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Summary

The increasing complexity of electric propulsion systems requires significant advances in the design,

analysis and control of electric motors. In particular, the reliability of the drive and its robustness

under fault scenarios are of primary interest for the carmakers, in order to guarantee a safe operation

of the vehicle in case of fault, either if this is voluntarily commanded by the vehicle control unit (e.g.

active short circuit or open phase) or not. The main KPIs to evaluate the robustness of the drive w.r.t.

the faults are the transient and steady-state torque and current and its eventual demagnetization. In

this scenario, multi-three-phase motors emerge as a promising solution to overcome the limitations of

traditional three-phase motors, offering improvements in efficiency, reliability and fault tolerance.

The design process of an electric motor begins with the definition of the electromagnetic design,

using Finite Element Analysis to determine the motor’s characteristics and performance parameters.

This phase represents the primary intent behind the development of SyR-e (Synchronous Reluctance-

evolution), an open source design environment developed by researchers at the Politecnico di Torino.

Subsequently, based on the data obtained from the initial eMotor design, the SyreDrive extension was

introduced. This add-on was designed to create offline dynamic simulation models for control system

calibration and the capture of waveforms of the quantities of interest.

This thesis explores the development and implementation of unified circuit models in PLECS

[7] of electric drives (e-Motor + inverters + machine control) applicable to three-phase and multi-

three-phase motors through integrated use in SyreDrive, with a special focus on fault simulation and

validation via Hardware-in-the-Loop (HIL) technologies.

The first chapter introduces the context and motivation behind this study, outlining the impor-

tance of advances in electrical engineering and the need for effective simulation and control tools. An

overview of Syre, a state-of-the-art modelling software, is presented, along with the fundamentals of

modelling and control of multiphase motors.

In the second chapter, we focus on the modelling of multi-three-phase motors in PLECS environ-

ment, illustrating modelling techniques, control strategies adopted and the development of a vectorised

model for efficient and accurate simulation. Such vectorized model can be automatically generated

regardless of the number of three-phase sets, thus enabling its integration with Syredrive. The im-

portance of the decoupling algorithm and control strategy in handling the complexity of multiphase

systems is also discussed.

The third chapter discusses the implementation of fault scenarios of three-phase and multi-three-

phase motors, highlighting the ability to simulate realistic failures and evaluate mitigation strategies.

This section emphasises the importance of fault tolerance and resilience in advanced electric propul-

sion systems.
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Finally, the thesis explores the use of Hardware-in-the-Loop (HIL) technology for the validation

of multi-phase motor models, using the Plexim RT-BOX. This approach enables accurate verification

of motor performance and behaviour under real operating conditions, providing a valuable platform

for testing and refining control and fault management strategies.

Through this work, the thesis aims to contribute to the advancement of electric motor technology

by offering new perspectives on the design, control and validation of multi-phase motors, focusing

on the modelling of faulty scenarios. The presented research and methodologies offer a step towards

the realisation of more efficient, reliable and resilient electric propulsion systems, with significant

implications for automotive, aerospace and other critical applications.
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Chapter 1

Introduction, state of the art and

motivations

In an ever-evolving world of technology, where energy efficiency and sustainability become increasingly

pressing imperatives, electrical engineering is at the centre of revolutionary innovations. The design

and optimisation of electric motors play a crucial role in this landscape, with applications ranging from

automotive and industry to emerging sectors such as unmanned aerial vehicles and robotics. In this

scenario, guaranteeing the reliability of the drive in case of fault occurrence is of top importance, and

the development of an accurate method for predicting the machine’s behaviour in faulty conditions

is crucial for enabling a larger penetration in the market of high efficient electric drives. Among the

various research frontiers, multi-three-phase motors emerge as a particularly promising field, offering

innovative solutions to overcome the limitations of traditional three-phase motors.

Multi-three-phase motors, characterised by an electrical configuration that overcomes the canon-

ical triad of phases, offer significant improvements in terms of torque harmonic reduction, increased

fault tolerance and optimised operating efficiency. However, the inherent complexity of these systems

requires sophisticated modelling and control approaches capable of capturing the nuances of electro-

magnetic behaviour and effectively managing control dynamics.

This thesis fits into this innovative context, aiming to explore the potential of multi-phase motors

through an integrated approach that combines advanced modelling techniques with fault simulation

and validation using Hardware-in-the-Loop (HIL) technologies. Through the use of state-of-the-art

tools such as SyreDrive and PLECS, this work aims not only to expand the theoretical understanding

of such motors but also to provide practical solutions for their implementation and optimisation.

16
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1.1 Background on Synchronous Electric Motors

The exploration of electric motors, particularly emphasizing Permanent Magnet Synchronous Ma-

chines (PMSM), Permanent Magnet assisted Synchronous Reluctance (PM-SyR) and Synchronous

Reluctance (SyR) machines, is a fundamental aspect of this thesis. The definition of the dq-axes in

the rotor reference frame is critical for motor modeling and follows two distinct conventions.

1.1.1 Three Phase Motors

Three-phase synchronous motors are pivotal in the field of electric drives, thanks to their efficiency

and robustness in converting electrical energy into mechanical motion.

The abc model

The abc dynamic model, or ’phase domain’ model, delineates the motor in abc phase coordinates,

offering insights into the motor’s operational dynamics. The voltage equation in this model is given

by:

vabc = Rs · iabc +
dλabc

dt
(1.1)

Where Rs is the stator winding resistance. The flux linkage equation is formulated as:

λabc = L(θr) · iabc + λm(θr) (1.2)

for SPM, IPM, and PM-SyR motors. For SyR machines, it simplifies to:

λabc = L(θr) · iabc (1.3)

where L(θr) is the self and mutual stator inductance matrix, dependent on the mechanical rotor

position θr.

The torque equation is expressed as:

Tem =
p

2

(
iTabc ·

∂L(θr)

∂θr
· iabc + iTabc · λm(θr)

)
(1.4)

for specific motor types, adjusting for SyR machines where the inductance matrix’s time variance

introduces complexity, necessitating streamlined models.

The dq model

The dq dynamic model encapsulates the motor’s behavior in the rotating dq frame, yielding:

vdq = Rs · idq +
dλdq

dt
+ [J] · ω · λdq (1.5)

where [J ] =
[
0 −1
1 0

]
, ω represents the electrical frequency.

The magnetic flux equations are:

λdq =

[
Ldd Ldq

Lqd Lqq

]
· idq +

[
λm

0

]
(1.6)

tailored for SPM and IPM, with adjustments for other types.
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The unified electromagnetic torque expression is:

Tem =
3

2
· p · (λd · iq − λq · id) (1.7)

highlighting the direct influence of dq components on motor torque. This advanced model facilitates

precise control and efficiency optimization in modern electric drives.

1.1.2 Multiphase Motors

Multiphase motors represent a class of electrical machines distinguished by the adoption of a number

of phases greater than three. This characteristic confers considerable advantages, including smoother

operation and reduced torque pulsation, in addition to an increase in redundancy that translates into

greater fault tolerance. In this chapter, we will explore the modeling of multiphase motors, focusing

on the fundamental principles that guide their design and operation. Among the possible multiphase

topologies, the multi-three-phase machines will be considered

As can be understood from [2], the operation of multiphase motors is based on the understanding

of their symmetric and asymmetric configurations, determined by the electrical phase shift between

adjacent 3-phaese sets. In a symmetric machine, this phase shift is equal to 120°/nph electrical de-

grees, where n3ph indicates the number of phases. Asymmetric machines, on the other hand, present

a phase shift between the three-phase sets equal to 60°/nph. In both cases, the phases shift between

phases belonging to the same three-phase set is 120°.

The technical literature provides numerous configurations of multiphase machines, including In-

duction Motors (IM), Permanent Magnet Machines (PM), Brushless DC Motors (BLDC) and many

more that significantly affects the motor’s performance, particularly regarding Joule losses and fault

tolerance.

The most widespread drive configurations in the academic field are:

1. A conventional multiphase system with a single neutral point per machine;

Figure 1.1: Multiphase machine - Single neutral layout [2]

2. Groups of independent single-phase units;
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Figure 1.2: Multiphase machine - Single phase layout [2]

3. Groups of independent three-phase units.

Figure 1.3: Multiphase machine - Multi-Three phase layout [2]

Only the last two configurations prove suitable for ensuring reliable operation in applications where

safety is a priority. The adoption of independent single-phase units allows each phase to be powered

by its own single-phase inverter.

The configuration based on independent three-phase units, also called multi-three-phase, is the main

subject of this study, and it is suitable when the number of phases is a multiple of three and the

stator presents separate three-phase windings with isolated neutral points. Each three-phase group

is managed by an autonomous three-phase inverter. This approach, although less favorable for fault

tolerance compared to single-phase units, facilitates the reduction of size, cost, and design time through

the use of consolidated three-phase power modules. Moreover, it tends to simplify control due to the

fewer number of independent currents to manage, compared to the solution based on single-phase

units.

1.2 Multi-triphase Machines Modeling

In this section, we will delve into various modeling techniques employed for multi-triphase machines,

aiming to understand their complex behavior and facilitate the design of efficient control strategies.

1.2.1 Vector Space Decomposition Technique

The Vector Space Decomposition technique [2] [10] is a fundamental method for modeling multi-

triphase machines. Based on symmetrical components theory, VSD decomposes the machine’s vari-

ables into orthogonal subspaces, simplifying analysis and control. By focusing on flux and torque

production, VSD provides valuable insights into electromechanical energy conversion, akin to conven-

tional three-phase machines.

The VSD approach offers versatility and generality, making it applicable to a wide range of multi-

triphase machine configurations. It simplifies the analysis by decomposing the machine’s original
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space into decoupled subspaces, where the primary subspace typically represents the flux- and torque-

producing components. Other subspaces accommodate harmonics and zero-sequence components,

ensuring accurate modeling without compromising computational efficiency.

In recent years, advancements in VSD modeling have focused on addressing challenges associated

with asymmetrical winding configurations. Various techniques, including advanced decoupling algo-

rithms and adaptive control strategies, have been proposed to enhance the accuracy and robustness

of VSD-based models for asymmetrical machines.

According to VSD, the main subspace of the multiphase syncronous motor in a generic stationary

rotating frame x, y is governed by the equations:{
vs,xy,m = [Rs] · is,xy,m + d

dtλs,xy,m

λs,xy,m = [Ls] · is,xy,m + λm,xy,m

(1.8)

on the other hand, the harmonic subspaces refers to ther own h = (n− 1) laws:{
vs,xy,h = [Rs] · is,xy,m + d

dtλs,xy,m

λs,xy,m = [Ls] · is,xy,m + λm,xy,m

(1.9)

Regarding the n zero-sequence components, they can be ingored because every set of three-phase

windings possesses its own neutral point, which is isolated from the others.

Using this method, the generated torque is calculated the cross-product of fluxes and currents in

the main subspace, the only one to contribute on the energy conversion.

T =
3 · n
2

· p · (λs,dq,k ∧ is,dq,k) (1.10)

Figure 1.4: VSD machine model of a PMSM motor [10]

1.2.2 Multi Stator

The Multi Stator approach [2] [10] is another significant modeling technique for multi-triphase ma-

chines. In the MS method, the multi-triphase machine is conceptualized as the sum of several inde-

pendent machines, each with its own Clarke transformation. This approach enables comprehensive
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control of the motor, even if the structure lacks the standard displacement angle for a specific number

of phases.

MS-based modeling provides detailed insights into the contributions of each individual stator set to

the machine’s flux and torque characteristics. By describing each stator in the same dq frame, MS

aligns the d-axis with the main flux direction for all three-phase systems. However, addressing the

natural coupling between different three-phase sets requires sophisticated decoupling algorithms to

improve motor dynamics and usability.

The modeling analysis of this type starts from the voltage equations of the k-th k = [1 : nset] set

of phases. For each of them, the following relation holds:

vs,abc,k = [Rs] · is,abc,k +
d

dt
λs,abc,k (1.11)

Similarly, the magnetic equations of a set of phases can be written as follows:

λs,abc,k = [Ls] · is,abc,k +
n∑

z=1

([Msk−sz] · is,abc,z) + λm,abc,k (1.12)

Where λm,abc,k represents the rotor magnet flux linkage, with the further assumption of magnetic

linearity.

λm,abc,k =

λma,k

λmb,k

λmc,k

 (1.13)

The natural continuation of the study occurs by reporting the above-mentioned quantities in a

stationary two-phase reference frame, through the use of the classical Clarke transform of three-phase

systems.

vs,αβ,k = [Rs] · is,αβ,k +
d

dt
λs,αβ,k (1.14)

λs,αβ,k = [Ls] · is,αβ,k + [M(2θr)] ·
n∑

z=1

is,αβ,z + λm,αβ,k (1.15)

Where the matrix [M(2θr)] characterizes the rotor anisotropy percentage in the following way:

[M(2θr)] =
3 ·MI

2
·
[
1 0

0 1

]
+

3 ·MA

2
·
[
cos(2θr) sin(2θr)

sin(2θr) − cos(2θr)

]
(1.16)

With an isotropic rotor (for example, SMPMSM technology), the anisotropy term will be identically

null.

Finally, the magnetic and voltage equations in the d, q reference of the k-th set of phases will be:

vs,dq,k = Rs · is,dq,k +
dλs,dq,k

dt
+ j · ω · λs,dq,k (1.17)

λs,dq,k =

[
Ld 0

0 Lq

]
· overlineis,dq,k +

1

n
·
[
Md 0

0 Mq

] n∑
z=1

is,dq,z +

[
λm

0

]
(1.18)

Whose d, q axis inductances are defined as

Ld =

(
Lσ,s +

Md

n

)
, Lq =

(
Lσ,s +

Mq

n

)
(1.19)
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With this approach, the torque production can be computed as the sum of the single k-th contribution

of each set as follows

T =

n∑
k=1

Tk =
3

2
· p ·

n∑
k=1

(λs,dq,k ∧ is,dq,k) (1.20)

In figure -1.5, it is possible to observe a circuit diagram of the machine in the rotating d, q reference

system of a generic synchronous machine (IPM, PMSM, PM-SyR, SYR)

Figure 1.5: MS machine model of a PMSM Machine[10]

Recent developments in MS modeling have focused on enhancing fault tolerance and control per-

formance. Advanced MS-based control schemes offer seamless reconfiguration after open three-phase

fault events, ensuring uninterrupted operation and enhancing system reliability. Moreover, MS-based

control strategies facilitate deep flux-weakening operation with MTPV, enabling optimal performance

across a wide range of operating conditions.

In summary, both VSD and MS approaches play critical roles in modeling and controlling multi-

triphase machines. While VSD offers versatility and generality, MS provides detailed insights into

machine behavior and facilitates advanced control strategies.



Chapter 1. Introduction, state of the art and motivations Page 23

1.3 Fault Events

This section delves into the simulation of fault events in multi-three-phase electrical drives to assess

their resilience under various fault conditions. The simulation aims to highlight the effectiveness of the

designed fault mitigation strategies, providing a robust framework for understanding and managing

faults in electrical drives.

1.3.1 Three-Phase Unit Faults

This subsection focuses on faults affecting a three-phase unit of the motor. These faults, are also

known as simmetric faults in the three phase motor field.

Three-phase Short Circuit / Active Short Circuit

In classical fault studies for electric motors the Threephase short circuit stands as one of the most

relevant academic study to understand the machine behaviour.This fault occurs due to direct contact

among the motor phase terminals. More recently, what was once considered a disastrous contingency

has been well integrated into the protection systems of synchronous motors under the name of Active

Short Circuit.

In fact, in ASC the three-phase short circuit is implemented by appropriately controlling the inverter

switches and is used as a safe shutdown scheme to bring the motor into a safe state in PMSM e-motors.

In some cases ASC is preferred to the canonical inverter shut off, especialli at high speed and flux

weakening operating point where this can cause UGO.

An active short circuit involves the direct electrical shorting of a motor’s three-phase unit through

simultaneous activation of all low-side (or high-side, like figure 1.6) switches in the case of a two-level

inverter, while the opposite switches remain off

For what concerns multi-three-phase motors, in contrast to single three-phase motors,if this event

appears as a fault, it can be mitigated by the redundancy of the different sets contributing to the

torque production.

Figure 1.6: Active Short Circuit Figure 1.7: Three Phase SC

However, as noted in [13], multi-three-phase motors the nset isolated subsystems may have mag-

netic flux coupling through a shared flux path, known as mutual inductance, between the subsystems.

This mutual inductance allows the current flowing in one of the subsystems to generate an EMF in

the other subsystem, making the subsystems interdependent. Therefore, it is crucial to study the

influence of this mutual inductance on the overall machine operation, especially under short-circuit

conditions, in order to optimise the selection of the most suitable short-circuit protection method
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Inverter Shut Down

The open phase fault represents an accidental (or volunteer) disconnection of a motor’s three-phase

unit, typically resulting from an inverter lock-up where all switches are turned off.

The risk associated with this fault, especially in PMSM motors, lies in UGO.

The Uncontrolled Generator Operation (UGO) describes a critical condition that occurs in inverter-

powered permanent-magnet synchronous motors, particularly in scenarios where, following a sudden

inverter shut-off (inverter shut off ), the motor continues to operate without regulatory control. This

phenomenon occurs when the motor, operating at high speed, loses power from the inverter. If the

electromotive force (EMF) generated by the permanent magnets, minus the resistive drops on the

windings, exceeds the sum of DC bus voltage of the inverter and the diode threshold voltage, the

diodes in the inverter may go in conduction state.

As a result, the motor-inverter system turns into an equivalent generator with a three-phase diode

bridge, injecting current back to the DC bus. This situation can cause a dangerous overvoltage at the

DC bus, endangering the physical integrity of the capacitor, which may even explode under extreme

conditions.

To mitigate the risks associated with UGO, it is crucial to implement specific protection systems,

such as advanced DC bus voltage monitoring to intervene quickly in the event of overvoltage, the

use of electronically controlled discharge resistors to dissipate excess energy, and the adoption of

sophisticated inverter control algorithms to prevent potentially dangerous situations. These measures

are essential to maintain operational safety and prevent damage to hardware in systems using inverter-

driven permanent magnet synchronous motor technology.

Figure 1.8: UGO in multi-threephase motors

1.3.2 Asymmetric Faults

If the three-phase short circuit and open circuit faults maintain the electromagnetic symmetry of the

machine, the faults events concerning individual phases produce an unbalance in the magnetic model

of the machine. Similar to three-phase faults in terms of voltage and current considerations, phase

faults introduce system imbalances, leading to unbalanced voltage and current components.

1.3.3 Open Phase

A phase-opening fault, commonly known as phase loss or single-phase fault, occurs in three-phase

electric motors when one of the three power supply phases is interrupted. This can occur for various

reasons, including leg switch off, blown fuses, broken cables, faulty contactors or loose connections.

Such a failure prevents the motor from operating as intended, affecting its performance and potentially
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causing damage.

The loss of a phase significantly alters motor operation. Without a balanced three-phase supply, the

motor cannot develop an efficient rotating magnetic field, resulting in reduced torque and increased

overheating due to irregular currents. If not addressed, this problem can lead to permanent damage

to the motor.

Timely diagnosis of a phase-opening fault is crucial. Modern motor protection systems include sensors

and monitoring circuits capable of detecting such faults, protecting the motor from further damage

through alarm signals or by shutting down the power supply.

Operating an engine under phase-loss conditions for prolonged periods increases the risk of catastrophic

failure. This not only implies reduced efficiency, but also potential mechanical damage and the need

for costly repairs or replacements.

To mitigate the risks associated with phase failure, it is important to carry out regular maintenance

of the electrical system and install appropriate protective devices. These steps are essential to ensure

the reliability and safety of three-phase electric motors in industrial use.

1.3.4 Open Switch Faults

An open switch fault within a two-level inverter signifies a malfunction where one (or more) semi-

conductor switches (such as IGBTs or MOSFETs) fail to close or conduct as intended during regular

operation.

Several factors can contribute to the occurrence of an open switch fault:

Component defects, such as physical damage or wear within the switches, can hinder their proper

functioning.

Driving errors may result from inadequate driving signals that fail to activate the switches correctly.

Power supply issues, such as interruptions or instability in the power supply to the driver circuits, can

impede switch operation.

Overtemperature conditions can damage the circuitry or alter switch behavior.

The consequences of an open switch failure can be significant. Inefficient switching can lead to higher

energy losses, impacting the overall efficiency of the inverter. Moreover, it may result in inadequate

power supply to connected loads, potentially causing interruptions or malfunctioning of equipment.

Additionally, irregular switching can generate unwanted harmonics and electrical noise, which could

damage other electrical devices. The stress on adjacent switches to compensate for the malfunctioning

one can lead to thermal damage and reduce the overall lifespan of the inverter.

To address the risks associated with open switch failures, modern inverters are equipped with

advanced monitoring and diagnostic systems. These systems monitor currents, voltages, and temper-

atures, allowing for the rapid detection of anomalies in switch operation. Upon identification of an

open switch fault, the damaged component must be promptly replaced or repaired to restore proper

inverter functionality. Regular maintenance, along with careful design considerations such as safety

margins and effective cooling systems, can help mitigate the likelihood of such failures.

In summary, open switch failures in two-level inverters represent a serious issue that can compro-

mise performance and reliability, with potential negative impacts on the entire system. Understanding

the causes, consequences, and mitigation strategies of such failures is crucial for ensuring the safe and

efficient operation of inverter-based systems.
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1.3.5 Inter Turn Short Circuit

The interturn short circuit fault involves a short between turns within the same winding, critically

impacting the motor’s electromagnetic field and torque generation. Unlike other faults simulated

at the inverter level, the interturn short circuit is modeled within the motor model, highlighting its

unique impact on motor performance and the necessity of detection and mitigation strategies.

Figure 1.9: Inter-turn short circuit in phase a of a three-phase motor winding [15]

From [15], it is understood that ITSC manifest due to the degradation of insulation in the stator

winding, potentially evolving into more severe faults unless promptly detected and isolated. These

faults are primarily caused by high mechanical, thermal, and electrical stresses, with the application

of wide bandgap devices exacerbating the situation through high switching frequencies and voltage

gradients. Research indicates that stator winding faults account for approximately 21% to 37% of

motor failures, with a significant portion being ITSCs, which begin as minor electrical contacts between

turns, eventually leading to significant damage including demagnetization of the permanent magnet.

For the modeling of ITSC in a three-phase machine, the voltage behind reactance (VBR) approach

is adopted, representing each phase of the Permanent Magnet Synchronous Motor (PMSM) as con-

trolled voltage sources in series with an RL branch. The fault ratio µ is defined as the ratio of the

number of shorted turns to the total number of turns in one phase (
Nf

N ).

abc model

For this study is used the approach presented in [8]: in the abc reference frame, the ISCF model

assumes the fault in phase a there the branch is splitted as follows

Figure 1.10: Inter-turn short circuit abc-VBR model [8]

The faulted branch is divided into a remaining healthy part (illustrated in blue) and a faulty one
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(depicted in red). The healthy branch is characterized by a (1−µ) portion of the winding, indicating

that this part possesses Ra1 = (1 − µ)Rs and La1 = (1 − µ)Ls. Conversely, the faulted windings

are characterized by Ra2 = µRs and La2 = µLs. Hence, the model can be encapsulated within the

following 4x4 state-space model:

The model presented offers a comprehensive representation of the dynamics within a faulted elec-

tric motor system, specifically addressing the impact of inter-turn short circuits (ITSC) on motor

performance. Each equation within this model elucidates different aspects of the system under fault

conditions:

The voltage vector [Vs] represents the individual phase voltages, including the split voltage com-

ponents Va1 and Va2 for the faulted phase ’a’, along with the healthy phases Vb and Vc:

[Vs] = [Va1 Va2 Vb Vc] (1.21)

The same characteristic is found in the currents, where the term (ia − if ) models the impact of

the fault current if on the faulted phase ’a’:

[is] = [ia (ia − if ) ib ic] (1.22)

Then, the matrices [Rsf ] and [Lsf ], accounts for the resistance and inductance variations due to the

fault. The resistance matrix [Rsf ] varies with the fault ratio µ, affecting the electrical characteristics

of both faulted and healthy windings:

[Rsf ] = Rs ·


(1− µ) 0 0 0

0 µ 0 0

0 0 1 0

0 0 0 1

 (1.23)

The inductance matrix [Lsf ], incorporates the mutual inductance M and adjusted self-inductance

L, capturing the electromagnetic interactions within the motor under fault conditions:

[Lsf ] =


(1− µ)2L (1− µ)µL (1− µ)M (1− µ)M

(1− µ)µL µ2L µM µM

(1− µ)M µM L M

(1− µ)M µM M L

 (1.24)

The magnetic linkage vector influenced by the fault, relating the magnetic linkage to the mechanical

position θ and the fault ratio µ, providing insights into the electromagnetic coupling:

[Λmf ] =


Λa1

Λa2

Λb

Λc

 = Λm ·


(1− µ)cos(θ)

µcos(θ)

cos(θ − 2π
3 )

cos(θ + 2π
3 )

 (1.25)

In conclusion, the model is condensed inside its voltage and magnetic equations:
[Va1a2bc] = [Rsf ] · [ia1a2bc] + [Lsf ] · d[ia1a2bc]

dt + d[Φa1a2bc]
dt

[Φa1a2bc] = [Lsf ] · [ia1a2bc] + [Λmf ]

(1.26)

This model meticulously captures the nuanced effects of ITSCs on the electrical and electromag-

netic properties of the motor, providing a comprehensive framework for this kind of fault scenario.
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1.4 Syre environment

Figure 1.11: Syre logo

Syr-e

Syre, short for ’Synchronous Reluctance - evolution’, is an open-source design environment developed

specifically for the modelling, analysis and optimisation of electric motors, with a particular focus on

synchronous reluctance machines (SyR), including permanent magnet assisted machines (PM-SyR), as

well as internal permanent magnet (IPM) and surface mounted motors (SPM). Created to run within

the MATLAB/Octave ecosystem, Syre stands out for its ability to combine detailed electromagnetic

design analyses with optimisation techniques based on finite element simulations (FEM).

