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Abstract

This thesis aims to explore the optimal control problem of achieving the minimum lap time
considering energy consumption restrictions for a Formula E car. The approach involves initially
creating a detailed track and vehicle model. These models will then be utilized in solving the
lap time minimization problem using IPOPT optimization software, treating it as a nonlinear
programming (NLP) task for effective handling of large-scale optimization. Subsequently, the
numerical model’s validity will be assessed through road tests, along with an examination of
results and variations stemming from different modelling approaches. Lastly, a parametric
analysis will be conducted to explore how key vehicle performance parameters affect overall
performance.
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Chapter 1

Introduction

Motorsport has historically served as a platform for automobile manufacturers to showcase their
technological advancements. In recent years, electric car popularity has increased dramatically.
Energy management has long been a popular topic with those cutting-edge electric cars. In this
regard, the Federation Internationale de l’Automobile (FIA) established the Formula E race
championship in 2014 intending to promote these profound technological advancements even
more[1]. In addition to offering a compelling environment for research and development aimed at
optimizing the performance of electric vehicles[2], Formula E, as a new motorsport category for
exclusively electric road vehicles, also serves as an essential testing ground for the digitization of
race competitiveness[3].

In Formula E, energy management is paramount, with governing bodies imposing upper limits
on power and energy to ensure fair competition such as limitations on the power output from a
vehicle’s Rechargeable Energy Storage System (RESS), which can differ across various events
such as qualifying or races. Additionally, there are constraints on the quantity of energy that can
be supplied to the Motor Generator Unit (MGU)[4]. Consequently, drivers and engineers must
balance lap time optimization with energy constraints, making energy management a pivotal
aspect of competitive race strategy in Formula E events.

Formula E has evolved through three generations, each marked by significant advancements
[5]. The first generation (2014-2018) featured standardized chassis and batteries, while the
second generation (2018-2022) introduced sleeker designs and increased power. Now, with the
third generation (2022-present), known as Gen3, Formula E cars boast lighter, more efficient
powertrains and a commitment to sustainability. This evolution reflects Formula E’s rapid growth
as a platform for showcasing electric vehicle technology and driving progress towards a cleaner,
more sustainable future.

Table 1.1: Specifications of different generations of Formula-E cars [6] [5].

Generation Weight Battery
capacity

Drive
type

Max
power

Top
speed

Gen 1 880 kg 28 kWh Rear wheel drive 200 kW 225 kMh
Gen 2 900 kg 52 kWh Rear wheel drive 250 kW 280 kMh

Gen 3 856 kg 51 kWh
Rear wheel drive
Front & rear axle
regeneration

350 kW 322 kMh

Lap time simulation (LTS) holds significant value for racing teams as it enables the simulation of
a single race car equipped with a specific setup for one lap on a designated racetrack. Beyond
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Introduction

Figure 1.1: Formula E Gen 3 Car [7]

merely calculating lap times, LTS also yields additional insights, such as energy consumption.
Understanding a vehicle’s maximum performance capabilities aids teams in comprehending its
behaviour on any racetrack, even before building the car. Thus, the ability to simulate the
impacts of various energy management strategies on both lap time and energy consumption is
crucial for achieving the optimal balance. Typically, LTS overlooks long-term effects like energy
loss, which are addressed in race simulations that encompass an entire race and inform race
strategy decisions[3]. Nonetheless, these two simulation types collaborate closely, as LTS provides
many necessary parameters for race simulations, such as lap time mass sensitivity. Therefore,
co-simulation alongside a race simulation presents another practical application for LTS.

The aim of this thesis is to develop a lap time simulation to optimize the race line considering
the energy consumption limits. This problem is commonly known as the Minimum Lap Time
Problem (MLTP). The selected solution method is based on the optimal control approach and
uses direct collocation, taking advantage of the framework Casadi[8] and the solver IPOPT[9] to
define and solve the optimisation problem.

Lap Time Simulation is structured into three parts. The first section delineates the modelling of
both racetrack and vehicle components. The subsequent section elucidates the formulation of
the optimization problem as an Optimal Control Problem (OCP) and its transcription into a
Non-Linear Program (NLP). The final section presents the outcomes yielded by the simulation.
Due to the unavailability of team-specific data, our simulation is designed to be adaptable,
drawing upon publicly accessible sources like onboard video streams and lap times. This flexible
design enables its utility across diverse circuit racing series.
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Chapter 2

Background

2.1 Formula E
Formula E comprises 11 teams, with each team fielding two drivers who compete against each
other in a championship consisting of 12 to 14 races throughout the season. There are two
championship titles at stake: the Constructors’ Championship and the Drivers’ Championship.
The Constructors’ Championship is awarded to the team that accumulates the highest points
across the season, regardless of whether their drivers individually win the Drivers’ Championship.
Points are awarded to the top 10 finishers, with additional points given for securing pole position
and setting the fastest lap during the race.

Figure 2.1: Calculation of Formula E points [7]

During a typical race weekend, there are usually two practice sessions held on the same day. On
the following day, qualifying takes place, determining the starting grid for the race. This format
is common when a city hosts only one ePrix event.

However, in cities where two ePrix events are held like Misano eprix, the race weekend format is
modified. On the first day, there is a lone practice session. On the subsequent day, the second

3
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practice session and qualifying occur, followed by the first ePrix. The third day repeats the
format of the second day, with a third practice session, qualifying, and the race.

This format allows for efficient use of the race weekend schedule and ensures that spectators have
ample opportunities to witness the on-track action and excitement of Formula E racing.

Figure 2.2: Formula E qualifying format [7]

Attack Mode made its Formula E debut for the 2018/2019 season, functioning as a strategic
innovation to improve on-track overtaking opportunities[10]. Its debut was intended to mirror
the improved overtaking witnessed in Formula One races following the introduction of DRS(Drag
Reducing System) in 2011. However, a big incentive for adding Attack Mode was the substantial
advancement in battery technology within Formula E cars.

Activating Attack Mode necessitates drivers to drive off the racing line and navigate through the
designated Activation Zone as illustrated in Figure 2.3. In exchange for deviating from the ideal
racing trajectory around the corner, drivers gain an extra 50 kW of power, boosting their total
power output to 350 kW compared to the standard 300 kW. This added power can be harnessed
by drivers aiming to enhance their competitiveness and progress their position on the track. The
Formula E website [11] states that the duration for which Attack Mode remains active is set by
the FIA and disclosed before the race commences.

Each driver is required to activate Attack Mode at least once during a race. Similar to the rules
governing DRS in Formula 1, this mode cannot be engaged during the initial two laps of the
race. Furthermore, it is prohibited to utilize Attack Mode during full-course yellow flags or when
the safety car is deployed. While entering the activation zone may result in drivers temporarily
losing positions as they deviate from the optimal racing line, upon exiting the zone, they can
leverage the additional power to execute overtakes and extend their lead once again depending
on several options to use this additional power as it is shown in Figure 2.4.
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Figure 2.3: Activation zone [7]

Figure 2.4: Attack mode options [7]

Attack Mode made its Formula E debut for the 2018/2019 season, functioning as a strategic
innovation to improve on-track overtaking opportunities[10]. Its debut was intended to mirror
the improved overtaking witnessed in Formula One races following the introduction of DRS(Drag
Reducing System) in 2011. However, a big incentive for adding Attack Mode was the substantial
advancement in battery technology within Formula E cars.
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2.2 Literature Review
The challenge of the minimum lap time has long been one that engineers have attempted to
solve [12], and there is a wealth of literature on this topic. Rebuilding the state and control
trajectories from the highest speed at the apex of the corners is where the earliest references to
this date come from. Several approaches have been investigated since then.

Siegler et al.[13] conducted a comparison of three different modelling approaches and determined
that both quasi-steady-state and transient methods outperform steady-state modelling. Brayshaw
et al.[14] delved deeper into the quasi-steady-state approach by employing optimal control
techniques and found its sensitivity to setup changes to be comparable to that of an optimized
transient solution. Casanova[15] and Kelly[16] concentrated on achieving minimum lap time
targets using purely optimal control techniques, with Kelly additionally enhancing robustness by
considering stability criteria. Volkl[17] introduced a method for integrating transient modelling
into quasi-steady-state calculations, resulting in reduced computation times. Timings et al.[18]
developed a LTS based on model predictive control, augmented with a compensatory controller
to mitigate driver errors. Perantoni et al.[19] and Limebeer et al.[20] employed 3D racetrack
representations to minimize lap time, with Limebeer et al. also addressing time-optimal energy
management for F1 hybrid powertrains. However, it’s noted that optimizing energy management
may not always lead to feasible driving behaviour strategies during a race.

