently, LIO-SAM has been
selected as the algorithm for integration into the TechDemo software.
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Chapter 6

Conclusions and future work

In conclusion, this thesis explored various SLAM algorithms, offering an exami-
nation of their operational principles. Additionally, it investigates the realm of
autonomous driving, explaining the functionalities of a tangible autonomous vehi-
cle developed by Italdesign, known as the TechDemo prototype.

Each algorithm has been adapted to the hardware specifications and integrated
into the TechDemo project. Extensive testing is conducted to assess the accuracy
and computational efficiency of each algorithm, facilitating the identification of the
optimal solution for the specified objectives.

While advancing through the project’s development, a prospective idea emerged
for future improvement in the project, briefly outlined in the subsequent section.

Mapping tool
Having in mind the workflow presented in 4.1.1, for the first and second step, the
actual autonomous vehicle is not needed. In the view of a commercial application,
perform these operation with the real vehicle could be expensive and not efficient.

For that reason a hand-held mapping tool concept has been thought off, of which
a render is presented in Figure 6.1. The tool should ideally work with a reduced
set of sensors, possibly only with a lidar. Further investigations on LeGO-LOAM
(3.4) and HDL Graph SLAM (3.3) could satisfy this requirement. Moreover, the
complete suite of HDL Graph SLAM could be used to recognize the person holding
the tool and automatically remove it from the map. Lastly, FAST-LIO could be
a suitable choice thanks to its computational efficiency and ability to work on less
powerful embedded hardware.
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Figure 6.1: Mapping tool
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Acronyms

AD Autonomous Driving. i, 1–3, 5–7, 11–14, 33, 39

ADAS Advanced Driving Assistance Systems. 1, 2

AI Artificial Intelligence. 1, 7, 8

AVP Autonomous Valet Parking. 33

BMS Battery Management System. 6

CAN Controller Area Network. 6, 12

CPU Central Processing Unit. 7

DMI Distance Measurement Unit. 10, 11

DOF Degrees of Freedom. 24, 26

ECU Electronic Control Unit. 6

EOL End-of-Life. 13

FAST-LIO Fast Lidar-Inertial Odometry. 17, 31, 55–57, 59, 60, 63

GCP Ground Control Points. v, 35, 36

GPS Global Positioning System. 9, 12, 19, 20, 22–24, 28, 30, 33, 35, 37, 40, 41,
44, 49, 51, 52, 54, 59

GPU Graphics Processing Unit. 7

IMU Inertia Measurement Unit. 10–12, 19–22, 24, 28, 31–33, 37, 48, 59
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Acronyms

LeGO-LOAM Lightweight and Ground Optimized Lidar Odometry and Map-
ping. 17, 24, 26, 28, 45, 59, 60, 63

LiDAR Light Detection And Ranging. 8

LIO-SAM Lidar-Inertial Odometry via Smoothing and Mapping. v, 17, 19–24,
28, 40, 43, 44, 59–61

MAP Maximum a posteriori. 20

MMS Mobile Mapping System. 34

NDT Normal Distribution Transform. 29

ODD Operational Design Domain. 3, 33, 35

OS Operating System. 12

PCS POS Computer System. 11, 12

POS Position and Orientation System. 11

PSU Power Supply Unit. 12

RADAR Radio Detection And Ranging. 12

RANSAC Random Sample Consensus. 30

ROS Robot Operating System. 13, 14, 37

SAE Society of Automotive Engineers. 2, 5

SLAM Simultaneous Localization and Mapping. i, 3, 8, 11, 13, 17, 18, 24, 28, 29,
34, 35, 38, 59, 63

UDP User Datagram Protocol. 6

UTM Universal Transverse Mercator. 30
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