Key features:

• Integrated Environment: Syre provides an intuitive interface for the design and analysis

of electric motors, integrating directly with FEM simulation software such as FEMM (Finite

Element Method Magnetics), facilitating accurate simulations of magnetic behaviour and motor

performance under various loads and operating conditions.

Figure 1.12: Syre Flowchart

• Analysis and Optimisation: Through the use of optimisation algorithms and the development

of motor-specific design equations, Syre allows engineers to explore vast design spaces, identifying

optimal configurations that maximise performance and energy efficiency.
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• Versatile outputs: One of Syre’s main goals is to simplify the design evaluation phase by

providing users with a range of useful outputs, including flow maps, torque curves, and ferrous

loss assessments, that can be easily interpreted to guide further design iterations.

SyreDrive

Recently, the Syre ecosystem was enriched with the introduction of SyreDrive [12], an add-on that

extends Syre’s capabilities to the control simulation domain. SyreDrive allows Simulink models to

be automatically generated from eMotor design results in Syre, facilitating control calibration and

accurate simulation of electrical waveforms. This integrated approach makes it possible to compre-

hensively evaluate not only the static performance of the motor but also its dynamic response to

various control algorithms.

Figure 1.13: SyreDrive flowchart

The user interface of SyreDrive is represented in Fig. 1.14. From the tab the user can select:

1. Model setup: averaged or instantaneous;

2. Control type: current, torque or speed control;

3. Motor model type: fundamental (based on dq model) or with harmonics (based on dqθ model);

4. Control strategy: FOC (Field Oriented Control) or DFVC (Direct Flux Vector Control);

5. The representation of Iron losses in the motor model;

6. Converter data: PWM carrier frequency, threshold voltage ,internal resistance of the power

modules and the dead time;

7. Sensorless control type if needed.
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Figure 1.14: SyreDrive Interface

1.4.1 Background Available Models

SyreDrive can generates Simulink or PLECS models. These models will be considered the benchmark

and the starting point for the development of a general and automatically generated vectorized model

of multi-three phase motor drives, which is one of the key contributions of the thesis, and which will

be adopted for simulating the drive under faulty conditions. The benchmark model is made of three

main blocks:

1. The digital control;

2. The inverter block;

3. Motor model.

Figure 1.15: PLECS three phase electrical drive in SyreDrive
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Digital Control

Figure 1.16: PLECS digital control block

The digital control block is designed to mimic the operational dynamics of a microcontroller used

in experimental setups. It features a trigger mechanism that initiates the execution of the Motor

Control code at a predetermined sampling time, mirroring the stringent timing requirements observed

in actual real-time systems. This design choice ensures that the model accurately reflects the temporal

precision necessary for controlling multi-phase motors.

Inputs to this ’virtual’ microcontroller are efficiently aggregated, and outputs are diligently de-

aggregated, simulating the process of data collection and actuation seen in physical control units.

This methodical handling of signals reinforces the model’s fidelity to actual control scenarios, where

data flow management is crucial for system stability and performance.

Additionally, to enhance the realism of the simulation, a deliberate time delay is introduced in the

signal outputs. This delay accounts for the inevitable latency found in hardware implementations,

further bridging the gap between simulation and practical application. Through these meticulously

designed features, the digital control block serves as a realistic proxy for the intricate control strategies

employed in six-phase motor systems.

the structure of the motor control script can be broken down into several key sections:

• Measurements Import: This section is dedicated to importing all necessary quantities for

computing control signals to manage the motor effectively.

• State Machine: The state machine serves as a critical code component, providing insights into

the control phase and dictating subsequent actions. Capable of executing various operations

based on user inputs (start and stop commands) or through its iterations (transitioning from

WAKE UP to READY phase after charging the inverter’s bootstrap capacitors), the state ma-

chine is versatile. It is further divided into:

– ERROR STATE: The default state assumed when no input is activated, and the state for

stopping the electrical drive. It’s utilized for initializing variables and defining constants

such as the proportional and integral gains of controllers.
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– WAKE UP: Activated by an external start pulse (a signal in offline simulations or but-

ton press in real-time applications), this state maintains inverter duty cycles at 0.95 to

charge gate circuits, essential for the electrical drive’s operation. It can also be used for

commissioning tasks like differential encoder setup, requiring sensorless control techniques

to ensure encoder offset recording.

– READY: Marks the completion of commissioning functions, indicating the drive is pre-

pared to enter the START state.

– START:Activated by an external start pulse, in this phase the electrical drive operates in

the desired control mode, executing code sections that yield the intended outputs.

Figure 1.17: State machine flowchart

• Duty Cycles Saturation: This code segment tempers any control signals that could drive

the operation into unsafe or overly demanding conditions. In some cases, duty cycles adhere to

predefined maximum and minimum values.

• Export of Commands and Observed Quantities

Motor Model

Under the motor model mask it can be found the parallelism between mechanical and electrical world

for the electrical machine.
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Figure 1.18: PLECS three phase motor model

For what concerns the electrical circuital model, two types are proposed based on [1]: Controlled

Current Generators and Voltage Behind Reactance models.

CCG motor model

The motor is modeled as three current generators, operating in parallel with very large resistors,

and all together in series with the phase resistances Rs. The current generators are piloted by the

three-phase currents of the machine, and the voltage drop across the resistors represents the back

electromotive force of the machine.

Figure 1.19: CCG model in PLECS
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Hereafter is presented the block scheme for the calculation of the stator currents of the motor.

Figure 1.20: Block scheme for stator currents calculation in CCG model [1]

The transformations adopted to change from a frame model to another are the followings:

• Direct Clarke transformation ea,b,c - eα,β,0eαeβ
e0

 =

 2
3 − 1

3 − 1
3

0
√
3
3 −

√
3
3

1
3

1
3

1
3

 ·

eaeb
ec

 (1.27)

• Direct Park transformation λα,β - λd,q[
λd

λq

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
·
[
λα

λβ

]
(1.28)

• Inverse Clarke-Park transformation ea,b,c - eα,β,0iaib
ic

 =
2

3

 cos(θ) − sin(θ)

cos
(
θ − 2π

3

)
− sin

(
θ − 2π

3

)
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(
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3

)
− sin

(
θ + 2π

3

)
 ·

[
id
iq

]
(1.29)

• Inverse flux maps idq = f(λdq): these maps are retrieved from FEA simulations of the e-motor

object of study.

Figure 1.21: Id = f(λdq) example Figure 1.22: Iq = f(λdq) example
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VBR motor model

In the Voltage Behind Reactance model, the machine is represented as a three-phase RLE load.

Here, the resistive parameters correspond to the winding resistances, while the coupled inductors

represent the differential inductances of the machine.

Additionally, the controlled voltage sources serve as representations of the back-EMFs.

Figure 1.23: VBR model in PLECS

Despite the machine variables being initially expressed in the abc reference frame, the computation

of the back electromotive forces occurs in the dq reference frame.

This is achieved through the utilization of inductances and flux maps as follows:

Figure 1.24: Block scheme for stator back EMFs calculation in VBR model [1]

Firstly, the measured currents are transformed from the abc to the dq reference frame. Subse-

quently, these currents are converted into fluxes and incremental inductances through the interpo-

lation of two-dimensional lookup tables. Then, utilizing the information regarding currents, fluxes,

and incremental inductances in the dq reference frame, the abc back electromotive force quantities are

retrieved, along with the incremental inductances.

Hereafter, an in-depth focus on the calculations involved in the VBR model is made.

• Direct Clarke-Park transformation ia,b,c - id,q

[
id

iq

]
=

2

3

[
cos(θ) cos

(
θ − 2π

3

)
cos

(
θ + 2π

3

)
− sin(θ)− sin

(
θ − 2π

3

)
− sin

(
θ + 2π

3

)] ·

iaib
ic

 (1.30)
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• Back-EMFs calculation ea,b,c=f(id,q, λd,q, ld,q, θ, ω)

From the stator voltage equation:

vabc = [Rs] · iabc + [labc] ·
diabc
dt

+ eabc (1.31)

Using the direct and inverse Clarke transforms

[T] =

 2
3 − 1

3 − 1
3

0
√
3
3 −

√
3
3

1
3

1
3

1
3

 , [T]−1 =

 1 0 1

− 1
2

√
3
2 1

− 1
2 −

√
3
2 1

 (1.32)

The voltage equation in the α, β frame is obtained:

vαβ = Rs · iαβ + [lαβ ] ·
diαβ
dt

+ ·eαβ (1.33)

Then, with the Park transformations

A(θ) =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
, A−1(θ) = A(−θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
(1.34)

The voltage equation in the d, q frame is:

vdq = Rs · idq + [ldq] ·
didq
dt

+ [J] · ω · λdq (1.35)

Where [J] is the complex derivate operator, expressed in matricial form

[J] =

[
0 −1

1 0

]
(1.36)

From here the back-EMFs information is retrieved with few passages

edq = [ldq] · (−ω) · [J] · idq + [J] · ω · λdq (1.37)

eα,β = A(−θ) · edq = A(−θ) ·
(
[ldq] · (−ω) · [J] · idq + [J] · ω · λdq

)
(1.38)

ea,b,c = T−1eα,β = T−1 ·A(−θ) · edq (1.39)

• Incremental inductances la,b,c

From the inductance LUTs is it possible to obtain incremental inductances in the dq frame

ldd =
∂λd(id, iq)

∂id
ldq =

∂λd(id, iq)

∂iq

lqd =
∂λq(id, iq)

∂id
lqq =

∂λq(id, iq)

∂iq

(1.40)

The steps to get the la,b,c tensor are:

[lαβ ] = A(−θ) · [ldq] ·A(θ) (1.41)
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[labc] = [T]−1 · [lαβ ] · [T] (1.42)

• Flux maps idq = f(λdq): as for the inverse ones, these maps are retrieved from FEA simulations.

Figure 1.25: λd = f(Idq) example Figure 1.26: λq = f(Idq) example

Mechanical Model

The mechanical component of the electric motor modeling is defined according to the control strategy

employed.

Specifically, when the electric motor is governed via current control or torque control, it is as-

sumed, as depicted in the upper part of Figure 1.27, that the speed is set by an external prime mover

responsible for speed regulation.

Conversely, in scenarios where the electric motor is to be commanded under speed control (illus-

trated in the lower part of Figure 1.27), the mechanical aspect of the motor model incorporates both

load and friction torques, which are proportional to ω and ω2, respectively.

Figure 1.27: Representation of the Mechanical Model

This approach is of general validity and will be used throughout this discussion; only in this section

its characteristics have been explored, for the rest of the discussion it will be taken for granted.
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1.5 Hardware-in-the-loop Simulations

Hardware-in-the-loop (HIL) simulations stand at the forefront of testing and validating real-time elec-

tronic control systems.

By utilizing mathematical models to mimic the behavior of complex physical systems, HIL sim-

ulations allow hardware to undergo extensive testing under a wide range of scenarios without the

associated risks and costs of using actual equipment.

This approach is invaluable during the development and prototyping phases of controllers for

electric motors, drive systems, and other power electronics, enabling engineers to detect and correct

issues well before physical implementation.

1.5.1 Plexim RT-BOX

The RT Box is a real-time simulator designed with power electronics applications in mind. It distin-

guishes itself in HIL simulations through its exceptional capability to accurately replicate electrical

and electronic systems, offering an essential tool for engineers and researchers alike.

The RT Box’s versatility stems from its sophisticated hardware, featuring numerous analog and

digital I/O channels, along with FPGA embedded CPU cores. This makes it highly effective for

both real-time HIL testing and rapid control prototyping across a variety of sectors. In our study,

particular use was made of the RT Box CE version, a compact and cost-effective model of the RT

Box, designed for smaller-scale HIL applications. This version is especially suited for educational and

research purposes, where its portability allows for easy transportation by students and researchers for

remote work or study, without sacrificing the high performance of the larger RT Box model.

Figure 1.28: RT-Box CE Photo

Key technical specifications of the RT Box CE are summarized below:
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Feature Specifications
Processor Xilinx Zynq Z-7030
CPU Cores 2 x ARM Cortex-A9, 1 GHz
Analog Inputs 8 channels, 16 bit, simultaneous sampling
Analog Outputs 16 channels, 16 bit, simultaneous update
Digital Inputs 32 channels, logic levels 3.3 V (5 V tolerant)
Digital Outputs 32 channels, logic levels 3.3 V / 5 V
I/O Protection Permanent short-circuit, Overvoltage -24 ... 24 V
Connectivity Gigabit Ethernet, 2 CAN bus, USB A 2.0
Power Supply 100 ... 240 Vac, 50 ... 60 Hz, 30 VA
Dimensions 225 x 165 x 55 mm

Table 1.1: RT Box CE Technical Specifications

1.5.2 ST Microelectronics Nucleo-64 G4 Micro Board

The STM32 Nucleo-64 G4 board provides a cost-effective and flexible platform for users to test new

ideas and build prototypes, taking advantage of the diverse performance and power consumption op-

tions offered by the STM32 microcontroller. Ideal for educational and rapid prototyping environments,

it allows for easy experimentation with various designs and concepts.

Figure 1.29: STM Nucleo Board Photo

The primary specifications of the Nucleo G4 board are detailed in the following table:
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Feature Specifications
Microcontroller STM32G4 series in LQFP64 package
Core ARM Cortex-M4 with FPU and DSP instructions
Maximum Frequency Up to 170 MHz
Memory Up to 512 KB Flash, up to 128 KB SRAM
Analog Inputs 12-bit ADCs with 16 channels
Analog Outputs 2 DAC channels
Debugging On-board ST-LINK/V2-1 debugger/programmer
Connectivity ARDUINO® Uno V3 connectivity, ST morpho extension pin headers
Power Options USB VBUS or external source
Additional Features USB OTG FS, TIM, I2C, SPI, USART, LPUART, CAN, SAI
Operating Voltage 1.7 V to 3.6 V

Table 1.2: STM32 Nucleo-64 G4 Micro Board Technical Specifications

This hardware setup, combining the RT Box CE with the Nucleo G4 microcontroller board and

leveraging STM32CubeIDE for code development, offers a powerful and adaptable platform for con-

ducting complex HIL projects, including the simulation of electrical motor circuit models.
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1.6 Modelling Strategy

For the simulation of three-phase and multi-three-phase motors, we adopted a hybrid machine mod-

elling strategy, distinct for the electric motor model in the PLECS simulation environment (RT-BOX)

and for the machine control in C code (Motorctrl.c for offline simulations, STM32 IDE project in real

time environment).

1.6.1 Motor Model

Regarding the circuital models of the e-motors within PLECS, we opted for the Vector Space Decom-

position approach. This methodology, as demonstrated in [3] [10] [9], offers an excellent representation

of the machine due to its ability to condense the electromechanical conversion into a single subspace

dq, simplifying the treatment of the multiphase machine as an ordinary rotating motor.

For the automation and integration in SyreDrive of multiphase machine models, an algorithm will be

developed for the generation of the transformation matrix from phase quantities to VSD subspaces,

as illustrated in [14]. From this point it is possible to treat the motors as already seen in 1.4.1, with

VBR and CCG models as possible solutions.

1.6.2 Control Strategy

In contrast to the motor model, the control of three-phase and multi-three-phase machines will be

done through the Multi Stator approach. This choice is aimed at preserving the modularity of these

drive systems, ensuring an efficient response to the various types of faults simulated. To address the

problem of cross-coupling between the three-phase systems that make up the stator windings, we

will resort to the implementation of the decoupling algorithms presented in [11] [9]. In this way, the

machine will be protected from this problem, simplifying the analysis as shown in 3.20, resulting in

currents referring to the common and differential modes.

Figure 1.30: Adopted control scheme

From the figure 1.30 it can be seen that, after the appropriate transformations, the machine is pair-

controlled Tref = f(id,cm, iq,cm) in the common-mode axes dq. This decision is motivated by the focus

of the thesis on the development of simulations under fault conditions, offering considerable simplicity

and debugging capabilities. To support proportional-integral controllers, a voltage feedforward will

be employed for more effective compensation and quicker response to torque references.

Clarke transformations from axes akbkck to axes αkβk are obtained as described in [11], exploiting
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the asymmetry of the e-motors under study:

[TClarke,k] =
2

3
·

cos(θk) cos(θk − 2π
3 ) cos(θk + 2π

3 )

sen(θk) sen(θk − 2π
3 ) sen(θk + 2π

3 )
1
2

1
2

1
2

 (1.43)

Furthermore, there is no difference in the definition of the Park transformation from αkβk to dk, qk.
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1.7 Motivations

The exploration of the current landscape in electrical motor drive systems, particularly in the domain

of three-phase and multi-phase machines, reveals a significant gap in comprehensive simulation tools

capable of addressing the complex nature of fault conditions.

Despite considerable advancements in the field, the development and implementation of robust, fault-

resilient systems remain a critical challenge.

This is especially true in applications where reliability and performance under adverse conditions are

paramount.

Literature review underscores the multifaceted nature of fault scenarios in electrical drives, ranging

from open-circuit faults to more intricate issues like inter-turn short circuits and phase unbalances.

While existing methodologies provide a foundation for understanding and mitigating these issues,

there remains a conspicuous absence of an all-encompassing tool that integrates motor modeling, con-

trol strategy simulation, and fault analysis within a singular, user-friendly platform.

This gap not only hinders the optimization of motor drives for fault tolerance but also complicates

the process for engineers and researchers to simulate and analyze the effects of various fault conditions

on motor performance.

The necessity for manual integration between different software tools for modeling, control design,

and fault simulation adds layers of complexity and potential for error, making the development cycle

longer and less efficient.

Moreover, the evolving landscape of electric motor applications, particularly in critical sectors like

automotive, aerospace, and renewable energy, demands more sophisticated and adaptable solutions.

The integration of multi-phase systems, with their inherent advantages in terms of fault tolerance and

efficiency, further accentuates the need for a simulation tool that can seamlessly model and analyze

these complex systems under a wide range of operating conditions and fault scenarios.

Therefore, this thesis is motivated by the clear necessity to bridge this gap by developing an in-

tegrated simulation environment that can offer comprehensive capabilities for the modeling, control

strategy evaluation, and fault simulation of three-phase and multi-phase electrical drives.

Such a tool would not only facilitate a deeper understanding of fault dynamics and mitigation strate-

gies but also significantly accelerate the development and optimization of fault-resilient motor drive

systems.

This endeavor aims to contribute to the advancement of electric motor technology, ensuring higher

reliability and efficiency in applications where failure is not an option.
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Motors Under Test

This chapter introduces the electric motors selected for detailed study and simulation throughout this

thesis. Each motor, with its unique configuration and specifications, represents a different aspect of

multiphase motor design and application. The motors range from standard three-phase configurations

to more complex twelve-phase systems, providing a broad spectrum for analysis in terms of opera-

tional efficiency, control strategies, and fault resilience.

Notably, these motors are readily available for study due to their inclusion in the Syr-e library, a

comprehensive repository of motor models designed for extensive analysis and optimization in mul-

tiphase systems. This accessibility facilitates the exploration of various motor configurations and

enhances the scope of simulation studies.

The reader can easily observe that there are correlations between the quantities obtained from

the Hexaphase motor and the Dodecaphase motor, as well as between the Three-phase motor and

the Nine-phase motor. Indeed, at their core, these are the same motor and differ only in the stator

winding, which has been rewound for a different number of three-phase sets. Therefore, these pairs

of motors will present the same nominal torque and speed, while the nominal phase currents will be

scaled accordingly to the number of three-phase sets comprising the e-motor.

The diverse selection of motors—3 and 9-phase motors characterized by their permanent magnet

synchronous reluctance with a high degree of anisotropy for high-speed applications delivering modest

torque, contrasted with the 6 and 12-phase motors, which are surface-mounted permanent magnet

types with a high degree of isotropy for high torque output at low speed ranges—underscores the

thesis’s objective to develop a universally applicable automatic generation model for all types of

three-phase and multi-three-phase machines. This heterogeneity in motor cases serves as a deliberate

strategy to validate the developed models, illustrating the comprehensive applicability and robustness

of the proposed simulation approach across a wide spectrum of electric motor designs.

44
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2.1 THOR 1x3ph

The THOR motor is a PM-SyR motor. Since it is a PM-SyR with a high rotor anisotropy, it is treated

with the axis convention proper to SyR motors, i.e. with the axis d in the direction of minimum rotor

reluctance and the q axis in the direction opposite to the magnets flux. It is a high-speed motor

that delivers modest torque. From the motor geometry in the figure 2.2 it is clear that this is a 3

slot/pole/phase technology. The parameters of the THOR motor are tabulated below, indicating its

nominal and maximum operational capabilities.

Parameter Value
Motor Name THOR
Nominal Current 22 A
Maximum Current 50 A
DC Voltage 310 V
Maximum Speed 9000 rpm
Nominal Speed 2500 rpm
Nominal Torque 19 Nm
Nominal Power 5 kW
Number of Pole Pairs 2
Number of Phases 3
Stator Resistance 0.2625 Ω
Copper Temperature 130 °C
Permanent Magnet Temperature 20 °C
Number of Turns 72
Moment of Inertia 0.0045 kg·m2

Axis Type SR
Motor Type PM
PM Temperature [20, 180] °C
Target PM Temperature 80 °C

Figure 2.1: Main Parameters of the THOR Electric
Motor

Figure 2.2: THOR motor geometry

Figures 2.3, 2.4 show the torque and power characteristic curves as a function of the motor’s speed,

respectively, even under flux-weakening operating conditions.

Figure 2.3: T-n Characteristic Figure 2.4: P-n Characteristic
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Figures 2.5 show the flux maps dq of the THOR 1x3ph motor.

Figure 2.5: 2D Flux Maps

In figure 2.6 are represented respectively isotorque and isocurrents, MTPA and MTPV character-

istics as a function of currents. Figures 2.7 show the curves that estimate the torque ripple in the dq

currents plane. Since this motor adopt PM-Syr axes convention, these curves are symmetrical with

respect to the iq axis.

Figure 2.6: MTPA, MTPV, T curves Figure 2.7: Torque Ripple Estimation
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2.2 THOR 3x3ph

The evolution from the three-phase THOR motor to the THOR 3x3ph represents a significant leap

in multiphase motor technology. This version has been adapted to house three sets of three-phase

windings, effectively tripling the complexity and control capabilities compared to its predecessor.

This modification led to a scaling of the slots/pole/phase from 3 to 1, maintaining the high-speed

characteristics inherent to this PM-Syr motor design while adjusting its operational dynamics.

Parameter Value
Motor Name THOR 3x3ph
Nominal Current 7.5 A
Maximum Current 15 A
DC Voltage 310 V
Maximum Speed 12000 rpm
Nominal Speed 2400 rpm
Nominal Torque 20 Nm
Nominal Power 5 kW
Number of Pole Pairs 2
Number of Phases 9
Stator Resistance 0.79 Ω
Copper Temperature 130 °C
Permanent Magnet Temperature 20 °C
Number of Turns 72
Moment of Inertia 0.0042 kg·m2

Axis Type SR
Motor Type PM
Target PM Temperature 80 °C

Table 2.1: THOR 3x3ph Data

Figure 2.8: THOR motor geometry

The transition to a nine-phase system is not just a numerical increase in phase count but a

strategic enhancement to improve fault tolerance, control granularity, and operational flexibility. The

THOR 3x3ph’s specifications underscore its high-speed operation and precise torque control capabil-

ities, essential for advanced applications requiring meticulous performance tuning.

Figure 2.9: T-n Characteristic Figure 2.10: P-n Characteristic

The dq flux maps, characteristic torque, and power curves of the THOR 3x3ph motor, illustrated
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in Figures 2.9, 2.10, and 2.11, respectively, offer a detailed view into the motor’s performance under

various conditions. These visual representations provide invaluable insights for optimizing the motor’s

operation to achieve desired outcomes.

Figure 2.11: 2D Flux Maps

Moreover, the torque ripple estimation, as shown in Figure 2.13, and the MTPA, MTPV, T curves

in Figure 2.12, provide a comprehensive understanding of the motor’s efficiency and reliability. The

symmetrical design regarding the iq current axis, as a result of the PM-SyR axes convention, highlights

the motor’s balanced performance, minimizing torque ripple and enhancing operational smoothness.

Figure 2.12: MTPA, MTPV, T curves Figure 2.13: Torque Ripple Estimation
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2.3 PM 2x3ph

The PM 2x3ph motor, represented in the table below, is distinguished by its six-phase design, en-

hancing its capability to deliver high torque and power levels efficiently. This motor is a testament to

advanced engineering, optimizing performance for demanding applications that require robust power

delivery and reliability.

Parameter Value
Motor Name PMSM 2x3ph
Nominal Current 23 A
Maximum Current 69 A
DC Voltage 565 V
Maximum Speed 2400 rpm
Nominal Speed 520 rpm
Nominal Torque 320 Nm
Nominal Power 17.5 kW
Number of Pole Pairs 22
Number of Phases 6
Stator Resistance 1.6 Ω
Copper Temperature 130 °C
Permanent Magnet Temperature 80 °C
Moment of Inertia 0.0576 kg·m2

Axis Type PM
Motor Type PM
Target PM Temperature 80 °C

Table 2.2: Main Parameters of the Six-phase Electric Motor

The dynamic characteristics and operational capabilities of the PM 2x3ph motor are showcased

through its dq flux maps and torque-speed, power-speed characteristic curves. These graphical repre-

sentations, as seen in Figures 2.14, 2.15, and 2.16, provide valuable insights into the motor’s efficiency

across a range of operating conditions.