Three basic approaches have emerged as the most effective ways to overcome minimum lap time
issues. The first way takes an indirect approach, utilizing Pins software (previously XOptima), as
detailed in [21]. This approach has been widely used since the late 1990s, with remarkable results
demonstrated in [21, 22, 23]for motorcycle applications and [24, 25] for automobiles. The second
strategy employs a direct multiple firing method assisted by MUSCOD-II software, with the
most remarkable success reported in [26]. The most recent innovation in this domain is a direct
optimum control technique that employs full direct transcription via pseudo-spectral collocation,
as demonstrated by GPOPS-II software in [27]. This approach, which was introduced in 2013, is
shown to have cutting-edge applications in the field in [28, 29].
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Chapter 3

Simulation Environment

3.1 Track Model
The track is represented using a curvilinear coordinate system, departing from conventional
xy coordinates. This system tracks the vehicle’s position along the arc length of the track’s
centerline. Such an approach offers a concise means of depicting the vehicle’s advancement and
ensures its adherence to the track limits[30]. The track model’s primary function is to give the
solver the track’s curvature profile. the track model used in this thesis is adopted from Perantoni
and Limebeer [19].

Figure 3.1: Track Modeling Coordinate [6]

The parameters s and n, which indicate the distance traveled along the centerline from the
start/finish line and the perpendicular distance of the vehicle mass center from the centerline to
the centerline’s tangent direction, respectively, can be used to characterize the location of the
vehicle on the track, as shown in 3.1.

The track’s curvature at any given location s is determined by C = 1/R and its radius of curvature
is given by R.

The vehicle’s absolute yaw angle the angle between the vehicle and the track is represented by ψ
and ξ respectively. Therefore, ψ = θ + ξ, where θ represents the track orientation angle. It is
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evident that in the typical rectangular inertial system, each increment of progress ds along the
track centre line in this coordinate system results in the following increments of dx and dy:

dx = ds cos(θ) (3.1)

dy = ds sin(θ) (3.2)

This provides

dy

dx
= tan(θ) (3.3)

From basic geometry, we can determine that the track curvature is given by

C = dθ

ds
= d

ds

A
arctan

dy

dx

B
(3.4)

It offers a theoretical method for determining the track curvature from GPS data that is stated
in rectangular coordinates. The vehicle’s velocity can be resolved in the t-direction (see Figure
3.1), which produces

ṡ− nθ̇ = u cosψ − v sinψ (3.5)

where u and v denote for the longitudinal and lateral components of the mass-center velocity of
the vehicle, respectively. n, which is in the direction of n, indicates the lateral position of the
vehicle’s mass center with respect to the track center line; note that d(nθ)

dt
= nθ̇ + ṅθ with ṅθ

perpendicular to t. Identify (3.5) provides

ṡ = u cos(ξ) − v sin(ξ)
1 − nC

(3.6)

The vehicle’s location’s abscissa point’s centerline curvature is indicated by C. When the car is
on the left side of the centerline during a left turn, C is positive and n is positive. Note that the
dot notation indicates that these are time derivatives. As cars aren’t meant to drive backwards
on a track in a realistic manner, the traveled distance, s, is a monotonically increasing function
of time. s is included as an independent variable in the optimal control problem (OCP) with the
goal of minimizing the lap time t.

The rate of change of n using (3.4) is given by

ṅ = u sin(ξ) + v cos(ξ) (3.7)

Finally, differentiating ψ = ξ + θ using (3.4)with respect to time in

ξ̇ = ψ̇ − Cṡ (3.8)

The relationship between "time" and "distance traveled" suggests that either can be eliminated
when formulating optimal control problems. Opting for "distance traveled" as the independent
variable offers benefits, including maintaining a direct link with track position and reducing

8
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the number of problem variables by one. To implement this change, it’s crucial to establish a
one-to-one correspondence between distance s and time t. Given that ds = ṡdt, all that has to
be done is make sure the vehicle velocity is positive in the track-tangent direction; this will be
assumed going forward. Following this, we note that

dt = dt

ds
ds = Sf (s)ds (3.9)

where Sf comes from (3.6) as follows

Sf = (ds
dt

)−1 = 1 − nC

u cos(ξ) − v sin(ξ) (3.10)

The value Sf represents the inverse of the vehicle velocity component aligned with the track’s
tangent direction (on the centre line at position s). This establishes a direct correspondence
between s and t when both the numerator and denominator are positive. Opting for "distance
traveled" as the independent variable using (3.7) yields

dn

ds
= Sf (u sin(ξ) + v cos(ξ)) (3.11)

from (3.8), and

dξ

ds
= Sfw − C (3.12)

where w = ψ̇ is the vehicle yaw rate.

A 2D map, which is defined by the coordinates or function representing the track bounds, is
the most fundamental representation of a racetrack. Further details such as variable coefficients
of friction (as detailed in [31]), road camber, gradient, or surface elevation changes can be
incorporated. As presented in [32], More advanced models begin by portraying the track as
a strip, a 2D surface within 3D space. A 2D representation of the track is selected for this
investigation.

3.2 Vehicle Model
The level of complexity provided for the vehicle dynamic model determines the possibility of
obtaining realistic solutions for the optimal control problem, or rather results that can be assumed
as a good approximation of the real behavior of the vehicle. The more the model can capture the
most important dynamic parameters, the more the simulation is capable of reaching the ideal
perfect performance for the real vehicle, in terms of minimum time manoeuvres.

Pitch and roll motions were not used in this thesis to apply higher-fidelity models since they are
more significant in jobs where vehicle dynamics research predominates. Because the suspensions
on Formula One and Formula E cars are so rigid, the roll and pitch movements in these high-
level motorsports have very small amplitudes. These are significant primarily because they
have a significant impact on aerodynamic performance, as exemplified by Formula One, where
aerodynamic downforce character is a dominant factor that cannot be disregarded in performance
analysis[29]. Conversely, in Formula E, teams utilize identical bodywork with a design concept
distinct from Formula One, resulting in less emphasis on downforce generation. Consequently,
the performance in Formula E is less dependent or sensitive to pitch and roll motions [6].
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In this thesis, the vehicle is modelled with seven degrees of freedom (DOFs), namely the longitu-
dinal, lateral, and yaw motions, along with four-wheel rotations. The model also incorporates
aerodynamic loads and considers load transfer. Additionally, a limited-slip differential (LSD)
is included in the model, reflecting the single-motor per-axle configuration typical of the cars
examined.

Figure 3.2: 7-DOF Vehicle model [6]

10
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3.2.1 Body dynamics
The longitudinal, lateral and yaw motions are represented by the following equations, as shown
in figure 3.2:

M
d

dt
u(t) = Mwv + Fx (3.13)

M
d

dt
v(t) = −Mwu+ Fy (3.14)

Iz
d

dt
w(t) =b(cos(δ)(Fy1 + Fy2) + sin(δ)(Fx1 + Fx2)) − w(sin(δ)Fy2 − cos(δ)Fx2)+

wFx3 − w(cos(δ)Fx1 − sin(δ)Fy1) − wFx4 − a(Fy3 + Fy4)
(3.15)

The following is an expression for these equations in terms of the independent variable s

du

ds
= Sf (s)u̇ (3.16)

dv

ds
= Sf (s)v̇ (3.17)

dw

ds
= Sf (s)ẇ (3.18)

In this context, M represents the vehicle’s mass, Iz denotes the vehicle’s yaw moment of inertia,
δ signifies the steering angle of the front wheels, and w refers to the track width. The parameters
a and b indicate the distances from the vehicle’s center of mass to the front and rear axles,
respectively. Additionally, Fxi

and Fyi
represent the longitudinal and lateral forces, respectively,

exerted by the tyres. The subscript i (where i = 1, 2, 3, 4) denotes the specific tyre, with 1 and 2
representing the front left and right tyres and 3 and 4 representing the rear right and left tyres.

