
POLITECNICO DI TORINO

Master’s Degree in Mathematical Engineering

Master’s Degree Thesis

Figurative Language Understanding

based on Large Language Models

Supervisors Candidate
Prof. Luca Cagliero Susanna Olivero
Prof. Natalie Parde
Dr. Giuseppe Gallipoli

Academic year 2023-2024

Table of Contents

List of Figures iii

List of Tables v

Abstract 1

1 Introduction 2
1.1 Motivation . 2
1.2 Contribution . 4
1.3 Structure . 5

2 Fundamentals of DeepNLP 6
2.1 Introduction to NLP . 6
2.2 Deep Contextualized Word Representation 8
2.3 Language Models . 11
2.4 Sequence-to-Sequence Models . 13
2.5 The Attention Mechanism . 15
2.6 Transformers . 21
2.7 Large Language Models . 24

2.7.1 LLM Adaptation . 29
2.7.2 LLaMA 2 . 33

3 Figurative Language Understanding 40
3.1 Introduction . 40
3.2 FLUTE Dataset . 43
3.3 FigLang 2022 Shared Task on Understanding Figurative Language . 46

3.3.1 Participants and Results . 49
3.4 DREAM method . 51

3.4.1 DREAM - FLUTE . 52

4 Methodology 55
4.1 Data Preparation . 55
4.2 LLM Pipeline . 55
4.3 Evaluation . 59
4.4 Implementation . 61

5 Evaluation Metrics 63
5.1 Metrics for Classification Task . 65

5.1.1 Confusion Matrix . 65
5.1.2 Receiver Operating Characteristic Curve (ROC) &Area Un-

der the Curve (AUC) . 68

i

5.1.3 Accuracy . 69
5.2 Metrics for Text Generation Task 71

5.2.1 Overview on Base Metrics 72
5.2.2 BERT Score . 73
5.2.3 BLEURT . 75
5.2.4 ROUGE . 77

5.3 Explainable Artificial Intelligence 81
5.3.1 Post-Hoc Features Importance Methods 82
5.3.2 Evaluation Metrics . 83
5.3.3 Potential Application to Our Case Study 87

6 Experimental Results 91
6.1 Experimental Setup . 91
6.2 Results . 94

6.2.1 Classification Task . 94
6.2.2 Text Generation Task . 101
6.2.3 Qualitative Analysis . 109

7 Conclusions 114

Bibliography 117

ii

List of Figures
1.1 A timeline of existing LLMs in recent years, established according

to the release date [46]. 3

2.1 NLP: Natural Language Processing, AI: Artificial Intelligence, ML:
Machine Learning, DL: Deep learning 7

2.2 BERT: pre-training and fine-tuning procedures [10]. 10
2.3 ELMo high-level illustration [4]. 12
2.4 An example of a sequence in a neural machine translation with an

unrolled view of the Seq2Seq model 14
2.5 Left: Scaled Dot-Product Attention. Right: Multi-head attention

[41]. 18
2.6 Attention mapping, as we are encoding the word “it” in the top

encoder in the stack, part of the attention mechanism was focusing
on “The Animal”, and baked a part of its representation into the
encoding of “it”. 18

2.7 Example of self-attention in details [41]. 19
2.8 An example of a Transformer model used for translation. The model

is auto-regressive and has an encoder-decoder structure. The en-
coder and decoder have six identical encoders and decoders, respec-
tively [41]. 21

2.9 Transformer model architecture [42]. 23
2.10 Basic functions of a Language Model [46]. 24
2.11 Example of conditional text generation [1]. 25
2.12 Conditional text generation with Temperature = 0 [1]. 26
2.13 Conditional text generation with Temperature > 0 [1]. 26
2.14 LLM pre-training objectives [43]. 28
2.15 Schema of a LLM adaptation process [34]. 29
2.16 Prompting on multi-tasks [20]. 31
2.17 Example of a Chain-Of-Thought prompting [46]. 32
2.18 Training of LLaMA 2-Chat [40]. 33
2.19 Comparison with open-source base models: overall performance

across various grouped academic benchmarks [40]. 34
2.20 Comparison with closed-source base models: performance on aca-

demic benchmarks [40]. 34

iii

2.21 Comparison with open and closed source base models: human eval-
uation results [40]. 35

2.22 Training Loss for LLaMA 2 models [40]. 36
2.23 Scaling trends for the reward model [40]. 38
2.24 Left: Issues with multi-turn memory. Right: improvement with

GAtt [40]. 39

3.1 Examples of entailment (→) and non-entailment pairs (↛) from the
IMPLI datase [37]. 41

3.2 Examples from FLUTE: For each hypothesis (figurative text) are
reported two premises, one is the literal entailment (E) and the
other one is the contradiction (C). There are also the associated
explanations [7]. 44

3.4 Example of how the explanations were constructed [8]. 47
3.5 Sarcasm example [8]. 48
3.6 Idiom example [8]. 48
3.7 Example of QA with the use of DREAM system [15] 52
3.8 Overview of DREAM-FLUTE [16]. 53

4.1 Logical schema for Zero-Shot prompting. 57
4.2 Logical schema for Few-Shot prompting. 58
4.3 Logical schema for DREAM application. 59
4.4 Logical schema for the Chain-of-Thought prompting. 60

5.1 Confusion Matrix . 65
5.2 ROC curve . 68
5.3 On the top: Token attributions to the prediciton, darker red (blue)

show higher (lower) contribution. On the bottom: Faithfulness met-
rics, darker colors show better performance [2]. 87

5.4 INSEQ with a Transformers causal language model: feature impor-
tance and next-step probability extraction and visualization [31]. . . 90

iv

List of Tables
3.1 FLUTE dataset distribution . 43

6.1 Classification baseline metrics from FLUTE and DREAM-System1
models. 95

6.2 Classification metrics for zero-shot prompting. In the table, consider
the cases with temperature null and positive, and the case with the
addition of Dream SE in the input. 95

6.3 Classification metrics for few-shot prompting with K=1 and K=2.
In the table, consider the cases with temperature null and positive,
and the case with the addition of Dream SE in the input. 96

6.4 Classification metrics for few-shot prompting with K=10 and K=20,
where the examples are extracted with the ’random’ method. In the
table, consider the cases with temperature null and positive, and the
case with the addition of DREAM ’s dimension ’emotion’ in the input. 97

6.5 Classification metrics for few-shot prompting with K = 6, 12, 18, 24,
30, 36 e 42, where the examples are extracted with the ’balanced’
method. In the table, consider the cases with temperature null and
positive. 97

6.6 Classification metrics for few-shot prompting with K = 18, 24 e 30,
where the examples are extracted with the ’balanced’ method. In
the table, consider the cases class-specif with temperature null and
positive . 98

6.7 Classification metrics for few-shot prompting with K = 18, 24 e 30,
where the examples are extracted with the ’balanced’ method. In
the table, there is a comparison between the usage of the model
LLaMA-2-7b-chat-hf and LLaMA-2-7b-hf in cases with null and
positive temperature. 98

6.8 Accuracy@0 for few-shot prompting with the use of DREAM with
K = 2, 6, 12, 18, 24 and 30. In the table, all the DREAM ’s input
possible: emotion, motivation, social norm, consequence and Dream
SE, in the case with null temperature. 99

6.9 Classification metrics for few-shot prompting with K = 12, 18 and
24, where the examples are extracted with the ’balanced’ method.
In the table, there are the cases with the adding of DREAM ’s di-
mension ’emotion’ with null and positive temperature. 100

v

6.10 Text generation baseline metrics from FLUTE and DREAM-System1
models. Let ’p’ for precision, ’r’ for recall and ’f’ for F1-score 101

6.11 BERTscore and ROUGE, F1 metrics for zero-shot prompting. In
the table, consider the cases with temperature null and positive,
and the case with the addition of Dream SE in the input. 102

6.12 BERTscore and ROUGE, F1 metrics for few-shot prompting with
K=1 and K=2. In the table, consider the cases with temperature
null and positive, and the case with the addition of Dream SE in
the input . 102

6.13 BERTscore and ROUGE, F1 metrics for few-shot prompting with
K=10 and K=20, where the examples are extracted with the ’ran-
dom’ method. In the table, consider the cases with temperature null
and positive, and the case with the addition ofDREAM ’s dimension
’emotion’ in the input. 103

6.14 BERTscore and ROUGE, F1 metrics for few-shot prompting with
K = 6, 12, 18, 24, 30, 36 e 42, where the examples are extracted
with the ’balanced’ method. In the table, consider the cases with
temperature null and positive. 103

6.15 BERTscore and ROUGE metrics for few-shot prompting with K =
18, 24 e 30, where the examples are extracted with the ’balanced’
method. In the table, consider the cases with temperature null and
positive. Let ’p’ for precision, ’r’ for recall and ’f’ for F1-score . . . 104

6.16 BERTscore and ROUGE, F1 metrics for few-shot prompting with K
= 18, 24 e 30, where the examples are extracted with the ’balanced’
method. In the table, there is a comparison between the usage of
the model LLaMA-2-7b-chat-hf and LLaMA-2-7b-hf in cases with
null and positive temperature. 105

6.17 BERTscore F1 metric for few-shot prompting with the use of DREAM
with K = 6, 12, 18, 24 and 30. In the table, all the DREAM ’s input
possible: emotion, motivation, social norm, consequence and Dream
SE, in the case with null temperature 105

6.18 BERTscore and ROUGE, F1 metrics for few-shot prompting with
K = 12, 18 and 24, where the examples are extracted with the ’bal-
anced’ method. In the table, there are the cases with the adding of
DREAM ’s dimension ’motivation’ with null and positive temperature.106

6.19 BERTscore and ROUGE, F1 metrics for few-shot prompting with
K = 6, 12, 18, 24, 30, 36 e 42, where the examples are extracted
with the ’balanced’ method. The prompt is personalized according
to the type of rhetorical figure in input. In the table, consider the
cases with temperature null and positive. 106

vi

6.20 BERTscore and ROUGE, F1 metrics for few-shot prompting with
K = 18, 24 e 30, where the examples are extracted with the ’bal-
anced’ method. The prompt is personalized according to the type
of rhetorical figure in input. In the table the results are divided for
each figure of speech, considering the cases with temperature null
and positive. 107

6.21 Comparison of the generated explanations between the FLUTE
model and our model, prompted through a few-shot approach with
K=24 and null temperature. BERTscore and ROUGE F1 metrics
reported. 108

6.22 Comparison of the generated explanations between the DREAM-
System1 model and our model, prompted through a few-shot ap-
proach with K=24 and null temperature. BERTscore and ROUGE
F1 metrics reported. 108

vii

Computers will understand sarcasm
before Americans do

[Geoffrey Hinton]

Abstract
In the vast realm of Natural Language Processing, one of the areas that still
presents a bottleneck is Figurative Language Understanding. However, this field
is of fundamental interest both theoretically and practically; in all new applications
of Artificial Intelligence, there is an increasing demand for a correct understanding
of human language, which is naturally rich in rhetorical figures. To comprehend
this figurative language, it is necessary for the model used to grasp all the different
nuances and reasons, going beyond the mere literal meaning.
Until now, attempts to solve this problem have primarily involved training specific
models on large databases of rhetorical figures. In this thesis, we seek to overcome
this challenge by utilizing a Large Language Model, specifically LLaMA. These
kinds of models have already demonstrated immense potential in many Natural
Language Processing tasks, and with this project, we have observed that it is
possible to achieve promising performance simply by harnessing the potential of
Large Language Models without specifically training them for our specific goal.
In particular, we explore the use of LLaMA employing different types of prompting
and through two separate tasks. The first one involves entailment classification
of figurative language, while the second one is a text generation task where the
model is asked to generate an explanation for the previously made choice.
Through this exploration, we aim to contribute to the understanding of figurative
language, emphasizing the transformative potential of Large Language Models in
deciphering figurative expressions.

1

1 Introduction
1.1 Motivation

In the last decade, the so-called Artificial Intelligence (AI) has been at the fore-
front of a true revolution. Within this vast area, we identify the field of Natural
Language Processing (NLP) as one of the most important, as it defines and enables
interaction between humans and computers. NLP applications have made signif-
icant progress recently, successfully solving complex tasks with practical implica-
tions. However, one area that still presents a bottleneck is Figurative Language
Understanding, which emerges as an intriguing and complex frontier.

The Figurative Language Understanding is a field of fundamental interest both
theoretically and practically. Figurative language, including metaphors, similes,
and other non-literal expressions, constitutes a rich aspect of human communica-
tion and the mistaken comprehension of a rhetorical figure can often change the
entire meaning of a sentence.
In real-world AI applications, as chatbots and virtual assistants, there is an in-
creasing demand for a correct interaction with the users and since the human
language is naturally rich in rhetorical figures the ability to comprehend figurative
language becomes crucial.

Unfortunately, this task is not so easy. This kind of language is indeed charac-
terized by ambiguity and subjectivity, and, in order to comprehend it, the model
used must grasp all the different nuances and interpretations, going beyond mere
literal meaning. This is a formidable challenge for traditional language models,
which have often failed in this field. For this reason, we chose to explore the usage
of Large Language Models (LLMs).
The LLMs have literally exploded in the last years, as can be seen in the Figure
1.1, and they have become increasingly widespread across various domains.
LLMs are renowned for their ability to generate good human-like text and have
found implementations in many NLP applications such as chatbots, virtual assis-
tants, translation, context generation, or assisting researchers. LLMs are charac-
terized by an expansive pre-trained knowledge and present a promising avenue for
addressing the figurative understanding challenges.
Our investigation seeks to leverage LLMs in deciphering figurative expressions,

2

Introduction

exploring the potential synergies between these advanced models and the com-
plexities of figurative language.
Beyond these theoretical motivations, the decision to employ LLMs regards also
a pragmatic reason since, as said before, the increasing prevalence of such models
in real-world applications.

In summary, this thesis is motivated by the intertwined goals of deepening
theoretical understanding of figurative language and exploring the transformative
potential of Large Language Models.

Figure 1.1: A timeline of existing LLMs in recent years, established according to
the release date [46].

This project draws inspiration from the FigLang 2022 Shared Task, a compe-
tition proposed in 2022 with the aim of addressing the challenges posed by figu-
rative language. In particular, the challenge was based on two different aspects:
the first involves classification, aiming to discern whether there exists entailment
or contradiction between two sentences, one of which contains a rhetorical fig-
ure. Meanwhile, the second task involves generating an explanation that clarifies
the preceding choice. The works produced through this competition serve as the
foundation for our own investigations.

3

Introduction

1.2 Contribution
In undertaking the exploration of Figurative Language Understanding, this thesis
makes a distinctive contribution by embracing the utilization of LLMs, notably fo-
cusing on the implementation of LLaMA 2 Chat. Our decision to integrate LLMs
into the fabric of our research represents a choice driven by the recognition of their
transformative potential in surmounting the challenges inherent in figurative lan-
guage comprehension. The models of LLaMA family, with their extensive training
on vast corpora, have demonstrated an unparalleled ability to capture the nuances
of language, making them well-suited to decipher figurative expressions.

Compared to the solutions presented for the FigLang 2022 challenge, our ap-
proach offers a fresh perspective. While most solutions involved training the model
in a specific manner to tackle the task, we attempted to solve it without any spe-
cialized training on the model. By solely utilizing LLaMA, we aim to showcase the
potential of LLMs in expanding the limits of figurative language comprehension.

To tackle the proposed challenge, we specifically tasked LLaMA with addressing
two distinct tasks: one involving classification and the other text generation. The
first regards an entailment classification of figurative expression, while for the
second we ask the model to generate an explanation for the previously made choice.
Together, these tasks provide insight into the reasoning process that the LLM
undertakes to understand and decipher various rhetorical figures.
We interacted with the model without any training, solely utilizing the Prompting
method, which is fast and computationally inexpensive, making it much more
practical than traditional training on a vast database. Throughout the study,
various forms of prompting were employed, including zero-shot prompting, few-
shot prompting, and Chain-Of-Thought prompting (CoT).
So, the contribution of the thesis also lies in exploring the use of LLMs for two
different tasks and with different modalities (zero-shot, few-shot, CoT).

To evaluate our work, we started using the basic metrics proposed by the
FigLang 2022 challenge. Since these metrics were primarily designed to assess
only the first task, the classification, we conducted more detailed evaluations to
thoroughly assess the second task, text generation. To accomplish this, we uti-
lized different metrics, some of which were not included in the challenge but are
commonly used for this type of evaluation.

4

Introduction

1.3 Structure
In this section we provide a brief overview of the entire thesis structure to offer
a roadmap into the project. Following this introductory chapter, there are six
additional chapters.

The second chapter is primarily theoretical and provides the foundations upon
which the research is built. We begin with a general introduction to NLP, navigat-
ing through the evolution of language models. We discuss world representations,
progressing from the simplest forms to the deeply contextualized ones. We then
proceed to examine sequence-to-sequence models and transformers, with a partic-
ular focus on the attention technique. The final part of this chapter is dedicated
to LLMs, with a specific emphasis on the LLaMA 2 family, the LLM used in our
experiments.

With the third chapter, we shift the focus towards the challenges posed by
Figurative Language Understanding. After an introduction to this field and an
overview of the principal datasets, we introduce the FLUTE dataset, the one we
used. Subsequently, we present in detail the FigLang 2022 challenge, providing an
insightful overview of participants, principal results, and systems. As mentioned
earlier, this challenge is the starting point of our project.
In this chapter, we also introduce the DREAM method and its adaptation, DREAM-
FLUTE; both methodologies are employed in this thesis.

The fourth chapter outlines the methodology adopted in the experiments. It
elucidates the approach taken in conducting the research and its various phases, as
data preparation, model adaptation and evaluation. Towards the end of the chap-
ter, we also provide some information regarding implementation details, focusing
on the practical aspects of the research. This chapter acts as a bridge, connecting
the theoretical foundations established in the preceding chapters with the practical
development of the research.