Figure 2.14: T-n Characteristic Figure 2.15: P-n Characteristic
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Figure 2.16: 2D Flux Maps

The analysis is further deepened by examining the MTPA, MTPV, and torque ripple characteris-

tics, as illustrated in Figures 2.17 and 2.18. These figures emphasize the motor’s operational efficiency,

showcasing its capacity to maintain stable performance and minimize torque ripple, a crucial factor

for applications demanding smooth and precise power delivery.

Figure 2.17: MTPA, MTPV, T curves Figure 2.18: Torque Ripple Estimation
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2.4 PM 4x3ph

The PM 4x3ph motor, detailed in the specifications below, is tailored for challenging applications that

demand exceptional reliability and performance. Its twelve-phase architecture sets a new benchmark

in electric motor design, offering unmatched flexibility and efficiency in power distribution and control.

Parameter Value
Motor Name PMSM 4x3ph
Nominal Current 11 A
Maximum Current 35 A
DC Voltage 565 V
Maximum Speed 2400 rpm
Nominal Speed 500 rpm
Nominal Torque 325 Nm
Nominal Power 17.5 kW
Number of Pole Pairs 22
Number of Phases 12
Stator Resistance 3.0 Ω
Copper Temperature 130 °C
Permanent Magnet Temperature 80 °C
Moment of Inertia 0.0574 kg·m2

Axis Type PM
Motor Type PM
Target PM Temperature 80 °C

Table 2.3: Main Parameters of the Twelve-phase Electric Motor

The dynamic performance and adaptability of the PM 4x3ph motor are illustrated through its

dq flux maps, torque-speed, and power-speed characteristic curves, as depicted in Figures 2.19, 2.20,

and 2.21. These visual aids convey the motor’s proficiency in maintaining high operational standards

across various speeds and loads.

Figure 2.19: T-n Characteristic Figure 2.20: P-n Characteristic
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Figure 2.21: 2D Flux Maps

Further exploration into the motor’s efficiency and control optimization is provided by the MTPA,

MTPV, and torque ripple characteristics, illustrated in Figures 2.22 and 2.23. These analyses highlight

the motor’s exceptional capability to deliver smooth power output while minimizing torque ripple,

ensuring stability and reliability in its application.

Figure 2.22: MTPA, MTPV, T curves Figure 2.23: Torque Ripple Estimation



Chapter 3

PLECS Modeling of Three-Phase

and Multi-Three-Phase Motors

This chapter is dedicated to an in-depth exploration of the modelling of three-phase and multi-three-

phase motors using the advanced PLECS simulation environment. Our exploration begins with the

development of an extended model of a six-phase motor, which will serve not only as a practical

demonstration of the modelling methodology, but also as a starting point to discuss the inherent

challenges and increasing complexity associated with visually representing a larger number of phases.

A significant turning point in our modelling journey is introduced with the development of the

’vectorised’ model for multi-phase motors. This innovative representation not only promises a simpli-

fication of the graphical interface, but also proves essential in facilitating the automatic generation of

models, showing a natural predisposition towards a more fluid and integrated approach. The transi-

tion to the implementation of the model within SyreDrive marks a crucial phase of our study, where

we will examine in detail the procedures adopted to develop the control scripts and codes required for

the auto-generation of the working model.

The evolution of modelling reaches a further level of concretisation through the application of

models in Hardware-in-the-Loop (HIL) contexts, exploiting the capabilities of the rt-box real-time

simulator. This approach not only demonstrates the effectiveness of our models in faithfully repli-

cating engine behaviour under real operating conditions, but also opens up new perspectives for the

validation and optimisation of control strategies.

We will conclude the chapter by presenting simulation results for four different motor configura-

tions - three-phase, six - phase, nine-phase and twelve-phase - generated through our methodological

approach. The analysis of the results will not only confirm the validity and effectiveness of the vec-

torised model and integration in SyreDrive, but also provide crucial insights for future research and

development in the field of multi-three-phase motors, with a focus on HIL implementation via rt-box,

outlining an innovative path for modelling, simulation and control of these advanced electric propul-

sion solutions.

53
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3.1 Extended Six-Phase Machine Model

The fuoundation element of our exploration into multi-phase motor modeling within the PLECS en-

vironment is the extended six-phase motor model.

The extended six-phase model is distinctively characterized by its dual inverter setup, where each

inverter operates independently.

Internally, the motor circuit model is ingeniously designed as a unified block that houses dual

three-phase Controlled Current Generator (CCG) systems. These systems are arranged to ensure

their signal routings—encompassing both output currents and voltage measurements—remain dis-

tinct and parallel, mirroring the dual inverter configuration.

In a similar vein, the digital control scheme of the model is adeptly structured to accommodate

the dual nature of the motor. Inputs from current measurements and outputs to Duty Cycles are

processed in parallel streams.

In Figure 3.14 is presented the shematic of this extended multiphase electrical drive.

Figure 3.1: Six Phase Machine Schematic

3.1.1 Digital Control

At the core of our modeling efforts within the PLECS environment lies the digital control block,

depicted in Figure 3.2. This component is fundamental to the simulation, embodying the sophisticated

logic and precision typically found in real-world microcontroller applications.

The approach used is entirely equivalent to that observed in 1.4.1, so the reader who wishes to recall

the characteristics of this method may refer to it.
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Figure 3.2: Six-phase Control Block

Control Script

Delving into the control script reveals the algorithmic backbone central to the digital control block.

This script, presented in the 4.5.2 incorporates a comprehensive logical framework and sophisticated

control strategies, guiding the motor’s behavior across a spectrum of operational conditions.

The initial part of the code is dedicated to variable initialization and acquiring input signals.

These signals represent motor currents (isabc1, isabc2), DC link voltage (vdc), mechanical rotor angle

(theta mec meas), speed reference (n ref in), external torque reference (T ext), current references

(isdq ext.d and isdq ext.q), and several control flags and parameters such as reset, go, control type,

waveform injection type, demodulation type, high-speed control activation, sensorless operation flag,

acceleration, quadrature maps, and magnet flux (lambda M).

Following the input signal acquisition, the code transitions into a state machine with states in-

cluding ERROR, WAKE UP, READY, and START. Each state is designed to handle specific phases

of motor operation:

• ERROR: Initial state for variable initialization and system reset.

• WAKE UP: Prepares the motor for operation by setting up PWM signals to a neutral position.

• READY: Awaits the start command while keeping the motor ready.

• START: The main operational state where speed computation, position error estimation, and

control type selection take place. Depending on the control type, current, torque, or speed

control is executed.

For torque and speed control, lookup tables (ReadLut) are used to determine appropriate current

references. The control algorithms then compute the necessary current vector control commands to

achieve the desired motor performance.

The Current loop function is pivotal in generating reference voltages (vsdq cm ref and vsdq dm ref1)

for common-mode and differential-mode operations, respectively. These references are adjusted for

decoupling, ensuring precise control over motor currents.

Finally, duty cycles for PWM signals are calculated, ensuring they remain within acceptable bounds

to prevent overdriving the motor. The computed duty cycles (duty abc1 and duty abc2) are then

outputted to drive the motor’s power electronics.
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3.1.2 Motor Model

As expected, the circuital model of this extended machine is made of two sets of CCG three phase

systems.

Figure 3.3: Six-phase machine motor model with 3CCG

In this section, the calculations performed in 1.4.1 are integrated within the simulation environ-

ment using various subsystems.

Flux integration

In the first step, the voltages measured across the terminals of the controlled current generators pro-

vides the values of fluxes.

The six back-EMFs are transformed from the six-phase domain to the VSD one: a main αβ subsys-

tem, (nset − 1) harmonic spaces, and nset zero sequence spaces. Than, these are integrated to obtain

the fluxes. Note that since zero sequence do not contribute to the electro-mechanical conversion or

harmonic behaviour F0 this quantity is not object of integration and further studies.



Chapter 3. PLECS Modeling of Three-Phase and Multi-Three-Phase Motors Page 57

Finally, through the Park transformation (1.34), the main subspace is reported in the rotating dq

axes.

Figure 3.4: Flux integration block scheme

Inverse flux maps

Within the Inverse Flux Maps block, three subsystems can be identified. Two of these subsystems

are dedicated to signal management with the goal of exploiting the symmetry of the motor type

(SyR, PMSM, IPM) relative to the inverse flux maps. This approach allows for loading reduced-size

maps with finer interpolation into the program. As a result, both memory usage and computational

resources are optimized, while achieving a qualitatively superior magnetic behavior representation.

Figure 3.5: Magnetic Model block

The first subsystem (on the left in Figure 3.5) shows different signal treatments depending on the

motor type:

• SyR: Synchronous Reluctance motors exhibit double symmetry along the dq rotor axes, also

due to the absence of magnets. This allows the inverse flux maps to cover only 1/4 of the total

definition area, significantly reducing computational demands and enhancing the representation

of their magnetic behavior.

• PMSM: Surface-mounted Permanent Magnet machines demonstrate magnetic isotropy along

the q-axis, perpendicular to the magnet flux direction. This feature enables the halving of the

inverse flux maps’ definition area.

• IPM, PM-SyR: Permanent Magnet machines controlled under the dq convention typical of

Synchronous Reluctance motors exhibit magnetic symmetry relative to the d-axis.
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These characteristics are succinctly summarized in Figure 3.6.

Figure 3.6: Axis configuration choice

Moving forward, within the ’LUTS’ subsystem, dq-axis currents are calculated based on the flux

information as detailed in 1.4.1.

Figure 3.7: 2-D inverse-Flux look up tables

Subsequent steps involve further signal conditioning to ensure correct torque and currents readings

for the specific motor type under study. This adjustment is crucial to correct for potential sign errors

introduced by the flux map reduction resulting from the symmetrization procedure.

Figure 3.8: Axis reconfiguration after 2D-LUTS
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Iron Losses

The calculation of iron losses is based on the approach described in [4].

This loss component can be analogized with an equivalent electrical circuit in the dq axes:

Figure 3.9: Steady state Iron losses model

Hence, iron losses can be likened to a resistance in parallel with the electromotive force of the

phases. This non-linear resistance draws part of the current available for electro-mechanical conversion,

thereby reducing the system’s efficiency.

Within the PLECS model, the Iron Losses block comprises:

Figure 3.10: Iron losses block

The computation of the current unavailable for electro-mechanical conversion occurs in specific

steps within the ’0 Current Calculation’ subsystem. As a starting point, it is assumed that iron losses

can be modeled using Steinmetz’s equation:

pFe = kh · fα ·Bβ + ke · (f ·B)2 (3.1)

Here, B represents the flux density within the iron sections of the motor. The coefficients in this

equation are determined through a fitting process, which utilizes loss data directly sourced from the

manufacturer’s datasheet.

The subsequent step for a straightforward iteration of the current calculation is based on the use

of 2D iron loss maps. These maps are quantified across the (imd, imq) domain, akin to flux maps, at a

predetermined speed n0, resulting in two maps, Ph,0 and Pe,0, for hysteresis and eddy-current losses,

respectively.

These maps functionally describe the losses as dependent on (imdq) currents, calculated for a specific

frequency f0 = n0×60
p , where p denotes the number of pole pairs. Thus, to calculate losses at a

different operating point, values are simply scaled as follows:

PFe = Ph,0 ·
(

f

f0

)α

+ Pe,0 ·
(

f

f0

)2

(3.2)
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Another term of losses encapsulated in this study are PM losses. These are caused by the circulation

of eddy currents in the permanent magnet blocks. A simplified model is adopted for their calculation,

since these are smaller than other losses and the PMs are axially segmented to reduce eddy currents.

Here, the effect of eddy currents on the flux distribution is assumed to be negligible, a conservative

assumption but relevant for surface magnet machines.

Furthermore, for a conservative and easy approach, PM losses are assumed proportional to ω2, using

this method they may be overestimated.

With these assumptions, this losses are calculated at fixed speed PPM,0 and scaled on a grid (ωm, isqm).

Then, as for Iron losses, for actual computation they are rescaled as:

PPM = PPM,0 ·
(

f

f0

)2

(3.3)

Figure 3.11: Six-phase IL maps Figure 3.12: Six-phase PM loss maps

Finally, the Idq,fe currents are computed in a C-script function as:

Idq,fe =
2

3
· (PFe + PPM ) · jωλdq (3.4)

Id,fe =
P

ω·(λ2
d+λ2

q)
· (−λq)

Iq,fe =
P

ω·(λ2
d+λ2

q)
· λd

(3.5)

This calculations are performed in the ’0 current calculation’ subsystem present in Figure 3.13

Figure 3.13: Iron Losses current calculation
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3.2 Multi-Triphase Vectorized Model

The concept of vectorization within the context of multi-three-phase motors introduces a revolutionary

approach to the modeling and simulation of these systems in PLECS. This technique, illustrated in

Figure 3.14, embodies a streamlined and efficient representation of complex multiphase machines,

facilitating their analysis and control strategy development.

Figure 3.14: Generalized multi-three-phase machine schematic

At a glance, the vectorized model retains the visual simplicity of the single three-phase model

previously introduced (1.4.1), yet it is capable of controlling motors with a number of phases that is

3 · n, times greater, with n ∈ N .

This approach stems from the insights gained through documents such as [5] and [6]. In the former,

the unlocking of vectorization element potential is discussed, while the latter presents a practical ex-

ample of modeling a multiphase synchronous buck converter with a user-variable number of phases.

The vectorized model encapsulates the essence of multiphase systems by abstracting the physical

phase connections and control strategies into a unified framework.

This abstraction not only reduces the graphical complexity inherent in modeling multiphase systems

but also significantly enhances the computational efficiency of simulations. By employing a single

inverter model to manage multiple sets of three-phase systems, the model adeptly mirrors the paral-

lel processing capabilities of modern simulation environments, thereby providing a clear and concise

representation of the motor’s operational dynamics.

A pivotal advantage of this vectorized approach lies in its inherent scalability and adaptability

to various motor configurations and control algorithms. The model’s flexibility allows for seamless

integration into the SyreDrive environment, enabling the auto-generation of motor models with vary-

ing phase configurations, from traditional three-phase to more complex twelve-phase systems. This

integration not only streamlines the simulation setup process but also opens new avenues for the ex-

ploration of fault tolerance and resilience in multiphase motors.
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Moreover, the vectorized model’s structure is designed to accommodate the simulation of fault

conditions, a critical aspect for the development of robust motor control strategies. By providing a

clear framework for the insertion and analysis of faults within the motor system, the model serves

as an invaluable tool for the investigation of motor behavior under adverse conditions, thereby con-

tributing to the advancement of fault-tolerant motor design and control methodologies.

The forthcoming sections will delve into the intricacies of developing this vectorized model, shed-

ding light on the technical nuances and the strategic considerations on its implementation. This

discussion aims to provide a comprehensive understanding of the vectorized model’s architecture and

its significant contributions to this thesis.

3.2.1 Inverter Model

At first glance, the inverter model might appear essentially unchanged compared to a standard three-

phase, two-level inverter, except for the addition of two pivotal elements. These elements, which are

the cornerstone of generating parallel functioning three-phase inverters, are ’Wire Selector’ blocks

from the PLECS component library.

Vectorization Element

Indeed, this component is capable of performing multiple functions depending on its configuration.

Specifically, it can:

• Perform signal conditioning, i.e., swap the positions of input and output variables.

• Select only certain input quantities by specifying their position within the vector (this was

utilized, for example, in the signal conditioning in 3.1.2).

• Multiply outputs from a single input signal to create multiple parallel paths, effectively acting

as an electrical node to which several parallel branches are connected. This feature has enabled

the development of the models discussed herein.

Figure 3.15: Wire Selector Block

Inverter

The result is a structure graphically equivalent to a three-phase 2-Level inverter, as can be seen in

Figure 3.16, with the significant difference that each switch shown is receiving a number of signals

equal to the number of sets that the motor under analysis possesses.
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Figure 3.16: Generalized multi-three-phase inverter

Command Signals

Within the inverter subsystem, we find the ’Command Configuration’ Block. Inside this block, a

comparison is made between the duty cycles and the triangular carrier of the PWM modulation, as

shown in Figure 3.17, which results in the generation of the switch gate commands.

Figure 3.17: PWM generation

The C-Script shown in Figure 3.16 is prepared for the generation of faults that can be simulated

on the inverter side. Further developments regarding this component is carried out in the course of

this discussion.

3.2.2 Motor Model

As expected the motor model 3.18, here in the version with controlled current generators, appears

exactly identical to the one presented in 1.4.1 of the three-phase motor.

Indeed, from the integration of the electromotive forces in the dq axis inside the ’Flux Integration’

block, until the controlled currents are reiterated in the phase domains akbkck, the calculations are

almost identical to what was seen for the extended hexaphase motor. Said that, reference can be

made to what was presented in 3.1.2.

Figure 3.18: Vectorized circuital model 3CCG
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Clearly, the model includes a single set of Controlled Current Generators, in which the nset are

solved in parallel.

3.3 Control Strategy

As already exposed in 1.6.2, the control of three-phase and multi-three-phase machines is conducted

through the Multi Stator approach to maintain the modularity of these drive systems and ensure

efficient response to various simulated faults. To address the cross-coupling issue between the three-

phase systems composing the stator windings, decoupling algorithms is implemented. This operation

make more easy understanding of the machine, simplifying the analysis under fault conditions. After

appropriate transformations, the machine is controlled in the common-mode axes dq, simplifying

fault analysis. A voltage feedforward is employed to support proportional-integral controllers, offering

better compensation and quicker response to torque references. Clarke transformations from akbkck
axes to αkβk axes is utilized, exploiting the asymmetry of the studied electric motors. Additionally,

there is no significant difference in the definition of the Park transformation from αkβk to dk, qk.

3.3.1 Digital Control

Digital control is presented in a way similar to three-phase control, but with the difference that the

input currents and duty cycles, along with their Enable signals, have a multiplicity equal to the number

of sets of the studied e-motor.

Figure 3.19: Digital control block

Placing these quantities in the last positions of the ’multiplexer’ (or demultiplexer) component, as

shown in Figure 3.19, ensures better signal management. This is because all the magnitudes preceding

them do not have multiplicity and are therefore invariant in relative position to the number of three-

phase sets.

Choosing otherwise would means to necessary modifying the positions of these magnitudes depending

on the sets present, making the discussion unnecessarily complicated.

3.3.2 Decoupling Algorithm

This study use the approach suggested in [9], focusing on the computation of both common and

differential modes of the machine.

The main purpose of this study is to isolate the energy conversion process into a single common-mode

subspace. Meanwhile, any imbalances among three-phase sets concerning flux and torque production
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are identified and addressed within designated differential-mode subspaces.

Starting from the coupled model 1.5, the final representation of the decoupled machine should be like:

Figure 3.20: MS equivalent circuit after decoupling [9]

To achieve this goal, the following assumption are made:

• For a generic stator variable of the machine zs exist one common mode vector zs,cm and u =

[1 : (n− 1)] differential modes zs,dm−u

• It is possible to demonstrate that the zs variable can be expressed as a linear combination of

common and differetial mode as:

z̄sk,xy = z̄scm,xy + wk · z̄sdm−k,xy +

u=k∑
u=1

(qu · z̄sdm−u,xy) (3.6)

Where the qk and wk coefficients are

wk =

√
n · (n− k)

(n− k + 1)
, qu = −

√
n

(n− u) · (n− u+ 1)
(3.7)

It is remarkable that the calculation of the decoupling transformation remains independent of the an-

gular displacements among three-phase winding sets. This characteristic circumvents the constraints

associated to the Vector Space Decomposition method in the needs of spatial distrubution.

This strategy enables effective decoupling actions within any arbitrary rotating frame, thereby fa-

cilitating its integration into various MS-based control schemes. By segregating the energy conversion

and addressing imbalances separately, our method enhances control precision and flexibility across

different operational scenarios.

Although the resulting equation systems of the decoupled multi-stator model and the VSD ap-

proach may appear similar, their underlying mathematical and physical interpretations diverge sig-

nificantly. The VSD methodology employs a time-harmonic dissection of the machine’s spatial con-

figuration, representing energy conversion through an averaged representation within the principal

subspace, signifying the fundamental temporal model of the machine. Conversely, in the Multi Sta-

tor (MS) approach, the collective and differential models are derived through linear combinations of

MS variables, thereby preserving the modularity of energy conversion within the time-fundamental

subspaces of the machine.
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3.4 Integration into SyreDrive

The integration process into SyreDrive begins by creating a repository containing the PLECS model of

the generalized multiphase machine, for which the number of motor phases is not yet defined. Besides

the PLECS model, the following should be present:

• The ’SimMatFiles’ folder, initially empty, where motor flow maps, machine parameters, and

user settings (user settings) is uploaded in Matlab table format.

• The ’MotorControl0’ file, a file containing parts of the control code that are independent of the

e-motor under examination and that are reported for all, which is better addressed in ??.

The integration into SyreDrive essentially passes through the definition of the ’.m’ file that is called

when, once the motor model and the characteristics that the drive must possess (i.e., instantaneous/av-

erage model, switching frequency, on-resistance of the switches, threshold voltage, etc.) are selected,

the user presses the ’create PLECS model’ button on the SyreDrive graphical interface, shown in

figure 1.14. This file performs specific tasks aimed at the final realization of the project.

This script initiates by ensuring that the motor model has all the necessary maps for control tra-

jectories, inverse models for dq and dq− t domains, and incremental inductance maps. If any of these

are missing, they are evaluated and generated.

Subsequently, a new project folder is created, and the base PLECS model is copied into this folder,

customized with the specific motor name. The motor model data is saved within this folder, and motor

data are printed into a header file for the control script.

The script then considers the motor type and axis convention to determine the quadrant maps for

control strategies. Following this, several scripts are executed to generate the control script, decoupling

function, Clarke transform, Vector Space Decomposition Matrix, and fault simulation script. Finally,

the SyreDrive simulation path is updated, and the simulation initialization script is run, completing

the process of integrating the motor model into SyreDrive for simulation.

1 %% Copyright 2022

2 %%

3 %% Licensed under the Apache License , Version 2.0 (the "License ");

4 %% you may not use this file except in compliance with the License.

5 %% You may obtain a copy of the License at

6 %%

7 %% http ://www.apache.org/licenses/LICENSE -2.0

8 %%

9 %% Unless required by applicable law or agreed to in writing , dx

10 %% distributed under the License is distributed on an "AS IS" BASIS ,

11 %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied.

12 %% See the License for the specific language governing permissions and

13 %% limitations under the License.

14

15

16

17 function motorModel = MMM_createPLECSmodel(motorModel)

18

19 %% Check if motormodel already has maps and if it doest ’t have them , are evaluate

20 if isempty(motorModel.controlTrajectories)

21 motorModel.controlTrajectories = MMM_eval_AOA(motorModel);

22 end

23 if isempty(motorModel.FluxMapInv_dq)
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24 motorModel.FluxMapInv_dq = MMM_eval_inverseModel_dq(motorModel);

25 end

26 if isempty(motorModel.FluxMapInv_dqt)

27 motorModel.FluxMapInv_dqt = MMM_eval_inverse_dqtMap(motorModel);

28 end

29 if isempty(motorModel.IncInductanceMap_dq)

30 motorModel.IncInductanceMap_dq = MMM_eval_inductanceMap(motorModel);

31 end

32

33

34 %% Create folder for new project

35 ctrlFolder_path = [motorModel.data.pathname motorModel.data.motorName ’_ctrl_PLECS ’];

36 %%Syre folder

37 syrePath = fileparts(which(’GUI_Syre.mlapp’));

38 %%Copy and migration of the base model in the new project folder

39 copyfile ([ syrePath ’\syreDrive\PLECSmodel_mf ’], ctrlFolder_path);

40 movefile ([ ctrlFolder_path ’\Generalized_multiphase_machine.plecs’],[ ctrlFolder_path ’\

’ motorModel.data.motorName ’_Motor_ctrl.plecs ’]);

41 %%Save of the selected motor model on the project folder

42 save([ ctrlFolder_path ’\motorModel.mat’],’motorModel ’);

43 %%Print of the motor data on h file

44 MMM_print_MotorDataH_PLECS(motorModel);

45

46 %%n_set and axis style information

47 n_set=motorModel.data.n3phase;

48 if strcmp(motorModel.data.axisType ,’SR’) && strcmp(motorModel.data.motorType ,’SR’)

49 Quad_Maps = 0; %SyR Convention - 1st quadrant maps

50 elseif strcmp(motorModel.data.axisType ,’SR’) && strcmp(motorModel.data.motorType ,’PM’)

51 Quad_Maps = 1; %PM-SyR - 1st and 4th quadrant maps

52 elseif strcmp(motorModel.data.axisType ,’PM’) && strcmp(motorModel.data.motorType ,’PM’)

53 Quad_Maps = 2; %IPM - 1st and 2st quadrantsmaps

54 end

55 %%Print of the control script

56 print_PLECS_control_script_2(ctrlFolder_path ,n_set ,Quad_Maps);

57 %%Print of decoupling funcion

58 ComputeDecouplingMatrix(ctrlFolder_path ,n_set);

59 %%Print of Clarcke transform

60 PrintClarke(ctrlFolder_path ,n_set);

61 %%Print of Vector Space Decomposition Matrix

62 Compute_TVSD(ctrlFolder_path ,n_set);

63 %% Create C-Script to simulate faults

64 print_PLECS_fault_script(ctrlFolder_path ,n_set);

65 %% ending process

66 motorModel.SyreDrive.SIM_path = [ctrlFolder_path ’\’ motorModel.data.motorName ’_Model

.plecs’];

67 run([ ctrlFolder_path ’\init_sim_PLECS.m’]);

68 end

3.4.1 Print Control Script

This subsection explores the methodology for generating the Motor Ctrl Script.c for any three-phase

or multiphase motor, illustrating a sophisticated framework that combines a MATLAB script with a

generic C template (Motor Ctrl 0.c). This approach is instrumental in automating the creation of a

motor control script tailored to specific motor configurations, significantly streamlining the simulation

setup in PLECS.