The vehicle is being affected by longitudinal and lateral forces, denoted as Fx and Fy, respectively.
These forces are provided by

Fx = cos(δ)(Fx1 + Fx2) − sin(δ)(Fy1 + Fy2) + (Fx3 + Fx4) − Fax (3.19)

Fy = cos(δ)(Fy1 + Fy2) + sin(δ)(Fx1 + Fx2) + (Fy3 + Fy4) (3.20)

where Fax , is the vehicle’s longitudinal aerodynamic load.
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3.2.2 Wheel dynamics
At the points where the tyres make contact with the ground, the tyre forces exert normal,
longitudinal, and lateral forces on the vehicle’s chassis, causing a reaction in the inertial frame.
The forces vary based on the normal load and the longitudinal and lateral slip of the tyres. The
steering is done by the front wheels only, as shown in Figure 3.2.

An empirical tyre model[33] is employed, featuring linearized interpolation to determine the peak
values of longitudinal and lateral friction coefficients[16].

Table 3.1: Description of symbols.

Symbol Description Front
value

Rear
value

FzR1 Reference normal load 1 2000 N 2000 N
FzR2 Reference normal load 2 6000 N 6000 N
µxmax1 Peak longitudinal friction coefficient at load 1 1.4 1.75
µxmax2 Peak longitudinal friction coefficient at load 2 1.12 1.4
κmax1 Slip coefficient for the friction peak at load 1 0.11 0.11
κmax2 Slip coefficient for the friction peak at load 2 0.10 0.10
µymax1

Peak lateral friction coefficient at load 1 1.62 1.8
µymax2

Peak lateral friction coefficient at load 2 1.3 1.45
αmax1 Slip angle for the friction peak at load 1 9° 9°
αmax2 Slip angle for the friction peak at load 2 8° 8°
Qx Longitudinal shape factor 1.9 1.9
Qy Lateral shape factor 1.9 1.9

The following provides the longitudinal and lateral forces:

Fxi
= µxi

Fzi

κniñ
α2

ni
+ κ2

ni
+ ϵ

(3.21)

Fyi
= µyi

Fzi

αniñ
α2

ni
+ κ2

ni
+ ϵ

(3.22)

κni
and αni

represent the normalized tyre slip with regard to the slip value where the peak
friction coefficient occurs, and Fzi

is the tyre normal force:

αni
= αi

αmaxi

(3.23)

κni
= κi

κmaxi

(3.24)

The slip angles αi and ratios κi are defined as:

α1 = δ − arctan( v + wa

u− ww), κ1 = −1 + Rw1

cos(δ)(u− ww) − sin(δ)(v + wa) (3.25)

α2 = δ − arctan( v + wa

u+ ww), κ2 = −1 + Rw2

cos(δ)(u+ ww) − sin(δ)(v + wa) (3.26)
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α3 = −arctan( v − wb

u+ ww), κ3 = −1 + Rw3

u+ ww (3.27)

α4 = −arctan( v − wb

u− ww), κ4 = −1 + Rw4

u− ww (3.28)

where R is the tyre radius and wi is the angular velocity of each wheel.

Linear interpolation is utilized to determine the peak friction values, treating them as linear
functions of the tyre’s normal loads. The meanings of the symbols are detailed in Table 3.1.

µxmax = (Fz − FzR1)(
µxmax2 − µxmax1

FzR2 − FzR1
) + µxmax1 (3.29)

µymax = (Fz − FzR1)(
µymax2 − µymax1

FzR2 − FzR1
) + µymax1 (3.30)

κmax = (Fz − FzR1)(
κmax2 − κmax1

FzR2 − FzR1
) + κmax1 (3.31)

αmax = (Fz − FzR1)(
αmax2 − αmax1

FzR2 − FzR1
) + αmax1 (3.32)

Following that, the descriptions of the longitudinal and lateral friction coefficients in equations
(3.21) and (3.22) are provided by

µxi
= µximax

sin

A
Qxarctan

A
π

2arctan(Qx)
ñ
α2

ni
+ κ2

ni

BB
(3.33)

µyi
= µyimax

sin

A
Qyarctan

A
π

2arctan(Qx)
ñ
α2

ni
+ κ2

ni

BB
(3.34)

where Qx and Qy represent shaping factors.

The OCP computation time can be shortened by reducing the tyre model in this fashion, but
several crucial characteristics of a race tyre must still be considered. These include: 1) nonlinear
tyre characteristics regarding tyre slip, 2) fluctuations in peak friction coefficients resulting
from alterations in normal force, and 3) incorporation of combined slip and shaping factors for
determining friction coefficients. It is important to highlight that in equations (3.21) and (3.22),
a small value denoted as ϵ is included in the denominator of the combined-slip coefficient. This
addition prevents scenarios of zero-slip, which could result in an infinite gradient derivative,
causing challenges for the OCP solver. However, this value should be sufficiently small (10e-06)
to ensure the accuracy of the tyre model is maintained.

The torques of the motors are transmitted to the driving wheels by the LSD(Limited-Slip
Differential) and the drive shafts. The LSD torque is transmitted from the wheel rotating at a
higher speed to the slower wheel.
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This torque is expressed as follows:

Tdiff = 0.5kd(winner − wouter) (3.35)

with winner and wouter represent the angular velocities of the inner and outer wheels on the same
axle, respectively, while kd denotes the rotational damping coefficient of the LSD.

Lastly, the motions of the wheels are delineated as follows:

Jwẇ1 = kb(Tbrake + Tregen

4 ) + Tdiff−f − Fx1R (3.36)

Jwẇ2 = kb(Tbrake + Tregen

4 ) − Tdiff−f − Fx2R (3.37)

Jwẇ3 = Tdrive + (1 − kb)(Tbrake + Tregen

4 ) − Tdiff−r − Fx3R (3.38)

Jwẇ4 = Tdrive + (1 − kb)(Tbrake + Tregen

4 ) + Tdiff−r − Fx4R (3.39)

The wheel rotational inertia is represented by Jw, the brake bias to the front by kb, and the drive
torque and brake torque, respectively, are derived from the motor brake torque produced by
the caliper or the motor regeneration. Tregen is extra regenerative torque that is applied to the
steering wheel by the driver.

To prevent pedal overlap, these three torques are constrained by:

TdriveTbrake = 0 (3.40)

TdriveTregen = 0 (3.41)

The drive power, denoted as Pdrive, and the regeneration power, referred to as Pregen, are
determined by:

Pdrive = (Tdrive + Tdiff−r)w4 + (Tdrive − Tdiff−r)w3 (3.42)

Pregen =(Tregen + Tdiff−r)w4 + (Tregen − Tdiff−r)w3+
(Tregen + Tdiff−f )w1 + (Tregen − Tdiff−f )w2

(3.43)
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3.2.3 Normal tyre loads
At every time step, it is necessary to compute the normal forces acting on the tyres for the
calculation of longitudinal and lateral tyre forces. These forces must adhere to the fundamental
equilibrium equations of the vehicle. In the vertical direction:

Fz1 + Fz2 + Fz3 + Fz4+ = Mg − Faz = 0 (3.44)

Fzi represents the normal force exerted on each tyre, M denotes the overall vehicle mass, g
signifies the acceleration due to gravity, and Faz indicates the aerodynamic vertical load acting
on the vehicle. To ensure equilibrium at the moment around the x-axis of the vehicle, as depicted
in Figure 3.2:

w(Fz4 − Fz3) + w(Fz1 − Fz2) + Fy = 0 (3.45)

To maintain the vehicle’s current equilibrium around its y-axis:

b(Fz3 + Fz4) − a(Fz1 + Fz2) − hFx − (aa − a)Faz = 0 (3.46)

where h represents the height of the vehicle mass center to the ground.

The lateral load transfer bias D is added to the following balancing equation to guarantee a
distinct solution for each of the four normal forces. The distribution of lateral load transmission
between the front and rear axles is described as follows:

D((Fz2 + (Fz3 − (Fz1 − (Fz4) − Fz2 + Fz1 = 0 (3.47)

Fzi is the tyre’s normal force and it is computed, considering the static weight of each axle (where
g represents the acceleration due to gravity and l denotes the wheelbase length), the longitudinal
load transfer ⌈x, and the downforce Faz (equally distributed between both axles).