The fifth chapter is dedicated to a theoretical exploration of evaluation met-
rics. We provide a comprehensive overview of principal metrics in the fields of
classification and text generation, with particular attention to those employed in
our experiments. Additionally, we delve into the realm of explainable artificial
intelligence metrics, presenting the most relevant results obtained so far.

In the sixth chapter, we unveil the outcomes of our experiments. After detailing
the experimental setup, we present the results, looking at the performance of the
systems employed.

In the final chapter we sum up the journey, providing a comprehensive conclu-
sion. Additionally, we cast a forward-looking perspective into the future, finding
possible areas for potential future research and development.

5

2 Fundamentals of DeepNLP
In this chapter, we provide the theoretical foundations upon which the research
is built. After a general introduction to NLP, we discuss word representations,
progressing from the simplest forms to the deeply contextualized ones. We then
proceed to examine language models, sequence-to-sequence models and transform-
ers, with a particular focus on the attention mechanism. The final part is dedicated
to Large Language Models, with a specific emphasis on the LLaMA 2 family.

2.1 Introduction to NLP
Natural Language Processing (NLP) is a subfield of linguistics, computer science,
and artificial intelligence that focuses on the interaction between computers and
human language. Specifically, it deals with how to program computers to process
and analyze human language in the form of text or voice data.

NLP is a pivotal force in contemporary machine intelligence applications. It
powers various real-world uses, including language translation, voice-activated
systems, and rapid text summarization. Common encounters with NLP include
voice-operated GPS, digital assistants, speech-to-text tools, and customer service
chatbots. Beyond consumer applications, NLP is increasingly integral to enterprise
solutions, contributing to streamlined business operations, enhanced employee pro-
ductivity, and the simplification of crucial business processes.
The main tasks in this field can be divided into two broad sectors, although they
are closely interconnected and interact continuously in real-world applications.

1. Natural Language Understanding:
This involves the process of extracting meaningful information from text,
including unstructured or semi-structured text. It includes tasks such as tok-
enization, text categorization, sentiment analysis and name entity recognition.

2. Natural Language Generation:
The goal here is to produce human-like text or speech based on structured
data or specific instructions. This encompasses tasks like summarization,
machine translation, and question answering.

Like other advancements in artificial intelligence, NLP has seen significant
growth in the past decade, both in terms of the programming techniques employed

6

Fundamentals of DeepNLP

and in term of the size and complexity of the utilized models. This technology
should enable computers to process natural language and to ‘understand’ its full
meaning, complete with the speaker or writer’s intent and sentiment.

The initial NLP algorithms were rooted in linguistics, employing rule-based
models to mimic human language. Subsequently, there was a transition to statis-
tical models, and eventually, the evolution led to the adoption of machine learning
and deep learning models (Figure 2.1).

Figure 2.1: NLP: Natural Language Processing, AI: Artificial Intelligence,
ML: Machine Learning, DL: Deep learning

The earliest NLP applications were hence manual, rule-based systems capable
of executing only some specific NLP tasks. These systems faced challenges in han-
dling an extensive array of exceptions and coping with the growing volumes of
textual and vocal data.
Statistical NLP emerged as a solution, integrating computer algorithms with ma-
chine learning and deep learning models. This approach automates the extraction,
classification, and labeling of elements, assigning a statistical likelihood to each po-
tential interpretation of these elements.
In contemporary NLP, called DeepNLP, the focus is the utilization of deep learn-
ing models, such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), that empower NLP systems to dynamically ’learn’ during their
operation. Consequently, these systems can extract increasingly precise meanings
from vast collections of raw, unstructured, and unlabeled text and voice datasets.

7

Fundamentals of DeepNLP

2.2 Deep Contextualized Word Representation

NLP has undergone a remarkable evolution, progressing from early word embed-
dings to the more sophisticated realm of contextualized embeddings.
The inception of NLP can be traced back to the advent of word embeddings,
which aimed to represent words as dense, continuous vectors in a semantic space.
Pretrained word embeddings, popularized by models like Word2Vec and GloVe,
compute a single static representation for each word. The representation is hence
fixed and independent from the context in which the word appears. This fact
leads to important deficits, these models lacked the ability to capture the nuances
of sentence structure and meaning comprehensively, they ignore the role of context
and do not capture the long-term dependencies.
This limitation spurred the development of sentence embeddings, which sought to
encapsulate the meaning of entire sentences in vector representations. Sentence
embeddings, exemplified by models such as Doc2Vec, Sent2Vec and InferSent, pro-
vided a leap forward by considering the context of words within sentences. Despite
their advancements, they still had a hard time dealing with words having multiple
meanings and language details that depend on the context.

The turning point in NLP came with the introduction of contextualized em-
beddings. Models like ELMo, GPT (Generative Pre-trained Transformer), and
BERT (Bidirectional Encoder Representations from Transformers) revolutionized
the field by considering the context in which words and sentences appeared. Con-
textualized embeddings capture the dynamic nature of language, providing a more
nuanced understanding of meaning in different contexts.
Unlike static word embeddings, contextualized embeddings are representations of
words in context. They can circumvent many of the limitations associated with
word and sentence embeddings, as they can model complex characteristics of word
use (e.g., syntax and semantics), as well as they can capture how these uses vary
across linguistic contexts.
Contextualized word embeddings are dynamic, the same word can be assigned
different embeddings if it appears in different contexts. Instead of receiving words
as distinct units and providing independent word embeddings for each, contextu-
alized models receive the whole text span (the target word along with its context)
and provide specialized embeddings for individual words which are adjusted to
their context.
The training of contextualized embeddings is carried out at a pretraining stage,
independently from the main task, on a large text corpus. The trained model
can then generate contextualized representations for all the words in the given
text. Depending on the sequence encoder used in language modeling, these mod-
els can be put into two broad categories: RNN, mostly Long Short-Term Memory

8

Fundamentals of DeepNLP

(LSTM), and Transformer.
Unlike knowledge-based sense representations, these embeddings do not rely on an-
notated data or external lexical resources, and can be learned in an unsupervised
manner.

Among the various textual embedding techniques just mentioned, the two main
ones are Word2Vec and BERT, and we will briefly present them below.

• Word2Vec is a fundamental encoder in the field of NLP and one of the first
actually used. Its distinctive feature is the ability to represent words as dense,
fixed-size vectors in a continuous vector space. Google’ researchers employed
unsupervised learning techniques tring to capture the semantic meaning of
words based on their contexts in large corpora of text.
Word2Vec is based on the principle of distributional semantics, where words
with similar meanings tend to occur in similar contexts. By training neu-
ral networks, there are two foundamental tasks that can solve, the first is
to predict the target word given its context, continuous bag of words model
(CBOW), and the second is to predict the surrounding words given a tar-
get word, skip-gram model. Word2Vec effectively learns high-dimensional
representations of words that preserve semantic relationships. These word
embeddings have revolutionized various NLP tasks, including semantic simi-
larity measurement, text classification, and sentiment analysis, by providing
dense and meaningful representations of words that capture their contextual
semantics. Word2Vec’s simplicity, efficiency, and effectiveness have made it
a cornerstone in modern NLP applications, shaping the landscape of text
processing and understanding.

• BERT (Bidirectional Encoder Representations from Transformers) stands
as a groundbreaking development in the NLP field. This model has revolu-
tionized the way computers comprehend human language and represents a
significant leap forward in language understanding capabilities.
BERT is a pre-trained language model, unlike previous models that processed
text in a unidirectional manner, it considers both the left and right context
of each word in a sentence and this fact increases considerably its ability to
capture contextual information. This approach, called bidirectional, allows
BERT to better grasp intricate linguistic nuances and understand the con-
textual meaning of words in a given sentence.
It is a very versatile and powerful tool instead, its pre-trained nature enables
fine-tuning on specific tasks with minimal additional training data. Moreover,
powered by the Transformer architecture, BERT enables parallel processing
of words, facilitating more efficient and effective language understanding.

9

Fundamentals of DeepNLP

BERT, Figure 2.2, has quickly become a cornerstone in both academic re-
search and industrial applications, due to its remarkable performance across
various NLP tasks, as sentiment analysis, named entity recognition, and ques-
tion answering.

Figure 2.2: BERT: pre-training and fine-tuning procedures [10].

10

Fundamentals of DeepNLP

2.3 Language Models

Language Models (LMs) aim at predicting the next word in a sentence given the
preceding words.
To be able to accurately predict a word in a sequence, LMs need to encode both
the semantic and syntactic roles of words in context. The knowledge acquisition
bottleneck is not an issue for LMs, since they can be trained on a multitude of raw
texts in an self-supervised manner. In fact, extensive models can be trained with
LM objectives and then transferred to specific tasks.
RNN-based LMs rely on an LSTM-based encoder, since LSTMs are known to
be able to capture word order to a good extend. Also, LSTMs are capable of
combining word representations in a more reasonable manner, assigning higher
weights to words that are semantically more important than others in the context.

Given a sequence of N tokens, (t1, t2, ..., tN), a forward LM computes the prob-
ability of the sequence by modeling the probability of token tk given the history
(t1, ..., tk−1):

P (t1, t2, ..., tN) =
NÙ

k=1
P (tk|t1, ..., tk−1)

A backward LM is similar to a forward LM, except it runs over the sequence in
reverse, predicting the previous token given the future context (tk+1, ..., tN):

P (t1, t2, ..., tN) =
NÙ

k=1
P (tk|tk+1, ..., tN)

A bidirectional LM combines both a forward and backward LM in order to have
the sense of both the next and the previous words. It trains the forward and
backward LMs jointly.

For example in the TagLM model, proposed in [26], a multi-layer bidirec-
tional LSTM (BiLSTM) sequence encoder on monolingual texts, has been trained.
TagLM is the precursor of ELMo (Embeddings from Language Models), proposed
in [27].
ELMo is the principal model for the deep contextualized word representation and
it utilize a bidirectional LSTM network. Figure 2.3 provides a high-level illustra-
tion of how ELMo embeddings are constructed. A residual connection between
the LSTM layers enables the deeper layers to closely examine the original input
and to allow the gradients to efficiently backpropagate to the initial layers.

The model is trained on large amounts of texts with the language modeling
objective: predicting the next token in a sequence of tokens. The trained model

11

Fundamentals of DeepNLP

Figure 2.3: ELMo high-level illustration [4].

is then used to derive contextualized embeddings that can be used as input for a
variety of NLP systems.

Several methods exist for merging the outputs of the ELMo model, i.e., the hid-
den states of the two BiLSTM layers and the context-independent representation.
One may select only the top layer output or concatenate the representations from
the top-n layers to have long vectors for each token, to be fed as inputs to an NLP
system. One can also learn a weighted combination of these layers, based on the
target task, or concatenate other static word embeddings with ELMo embeddings.
To integrate ELMo into the supervised model, we initially freeze the weights of the
BiLSTM. Subsequently, for each task, we train task-dependent softmax weights
to combine the layer-wise representations into a unified vector. As a matter of
fact, once pre-trained, the biLSTM can compute representations for various task.
Fine tuning the biLSTM on domain specific data has proven effective, resulting in
notable reductions in perplexity and improvements in performance for subsequent
tasks.

12

Fundamentals of DeepNLP

2.4 Sequence-to-Sequence Models
Sequence-to-Sequence models (seq2seq) represent a powerful class of neural net-
work architectures designed for convert sequences of items (word, letters, time
series, etc.) from one domain to sequences in another domain.
The principal NLP tasks involving sequential data, such as machine translation,
summarization, and text generation.

Developed to handle input and output sequences of varying lengths, these models
consist of two main components: an encoder and a decoder.

• The Encoder processes the input sequence, converting it into a fixed-size
vector, called context vector or encoding. It processes the input data step by
step, typically using RNNs or variants like LSTM networks or gated recurrent
units (GRUs).
The generated context vector captures the essential information of the input
sequence and serves as input to the decoder.

• The Decoder, in turn, generates the output sequence based on the provided
context vector. It does so by predicting one element at a time, typically one
word, while considering the previously generated elements. During training,
the model learns to minimize the difference between its predictions and the
actual target sequence. The decoder often employs RNNs or similar architec-
tures, operating in a generative manner, producing one element of the output
sequence at a time.

Summarizing, the main difference between the encoder and decoder lies in their
function. The encoder’s goal is to capture the semantic information of the input
and it does not require initialization with an external state, as it directly processes
the input sequence. Conversely, the decoder is tasked with generating the output
sequence and is often initialized with the context vector produced by the encoder
as its initial hidden state.

Since the task is sequence based, both the encoder and decoder tend to use
some form of RNNs, LSTMs, etc. to effectively capture sequential dependencies
and relationships. The context vector can be of any size, as it basically represents
the number of hidden units in the encoder RNN.
RNNs are designed to consider two inputs: the current example they encounter and
a representation of the previous input. Consequently, the output at a given time
step (t) relies on both the current input and the input at the preceding time step
(t-1). This inherent design makes them particularly effective in tasks involving
sequences, as they preserve sequential information in a hidden state, which is then

13

Fundamentals of DeepNLP

utilized in subsequent instances. The last hidden state generated by the encoder
at the end of the sequence is actually the context sent to the decoder.

In Figure 2.4 there is an example of a neural machine translation where the
sequence is a series of words processed one after another.

Figure 2.4: An example of a sequence in a neural machine translation with an
unrolled view of the Seq2Seq model

The output sequence relies heavily on the context defined by the hidden state
in the final output of the encoder, making it challenging for the model to deal with
long sentences. In the case of long sequences, there is a high probability that the
initial context has been lost by the end of the sequence.
The solution to this problem is provided by employing the "attention" technique,
which allows the model to focus on different parts of the input sequence at every
stage of the output sequence allowing the context to be preserved from beginning
to end.

14

Fundamentals of DeepNLP

2.5 The Attention Mechanism
The Attention mechanism is a pivotal innovation in the field of neural network
architectures, first presented in the paper Attention is All You Need [41].
Its primary purpose is to enhance the model’s ability to focus on specific parts of
the input sequence when making predictions or generating outputs.

In traditional sequence-to-sequence models, such as those based on RNNs, the
entire input sequence is typically summarized into a fixed-size context vector. How-
ever, this approach may lead to information loss, especially in long sequences. The
Attention mechanism addresses this limitation by allowing the model to dynam-
ically weight the importance of different parts of the input sequence, allocating
more attention to relevant segments.
In essence, the Attention mechanism works by assigning attention scores to dif-
ferent elements of the input sequence. These scores are then used to compute a
weighted sum, creating a context vector that reflects the model’s focus on specific
parts of the input. This adaptive attention mechanism proves particularly ben-
eficial in tasks like machine translation, where aligning words in the source and
target languages is crucial.

The introduction of Attention has significantly improved the performance of
sequence-to-sequence models, enabling them to handle longer sequences more ef-
fectively and capture intricate dependencies within the data. This mechanism
has become a fundamental building block in many state-of-the-art neural network
architectures.

Formulation of the attention mechanism
An attention model differs from a classic sequence-to-sequence model in two main
ways. First, the encoder passes a lot more data to the decoder, indeed, instead
of passing only the last hidden state of the encoding stage, the encoder passes
all the hidden states to the decoder. Second, the context vector is generated at
every time step in the output sequences, as a weighted sum of the input hidden
states. So, at each time instance, the generated context vector is combined with
the hidden state vector by concatenation and this new attention hidden vector is
used for predicting the output.
These attention scores are the output of an additional neural network model known
as the alignment model, which is trained jointly with the initial seq2seq model.
The alignment model scores, for every input, how well its hidden state (input)
matches with the attention hidden state (previous output). Therefore, it aligns
source and target sequences, instead of compressing the key information about the

15

Fundamentals of DeepNLP

source sentence into a fixed-size vector. Its aim is minimize the information loss
from long sentences, avoiding missing long-term dependencies.
The last step is made by a softmax function that take all these scores and return
the attention score for each input. At this point, we know which parts of the input
sentence are the most important for the prediction and which are not.

In [41] the authors introduced the Scaled Dot-Product Attention where the input
consists of queries and keys of dimension dk, and values of dimension dv. In this
case the dot product is between the query and all the keys and then is divided by√

dk. The last passage is always the application of the softmax function that give
as the weights on the values.
In practise, the attention function is computed on a set of queries simultaneously,
packed together into a matrix Q. The keys and values are also packed together
into matrices K and V.

attention(Q, V, K) = softmax
A

QKT

√
dk

B
V ∈ Rn×v

An attention function can be described as mapping a query and a set of key-
value pairs to an output, where the query q, keys k, values v, and output are all
vectors. The output is computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function of the query with
the corresponding key.

attention(q, k, v) =
Ø

i

similarity(q, ki) · vi

The similarity scores Si can be defined in different ways, here some examples:

• Additive attention Si = w3 tanh(wT
2 q + wT

1 ki)

• Dot product attention Si = qT ki

• Scaled dot product Si = qT ki√
dk

These scores will be normalized with the softmax function in order to sum to 1:

pi = softmax(Si)

So, at the end, the attention score v is computed as the weighted sum of the value
vectors vi weighted by their scores pi:

z = attention(q, k, v) =
Ø

i

pivi

16

Fundamentals of DeepNLP

Multi-Head Attention

Sometimes it is useful to combine knowledge from different behaviors of the same
attention mechanism, such as capturing dependencies of various ranges (e.g., shorter-
range vs. longer-range) within a sequence. This is possible with the so-called
Multi-Head Attention mechanism that allow to jointly use use different represen-
tation subspaces of queries, keys, and values.

In [41] the keys, queries and values are linearly projected h times with different
learned linear projections to dk, dk, dv dimensions, respectively. These h projected
queries, keys and values are subsequently fed into attention pooling in parallel and
then the h attention pooling outputs are concatenated and transformed with an-
other learned linear projection to produce the final output. Each of the h attention
pooling outputs is called a head, from here the name Multi-Head Attention.

Given as parameters, W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and

W 0
i ∈ Rhdv×dmodel we can write this:

MultiHead(Q, K, V) = concat(h1, ..., hh)W 0

where h stands for ’head’ and

hi = attention(QW Q
i , KW K

i , V W V
i)

Multiple heads are concatenated using fully-connected layers and then learnable
linear transformations are performed, Figure 2.5 describes this mechanism.