The foundament of this automated script generation lies in the PrintControlScript.m file, which

orchestrates the control logic assembly. This script intelligently integrates modular code segments

from Motor Ctrl 0.c, adjusting these snippets to match the unique specifications and operational

parameters of the target motor.
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This process is ensuring that the control script accurately reflects the dynamics and control require-

ments of various motor designs, from standard three-phase to more complex multiphase configurations.

The Matlab script initiates by reading the Motor Ctrl 0.c file, which contains generic motor con-

trol algorithms and state machine logic. It then dynamically modifies and expands this code base,

adding specific control parameters, input signal processing, and state transition logic relevant to the

motor under consideration. This customization includes adapting the script to handle different num-

bers of phases and incorporating specific control strategies such as current, torque, speed, and flux

control.

The generated Motor Ctrl Script.c is seamlessly integrated into the PLECS simulation envi-

ronment, serving as the digital control core for the simulated motor. This integration enables the

simulation to mirror real-world motor control scenarios accurately, providing valuable insights into

the motor’s performance, operational efficiency, and response to various control strategies.

This automated script generation technique offers significant advantages, including reduced devel-

opment time, increased flexibility in motor control strategy exploration, and enhanced accuracy in

simulating motor behavior. It is particularly beneficial in educational and research settings, where

rapid prototyping and testing of different motor control strategies are essential.

The Print Control Script process exemplifies a practical and efficient approach to motor control

script generation in PLECS. By leveraging the power of MATLAB scripting and generic C code

templates, it facilitates the detailed study and simulation of a wide range of motor types, advancing

the field of motor control simulation and design.

3.4.2 Compute Vector Space Decomposition Matrix

The algorithm for computing the Vector Space Decomposition (VSD) matrix is a cornerstone for an-

alyzing and controlling asymmetrical multiphase machines. This process, inspired by a foundational

paper on the topic [14], translates complex theoretical concepts into a practical MATLAB implemen-

tation.

The VSD matrix plays a crucial role in dissecting the spatial orientation and harmonic content

within multiphase electric machine systems. Each row of the VSD matrix delineates a distinct two-

dimensional subspace, constructed using the phase propagation angle vector [θ] and a specific subspace

constant C. These subspaces are initially represented in a complex format, which can be equivalently

expressed by real values, simplifying the construction of the generalized multiphase Clarke’s transfor-

mation matrix.

In particular, for asymmetrical multiphase machines, the zero-sequence components (ZS) are pre-

dominantly represented as matrices filled with zeros. This simplification is applicable for each motor

presented in this lecture except for symmetric three-phase machine, where the conventional Clarke’s

transformation is adequately sufficient due to the non-existence of subspaces. The creation of the

VSD matrix involves determining the subspace constants C, which play a pivotal role in mapping the

harmonics into their respective subspaces.

The script, fully reported in 4.5.2, calculates the [TV SD] matrix, leveraging the defined subspace

constants and phase positions to create a comprehensive mapping of the electrical system’s spatial and

harmonic characteristics. This matrix forms the foundation for the generalized multiphase Clarke’s

transformation, facilitating a deeper understanding and more effective control of multiphase electric
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machines.

This MATLAB implementation is not just a computational tool but a bridge between theoretical

exploration and practical application, enabling engineers to navigate the complexities of asymmetrical

multiphase systems with greater precision and insight. The generated [TV SD] matrix is subsequently

saved, ready for integration into simulation and control algorithms that drive the next generation of

electric machine analysis and design.

ejC(θ) =

[
Re[ejC(θ)]

Im[ejC(θ)]

]
=

[
cos(C(θ))

sin(C(θ))

]
(3.8)

The subspace harmonic mapping is determined by the subspace constant C. For positive integers

i = 1, 2, 3, . . ., C can be defined as follows:

1. C ̸= i · k – Non-zero-sequence harmonics are mapped into these subspaces [TnZS ] (e.g., k = 3,

C = 1, 2, 4, 5, . . .).

2. C = i · k – Zero-sequence harmonics are mapped into these subspaces [TZS ] (e.g., k = 3,

C = 3, 6, 9, . . .).

3. C = n/2 or C = n – A set of real values is produced, the imaginary part is zero, thus forming a

homopolar zero-sequence component [ZS] (e.g., n = 9, C = 9).

The rows are systematically arranged such that the initial subspaces are non-zero-sequence sub-

spaces, followed by zero-sequence subspaces, and concluding with zero-sequence homopolar compo-

nents.

The definition of subspace constants ensures that all odd-order harmonics are uniquely mapped

into their respective x-y planes, crucial for the analysis of asymmetrical machines.

Although the discussion here is tailored towards asymmetrical machines, the underlying algorithm

can accommodate symmetrical machines, underscoring the algorithm’s versatility and comprehensive

approach to analyzing multiphase systems.

The MATLAB code snippet provided is instrumental in computing the VSD matrix, encapsulat-

ing the theoretical concepts into a practical computational tool. This code effectively automates the

process of generating the VSD matrix for any given multiphase system, streamlining the analysis and

enhancing the understanding of complex multiphase electric machines.

The developed code can be integrally found in Appendix D to fully address this topic.

3.4.3 ComputeDecouplingMatrix

This section presents the Matlab function code, reported in the appendix E, incorporated into

SyreDrive for printing the decoupling algorithm and the Clarke transformation into the ’User Macros.h’

file.

• Initialization: The function starts by determining the path to the ’User Macros.h’ file within

the control folder. It then sets up the number of phase sets (n) which directly influences the

complexity and size of the decoupling matrix.

• Decoupling Matrix Calculation: A decoupling matrix [TD] is computed based on the num-

ber of phase sets. This matrix is crucial for transforming the d-q parameters from individual
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phase sets into a common-mode and differential-mode subspace, facilitating the analysis and

control of multiphase systems.

• Macro Definition for Direct Decoupling: The function dynamically generates a macro

within the ’User Macros.h’ file. This macro, Decoupling, abstracts the mathematical transfor-

mation of d-q parameters from individual phase sets to a common and differential mode, easing

the implementation of control algorithms.

• Common Mode Subspace Calculation: It calculates the common mode subspace parame-

ters, which represent the average behavior of the system, ignoring the differential effects between

phases.

• Differential Mode Subspace Calculation: For each phase set, it computes the differential

mode subspace parameters, capturing the unique characteristics and discrepancies among the

phases.

• Inverse Decoupling Algorithm: This part of the function reverses the decoupling process,

transforming parameters from the common and differential mode back to the original d-q pa-

rameters of each phase set. This is essential for applying the calculated control actions back to

the physical system.

• Macro Definition for Inverse Decoupling: Similarly to the direct decoupling, a macro for

inverse decoupling ( InvDecoupling) is defined, facilitating the reverse transformation process in

the control code.

• Finalization: The computed decoupling and inverse decoupling macros are written into the

’User Macros.h’ file, updating the file with the necessary algorithms for handling the electric

motor’s multiphase control system effectively.

By automating the generation of these critical algorithms and incorporating them directly into

the control system’s codebase, the ComputeDecouplingMatrix function significantly simplifies the

development and implementation of advanced control strategies for multiphase electric motors within

the SyreDrive framework.

3.4.4 PrintClarcke

The PrintClarke function within SyreDrive is designed to generate and insert the generalized Clarke

transformation for asymmetrical multi-three-phase motors and its inverse into the User Macros.h file.

This operation is fundamental for handling the conversion between phase currents and the alpha-

beta reference frame and vice versa, a critical aspect in the control of multiphase electric motors.

Here’s a breakdown of the process, explained step by step:

This function automates the inclusion of the Clarke transformation and its inverse into the

User Macros.h file, facilitating the control system’s interaction with multiphase electric motors.

• Initialization: The function determines the path to the User Macros.h file. It then calculates

the total number of phases (n) based on the number of phase sets (l) and the phases per set (k).

• Theta Matrix Calculation: It computes the matrix θn that contains the electrical angles of

each phase, crucial for determining the transformation coefficients.

• Clarke Transformation Calculation: For each phase set, the function calculates the direct

Clarke transformation matrix. This matrix transforms the three-phase currents (a, b, c) into

the two-dimensional alpha-beta reference frame.
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• Inverse Clarke Transformation Calculation: Similarly, it computes the inverse Clarke

transformation for each phase set, enabling the reverse conversion from the alpha-beta reference

frame back to the three-phase currents.

• Macro Definitions for Transformation: The function dynamically generates macros for

both the direct and inverse Clarke transformations. These macros are designed to simplify the

application of the transformations within the control code.

• Update to User Macros.h: The newly created macros are added to the User Macros.h file.

This includes both the direct transformation, which converts phase currents to the alpha-beta

frame, and the inverse transformation, which does the opposite.

• Finalization: After updating the User Macros.h file with the necessary macros, the function

closes the file. This completes the integration of the Clarke transformation into the control

system’s codebase.

By embedding these transformations directly into the control system’s macros, the PrintClarke

function significantly streamlines the implementation of control algorithms for multiphase motors. It

ensures that the system can efficiently handle the conversion between different reference frames, a

critical operation for accurately controlling motor behavior and analyzing its performance.

The developed code can be integrally found in Appendix F to fully address this topic.

3.5 Hardware-in-the-loop

For the HIL implementation of the developed model, it was decided to create an ad hoc project ded-

icated exclusively to the three-phase motor THOR 1x3ph. This choice was determined by the need

to simplify the process by using a single microcontroller to generate the inverter’s switching signals.

Even when considering only the three-phase motor, the configuration of the advanced TIMER1 timer

and the definition of six output channels for signal generation and five input channels for quantity

measurements is required.

The Hardware-In-The-Loop modelling of the vectorised model similarly follows what was seen

for the offline simulations setup: the parallelisation of the resolution of multiple three-phase systems

takes place via wire selector blocks. The main differences lies in the import/export of input/output

quantities to the control system implemented in the microcontroller.

In order to create correct analogue-to-digital conversion of signals, the voltage scale ranges must

be configured for the microcontroller used in RT-BoX and the NUCLEOG474RE microboard in the

same way,in order for them to match. In particular, the adopted microboard accepts and sets signals

on a scale from 0 to 3.3V . The following table shows the signal scaling operations performed in the

HIL project of the THOR 1x3ph motor:

Table 3.1: Singals Scaling Operations for Output HIL Testing
Signal Type Full Range Scaling Factor Offset

Peak to peak current (I) 150 A Iscl =
3.3
IFR

Ioff = 3.3
2

DC Voltage (Vdc) 310 V Vscl =
3.3
VFR

Voff = 0

Angular Position (θ) 7 (2π ceil rounded) θscl =
3.3
θFR

θoff = 3.3
2

After having correctly set the scales for the measured quantities, it is necessary to define the pins

that connect the printed circuit board of the Rt-Box with the pins configured in the nuceoboard.
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As far as the output quantities from RT-BOX are concerned, the defined pins are:

Table 3.2: RTBox Output Pin Configuration
Signal Channel Number
Current Ia 0
Current Ib 5
Current Ic 4
Angular Position θ 6
DC Voltage Vdc 1

With regard to the input quantities to RT-BOX, i.e. the switching signals of the inverter legs, the

following pins are defined:

Table 3.3: RTBox Input Pin Configuration
PWM Signal Commanded Switch Switch in Channels
TIM1 Channel 1 Upper A phase 0
TIM1 Channel 1N Lower A phase 1
TIM1 Channel 2 Upper B phase 2
TIM1 Channel 2N Lower B phase 3
TIM1 Channel 3 Upper C phase 4
TIM1 Channel 3N Lower C phase 5
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3.5.1 Cube IDE Project

Figure 3.21: Cube Project - Pinout wiew

The project is based on the advanced configuration of an STM32G4 microcontroller, oriented towards

the precision control of a three-phase motor at a frequency of 10kHz.

ation, which is examined in more detail in this section. The realisation of the project was carried

out in CubeIDE, an integrated development environment in which it is possible to have total project

management right from the hardware setup. The file NUCLEOG474RE THOR.ioc contains the design of

the microcontroller configur In figure 3.21 is presented the pinout wiew of the project.From this wiew

it is clear witch pins have been configured and what is their purpose. For this project is made use of

two ADC (ADC1 and ADC2) for digital signal conversion of analogical quantities. Furthermore, the

command signal are realized using accurate configuration of TIMER 1.

Configuration of TIMER 1

The TIMER 1 plays a crucial role in generating PWM control signals for the three-phase motor,

with a detailed configuration that supports the modulation of switch-switch signals on three channels

(CH1, CH2, CH3) and uses the fourth channel (CH4) to generate a trigger for the ADC that allows

the sampling of currents in readiness for the execution of the ISR, thus synchronising the sampling of

measurements with the motor control routine execution.

This approach ensures that the readout of critical motor control variables, such as phase currents

and mechanical angle, is closely aligned with current motor states, optimising the response of the

control system.
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The configuration of theTIMER 1 registers is carried out setting up TIM1 registers: thePrescaler

and AutoReload Register (ARR), which determine the frequency of the PWM signals, and the

Repetition Counter (RCR), which further refines the accuracy of the PWM timing and trigger for

the ADC.

Its main configurations are as follows:

• Counting Mode: Set to TIM COUNTERMODE CENTERALIGNED3, this mode allows finer

time management, critical for generating symmetrical PWM signals with a triangular up/down

carrier.

• Preload of Auto-Reload Register (ARR): Enabled, improving PWM frequency accuracy

by dynamically changing the running period.

• Prescaler: Set to 0, TIMER1 uses the input clock directly, maximising the resolution of the

timer.

• Auto-Reload Register (ARR): Valued at 8500, this defines the period of TIMER1 and

consequently the frequency of 10kHz of PWM signals.

• Repeat Counter (RCR): With a value of 17, specifies the number of timer cycles before

generating an update, thus refining event handling.

• Dead Time: Set to 149, this parameter is crucial in preventing overlaps between complementary

PWM signals, protecting the system.

• PWM Channels: CH1 CH2, e CH3 are configured for the generation of switch signals, while

CH4 is reserved to produce a syncronized trigger event for ADC conversion, so it does not

produce any output.

ADC configuration

For monitoring phase currents, mechanical angle and voltage at the DC bus, the system uses two

specifically configured ADCs.

ADC1 is configured to sample phase currents and mechanical angle, using injected conversion

to ensure maximum accuracy and timeliness of the reading, while ADC2 is reserved for measuring

voltage at the DC bus.

The configuration of ADC1 provides four injected conversions, allowing the simultaneous measure-

ment of phase currents (isa, isb, isc) and mechanical angle (θmec), with channel four configured to sam-

ple θmec with improved accuracy, as indicated by the InjectedChannel and InjectedSamplingTime

settings. The ADC2, with an injected conversion, is optimised for reading the voltage at the DC bus

(Vdc), highlighting the importance of this measurement for inverter control and energy management.

The Analog to Digital Converter (ADC) plays a critical role in collecting accurate data for motor

control. The configuration specifications of the ADC are as follows:

• Injected Conversions Enabled: ADC1 enables injected conversions, allowing prioritisation

of conversion of specific channels for fast and accurate readout.

• Regular Conversions Disabled: For ADC1, regular conversions are disabled, focusing exclu-

sively on injected conversions for critical data.
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• External Trigger for Injected Conversions: Uses ADC EXTERNALTRIGINJEC T1 TRGO,

indicating that injected conversions are synchronised with an external trigger from TIMER1,

for perfect alignment with motor control events.

• Number of Injected Conversions: Set to 4, allowing simultaneous measurement of several

critical parameters.

• Configured Channels for Injected Conversions: Channels 1, 6, 7, and 8 are selected for

injected conversions, optimising the system for collecting specific data without offsets.

• Sampling Times for Injected Conversions: Each channel has a detailed sampling time,

ensuring measurement accuracy.

The choice of using channel four of TIMER 1 to trigger the ADC was driven by the need to

closely synchronise the sampling of measurements with the exact phase of the motor control cycle.

This configuration allows for the acquisition of accurate current, mechanical angle and voltage data

at the DC bus at critical times, facilitating the implementation of advanced control algorithms that

can dynamically react to real-time motor and inverter conditions.

In conclusion, the detailed configuration of the STM32G4 microcontroller, as defined in the

NUCLEOG474RE THOR.ioc file and enriched by the provided design specifications, demonstrates a holis-

tic approach to three-phase motor control. Through intelligent hardware configuration and careful

synchronisation between critical components, the project aims to realise an efficient and responsive

control system for advanced industrial applications.
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3.6 Simulation Results

This section presents the outcomes of simulations conducted on multi-three phase motors under

healthy conditions, highlighting the capability of the developed framework for auto-generating ma-

chine models within the Syre environment. The primary focus is on demonstrating the accuracy,

efficiency, and reliability of the simulation models, which are essential for validating the design and

control strategies of multi-three phase electrical drives.

Through the implementation of the Syre-driven automated model generation process, a range

of multi-three phase motors was subjected to a comprehensive set of simulations. These simulations

were aimed at verifying the operational characteristics of the motors, such as torque production, power

efficiency, and electromagnetic behavior, under various loading conditions and operational modes.

The results obtained from these simulations underscore the robustness of the auto-generated models

in replicating the expected performance metrics of the multi-three phase motors. Notably, the torque-

speed curves, the current and duty measurements derived from the simulations exhibited excellent

agreement with theoretical predictions, thereby validating the effectiveness of the Syre integration for

motor design and analysis.

Moreover, the process of model auto-generation facilitated by Syre significantly streamlined the

simulation setup, reducing the time and complexity involved in modeling sophisticated multi-three

phase drive systems. This efficiency not only accelerates the design cycle but also enables a more

iterative approach to optimizing motor configurations and control algorithms.

In conclusion, the simulation results affirm the capability of the proposed framework to accurately

model and analyze the performance of multi-three phase motors. The successful demonstration of auto-

generated models operating under healthy conditions sets a solid foundation for further investigations

into fault conditions and resilience strategies, which are crucial for advancing the reliability and

durability of these motors in real-world applications.

For each simulation in this section, the same procedure is followed:

• At time 0,03 s the Go button is pushed for the first time and the status of the state machine

changes from ERROR to WAKE UP.

• After 4 · Ts the status goes from WAKE UP to READY.

• At time 0.1 s the Go button is pushed again and the drive is already controlling the e-motor

actively in the START mode.

• At time 0.15 s the torque reference switches from 0 to the nominal value for each e-motor.

• At time 0.17 s a speed ramp is commanded to an acceptable final speed value that depends on

the motor type.

• At time 0.8 s the torq reference switches from +Tnom to −Tnom.
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THOR 1x3ph Waveforms

The THOR electric motor, a three-phase machine, is subjected to detailed simulation to observe its

performance under nominal operating conditions. The simulation results showcase the motor’s torque

response, current waveforms, duty cycles, flux linkages in d and q axes, and the direct and quadrature

currents under a nominal torque setting.

Figure 3.22: Threephase motor Torque graph

This graph demonstrates the motor’s accurate torque tracking to the nominal value, indicating

optimal performance.

Figure 3.23: Threephase motor - Currents at 1500 rpm, Nominal Torque

The current waveforms remain sinusoidal and at the nominal value, confirming the motor’s effi-

ciency in torque delivery.

Figure 3.24: Threephase motor - Duty Cycles at 1500 rpm, Nominal Torque

Duty cycles are not saturated, revealing correct motor operation for this workload.

These zoomed-in views provide a detailed examination of the motor’s response, highlighting the

precision of current management and duty cycle adjustments.
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Figure 3.25: Zoom on Duty Cycles Figure 3.26: Zoom on Currents

Figure 3.27: Threephase motor - λd Figure 3.28: Threephase motor - λq

Flux linkages in d and q axes are calculated accurately by the control algorithm, matching the

observed simulation values.

Figure 3.29: Threephase motor - Id Figure 3.30: Threephase motor - Iq

The direct and quadrature currents further confirm the motor’s ability to adhere to the control

demands, ensuring efficient torque production and motor performance.
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THOR 3x3ph Waveforms

The PMSM 2x3ph, a six-phase electric motor, is analyzed under nominal conditions to assess its

performance. The following figures depict the motor’s behavior under a nominal torque condition,

demonstrating its adherence to the torque reference, the sinusoidal nature of the current waveforms,

the optimal duty cycle operation, and the accurate calculation of flux linkages and direct/quadrature

currents.

Figure 3.31: Six phase motor Torque graph

The torque graph indicates the motor’s precise response to the torque reference, showcasing effec-

tive torque management.

Figure 3.32: Six phase motor - Currents at 100 rpm, Nominal Torque

Current waveforms are sinusoidal, maintaining nominal value, which is expected given the motor’s

operation under nominal torque.

Figure 3.33: Six phase motor - Duty Cycles at 100 rpm, Nominal Torque

The duty cycles, which are not saturated, illustrate the motor’s correct operation for this workload,

avoiding overloading conditions.
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Figure 3.34: Zoom on Duty Cycles Figure 3.35: Zoom on Currents

These detailed views offer deeper insight into the motor’s performance, underlining the effectiveness

of current control and modulation strategies.

Figure 3.36: Six phase motor - λd Figure 3.37: Six phase motor - λq

Flux linkages in d and q axes are precisely computed, validating the control algorithm’s effective-

ness.

Figure 3.38: Six phase motor - Id Figure 3.39: Six phase motor - Iq

The analysis of direct and quadrature currents further confirms the motor’s capacity to meet

control targets, showcasing its proficiency in torque generation and overall performance efficiency.
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PM 2x3ph Waveforms

The THOR 3x3ph, a nine-phase electric motor, presents a unique configuration aimed at enhancing

the motor’s robustness and operational flexibility.

The subsequent figures display the motor’s responses to a nominal torque request, showcasing its

capability to follow the torque reference accurately, generate sinusoidal current waveforms, maintain

optimal duty cycle operations, and accurately compute flux linkages as well as direct/quadrature

currents.

Figure 3.40: Nine phase motor Torque graph

The torque graph validates the motor’s precision in tracking the torque reference across the oper-

ational range.

Figure 3.41: Nine phase motor - Currents at 1500 rpm, Nominal Torque

Currents are sinusoidal and at nominal value, reflecting the motor’s compliance with the torque

demand.

Figure 3.42: Nine phase motor - Duty Cycles at 1500 rpm, Nominal Torque

Duty cycles remain within optimal ranges, ensuring the motor operates within safe operational

limits.
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Figure 3.43: Zoom on Duty Cycles Figure 3.44: Zoom on Currents

These zoomed views further detail the motor’s performance, highlighting the efficiency of its current

modulation and the fidelity of its control mechanisms.

Figure 3.45: Nine phase motor - λd Figure 3.46: Nine phase motor - λq

Flux linkages in d and q axes are computed accurately, showcasing the control strategy’s success

in maintaining optimal magnetic conditions.

Figure 3.47: Nine phase motor - Id Figure 3.48: Nine phase motor - Iq

The analysis of direct and quadrature currents further confirms the motor’s proficiency in meeting

its performance targets, thereby affirming the effectiveness of the simulation and control strategy.
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PM 4x3ph Waveforms

The PMSM 4x3ph represents an advanced twelve-phase electric motor designed for high torque and

precise control.

The series of figures that follow illustrate the motor’s response to the applied nominal torque, showing

its capability to adhere closely to the torque reference, produce sinusoidal current waveforms at the

specified nominal values, and ensure duty cycles are optimally managed for the given operational

point.

Figure 3.49: Twelve phase motor Torque graph

This torque graph validates the twelve-phase motor’s precision in following the set torque reference,

showcasing its robust control strategy.

Figure 3.50: Twelve phase motor - Currents at 100 rpm, Nominal Torque

The sinusoidal currents at nominal value confirm the motor’s performance is in line with the

expected torque demand, illustrating efficient energy conversion.

Figure 3.51: Twelve phase motor - Duty Cycles at 100 rpm, Nominal Torque

Optimal duty cycles ensure the motor operates within safe parameters, highlighting the effective-

ness of the control system in maintaining stability.
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Figure 3.52: Zoom on Duty Cycles Figure 3.53: Zoom on Currents

These zoomed views provide a closer look at the motor’s current modulation and duty cycle

precision, further evidencing the motor’s reliability and the control strategy’s efficacy.

Figure 3.54: Twelve phase motor - λd Figure 3.55: Twelve phase motor - λq

Figure 3.56: Twelve phase motor - Id Figure 3.57: Twelve phase motor - Iq
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THOR 1x3ph HIL Waveforms

The simulation of the THOR three-phase motor in a Hardware in the Loop (HIL) environment, unlike

offline simulations, presents steady-state waveforms at the nominal torque of 19Nm and at a speed of

1500rpm.

It can be observed that the real-time control developed with the NUCLEOboard aligns with the

behavior obtained in the offline simulation environment presented in 3.6. Indeed, since the torque

references and imposed speeds are the same, it is expected that the observed quantities would also

align across the two environments.

Indeed, as can be seen from the graphs below, this happens for all the major observed quantities.

Starting with the delivered torque, in Figure 3.58, the control replicates the reference torque well,

on which a slightly higher ripple component can be observed, naturally caused by uncertainties in

measurements and analog/digital conversions that this type of unoptimized system must face. The

result can nevertheless be considered largely satisfactory.

Figure 3.58: Threephase HIL Torque graph

The observations for the torque hold exactly true for the current graph 3.59, in which the peak

values are in line with the offline simulation and there is a greater presence of background noise in

the measurement.