Fzi = Mg
li
l

± ⌈x+Faz

2 (3.48)

The model considers load transfer in a quasi-steady state, without taking into account suspension
geometry, springs and dampers, or chassis stiffness, which would affect the dynamic equations.
The algebraic loop arises from the relationship between vertical load, load transfer, and tyre
forces. To resolve this issue, load transfer is treated as a distinct optimization variable subject to
the following constraint:

⌈x= ((Fx1 + Fx2)cos(δ) − (Fy1 + Fy2)sin(δ) + Fx3 + Fx4 − Fax)h
l

(3.49)

The model accounts for the combined behaviour of the tyres by constraining the total longitudinal
and lateral forces to the friction circle, which is given by the friction coefficient. Employing same
mu value for both lateral and longitudinal forces simplifies the constraint:

µ2
i −

F 2
x,i + F 2

y,i

F 2
z,i

≥ 0 (3.50)
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The aerodynamics loads Faz and Fax are privoded by:

Faz = 0.5ClρaAu
2 (3.51)

Fax = 0.5CdρaAu
2 (3.52)

where Cd represents the aerodynamic drag coefficient, Cl denotes the lift coefficient, ρa signifies
the air density and A stands for the frontal area of the vehicle.
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Chapter 4

Optimisation Problem

The best racing lines and controls can be found concurrently when using the optimum control
strategy to solve a problem that considers the transient behaviour of comprehensive dynamic
models. Frequently, optimal control and trajectory optimization are considered synonymous, as
their techniques and implementations can essentially be identical. Optimal control methodologies
are typically categorized into direct and indirect approaches[34]. After formulating the MLTP as
an OCP, indirect methods strive to identify the requisite conditions for optimality, while direct
orthogonal collocation converts it into a discrete minimization problem, often referred to as
NLP (non-linear program). This section outlines the steps taken to discretize and formulate the
optimization problem, as well as the eventual implementation.

4.1 Trajectory Optimisation
Formally, an optimal control problem is presented as follows: Find the state (or trajectory)
x(t) ∈ Rn, the control u(t) ∈ Rm, the static parameter vector p ∈ Rq, the initial time t0 ∈ R, and
the terminal time tf ∈ R (where t belongs to the interval [t0, tf ]) that optimizes the performance
index[35].

J = Φ[x(t0), t0,x(tf ), tf ; p] +
Ú tf

t0
L[x(t),u(t), t; p] dt (4.1)

Constrained by the dynamic limitations (specifically, constraints represented by differential
equations),

ẋ(t) = f[x(t),u(t), t; p], (4.2)

where the path constraints are represented by

Cmin ≤ C[x(t),u(t), t; p] ≤ Cmax, (4.3)

with boundary conditions are given by

ϕmin ≤ ϕ[x(t0), t0,x(tf ), tf ; p] ≤ ϕmax (4.4)

Each component of the state, control, and static parameter can be expressed as
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x(t) =


x1(t)

...
xn(t)

 ; u(t) =


u1(t)

...
um(t)

 ; p =


p1
...
pq

 (4.5)

Equation (4.2) presents a differential equation that characterizes the dynamics of the system, and
the performance index measures the trajectory’s quality. A lower value of J is preferred when
the objective is to minimize the performance index. Conversely, a greater value of J is considered
preferable when the goal is to maximize the performance index. A multi-phase optimal control
problem is presented as follows:

Optimize the cost

J =
PØ

k=1
J (k) (4.6)

The cost function in each phase,J (k), (k = 1, . . . , P ), follows the structure described in Equation
(4.1), while adhering to the dynamic constraints.

ẋ(k)(t) = f
1
x(k)(t),u(k)(t),p(k), t

2
(4.7)

where the boundary conditions are

ϕ
(k)
min ≤ ϕ(k)

1
x(k)(t(k)

0 ), t(k)
0 ,x(k)(t(k)

f ),p(k), t
(k)
f

2
≤ ϕ(k)

max (4.8)

and the algebraic path constraints

C
(k)
min ≤ C(k)

1
x(k)(t),u(k)(t),p(k), t

2
≤ C(k)

max (4.9)

with the linkage constraints

L(s)
min ≤ L

1
x(ls)(t(ls)

f ),u(ls)(t(ls)
f ),p(ls), t

(ls)
f ,x(rs)(t(rs)

f ),u(rs)(t(rs)
f ),p(rs), t

(rs)
f

2
≤ L(s)

max (4.10)

The parameter S represented in Eq.(4.10) the number of pairs of phases to be linked, where
rs ∈ [1, . . . , S] and ls ∈ [1, . . . , S] denote the right and left phases, respectively, of the linked
pairs. Here, rs /= ls (indicating that a phase cannot be linked to itself), and s ∈ [1, . . . , S].

For the MLTP problem, when time is utilized as the independent variable, the integrand of
the Lagrange term would be set to 1. However, in this study, distance replaces time as the
independent variable, leading to the definition of the integral objective function as follows:

J(w) =
Ú tf

t0
1 . dt =

Ú Sf (w)

s0
Sf (w) . ds (4.11)

where tf and sf denote the final time and distance, respectively, and w contains the optimization
variables. Typically, these optimization variables consist of the states x, the control inputs
u, and a finite number of static parameters p. In addition, an extra continuous variable y
is included to accommodate auxiliary continuous variables that are neither states nor inputs,
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such as load transfer. Unlike previous studies where load transfer was integrated by expanding
the input vector, this new formulation provides more flexibility in handling the corresponding
decision variables of the NLP. For example, it allows for the approximation of y with higher-order
polynomials compared to the inputs.

The limitations of the OCP can be represented as

d

ds
x = f(w) (4.12)

h(w) ≤ 0 (4.13)

b(w0,wf ) ≤ 0 (4.14)

The system dynamics are governed by Equation (4.12), where f encompasses Equations (3.7),
(3.8), (3.13), (3.14), (3.15), (3.36),(3.37),(3.38), and (3.39). h denotes the path constraints, which
may include both equality and inequality constraints, such as Equations (3.49), (3.50), (3.40),
and (3.41). Boundary constraints, defined by b, are utilized to establish the initial and final states.
For instance, these constraints could specify the initial longitudinal speed or the orientation of
the vehicle after the track.

Constraints that rely solely on one optimization variable are enforced by setting appropriate
bounds for the corresponding decision variables in the NLP. For instance, the lateral distance of
the vehicle from the centerline, considered a state in the model, should consistently remain below
half the width of the track. Thus, with Λ representing the vehicle width, the state boundaries
must be configured as follows:

w2 − Λ ≥ n ≥ −w2 + Λ (4.15)

4.2 Transcription
It is important to recognize that setting bounds for decision variables in the NLP differs from
defining constraints. While an initial guess must always fall within the bounds, a constraint may
not initially be satisfied. Despite the mathematical problem being identical in both scenarios,
numerically they are distinct and can affect the solver’s performance. In the course of this study’s
development, it was noted that enforcing the limit for the input brake torque as a constraint,
rather than a bound, resulted in quicker simulation times. An intriguing avenue for future
research might involve further exploration of this phenomenon.

The conversion of the OCP into a discrete NLP is termed transcription, hence the alternative
term "direct transcription" for direct collocation. In this approach, direct orthogonal local
collocation with barycentric Lagrange interpolation[36] is employed. This method represents the
most effective approach for storing and assessing high-order orthogonal polynomials.

This is achieved by expressing the value of the function at any point f(t) using a weighted
combination of the function’s value fi = f(ti) at the roots of the orthogonal polynomial ti. The
equation for barycentric interpolation is provided below. It’s worth noting that this expression is
invalid when evaluated at the interpolation points t = ti. However, this presents no issue as the
function value at these points is already known to be fi.
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f(t) =
qn

i=0
vi

t−ti
fiqn

i=0
vi

t−ti

(4.16)

where the interpolation weights vi are calculated by

vi = 1rn
j=0,j /=i(ti − tj)

, i = 0, . . . , n (4.17)

The barycentric interpolation formula (4.16) will still interpolate the data at points fi if the
weights vi are chosen arbitrarily. The choice of weights given by (4.17) is special in that it defines
the unique polynomial interpolant, whereas any other choice of weights will result in interpolation
by some rational function [36]. Notice that these weights can be scaled by an arbitrary constant
and still produce the correct interpolation in Equation (4.16).

Barycentric interpolation would be used to assess the solution in an orthogonal collocation
method. However, it is not employed in the construction of the nonlinear program; rather,
the decision variables of the nonlinear program are the values of the state and control at each
collocation point ti.

Firstly, the total length of the track (the independent variable) is divided into N finite elements
(hence N + 1 grid points, denoted as sk) of arbitrary length dsk. The states within each interval
are approximated by a Legendre polynomial of degree d, with the collocation points sk,j selected
as the roots of the Legendre polynomials. These roots are typically defined in the interval [−1, 1],
but they can be mapped to any other interval by uniformly scaling the points. In addition to the
previously mentioned benefits, this selection of collocation sites yields the best accurate estimate
of the related quadrature formula.

k = {1, . . . , N + 1}

j = {1, . . . , d}

Figure 4.1: Discretisation Interval

The approximating polynomial shown in Figure 4.1 does not yet satisfy the collocation constraints.
Xk,j represents the auxiliary states used to formulate these constraints by evaluating the system
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dynamics at those points. L̇k(sk,j) denotes the derivative of the polynomial at the collocation
points.