Self Attention

The Self-attention mechanism is another attention mechanism that relate different
positions of a single sequence in order to compute a representation of the sequence.
It allows the model to weigh the importance of different elements within the input
sequence, enabling more effective capture of long-range dependencies and contex-
tual information.

Here an example to better understand the concept of self-attention.
Say that the input sentence is “The animal didn’t cross the street because it was
too tired”, we want to translate it, but, what does "it" in this sentence refer to?
Is it referring to the animal o to the street? It is an obvious question to a human
but it is not so simple for a machine. Self-attention is the technique that allows
to associate "it" with "animal". This is possible due to the fact that the model
processes each word (each position in the input sequence) and self-attention allows
it to look at other positions in the input sequence for clues that can help lead to

17

Fundamentals of DeepNLP

Figure 2.5: Left: Scaled Dot-Product Attention. Right: Multi-head attention [41].

Figure 2.6: Attention mapping, as we are encoding the word “it” in the top encoder
in the stack, part of the attention mechanism was focusing on “The Animal”, and
baked a part of its representation into the encoding of “it”.

18

Fundamentals of DeepNLP

a better encoding for this word. Figure 2.6 show the attention mapping for this
example.

Now we are going to explain how self-attention works, step-by-step. For a schema
of this attention mechanism see the example at Figure 2.7.

Figure 2.7: Example of self-attention in details [41].

• The first step in calculating self-attention is to create three vectors (query, key,
value) from each of the encoder’s input vectors, in this context, the embedding
of each word. These vectors are created by multiplying the embedding by
three matrices that we trained during the training process.

• The second step is to calculate a score. To calculate the self attention for a
specific word in a sentence, we need to score each word of the input sentence
against that word. The score determines how much focus to place on other
parts of the input sentence as we encode a word at a certain position. It
is calculated computing the dot product between the query vector and the
key vector of the respective word we’re scoring. For example, if we want the

19

Fundamentals of DeepNLP

self-attention for the first word in the input sentence, the first score would be
the dot product of q1 and k1, while the second score would be the dot product
of q1 and k2.

• The third step is to divide the scores by the square root of the dimension of
the key vectors

√
dk.

• The fourth step is to pass the result through a softmax function, which nor-
malizes the scores, so they are all positive and add up to 1.

• The fifth and sixth steps are to multiply each value vector v by the softmax
score and then sum up the resulting weighted value vectors.The intuition here
is to keep intact the values of the word(s) we want to focus on, and drown-
out irrelevant words (by multiplying them by tiny numbers like 0.001). This
produces the output of the self-attention layer at this position.

• The last step consists in sending the resulting vector along to the feed-forward
neural network.

Note that, as before, in the actual implementation the calculation is done in matrix
form for faster processing.

20

Fundamentals of DeepNLP

2.6 Transformers
Until mid-2017, RNNs were the optimal choice for encoding text sequences into
fixed-size representations. However, the introduction of the Transformer model,
revolutionized the field of NLP, introducing a new, substantially more powerful,
alternative for RNNs [4].

Before Transformers, the general belief was that it is possible to capture long-
range dependencies only using recurrence, so utilizing the so called RNN architec-
ture. What makes the Transformers interesting is that they capture long-range
dependencies without resorting to any sort of recurrence.
The Transformer architecture is a feed-forward model with no recurrence, its only
memory is based on the attention mechanism. Its architecture is based on the
encoder-decoder structure, similarly to RNN-based sequence models. However, in
this case, it do not receive input tokens sequentially (one token at a time) but it
takes all the tokens in the sequence at once and in parallel. This parallel func-
tionality makes the Transformer substantially more efficient than RNN, remaining
capable of capturing the long-distance dependencies.
Figure 2.8 provides an illustration of a Transformer model.

Figure 2.8: An example of a Transformer model used for translation. The model
is auto-regressive and has an encoder-decoder structure. The encoder and decoder
have six identical encoders and decoders, respectively [41].

The attention mechanism used by the Transformer is the self-attention method,
it is used to bake the “understanding” of other relevant words into the one it is
currently processing.

21

Fundamentals of DeepNLP

Transformer architecture
In this paragraph we are going to present the Transformer architecture, for a better
understanding see Figure 2.9.

As said before the Transformer is build on a encoder-decoder structure.

• Encoder
The Transformer encoder is a stack of multiple identical layers, where each
layer is composed by two sublayers. The first is a multi-head self-attention
pooling; here, queries, keys, and values are all from the outputs of the previous
encoder layer. The second sublayer is a position-wise feed-forward network.
Multi-head attention is performed on all words in the input sentence, where
each word is treated as a query. Then, the attention process continue as usual:
the attention between every position and every other position is computed and
a convex combination of the corresponding values is taken to perform a dot
product. Since it is a multi-head attention method, information from pairs
are merged together and the process is repeated multiple times.
In addition, there is also a residual connection that is employed around both
sublayers (inspired by the ResNet design). This residual connection is im-
mediately followed by a layer normalization. This layer normalizes values in
order to have zero mean and single variance, so that all outputs have the same
scale. This improve the convergence of the network, as it decreases the de-
pendencies between each layer and reduces the number of weight adjustments
in gradient descent.
As a result, the output of the Transformer encoder is a vector representation
for each position of the input sequence.

• Decoder
The Transformer decoder is also a stack of multiple identical layers with resid-
ual connections and layer normalizations. But in this case, the decoder inserts
a third sublayer between these two, known as the encoder-decoder attention.
In this sublayer, the queries are taken from the outputs of the previous de-
coder layer, and the keys and values are taken from the Transformer encoder
outputs. Instead for what concerns the specific decoder self-attention, queries,
keys, and values are all from the outputs of the previous decoder layer. In
order to preserve the auto-regressive property, each position in the decoder
is only allowed to attend to all positions in the decoder up to that position.
This property ensure that the prediction only depends on those output tokens
that have been generated.
As a result, the output of the Transformer decoder is a vector of floats.

22

Fundamentals of DeepNLP

• Last Layers
The vector of floats will be turned into words thanks to the final Linear layer,
followed by a Softmax layer. The Linear layer is a simple fully connected
neural network that produce a logits vector projecting the vector produced
by the decoder. The softmax layer turns those scores into probabilities. At
the end the cell with the highest probability is chosen, and the output for this
time step is the word associated with that cell.

Figure 2.9: Transformer model architecture [42].

23

Fundamentals of DeepNLP

2.7 Large Language Models

Before introducing the Large Language Models (LLM), we will briefly talk about
a general Language Model (LM).

A LM is a tool that model the generative likelihood of word sequences in order
to predict the probabilities of future or missing tokens (Figure 2.10). In practise,
given a sequence the LM returns a probability distribution over sequences of tokens
in a vocabulary.

Figure 2.10: Basic functions of a Language Model [46].

From a more mathematical point of view, we have a training sequence of tokens
(y1, ..., yn) and the model prediction at the time step t will be p(t) = p(∗|y1, ..., yt−1).
Since the true target, always at the same time step t, is p∗ = one − hot(yt), the

loss function will be Loss(p∗, p) = −p∗ log(p) = −
|V |Ø
i=1

p∗
i log(pi).

However, just one p∗ term is non-zero (the correct token) so the loss function will
become Loss(p∗, p) = − log(pyt) = − log(p(yt|yt−1)).

If we want a conditional text generation, we have to use the so called Au-
toregressive Language Models, that take into consideration the conditional
probability distribution p(xi|x1:i−1). Indeed, this conditional probabilities can be
estimated by an autoregressive model (like feedforward neural network).
The method utilized is the chain rule of probability:

p(x1:N) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xN |x1:N−1) =
NÙ

i=1
p(xi|x1:i−1)

Here an example in NLP field:

p(I, am, at, home) = p(I) · p(am|I) · p(at|I, am) · p(home|I, am, at)

24

Fundamentals of DeepNLP

Sometimes it is useful to have some sort of randomness in our model; in order
to introduce it we can use the temperature parameter. This parameter T > 0
controls the randomness we want from the LM:

• T = 0 the most likely token is deterministically chosen at each step i

• T = 1 the token is chosen not deterministically but it is sampled from the
pure language model using a normal distribution

• T = ∞ the token is not deterministic but it is sampled from the uniform
distribution over the entire vocabulary

To generate the entire sequence from an autoregressive LM with T > 0 we sample
one token at a time given the tokens generated so far, in this way:

for i = 1, ..., N : xi ∼ p(xi|x1:i−1)1/T

Note that when T is not equal to 1 the probability distribution need to be re-
normalized, otherwise the probabilities do not sum to one anymore.

In the case of conditional text generation, the prefix sequence is called prompt
while the generated part of the sequence is called completion.

Here an example of how this conditional text generation works. In Figure 2.11
we have a prompt composed by two words "I Like" and the estimated words from
the model.

Figure 2.11: Example of conditional text generation [1].

25

Fundamentals of DeepNLP

In the next two figure, we have the case with null temperature (T = 0) and
with a positive temperature (T > 0).
We can see that in the first case the chosen completion is one composed by the
most likely words, while in the second case, the output is not deterministic and
the model can also chose some words that are not the most likely.

Figure 2.12: Conditional text generation with Temperature = 0 [1].

Figure 2.13: Conditional text generation with Temperature > 0 [1].

26

Fundamentals of DeepNLP

Now we can present the Large Language Models.

These models are a groundbreaking NLP system with advanced language un-
derstanding and generation capabilities. They enable a wide range sophisticated
NLP tasks: text generation, machine translation, question answering, sentiment
analysis and ability to converse. Their versatility makes them valuable for both
research and practical applications.
The most famous LLMs are: GPT family (GPT-3, GPT-3.5, ChatGPT, GPT-4),
LaMDA & LaMDA 2, PaLM & PaLM 2, BLOOM, Galactica, LLaMA.

These models are definined "large" since they are trained on a massive amount
of data: terabytes of data so trillions of tokens. The sources from which these data
are taken are extremely various in term of languages, contexts, domains, ...
According to the training data the LLM is categorized as language-specif or mul-
tilingual and as domain-specific or general-purpose.
They are considered huge deep learning models since they are characterized by
tens or hundreds of billions of parameters, that enables the model to learn com-
plex patterns and relationships within vast amounts of data. The number of the
hyperparameters define the complexity of the model.

Many LLMs, including the GPT (Generative Pre-trained Transformer) series,
are built on transformer architectures. As describes in the precedent section, the
transformer architecture enables effective processing of sequential data through
attention mechanisms, allowing the models to capture long-range dependencies.
The LLM architecture can be encoder-decoder or decoder only. All state-of-the-
art language models over 100 billions of parameter are autoregressive decoder-
only models. It is proved that they achieve better zero-shot performance than the
encoder-decoder architectures.

– In the case of a Causal Decoder-only architecture, the conditioning phase is
based on past token only, the next token is predicted in sequence and all
tokens are processed in an equivalent manner.

– In the case of a Non-causal Decoder-only architecture, the self-attention mask
is modified so that attention is not restricted to past tokens. In this case
there is a non-causal mask that identify the parts of the input sequence that
correspond to conditioning information.

– In the classic case of an Encoder-Decoder architecture the prediction of the
target sequence is conditioned by the encoder output. It is usually based on
BERT-like encoders.

LLMs typically undergo a two-step process: pre-training and fine-tuning. In the

27

Fundamentals of DeepNLP

pre-training phase, the model is trained on a large corpus of text using self-
supervised and/or semi-supervised learning, instead in the fine-tuning phase the
model is trained on specific tasks in order to adapt it to particular applications.

There are mainly three different LLM pre-training objectives:
1. Full Language Modeling: given the previous token, the model is trained to

predict the following one
2. Prefix Language Modeling: in this case, given the input, a prefix is estab-

lished and on this part the attention mask is allowed to be non-causal. The
model is then trained to forecast each token beyond the prefix, considering
all preceding tokens.

3. Masked Language Model: some of the tokens in the input text are re-
placed/corrupted with a special mask token. The model is trained to pre-
dict/reconstruct the missing/corrupted tokes.

These cases are schematically illustrated in the Figure 2.14. As general rule, for
pre-training the prefix is commonly chosen random while for inference the prefix
is the input text.

Figure 2.14: LLM pre-training objectives [43].

LLMs excel in transfer learning, where knowledge is first gained from the pre-
training phase on a broad range of tasks and then is applied to new, specific
tasks. This ability to transfer knowledge contributes to improve their versatility
and effectiveness in various NLP applications.

Research in the field of LLMs is new and very dynamic, there is a continue ongo-
ing of efforts to improve efficiency, reduce biases, and enhance the interpretability
of these models.
Although the LLMs represent a truly powerful tool in the NLP field their develop-
ment and deployment raise some concerns, for example some ethical ones for the
biases present in training data and for the potential misuse of generated content.
Researchers are actively working to tackle these issues and promote responsible AI

28

Fundamentals of DeepNLP

practices.

In addition, LLMs also differ in terms of being open source or proprietary, ac-
cording primarly to their accessibility and ownership. Open-source LLMs, like
LLaMA, allow public access to their source code, fostering collaboration and in-
novation within the developer community and promoting transparency and cus-
tomization. In contrast, proprietary LLMs, like GPT-4, are owned by specific
companies, limiting access to the underlying code and often requiring licensing
fees. They may offer additional support, security and exclusive features, all at the
expense of the owning organization.

2.7.1 LLM Adaptation
Adaptation is the process of customizing or fine-tuning a LM o LLM to better
suit specific tasks, domains, or datasets. It is a powerful approach to leverage the
general language understanding capabilities of pre-trained models while tailoring
them to specific use cases, thereby enhancing their effectiveness and applicability
in various domains.
The general schema of this process is in Figure 2.15, it takes as input, a natural
language description and a set of training instances (input-output pairs).

Figure 2.15: Schema of a LLM adaptation process [34].

In our analysis, we will consider two main aspects: training and prompting.

Training

In this section we will talk about training via supervised learning, that involves
providing a model with labeled examples, enabling it to learn patterns and asso-
ciations between inputs and corresponding desired outputs.
LLM adaptation through training poses challenges, particularly in dealing with
data overfitting due to the limited number of training instances relative to the
network complexity. Another problem arises from the task-agnostic nature of
LLMs during pre-training, where they are trained on general-purpose. Instead,

29

Fundamentals of DeepNLP

downstream tasks, can vary significantly, and the generic next token prediction
can be not sufficient.
To address these challenges, several key strategies are employed:

• Formatting: involves utilizing a specific formatting style tailored to the down-
stream task, ensuring the model comprehends task-specific structures.

• Topic shift: Topic shift adaptation customizes the LLM to a specific domain,
aligning it more closely with the task requirements.

• Temporal shift: temporal shift adaptation is employed when the downstream
task necessitates a new model that was not available during the pre-training
phase.

The principal methods to training via a supervised learning are these:

• Probing
Developing a task-specific model utilizing the language model as latent fea-
tures by training a prediction head on the top of a frozen language model,
extracting information from the last layer of representation to generate out-
put.

• Fine-tuning
Starting the training process with the language model and updating it based
on specific instances, using the language model parameters as initialization
for optimization. This is an expensive procedure because it necessitates stor-
ing a specialized LLM for each downstream task. But, despite being more
expensive, it proves to be more effective than probing, often leveraging rein-
forcement learning to incorporate human preferences.

• Lightweight fine-tuning
Optimizing only a select few parameters, this method combines aspects of
both fine-tuning and probing, achieving comparable expressivity to full fine-
tuning without the need to store the complete language model for each task.

Prompting

In this context, "prompting" refers to the way input is provided to the model to
generate desired outputs. It involves presenting a specific instruction or query,
often referred to as a "prompt", to guide the model in producing the intended re-
sponse, called "completion". The choice and formulation of prompts play a crucial
role in shaping the model’s behavior and output.
Prompting can involve providing a specific question or statement to the language

30

Fundamentals of DeepNLP

model, and the model generates a relevant response based on its learned patterns
and understanding. The effectiveness of prompting is essential in fine-tuning LLMs
for specific tasks, as it helps tailor the model’s behavior to meet the requirements
of a given application or domain. Adjusting prompts allows researchers and prac-
titioners to influence the model’s output and steer it towards desired outcomes.
In Figure 2.16 there is an example of multi-task prompting for text summarization
and machine translation.

Figure 2.16: Prompting on multi-tasks [20].

There are basically two ways of prompting, the zero-shot and the few-shot,
based on the number of examples provided in the prompt.

In zero-shot prompting, the prompt is presented with a task or query without
any specific examples or training instances related to that task. The model is
expected to generalize its pre-existing knowledge and learned patterns to generate
a response or perform the given task. This method relies solely on the model’s
ability to transfer its understanding from the pre-training phase to novel tasks,
demonstrating its capacity for broad applicability and adaptability.

Otherwise, few-shot prompting involves providing the prompt with a limited
number of examples or instances related to the task at hand. These examples
serve as a partial training set, offering the model additional context and guidance
for the specific task. Few-shot prompting is a middle ground between zero-shot
and full fine-tuning, allowing for task-specific adaptation while leveraging the pre-
trained knowledge of the model. It strikes a balance between generality and task
specificity, making it a valuable approach for various applications where a small
amount of task-specific information is available.

In addition, there is another prompting method known as the Chain-of-Thought
prompting presented in [44]. This technique involves crafting prompts to guide the
model through a logical flow of reasoning, aiming to refine the model’s understand-
ing by leading it through a structured process for more nuanced and context-aware

31

Fundamentals of DeepNLP

responses. The sequential nature of Chain-of-Thought prompting simulates a log-
ical reasoning process, enhancing the model’s ability to generate coherent and
contextually relevant outputs. The goal is to induce the model to engage in com-
plex reasoning capabilities through intermediate steps. This method proves par-
ticularly useful for tasks such as tackling complex arithmetic and understanding
commonsense. An example is present is Figure 2.17.

Figure 2.17: Example of a Chain-Of-Thought prompting [46].