Figure 3.59: Threephase HIL - Currents at 1500 rpm, Nominal Torque
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The estimated machine fluxes are also in line with the values obtained through offline simulations,

with a d-axis flux of about 0.3[V s] and a q-axis flux equal to −0.1[V s].

Figure 3.60: Threephase HIL - λd Figure 3.61: Threephase HIL - λq

Finally, the stator currents in dq axes also follow the assigned references, with a id current of about

16.5[A] and a iq current of about 15.5[A].

Figure 3.62: Threephase HIL - Id Figure 3.63: Threephase HIL - Iq



Chapter 4

Fault Modeling and Simulation

This chapter delves into the simulation of various fault scenarios in multi-three-phase electrical drives,

aiming to assess their resilience under different fault conditions. Through these simulations, the ef-

fectiveness of designed fault mitigation strategies is highlighted, providing a robust framework for

understanding and managing faults in electrical drives.

With the exception of the ITSC fault, for all faults, the implementation is done automatically when

the models are generated in SyreDrive, thanks to the support of the Matlab print PLECS fault script,

given in Appendix G.

This automatically generates the correct switching signals for each simulated fault case based on

knowledge of the number of three-phase sets present in the motor under study.

The integration of this file with a ’.c’ extension takes place within the C-script shown in figure 3.16.

This code is designed for the automatic generation of fault combinations in multi-three-phase

motors within a PLECS model, using a C-script block where the ’.c’ generated files are reposed. The

procedure initiates with the setup of output signals to match input signals under normal conditions.

Then, it proceeds to define various fault conditions, such as active short circuits (ASC) and open

phases for each three-phase set, by systematically altering the output signals to simulate these faults.

For each fault type, the script ensures that only the affected set is modified while keeping the others

in their normal state. Additionally, it includes cases for open and shorted legs within the A phase, as

well as faults in upper and lower switches the A leg of the fist three phase system, by manipulating

the gate signals accordingly. The choice to use just one leg of the first three phase system is made to

reduce the cases to a reasonable number, and also because the choice of the faulted leg or switch is

arbitrary. Finally, the script concludes by assigning the modified output signals back to the PLECS

model and writing the entire script to a .c file, facilitating integration into the simulation environment

for fault analysis.
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4.1 Three-phase Short Circuit / Active Short Circuit

Three Phase Short Circuit, is a phenomenon that occurs when the terminals of a three phase electrical

system in a circuit that normally have different potentials are connected to each other across a very

low or zero resistance, causing a very high current flow. This event can occur for various reasons,

such as material failure, maintenance error, mechanical damage or overvoltage, and can lead to serious

consequences for the electrical and electronic components involved, including physical damage, loss of

functionality, or even fire.

In the context of electric motors and drive systems, Three Phase Short Circuit can refer to specific

failure scenarios or test methodologies aimed at assessing the resilience of such systems. The rapid

identification of this fault is crucial to minimise damage to the system. Modern drive systems are of-

ten equipped with advanced fault detection and protection features, capable of quickly shutting down

the power supply in the event of an Three Phase Short Circuit. These include overcurrent detection,

analysis of current and voltage signatures, and sophisticated software algorithms that differentiate

faults from normal transients.

The consequences of an Three Phase Short Circuit vary depending on the severity of the short cir-

cuit, the type of system and its ability to withstand overcurrents. In electric motors, an Three Phase

Short Circuit can lead to excessive overheating, insulation damage, component deformation and, in

the most extreme cases, destruction of the motor. To assess the robustness of electric drive systems

against short circuits, specific tests are often conducted. These tests help to identify weaknesses in the

design and organisation of the system, allowing engineers to make changes to improve fault resistance.

To mitigate the impact of Three Phase Short Circuits in drive systems, several strategies have

been developed. These include fuse-based protection systems, circuit breakers, current limiters and

intelligent control systems that can quickly disconnect power or modify system operation to reduce

short-circuit current. Simulation and modelling play an important role in understanding how drive

systems react to Three Phase Short Circuits. Using advanced simulation software, engineers can

predict the impact of various short-circuit scenarios and develop effective mitigation strategies, thus

avoiding exposing real systems to potential damage. This approach not only contributes to improving

the safety and reliability of electrical drive systems, but also helps optimise design and fault manage-

ment during development, ensuring efficient and safe operation in the long term.

In recent years, some applications intentionally use three phase short circuit events ( under the

name of Active Short Circuit) to safely stop electric motors during operation, since in some conditions,

other braking techniques are more critical to manage. For example, in very high speed operating points

with flux-weakening operation, the inverter shut down would cause Uncontrolled Generator Opera-

tion. To implement ASC, this systems switch-on all the upper (or lower) devices of the 2-L inverter,

turning off the counterpart.

In summary, Active Short Circuit is a critical event that requires attention in the design, testing

and operation of electrical and electronic systems. Strategies to identify, prevent and mitigate ASCs

are essential to ensure the safety, reliability and longevity of electrical devices and systems.

In this section, we explores this occurrence intentionally in safe simulation environment for all the

Motors Under test presented.
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THOR 1x3ph Waveforms

Figure 4.1: Threephase ASC - Iabc Figure 4.2: Threephase ASC - Tm

Figure 4.3: Threephase ASC - Zoom Iabc Figure 4.4: Threephase ASC - Zoom Tm

Figure 4.5: Threephase ASC - Id Figure 4.6: Threephase ASC - Iq

Figure 4.7: Threephase ASC - λd Figure 4.8: Threephase ASC - λq
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THOR 3x3ph Waveforms

Figure 4.9: Nine-Phase ASC - Iabc Figure 4.10: Nine-Phase ASC - Tm

Figure 4.11: Nine-Phase ASC - Zoom Iabc Figure 4.12: Nine-Phase ASC - Zoom Tm

Figure 4.13: Nine-Phase ASC - Id Figure 4.14: Nine-Phase ASC - Iq

Figure 4.15: Nine-Phase ASC - λd Figure 4.16: Nine-Phase ASC - λq
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PMSM 2x3ph Waveforms

Figure 4.17: Six-Phases ASC - Iabc Figure 4.18: Six-Phases ASC - Tm

Figure 4.19: Six-Phases ASC - Zoom Iabc Figure 4.20: Six-Phases ASC - Zoom Tm

Figure 4.21: Six-Phases ASC - Id Figure 4.22: Six-Phases ASC - Iq

Figure 4.23: Six-Phases ASC - λd Figure 4.24: Six-Phases ASC - λq
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PMSM 4x3ph Waveforms

Figure 4.25: Twelve-Phases ASC - Iabc Figure 4.26: Twelve-Phases ASC - Tm

Figure 4.27: Twelve-Phases ASC - Zoom Iabc Figure 4.28: Twelve-Phases ASC - Zoom Tm

Figure 4.29: Twelve-Phases ASC - Id Figure 4.30: Twelve-Phases ASC - Iq

Figure 4.31: Twelve-Phases ASC - λd Figure 4.32: Twelve-Phases ASC - λq
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THOR 1x3ph Real-time Waveforms

Figure 4.33: Threephase HIL ASC - Iabc Figure 4.34: Threephase HIL ASC - Tm

Figure 4.35: Threephase HIL ASC - Idq Figure 4.36: Threephase HIL ASC - λdq
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4.1.1 Simulation Results

A substantial difference can be seen in the different versions of the THOR motor: in fact, the active

short-circuit behaviour is different for the three-phase motor and the nine-phase.

In particular, we can observe that the three-phase motor transiently has a much greater peak

current (equal to about 110[A] ) than that found for its nine-phase ”brother”, which transiently has

a peak negative current on phase a of about70[A].

In contrast, under ASC conditions, the three-phase motor delivers a peak current of about 50[A],

to which a slight braking torque corresponds.

The nine-phase motor, on the other hand, on the failed backhoe delivers a current under steady

state conditions that is higher than 60[A] at the peak; this happens because the phases that have

remained healthy are trying to make up for the lack and braking of the first backhoe, managing to

deliver a positive average torque of about one third of that required.

Almost similar considerations can be made for the Six-phase PM 2x3ph and Twelve-phase PM 4x3ph

motors: the first of these two does not manage to make up for the lack of the first three phases and

results in an average negative torque of50N ·m, with maximum currents on the faulty phases of ap-

proximately 25[A].

On the other hand, the PM 4x3ph motor, thanks to its modularity, similarly to what has been

seen for the nine-phase motor, succeeds in delivering part of the required torque 270N ·m on 325N ·m,

with an increase of the steady-state currents on the failed phases to 40[A] at the peak, which exceed

the maximum current limits for this motor 35[A].

All of these simulations were conducted with the motors close to the nominal operating conditions

( T ∗
m = 19N · m,n = 1500rpm for three-phase and nine-phase motors, T ∗

m = 320N · m,n = 400rpm

for hexaphase and twelve-phase motors). It is observed that in the case where the multiphase motors

THOR 3x3ph and PM 4x12ph the ASC is carried out at a reduced rotational speed (about one third

of that used in the simulations presented), they are able to restore the full required torque by the

control, demonstrating a particular resilience to failure.

With regard to the HIL model, it can be seen that the current, torque and machine flow waveforms

closely mirror those obtained through offline simulation, validating the control developed.
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4.2 Inverter Shut Down

Inverter shutdown, known as inverter shutdown, is a critical mechanism in the operation of these de-

vices, which play a key role in the conversion of direct current (DC) to alternating current (AC) in a

wide variety of applications, from photovoltaic systems to electric vehicle traction systems to complex

industrial drive systems. This switch-off process can take place either as part of normal operation,

e.g. for maintenance or scheduled shutdown, or as a protective measure in response to specific faults

or hazardous conditions, ensuring safety and reliability for the entire system.

The main protective functions that can trigger an inverter shutdown include overload, thermal,

short-circuit and critical supply voltage variation protection. These safety mechanisms are designed to

prevent damage to the inverter’s internal components and the connected load by promptly intervening

if potentially damaging conditions are detected, such as an excessive current that could indicate an

overload or short circuit, or a dangerous rise in internal temperature.

Modern inverters are equipped with sophisticated monitoring and control systems that, through

advanced sensors and algorithms, are able to quickly detect these abnormal conditions. This detec-

tion capability allows timely implementation of the shutdown function to mitigate risks and prevent

potential damage. Some systems require manual intervention to restart after a shutdown, while others

can be programmed to attempt an automatic restart once the abnormal conditions are resolved or

after a certain time interval, always respecting safety criteria.

This precautionary approach not only prevents physical damage and reduces the risk of fire, but

also ensures that connected equipment is protected from harmful current and voltage fluctuations.

In this way, controlled inverter shutdown contributes significantly to the reliability and durability of

electronic systems, emphasising the importance of such protection mechanisms in maintaining op-

erational integrity and safety in a wide range of applications. Through continuous innovation and

improved monitoring and control technologies, inverters continue to evolve, becoming safer and safer

devices capable of effectively handling the most diverse operating conditions and possible anomalies.
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THOR 1x3ph Waveforms

Figure 4.37: Threephase ISD - Iabc Figure 4.38: Threephase ISD - Tm

Figure 4.39: Threephase ISD - Zoom Iabc Figure 4.40: Threephase ISD - Zoom Tm

Figure 4.41: Threephase ISD - Id Figure 4.42: Threephase ISD - Iq

Figure 4.43: Threephase ISD - λd Figure 4.44: Threephase ISD - λq



Chapter 4. Fault Modeling and Simulation Page 97

THOR 3x3ph Waveforms

Figure 4.45: Nine-Phase ISD - Iabc Figure 4.46: Nine-Phase ISD - Tm

Figure 4.47: Nine-Phase ISD - Zoom Iabc Figure 4.48: Nine-Phase ISD - Zoom Tm

Figure 4.49: Nine-Phase ISD - Id Figure 4.50: Nine-Phase ISD - Iq

Figure 4.51: Nine-Phase ISD - λd Figure 4.52: Nine-Phase ISD - λq
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PMSM 2x3ph Waveforms

Figure 4.53: Six-Phases ISD - Iabc Figure 4.54: Six-Phases ISD - Tm

Figure 4.55: Six-Phases ISD - Zoom Iabc Figure 4.56: Six-Phases ISD - Zoom Tm

Figure 4.57: Six-Phases ISD - Id Figure 4.58: Six-Phases ISD - Iq

Figure 4.59: Six-Phases ISD - λd Figure 4.60: Six-Phases ISD - λq
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PMSM 4x3ph Waveforms

Figure 4.61: Twelve-Phases ISD - Iabc Figure 4.62: Twelve-Phases ISD - Tm

Figure 4.63: Twelve-Phases ISD - Zoom Iabc Figure 4.64: Twelve-Phases ISD - Zoom Tm

Figure 4.65: Twelve-Phases ISD - Id Figure 4.66: Twelve-Phases ISD - Iq

Figure 4.67: Twelve-Phases ISD - λd Figure 4.68: Twelve-Phases ISD - λq
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THOR 1x3ph Real-time Waveforms

Figure 4.69: Threephase HIL ISD - Iabc Figure 4.70: Threephase HIL ISD - Tm

Figure 4.71: Threephase HIL ISD - Idq Figure 4.72: Threephase HIL ISD - λdq

4.2.1 Simulation Results

The inverter shut down, considered as an accidental event, generally causes a significant loss of torque

for most of the observed cases. Moreover, compared to the other failures, it is the one that generally

has the lowest post-fault torque ripple.

Clearly,for both offline and HIL environments, as far as the three-phase THOR motor is concerned

the loss of its only power source results in the cancellation of all quantities typical of electromechanical

conversion, such as voltage and current. Furthermore, under these operating conditions, the UGO

condition is not observed.

On the other hand, its nine-phase namesake, despite the loss of a third of its power supply,

THOR 3x3ph still manages to deliver a positive average torque of just under half of its nominal

torque, with a slight overload of its remaining healthy phases.

The six-phase motor, despite the presence of half of its phases still in a healthy state, is unable

to make up for the lack of a faulty three phase system and autonomously goes into an inert state,

cancelling the current in both directions dq.

On the contrary, the PM 4x3ph motor at the disconnection of a three-phase inverter reacts au-

tonomously in an optimal way and, after a transient drop in motor torque, succeeds in almost com-

pletely restoring the motor torque, settling it at a value of 310N ·m.
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4.3 Open Phase

When we speak of a ’one-phase open’ fault in an electric motor, we are referring to a situation in which

one of the three supply phases of the motor is interrupted or loses connection. This type of failure

is particularly significant in three-phase motors, which are widely used in industrial and commercial

applications due to their efficiency and reliability. A fault of this type can have several causes, such

as a damaged cable, a faulty contact, or a problem in the electrical distribution system.

The opening of a phase significantly alters the operation of the motor, causing it to operate un-

der sub-optimal conditions. Normally, a three-phase motor requires a balanced supply from all three

phases to function properly. When one phase opens, the motor loses part of its power supply, causing

an imbalance that can drastically reduce its efficiency and its ability to generate torque.

Furthermore, this imbalance induces irregular currents in the motor that can cause overheating

and vibration, compromising motor life and potentially leading to premature failure.

Recognising and responding quickly to a phase-opening fault is crucial to minimise damage to

the motor and related equipment. Early detection of this type of fault can be facilitated by the

use of current and voltage monitoring systems that alert operators to abnormal conditions. Once

the fault has been identified, it is essential to interrupt the power supply to the motor and investi-

gate the cause of the phase opening, restoring balanced three-phase power before restarting the motor.

To prevent phase-opening faults, it is important to maintain an electrical installation in good

condition and to periodically check the integrity of connections and protection systems. The use of

specific protections, such as phase protection relays, can help to quickly identify and isolate problems

before they can cause significant damage.

In conclusion, a phase-opening fault is a serious problem for three-phase electric motors, negatively

affecting their performance and reliability. A thorough understanding of the causes, consequences and

strategies for detecting and preventing this type of failure is crucial to ensure the safe and efficient

operation of electric drive systems in industrial applications.
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THOR 1x3ph Waveforms

Figure 4.73: Threephase OLF - Iabc Figure 4.74: Threephase OLF - Tm

Figure 4.75: Threephase OLF - Zoom Iabc Figure 4.76: Threephase OLF - Zoom Tm

Figure 4.77: Threephase OLF - Id Figure 4.78: Threephase OLF - Iq

Figure 4.79: Threephase OLF - λd Figure 4.80: Threephase OLF - λq
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THOR 3x3ph Waveforms

Figure 4.81: Nine-Phase OLF - Iabc Figure 4.82: Nine-Phase OLF - Tm

Figure 4.83: Nine-Phase OLF - Zoom Iabc Figure 4.84: Nine-Phase OLF - Zoom Tm

Figure 4.85: Nine-Phase OLF - Id Figure 4.86: Nine-Phase OLF - Iq

Figure 4.87: Nine-Phase OLF - λd Figure 4.88: Nine-Phase OLF - λq
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PMSM 2x3ph Waveforms

Figure 4.89: Six-Phases OLF - Iabc Figure 4.90: Six-Phases OLF - Tm

Figure 4.91: Six-Phases OLF - Zoom Iabc Figure 4.92: Six-Phases OLF - Zoom Tm

Figure 4.93: Six-Phases OLF - Id Figure 4.94: Six-Phases OLF - Iq

Figure 4.95: Six-Phases OLF - λd Figure 4.96: Six-Phases OLF - λq
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PMSM 4x3ph Waveforms

Figure 4.97: Twelve-Phases OLF - Iabc Figure 4.98: Twelve-Phases OLF - Tm

Figure 4.99: Twelve-Phases OLF - Zoom Iabc Figure 4.100: Twelve-Phases OLF - Zoom Tm

Figure 4.101: Twelve-Phases OLF - Id Figure 4.102: Twelve-Phases OLF - Iq

Figure 4.103: Twelve-Phases OLF - λd Figure 4.104: Twelve-Phases OLF - λq
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THOR 1x3ph Real-time Waveforms

Figure 4.105: Threephase HIL OLF - Iabc Figure 4.106: Threephase HIL OLF - Tm

Figure 4.107: Threephase HIL OLF - Idq Figure 4.108: Threephase HIL OLF - λdq
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4.3.1 Simulation Results

The open phase fault is the first of the so-called ’dissymmetrical’ faults in three-phase applications

exploited in this chapter. For this type of fault, the three phases of the system are not balanced or have

significant differences between them, in this conditions one three phase system can be decomposed

into three symmetrical systems mado of direct, inverse and homopolar sequences. In particular, the

last two of these components generate highly time-varying torques that cannot be controlled by our

control system. For this reason, in all the cases analysed, we find the presence of high torque ripples

with very high peak-to-peak oscillations.

In addition, for the three-phase motor, it can be seen that the presence of the voltage feedforward,

which uses the estimated machine fluxes for calculation, introduces further calculation errors into the

control, reflected in an increase in peak transient currents in the healthy phases, as can be seen in the

figure 4.109.

Figure 4.109: OLF - With feedforward Figure 4.110: OLF - Without feedforward

The peak current obtained by maintaining the feedforward of the PI controllers is almost 30[A],

whereas when no feedforward was used, this value drops below 20[A]. Therefore, for the rest of this

discussion, which includes only dissymmetrical faults, the control of the three-phase motor in the

images presented will be without feedforward.

In contrast to three-phase motors, in multi-phase motors (although even in this case the machine

flows are estimated with larger errors than in the case of a healthy machine), the feedforward of the

common-mode and differential components remains a valuable tool for preserving part of the machine

performance under fault conditions.

It can also be observed that, for three-phase and nine-phase motors, the torque ripple is similar,

the difference being that nine-phase has a greater positive average component than three-phase.

In contrast, for SPM motors, the torque ripple decreases significantly as the number of phases

increases. In any case, both six-phase and twelve-phase motors manage to maintain an average torque

slightly below that required.
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4.4 Open Switch

An open switch failure in a two-level inverter is a type of critical malfunction that directly affects the

performance and reliability of the entire system in which the inverter is used. This problem occurs

when one or more semiconductor switches, such as IGBTs or MOSFETs, which are critical for switch-

ing current within the inverter, fail to close or conduct as they should. In two-level inverters, the

ability to generate two voltage levels enables the efficient conversion of direct current (DC) to alter-

nating current (AC), and any failure in this process can have immediate and significant consequences.

The causes of such a failure are varied and range from physical defects or wear of the components

themselves to errors in the drive signal that may not activate the switch correctly. Fluctuations or

instabilities in the power supply to the driver circuits can also contribute to the problem, as can

over-temperature conditions that alter operation or damage the switches.

The repercussions of an open switch failure are wide-ranging and can manifest themselves in a

variety of ways, from loss of inverter efficiency, which results in higher energy losses, to interruptions

or malfunctions of powered equipment. Erratic switching also introduces harmonics and electrical

noise into the system, potentially damaging other devices. In addition, the remaining functioning

switches may be subjected to additional thermal stress, accelerating their degradation and reducing

the life of the inverter.

To effectively address the problem of open switches, modern inverters are equipped with advanced

monitoring and diagnostic systems that detect switch malfunctions in a timely manner. These safety

systems are designed to intervene quickly, stopping inverter operation or adjusting its operation to

minimise damage and protect the connected load.

Dealing with an open switch failure requires the replacement or repair of affected components

to restore normal inverter operation. Prevention through regular maintenance and careful design,

including effective cooling systems and adequate safety margins, is key to minimising the risk of such

failures. Ultimately, understanding the dynamics of an open-switch failure and implementing appro-

priate preventive and monitoring measures is essential to maintain the efficiency and reliability of

systems that depend on two-level inverters, thus ensuring the business continuity and safety of the

entire system.
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THOR 1x3ph Waveforms

Figure 4.111: Threephase OSF - Iabc Figure 4.112: Threephase OSF - Tm

Figure 4.113: Threephase OSF - Zoom Iabc Figure 4.114: Threephase OSF - Zoom Tm

Figure 4.115: Threephase OSF - Id Figure 4.116: Threephase OSF - Iq

Figure 4.117: Threephase OSF - λd Figure 4.118: Threephase OSF - λq



Page 110 4.4 Open Switch

THOR 3x3ph Waveforms

Figure 4.119: Nine-Phase OSF - Iabc Figure 4.120: Nine-Phase OSF - Tm

Figure 4.121: Nine-Phase OSF - Zoom Iabc Figure 4.122: Nine-Phase OSF - Zoom Tm

Figure 4.123: Nine-Phase OSF - Id Figure 4.124: Nine-Phase OSF - Iq

Figure 4.125: Nine-Phase OSF - λd Figure 4.126: Nine-Phase OSF - λq
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PMSM 2x3ph Waveforms

Figure 4.127: Six-Phases OSF - Iabc Figure 4.128: Six-Phases OSF - Tm

Figure 4.129: Six-Phases OSF - Zoom Iabc Figure 4.130: Six-Phases OSF - Zoom Tm

Figure 4.131: Six-Phases OSF - Id Figure 4.132: Six-Phases OSF - Iq

Figure 4.133: Six-Phases OSF - λd Figure 4.134: Six-Phases OSF - λq
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PMSM 4x3ph Waveforms

Figure 4.135: Twelve-Phases OSF - Iabc Figure 4.136: Twelve-Phases OSF - Tm

Figure 4.137: Twelve-Phases OSF - Zoom Iabc Figure 4.138: Twelve-Phases OSF - Zoom Tm

Figure 4.139: Twelve-Phases OSF - Id Figure 4.140: Twelve-Phases OSF - Iq

Figure 4.141: Twelve-Phases OSF - λd Figure 4.142: Twelve-Phases OSF - λq
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THOR 1x3ph Real-time Waveforms

Figure 4.143: Threephase HIL OSF - Iabc Figure 4.144: Threephase HIL OSF - Tm

Figure 4.145: Threephase HIL OSF - Idq Figure 4.146: Threephase HIL OSF - λdq
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4.4.1 Simulation Results

In fact, the open switch fault is an open phase fault that continues on the drive only for the time

frame in which the switch would actually be closed that is half of the period of the desired voltage

waveform imposed by the voltage source inverter.

For this reason, for the open switch fault many references are similar to those already made for

the open phase, beginning, for example, with the presence of large ripples on the produced torques

that the motors are able to deliver with the control set on the healthy machine, or the choice not to

adopt the feedforward technique on the three-phase motor that reduces the peak stator currents on

the phases that remain healthy.

Also, regarding the three-phase motor, it is noted that the open switch fault, compared to the

open phase, produces slightly higher torque ripples. This happens because in the half-periods when

all phases are operating properly, the control tries to raise the torque produced. Considering that the

negative peak turns out to be the same in both cases (about -5 N ·m), this explains the slight increase

in the torque ripple values. Lastly, for this motor the mean torque produced is higher for the same

reasons that increased the ripple.

In contrast to the three-phase motor case, in the nine-phase motor not only the peak-to-peak

torque ripple produced is about half as much as in the open phase fault case, but even the average

torque produced is much more in line with the reference set by the control, demonstrating some re-

silience of the multistator approach with decoupling technique to dissymmetrical faults.

As for the six- and twelve-phase motors, slight differences are stock compared with the open phase

case.For example, there is a slightly higher positive average torque output than in the previous case

and, in addition, a ripple frequency that is halved compared with the previous case.

As far as the HIL simulation world is concerned, the recorded waveforms are masterfully in line

with those reproduced in offline simulations, with very slight differences in terms of small current

spikes.
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4.5 Inter-turn Short Circuit

Introduced in 1.3.5, the inter-turn short circuit phenomenon occurs when the insulation between two

or more turns of the same winding deteriorates to such an extent that a direct electrical connection can

be made between them. The causes can be many, from ageing of the insulation due to thermal stress,

to physical wear due to vibration, to overvoltages that exceed the insulation’s resistance. Moisture

and contaminants can also accelerate this degradation process, making the windings susceptible to

such failures.