Another advantage of employing orthogonal polynomials with barycentric Lagrange interpolation
is the ability to compute differentiation, integration, and interpolation of the polynomials as a
linear combination of their values at the collocation points. This linear combination involves the
decision variables of the NLP. For example, consider defining Lk = [lk(sk,1), lk(sk,2), . . . , lk(sk,d)],
where lk(s) represents the Lagrange polynomial of order d in the interval [sk, sk+1], and sk,j

represents the collocation points. It should be noted that lk(sk,j) = Xk,j. Consequently, the
derivatives at the collocation points can be determined as follows:

L̇k = C
dsk

· Lk (4.18)

The same approach can be used to determine the contribution of each finite element to the
objective function, denoted as Sfk = [Sf(sk,1), Sf(sk,2), ..., Sf(sk, d)]; and to extrapolate the
state at the end of the interval. Matrices C, B, and D can be computed for a ’standardized’
interval like [0, 1], and their structure and values would solely depend on the chosen degree for
the polynomial.

Jk = B · Sfk · dsk (4.19)

Xend = D · [Xk, Xk,1, . . . , Xk,d] (4.20)

The derivatives of the polynomials are matched with the system’s real dynamics at the collocation
locations, and the extrapolated final state of each finite element is matched with the first state of
the subsequent one to create the collocation constraints.

Normally, the control inputs are discretized as piece-wise constant functions, but in this case,
linear functions are employed. This is accomplished by specifying the input values at the grid
points rather than the intervals, thereby increasing the number of decision variables only by
the number of inputs. This approach often leads to faster solution times. Additionally, path
constraints can be formulated more directly since they can now be defined at every grid point.
Moreover, it facilitates the computation of derivatives in each interval for applying constraints
on the input rates. The same principle is applied to discretize the auxiliary variables y.

At last, the NLP formulation yields the following results:

minimize

J =
NØ

k=1
B · Sfk · dsk

(4.21)

subject to

d

ds
Lk(sk,j) − f(Xk,j, Uk, Yk, p, κk) = 0 ∀k ∈ [0, N ] and j ∈ [1, d] (4.22)

Xend − Xk = 0 ∀k ∈ [1, N + 1] (4.23)
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Hlb ≤ h(Xk, Uk, Yk, p, κ) ≤ Hub ∀k ∈ [0, N ] (4.24)

Blb,k ≤ h(Xk, Uk, Yk, p, κ) ≤ Bub,k k = 0, k = N + 1 (4.25)

The conversion involves transforming the objective function 4.11(32) into 4.21, the system’s
dynamic constraints 4.12 into the collocation constraints 4.22 and 4.23, the path constraints 4.13
become 4.24, and the boundary constraints 4.14 appear as 4.25. Path (and boundary) constraints
can be treated as equality constraints by setting Hlb = Hub; however, implementing them as
equality constraints is facilitated by allowing a slight slack. This approach has been observed to
reduce simulation times. The decision variables are then modified as follows:

states Xk

helper states Xkj

inputs Uk

auxiliary variables Yk

parameters p

The "decision space" is lowered since each decision variable is subject to constant boundaries.
This process limits the inputs’ lowest and maximum values as well as certain states, such as the
maximum speed based on the maximum power and drive torque or the maximum distance to
the center line, which, as previously said, ensures the car stays on the track. As seen in 4.10,
the NLP incorporates an extra set of restrictions to restrict the maximum rate of change of the
inputs. The inputs’ derivative is computed as:

∆Uk = Uk+1 − Uk

dsk

(4.26)

4.3 State and Control Scaling
Scaling plays a crucial role in determining the efficiency of optimization algorithms. As convergence
criteria rely on defining what constitutes "small" and "large" values, problems arising from irregular
or unbalanced scaling can pose challenges. One approach to scaling involves transforming variables
from their original form, often reflecting the physical aspects of the problem, into variables that
exhibit more favourable characteristics for optimization purposes.

4.3.1 Non-Dimensionalisation
In problems involving physical quantities, inadequate scaling can often stem from the choice of
problem units. In our scenario, adopting SI units results in the vehicle’s main frame having a
mass of around 860 kg including driver, and the acceleration due to gravity is approximately
9.8 m/s2. When considering the impact of aerodynamic downforce, normal tire loads and tire
friction forces can reach magnitudes on the order of 104 N in certain situations. Consequently,
forces exerted on the vehicle are approximately four orders of magnitude greater than length-
related variables, angles (such as steering), and tire slip coefficients. To address this issue,
we normalize the fundamental physical units of length, mass, and time, making all mass- and
length-related parameters unitless, while ensuring that the vehicle possesses unit mass and unit
length. Additionally, time is adjusted so that the acceleration due to gravity becomes unity.
Following non-dimensionalization, angles remain expressed in radians.
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In situations where the maximum value of certain variables is known, scaling is achieved by
dividing these variables by their respective maximum values. For instance, the decision variables
associated with the drive torque are divided by the maximum drive torque, which is a parameter
defined in the car model. However, the objective function remains unscaled, as scaling it was
found to diminish the solver’s performance, although other studies have reported benefits from
scaling the objective function. Similarly, the path constraints are scaled to ensure that the
magnitude of h remains comparable to that of the decision variables. Nonetheless, conducting a
comprehensive investigation into the effects of scaling could prove highly valuable in this context.

4.4 Regularisation
The existence of singular arcs in an OCP might cause solution oscillations and convergence issues.
This phenomenon arises when there are several solution sets, and distinct sets of choice variable
values provide equal (or extremely similar) objective function values. Regularization is a strategy
for favouring specific solutions by inserting penalty terms.

Typically, these terms are corrected with a regularization factor. Choosing sufficiently small
values ensures that the objective function is closely aligned with the original. Squaring the inputs
is one of the most basic regularization terms, to reduce control effort, a typical difficulty in fields
such as robotics.

Figure 4.2: Steering angle with and without applying regularisation

An advanced technique penalizes solutions that lack smoothness by including input derivatives.
To address solutions with oscillations, the second derivative is also included. Regularization is not
restricted to inputs; it also applies to auxiliary variables Yk. After integrating the regularization
terms, the objective function changes to:

J =
NØ

k=1

è
B · Sfk · dsk + ru · Uk2 + rdu · ∆Uk2 + rdu2 · ∆2U2

k + rdy · ∆Y k2 + rdy2 · ∆2Y 2
k

é
(4.27)

where Uk = [Tdrv,k, Tbrk,k, Tregen,k, δk] and Yk = Γx,k. The regularization factors were chosen as
follows:
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ru = [0, 0, 0, 0.1]
rdu = [0.01, 0.01, 0.01, 0.1]
rdu2 = [0.01, 0.01, 0.01, 10]
rdy = 0.001
rdy2 = 0.015

4.5 Initial guess
The NLP solver relies on an iterative approach, which necessitates an initial estimation of the
decision variables. While a straightforward initialization, such as a linear interpolation between
the initial and final states, suffices for certain problems, more intricate systems typically demand
a more informed initial estimate.

In situations where locating initial guesses proves challenging, a common strategy involves
resolving a simplified rendition of the problem and then incorporating the solution into the
complete problem. This technique may include several intermediary steps before reaching the
final solution.

Figure 4.3: Comparison of the longitudinal velocity with a simplified model and the complete
model

In this study, a brief examination was conducted on a particular concept. The problem was
made easier by excluding wheel dynamics, load transfer considerations, and utilizing linear
tires. Employing this simplified setup, along with a collocation step of 10 meters, facilitated the
discovery of optimal inputs and states within a time frame of under 207 seconds. Conversely,
employing the complete model, which utilizes a step size of 3 meters, required approximately
2952.7 seconds.

The solutions from the fast and final problems may appear similar on a variable-by-variable basis
as shown if Figure 4.3 and 4.4, the combination of values obtained in the ’fast’ problem might
not be viable for the complete problem. Furthermore, the initial guess, despite being closer to
the optimal solution, might be situated in regions of the objective function space where an NLP
solver like ipopt struggles to converge towards the optimal solution.