32

Fundamentals of DeepNLP

2.7.2 LLaMA 2
In this section, we will present the LLM utilized for our experiments, LLaMA 2.
The name LLaMA is derived from the Spanish phrase "Lenguaje de Computadora
Asistida por Medios Aprendizaje" (Computer-Assisted Language Learning), which
reflects the model’s ability to learn and improve through large amounts of text
data.

This language model is detailed in [40] and consists of a collection of pre-trained
and fine-tuned LLMs where the range of the parameters is between 7 and 70 billion.
LLaMA 2 is an updated version of LLaMA 1 [39], trained on a new combination
of publicly accessible data. Additionally, the size of the pretraining corpus is
augmented by 40%, doubled the model’s context length, and a grouped-query
attention has been implemented.
LLaMA 2-Chat is a refined version of LLaMA 2 fine-tuned to excel in dialogue use
cases, Figure 2.18.
Both for LLaMA 2 and LLaMA 2-Chat, three variants have been released, each
with 7B, 13B, and 70B parameters, respectively. A 34B variant has also been
trained for LLaMA 2, but it has not been released yet.

Figure 2.18: Training of LLaMA 2-Chat [40].

Performance

We have chosen this model because it is an open-source solution that consistently
outperforms other open-source chat models on various benchmarks.

In Table 2.19 are reported the results, on standard academic benchmarks,

33

Fundamentals of DeepNLP

for the LLaMA 1 and LLaMA 2 base models and other two open-source mod-
els: MosaicML Pretrained Transformer (MPT) and Falcon models. The chosen
benchmarks are grouped into these categories: Code, Commonsense Reasoning,
World Knowledge, Reading Comprehension, Math, Popular Aggregated bench-
marrks (MMLU, BBH, AGI Eval). The evaluations present in the table are done
utilizing the LLaMA internal evaluation library. From the table we can clearly see
that LLaMA 2 outperform LLaMA 1 and the other open-source LMs

Figure 2.19: Comparison with open-source base models: overall performance
across various grouped academic benchmarks [40].

In addition, we can also compare LLaMA2 70B, with some closed-source models
like GPT 3.5, GPT4, PaLM and PaLM-2-L. But, as shown in Table 2.20, in this
case there is a significant gap in some performance.

Figure 2.20: Comparison with closed-source base models: performance on aca-
demic benchmarks [40].

Especially for natural generation tasks, human assessment is considered the
ultimate benchmark for evaluating models, their evaluation is the so-called ’gold’
one. Therefore, to assess the quality of major dialogue model versions, the author

34

Fundamentals of DeepNLP

of LLaMA 2 enlisted human evaluators to rate LLaMA 2-Chat against other lan-
guage models. The comparison involved over 4,000 single and multi-turn prompts,
including both open-source models (Falcon, MPT, Vicuna) and closed-source mod-
els (Chat-GPT, PaLM).
The results are shown in Figure 2.21, and we can see that LLaMA 2-Chat models
show superior performance, also with a significant margin, compared to open-
source models across both single-turn and multi-turn prompts [40].

Figure 2.21: Comparison with open and closed source base models: human evalu-
ation results [40].

Pre-training

The development of the LLaMA 2 models is based on pretraining method outlined
in LLaMA 1 [39]. The authors optimized that auto-regressive transformer, imple-
menting various modifications to enhance performance. These included conducting
a more robust data cleaning, revising data combinations, training on 40% more to-
tal tokens, doubling the context length, now 4096, and integrating grouped-query
attention (GQA) to improve inference scalability.

The training corpus for this model consists of a fresh blend of data from pub-
licly accessible sources, deliberately excluding any data from Meta’s products or
services. Special attention was given to filtering out data from sites with a high
concentration of personal information. Training was conducted on a substantial 2
trillion tokens of data, striking a balance between performance and cost.
The study adopts the pre-training settings and model architecture largely from
LLaMA 1, employing the standard auto-regressive transformer architecture with

35

Fundamentals of DeepNLP

pre-normalization using RMSNorm, SwiGLU activation function, and rotary po-
sitional embeddings.
Also, the tokenizer is the same as LLaMA 1, and the final vocabulary size is 32k
tokens.

In Figure 2.22 we show the training loss for LLaMA 2 models. We can observe
that there is not yet any sign of saturation after pre-training 2 trillion tokens.

Figure 2.22: Training Loss for LLaMA 2 models [40].

Fine-tuning

LLaMA 2-Chat was developed over many months of research and continuous refine-
ment using various alignment techniques, such as instruction tuning and RLHF.
This process demanded considerable computational power and annotation efforts.
To fine-tune this model, various techniques were employed, including supervised
fine-tuning (SFT), iterative reward modeling, Reinforcement Learning with Hu-
man Feedback (RLHF), and the Ghost Attention, a novel technique.

The authors of LLaMA 2 started the Supervised Fine-Tuning (SFT) stage
with publicly available instruction tuning data, as utilized previously in LLaMA
1.
As first step they focused on collecting several examples of high-quality SFT data.
They prioritized quality rather than quantity, for example from the third-party

36

Fundamentals of DeepNLP

datasets they excluded millions of examples due insufficient diversity and qual-
ity and selected only the best ones. As explained in [47], a limited set of clean
instruction-tuning data can be sufficient to achieve a high level of quality. In the
case of LLaMA 2, using a set of 27,540 SFT annotations proved to be adequate.
To confirm the quality of the data, the authors reviewed a set of 180 examples,
conducting a manual comparison between the annotations produced by humans
and those generated by the model. Interestingly, they discovered that the outputs
sampled from the resulting SFT model frequently demonstrated competitiveness
with SFT data manually created by human annotators. This observation indi-
cates the potential to reconsider and allocate additional annotation efforts toward
preference-based annotation for RLHF.

The Reinforcement Learning with Human Feedback (RLHF) is a proce-
dure of model training that involves fine-tuning a language model to better match
human preferences and instructions.
Data is collected to represent empirically sampled human preferences, with human
annotators choosing their preferred output among two model-generated options.
This human feedback is then utilized to train a reward model, enabling the learn-
ing of patterns in the preferences of human annotators and automating subsequent
preference decisions.
The procedure is imposed as follows. The annotators first write a prompt and
then choose between the two model responses. In addition to this selection, they
are also required to provide the degree to which they prefer their choice over the
alternative, choosing between: significantly better, better, slightly better, or negli-
gibly better/ unsure.
Given a prompt, two different responses are sampled from two model variants,
where the temperature hyper-parameter varies.

In this evaluation the focus is also on helpfulness and safety.
Helpfulness pertains to how effectively responses fulfill users’ requests and provide
requested information. Safety involves determining whether LLaMA 2-Chat’s re-
sponses are unsafe; for instance, providing detailed instructions on making a bomb
could be considered helpful but is unsafe according to safety guidelines.
A safety label is collected during the safety stage and the model is categorized into
one of these three categories: both responses are unsafe, both responses are safe
or one response is safe (the preferred one) while the other not.

The reward model evaluates the quality of a model’s response by taking into
account both the response itself and the prompt it was given, including any rel-
evant context from previous interactions. It then assigns a numerical score to
indicate aspects such as helpfulness and safety.

37

Fundamentals of DeepNLP

By leveraging response scores as rewards, LLaMA 2-Chat can be optimized during
RLHF to achieve better human preference alignment, as well as improved helpful-
ness and safety.
Researchers have observed that helpfulness and safety can occasionally exhibit
a trade-off, posing a challenge for a singular reward model to excel in both as-
pects. In response to this challenge, two distinct reward models were trained: one
optimized for helpfulness (Helpfulness RM) and another for safety (Safety RM).

The authors made an analysis of the scaling trends in the reward model, in
terms of data and model size. The outcomes are showed in Figure 2.23, as ex-
pected larger models achieve higher performance with a comparable data volume.
Notably, the scaling performance has not reached a plateau with the current train-
ing data, indicating potential for further enhancement with additional annotations.

Figure 2.23: Scaling trends for the reward model [40].

To train the reward model, the gathered human preference data is transformed
into a binary ranking system, indicating whether each option was chosen or rejected
and ensuring that the chosen option consistently receives a higher score than its
counterpart.
Given Σ the model weights, we can write rΣ(x, y) as the scalar score output for
prompt x and completion y. Given yc the chosen response and yr the rejected one,
we can write the binary ranking loss as follows.

Lranking = − log(σ(rΣ(x, yc) − rΣ(x, yr)))

The preference ratings, categorized into a four-point scale (e.g., significantly
better), are leveraged to explicitly guide the reward model in order to assign more
discrepant scores to generations with greater differences.

38

Fundamentals of DeepNLP

To do so, an additional margin component m(r), that is a discrete function of the
preference rating, is introduced in the loss.

Lranking = − log(σ(rΣ(x, yc) − rΣ(x, yr) − m(r)))

In a dialogue setting, certain instructions are intended to be applicable across
all conversation turns. When these instructions were given to LLaMA 2-Chat,
the subsequent responses were expected to consistently respect the constraint. As
shown in Figure 2.24, after a few turns of dialogue, the RLHF models often show
a tendency to lose the initial instruction.
The Ghost Attention (GAtt) is a simple method that can address this limi-
tation. It manipulate the fine-tuning data to guide the attention focus through
a multi-stage process. GAtt empowers dialogue control across multiple turns, as
depicted in Figure 2.24.

Figure 2.24: Left: Issues with multi-turn memory. Right: improvement with GAtt
[40].

39

3 Figurative Language Understand-
ing

In this chapter, we will talk about some aspects of one of the most challenging
tasks in the NLP field: Figurative Language Understanding.
Following an initial introductory section, we will present the FLUTE dataset,
which is the dataset utilized in our experiments. Subsequently, we will delve into
the FigLang 2022 competition, known as the Shared Task on Understanding Fig-
urative Language, which served as the cornerstone for our thesis research. Finally,
we will introduce the DREAM method, a technique that we will utilize in the
latter part of our research.

3.1 Introduction
Figurative language is widely present across various types of communication, in-
cluding novels, poems, films, scientific literature, and social media discussions. Its
common usage aims to express closeness, humor, strong emotions, or veiled polite-
ness.
The comprehension of figurative language poses a formidable challenge in NLP, as
the intended meaning of an utterance often diverges significantly from the literal in-
terpretation of its constituent words. Figurative language, encompassing elements
like metaphors, similes, and sarcasm, holds a crucial role in enriching human com-
munication by enabling the implicit expression of complex ideas and emotions.
Despite the advancements in Transformer-based LMs, which have grown in scale,
they still struggle to grasp the nuances of the physical world, cultural knowledge,
and the social context embedded in figurative language.

In recent years, there has been a concerted effort to develop benchmarks specifi-
cally dedicated to figurative language understanding. Typically these benchmarks
focus on Natural Language Inference (NLI), in particular on the Recognizing Tex-
tual Entailment (RTE), i.e. the task of determining whether a given sentence
(context/premise) is likely to entail another (hypothesis).
As an illustration, the authors of [6], leveraged five pre-existing datasets, anno-
tated for different forms of figurative language, to introduce a collection of RTE
datasets specifically centered around the theme of figurative language. In this spe-
cific case the authors investigated three specific types of rhetorical figures: similes,

40

Figurative Language Understanding

metaphors, and irony.
The authors evaluated the ability of standard neural RTE models in capturing
these aspects of figurative language and the results demonstrated that, although,
systems may capture some aspects of various figures of speech, they often struggle
in situations where the interpretation hinges on pragmatic inference and reasoning
about worldly knowledge.

One important building block in this field is the IMPLI (Idiomatic and Metaphoric
Paired Language Inference) dataset, [37]. It is a collection of paired english sen-
tences spanning idioms and metaphors.
The dataset encompasses both silver pairs (24k), generated through semi-automated
methods, as well as hand-crafted gold pairs (1.8k). Both are designed to represent
both entailment and non-entailment situations. Each pair comprises a sentence
containing a figurative expression (idioms/metaphors) and a corresponding literal
counterpart, formulated to be either entailed or non-entailed by the figurative
expression. In Figure 3.1 there are some examples .

Figure 3.1: Examples of entailment (→) and non-entailment pairs (↛) from the
IMPLI datase [37].

The researchers employ IMPLI to assess NLI models, specifically those de-
rived from fine-tuning RoBERTa on the extensively utilized MNLI dataset. Subse-
quently, the study demonstrates that these models exhibit proficiency in accurately
identifying entailment relationships between figurative expressions and their literal
equivalents. However, their performance diminishes notably when confronted with
similarly structured examples intentionally designed to be non-entailing pairs.

Similar to general NLI datasets, these benchmarks are susceptible to spurious
correlations and annotation artifacts, leading to challenges for LLMs that exhibit
near-human performance in in-domain scenarios but become brittle when faced
with out-of-domain or adversarial examples.
To address these issues, the research in NLI emphasizes the importance of not only

41

Figurative Language Understanding

accurately predicting entailment/contradiction labels but also providing natural
language explanations that enhance the interpretability of the model’s decisions
for end-users. This approach has led to the creation of novel datasets, such as
e-SNLI [5], which incorporates natural language explanations.

In response to this gap, in [7] was introduced FLUTE, a dataset consisting of
9,000 instances of figurative NLI with accompanying explanations. The dataset
spans four categories: Sarcasm, Simile, Metaphor, and Idioms, providing a valuable
resource for evaluating the true understanding of expressions within the realm of
figurative language.

42

Figurative Language Understanding

3.2 FLUTE Dataset

As discussed earlier, the comprehension of figurative language has been cast within
the framework of NLI, in particular RTE, but, existing benchmarks exhibit issues
like spurious correlations and annotation artifacts. To address this challenge, ef-
forts in NLI have generated explanation-based datasets like e-SNLI, aiming to
scrutinize the validity of language models’ reasoning. Unfortunately, there is a
lack of comparable data for figurative language, hindering the evaluation of gen-
uine understanding of such expressions. In response to this gap, Chakrabarty et
al. have introduced FLUTE dataset [7].

This dataset comprises about 9,000 high-quality literal, figurative sentence
pairs, each accompanied by labels indicating entailment or contradiction, along
with corresponding explanations. The benchmark covers four categories of figura-
tive language: Sarcasm, Simile, Metaphor, and Idiom.
A table with an example for each type of figure is present in Figure 3.2, while the
distribution inside the dataset of such rhetorical figures is presented in Table 3.1.
Please note that since sarcasm conveys the opposite of the literal meaning, the
dataset should exclusively contains contradictions. Consequently, the authors also
produce a literal hypothesis that aligns with the literal premise.

Type Entails Contradicts Total
Sarcasm 1339 2678 4017
Simile 750 750 1500

Metaphor 750 750 1500
Idiom 1000 1000 2000

3839 5178 9017

Table 3.1: FLUTE dataset distribution

The dataset was build by employing with a scalable model-in-the-loop approach,
that is a combination of few-shot prompting with GPT-3 and crowdsourcing, in
this case from Amazon Mechanical Turk (AMT).
In the context of figurative language, the authors of [14] demonstrated that crowd-
workers excel at making minimal edits to transform a sarcastic sentence into a
literal one, often employing techniques like negation or antonyms. However, this
ease of transformation can result in examples that are easily categorized by LLMs.
To construct FLUTE, the authors relied on the capabilities of GPT-3 to generate
a wide range of high-quality literal text, including paraphrases, contradictions,
and explanations. Specifically, they did few-shot prompting with minimal human
involvement, such as crowdworkers making slight adjustments to convert a literal

43

Figurative Language Understanding

Figure 3.2: Examples from FLUTE: For each hypothesis (figurative text) are re-
ported two premises, one is the literal entailment (E) and the other one is the
contradiction (C). There are also the associated explanations [7].

sentence into a sarcastic one and experts overseeing and making minimal edits to
the GPT-3 output to ensure quality control.

As said before, FLUTE consists of pairs of <premises, hypothesis>, i.e. <literal
sentence, figurative sentence> with the corresponding label, entailment or contra-
diction, and the explanation. To create all these data, premise-hypothesis pairs for
each type of figurative language and the associated explanations, the model-in-the-
loop method is used. The technique differs slightly regarding sarcasm compared
to the other three rhetorical figures.
The following figures illustrate the model’s schema in both cases.

44

Figurative Language Understanding

(a) Model in the Loop for FLUTE: Simile, Idiom, Metaphor [7]

(b) Model in the Loop for FLUTE: Sarcasm [7]

45

Figurative Language Understanding

3.3 FigLang 2022 Shared Task on Understanding
Figurative Language

In the Third Workshop on Figurative Language Processing at EMNLP 2022 (FigLang
2022); Tuhin Chakrabarty, Arkadiy Saakyan, Debanjan Ghosh and Smaranda
Muresan proposed a shared task on Understanding Figurative Language [8].

Over the years, numerous benchmarks have focused on understanding figura-
tive language, typically treating "understanding" as a task of RTE, determining
whether one sentence (premise) entails or contradicts another (hypothesis). In this
instance, a novel task has been introduced, necessitating not only the generation
of the label (entail/contradict) but also the generation of a plausible explanation
for the prediction.
The hypothesis consists of a sentence incorporating figurative language expres-
sions (such as metaphor, sarcasm, idiom, or simile), while the premise is a literal
sentence conveying the literal meaning. Both the entail/contradict label and the
explanation are associated with the interpretation of the figurative language ex-
pression.

For instance given a
Premise: His heart within him is fully rotten.
Hypothesis: And his heart within him fluttered.

we need an output that consists of a
1) Label = Contradiction
2) Explanation = Fluttering would suggest that the man’s heart is beating

rapidly, while rotten would suggest that the man’s heart is dead or no longer
functioning.

The shared task is based on the FLUTE dataset relased by [7], comprising
NLI pairs <premise, hypothesis> incorporating figurative language. Each NLI
instance in the dataset is accompanied by free-text explanation. From this dataset,
the challenge organizers have built a Test set of 1500 examples, by randomly
selecting 750 instances from the sarcasm datasets, and 250 examples each from
simile, metaphor and idiom datasets. They have left the division of the remaining
data between the Train and Validation sets arbitrary.