The consequences of an ITSC are not to be underestimated: the current flowing directly between

the coils involved creates excessive heat points, which can further damage the insulation and extend

the failure. This can lead to a number of problems, such as a decrease in device efficiency, increased

energy losses, overheating and, in the worst case, total failure of the equipment.

Given the potential severity of an ITSC, it is crucial to be able to detect it early. Several diag-

nostic techniques exist, including the analysis of winding impedances and the use of thermography to

identify areas of overheating. In addition, more sophisticated tests such as frequency response testing

can reveal abnormalities in winding characteristics caused by short circuits between turns. The avail-

ability of real-time monitoring systems can speed up the identification of these faults, allowing rapid

and targeted intervention.

When an ITSC is identified, it is crucial to act without delay to repair or replace the damaged

winding. Depending on the extent of the fault, a local repair may be sufficient or, in more serious

cases, a complete replacement of the winding or the entire device may be necessary.

Prevention plays a key role in minimising the risk of ITSC. Regular and careful maintenance, con-

stant monitoring of operating conditions to avoid overloading, the use of quality insulation materials,

and a design that minimises stress on the windings all help to reduce the likelihood of such failures.

Implementing these preventive strategies not only extends the life of motors and transformers, but also

ensures greater safety and reliability of the entire electrical system. In summary, dealing with ITSC

requires a comprehensive approach that includes preventive measures, early detection capabilities and

effective action to repair or replace damaged elements, thus ensuring the continuity and safety of

operations.

Dealing back with the fault modeling purposes of this thesis, ITSC unlike other faults seen until

here needs to be modeled into the motor model itself, emphasizing its distinct impact on motor per-

formance.

To model inter-turn short circuits in the THOR three-phase machine, the voltage behind reactance

approach is employed, since is widely used in other research applications such as [8], [15].

Using this method, each phase is represented as controlled voltage sources in series with an RL

impeadance for each branch. The fault ratio µ is defined as the ratio of the number of shorted turns

to the total number of turns in one phase (
Nf

N ).

Initially, there was challenges in modelling the inter-turn fault within the PLECS simulation en-

vironment, mainly due to the complexity of the pattern of ITSC and to make appropriate use of the

’Coupled Inductor’ component in the PLECS library, witch requires clear input and output currents

flowing in it. The representation of the fault layout, as shown in Figure 1.10, was not very intuitive,
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as the arrangement of the inductors on a single plane appeared unclear. However, through subtle

circuit manipulation, as shown in Figure 4.147,this issue was solved.

Figure 4.147: ITSC layout manupulation

4.5.1 VBR model for ITSC

The developed circuital VBR model in PLECS is shown in figure 4.148. As expected, it is composed of

four controllable voltage sources (two of them for the faulted phase, and others two for the healty one).

Figure 4.148: ITSC PLECS MotorModel

hereafter are reported some observations:

• Total Inductances and controlled voltage sources of the equivalent abc healty model are computed

as suggested in 1.4.1.

• Inductances and controlled voltage sources of the faulted parth are computed as suggested in

1.3.5.

• The Coupled inductor block has a series strain inductor with a value of 10−6[H] and it is used

in order to stabilize the simulation that had some convergence issues due to direct access of the

coupled inductor block with the faulted path.

• The amperometric current measurement is delayed for the control in order to avoid the forming

of algebrical loop involving other major components.

• The faulted path is modeled as a series of the following elements:
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– An ideal Mosfet, with 0[S] conductance in the off state and 0[Ω] resistance in the on state.

This switch triggers the fault event.

– A strain inductor, with the value of 10−6[H] that stabilizes the simulation.

– A fault resistance Rg equal to 0.05[Ω], a realistic value for this kind of faults.

– Voltage and Current ideal measurements groups.

Comparison with CCG model under healty condition

Before proceeding with the simulation of the ITSC fault, in order to validate this proposed VBR

model, it is necessary to make a comparison with the model previously developed using controlled

current generators.

In the following, images of the trends in the magnitudes of torque, current and duty cycle are

shown for both methods in order to show the fidelity of this representation introduced. The simula-

tion methodology is the same as that presented in 3.6. As can be seen, the VBR model presented

Figure 4.149: VBR vs CCG - Iabc Figure 4.150: VBR vs CCG - Zoom Iabc

Figure 4.151: VBR vs CCG - Dutya Figure 4.152: VBR vs CCG - Tm

faithfully replicates what was previously developed with very small discrepancies, allowing the simu-

lation to be deepened in the case of ITSC failure.
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4.5.2 Variable Fault Ratio Simulation

In order to evaluate the performance of the model and determine the threshold of percentage of shorted

turns required for the ITSC fault to be considered severe, a parametric study is being conducted using

the parameter µ =
Nfaulted

Ntot
.

This simulation was possible with few adjustments of the already developed model, introducing a

variable fault ratio to feed the signals and variable resistor to interactively change the ’point’ of the

short circuit.

Figure 4.153: ITSC Variable Fault ratio

For this purpose, a simulation was configured in which the fault ratio varies over time as a ramp

signal, with an angular coefficient equal to 25%turns
0.5[s] .

It was observed that, depending on the model configuration and the control parameters used, the

failure is particularly severe even with a percentage of failed turns below 25% on the phase. Above this

threshold, loss of motor control occurs. Below are images of waveforms with a failure ratio ranging

from 0 al 25%.

Figure 4.154: ITSC - Currents vs Fault ratio
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THOR 1x3ph 10% Faulted Turns

Figure 4.155: ITSC - Iabc Figure 4.156: ITSC - Zoom Iabc

Figure 4.157: ITSC - Tm Figure 4.158: ITSC - Duty Cycles

Figure 4.159: ITSC - Id Figure 4.160: ITSC - Iq

Figure 4.161: ITSC - Voltage on Rg Figure 4.162: ITSC - Current on Rg
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The simulation results on the ITSC with 10% of faulted turns on the first phase of the motors

shows the negative effects on motor performance due to this continence.

Like other asymmetric faults, the interturn short circuit introduce very high torque ripples, that

are comparable with the reference torque. This is due to the compresence of negative and zero se-

quence in both current and voltage quantities.

The maximum peak currents in the faulted path are about 175[A], while at the motor terminals

the peak currents in the faulted phase are over 35[A].

In this concluding chapter, we have summarised key findings from our in-depth exploration of

faults in multi-phase electrical drives and strategies for their detection and mitigation. We anal-

ysed several failure scenarios, including three-phase short circuits, inverter shutdowns, open phases,

switch interruptions and short circuits between turns, highlighting how each affects the performance of

drive systems. Through detailed simulations, we demonstrated the effectiveness of various mitigation

methods, emphasising the importance of careful design and advanced control strategies to ensure the

reliability and safety of electrical drives under fault conditions. This work not only contributes to the

existing academic body of work, but also provides practical insights for industry, moving towards the

development of more robust and resilient electrical drive systems.



Conclusions

This thesis has advanced the field of electric motor technology by developing and implementing unified

circuit models in PLECS for multi-three-phase motors, integrating these models with SyreDrive, and

focusing on fault simulation and validation through Hardware-in-the-Loop technologies. Through de-

tailed chapters, it explored the motivation behind this research, the complexities of electric propulsion

systems, the importance of reliability and fault tolerance, and the innovative approaches to modeling

and simulation.

The work began by setting the stage with an in-depth look at the state of electric motors, empha-

sizing the shift towards multiphase systems for enhanced efficiency, reliability, and fault tolerance. It

underscored the critical nature of robust modeling and simulation tools, leading to the development

of SyreDrive—an extension designed to bridge the gap between design and dynamic simulation of

electric motors and their control systems.

In subsequent chapters, the thesis meticulously detailed the modeling process of multi-three-phase

motors within the PLECS environment. It highlighted the vectorized model’s development for effi-

cient simulation across different motor configurations, demonstrating its versatility and accuracy. This

model’s integration into SyreDrive facilitated a seamless transition from motor design to dynamic sim-

ulation, paving the way for comprehensive analysis and optimization of motor control strategies.

The exploration of fault modeling and simulation constituted a significant portion of this research.

By simulating various fault scenarios, the thesis provided invaluable insights into the motors’ resilience

under adverse conditions. These simulations not only showcased the potential for real-time fault de-

tection and mitigation but also highlighted the critical role of Hardware-in-the-Loop technologies in

validating the models and control strategies under realistic operational conditions.

In conclusion, this thesis represents a significant step towards the realization of more efficient,

reliable, and resilient electric propulsion systems. By combining advanced modeling techniques with

practical validation approaches, it offers new perspectives on the design, control, and fault management

of multi-phase motors. This work not only contributes to the academic body of knowledge but also

holds considerable implications for the automotive, aerospace, and other sectors reliant on electric

propulsion technologies.

121
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Appendix A - Six Phase Motor Control.c

This script outlines the digital control strategy employed for the six-phase motor model within PLECS,

illustrating the complexity and adaptability required to manage multi-phase electrical drives effec-

tively.

1 // // /*------------------------------------------------------------------------*/

2 /* File: Motor_ctrl.c */

3 /* the parameter CTRL_TYPE decides the type of control */

4 /* CTRL_TYPE = 0 - Current control */

5 /* CTRL_TYPE = 1 - Flux control */

6 /* CTRL_TYPE = 2 - Torque control */

7 /* CTRL_TYPE = 3 - Speed control */

8 /* ------------------------------------------------------------------------------*/

9 /* Motor type: Six -Phase SM */

10 /* ------------------------------------------------------------------------------*/

11

12 isabc1.a = InputSignal (0,0);

13 isabc1.b = InputSignal (0,1);

14 isabc1.c = InputSignal (0,2);

15 vdc = InputSignal (0,3);

16

17 theta_mec_meas =InputSignal (0,4); // encoder

18 n_ref_in =InputSignal (0,5); // rpm

19 T_ext =InputSignal (0,6); // reference torque

20 isdq_ext.d =InputSignal (0,7); // Current reference

21 isdq_ext.q =InputSignal (0,8); // Current reference

22

23 Reset =InputSignal (0,9); // Black button

24 Go =InputSignal (0,10); // Blue button

25 Ctrl_type =InputSignal (0,11);

26 inj_waveform =InputSignal (0,12); // Injected waveform (sinusoidal or squarewave)

27 dem =InputSignal (0 ,13); // Current or Flux demoduation

28 HS_ctrl =InputSignal (0,14); // High speed position error estimation technique

29 SS_on =InputSignal (0,15); // Sensorless ON or OFF

30 accel =InputSignal (0,16); // speed acceleration rpm/s

31 Quad_Maps =InputSignal (0,17);

32 lambda_M =InputSignal (0,18);

33 th0 =InputSignal (0 ,19);

34 isabc2.a =InputSignal (0,20);

35 isabc2.b =InputSignal (0,21);

36 isabc2.c =InputSignal (0,22);

37 switch(State){

38

39 case ERROR:

40 // Variables Init

41 pwm_stop = 1;

42 counter = 0;

43

44 offset_current_a = 2120;

45 offset_current_b = 2120;

46 offset_current_c = 2120;

47

48 n_ref_in = 0.0f;

49 omega_ref_in = 0.0f;

50 omega_ref_ramp = 0.0f;

51 accel = 1000; // rpm/s

52 omega_elt_meas = 0.0f;

53 omega_elt_meas_f = 0.0f;

54 SinCos_elt_meas.sin = 0.0f;

55 SinCos_elt_meas.cos = 1.0f;

56 SinCos_elt_meas_old.sin = 0.0f;
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57 SinCos_elt_meas_old.cos = 1.0f;

58

59 Ld = Ld_inic;

60 Lq = Lq_inic;

61 ld = Ld_inic;

62 lq = Lq_inic;

63 flux_nom = 0.0f; // rated flux (Vs)

64 v0 = 0.0f; // phase dc voltage (V)

65

66 isdq_refcm.d = 0.0f;

67 isdq_refcm.q = 0.0f;

68 lambda_dq.d = lambda_M;

69 lambda_dq.q = 0.0f;

70 lambda_CM_dq.d = lambda_M;

71 lambda_CM_dq.q = 0.0f;

72

73

74 isdq_refdm1.d = 0.0f;

75 isdq_refdm1.q = 0.0f;

76 isdq1.d = 0.0f;

77 isdq1.q = 0.0f;

78 vsdq_ref1.d = 0.0f;

79 vsdq_ref1.q = 0.0f;

80 lambda_OBS1.alpha = lambda_M*cos(PP*th0);

81 lambda_OBS1.beta = lambda_M*sin(PP*th0);

82

83 isdq_refdm2.d = 0.0f;

84 isdq_refdm2.q = 0.0f;

85 isdq2.d = 0.0f;

86 isdq2.q = 0.0f;

87 vsdq_ref2.d = 0.0f;

88 vsdq_ref2.q = 0.0f;

89 lambda_OBS2.alpha = lambda_M*cos(PP*th0);

90 lambda_OBS2.beta = lambda_M*sin(PP*th0);

91

92 isabc1.a = 0.0f;

93 isabc1.b = 0.0f;

94 isabc1.c = 0.0f;

95 duty_abc1.a = 0.0f;

96 duty_abc1.b = 0.0f;

97 duty_abc1.c = 0.0f;

98

99 isabc2.a = 0.0f;

100 isabc2.b = 0.0f;

101 isabc2.c = 0.0f;

102 duty_abc2.a = 0.0f;

103 duty_abc2.b = 0.0f;

104 duty_abc2.c = 0.0f;

105

106

107 if(Go) State= WAKE_UP;

108

109 break;

110

111

112 case WAKE_UP:

113 duty_abc1.a = 0.5f;

114 duty_abc1.b = 0.5f;

115 duty_abc1.c = 0.5f;

116 pwm_stop1 = 0.0f;

117

118 duty_abc2.a = 0.5f;
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119 duty_abc2.b = 0.5f;

120 duty_abc2.c = 0.5f;

121 pwm_stop2 = 0.0f;

122

123 if (counter > 0.03/Ts){

124 counter =0;

125 State = READY;

126 }

127 counter ++;

128

129 break;

130 case READY:

131 duty_abc1.a = 0.5f;

132 duty_abc1.b = 0.5f;

133 duty_abc1.c = 0.5f;

134 pwm_stop1 = 0.0f;

135

136 duty_abc2.a = 0.5f;

137 duty_abc2.b = 0.5f;

138 duty_abc2.c = 0.5f;

139 pwm_stop2 = 0.0f;

140

141 counter = 0.0f;

142 PLL_var.intg = omega_elt_meas_f;

143 theta_PLL = theta_elt_meas;

144 if(Go) State = START;

145 break;

146 case START:

147 // -------------------Speed Compute ----------------------------------//

148

149 theta_elt_meas = PP * theta_mec_meas;

150 while(theta_elt_meas > PI)

151 theta_elt_meas -= TWOPI;

152 while(theta_elt_meas < -PI)

153 theta_elt_meas += TWOPI;

154 SinCos_elt_meas.sin = sin(theta_elt_meas);

155 SinCos_elt_meas.cos = cos(theta_elt_meas);

156

157 speed_compute_sc(SinCos_elt_meas , &SinCos_elt_meas_old , &omega_elt_meas);

158 _Filter(omega_elt_meas , omega_elt_meas_f , Ts*TWOPI *50);

159 omega_mec_meas = omega_elt_meas/PP;

160 omega_mec_meas_f = omega_elt_meas_f/PP;

161 omega_mec_meas_rpm = omega_mec_meas_f *30/PI;

162 SinCos_elt_meas_old.sin = SinCos_elt_meas.sin;

163 SinCos_elt_meas_old.cos = SinCos_elt_meas.cos;

164 // ---------------------------------PLL -------------------------------//

165 if(SS_on) {

166 PLL_par.kp = 2* OMEGA_B_PLL;

167 PLL_par.ki = pow(OMEGA_B_PLL ,2)*Ts;

168 PLL_par.lim = RPM2RAD * nmax_mot * PP;

169 PLL_var.ref = pos_err;

170 PLL_var.fbk = 0;

171 PIReg(&PLL_par , &PLL_var);

172 omega_PLL = PLL_var.out;

173 theta_PLL += Ts*PLL_var.out; ;

174 _Filter(omega_PLL , omega_elt_meas_f , Ts*TWOPI *25);

175 if(theta_PLL >= TWOPI)

176 theta_PLL -= TWOPI;

177 if(theta_PLL <0)

178 theta_PLL += TWOPI;

179 SinCos_elt.sin = sin(theta_PLL);

180 SinCos_elt.cos = cos(theta_PLL);
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181 position_error_real = asin(sin(theta_elt_meas - theta_PLL));

182 }

183 else { // Encorder

184 SinCos_elt.sin = sin(theta_elt_meas);

185 SinCos_elt.cos = cos(theta_elt_meas);

186 omega_elt = omega_elt_meas_f;

187 position_error_real = 0;

188 }

189 // -------------------------------Control Type

------------------------------//

190 switch (Ctrl_type){

191 case 0: // CurrentControl

192 isdq_refcm.d = isdq_ext.d;

193 isdq_refcm.q = isdq_ext.q;

194 break;

195

196 case 2: // TorqueControl

197 ReadLut (& ID_REF [0], fabs(T_ext), TMAX , TMIN , DT, INV_DT , &

isdq_refcm.d);

198 ReadLut (& IQ_REF [0], fabs(T_ext), TMAX , TMIN , DT, INV_DT , &

isdq_refcm.q);

199 isdq_refdm1.d=0.0f;

200 isdq_refdm1.q=0.0f;

201 switch(Quad_Maps){

202 case 0:

203 isdq_refcm.d = sgn(T_ext)*isdq_refcm.d;

204 break;

205 case 1:

206 isdq_refcm.d = sgn(T_ext)*isdq_refcm.d;

207 break;

208 case 2:

209 isdq_refcm.q = sgn(T_ext)*isdq_refcm.q;

210 break;

211 }

212 break;

213

214 case 3: //Speed Control

215 omega_ref_in = n_ref_in * RPM2RAD;

216 ramp(omega_ref_in , accel * RPM2RAD*Ts, &omega_ref_ramp);

217 sp_var.ref = omega_ref_ramp;

218 sp_var.fbk = omega_elt/PP;

219 sp_par.lim = T_rated;

220 kp_w = 2* OMEGA_BW*J;

221 ki_w = pow(OMEGA_BW ,2)*J;

222 sp_par.ki = ki_w*Ts;

223 sp_par.kp = kp_w;

224 PIReg(&sp_par , &sp_var);

225 T_ext = sp_var.out;

226

227 ReadLut (& ID_REF [0], fabs(T_ext), TMAX , TMIN , DT, INV_DT , &

isdq_refcm.d);

228 ReadLut (& IQ_REF [0], fabs(T_ext), TMAX , TMIN , DT, INV_DT , &

isdq_refcm.q);

229 isdq_refdm1.d=0.0f;

230 isdq_refdm1.q=0.0f;

231 switch (Quad_Maps){

232 case 0:

233 isdq_refcm.d = sgn(T_ext)*isdq_refcm.d;

234 break;

235 case 1:

236 isdq_refcm.d = sgn(T_ext)*isdq_refcm.d;

237 break;
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238 case 2:

239 isdq_refcm.q = sgn(T_ext)*isdq_refcm.q;

240 break;

241 }

242 break;

243 }

244

245

246 _clarke(isabc1 ,isab1);

247 _clarke1(isabc2 ,isab2);

248 _rot(isab1 ,SinCos_elt ,isdq1);

249 _rot(isab2 ,SinCos_elt ,isdq2);

250

251 is_dm1.d = (isdq1.d-isdq2.d)*0.5f;

252 is_dm1.q = (isdq1.q-isdq2.q)*0.5f;

253

254 is_cm.d=(isdq1.d+isdq2.d)/2;

255 is_cm.q=(isdq1.q+isdq2.q)/2;

256 vsab_km11=vsab_ref1;

257 vsab_km12=vsab_ref2;

258 FluxObserver ();

259 // Compute_Inductance ();

260

261

262 // --------------------Current Vector Control --------------------//

263

264 kp_cmd=OMEGA_BI*Ld_inic;

265 ki_cmd=OMEGA_BI*RS;

266 kp_dmd=OMEGA_BI*L_sigma;

267 ki_dmd=OMEGA_BI*RS;

268

269 kp_cmq=OMEGA_BI*Lq_inic;

270 ki_cmq=OMEGA_BI*RS;

271 kp_dmq=OMEGA_BI*L_sigma;

272 ki_dmq=OMEGA_BI*RS;

273

274 id_par.kp = kp_cmd;

275 id_par.ki = ki_cmd*Ts;

276 iq_par.kp = kp_cmq;

277 iq_par.ki = ki_cmq*Ts;

278

279 id_par1.kp = kp_dmd;

280 id_par1.ki = ki_dmd*Ts;

281 iq_par1.kp = kp_dmq;

282 iq_par1.ki = ki_dmq*Ts;

283

284 Current_loop(vdc ,Imax_mot ,isdq_refcm ,is_cm ,&id_par ,&id_var ,&iq_par ,&iq_var

,& vsdq_cm_ref);

285 Current_loop(vdc ,Imax_mot ,isdq_refdm1 ,is_dm1 ,&id_par1 ,&id_var1 ,&iq_par1 ,&

iq_var1 ,& vsdq_dm_ref1);

286

287 vsdq_cm_ref.d += RS*is_cm.d-omega_elt*lambda_dq.q;

288 vsdq_cm_ref.q += RS*is_cm.q+omega_elt*lambda_dq.d;

289

290 vsdq_dm_ref1.d += RS*is_dm1.d-omega_elt*L_sigma*is_dm1.q;

291 vsdq_dm_ref1.q += RS*is_dm1.q+omega_elt*L_sigma*is_dm1.d;

292

293 // Decoupling

294 vsdq_ref1.d = vsdq_cm_ref.d+vsdq_dm_ref1.d;

295 vsdq_ref1.q = vsdq_cm_ref.q+vsdq_dm_ref1.q;

296 vsdq_ref2.d = vsdq_cm_ref.d-vsdq_dm_ref1.d;

297 vsdq_ref2.q = vsdq_cm_ref.q-vsdq_dm_ref1.q;
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298

299 dTheta = 1.5f*omega_elt*Ts;

300 SinCos_elt_dTheta.sin = SinCos_elt.sin*cosf(dTheta) +SinCos_elt.cos*sinf(

dTheta);

301 SinCos_elt_dTheta.cos = SinCos_elt.cos*cosf(dTheta) -SinCos_elt.sin*sinf(

dTheta);

302

303

304 _invrot(vsdq_ref1 ,SinCos_elt_dTheta ,vsab_ref1);

305 _invclarke(vsab_ref1 ,vsabc_ref1);

306 PWMdut(vsabc_ref1 ,vdc ,& duty_abc1);

307

308 _invrot(vsdq_ref2 ,SinCos_elt_dTheta ,vsab_ref2);

309 _invclarke1(vsab_ref2 ,vsabc_ref2);

310 PWMdut(vsabc_ref2 ,vdc ,& duty_abc2);

311

312 }

313

314

315 //Duty cycle saturation

316 if (duty_abc1.a>0.99f) duty_abc1.a = 0.99f;

317 if (duty_abc1.b>0.99f) duty_abc1.b = 0.99f;

318 if (duty_abc1.c>0.99f) duty_abc1.c = 0.99f;

319

320 if (duty_abc1.a<0.01f) duty_abc1.a = 0.01f;

321 if (duty_abc1.b<0.01f) duty_abc1.b = 0.01f;

322 if (duty_abc1.c<0.01f) duty_abc1.c = 0.01f;

323

324 if (pwm_stop1){

325 duty_abc1.a = 0.0f;

326 duty_abc1.b = 0.0f;

327 duty_abc1.c = 0.0f;

328 }

329

330 if (duty_abc2.a>0.99f) duty_abc2.a = 0.99f;

331 if (duty_abc2.b>0.99f) duty_abc2.b = 0.99f;

332 if (duty_abc2.c>0.99f) duty_abc2.c = 0.99f;

333

334 if (duty_abc2.a<0.01f) duty_abc2.a = 0.01f;

335 if (duty_abc2.b<0.01f) duty_abc2.b = 0.01f;

336 if (duty_abc2.c<0.01f) duty_abc2.c = 0.01f;

337

338 if (pwm_stop2){

339 duty_abc2.a = 0.0f;

340 duty_abc2.b = 0.0f;

341 duty_abc2.c = 0.0f;

342 }

343

344 OutputSignal (0,0) = duty_abc1.a;

345 OutputSignal (0,1) = duty_abc1.b;

346 OutputSignal (0,2) = duty_abc1.c;

347 OutputSignal (0,3) = pwm_stop1;

348 OutputSignal (0,4) = omega_ref_ramp *60/ TWOPI;

349 OutputSignal (0,5) = omega_mec_meas_f *60/ TWOPI;

350 OutputSignal (0,6) = vsdq_cm_ref.d;

351 OutputSignal (0,7) = vsdq_cm_ref.q;

352 OutputSignal (0,8) = isab1.alpha;

353 OutputSignal (0,9) = isab1.beta;

354 OutputSignal (0,10) = isdq_refcm.d;

355 OutputSignal (0,11) = is_cm.d;

356 OutputSignal (0,12) = isdq_refcm.q;

357 OutputSignal (0,13) = is_cm.q;
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358 OutputSignal (0,14) = f_omega;