Finally, the chosen strategy involved setting all decision variables to’reasonable’ constant values.
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Figure 4.4: Comparison of the steering angle with a simplified model and the complete model

For example, picking a number for the longitudinal velocity that is closely related to the final
solution’s average speed resulted in faster simulation durations. Similarly, aligning the wheels’
rotational speed with the vehicle’s longitudinal speed improved the solver’s performance.
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Chapter 5

Simulation Results and
Discussion

This section presents the simulation results and their analysis. Initially, it delves into the intricacies
of discovering the optimal race line and controls for the Barcelona circuit, ensuring that the
derived solutions align with anticipated behaviours. Following this, a comprehensive optimization
study is undertaken for the Formula E car, specifically examining its performance during a race
scenario without activating the attack mode. Subsequently, the analysis extends to explore the
advantages gained from employing the attack mode, shedding light on its impact on overall
performance. In addition, the effect of the energy consumption limits on the vehicle’s performance
is studied. Through these varied scenarios, the section provides insightful demonstrations of the
software’s effectiveness in addressing real-world challenges within the world of racing simulations.

5.1 Race Line Optimisation

The MLTP aims to discover the best control settings. This is tested out on the Barcelona Circuit.
By looking at Figure 5.3, it’s evident that the car sticks to the centre of the track during the race,
resulting in a longer lap time. However, the goal is to rectify this and ensure the car achieves the
shortest lap time possible with the best racing line.

The chosen circuit is the Circuit de Barcelona-Catalunya, spanning 4.654 kilometres (2.891
miles) in Montmeló, Barcelona, Catalonia, Spain. Renowned for its lengthy straights and diverse
array of corners, this circuit is hailed as a versatile racing track. Additionally, the Circuit de
Barcelona-Catalunya holds an esteemed FIA Grade 1 license. Although this circuit does not host
Formula E races, it was chosen for this study since no data on Formula E circuits was available.

Once the optimization process is complete for the track, it becomes evident that there have
been significant improvements in the race line, as depicted in Figure 5.4. Particularly noticeable
enhancements occur during the corners within the first and third sectors. We observe the car
smoothly adhering to the optimized race line, particularly evident from turn 1 to turn 4 in the
first sector, and from turn 10 to turn 16 in the third sector. These adjustments contribute to
initiating the lap with the most efficient trajectory from the very outset, leading to minimized
lap times.
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Simulation Results and Discussion

Figure 5.1: The Circuit de Barcelona-Catalunya [37]

Figure 5.2: Track map layout [38]

5.2 Simulation set-up
This section offers an overview of the vehicle and powertrain parameters, as well as the state and
control variables utilized in the vehicle model. These parameters and variables are incorporated
into Casadi to solve the NLP within Matlab.

Table 5.1 displays the vehicle parameters utilized in this simulation. The vehicle model comprises
10 state variables, each with its respective scaling, as depicted in Table 5.2.

In this simulation, consistent values were employed for maximum driving, braking, and regenera-
tive torques, as well as for brake balance and the proportion of regenerative brake in total brake
torque, both with and without attack mode. The only disparity lies in the maximum power
output, which increased by 50 kWh during attack mode, elevating from 300 kWh to 350 kWh.
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Table 5.1: Vehicle Parameters

Symbol Description Value
M vehicle mass [kg] 856
Iz moment of inertia about the z-axis [kg m2] 450
w wheelbase [m] 2.97
a distance of the mass center from the front axle [m] 1.44
b distance of the mass center from the rear axle [m] w − a
h height of center of gravity [m] 0.3

Droll roll moment distribution (fraction at the front axle) 0.5
w wheel to car centerline distance [m] 0.73
Rf front wheel radius [m] 0.33
Rr rear wheel radius [m] 0.33
kd differential friction coefficient [Nms/rad] 10.47
Cd drag coefficient 0.57
Cl downforce coefficient 1.5
A frontal area [m2] 1.5
ρ air density [kg/m3] 1.2
aA center of pressure to front axle distance [m] 1.2
bA center of pressure to rear axle distance [m] w − aA

Table 5.2: State Variables

Symbol Description Scale
vx longitudinal velocity [m/s] 100
vy lateral velocity [m/s] 10
ψ̇ yaw rate [rad/s] 1
n lateral position to centreline [m] 5
ψ angle to centreline tangent direction [rad] 1
w1 angular velocity front left tyre [rad/s] vxs

Rf

w2 angular velocity front right tyre [rad/s] vxs

Rf

w3 angular velocity rear right tyre [rad/s] vxs

Rr

w4 angular velocity rear left tyre [rad/s] vxs

Rr

Elap Energy consumption [J] 52*3.6e6

Table 5.3: State limits

States Lower limit Upper limit
vx [m/s] 1e-3 vmaximum

vy [m/s] -10 10
ψ̇ [rad/s] -π

2
π
2

n [m] -4 4
ψ [rad] -π

4
π
4

w1 [rad/s] 0 vmax

RwF

w2 [rad/s] 0 vmax

RwF

w3 [rad/s] 0 vmax

RwR

w4 [rad/s] 0 vmax

RwR

Elap during Race Mode [kWh] 0 1.6
Elap during Attack Mode [kWh] 0 2.16
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Simulation Results and Discussion

Table 5.4: Powetrain Parameters

Symbol Description value
Tdrivemax maximum driving torque [Nm] 2000
Tbrakemax maximum braking torque [Nm] 6000
Tregenmax maxmum Regenrative torque [Nm] 2000

Pmax maximum driving power without attack mode [kWh] 300
Pmax maximum driving power with attack mode [kWh] 350
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Simulation Results and Discussion

Figure 5.3: 2D Plot of Barcelona Circuit

Table 5.5 displays the four control variables utilized in the simulation, along with their respective
scaling factors.

Table 5.5: Control Variables

Symbol Description Scale
Tdrive driving torque [Nm] Tdrivemax

Tbrake braking torque [Nm] Tbrakemax

Tregen Regenrative torque [Nm] Tregenmax

delta steer angle [rad] π
8

Table 5.6: Control limits

Control variables Lower limit Upper limit
Tdrive 0 2000
Tbrake -12000 0
Tregen 800 0
delta -π

4
π
4

Several key definitions were established for the optimization problem and collocation method.
Boundary conditions for the state variables were defined, with all initial and final states set to
NaN except for the initial velocity, which was fixed at 25 m/s. Additionally, the collocation
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Figure 5.4: Optimal race line of Barcelona Circuit

Table 5.7: Path Constraints

Constraints Lower limit Upper limit
Brake and throttle overlap -1e-3 1e-3

Regenerative brake and throttle overlap -1e-3 1e-3
Longitudinal load transfer -1e-3 1e-3

mu1 0 Infinite
mu2 0 Infinite
mu3 0 Infinite
mu4 0 Infinite

step was set to 3 m with 3 degrees of interpolating polynomials. The simulation ran for 1000
iterations.
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Furthermore, the control variables’ rate of change was constrained. These limitations are critical
in ensuring that changes in the input variables throughout the simulation do not occur too
quickly, preventing the system from becoming unstable or unrealistic. The limits are:
upper bounds = [10000, 10000, 10000, 1]
lower bounds = [-10000, -10000, -10000, 1]

5.3 Race Mode
In this section, the performance of the Formula E car during the race will be demonstrated,
highlighting the results obtained following the implementation of optimized control techniques.

Figure 5.5: Curvature

The positive and negative values of the segment radius of curvature differentiate the left and
right curves. The segment curvature is found by:

C = 1
R

(5.1)

The input data is reorganized and used in equation (3.12). The total length of the track centre
line is 4654 meters, with the vehicle’s initial velocity set at 25 m/s. The initial position of the
car’s centre of mass is situated at the starting point of the track, precisely at coordinates x =
-136.35 and y = -0.04. The elapsed time of the simulation is 2952.7 seconds, enabling the vehicle
to complete a single lap of the circuit in 96.338 seconds.

Figure 5.6 illustrates the relationship between the steering angle and distance across the entire
lap, providing insights into the results and their correlation with the curvature of the track. The
findings demonstrate the controller’s effectiveness in adjusting the steering angle to accommodate
changes in curvature. When the trajectory exhibits positive curvature, indicating a left turn,
the steering angle aligns accordingly, directing the wheels to the left and facilitating smooth
navigation along the curvature of the road. Conversely, in instances of negative curvature,
indicative of right turns, the steering angle adjusts in the opposite direction, steering the wheels
to the right, thereby enabling the vehicle to negotiate left turns with the requisite curvature.
Furthermore, an examination of Figure 5.5 allows for a straightforward comparison between
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Figure 5.6: Steering angle during the entire lap

the variations in steering angle and the corresponding changes in track curvature, providing a
comprehensive understanding of the controller’s performance throughout the lap.