One important feature of this data is that the labels and explanations are
specifically related to the figurative language employed (i.e., metaphor, simile,
idiom), rather than other components of the sentences, as you can see from figure
3.4.

46

Figurative Language Understanding

Figure 3.4: Example of how the explanations were constructed [8].

The dataset presents challenges inherent to grasping figurative language, de-
manding both relational reasoning with background commonsense knowledge and
a detailed understanding of the language’s nuances.
Figurative expressions are frequently complex, introducing implicit meanings that
necessitate multiple reasoning steps for interpretation. In the instance in Fig-
ure 3.5, the hypothesis conveys sarcasm, and to grasp the contradiction between
the literal premise and the sarcastic hypothesis, model must reason step-by-step
thinking about everyday concepts using common-sense knowledge.

In the next figure 3.6, we have an example of an idiom and the model is supposed
to possess the capability to understand figurative expressions that are unseen, and
these expressions may be non-compositional.

To validate the effectiveness of the dataset, the author conducted a series of
experiments aimed at developing models capable of understanding figurative lan-
guage. As part of the setup, they trained a T5 model to simultaneously predict
the label (entail/contradict) and provide an explanation. They compared two sce-
narios: one where T5 was trained on the e-SNLI dataset and another where it was
trained on FLUTE. The results demonstrated that the model trained on FLUTE
produced higher-quality explanations compared to the other one.

47

Figurative Language Understanding

Figure 3.5: Sarcasm example [8].

Figure 3.6: Idiom example [8].

48

Figurative Language Understanding

3.3.1 Participants and Results

The participants at the FigLang 2022 were able to improve upon provided base-
lines and in this section we are going to briefly present some of the solutions,
summarizing the submitted systems and discussing the results.

The challenge started with the release of training data and auxiliary scripts to
all registered participants. Participants were given the option to either create a
validation set by further partitioning the training data for hyper-parameter tuning
or to opt for cross-validation using the entire training data.
They began evaluating the submissions after the release of the Test set. Among all
the various submissions, only five papers have been approved for the Workshop.
These predictions were submitted and evaluated against the ground truth of the
test subdata.
The evaluation was done in two steps, the first one is by automatic metrics, that
calculated an average between BLEURT and BERTscore at three thresholds, as
explain in Chapter 5. The second one is by an human evaluation, using the MTurk
platform.

Below is a summary of the systems used by the top 5 participants in the challenge.

1. FLUTE [7]
The system described in this paper is the baseline of the challenge.
The authors have used a T5-3b model trained on more than 7000 examples.
In order to solve the tasks, they used this natural language instruction:
"Does the sentence "P" entail or contradict the sentence "H"? Answer between
"Entails" or "Contradicts" and explain your decision in a sentence."

2. DREAM-FLUTE [16]
This team, known as TeamCoolDoge, is the winner of the competition.
The key idea of their approach is the utilization of DREAM [15]. DREAM
is a system that, given a sentence, is able to generate an elaboration of the
situation, adding some context information. The author used DREAM on
the premise and the hypothesis helping improve the model’s ability to decide
if there is an entailment or not and the ability to judge so creating a pertinent
explanation.
This approach has proven to be highly effective for the situations involving
figurative language, where the intended meaning may be difficult to discern.
The DREAM system allows for diverse dimensions of scene elaboration, en-
compassing categories such as consequence, emotion, motivation, and social
norm. The winning submission rely on consequence elaboration dimension.

49

Figurative Language Understanding

They also fine-tuned a T5-3b model, adjusting some hyperparameters and us-
ing this format <Premise> <Premise-elaboration-from-DREAM> <Hypoth-
esis> <Hypothesis-elaboration-from-DREAM> as input.

3. Cross-Task Transfer Learning [3]
This is the team in second place, their focus was on the effective cross-task
transfer learning for enhance performance on FLUTE.
They employed two principal techniques: Sequential Fine Tuning and Mul-
tiTask Learning. In particular, their best final submission involves a model
fine-tuned in sequence, starting with eSNLI [5], followed by IMPLI [37], and
concluding with FLUTE [7].

4. Divide-and-Conquer System [28]
They approached both the NLI task and the explanation generation task as
two separate seq2seq tasks. The fine-tuning process involved treating these
tasks independently within a simultaneous computation model.
Additionally, they incorporated the attribute related to Figurative Language
types throughout the data as a predictor, treating it as another seq2seq task.
Consequently, they developed three component models through fine-tuning
the pre-trained T5 model: the NLI predictor, Type predictor, and Generator.
So, unlike other approaches where label and explanation are made jointly,
this team used a T5-large model in a pipeline fashion.

5. SBU - Figures It Out [19]
The base idea of this team was training the model focusing on generating
explanations before the label. They simply used a T5-large model fine-tuned
on the FLUTE dataset, where the input structure lacks task-specific keys.

50

Figurative Language Understanding

3.4 DREAM method
DREAM is a novel technique introduced by [15] to enhance Situational Question-
Answering (QA) by initially elaborating the situation.
The underlying hypothesis behind this method is as follows: cognitive science sug-
gests that when individuals need to respond to questions about a particular situa-
tion, they first create a mental image of the situation and then answer. Therefore,
the author posited that a LLM can also achieve greater accuracy when provided
with additional contextual details.

DREAM is a model that performs this task; indeed, it is capable of processing
the input phrase and creating a so called scene elaboration SE that will be added
to the existing input.
This Dream SE provides details about the input situation S along four dimensions:

• Motivation of character(s) before S.

• Emotion of character(s) after S.

• Social Norm or general Rule of Thumb (ROT), it indicates if the action
described in S is socially acceptable or not.

• Likely Consequence of action in S.

Consequently, the Dream SE is formed by a 4-tuple, where each element is repre-
sented as text, usually a single sentence, with an identifier preceding it.
In figure 3.7 there is an example of how DREAM works in the case of QA.

To construct the training dataset for learning Scene Elaborations, the authors
used three existing commonsense resources:

1. Story Commonsense [29]
This dataset has the role to provide the dimensions of emotion and mo-
tivation.

2. Social Chemistry [13]
This one is the source for the social norm dimension.

3. Moral Stories [12]
The last one provided the data to elaborate the likely consequence of a
situation, separating a "moral" consequence from a "immoral" one.

At this point, to create the final DREAM model, they trained a T5-11B model
with this novel Scene Elaboration Dataset.

51

Figurative Language Understanding

Figure 3.7: Example of QA with the use of DREAM system [15]

The research in [15], reveals that DREAM excels in generating scene elabo-
rations more accurate, useful, and consistent when compared to a representative
state-of-the-art zero-shot model.
The findings also indicate that incorporating these scene descriptions as extra con-
text boosts the accuracy of answers in a downstream QA system. This enhance-
ment surpasses the improvements obtained by solely fine-tuning the QA system
with the training data from DREAM. These outcomes imply that incorporating
focused elaborations about a situation has the potential to enhance a system’s
reasoning about it.
This approach also proves to be dataset-neutral, as enhanced performance is ob-
served across different models, also on models with fewer parameters.

3.4.1 DREAM - FLUTE

The creators of the DREAM model have also participated at the FigLang 2022
challenge, as described in the previous section. Their approach, named DREAM-
FLUTE [16], led them to victory.

Understanding figurative language presents a challenge as it is difficult to dis-
cern implicit information solely from its surface form. The authors’ hypothesis is
that effective performance in this task requires the reader to mentally elaborate
on the described scene to discern a coherent meaning from the language used. The

52

Figurative Language Understanding

DREAM-FLUTE model is a system that does this: before making an entailmen-
t/contradiction classification and generating an explanation, it creates a mental
imagine of the situation using DREAM model [15].

In Figure 3.8 there is an example of how DREAM-FLUTE works. The sys-
tem first uses DREAM to generate an elaboration of the situation for the premise
and hypothesis separately. The additional context, in this case only the conse-
quence category, is used both for entailment classification and for the explanation
generation.

Figure 3.8: Overview of DREAM-FLUTE [16].

In seeking the best solution to the FigLang 2022 challenge, the authors experi-
mented with various approaches, presented below:

1. Using original data
They simply trained a sequence-to-sequence model for the figurative lan-
guage task.
The input-output format is the following:
Input <Premise> <Hypothesis>
Output <Label> <Explanation>

2. Jointly predicting the type of figurative language

53

Figurative Language Understanding

In addition, there is a model that jointly predict the type of the rhetorical
figure.
The input-output format is the following:
Input <Premise> <Hypothesis>
Output <Figurative-Language-Type> <Label> <Explanation>

3. DREAM-FLUTE
They used the DREAM model to generate the Dream SE, adapting the
Dream’s SEs for the figurative language understanding. In this approach
they provide the produced different dimensions as input context.
The input-output format is the following:
Input <Premise> <Premise-elaboration-from-DREAM>
<Hypothesis> <Hypothesis-elaboration-from-DREAM>
Output <Label> <Explanation>

4. Two-step System
Unlike the precedent methods, in this case the tasks are approached sep-
arately, using a two-step "classify then explain" pipeline.

5. Ensemble System
In this final scenario, the authors leveraged the ensemble of information
learned by Systems 1 to 4. For both label selection and explanation gen-
eration, they employed all preceding systems as foundational components.
This approach involves employing distinct elaborations to construct build-
ing blocks, forming a continuum with diverse levels of intuition and anal-
ysis. The model derives answers and rationalizes by considering different
positions on a cognitive continuum.

54

4 Methodology
This chapter outlines the methodology adopted in the experiments, elucidating
the approach taken in conducting the research, and its various phases.
We start by describing how the database was prepared for our objectives, then we
proceed describing the types of experiments that were conducted and the modali-
ties used, including the choice of hyperparameters. Subsequently, we briefly covers
the evaluation part, which will be further explored in Chapter 5.
In the last part of the chapter, we provide some information regarding implemen-
tation details, enriching the reader’s understanding on the practical aspects of the
research.

4.1 Data Preparation
The dataset used is the one proposed by the authors of FLUTE [7]. This dataset
was already divided into a test set consisting of 1500 elements and a training and
validation set consisting of 7534 examples. From this latter set, we created two
separated groups: the Train and the Validation sets.
Splitting data into training, validation, and test sets helps assess the performance
a machine learning model by training it on one subset, tuning its hyperparameters
on another, and ultimately evaluating its generalization on an independent dataset.
This separation ensures robustness, prevents overfitting and enhances the model’s
ability to make accurate predictions on new, unseen data.

Among the Test set provided by the organizers, there are two examples for
which they did not release either the correct label (entailment or contradiction)
or the gold explanation. For this reason, we decided to exclude them from the
experiments, resulting in a final Test set of 1498 pairs.

4.2 LLM Pipeline
First of all we have to say that the family of LLMs chosen for this study is LLaMA
2, specifically we decided to utilize version 7B of LLaMA 2-Chat, employed for our
task thorough the prompting method.
An important detail to consider about this LLM, is that the maximum input token
length is 4096.

55

Methodology

Our approach involves inputting the premise-hypothesis pair and asking the
model whether they contradict or entail each other, along with providing the rea-
soning behind its decision.
As mentioned, the model must perform a dual task: first, a classification task to
determine whether there is entailment or contradiction, and second, a text gener-
ation task to produce an explanation for the earlier choice.
Our goal is to try various prompts on the validation set and then test the best
combinations on the test set. We can determinate which combinations are the
best because, each premise-hypothesis pair is accompanied by the correct label
and by the given explanation. So, after our model generates the predicted label
and its own explanation, we can compare them with the ground truth and made
an evaluation as explained in Chapter 5.

All three types of prompting discussed in Chapter 2, have been utilized in
our study: Zero-Shot prompting, Few-Shot prompting, and Chain-Of-Thought
prompting.

The first issue we tackled was related to the choice of the prompt format.
Indeed, LLMs are very sensitive to the prompt format, they completely rely on
context and patterns in the input data to generate the output. The format of the
prompt influences the model’s understanding of the task and the context in which
it should generate responses. A well-structured prompt helps guide the model
to produce desired results with a coherent output, while an ambiguous or poorly
formatted prompt may lead to unexpected or less accurate outputs.
Given the importance of the prompt format, numerous preliminary attempts were
made to select the top 3 (one for each form of prompting: zero-shot, few-shot, and
chain-of-thought) based on stability and effectiveness.

Subsequently, we tried to understand which values of the temperature parameter
were more suitable.
We chose to experiment with various temperature values in a relatively generic and
simple few-shot prompting scenario. In the end, we selected the two temperature
values that yielded the best results.

At this point, we proceeded with the experiments.
In the Zero-Shot case, we prompted LLaMA with the chosen prompt and the two
selected temperature values.
In Figure 4.1 there is the schema of this prompt type.

In the Few-Shot case, several variants were tested.
For this type of prompting, we primarily focused on two elements:

56

Methodology

Figure 4.1: Logical schema for Zero-Shot prompting.

• the number K of examples to include as input within the prompt

• the manner in which the K examples are selected from the Train set

Firstly, we tried the two simplest cases, passing as input only one example and
then a pair of examples. In both cases examples were randomly selected from the
Train set.
Instead, to test prompting using a number K of input examples greater than two,
three different methodologies were employed:

1. The K input examples are randomly selected from the Train set

2. The K input examples are extracted from the Train set in such a way that
rhetorical figures are balanced among them.
For example, if we need to input 10 examples, we would choose 2 sarcasms,
2 idioms, 2 metaphors, 2 similes, and randomly select the remaining two.

3. The K input examples are extracted from the Train set in such a way that
rhetorical figures are balanced according to the train set balance, assuming
that the balance of this training set is the same as that of the test set. It
results to have about half of the examples on sarcasm figure and the remaining
half splitted in a balanced manner among the other rhetorical figures (simile,

57

Methodology

metaphor and idiom).
For this reason, for this case, the number of examples inserted in the prompt is
always a multiple of 6 (1/2 sarcasm, 1/6 idiom, 1/6 simile and 1/6 metaphor).

All these experiments conducted in the few-shot setting were carried out for both
previously selected temperature values.
In Figure 4.2 there is the schema of this prompt type.

Figure 4.2: Logical schema for Few-Shot prompting.

For the last prompting style, the Chain-Of-Thought approach, the aim is to
encourage the model to reason further by providing more context in the input, for
each premise and hypothesis.
With additional information clarifying the meaning behind the main statements,
it should be easier for the model to recognize whether the premise and hypothesis
contradict each other and understand the reasoning behind it.
To achieve this, we utilized DREAM [15]; as explained in Chapter 3 it is a model
that, given a sentence, is capable of creating a scene elaboration (SE) consisting
of four factors: emotion, motivation, consequence, and social norm.
We chose to use this model because it has been demonstrated to perform well on
the FLUTE dataset [16].

58

Methodology

In essence, we applied DREAM to the entire FLUTE dataset, obtaining the extra
context for both the premise and hypothesis, for each example in the train, test,
and validation sets.
Practically, for each premise and hypothesis, we saved the four scene elaboration
factors (emotion, motivation, consequence and social norm), Figure 4.3.

Figure 4.3: Logical schema for DREAM application.

We chose to analyze five cases, four involving passing a single characteristic of
the generated scene at a time, and the last one consists in passing all of them
together (Dream SE).
We performed both zero-shot and few-shot prompting. In the first case no exam-
ples are provided, but in the prompt there is only the pair to be evaluated along
with its corresponding additional context. For the second case besides the pair to
be evaluated, also the examples passed in input contain their respective SE.
In the few-shot cases, we opted to validate this method using only the best method-
ology among the three employed in the baseline scenario. Moreover, for a fair
comparison, we test the strategies with and without the addition of dream context
on the same set of examples.
In Figure 4.4 there is the schema of this prompt type.

4.3 Evaluation
In evaluating our work, we have opted for a two-step approach. The first step in-
volves assessing the classification task, where the model predicts whether the input
premise-hypothesis pair represents entailment or contradiction. The second step
focuses on the text generation task, where we evaluate the explanations provided
by the model to justify its previous prediction.
We have access to both the correct labels (entailment-contradiction) and the gold
explanations for all the data in the Test set used, making evaluation much easier.
For the first task, we will calculate accuracy, while for the second task, we will
use BERTscore, ROUGE, and BLEURT metrics. The next chapter will provide a
detailed overview of the evaluation process and the various scenarios considered.
In Chapter 6, where the results will be presented, all obtained values will be com-
pared to those of baseline models, considering FLUTE model proposed by the
FigLang 2022 challenge organizers and the DREAM-System1 model proposed by
the challenge winners.

59

Methodology

Figure 4.4: Logical schema for the Chain-of-Thought prompting.

60

Methodology

4.4 Implementation
The programming language employed for this thesis is Python, which is generally
the most widely used at the moment. It stands out as the predominant pro-
gramming language for addressing NLP tasks, since the majority of libraries and
frameworks designed for deep learning are crafted here.
Below, we briefly present some of the most useful tools that users can use if they
want to work in the field of NLP.

• Natural Language Toolkit (NLTK):
NLTK is one of the first NLP library in Python; it furnishes user-friendly
interfaces to corpora and lexical resources like WordNet. It encompasses a
suite of text-processing libraries catering to classification, stemming, tagging,
parsing, and semantic reasoning.

• spaCy:
spaCy stands out as a versatile open-source NLP library, supporting over 66
languages. Offering pre-trained word vectors and implementing popular mod-
els like BERT, spaCy facilitates the development of production-ready systems
for tasks such as named entity recognition, part-of-speech tagging, sentence
segmentation, dependency parsing, lemmatization, text classification, entity
linking and morphological analysis.

• Deep Learning Libraries:
The principal deep learning libraries are TensorFlow and PyTorch, they per-
mit a huge simplification during the creation of any models, for example they
have incorporated features like automatic differentiation. These libraries are
widely utilized tools for the development of all the models including NLP
ones.

• Hugging Face:
Hugging Face provides open-source implementations and weights for more
than 135 state-of-the-art models. The repository offers ease of customization
and training for these models, enhancing accessibility and adaptability in
NLP applications. The model used in our experiment, LLaMA-7b-chat-hf, is
present in Hugging Face.