359 OutputSignal (0,15) = T_elt;

360 OutputSignal (0,16) = lambda_dq.d;

361 OutputSignal (0,17) = lambda_dq.q;

362 OutputSignal (0,18) = lambda_CM_dq.d;

363 OutputSignal (0,19) = lambda_CM_dq.q;

364 OutputSignal (0,20) = T_ext;

365 OutputSignal (0,21) = theta_PLL *180/PI;

366 OutputSignal (0,22) = omega_elt/PP*60/ TWOPI;

367 OutputSignal (0,23) = ld;

368 OutputSignal (0,24) = lq;

369 OutputSignal (0,25) = ldq;

370 OutputSignal (0,26) = isabc1.a;

371 OutputSignal (0,27) = isabc1.b;

372 OutputSignal (0,28) = isabc1.c;

373 OutputSignal (0,29) = theta_elt_meas *180/PI;

374 OutputSignal (0,30) = pos_err *180/PI;

375 OutputSignal (0,31) = position_error_real *180/PI;

376 OutputSignal (0,32) = pos_err_LS *180/PI;

377 OutputSignal (0,33) = pos_err_HS *180/PI;

378 OutputSignal (0,34) = duty_abc2.a;

379 OutputSignal (0,35) = duty_abc2.b;

380 OutputSignal (0,36) = duty_abc2.c;

381 OutputSignal (0,37) = pwm_stop2;
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Appendix B - Motor Ctrl 0.c

1 // // /*----------------------------------------------------------------------*/

2 /* File: Motor_ctrl.c */

3 /* the parameter CTRL_TYPE decides the type of control */

4 /* CTRL_TYPE = 0 - Current control */

5 /* CTRL_TYPE = 1 - Flux control */

6 /* CTRL_TYPE = 2 - Torque control */

7 /* CTRL_TYPE = 3 - Speed control */

8 /* ----------------------------------------------------------------------*/

9 /* Motor type: */

10 /* ----------------------------------------------------------------------*/

11

12 vdc = InputSignal (0,0);

13

14 theta_mec_meas = InputSignal (0,1); // encoder

15 n_ref_in = InputSignal (0,2); // rpm

16 T_ext = InputSignal (0,3); // reference torque

17 isdq_ext.d = InputSignal (0,4); // Current reference

18 isdq_ext.q = InputSignal (0,5); // Current reference

19

20 Reset = InputSignal (0,6); // Black button

21 Go = InputSignal (0,7); // Blue button

22

23 Ctrl_type = InputSignal (0,8);

24 inj_waveform = InputSignal (0,9); // Injected waveform (sinusoidal or squarewave)

25 dem = InputSignal (0,10); // Current or Flux demoduation

26 HS_ctrl = InputSignal (0,11); // High speed position error estimation technique (AF or

APP)

27 SS_on = InputSignal (0 ,12); // Sensorless ON or OFF

28 accel = InputSignal (0 ,13); // speed acceleration rpm/s

29 Quad_Maps = InputSignal (0 ,14);

30 lambda_M = InputSignal (0 ,15);

31 th0 = InputSignal (0,16);

32

33 // ----------------INIT STATE MACHINE ----------------//

34

35 switch(State){

36

37 case ERROR:

38 // Variables Init

39 pwm_stop = 1;

40 counter = 0;

41

42 offset_current_a = 2120;

43 offset_current_b = 2120;

44 offset_current_c = 2120;

45

46 n_ref_in = 0.0f;

47 omega_ref_in = 0.0f;

48 omega_ref_ramp = 0.0f;

49 accel = 1000; // rpm/s

50 omega_elt_meas = 0.0f;

51 omega_elt_meas_f = 0.0f;

52 SinCos_elt_meas.sin = 0.0f;

53 SinCos_elt_meas.cos = 1.0f;

54 SinCos_elt_meas_old.sin = 0.0f;

55 SinCos_elt_meas_old.cos = 1.0f;

56

57 Ld = Ld_inic;

58 Lq = Lq_inic;
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59 ld = Ld_inic;

60 lq = Lq_inic;

61 flux_nom = 0.0f; // rated flux (Vs)

62 v0 = 0.0f; // phase dc voltage (V)

63 isdq_ref.d = 0.0f;

64 isdq_ref.q = 0.0f;

65 isdq.d = 0.0f;

66 isdq.q = 0.0f;

67 vsdq_ref.d = 0.0f;

68 vsdq_ref.q = 0.0f;

69

70 lambda_CM_dq.d = 0.0f;

71 lambda_CM_dq.q = 0.0f;

72

73 // ----------------READY STATE ----------------//

74

75 if (counter > 0.03/Ts){

76 counter =0;

77 State = READY;

78 }

79

80 // ----------------SPEED CTRL ----------------//

81

82 case 3: // SpeedControl

83 omega_ref_in = n_ref_in * RPM2RAD;

84 ramp(omega_ref_in , accel * RPM2RAD*Ts, &omega_ref_ramp);

85 sp_var.ref = omega_ref_ramp;

86 sp_var.fbk = omega_elt/PP;

87 sp_par.lim = T_rated;

88 kp_w = 2* OMEGA_BW*J;

89 ki_w = pow(OMEGA_BW ,2)*J;

90 sp_par.ki = ki_w*Ts;

91 sp_par.kp = kp_w;

92 PIReg(&sp_par , &sp_var);

93 T_ext = sp_var.out;

94

95 // ----------------READLUT ----------------//

96

97 switch (Quad_Maps){

98 case 0:

99 ReadLut2d (& FD_LUT [0][0] , fabs(isdq.d), fabs(isdq.q), DIDD , INV_DIDD , DIQD ,

INV_DIQD , ID_TAB_MAX , ID_TAB_MIN , IQ_TAB_MAX , IQ_TAB_MIN , n_size , &lambda_CM_dq.

d);

100 ReadLut2d (& FQ_LUT [0][0] , fabs(isdq.q), fabs(isdq.d), DIQQ , INV_DIQQ , DIQD ,

INV_DIQD , IQ_TAB_MAX , IQ_TAB_MIN , ID_TAB_MAX , ID_TAB_MIN , n_size , &lambda_CM_dq.

q);

101 if (isdq.d < 0)

102 lambda_CM_dq.d = -lambda_CM_dq.d;

103 if (isdq.q < 0)

104 lambda_CM_dq.q = -lambda_CM_dq.q;

105 break;

106

107 case 1:

108 ReadLut2d (& FD_LUT [0][0] , fabs(isdq.d), isdq.q, DIDD , INV_DIDD , DIQD , INV_DIQD ,

ID_TAB_MAX , ID_TAB_MIN , IQ_TAB_MAX , IQ_TAB_MIN , n_size , &lambda_CM_dq.d);

109 ReadLut2d (& FQ_LUT [0][0] , isdq.q, fabs(isdq.d), DIQQ , INV_DIQQ , DIDQ , INV_DIDQ ,

IQ_TAB_MAX , IQ_TAB_MIN , ID_TAB_MAX , ID_TAB_MIN , n_size , &lambda_CM_dq.q);

110 if (isdq.d < 0)

111 lambda_CM_dq.d = -lambda_CM_dq.d;

112 break;

113

114 case 2:
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115 ReadLut2d (& FD_LUT [0][0] , isdq.d, fabs(isdq.q), DIDD , INV_DIDD , DIQD , INV_DIQD ,

ID_TAB_MAX , ID_TAB_MIN , IQ_TAB_MAX , IQ_TAB_MIN , n_size , &lambda_CM_dq.d);

116 ReadLut2d (& FQ_LUT [0][0] , fabs(isdq.q), isdq.d, DIQQ , INV_DIQQ , DIDQ , INV_DIDQ ,

IQ_TAB_MAX , IQ_TAB_MIN , ID_TAB_MAX , ID_TAB_MIN , n_size , &lambda_CM_dq.q);

117 if (isdq.q < 0)

118 lambda_CM_dq.q = -lambda_CM_dq.q;

119 break;

120 }
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Appendix C - Print Control Script.m

1

2 function print_PLECS_control_script_2(ctrlFolder_path ,n_set ,Quad_Maps)

3

4 %Initialization

5

6 line.inputs = 36;

7 line.outputs = 37;

8 line.ia = 94;

9

10 Motor_ctrl_0_path = [ctrlFolder_path ’\Motor_ctrl_plecs_0.c’];

11

12 fid = fopen(Motor_ctrl_0_path ,’r’);

13 i = 1;

14 tline = fgetl(fid);

15 readData{i} = tline;

16 while ischar(tline)

17 i = i+1;

18 tline = fgetl(fid);

19 readData{i} = tline;

20 end

21 fclose(fid);

22

23 Motor_ctrl_0 = string(readData)’;

24

25 %% -------------------- Add Inpunts -------------------- %%

26

27 Ctrl_Script = Motor_ctrl_0 (1:31);

28 x=17;

29 for i=1: n_set

30 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+"isabc%d.a = InputSignal (0,%d);",i,x

)];

31 x = x+1;

32 end

33 for i=1: n_set

34 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+"isabc%d.b = InputSignal (0,%d);",i,x

)];

35 x = x+1;

36 end

37 for i=1: n_set

38 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+"isabc%d.c = InputSignal (0,%d);",i,x

)];

39 x = x+1;

40 end

41

42 %% --------------------ERROR STATE -------------------- %%

43

44

45 Ctrl_Script = [Ctrl_Script ; strings (2,1)];

46 Ctrl_Script = [Ctrl_Script ; Motor_ctrl_0 (35:71) ]; %%INIT STATE MACHINE

47 Ctrl_Script = [Ctrl_Script ; strings (1,1)];

48 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" isdq_refcm.d = 0.0f;")];

49 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" isdq_refcm.q = 0.0f;")];

50 switch(Quad_Maps)

51 case 0 %SyR Motor

52 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_dq.d = 0.0f;")];

53 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_dq.q = 0.0f;")];

54 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_CM_dq.d = 0.0f;")];

55 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_CM_dq.q = 0.0f;")];

56 case 1 %PM-SyR
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57 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_dq.d = 0.0f;")];

58 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_dq.q = -lambda_M ;")];

59 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_CM_dq.d = 0.0f;")];

60 Ctrl_Script = [Ctrl_Script ; sprintf(blanks (12)+" lambda_CM_dq.q = -lambda_M ;")

];

61 case 2 % PM

62 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" lambda_dq.d = lambda_M ;")];

63 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" lambda_dq.q = 0.0f;")];

64 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" lambda_CM_dq.d = lambda_M ;")];

65 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" lambda_CM_dq.q = 0.0f;")];

66 end

67

68 Ctrl_Script = [Ctrl_Script; strings (2,1)];

69 index_end = length(Motor_ctrl);

70 for i=1: n_set

71 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" isdq_refdm%d.d = 0.0f;",i)];

72 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" isdq_refdm%d.q = 0.0f;",i)];

73 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"isdq%d.d = 0.0f;",i)];

74 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"isdq%d.q = 0.0f;",i)];

75 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" vsdq_ref%d.d = 0.0f;",i)];

76 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" vsdq_ref%d.q = 0.0f;",i)];

77 end

78

79 for i=1: n_set

80 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"isabc%d.a = 0.0f;",i)];

81 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"isabc%d.b = 0.0f;",i)];

82 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"isabc%d.c = 0.0f;",i)];

83 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.a = 0.0f;",i)];

84 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.b = 0.0f;",i)];

85 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.c = 0.0f;",i)];

86 Ctrl_Script = [Ctrl_Script; strings (1,1)];

87 end

88

89 Ctrl_Script = [Ctrl_Script; strings (1,1)];

90 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"if(Go) State= WAKE_UP ;")];

91 Ctrl_Script = [Ctrl_Script; strings (1,1)];

92 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"break ;")];

93 Ctrl_Script = [Ctrl_Script; strings (2,1)];

94 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8)+"case WAKE_UP :")];

95

96 %% --------------------WAKE UP -------------------- %%

97

98 for i=1: n_set

99 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.a = 0.5f;",i)];

100 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.b = 0.5f;",i)];

101 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.c = 0.5f;",i)];

102 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" pwm_stop%d = 0.0f;",i)];

103 Ctrl_Script = [Ctrl_Script; strings (1,1)];

104 end

105

106 Ctrl_Script = [Ctrl_Script; Motor_ctrl_0 (75:78) ];%%READY STATE

107 Ctrl_Script = [Ctrl_Script;sprintf(blanks (12)+" counter ++;") ];

108 Ctrl_Script = [Ctrl_Script; strings (1,1)];

109 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"break ;")];

110 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8)+"case READY :")];

111

112 %% --------------------READY -------------------- %%

113

114 for i=1: n_set

115 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.a = 0.5f;",i)];

116 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.b = 0.5f;",i)];

117 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" duty_abc%d.c = 0.5f;",i)];
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118 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" pwm_stop%d = 0.0f;",i)];

119 Ctrl_Script = [Ctrl_Script; strings (1,1)];

120 end

121 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" counter = 0.0f;")];

122 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" PLL_var.intg = omega_elt_meas_f ;")];

123 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" theta_PLL = theta_elt_meas ;")];

124 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"if(Go) State = START ;")];

125 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"break ;")];

126 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8)+"case START :")];

127 %% --------------------START -------------------- %%

128

129 %% --------------------Speed Computation --------------------%%

130 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"//-------------------Speed Compute

----------------------------------//")];

131 Ctrl_Script = [Ctrl_Script; strings (1,1)];

132 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" theta_elt_meas = PP * theta_mec_meas

;")];

133 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"while(theta_elt_meas > PI)")];

134 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" theta_elt_meas -= TWOPI ;")];

135 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"while(theta_elt_meas < -PI)")];

136 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" theta_elt_meas += TWOPI ;")];

137 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" SinCos_elt_meas.sin = sin(

theta_elt_meas);")];

138 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" SinCos_elt_meas.cos = cos(

theta_elt_meas);")];

139 Ctrl_Script = [Ctrl_Script; strings (1,1)];

140 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" speed_compute_sc(SinCos_elt_meas , &

SinCos_elt_meas_old , &omega_elt_meas);")];

141 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" _Filter(omega_elt_meas ,

omega_elt_meas_f , Ts*TWOPI *50) ;")];

142 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" omega_mec_meas = omega_elt_meas/PP;")

];

143 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" omega_mec_meas_f = omega_elt_meas_f/PP

;")];

144 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" omega_mec_meas_rpm = omega_mec_meas_f

*30/PI;")];

145 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" SinCos_elt_meas_old.sin =

SinCos_elt_meas.sin;")];

146 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" SinCos_elt_meas_old.cos =

SinCos_elt_meas.cos;")];

147

148

149 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"//---------------------------------PLL

-------------------------------//")];

150 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"if(SS_on) { ")];

151 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" PLL_par.kp = 2* OMEGA_B_PLL ;")];

152 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" PLL_par.ki = pow(OMEGA_B_PLL ,2)*Ts;")

];

153 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" PLL_par.lim = RPM2RAD * nmax_mot * PP

;")];

154 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" PLL_var.ref = pos_err ;")];

155 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" PLL_var.fbk = 0;")];

156

157 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"PIReg (&PLL_par , &PLL_var);")];

158 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" omega_PLL = PLL_var.out;")];

159 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" theta_PLL += Ts*PLL_var.out; ;")];

160 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" _Filter(omega_PLL , omega_elt_meas_f ,

Ts*TWOPI *25) ;")];

161

162 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"if(theta_PLL >= TWOPI)")];

163 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" theta_PLL -= TWOPI ;")];

164 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"if(theta_PLL <0)")];
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165 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" theta_PLL += TWOPI ;")];

166

167 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" SinCos_elt.sin = sin(theta_PLL);")];

168 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" SinCos_elt.cos = cos(theta_PLL);")];

169 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" position_error_real = asin(sin(

theta_elt_meas - theta_PLL));")];

170 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12) +"}")];

171 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"else { // Encorder ")];

172 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" SinCos_elt.sin = sin(theta_elt_meas)

;")];

173 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" SinCos_elt.cos = cos(theta_elt_meas)

;")];

174 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" omega_elt = omega_elt_meas_f ;")];

175 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+" position_error_real = 0;")];

176 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12) +"}")];

177

178 %% --------------------Control trajectory --------------------%%

179

180 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+"//-------------------------------

Control Type ------------------------------//")];

181 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" switch (Ctrl_type){")];

182 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"case 0: // CurrentControl ")];

183 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" isdq_refcm.d = isdq_ext.d;")];

184 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" isdq_refcm.q = isdq_ext.q;")];

185 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"break ;")];

186 Ctrl_Script = [Ctrl_Script; strings (1,1)];

187 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"case 2: // TorqueControl ")];

188 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" ReadLut (& ID_REF [0], fabs(T_ext), TMAX ,

TMIN , DT, INV_DT , &isdq_refcm.d);")];

189 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" ReadLut (& IQ_REF [0], fabs(T_ext), TMAX ,

TMIN , DT, INV_DT , &isdq_refcm.q);")];

190

191 for i=1:( n_set -1)

192 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" isdq_refdm%d.d=0.0f;",i)];

193 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" isdq_refdm%d.q=0.0f;",i)];

194 end

195

196 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" switch(Quad_Maps){")];

197 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +"case 0:")];

198 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+8) +" isdq_refcm.d = sgn(T_ext)*isdq_refcm

.d;")];

199 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +" break ;")];

200 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +"case 1:")];

201 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+8) +" isdq_refcm.d = sgn(T_ext)*isdq_refcm

.d;")];

202 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +" break ;")];

203 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +"case 2:")];

204 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+8) +" isdq_refcm.q = sgn(T_ext)*isdq_refcm

.q;")];

205 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +" break ;")];

206 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20) +"}")];

207 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"break ;")];

208 Ctrl_Script = [Ctrl_Script; strings (1,1)];

209 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16)+"case 3: //Speed Control ")];

210 Ctrl_Script = [Ctrl_Script; Motor_ctrl_0 (82:93) ]; %%SPEED CTRL

211 Ctrl_Script = [Ctrl_Script; strings (1,1)];

212 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" ReadLut (& ID_REF [0], fabs(T_ext), TMAX ,

TMIN , DT, INV_DT , &isdq_refcm.d);")];

213 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" ReadLut (& IQ_REF [0], fabs(T_ext), TMAX ,

TMIN , DT, INV_DT , &isdq_refcm.q);")];

214 for i=1:( n_set -1)

215 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" isdq_refdm%d.d=0.0f;",i)];
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216 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" isdq_refdm%d.q=0.0f;",i)];

217 end

218

219 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+" switch (Quad_Maps){")];

220 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +"case 0:")];

221 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+8) +" isdq_refcm.d = sgn(T_ext)*isdq_refcm

.d;")];

222 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +" break ;")];

223 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +"case 1:")];

224 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+8) +" isdq_refcm.d = sgn(T_ext)*isdq_refcm

.d;")];

225 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +" break ;")];

226 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +"case 2:")];

227 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+8) +" isdq_refcm.q = sgn(T_ext)*isdq_refcm

.q;")];

228 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20+4) +" break ;")];

229 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20) +"}")];

230 Ctrl_Script = [Ctrl_Script; sprintf(blanks (20)+"break ;")];

231 Ctrl_Script = [Ctrl_Script; sprintf(blanks (16) +"}")];

232 Ctrl_Script = [Ctrl_Script; strings (2,1)];

233

234 % --------------------rotational transformation --------------------%%

235 for i=1: n_set

236 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" _clarke%d(isabc%d,isab%d);",i,i,i

)];

237 end

238

239 for i=1: n_set

240 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+"_rot(isab%d,SinCos_elt ,isdq%d);",

i,i)];

241 end

242 Ctrl_Script = [Ctrl_Script; sprintf("//--------------------Flux Observer

--------------------//")];

243 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+"isdq=is_cm ;")];

244 Ctrl_Script = [Ctrl_Script; Motor_ctrl_0 (97:120) ]; %% READLUT

245 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+"T_elt=N_PHASES *0.5f*PP*( lambda_CM_dq.

d*is_cm.q* - lambda_CM_dq.q*is_cm.d);")];

246 Ctrl_Script = [Ctrl_Script; strings (1,1)];

247

248 for i=1: n_set

249 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" vsab_km1%d=vsab_ref%d;",i,i)];

250 end

251

252 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" vsab_km1=vsab_ref1 ;")];

253

254 %% --------------------Current Decoupling --------------------%%

255 tmp_s = sprintf(’_Decoupling(’);

256

257 for i=1: n_set

258 tmp_s = [tmp_s sprintf(’isdq%d,’,i)];

259 end

260

261 tmp_s = [tmp_s sprintf(’is_cm’)];

262

263 for i=1:( n_set -1)

264 tmp_s = [tmp_s sprintf(’,is_dm%d’,i)];

265 end

266

267 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4) +"%s);",tmp_s)];

268 Ctrl_Script = [Ctrl_Script; strings (1,1)];

269

270 %% --------------------Current Vector Control ---------------------%%
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271

272 Ctrl_Script = [Ctrl_Script; strings (1,1)];

273 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+"//--------------------Current Vector

Control --------------------//")];

274 Ctrl_Script = [Ctrl_Script; strings (1,1)];

275 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" kp_cmd=OMEGA_BI*Ld_inic ;")];

276 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" ki_cmd=OMEGA_BI*RS;")];

277 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" kp_dmd=OMEGA_BI*L_sigma ;")];

278 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" ki_dmd=OMEGA_BI*RS;")];

279 Ctrl_Script = [Ctrl_Script; strings (1,1)];

280 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" kp_cmq=OMEGA_BI*Lq_inic ;")];

281 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" ki_cmq=OMEGA_BI*RS;")];

282 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" kp_dmq=OMEGA_BI*L_sigma ;")];

283 Ctrl_Script = [Ctrl_Script; sprintf(blanks (8+4)+" ki_dmq=OMEGA_BI*RS;")];

284

285 Ctrl_Script = [Ctrl_Script; strings (1,1)];

286

287 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" id_par.kp = kp_cmd ;")];

288 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" id_par.ki = ki_cmd*Ts;")];

289 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" iq_par.kp = kp_cmq ;")];

290 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" iq_par.ki = ki_cmq*Ts;")];

291 Ctrl_Script = [Ctrl_Script; strings (1,1)];

292

293 % define PI regulators gains

294 for i=2: n_set

295 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" id_par%d.kp = kp_dmd;",i-1)];

296 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" id_par%d.ki = ki_dmd*Ts;",i-1)];

297 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" iq_par%d.kp = kp_dmq;",i-1)];

298 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" iq_par%d.ki = ki_dmq*Ts;",i-1)];

299 Ctrl_Script = [Ctrl_Script; strings (1,1)];

300 end

301

302 % define current loops

303 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" Current_loop(vdc ,Imax_mot ,isdq_refcm ,

is_cm ,&id_par ,&id_var ,&iq_par ,&iq_var ,& vsdq_cm_ref);")];

304 for i=2: n_set

305 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" Current_loop(vdc ,Imax_mot ,

isdq_refdm%d,is_dm%d,& id_par%d,& id_var%d,& iq_par%d,& iq_var%d,& vsdq_dm_ref%d);",i

-1,i-1,i-1,i-1,i-1,i-1,i-1)];

306 end

307

308 %% --------------------Feedforward --------------------%%

309

310 Ctrl_Script = [Ctrl_Script; strings (2,1)];

311

312 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" vsdq_cm_ref.d += RS*is_cm.d-omega_elt*

lambda_dq.q;")];

313 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" vsdq_cm_ref.q += RS*is_cm.q+omega_elt*

lambda_dq.d;")];

314 Ctrl_Script = [Ctrl_Script; strings (1,1)];

315

316 for i=2: n_set

317 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" vsdq_dm_ref%d.d += RS*is_dm%d.d-

omega_elt*L_sigma*is_dm%d.q;",i-1,i-1,i-1)];

318 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" vsdq_dm_ref%d.q += RS*is_dm%d.q+

omega_elt*L_sigma*is_dm%d.d;",i-1,i-1,i-1)];

319 Ctrl_Script = [Ctrl_Script; strings (1,1)];

320 end

321

322 %% --------------------Voltage Decoupling --------------------%%

323 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12) +"// Voltage Decoupling ")];

324
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325 tmp_s = sprintf(’_InvDecoupling(’);

326 tmp_s = [tmp_s sprintf(’vsdq_cm_ref ’)];

327

328 for i=1:( n_set -1)

329 tmp_s = [tmp_s sprintf(’,vsdq_dm_ref%d’,i)];

330 end

331

332 for i=1: n_set

333 tmp_s = [tmp_s sprintf(’,vsdq_ref%d’,i)];

334 end

335

336 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12) +"%s);",tmp_s)];

337 Ctrl_Script = [Ctrl_Script; strings (1,1)];

338

339 %% --------------------PWM GENERATION --------------------%%

340 for i=1: n_set

341 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" _invrot(vsdq_ref%d,SinCos_elt ,

vsab_ref%d);",i,i)];

342 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" _invclarke%d(vsab_ref%d,vsabc_ref%

d);",i,i,i)];

343 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12)+" PWMduty(vsabc_ref%d,vdc ,& duty_abc%

d);",i,i)];

344 Ctrl_Script = [Ctrl_Script; strings (1,1)];

345 end

346 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5) +"}")];

347 Ctrl_Script = [Ctrl_Script; strings (2,1)];

348 % duty cycle saturation

349 Ctrl_Script = [Ctrl_Script; sprintf(blanks (12) +"// Duty cycle saturation ")];

350 for i=1: n_set

351 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5)+"if (duty_abc%d.a >0.99f) duty_abc%d.

a = 0.99f;",i,i)];

352 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5)+"if (duty_abc%d.b >0.99f) duty_abc%d.

b = 0.99f;",i,i)];

353 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5)+"if (duty_abc%d.c >0.99f) duty_abc%d.

c = 0.99f;",i,i)];

354 Ctrl_Script = [Ctrl_Script; strings (1,1)];

355 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5)+"if (duty_abc%d.a <0.01f) duty_abc%d.

a = 0.01f;",i,i)];

356 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5)+"if (duty_abc%d.b <0.01f) duty_abc%d.

b = 0.01f;",i,i)];

357 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5)+"if (duty_abc%d.c <0.01f) duty_abc%d.

c = 0.01f;",i,i)];