Figure 5.7: Longitudinal velocity

The longitudinal velocity of a Formula E car refers to its speed along the direction of its motion.
This velocity represents the rate of change of the car’s position along the track, indicating how
fast it is accelerating or decelerating in a straight line. During the race mode, a maximum power
of 300 kWh can be used by each driver, and as it is shown in Figure 5.7 it is possible to see that
the results of the longitudinal velocity were satisfied where it achieved a maximum speed of 77.6
m/s (279.36 km/h) which is reasonable since the maximum speed that can be achieved is around
88.88 m/s (320 km/h) [5].

However, there is a difference of approximately 10 m/s this might be due to several reasons.
In Formula E racing, the attainment of maximum speeds during races is influenced by various
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factors. These include the need for energy conservation due to battery limitations, regulatory
restrictions on power output, the challenging layout of street circuits featuring tight corners, the
aerodynamic design focused on efficiency rather than top speed, and strategic considerations
such as energy management by drivers. These factors collectively impact the ability of Formula
E cars to consistently reach their highest speeds during races.

Figure 5.8: Front angular velocity

Figure 5.9: Rear angular velocity
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Furthermore, the wheel motion of the tyres which was mentioned in equations 3.36, 3.37, 3.38,
3.39 pertains to the dynamic movement and rotation of the wheels of a Formula E car as it
traverses the track. This motion directly influences the longitudinal velocity. In the analysis, the
angular velocity of the front wheels is depicted in Figure 5.8, while that of the rear wheels is
illustrated in Figure 5.9. Given that Formula E cars have a rear-wheel drive configuration, it can
be seen from Figure 5.9 that the longitudinal velocity is dependent on the angular velocity of
the rear wheels. Notably, the angular velocity exhibits limitations and fails to achieve its peak
values during specific intervals, namely between distances 0-750 m, 1400-1600 m, 2300-2400 m,
and 3100-3300 m. These limitations are attributed to the absence of team-specific data, which
hinders a more comprehensive analysis.

Figure 5.10: Drive, brake and regenerative pedal torques

35



Simulation Results and Discussion

Figure 5.10 displays the dynamics of the driving, braking, and regenerative torques throughout
the lap. At the beginning of the lap, the driver applies full throttle due to the initial straight
line, covering a distance of approximately 700 meters before encountering the first corner at turn
1 in the first sector. However, the car cannot maintain maximum driving torque throughout the
straight line due to power limitations, which hinder its ability to reach its top speed of 320 km/h.
Towards the end of the line, the car reaches its highest speed of the lap. Hence, the driver has to
apply significant braking force to make the first corner. Consequently, the regenerative torque
reaches its limit in the first sector.

From turn 2 until the end of sector 1 before turn 4, the driver again applies full throttle due to
the high-speed cornering. However, the car does not reach the speed achieved at the end of the
initial straight. Despite this, the driver achieves the second-highest regenerative torque on the
lap, as turn 1 necessitates more braking than turn 4.

Following turn 4, the driver maximizes throttle input until turn 5, as well as during the exit
from turn 7 until turn 9, owing to the shorter distances between corners compared to previous
sections. However, similarly to the initial straight, the car cannot sustain maximum torque levels
throughout the straight between turns 9 and 10 due to power limitations.

After turn 10, the driving torque reaches its peak, facilitated by the shorter distances between
subsequent turns. The regenerative torque registers its limit for the shortest distance due to
the proximity of the corners until turn 15 which leads to lower speeds than the earlier sectors.
Finally, the driver applies full throttle until the end of the lap, yet the car remains unable to
maintain maximum driving torque until the end.

Overall, torque dynamics vary based on the track’s features, but the car is unable to sustain
maximum torque output throughout the longer straights. This is due to the power limitations
which prevent the car from reaching its top speed. Furthermore, the vehicle maintains the
maximum regenerative torque for the longest distance at the end of the straights where the
highest speeds are reached, due to increased braking requirements.

Figure 5.11: Drag Force
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Figure 5.11 illustrates the variation of drag force throughout the entire lap. The shape of the
drag force curve closely mirrors the longitudinal speed of the car. This correlation arises from the
dependence of the drag force on the square of the longitudinal speed, as illustrated in equation
3.52.

The data presented in the figure reveals that the drag force peaks between the starting line and
turn 1, as well as between turn 9 and turn 10, where there are long straight sections of the track.
In these areas, the car encounters maximum aerodynamic resistance, due to the achieved high
speeds on those straights.

Figure 5.12: Downforce
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Figure 5.12 demonstrates the trend of the downforce throughout the lap. This force is crucial for
how well Formula E cars perform and handle on the track. Unlike road cars, which try to reduce
lift to save fuel and stay stable, Formula E cars depend on aerodynamic downforce to improve
grip during cornering and overall track performance.

The graph shows that the downforce, produced mainly by the front and rear wings, increases as
the car goes faster, reaching its highest point at the initial straight where the car reaches its top
speed. This downforce pushes the car down onto the track, making it stick to the road better.
This relationship between downforce and air resistance, shown in 3.51, is crucial for engineers to
balance when designing Formula E cars for maximum speed and efficiency on the track.

Figure 5.13 depicts the energy consumption profile of the car throughout the lap. Noticeably,
the highest consumption occurs along the extended initial straight, preceding the first corner.
Subsequently, the car regenerates energy, enabling it to complete the lap while adhering to
the maximum energy consumption limit of 5.76e03 kJ (1.6 kWh). Moreover, elevated energy
consumption is observed in the first and second sectors, with heightened regeneration occurring,
particularly during the fast corner at turn 3 and the straight stretch between turns 9 and 10.
The fast sections entail increased energy consumption, thereby allowing for more significant
regeneration.

Figure 5.13: Energy consumption

Figure 5.14 displays the variation in slip angles during racing mode, while Figure 5.15 depicts
the lateral velocity. Additionally, Figure 5.16 illustrates the slip ratios of the tyres. Furthermore,
Figures 5.17, 5.18, and 5.19 represent the longitudinal, lateral, and vertical tyre forces, respectively.
Finally, Figure 5.20 provides insights into auxiliary load transfers.

5.4 Attack Mode Activation
Figure 5.21 illustrates the effect of Attack Mode on the longitudinal velocity. The graph indicates
that during Attack Mode, the car is capable of achieving a higher maximum speed compared to
when Attack Mode is not activated. This difference is particularly noticeable at the start of the
lap, where there is a lengthy straight section, as well as during the high-speed corner at turn 3
and the subsequent straight stretch from turn 9 to turn 10.
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Figure 5.14: Slip Angles

Figure 5.15: Lateral velocity

Conversely, during slow corners and in the short distances leading up to turns, the longitudinal
speed of the car remains unchanged whether Attack Mode is activated or not. This suggests
that while Attack Mode provides a speed advantage in certain sections of the track, it does not
significantly affect the car’s speed in slower or more technical parts of the circuit.

Figure 5.22 illustrates the variance in driving torque between the activation and deactivation of
Attack Mode. It is evident from the graph that the driving torque experiences enhancement,
particularly noticeable in the first and second sectors, attributable to the power boost provided
by Attack Mode. However, despite this power increase, the car is not able to maintain maximum
driving torque throughout the entirety of certain sections, namely before the first turn and the
straight line between turns 9 and 10. Notably, the lap done in this simulation after the lap where
the driver change the racing line to activate the attack mode.
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Figure 5.16: Slip ratios

Figure 5.17: Longitudinal tyre forces

Interestingly, the improvement in driving torque is most prominent during turn 3 and turn 6.
This suggests that Attack Mode has a more pronounced effect on driving torque during these
cornering manoeuvres, potentially enabling drivers to carry more speed through these turns and
enhance their overall lap times.

Figure 5.23 highlights the effect of engaging Attack Mode on the braking torque. When Attack
Mode is activated, there is an increase in peak braking torque during corners following straights
and fast corners, due to the higher achieved velocities. In these instances, where the driver
attains maximum speed, there is an increased need to apply more braking force to slow the car
down before entering the corner.