61

Methodology

To execute the written code, two primary platforms were predominantly uti-
lized: Google Colab and HPC@polito.

• Google Colab
It is a cloud-based platform for writing and executing Python code in
a collaborative environment. It provides free access to GPU and TPU
resources, making it ideal for machine learning and data analysis tasks.
Colab integrates with Google Drive, allowing seamless sharing and ver-
sion control of Jupyter notebooks.
This platform was used in the initial phase of data preparation and
prompt selection, as well as to perform all evaluation measures for both
the classification task and the text generation task.

• HPC@polito (www.hpc.polito.it)
Politecnico di Torino HPC project is an Academic Computing center
which provides computational resources and technical support for re-
search activities in accademic and didattical purposes. The HPC project
is officially managed by LABINF (Laboratorio Didattico di Informat-
ica Avanzata) under supervision of DAUIN (Department of Control and
Computer Engineering) which granted by Board of Directors.
This platform was instead used to carry out all the various types of ex-
periments and thus obtain the various labels and explanations produced
by the model.

62

5 Evaluation Metrics
Assessing the quality of a system through human evaluation is typically consid-
ered the most reliable method. Nevertheless, conducting crowd-sourced experi-
ments can be costly and time-consuming, making it impractical to integrate into
a daily model development workflow. As a result, NLG researchers often rely on
automatic evaluation metrics as a more affordable and efficient alternative, despite
being only an approximation of quality.
Utilizing automatic evaluation metrics can aid in assessing your model’s perfor-
mance, monitoring your ML system during deployment, and adjusting your model
to align with your business requirements. It’s generally recommended to employ
multiple evaluation metrics to assess your model, as a model might excel according
to one metric while underperforming according to another. In the case of NLP
field, the task of evaluating the semantic coherence and validity of a text in an
automatic way is critical but is essential for ensuring the effectiveness of language
models.

As previously described, in the case studied in this project, there are primarily
two tasks. The first one of classification, where, given two sentences, the model
must classify by choosing between two classes: Entailment or Contradiction. The
second task is a text generation one where we ask the model to generate a text
explaining the reasons behind the choice made in the previous classification.
Hence, to evaluate the model’s performance, two different evaluation metrics are
required: the first related to the classification task and the second to the text
generation task. In both cases, the simplest means of evaluating label or generated
text is to measure how well they agree with those marked or provided by humans.

This chapter aims to introduce some of the basic metrics used in these two
fields and we will see the ones employed in our experiments. Subsequently, we will
introduce recent eXplainable Artificial Intelligence (XAI) metrics, and they will
be analyzed to understand if it is feasible to apply them to our case study and, if
so, how to do so.

Model Evaluation Procedures
Before we dive into metrics, we briefly explain model evaluation procedures.
As general rule we want to create a model that well generalize with the out-of-
sample data. If you train and test your model using the same dataset, it will

63

Evaluation Metrics

likely overfit to the training data and fail to generalize effectively. Therefore, it’s
advisable not to train your model on the entire dataset when evaluating its per-
formance. A typical strategy is the train/test split, where you would use a certain
percentage of the data for training (70/80%) and the remaining data for testing.
Another important point concerns assessing the model’s performance, which is cru-
cial for determining the optimal combination of hyperparameters. However, using
the test set for evaluation may lead to hyperparameters that are only optimal for
that specific case and may not generalize effectively. Therefore, instead of dividing
the data into just two parts, train and test sets, it’s preferable to split it into three
parts: train, validation, and test sets. The validation set serves the dual purpose
of identifying overfitting during training and ensuring that hyperparameters gen-
eralize well. Additionally, shuffling the data before splitting helps ensure that each
subset accurately represents the dataset.
In our case, the split used for our experiments is 60% of the data for training, 20%
of the data for validation, and 20% of the data for testing.

64

Evaluation Metrics

5.1 Metrics for Classification Task
Classification is about predicting the class labels given input data. There are two
types of classification, the first one is the binary classification, like our case, where
there are only two possible output classes. The second case is about the multiclass
classification, where more than two possible outcomes can be present.
In this paragraph we will take into consideration the case of supervised learning,
so we compared the predicted labels with the correct ones. There are many ways
for measuring classification performance and we will present some of the most
popular: confusion matrix, AUC-ROC and accuracy. The last metric is the one
we used in our experiments.

5.1.1 Confusion Matrix
A confusion matrix or error matrix is a fundamental tool for evaluating the per-
formance of a classification model. It provides a comprehensive breakdown of the
model’s predictions by comparing them to the actual ground truth. It is a table
that displays the number of incorrect and correct predictions produced by the
model, compared with the real classifications and it reveals the types of errors
occurring.
This matrix illustrates how well a classification model performs on test data where
the true values are already known. It is a nxn matrix, where n represents the
number of classes. Displayed in Figure 5.1, this matrix is created after making
predictions on the test data. Columns indicate the frequency of actual classifica-
tions, while rows indicate the frequency of predicted classifications made by the
model.

Figure 5.1: Confusion Matrix

There are four potential outcomes that may arise during the process of making
classification predictions:

65

Evaluation Metrics

• True Positive (TP): The count of positive outcomes that are correctly pre-
dicted as positive.

• False Positive (FP): The count of negative outcomes that are incorrectly pre-
dicted as positive. This is the so-called Type 1 Errors.

• True Negative (TN): The count of negative outcomes that are correctly pre-
dicted as negative.

• False Negative (FN): The count of positive outcomes that are incorrectly
predicted as negative. This is the so-called Type 2 Errors.

To be clearer to the reader, we emphasize that "Positives and negatives" relates to
the prediction, whereas "true and false" relates to the accuracy of the prediction.

Examining the matrix, we observe that the diagonal elements signify the in-
stances where the predicted label matches the true label, whereas the off-diagonal
elements represent misclassifications made by the classifier. A higher value along
the diagonal of the confusion matrix indicates more accurate predictions, signify-
ing better performance.
From the Confusion Matrix, we can obtain four metrics for classification:

1. Accuracy
It can also be computed based on positives and negatives in binary classifica-
tion. However, it doesn’t provide us with much insight into the distribution
of false positives and false negatives.

accuracy = TP + TN

TP + TN + FP + FN

2. Precision or Positive Predictive Value (PPV)
It is the proportion of True Positives to all positives predicted by the model.
It is particularly beneficial for datasets that are skewed or unbalanced. When
the model predicts more false positives, precision decreases.

precision = TP

TP + FP

3. Recall or Sensitivity or True Positive Rate (TPR)
It represents the proportion of correctly identified positive instances compared
to all positive instances within the dataset. It gauges the model’s capability
to identify positive samples, and if the model predicts more false negatives,
the recall score decreases.

recall = TP

TP + FN

66

Evaluation Metrics

4. F-score or F-measure

(a) F1-score
It is a unified measure that incorporates both precision and recall. It
falls within the range of 0 to 1, with higher values indicating better
performance by our model. Since the F1 score is a balanced combination
of precision and recall, the classifier achieves a high F1 score only when
both precision and recall are high.

F1_score = 2 · precision · recall

precision + recall

Be careful because this metric only benefits classifiers with comparable
precision and recall.

(b) F-score with β factor
The F-score can be seen as a more generalized version of the F1-score.
In the overall F-score, a parameter β determines the relative emphasis
placed on precision versus recall in the evaluation process:
• β < 1: The evaluation is precision oriented.
• β > 1: The evaluation is recall oriented.
• β = 1: This is the standard F1-score where precision and recall are

balanced.
Here the formulation of the overall F-score with β factor.

Fβ_score = (1 + β2) · precision · recall

(β2 · precision) + recall

About precision and recall we can make two general considerations:

• Precision considers the classification of both positive and negative samples,
so it is dependent on both samples. Instead the recall only focuses on the
positive samples so it is dependent only on the positive ones and independent
of the negative ones.

• Precision focuses on correctly identifying samples as Positive, without empha-
sizing the correct classification of all positive samples. Recall, on the other
hand, prioritizes accurately classifying all positive samples but does not worry
if a negative sample is mistakenly classified as positive.

67

Evaluation Metrics

5.1.2 Receiver Operating Characteristic Curve (ROC) &
Area Under the Curve (AUC)

A Receiver Operating Characteristic curve (ROC curve) illustrates how well
a classification model performs by plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various decision thresholds. These thresholds
determine whether a prediction is classified as "true" or "false." Adjusting the
threshold allows for control over the balance between TPR and FPR. Typically,
raising the threshold boosts precision but reduces recall.
Initially, let us analyze the TPR and FPR:

• True Positive Rate (TPR/sensitivity/recall): it represents the percentage of
positive instances correctly identified as positive among all positive instances.

TPR = TP

TP + FN

• False Positive Rate (FPR): it represents the percentage of negative data
points incorrectly identified as positive among all negative data points.

FPR = FP

TN + FP

Both values fall within the range of 0 to 1 and are calculated at different threshold
levels. An ideal classifier would exhibit a high true positive rate and a low false
positive rate. The ROC curve in Figure 5.2 shown a more precise model.

Figure 5.2: ROC curve

68

Evaluation Metrics

In summary:

• any model that exhibits a ROC curve surpassing the random guessing classi-
fier line can be deemed superior.

• any model that exhibits a ROC curve below the random guessing classifier
line can be unequivocally dismissed.

This kind of graph illustrates the TPR against the FPR across various classifica-
tion thresholds. However, this method is inefficient as it requires evaluating the
model at multiple thresholds. A more efficient approach is to use a sorting-based
algorithm such as AUC, which can provide us with this information effectively.

The Area Under the ROC Curve, also known as the Area Under the Curve
(AUC), serves as a numerical summary of a graph, particularly employed in binary
classification tasks. Mathematically, it represents a function generating points
along a curve. AUC quantifies the probability of the classifier ranking a randomly
chosen positive instance higher than a randomly chosen negative one. Its utility
lies in facilitating model comparison as it condenses information across the entire
ROC curve. AUC values range between 0 and 1, with higher values indicating
superior model performance.

5.1.3 Accuracy
The simplest classification metric for model evaluation is Accuracy and it is the
one employed in this project to evaluate our first task. It is calculated as the ratio
of correctly predicted instances to the total number of instances:

accuracy = TP + TN

TP + TN + FP + FN

The benefits and limitations of this metric are listed below.

Benefits:

– Simplicity and Intuitiveness: Accuracy is straightforward to understand,
making it a popular choice for reporting model performance. It provides
a clear indication of the model’s ability to make correct predictions across
all classes.

– Easy Comparison: Accuracy allows for easy comparison between different
models or iterations. A higher accuracy score generally indicates better
overall performance.

69

Evaluation Metrics

– Interpretability: Accuracy provides a global view of a model’s effective-
ness, making it interpretable for a broad audience, including non-technical
stakeholders.

Limitations:

– Unbalanced Problems: One significant limitation of accuracy arises when
dealing with imbalanced datasets, where one class significantly outnum-
bers the others. In such cases, a model may achieve high accuracy by
predominantly predicting the majority class, while performing poorly on
minority classes. Hence, in imbalanced scenarios, accuracy can be mis-
leading, as a model might appear successful when, in reality, it struggles
with critical minority classes. This can have severe consequences in ap-
plications where the minority classes are of particular interest.

– Alternative Metrics Needed: To address the limitations of accuracy in
unbalanced problems, alternative metrics like precision, recall, F1 score,
and area under the receiver operating characteristic curve (AUC-ROC)
are often employed. These metrics provide a more nuanced evaluation of
a model’s performance, especially when considering class-specific predic-
tions.

In conclusion, while accuracy remains a valuable metric for evaluating classifica-
tion tasks, its limitations become apparent in the presence of imbalanced datasets.
A comprehensive evaluation strategy should incorporate a combination of metrics
to provide a more nuanced and informative assessment of a model’s performance,
particularly when faced with challenging class imbalances. Understanding the
strengths and weaknesses of accuracy is crucial for researchers and practitioners
aiming to derive meaningful insights from classification models.
Regarding our case study we have a test set unbalanced for what regard the fig-
urative language but quite balanced for what regard the label. Indeed, we have
a test set of ∼1500 samples composed by 750 sarcasm and 250 of simile, idiom
and metaphor each but consider all the figure type together we have 663 sample
classify as Entailment (44.3%) and 835 as Contradiction (55.7%).

70

Evaluation Metrics

5.2 Metrics for Text Generation Task

This second section is related to the text generation task, in this case the aim
of a good evaluation metric is to verify if the generated text is coherent for its
intended purpose, for example, by comparing it to a reference text. A generation
evaluation metric is a function f(x, x̂) ∈ R where x is the reference sentence
tokenized to k tokens (x1, ..., xk) and x̂ is the candidate sentence tokenized to m
tokens (x̂1, ..., x̂m).
The main objective is to assess semantic equivalence, but predominantly techniques
rely on surface-form similarity only. For instance, BLEU [25], merely calculates
the overlap of n-grams between the candidate and the reference. This approach
offers a simple and general measure but, it overlooks the importance of preserving
meaning through diverse lexical and compositional choices.

In this specific setting, our objective is to evaluate the explanation provided by
our model in comparison to the reference one. The purpose of the explanation is
to show how the premise and hypothesis are connected, revealing if there is an
entailment or a contradiction. The challenge is that this explanation does not rely
on factual information but rather on the subtle meaning of these figures of speech:
metaphors, idioms, sarcasm, and similes.
Unlike conventional evaluations that focus on grammar correctness or syntactic
comparisons, our task involves a semantic assessment of two sentences and it is
acknowledged that two sentences can exhibit significant structural differences yet
convey the same meaning.

In this paragraph, we will provide a briefly overview of the evaluation metrics
utilized for the text generation task, and then we will introduce the main metrics
used in our experiments, BLEURT, BERTscore and ROUGE.
In the FigLang 2022 challenge, to judge the quality of the generated explana-
tions they compute the average between BLEURT and BERTscore. This average,
denoted as the "explanation score", falls within the range of 0 to 100. To give
importance to this score the promoters of the challenge asked to report the label
accuracy at three thresholds of this explanation score. Accuracy@0 is equivalent
to simply computing label accuracy. Accuracy@50 is based on the first threshold,
it counts as correct only the correctly predicted labels that achieve an explanation
score greater than 50. Accuracy@60 is similar to Accuracy@50 but the threshold
is based on an explanation score over 60.
To more accurately assess the quality of the generated explanations by our models,
we have computed precision, recall, and F1-score for both ROUGE and BERTscore,
comparing them with the ones of the baseline models presented at the FigLang
2022 challenge.

71

Evaluation Metrics

5.2.1 Overview on Base Metrics
The basic metrics can be grouped into three general categories: n-gram matching,
edit distance and embedding matching.

• The n-gram matching approaches are the most commonly used metrics for
text generation. Given a reference x and candidate x̂, they count the number
of n-grams that occur. As n increases, the metric becomes more adept at
capturing word order, yet it also becomes increasingly rigid and limited to
mirroring the precise structure of the reference. Formally, let Sn

x and Sn
x̂ be the

lists of token n-grams (n ∈ Z+) in the reference x and candidate x̂ sentences.
The number of matched n-gram is qw∈Sn

x̂
I[w ∈ Sn

x], where I is an indicator
function. The exact match precision (Exact-Pn) and recall (Exact-Rn) scores
are:

ExactPn =
q

w∈Sn
x̂
I[w ∈ Sn

x]
|Sn

x̂ |
, ExactRn =

q
w∈Sn

x̂
I[w ∈ Sn

x]
|Sn

x |

Numerous widely used metrics are based on either one or both of these precise
matching scores. The most widely used metric, especially for translation,
is BLEU (Bilingual Evaluation Understudy); it is calculated across various
values of n, with the scores being geometrically averaged. A modified version
called SentBLEU is computed on a sentence-by-sentence level. Other metrics
of the same type are ROUGE and METEOR.

• Multiple approaches utilize word edit distance or word error rate, which mea-
sure similarity by determining the number of edit operations needed to trans-
form the candidate into the reference. The most famous metrics of this type
are Jaro, Leveisten and Jaro-Winkler but they are suitable for comparing very
short and similar text portions, so they are not appropriate for our case.

• The embedding-based metrics utilize word embedding and shallow semantic
parsing to calculate similarity in both lexical and structural aspects.

Since these metrics only detect changes in word choice, they fail to adequately
acknowledge shifts in meaning or sentence structure within a given text. As a
result, they often demonstrate weak correlation with human evaluations. To tackle
this issue, NLG researchers have introduced trained elements into these metrics to
enhance their alignment with human judgments.

Fully trained metrics like RUSE [33] or BEER [36] are trained comprehensively
from end to end. They typically rely on either manually crafted features or embed-
dings that are learned. These metrics often provide high levels of expressiveness:
given a training set containing human ratings data, they can fully exploit it to
closely match the distribution of ratings. Additionally, these learned metrics can

72

Evaluation Metrics

be adjusted to evaluate specific aspects of tasks, such as fluency, faithfulness, gram-
mar, or style. However, the drawback is that all these trained methods necessitate
expensive human judgments as supervision for each dataset. There’s also a risk
of poor adaptation to new domains and data, even within familiar language and
task domains.

Hybrid evaluation metrics like YiSi [22] and BERTscore merge pre-trained com-
ponents, like contextual embeddings, with manually crafted rules, such as token
alignment criteria. In contrast to fully learned metrics, they demonstrate resilience,
yielding superior outcomes even with limited training data, without the necessity
of assuming identical distributions between training and testing datasets.

5.2.2 BERT Score
BERTscore is an automatic evaluation metric for text generation based on pre-
trained BERT contextual embeddings [45].
Given a candidate sentence x̂ = (x̂1, ..., x̂m) and a reference sentence x = (x1, ..., xk),
BERTscore compute a similarity score for each token in the candidate sentence x̂,
with each token in the reference sentence x. However, instead of exact matches,
it use contextual embeddings to represent the tokens, and compute a weighted
matching using cosine similarity and inverse document frequency scores.
To represent the tokens in the input sentences, x and x̂, is hence used the contex-
tual embeddings, presented in Chapter 2. In contrast to prior word embeddings,
contextual embeddings have the capability to produce varying vector representa-
tions for a given word across different sentences. This variability is influenced by
the surrounding words that constitute the context of the word in question.