358 Ctrl_Script = [Ctrl_Script; strings (1,1)];

359 Ctrl_Script = [Ctrl_Script; sprintf(blanks (5)+"if (pwm_stop%d){",i)];

360 Ctrl_Script = [Ctrl_Script; sprintf(blanks (9)+" duty_abc%d.a = 0.0f;",i)];

361 Ctrl_Script = [Ctrl_Script; sprintf(blanks (9)+" duty_abc%d.b = 0.0f;",i)];

362 Ctrl_Script = [Ctrl_Script; sprintf(blanks (9)+" duty_abc%d.c = 0.0f;",i)];

363 Ctrl_Script = [Ctrl_Script; sprintf(blanks (9) +"}")];

364 Ctrl_Script = [Ctrl_Script; strings (1,1)];

365 end

366 %% Outputs

367 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,0) = omega_ref_ramp *60/

TWOPI ;")];

368 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,1) = omega_mec_meas_f

*60/ TWOPI ;")];

369 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,2) = vsdq_cm_ref.d;")];

370 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,3) = vsdq_cm_ref.q;")];

371 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,4) = isab1.alpha ;")];

372 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,5) = isab1.beta ;")];

373 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,6) = isdq_refcm.d;")];

374 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,7) = is_cm.d;")];

375 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,8) = isdq_refcm.q;")];
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376 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,9) = is_cm.q;")];

377 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,10) = f_omega ;")];

378 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,11) = T_elt ;")];

379 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,12) = lambda_dq.d;")];

380 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,13) = lambda_dq.q;")];

381 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,14) = lambda_CM_dq.d;")

];

382 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,15) = lambda_CM_dq.q;")

];

383 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,16) = T_ext ;")];

384 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,17) = theta_PLL *180/PI

;")];

385 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,18) = omega_elt/PP*60/

TWOPI ;")];

386 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,19) = ld;")];

387 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,20) = lq;")];

388 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,21) = ldq;")];

389 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,22) = isabc1.a;")];

390 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,23) = isabc1.b;")];

391 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,24) = isabc1.c;")];

392 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,25) = theta_elt_meas

*180/PI;")];

393 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,26) = pos_err *180/PI;")

];

394 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,27) =

position_error_real *180/PI;")];

395 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,28) = pos_err_LS *180/ PI

;")];

396 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0 ,29) = pos_err_HS *180/ PI

;")];

397 k = 30;

398 for i=1: n_set

399 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,%d) = duty_abc%d.a

;",k,i)];

400 k=k+1;

401 end

402 for i=1: n_set

403 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,%d) = duty_abc%d.b

;",k,i)];

404 k=k+1;

405 end

406 for i=1: n_set

407 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,%d) = duty_abc%d.c

;",k,i)];

408 k=k+1;

409 end

410 for i=1: n_set

411 Ctrl_Script = [Ctrl_Script; sprintf(blanks (4)+" OutputSignal (0,%d) = pwm_stop%d;",k

,i)];

412 k=k+1;

413 end

414 Ctrl_Script = [Ctrl_Script; strings (2,1)];

415 Ctrl_Script = [Ctrl_Script; strings (2,1)];

416 %% -------------------- Print New File --------------------%%

417 Motor_ctrl_path = [ctrlFolder_path ’\Motor_ctrl_plecs.c’];

418 fid = fopen(Motor_ctrl_path , ’w’);

419 for i = 1:numel(Ctrl_Script)

420 fprintf(fid ,’%s\n’, Ctrl_Script{i});

421 end

422 fclose(fid);

423 end
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Appendix D - Compute TVSD.m

1 function Compute_TVSD(ctrlFolder_path ,n_set)

2 %% --------------------Define parameters --------------------%%

3 l = n_set; % number of winding sets

4 k = 3; % number of phases per each winding set

5 n = k*l; % total number of phases

6 %% ---------------Define theta_n MATRIX with phases position --------------%

7 theta_n = zeros(1,n);

8 for j=1:k

9 for i=1:l

10 theta_n(i+(j-1)*l) = (180/n)*(2*l*(j-1)+i-1);

11 end

12 end

13 %% -----------------Define non -zero sequence subspace constants -----------%

14 % generate c vector with odd numbers <n

15 C0 =1; x=1;

16 while(C0<n)

17 c(x) = C0;

18 x=x+1;

19 C0=C0+2;

20 end

21 % find zero sequence harmonics constants C_zs

22 x=1; i=1;

23 while(i*k<n)

24 if(rem(i*k,2) ~=0)

25 C_zs(x) = i*k;

26 x=x+1;

27 end

28 i=i+1;

29 end

30 % Find non -zero sequence harmonics constants C_nzs , removing the C_zs

31 % constants from the c vector

32 [tmp ,~] = ismember(c,C_zs);

33 index_tmp = find(tmp ==1);

34 C_nzs = c;

35 C_nzs(index_tmp)=[];

36 %% Compute T VSD Matrix

37 sigma = 2/n; % amplitude invariant transformation

38 T_VSD = zeros(n,n); % initialize matrix

39 row =1;

40 for x=1: length(C_nzs)

41 c = C_nzs(x);

42 T_VSD(row ,:) = cosd(c*theta_n);

43 T_VSD(row+1,:) = sind(c*theta_n);

44 row=row+2;

45 end

46 % Separate neutral points zero sequence subspaces

47 z=1;

48 for x=row:n

49 T_VSD(x,z) = 1;

50 T_VSD(x,z+l) = 1;

51 T_VSD(x,z+2*l) = 1;

52 z=z+1;

53 end

54 T =sigma*T_VSD;

55 inv_T = inv(T);

56 %% --------------------Save file --------------------%%

57 file_name = [’T_VSD’ ’.mat’];

58 save([ ctrlFolder_path ’\SimMatFiles\’ file_name],"T","inv_T");

59 end
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Appendix E - ComputeDecouplingMatrix.m

1 function ComputeDecouplingMatrix(ctrlFolder_path ,n_set)

2 %% Get User Macros path

3 UserMacrosH_path = [ctrlFolder_path ’\User_functions\Inc\User_Macros.h’];

4 %% number of sets

5 n = n_set;

6 %% -------------------- Compute decoupling Matrix -------------------- %%

7 TD = zeros(n,n);

8 TD(1,:) = 1;

9 x=1;

10 row = 2;

11 for k=1:(n-1)

12 wk = sqrt((n*n-n*k)/(n-k+1));

13 qk = -sqrt(n/((n-k)*(n-k+1)));

14 TD(row ,x) = wk;

15 TD(row ,x+1:end) = qk;

16 x=x+1;

17 row = row +1;

18 end

19 TD = (1/n)*TD;

20 inv_TD = inv(TD);

21

22 %% -------------------- Open and read User Macros -------------------- %%

23 fid = fopen(UserMacrosH_path ,’r’);

24 i = 1;

25 tline = fgetl(fid);

26 readData{i} = tline;

27 while ischar(tline)

28 i = i+1;

29 tline = fgetl(fid);

30 readData{i} = tline;

31 end

32 fclose(fid);

33 readData(end) = [];

34 User_Macros = string(readData)’;

35 %% --------------------Print Direct Decoupling Algorithm -------------------- %%

36 User_Macros = [ User_Macros; strings (2,1)];

37 User_Macros = [User_Macros;sprintf ("// Decoupling algorithm dq1 dq2..dqn -> dq_cm

dq_dm1 dq_dm2 ... dq_dm(n-1)")];

38 User_Macros = [ User_Macros; strings (1,1)];

39 %% Define Macro

40 tmp_s = sprintf(’#define _Decoupling(’);

41 for i=1:n

42 tmp_s = [tmp_s sprintf(’dq%d,’,i)];

43 end

44 tmp_s = [tmp_s sprintf(’dq_cm’)];

45 for i=1:(n-1)

46 tmp_s = [tmp_s sprintf(’,dq_dm%d’,i)];

47 end

48 User_Macros = [User_Macros; sprintf ("%s); \\",tmp_s)];

49 %% Common mode subspace

50

51 tmp_d = sprintf(’dq_cm.d =’);

52 tmp_q = sprintf(’dq_cm.q =’);

53

54 for i=1:n

55 tmp_d = [tmp_d sprintf(’+(%.4f)*dq%d.d’,TD(1,i),i)];

56 tmp_q = [tmp_q sprintf(’+(%.4f)*dq%d.q’,TD(1,i),i)];

57 end

58 User_Macros = [User_Macros; sprintf(blanks (4) +"%s; \\",tmp_d)];
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59 User_Macros = [User_Macros; sprintf(blanks (4) +"%s; \\",tmp_q)];

60

61 %% Differential mode subspace

62

63 for i=1:(n-1)

64 tmp_d = sprintf(’dq_dm%d.d =’,i);

65 tmp_q = sprintf(’dq_dm%d.q =’,i);

66 for j=1:n

67 tmp_d = [tmp_d sprintf(’+(%.4f)*dq%d.d’,TD(i+1,j),j)];

68 tmp_q = [tmp_q sprintf(’+(%.4f)*dq%d.q’,TD(i+1,j),j)];

69 end

70 User_Macros = [User_Macros; sprintf(blanks (4) +"%s; \\",tmp_d)];

71 User_Macros = [User_Macros; sprintf(blanks (4) +"%s; \\",tmp_q)];

72 end

73

74 %% Inverse Decoupling Algorithm

75

76 User_Macros = [ User_Macros; strings (2,1)];

77 User_Macros = [User_Macros;sprintf ("// Decoupling algorithm dq_cm dq_dm1 dq_dm2 ... dq_dm

(n-1) -> dq1 dq2..dqn ")];

78 User_Macros = [ User_Macros; strings (1,1)];

79

80 %% Define Macro

81 tmp_s = sprintf(’#define _InvDecoupling(’);

82 tmp_s = [tmp_s sprintf(’dq_cm’)];

83

84 for i=1:(n-1)

85 tmp_s = [tmp_s sprintf(’,dq_dm%d’,i)];

86 end

87

88 for i=1:n

89 tmp_s = [tmp_s sprintf(’,dq%d’,i)];

90 end

91

92 User_Macros = [User_Macros; sprintf ("%s); \\",tmp_s)];

93

94 for i=1:n

95 tmp_d = sprintf(’dq%d.d=(%.4f)*dq_cm.d’,i,inv_TD(i,1));

96 tmp_q = sprintf(’dq%d.q=(%.4f)*dq_cm.q’,i,inv_TD(i,1));

97 for j=1:(n-1)

98 tmp_d = [tmp_d sprintf(’+(%.4f)*dq_dm%d.d’,inv_TD(i,j+1),j)];

99 tmp_q = [tmp_q sprintf(’+(%.4f)*dq_dm%d.q’,inv_TD(i,j+1),j)];

100 end

101 User_Macros = [User_Macros; sprintf(blanks (4) +"%s; \\",tmp_d)];

102 User_Macros = [User_Macros; sprintf(blanks (4) +"%s; \\",tmp_q)];

103 end

104 %% Write in User Macros

105 fid = fopen(UserMacrosH_path , ’w’);

106 for i = 1:numel(User_Macros)

107 fprintf(fid ,’%s\n’, User_Macros{i});

108 end

109 fclose(fid);

110 end
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Appendix F - PrintClarke.m

1 function PrintClarke(ctrlFolder_path ,n_set)

2 %% Get User_Macros.h path

3 UserMacrosH_path = [ctrlFolder_path ’\User_functions\Inc\User_Macros.h’];

4 l = n_set;%% Number of sets

5 k=3;%% Phases for each set

6 n = k*l;%%Total number of phases

7 %% -------------------- Define theta_n MATRIX -------------------- %%

8 theta_n = zeros(l,k);

9 for j=1:l

10 for i=1:k

11 theta_n(j,i) = (180/n)*(2*l*(i-1)+j-1);

12 end

13 end

14 %% -------------------- Compute Clake transformation -------------------- %%

15 for j=1:l

16 tmp_cos = (2/3) *[cosd(theta_n(j,1)) cosd(theta_n(j,2)) cosd(theta_n(j,3))];

17 tmp_sin = (2/3) *[sind(theta_n(j,1)) sind(theta_n(j,2)) sind(theta_n(j,3))];

18 eval([’clarke_ ’ num2str(j) ’=[ tmp_cos; tmp_sin ];’]);

19 end

20 %% -------------------- Compute Inverse Clake transformation -------------------- %%

21 for j=1:l

22 tmp_cos = [cosd(theta_n(j,1)) ; cosd(theta_n(j,2)); cosd(theta_n(j,3))];

23 tmp_sin = [sind(theta_n(j,1)) ; sind(theta_n(j,2)) ; sind(theta_n(j,3))];

24 eval([’clarke_inv_ ’ num2str(j) ’=[ tmp_cos tmp_sin ];’]);

25 end

26 %% -------------------- Read User_Macros.h file -------------------- %%

27 fid = fopen(UserMacrosH_path ,’r’);

28 i = 1;

29 tline = fgetl(fid);

30 readData{i} = tline;

31 while ischar(tline)

32 i = i+1;

33 tline = fgetl(fid);

34 readData{i} = tline;

35 end

36 fclose(fid);

37 readData(end) = [];

38 %% -------------------- Add Clarke -------------------- %%

39 User_Macros = string(readData)’;

40 User_Macros = [ User_Macros; strings (2,1)];

41 User_Macros = [User_Macros;sprintf ("// Direct Clarke transformation (a,b,c)--> (alpha ,

beta)")];

42 User_Macros = [ User_Macros; strings (2,1)];

43 for i=1:l

44 clarke_tmp = eval([’clarke_ ’ num2str(i)]);

45 User_Macros = [User_Macros;sprintf ("# define _clarke%d(abc ,ab); \\",i)];

46 User_Macros = [ User_Macros;sprintf(blanks (4)+"ab.alpha = %.4f*abc.a+(%.4f)*abc.b

+(%.4f)*abc.c; \\", clarke_tmp (1,1),clarke_tmp (1,2),clarke_tmp (1,3))];

47 User_Macros = [ User_Macros;sprintf(blanks (4)+"ab.beta = %.4f*abc.a+(%.4f)*abc.b

+(%.4f)*abc.c; \\", clarke_tmp (2,1),clarke_tmp (2,2),clarke_tmp (2,3))];

48 User_Macros = [ User_Macros; strings (1,1)];

49 end

50 User_Macros = [User_Macros;sprintf ("// Inverse Clarke transformation (alpha ,beta)--> (a

,b,c)")];

51 User_Macros = [ User_Macros; strings (2,1)];

52 for i=1:l

53 clarke_inv_tmp = eval([’clarke_inv_ ’ num2str(i)]);

54 User_Macros = [User_Macros;sprintf ("# define _invclarke%d(ab,abc); \\",i)];

55 User_Macros = [ User_Macros;sprintf(blanks (4)+"abc.a = %.4f*ab.alpha +(%.4f)*ab.
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beta; \\", clarke_inv_tmp (1,1),clarke_inv_tmp (1,2))];

56 User_Macros = [ User_Macros;sprintf(blanks (4)+"abc.b = %.4f*ab.alpha +(%.4f)*ab.

beta; \\", clarke_inv_tmp (2,1),clarke_inv_tmp (2,2))];

57 User_Macros = [ User_Macros;sprintf(blanks (4)+"abc.c = %.4f*ab.alpha +(%.4f)*ab.

beta; \\", clarke_inv_tmp (3,1),clarke_inv_tmp (3,2))];

58 User_Macros = [ User_Macros; strings (1,1)];

59 end

60 %% -------------------- Write new file -------------------- %%

61 fid = fopen(UserMacrosH_path , ’w’);

62 for i = 1:numel(User_Macros)

63 fprintf(fid ,’%s\n’, User_Macros{i});

64 end

65 fclose(fid);

66 end
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Appendix G - print PLECS fault script.m

1 function print_PLECS_fault_script(ctrlFolder_path ,n_set)

2 %%

3 %Variables Declaration

4 Fault_Script =[""];

5 for i=1: n_set

6 Fault_Script =[ Fault_Script;sprintf ("float qa_in%d,qan_in%d,qb_in%d,qbn_in%d,qc_in%

d,qcn_in%d;",i,i,i,i,i,i)];

7 Fault_Script =[ Fault_Script;sprintf ("float qa_out%d,qan_out%d,qb_out%d,qbn_out%d,

qc_out%d,qcn_out%d;",i,i,i,i,i,i)];

8 end

9 Fault_Script =[ Fault_Script;sprintf ("int fault_type ;")];

10 Fault_Script =[ Fault_Script;sprintf ("float trigger ;")];

11 Fault_Script =[ Fault_Script;sprintf ("")];

12

13 fid = fopen([ ctrlFolder_path ’\Fault_Scripts\fault_declarations.c’], ’w’);

14 for i = 1:numel(Fault_Script)

15 fprintf(fid ,’%s\n’, Fault_Script{i});

16 end

17 fclose(fid);

18

19 %%

20 Fault_Script =[""];

21 %Input import

22 l=0;

23

24 for j=1: n_set

25 Fault_Script =[ Fault_Script;sprintf ("qa_in%d = InputSignal (0,%d);",j,l)];

26 l=l+1;

27 end

28 for j=1: n_set

29 Fault_Script =[ Fault_Script;sprintf (" qan_in%d = InputSignal (0,%d);",j,l)];

30 l=l+1;

31 end

32 for j=1: n_set

33 Fault_Script =[ Fault_Script;sprintf ("qb_in%d = InputSignal (0,%d);",j,l)];

34 l=l+1;

35 end

36 for j=1: n_set

37 Fault_Script =[ Fault_Script;sprintf (" qbn_in%d = InputSignal (0,%d);",j,l)];

38 l=l+1;

39 end

40 for j=1: n_set

41 Fault_Script =[ Fault_Script;sprintf ("qc_in%d = InputSignal (0,%d);",j,l)];

42 l=l+1;

43 end

44 for j=1: n_set

45 Fault_Script =[ Fault_Script;sprintf (" qcn_in%d = InputSignal (0,%d);",j,l)];

46 l=l+1;

47 end

48 Fault_Script =[ Fault_Script;sprintf (" trigger = InputSignal (0,%d);",l)];

49 Fault_Script =[ Fault_Script;sprintf (" fault_type = InputSignal (0,%d);",l+1)];

50

51

52 %%

53 %Switch machine

54 l=0; %Counter for switch machine

55 Fault_Script =[ Fault_Script;sprintf ("if(trigger ==0) {")];

56 Fault_Script = [Fault_Script; sprintf("//---------------------------------No fault

-------------------------------//")];
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57

58 for i=1: n_set

59 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qa_out%d = qa_in%d;",i,i)];

60 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qan_out%d = qan_in%d;",i,i)];

61 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qb_out%d = qb_in%d;",i,i)];

62 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qbn_out%d = qbn_in%d;",i,i)];

63 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qc_out%d = qc_in%d;",i,i)];

64 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qcn_out%d = qcn_in%d;",i,i)];

65 end

66 Fault_Script =[ Fault_Script;sprintf ("}")];

67 Fault_Script =[ Fault_Script;sprintf ("else {")];

68 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" switch(fault_type){")];

69 Fault_Script = [Fault_Script; sprintf("//--------------------------------- ASC for

each nset -------------------------------//")];

70 for k=1: n_set

71 l=l+1;

72 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

73

74 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = 0;",k)];

75 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = 1;",k)];

76 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = 0;",k)];

77 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = 1;",k)];

78 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = 0;",k)];

79 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = 1;",k)];

80

81 for i=1: n_set

82 if i~=k

83 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

84 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

85 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

86 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

87 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

88 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

89 end

90 end

91 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

92 end

93 Fault_Script = [Fault_Script; sprintf("//--------------------------------- Open for

each nset -------------------------------//")];

94 for k=1: n_set

95 l=l+1;

96 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

97

98 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = 0;",k)];

99 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = 0;",k)];

100 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = 0;",k)];

101 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = 0;",k)];

102 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = 0;",k)];

103 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = 0;",k)];

104

105 for i=1: n_set

106 if i~=k

107 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

108 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

109 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

110 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

111 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

112 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

113 end

114 end

115 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

116 end
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117 k=1;

118 Fault_Script = [Fault_Script; sprintf("//--------------------------------- Open A leg

first set -------------------------------//")];

119 l=l+1;

120 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

121

122 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = 0;",k)];

123 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = 0;",k)];

124 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qb_out%d = qb_in%d;",k,k)];

125 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qbn_out%d = qbn_in%d;",k,k)];

126 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qc_out%d = qc_in%d;",k,k)];

127 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qcn_out%d = qcn_in%d;",k,k)];

128

129 for i=1: n_set

130 if i~=k

131 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

132 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

133 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

134 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

135 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

136 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

137 end

138 end

139 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

140 Fault_Script = [Fault_Script; sprintf("//--------------------------------- Short A leg

first set -------------------------------//")];

141 l=l+1;

142 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

143

144 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = 1;",k)];

145 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = 1;",k)];

146 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qb_out%d = qb_in%d;",k,k)];

147 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qbn_out%d = qbn_in%d;",k,k)];

148 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qc_out%d = qc_in%d;",k,k)];

149 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qcn_out%d = qcn_in%d;",k,k)];

150

151 for i=1: n_set

152 if i~=k

153 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

154 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

155 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

156 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

157 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

158 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

159 end

160 end

161 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

162

163 Fault_Script = [Fault_Script; sprintf("//--------------------------------- Open upper

switch A leg first set -------------------------------//")];

164 l=l+1;

165 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

166

167 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = 0;",k)];

168 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qan_out%d = qan_in%d;",k,k)];

169 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qb_out%d = qb_in%d;",k,k)];

170 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qbn_out%d = qbn_in%d;",k,k)];

171 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qc_out%d = qc_in%d;",k,k)];

172 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qcn_out%d = qcn_in%d;",k,k)];

173

174 for i=1: n_set

175 if i~=k
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176 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

177 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

178 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

179 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

180 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

181 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

182 end

183 end

184 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

185

186 Fault_Script = [Fault_Script; sprintf("//--------------------------------- Short upper

switch A leg first set -------------------------------//")];

187 l=l+1;

188 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

189

190 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = 1;",k)];

191 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qan_out%d = qan_in%d;",k,k)];

192 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qb_out%d = qb_in%d;",k,k)];

193 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qbn_out%d = qbn_in%d;",k,k)];

194 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qc_out%d = qc_in%d;",k,k)];

195 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qcn_out%d = qcn_in%d;",k,k)];

196 for i=1: n_set

197 if i~=k

198 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

199 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

200 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

201 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

202 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

203 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

204 end

205 end

206 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

207 Fault_Script = [Fault_Script; sprintf("//--------------------------------- Open lower

switch A leg first set -------------------------------//")];

208 l=l+1;

209 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

210

211 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = 0;",k)];

212 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qa_out%d = qa_in%d;",k,k)];

213 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qb_out%d = qb_in%d;",k,k)];

214 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qbn_out%d = qbn_in%d;",k,k)];

215 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qc_out%d = qc_in%d;",k,k)];

216 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qcn_out%d = qcn_in%d;",k,k)];

217

218 for i=1: n_set

219 if i~=k

220 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

221 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

222 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

223 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

224 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

225 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

226 end

227 end

228 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

229

230 Fault_Script = [Fault_Script; sprintf("//--------------------------------- Short lower

switch A leg first set -------------------------------//")];

231 l=l+1;

232 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"case %d:",l)];

233

234 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = 1;",k)];
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235 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qa_out%d = qa_in%d;",k,k)];

236 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qb_out%d = qb_in%d;",k,k)];

237 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qbn_out%d = qbn_in%d;",k,k)];

238 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qc_out%d = qc_in%d;",k,k)];

239 Fault_Script =[ Fault_Script;sprintf(blanks (4)+" qcn_out%d = qcn_in%d;",k,k)];

240 for i=1: n_set

241 if i~=k

242 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qa_out%d = qa_in%d;",i,i)];

243 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qan_out%d = qan_in%d;",i,i)];

244 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qb_out%d = qb_in%d;",i,i)];

245 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qbn_out%d = qbn_in%d;",i,i)];

246 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qc_out%d = qc_in%d;",i,i)];

247 Fault_Script =[ Fault_Script;sprintf(blanks (8)+" qcn_out%d = qcn_in%d;",i,i)];

248 end

249 end

250 Fault_Script =[ Fault_Script;sprintf(blanks (4)+"break ;")];

251 Fault_Script =[ Fault_Script;sprintf(blanks (4) +"}")];

252 Fault_Script =[ Fault_Script;sprintf ("}")];

253

254 %%

255 %Print outputs

256 l=0;

257 for j=1: n_set

258 Fault_Script =[ Fault_Script;sprintf (" OutputSignal (0,%d)=qa_out%d;",l,j)];

259 l=l+1;

260 end

261 for j=1: n_set

262 Fault_Script =[ Fault_Script;sprintf (" OutputSignal (0,%d)=qan_out%d;",l,j)];

263 l=l+1;

264 end

265 for j=1: n_set

266 Fault_Script =[ Fault_Script;sprintf (" OutputSignal (0,%d)=qb_out%d;",l,j)];

267 l=l+1;

268 end

269 for j=1: n_set

270 Fault_Script =[ Fault_Script;sprintf (" OutputSignal (0,%d)=qbn_out%d;",l,j)];

271 l=l+1;

272 end

273 for j=1: n_set

274 Fault_Script =[ Fault_Script;sprintf (" OutputSignal (0,%d)=qc_out%d;",l,j)];

275 l=l+1;

276 end

277 for j=1: n_set

278 Fault_Script =[ Fault_Script;sprintf (" OutputSignal (0,%d)=qcn_out%d;",l,j)];

279 l=l+1;

280 end

281

282 fid = fopen([ ctrlFolder_path ’\Fault_Scripts\fault_script.c’], ’w’);

283 for i = 1:numel(Fault_Script)

284 fprintf(fid ,’%s\n’, Fault_Script{i});

285 end

286 fclose(fid);

287

288 end
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