Conversely, during other corners, particularly the slower ones such as turn 14, the braking torque
remains consistent regardless of Attack Mode activation. This demonstrates that Attack Mode
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Figure 5.18: Lateral tyre forces

Figure 5.19: Vertical tyre forces

primarily influences braking torque in sections of the track where higher speeds are attained, while
its impact is less pronounced in slower corners where braking requirements are less demanding.

Figure 5.24 illustrates the influence of activating Attack Mode on the regenerative braking torque.
The graph shows that regenerative torque is similar for both cases. However, the main difference
is in the last sector where the energy consumption is close to the limit thus more regenerative
power is needed to not exceed the limit.

Figure 5.25 displays the changes in steering angle. The graph reveals that the car’s trajectory
closely follows the optimal racing line, with minimal deviations. This adherence to the racing
line is expected, as it represents the most efficient path around the track.

However, subtle variations in steering angle are apparent, particularly noticeable at turn 1.
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Figure 5.20: Auxiliary load transfer

Figure 5.21: Comparison of longitudinal velocity

Here, the driver adjusts the steering angle slightly more to the right during Attack Mode. This
adjustment is necessary due to the higher maximum speed attained when Attack Mode is
activated, requiring the driver to make slight modifications to maintain control and follow the
optimal racing line effectively. Overall, while the general shape of the car’s trajectory remains
consistent, these minor adjustments in steering angle highlight the dynamic nature of driving
during Attack Mode.

Figure 5.26 demonstrates how the drag force increases significantly during Attack Mode activation.
This increase is attributed to the higher speed of the car during Attack Mode, which leads to
more drag.

This increased drag force is seen between the starting line and turn 1, as well as between turn 9
and turn 10, where long straight sections of the track allow the car to achieve higher velocities.
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Figure 5.22: Comparison of driving torque

Figure 5.23: Comparison of braking torque

However, the drag force acting on the car remains relatively consistent throughout the rest
of the lap, indicating that the significant increase observed during Attack Mode is primarily
concentrated in the sections of the track characterized by high speeds.

Figure 5.27 depicts the variation in downforce between Attack Mode and non-Attack Mode
conditions. The graph indicates that during Attack Mode, downforce is higher compared to when
it is not activated. This increase in downforce is due to the car’s higher speed during Attack
Mode, as downforce typically increases with speed.

Both drag and downforce are dependent on the car’s speed. As highlighted in Figure 5.26, during
Attack Mode, when the car achieves higher speeds, there is a corresponding increase in downforce.
This effect is seen between the starting line and turn 1, as well as between turn 9 and turn 10.
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Figure 5.24: Comparison of regenerative torque

Figure 5.25: Comparison of steering angle

In contrast, in slower areas of the track, the downforce remains consistent, similar to non-Attack
Mode conditions. This indicates that the significant increase in downforce observed during Attack
Mode is primarily concentrated in faster sections of the track.

Figure 5.28 displays the car’s energy consumption during the lap when Attack Mode is activated.
Similarly, as illustrated in Figure 5.13, the largest consumption occurs over the longer first
straight, before the first corner. The car then regenerates energy, allowing it to complete the
lap while remaining under the maximum energy consumption restriction of 7.78e03 kJ (2.16
kWh). Furthermore, energy consumption is higher in the first and second sectors, with increased
regeneration, especially during the quick corner at turn 3 and the straight stretch between turns
9 and 10. These areas require higher energy consumption due to the higher speeds resulting in
increased energy regeneration.
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Figure 5.26: Comparison of drag force

Figure 5.27: Comparison of downforce

Table 5.8 displays the difference during attack mode activation, indicating that increasing the
power and energy restrictions reduces simulation running time.

Figures 5.29 and 5.30 show how the front and rear angular velocities vary during the Attack
Mode. Figure 5.31 indicates the changes in slip angles, whereas Figure 5.32 depicts the slip
ratios of the tyres. Figure 5.33 illustrates the lateral velocity. Figures 5.34, 5.35, and 5.36 show
the longitudinal, lateral, and vertical tyre forces, respectively. Finally, Figure 5.37 illustrates
auxiliary load transfers.
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Figure 5.28: Energy consumption during Attack Mode

Figure 5.29: Front angular velocities during Attack Mode

5.5 Energy Consumption
This section examines how energy restrictions impact the car’s performance. Figure 5.38 illustrates
the correlation between energy restrictions and track speed, based on the original energy per lap
allocation of 1.6 kWh during racing mode. A noticeable effect emerges: with reduced available
energy, the optimal solution for minimizing lap time tends to prioritize cuts in high-speed
sections. Consequently, the car begins to decelerate before reaching its potential maximum
speed, particularly evident when the energy restriction is lowered. Remarkably, a substantial
improvement is observed at 194.4e+3 kJ (54 kWh) of available energy, whereas minor differences
are noted with slight energy increases, primarily evident in straight-line stretches and fast corners.
On the other hand, reducing energy below the simulation’s baseline leads to more pronounced
differences, noticeably apparent on long straights and during both fast and slow corners.
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Figure 5.30: Rear angular velocities during Attack Mode

Figure 5.31: Slip angles during Attack Mode

Figure 5.39 illustrates the difference between the variation of the energy consumption with and
without attack mode activation. It is possible to see that the energy consumption has the same
trend for both but with higher energy consumption for the attack mode due to the increase of
the energy consumption limit from 5.76e+3 kJ (1.6 kWh) to 7.78e+3 kJ (2.16 kWh).

Table 5.9 shows the difference during different energy consumption limits, showing that increasing
the energy restrictions reduces the lap time as well as the simulation running time.
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Figure 5.32: Slip ratio during Attack Mode

Figure 5.33: Lateral velocity during Attack Mode

Table 5.8: Simulation results with and without Attack Mode activation

Attack Mode Maximum Speed [m/s] Lap Time [s] Simulation Time [s]
OFF 77.6 96.338 2952.7
ON 80.9 95.033 1618.1

Table 5.9: Simulation results with and different energy limits

Energy Constraints[kWh] Maximum Speed[m/s] Lap Time[s] Simulation Time[s]
0.9 73 98.412 3096.5
1.6 77.6 96.338 2952.7
2.3 77.9 95.028 2098.8
54 78.3 90.219 964.5

48



Simulation Results and Discussion

Figure 5.34: Longitudinal tyre forces during Attack Mode

Figure 5.35: Lateral tyre forces during Attack Mode
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Figure 5.36: Vertical tyre forces during Attack Mode

Figure 5.37: Auxiliary load transfer during Attack Mode
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Figure 5.38: Velocity profiles with different energy consumption limitations

Figure 5.39: Energy consumption difference during the activation of Attack Mode
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Chapter 6

Conclusion

In this thesis, a racing strategy simulation was conducted for a Formula E car operating under
energy constraints. Using Matlab, the simulation parameters and variables were provided to
Casadi to solve the nonlinear problem (NLP) and determine the minimum lap time under varying
energy consumption scenarios on the Circuit de Barcelona. The parameters utilized in this study
were obtained from publicly available data rather than directly from the Formula E team, yielding
satisfactory results.

The simulation environment was characterized by a track model represented in a curvilinear
coordinate system and a vehicle model with seven degrees of freedom (DOFs), incorporating
aerodynamic loads, load transfer, limited-slip differential (LSD), and an empirical tire model for
wheel dynamics.

The controller aspect of this work involved enhancing a previously developed controller with
additional functionalities beyond trajectory following. This included optimizing the racing
line trajectory to minimize lap time through trajectory optimization. Direct orthogonal local
collocation with barycentric Lagrange interpolation was employed to store and assess high-order
orthogonal polynomials. State and control variable scaling was utilized to enhance optimization
algorithm efficiency, while input derivatives, including second derivatives, were added as penalty
terms to mitigate oscillation and convergence issues. Initial guesses were also adjusted to expedite
simulation time by simplifying the model and employing linear tyres with increased collocation
steps.

The final part of this work presented the optimization results for the racing line and the simulation
setup used. The analysis delved into the results of the race mode regarding state and control
variables, the impact of activating the Attack Mode, and the energy consumption differences
between various energy restrictions and race modes. The optimal lap time was obtained respecting
the energy consumption limits with and without the activation of the Attack Mode.

Overall, this thesis highlights the importance of modelling activities in capturing essential vehicle
dynamics aspects to improve performance. The selection of model equations and optimization
problem variables significantly influences solver convergence and computational efficiency. Bal-
ancing model complexity is crucial to achieving an optimal compromise between computational
efficiency and accuracy, ultimately enabling realistic behaviour capture and Formula E car
optimization.
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