The reference sentence x = (x1, ..., xk) and the candidate one x̂ = (x̂1, ..., x̂m)
are tokenized by BERT. It generates two sequences of vectors: (x1, ..., xk) and
(x̂1, ..., x̂l). Subsequently, given a reference token xi and a candidate token x̂j, the
cosine similarity is calculated:

xT
i x̂j

∥xi∥∥x̂j∥

In order to reduce the calculation to the inner product xT
i x̂j, pre-normalized vec-

tors are used.
The entire score correlates every item in x with a corresponding item in x̂ to deter-
mine recall, and matches each item in x̂ with an item in x to calculate precision.
The authors employ a greedy matching approach to maximize the similarity score
between matches, with each token being paired with its closest counterpart in the
other sentence. They then combine precision and recall to compute an F1 measure.
Given a reference x and candidate x̂, the BERT recall, precision, and F1 scores

73

Evaluation Metrics

are:
RBERT = 1

|x|
Ø
xi∈x

max
x̂j∈x̂

xT
i x̂j, PBERT = 1

|x̂|
Ø
x̂i∈x̂

max
xi∈x

xT
i x̂j

F1BERT = 2 RBERT · PBERT

RBERT + PBERT

BERTscore easily incorporate importance weighting in these measures. For doing
this the authors chose to use the inverse document frequency (idf) and not the full
tf-idf measure because processing single sentences, the term frequency (tf) is likely
1. Given M reference sentences x(i)M

i=1 and I as indicator function, the inverse
document frequency (idf) score of a token w is

idf(w) = −log
1

M

MØ
i=1

I[w ∈ x(i)]

and, for example, the BERT recall score with idf weighting would be

RBERT =

Ø
xi∈x

idf(xi) max
x̂j∈x̂

xT
i x̂jØ

xi∈x

idf(xi)

The contextual embedding method used in BERTscore brings a series of improve-
ment with respect to the prior metrics:

– First, n-gram models fail to capture distant dependencies but BERTscore,
unlike BLEU, is not limited to a maximum n-gram length and can grasp
dependencies of possibly unlimited extent.

– Second, in previous models, semantically accurate phrases are often penalized
because they deviate from the surface structure of the reference. However,
the context embedding method enables the capture of a token’s specific usage
in a sentence, potentially encompassing sequence information.

– Third, in contrast to the previously discussed learned method, the model
that underpins BERTscore is not tailored for any particular evaluation task,
leading to better generalization. Additionally, it eschews external tools for
generating linguistic structures, rendering this approach relatively straight-
forward and adaptable to new languages.

74

Evaluation Metrics

5.2.3 BLEURT
The second metric we introduce in this paragraph is BLEURT [32], a learned
evaluation metric based on BERT. The fundamental concept at the core is the
possibility to merge expressiveness and robustness through initially training a fully
developed metric on extensive synthetic data, followed by a fine-tuning on human
ratings.

Define x = (x1, ..., xr) as the reference sentence of length r and x̂ = (x̂1, ..., x̂p) as
the predicted sentence of length p, where each xi or x̂i is a token. Let (xi, x̂i, yi)N

n=1
be a training dataset of size N where yi ∈ R is the human rating that indicates
how good x̂i is with respect to xi. Given the training data, the goal is to learn a
function f : (x, x̂) → y that predicts the human rating.
Due to the limited quantity of rating data accessible, it’s logical to utilize unsu-
pervised representations for this purpose. In this approach the model employed
is BERT, which is an unsupervised method capable of acquiring contextualized
representations of text sequences.
Given x and x̂, BERT is a Transformer [41] that returns a sequence of contextu-
alized vectors:

v[CLS], vx1 , ..., vxr , vx̂1 , ..., vx̂p = BERT (x, x̂)

The place-holder v[CLS] denotes the encoding for the unique [CLS] token. To
forecast the rating, a linear layer is appended onto the [CLS] vector:

ŷ = f(x, x̂) = Wv̂[CLS] + b

where W is the weight matrix and b the bias vector.
The linear layer mentioned above, along with the BERT parameters, are trained
and fine-tuned using supervised data.

However, optimizing BERT for specific tasks, through a fine-tuning, necessitates
a significant quantity of data that are both independent and identically distributed.
This poses a challenge as it’s not ideal for a metric aiming to generalize across
different tasks and account for model drift.
The key feature of the BLEURT method involves a novel pre-training scheme
employed to prepare BERT before refining it with rating data. The authors have
created millions of synthetic reference-candidate pairs (z, ẑ) to aid the model’s
ability to generalize.
Any method of pre-training necessitates both a dataset and a collection of pre-
training tasks. Ideally, the setup ought to mirror the final NLG evaluation task,
ensuring that the distribution of sentence pairs aligns and that the pre-training
signals are in line with human ratings. However, since accessing future NLG

75

Evaluation Metrics

models is unfeasible, the approach is optimized for versatility, adhering to three
specific requirements:

• The collection of example sentences needs to be extensive and varied to ensure
that BLEURT can effectively handle a broad spectrum of NLG domains and
tasks.

• The sentence pairs should encompass a diverse range of differences in vo-
cabulary, sentence structure, and meaning. The objective is to predict all
potential variations that a NLG system might generate, such as replacing
phrases, offering paraphrases, introducing noise, or omitting words.

• The pre-training goals must adequately encompass those phenomena to enable
BLEURT to recognize them effectively.

In this scenario, the pre-training method employs random alterations of sentences
from Wikipedia, combined with various forms of lexical and semantic supervision
cues. To generate these synthetic sentence pairs the authors used three techniques:
mask-filling with BERT, backtranslation and model random dropping.

The subsequent phase involves enhancing every pair of sentences (z, ẑ) by incor-
porating a collection of pre-training cues τk, where τk represents the target vector
associated with pre-training task k. Effective pre-training cues ought to encom-
pass a broad spectrum of lexical and semantic variances. Additionally, they should
be inexpensive to acquire to enable scalability to extensive sets of synthetic data.
The author have created three signals τBLEU , τROUGE, and τBERTscore with
sentence BLEU [25], ROUGE [21], and BERTscore [45] respectively. For every pre-
training task, the model employs either a regression or classification loss, which
are then combined using a weighted sum to form task-level losses.

Here an example for better understand how to create this regression/classifica-
tion loss. For each task, let τk be the target vector. If the task τk is a a regression
one, then the loss used will be the l2 loss i.e. lk = ∥τk−τ̂k∥2

2
|τk| where |τk| is the dimen-

sion of τk. τ̂k is instead computed by using a linear layer (task-specific) on top of
the [CLS] embedding: τ̂k = Wτk

v̂[CLS] + bτk
.

If the task τk is a classification one, then the loss used will be the multiclass cross-
entropy loss [32]. Subsequently, we will predict a logit for each class c using a
separate linear layer: τ̂kc = Wτkc

v̂[CLS] + bτkc
.

The aggregate pre-training loss function is defined as follows:

lpre−training = 1
M

MØ
m=1

KØ
k=1

γklk(τm
k , τ̂m

k)

where τm
k , M and γk are respectively the target vector for example m, the number

of synthetic examples, and the hyperparameter weights obtained with grid search.

76

Evaluation Metrics

To conclude, it can be stated that BLEURT, an English reference-based text
generation metric, undergoes end-to-end training, achieving superior accuracy in
modeling human assessment. Additionally, pre-training enhances the metrics’ re-
silience to domain and quality fluctuations.

5.2.4 ROUGE
ROUGE, Recall-Oriented Understudy for Gisting Evaluation, is an intrinsic eval-
uation metric focus on syntax. It was specifically designed for the assessment of
summaries by [21].
The metric incorporates methods to automatically assess and compare a generated
text with a collection of reference texts, typically human-generated. The foun-
dational paper outlines four distinct ROUGE measures: ROUGE-N, ROUGE-L,
ROUGE-W, and ROUGE-S.
In our experiments, we employed two types of ROUGE metrics: ROUGE-N, for
the cases where N=1 and N=2, and ROUGE-L, sentence-level case.

ROUGE-N: N-gram Co-Occurrence Statistics

In a formal context, ROUGE-N represents the recall of n-grams in comparison
between a candidate summary and a collection of reference summaries.
The computation of ROUGE-N recall is outlined as follows:

ROUGEN =

Ø
S∈{ReferenceT ext}

Ø
gramn∈S

Countmatch(gramn)
Ø

S∈{ReferenceT ext}

Ø
gramn∈S

Countmatch(gramn)

where the variables n, gramn, and Countmatch(gramn) represent the length of the
n-gram, the maximum occurrence of n-grams in a candidate text, and a collection
of reference texts, respectively.
Note that also the corresponding measures for standard precision and F1-score are
available. It is recommended to consider Rouge-N Recall when assessing fixed-size
summaries. Alternatively, Rouge-N F1-score is more suitable in other scenarios.

ROUGE-N originates as a recall-related metric; in fact, the denominator in the
previous formula represents the total count of n-grams present on the reference
summary side. A closely associated metric, BLEU [25], employed in the auto-
mated evaluation of machine translation, is based on precision. BLEU assesses
the alignment between a candidate translation and a set of reference translations
by calculating the percentage of overlapping n-grams in the candidate translation
with the references.

77

Evaluation Metrics

ROUGE-L: Longest Common Subsequence

A sequence Z = [z1, z2, ..., zn] is a subsequence of another one X = [x1, x2, ..., xm],
if there exists a strict increasing sequence [i1, i2, ..., ik] of indices of X such that for
all j = 1, 2, ..., k, we have xij = z.
Given two sequences X and Y, the longest common subsequence (LCS) of X and
Y is a shared subsequence with maximum length. In order to apply LCS in the
context of summarization evaluation, we treat a summary sentence as a sequence
of words. The underlying idea is that a higher LCS length between two summary
sentences indicates greater similarity between the two summaries.

To quantify the similarity between two texts, X of length m and Y of length
n, the authors proposed employing an LCS-based F-score measure. Of course, the
key components include LCS-based recall and precision.
Assuming X serves as a reference sentence, Y as a candidate sentence and LCS(X,Y)
denotes the length of a longest common subsequence of X and Y, the formulation
is as follow:

Rlcs = LCS(X, Y)
m

Plcs = LCS(X, Y)
n

Flcs = (1 + β2)RlcsPlcs

Rlcs + β2Plcs

Notice that ROUGE-L equals 1 when X equals Y, and it is zero when LCS(X, Y)
is zero, indicating that there is no commonality between X and Y.

Utilizing LCS offers a notable benefit as it does not necessitate consecutive
matches but rather in-sequence matches that mirror the word order at the sen-
tence level as n-grams. Another advantage is its automatic inclusion of the longest
in-sequence common n-grams, eliminating the need for a predefined n-gram length.
In the unigram case, recall and precision count all co-occurring words regardless
their orders. In contrast, ROUGE-L considers only co-occurrences that occur in
sequence. To better understand this distinction, consider the following example:

Reference = police killed the gunman
S1 = police kill the gunman
S2 = the gunman kill police

Despite S1 and S2 have very different meanings, the two candidate sentences would
have the same ROUGE-2 score, since they both have one bigram (“the gunman”).
Instead, in the case of ROUGE-L, S1 has a score of 3/4 = 0.75 and S2 has a score

78

Evaluation Metrics

of 2/4 = 0.5 (with β = 1). Therefore, according to ROUGE-L, S1 results better
than S2.

One of LCS disadvantage is that it only counts the primarly in-sequence words;
consequently, other available LCS variations and briefer sequences do not con-
tribute to the ultimate score. To illustrate, consider the following candidate sen-
tence:

S3 = the gunman police killed

Using the previous reference sentence, LCS counts either “the gunman” or “police
killed”, but not both. In conclusion ROUGE-L will give the same score to S3 and
S2 while ROUGE-2 would prefer S3 than S2.

The previously described approach pertains to sentence-level LCS and is the one
employed in our experiments. There is also a corresponding method for summary-
level analysis.

ROUGE-W: Weighted Longest Common Subsequence

This approach represents a progression from the previous one, favoring strings with
consecutive matches. It can be efficiently calculated using dynamic programming.
Here is an example:

Reference = [A B C D E F G]
S1 = [A B C D H I K]
S2 = [A H B K C I D]

In this case S1 has the same ROUGE-L score as S2 but ROUGE-W would prefer
S1 than S2.

ROUGE-S: Skip-Bigram Co-Occurrence Statistics

The evaluation involves comparing the overlap of skip-bigrams, which are pairs of
two consecutive non-stop words with a defined gap. This metric is employed to
account for long-distance dependencies, allowing for gaps in matches similar to LCS
but considering all in-sequence pairs rather than only the longest subsequences.
Considering again the police example:

Reference = police killed the gunman
S1 = police kill the gunman
S2 = the gunman kill police

79

Evaluation Metrics

S3 = the gunman police killed
we have

Rouge-N : S3 > S1 = S2
Rouge-L: S1 > S2 = S3
Rouge-S: S1 > S3 > S2

where
Rouge-S(S1) = 3/6 ("police the", "police gunman", "the gunman")
Rouge-S(S2) = 1/6 ("the gunman")
Rouge-S(S3) = 2/6 ("the gunman", "police killed")

ROUGE-SU is an extensions of ROUGE-S encompassing both unigrams and bi-
grams. It incorporates the co-occurrence statistics based on unigrams in addition
to the skip-bigrams as ROUGE-S.

80

Evaluation Metrics

5.3 Explainable Artificial Intelligence

EXplainable Artificial Intelligence (XAI) is a critical frontier in the development
and deployment of intelligent systems. As machine learning models and complex
algorithms become increasingly prevalent in various domains, the need for under-
standing and interpreting their decisions has become paramount. XAI addresses
this challenge by striving to make AI systems transparent, interpretable, and ul-
timately trustworthy.

The traditional black-box nature of many advanced AI models, such as deep
neural networks, often leaves users, stakeholders, and even developers puzzled
about the underlying logic behind the model’s predictions. This lack of inter-
pretability poses significant challenges, particularly in applications where decisions
impact human lives, such as healthcare, finance, and criminal justice.
XAI aims to bridge this gap by providing insights into how AI models arrive at
specific outcomes. It encompasses a diverse set of techniques and methodologies
designed to make the decision-making process of AI systems more understand-
able and explainable to human users. The overarching goal is to ensure that AI
applications not only deliver accurate predictions but also offer comprehensible
justifications for those predictions.
The importance of XAI extends beyond merely satisfying human curiosity. In
many industries, regulatory requirements demand transparency in automated de-
cision making processes. Moreover, gaining user trust is crucial for the widespread
adoption of AI technologies. XAI plays a pivotal role in achieving these objectives
by demystifying the decision-making process and enabling users to comprehend,
validate, and, if necessary, challenge the outputs of AI systems.

Regarding our field, in recent years, significant advancements in large neural
NLP models have transformed the landscape of NLP applications, showcasing re-
markable performance across various tasks. However, their increasing complexity
implies the increase of unclear elements. This black-box nature poses a challenge
for practitioners seeking explanations regarding the rationale behind specific pre-
dictions and the key features influencing them. The emergence of explainable AI
techniques, has played a crucial role in addressing this issue by shedding light
on the internal mechanisms of transformers and fostering trust in their decision-
making process. Various XAI methodologies have been proposed in the literature,
and we are going to present the principal explanation and evaluation metrics for
NLP tasks.

81

Evaluation Metrics

5.3.1 Post-Hoc Features Importance Methods
There are two divergent interpretability methods, the intrinsic ones and the post-
hoc ones. With the intrinsic ones, the model architecture itself helps to provide
the explanation, while the post-hoc methods offer explanations after a model has
been trained and are agnostic to the specific model used [24].
This paragraph focuses on the methods that can be applied retroactively, so the
post-hoc ones. These techniques frequently face criticism for offering false or inac-
curate explanations, prompting doubts about the feasibility of expecting models
originally not intended for explanation to provide them. While this concern is
legitimate, developing inherent methods is often highly contingent on the specific
task, making it a difficult process that is rarely done in the industry. Unlike in-
herently interpretable models, post-hoc methods are often much more adaptable,
indeed they can be utilized with any machine learning model, irrespective of its
complexity or the algorithm it is based on. Their influence could potentially am-
plify significantly through the provision of precise explanations.

Below the widely adopted family of post-hoc feature attribution methods are
presented, they are the so called XAI explanation metrics [9].
Provided with a model, a specific target class, and a prediction, these techniques
assess the individual influence of each token on that prediction. The methods dis-
cussed include Gradient [35] (also referred to as Saliency) and Integrated Gradient
[23], SHAP [38] as an exemplar of Shapley value-based approaches, and LIME [30]
representing local surrogate methods.

1. Gradient:
The gradient method focuses on understanding the impact of input features
on the model’s output by calculating the gradients of the model’s predictions
with respect to the input features. It helps identify which features have the
most significant influence on the model’s output by analyzing the magnitude
of the gradients.

2. Integrated Gradient:
Integrated Gradient is an extension of the gradient method. It calculates the
average gradient along the path between a baseline input and the actual input,
providing a more comprehensive understanding of feature importance. This
method addresses some of the limitations of the basic gradient approach and
offers a more nuanced view of how input features contribute to the model’s
predictions.

3. SHAP:
SHapley Additive exPlanations (SHAP) is based on cooperative game the-
ory and Shapley values. It assigns a value to each feature by considering

82

Evaluation Metrics

its contribution to all possible combinations of features. SHAP values pro-
vide a unified measure of feature importance, ensuring a fair distribution of
credit among the features. It helps users understand the impact of individual
features on model predictions.

4. LIME :
Local Interpretable Model-agnostic Explanations (LIME) generates locally
faithful interpretations by approximating the complex model with a simpler,
interpretable model. It achieves this by perturbing the input data and observ-
ing changes in predictions. LIME focuses on explaining individual predictions
rather than the overall model behavior hence it is useful especially in cases
where complex models lack transparency, and it is convenient to create sim-
plified, understandable models for local interpretations.

5.3.2 Evaluation Metrics
In this paragraph we are going to explore some of the XAI evaluation metrics,
in particular we are going to describe three state-of-the-art metrics to measure
plausibility and three for faithfulness.
There are indeed two kinds of evaluation measures, the faithfulness ones which
gauge how accurately a sentence reflects the genuine reasoning process of the
model, and the plausibility ones which assess how persuasive the interpretation
is to humans. Certainly, it is possible to satisfy one of these criteria without
fulfilling the other.

In the realm of Human-Computer Interaction (HCI), the aim of providing ex-
planations is to enhance trust between users and the system. However, improved
system performance in this context doesn’t necessarily signify faithfulness. In-
stead, it reflects correlation between the plausibility of the explanations and the
model’s performance since any level of correlation between credibility and per-
formance will result in increased user performance, regardless of any concept of
faithfulness.
A faithful interpretation refers to one that accurately captures the reasoning pro-
cess behind the model’s prediction but, there is no universally agreed-upon and
formal definition of faithfulness [17].
Moreover, another important thing to take into consideration is that attention
weights do not provide meaningful “explanations" for predictions [18].

Jain and Wallance [18] perform multiple experiments on a variety of NLP tasks
that aim to illustrate that conventional attention modules do not offer substantial
explanations and should not be regarded as such. For example, they highlight
instances where learned attention weights often do not align with gradient-based

83

Evaluation Metrics

measures of feature significance, and others where different attention distributions
can lead to equivalent predictions. In their discourse, Jain and Wallace put forward
two fundamental points to support their assertion:

1. The attention weights produced do not consistently or strongly align with
measures of feature importance, particularly those derived from gradients
and leave-one-out techniques.

2. Different attention weights, leading to varied heatmaps or explanations, may
not always result in different forecasts. Frequently, one can generate adver-
sarial attention distributions that produce equivalent predictions as those ob-
tained from the initial attention weights, even though they focus on entirely
different input features. Additionally, shuffling attention weights typically
brings about only slight alterations in the final output.

Before presenting these evaluation measures it’s important to take into considera-
tion that all the metrics presented in this paragraph are specific to the classification
task. The starting input is hence a sentence that needs to be classified, for example
as positive, neutral or negative. To this input, the predicted label is added, and
various XAI explanation metrics, like the ones presented in the precedent para-
graph, are applied. They assign a "score" to each token, indicating how important
that token is for the classification. Once this explanation step is completed, the
evaluation step follows with specific metrics.

Faithfulness

The following measures of faithfulness will be presented: correlations with ‘leave-
one-out’ scores [18], comprehensiveness and sufficiency [11].
The input is the one produced by the explanation methods and is composed by
three elements: the sentence that has to be classified, the label predicted and the
scores for each token of the in-question sentence.

1. Kendall’s Tau correlation with Leave-One-Out token removal
Kendall’s Tau is a correlation measure used in NLP to assess the similarity of
rankings generated by different models. Leave-One-Out token removal (LOO)
is an evaluation method where individual tokens are systematically removed
one at a time from the input data, observing the impact on the model’s per-
formance. Combining these two concepts, Correlation with Leave-One-Out
scores (↑) involves assessing the correlation between the rankings produced
by a model or system using Kendall’s Tau metric, with the additional consid-
eration of systematically removing one token at a time from the input data to
observe the model’s sensitivity to individual tokens [2]. Under the linearity
assumption, LOO scores represent a simple measure to gauge the importance

84

Evaluation Metrics

of individual features [17]. In simpler terms, it’s a way to evaluate how well
a model’s ranking aligns with human rankings, while also understanding the
influence of individual tokens on the model’s performance. This can provide
insights into the model’s robustness and its sensitivity to specific words or
elements in the input. The author of [18] present in their work all the exper-
iments with the measured correlations between attention and differences in
model output induced by leaving features out.

2. Comprehensiveness
Comprehensiveness (↑) assesses if the explanation adequately encompasses
the tokens utilized by the model in making a prediction. The authors gauge
this by eliminating the tokens emphasized by the explainer and observing
the resultant change in probability. Let fj be the prediction probability of a
model f for the target class j and let rj be a discrete rationale or denoting
the set of tokens supporting the prediction fj. Given the input sentence x,
comprehensiveness is defined as f(x)j − f(x\rj)j where x\rj is the sentence
x were tokens in rj are removed. A high comprehensiveness value implies the
relevance of tokens in rj to the prediction, whereas a low score suggests their
insignificance. A negative value indicates increased model confidence in its
prediction upon removal of the rationales.

3. Sufficiency
Sufficiency (↓) indicates whether the tokens in the explanation provide enough
information for the model to make its prediction. With reference to the
precedent notation, it is evaluated as f(x)j −f(rj)j. A low score indicates that
the tokens within rj are indeed the primary contributors to the prediction.

4. AOPC Comprehensiveness and Sufficiency
The measures just presented have assumed discrete rationales ri but the au-
thor of Eraser [11] proposed an alternative approach. They also wanted to
assess how accurately models assign continuous importance scores to tokens.
Initially, they eliminate tokens with a negative contribution, the ones that
pull the prediction away from the chosen label. Following this, they identify
discrete rationales ri by selecting the highest kd values, where kd represents a
threshold specific to dataset d. We set kd to the average length of rationales
provided by humans for that specific dataset d.
Intuitively, this indicates the extent to which the model’s prediction alters
when we eliminate a quantity of tokens equivalent to the average human usage
for this dataset, based on the importance scores assigned by the model. After
discretizing the soft scores into rationales as outlined, we calculate the faith-
fulness scores using the equation detailed by [11] for both comprehensiveness
and sufficiency. In contrast to measures that require per-token measurements,

85

Evaluation Metrics

as score correlations with LOO scores, this approach is conceptually simple
and it does not require much computational effort to assess. Nonetheless, the
need to convert continuous scores into discrete ones compels us to select a spe-
cific threshold k. Therefore, they examine how these metrics vary based on k.
To ensure consistency in comparing this metric across various datasets, they
establish bins indicating the quantity of tokens to remove. For each instance
i they define an aggregate comprehensiveness measure and one for sufficiency
analogously. Given k=5 bins, they group tokens into the top 1%, 5%, 10%,
20% and 50% of tokens, in relation to the corresponding importance score.
These metrics are presented as Area Over the Perturbation Curve (AOPC)
comprehensiveness and sufficiency and they score a specific token ordering
under a model.

Plausability

The following measures of plausibility [11] will be presented: Intersection-Over-
Union (IOU) at the token level, token-level F1 scores and Area Under the Precision-
Recall curve (AUPRC). The input is the one produced by the explanation methods
but this time is composed by four elements: the sentence that has to be classified,
the label predicted, the scores for each token of the in-question sentence and the
human rationales as ground true.

1. Intersection-Over-Union (IOU) at the token level
Based on both human and predicted rationale, IOU (↑) operates at a token
level, wherein it measures the overlap between two spans by dividing the size
of their intersection by the size of their union. A prediction is considered a
match if its overlap with any of the ground truth rationales exceeds a certain
threshold, typically set at 0.5 [2].

2. Token-level F1 scores
Utilizing both human-generated and predicted rationales, partial matches are
employed to assess token-level precision and recall. These measurements are
then utilized to calculate token-level F1 scores (↑).

3. Area Under the Precision-Recall curve (AUPRC)
AUPRC (↑), is calculated for explanations with continuous scores according
to the method outlined in [11]. This computation involves adjusting a thresh-
old across token importance scores, with the human rationale serving as the
ground truth.

86

Evaluation Metrics

5.3.3 Potential Application to Our Case Study
Despite the significance of ensuring accessibility of XAI methods to NLP experts
and practitioners through practical tools, there remains a notable deficiency in
accessibility specifically for transformer models. XAI for transformers is indeed
mainly scattered and hard to operationalize in practice.

Among the various XAI tools available, we particularly consider FERRET [2],
a Python library designed to simplify the utilization and comparison of XAI meth-
ods on transformer-based classifiers.
FERRET enables users to visualize and compare explanations generated by transformer-
based models using state-of-the-art XAI methods on any free-text or existing XAI
datasets. Furthermore, users can also assess adhoc XAI metrics to determine the
most reliable and credible explanations. Look at Figure 5.3 to better understand
how FERRET works.

Figure 5.3: On the top: Token attributions to the prediciton, darker red (blue)
show higher (lower) contribution. On the bottom: Faithfulness metrics, darker
colors show better performance [2].

While the underlying idea of the evaluation metrics presented in FERRET is
theoretically intriguing, these metrics cannot be applied to our case. The main
issue lies in the fact that FERRET is a tool for Sequence Classification, whereas

87

Evaluation Metrics

in our case, we addressed the problem through a Text Generation task.

In FERRET, the principal treated case is the classical classification scenario in
the contest of sentiment analysis, where a single sentence is classified as positive,
negative, or neutral. The problem we want to overcome differs as we have a
different input and different tasks. Our input is an association of two phrases,
the premise and the hypothesis, and the general task is composed by two steps.
The first one involves classification, deciding whether the two sentences imply an
entailment or a contradiction, and the second one requires explaining why the
model made this choice, constituting a text generation task.
The focal point of our problem’s evaluation is the assessment of the explanation
produced by the model to justify its choice and it cannot be evaluated using the
FERRET method, as, in this case, the two problems are entirely different in terms
of task and input.

Thinking about alternative solutions, one might consider analyzing only the
first part of our problem with FERRET, i.e., the classification phase where the
model decides if the two input sentences contradict or entail each other. However,
several difficulties arise in this case as well. First of all our case, despite being a Se-
quence Classification task, it was solved as a text generation task since we issued a
single prompt to LLaMA, instructing it to perform both tasks consecutively. And
moreover, even if the two tasks were solved separately, we should adapt the Ferret
tool to our type of classification task.
A theoretical solution could be fine-tuned LLaMA for a sequence classification
task, so training it specifically for our task, or employing an existing classification
model suitable for our task, such as roberta-large-mnli [48].
In this case the input should be suitable for FERRET tool and we could sub-
sequently utilize FERRET to conduct explanations and evaluations. With the
explanation tools it will assign a score to each token indicating its importance for
the final prediction. At that point, the XAI metrics could be employed for the
evaluation of faithfulness or plausibility.

Regarding the second task, pure text generation, one would need to explore the
existence of explanability metrics for this case. There is another tool called INSEQ
[31], which supposedly provides explanability techniques for Sequence Generation
tasks.
INSEQ is a Python library designed to make interpretability analyses of generative
language models more accessible to a wider audience. In regards to usability, IN-
SEQ significantly simplifies access to local and global explanations with a built-in
support. It includes a command line interface (CLI) for easy navigation, optimized

88

Evaluation Metrics

batching for dataset-wide attribution, and multiple techniques for visualizing, sav-
ing, and reloading attribution results and sequences.
In essence, INSEQ offers a straightforward platform for implementing feature at-
tribution methods in sequence generation assignments. These techniques are di-
vided into three categories: gradient-based, internals-based, and perturbation-
based, each with distinct approaches to quantifying importance.
Between the supported methods there are the ones presented before: Gradient,
Integrated gradient, SHAP gradient for the first category, Attention weight for the
second category and LIME for the last one.
This tool offers distinct features within encoder-decoder architectures. For in-
stance, users have the ability to specify whether to incorporate or omit the gen-
erated prefix in the associated inputs by adjusting a particular parameter. Addi-
tionally, INSEQ comprises multiple Aggregator classes designed to facilitate attri-
bution aggregation across different dimensions.
During the process of attribution, INSEQ initially utilizes Transformers to generate
target tokens and then proceeds to attribute them incrementally. At each attri-
bution stage, INSEQ has the capability to leverage internal information of models
to derive relevant scores such as probabilities or entropy, which are valuable for
assessing model uncertainty and other purposes. INSEQ facilitates the calculation
of these scores by providing access to various pre-defined step functions, while also
allowing users to develop and register their own customized ones. The scores asso-
ciated with each step are computed alongside the attribution process, presented as
distinct sequences in the output, and visualized alongside importance scores. Refer
to Figure 5.4 for a clearer understanding of the sequential attribution mechanism.

In conclusion we can theoretically apply this tool to both our tasks. Using
INSEQ, it seems possible to associate two texts as input and output. For the
first task the input would be the two sentences (premise and hypothesis) and
the output would be the predicted label. Indeed, for the second task the input
would be the two sentences (premise and hypothesis) and the label (entailment or
contradiction), while the output would be the model’s explanation.

89

Evaluation Metrics

Figure 5.4: INSEQ with a Transformers causal language model: feature impor-
tance and next-step probability extraction and visualization [31].

90

6 Experimental Results
In this chapter, we will present the outcomes of our experiments. After detailing
the experimental setup, we will present the results from three different perspec-
tives. In the first two sections, we will examine the performance of the systems
employed according to different tasks. The first section will focus on classifica-
tion task, while the second will address text generation task. In the final section,
we will conduct a qualitative analysis of the results, comparing the explanations
generated by our model with those ground-truth and those produced by reference
models.

6.1 Experimental Setup
The first thing done was to defined the Train and Validation set from the FLUTE
dataset. As said in Chapter 4 the Test set was already given from the promoters
of the challenge and consists in 1500 examples. From the other 7534 examples we
created a Validation set of 1500 examples and a Train set with the remaining ones.
The validation set was constructed taking into account the configuration of the
initial set. It was observed that the dataset is not perfectly balanced in terms of
various rhetorical figures but is markedly imbalanced, as half examples are solely
of sarcasm, while the remaining rhetorical figures (metaphor, idiom, and simile),
are fairly balanced in terms of the remaining half of the presented examples.

Moving on to the choice of the prompting format, after several attempts, the
format chosen was the one proved to be the most stable and effective.

For the Zero-Shot case results:

Find if the ’premise’ entails or contradicts the ’hypothesis’.
The output must strictly follow the following format:
Label: ’Entails’ or ’Contradicts’, Explanation: ’text’
premise: {input:premise}
hypothesis: {input:hypothesis}

Instead for the Few-Shot case with K examples:

Find if the ’premise’ entails or contradicts the ’hypothesis’.
Here you can find some examples of answers:

91

Experimental Results

{input: #K of examples}
premise: {input:premise}
hypothesis: {input:hypothesis}

where the examples in input are written with this format:

premise: "text"
hypothesis: "text"
Answer: ’Entails’ or ’Contradicts’
Explanation: "text"

For the Chain-of-Thought prompting case, we utilized the prompt format proposed
by DREAM-FLUTE in [16].
For the case with only one dimension, emotion, motivation, social norm or conse-
quence, we have used:

Find if the ’premise’ entails or contradicts the ’hypothesis’.
Here you can find some examples of answers:
{input: #K of examples}
premise: {input:premise} emotion:{input:premise-emotion}
hypothesis: {input:hypothesis} emotion:{input:hypothesis-emotion}

where the examples in input are written with this format:
premise: "text" emotion: "text"
hypothesis: "text" emotion: "text"
Answer: ’Entails’ or ’Contradicts’
Explanation: "text"

For the case where we pass all the Dream SE so all the 4 dimensions together, we
have used:

Find if the ’premise’ entails or contradicts the ’hypothesis’.
Here you can find some examples of answers:
{input: #K of examples}
premise: {input:premise} [emotion]{input:premise-emotion}

[motivation]{input:premise-motivation} [social norm]
{input:premise-rot} [consequence]{input:premise-consequence}

hypothesis: {input:hypothesis} [emotion]{input:hypothesis-emotion}
[motivation]{input:hypothesis-motivation} [social norm]
{input:hypothesis-rot} [consequence]
{input:hypothesis-consequence}

where the examples in input are written with this format:

92

Experimental Results

premise: "text" [emotion] "text" [motivation] "text"
[social norm] "text" [consequence] "text"

hypothesis: "text" [emotion] "text" [motivation] "text"
[social norm] "text" [consequence] "text"

Answer: ’Entails’ or ’Contradicts’
Explanation: "text"

In order to understand which values of the temperature parameter were more suit-
able, we chose a simple case, a prompt using few-shot learning with two examples,
one entailment, and one contradiction. The tested values were 0, 0.3, 0.6, and 0.9,
and the best-performing ones were the first two, 0 and 0.3.

At this point, we proceeded with the experiments.
We started with the Zero-Shot case, where we prompted LLaMA with the previ-
ously described prompt and the two selected temperature values.
We continued with the Few-Shot case, where several variants were tested. We
began with the two simplest cases, passing as input a single example (K=1), and
then a pair of examples (K=2). Of course these examples were randomly selected
from the training set. We put a constraint in the second case imposing the presence
of an entailment and a contradiction.

As explain in Chapter 4, to test prompting using a number K of input examples
greater than two, we employed three different methodologies.

1. We have tested a number K = 5, 10, 20, 30, 40 of input examples choosing
randomly from the train set.

2. We have tested a number K = 5, 10, 20, 30, 40 of input examples choosing
them from the training set in such a way that rhetorical figures were balanced
among them.
For example, if we need to input 10 examples, we would choose 2 sarcasms,
2 idioms, 2 metaphors, 2 similes, and randomly select the remaining two.

3. We have tested a number K = 6, 12, 18, 24, 30, 36, 42 of input examples
choosing them from the training set in such a way that rhetorical figures
were balanced according to the train set balance, i.e. having half of the
select examples chosen from sarcasm figure and the remaining half chosen in
a balanced manner among the other rhetorical figures.

Each of these experiments was conducted both in the case of zero temperature and
in the case of positive temperature (0.3).

93

Experimental Results

6.2 Results
We will present the results in two steps. In the first part, we will present the
resulting metrics for the classification task, while in the second part, we will focus
on those specific to the text generation task. In both cases, the metrics will be
compared with two baseline models:

• FLUTE T5-3b model: the baseline model presented by the promoters of the
FigLang2022 challenge [7] and described in Chapter 3, Section 3.

• DREAM-FLUTE System1: the first model proposed by [16] and described in
Chapter 3, Section 4.

6.2.1 Classification Task
For this task, the most suitable metric is accuracy, as described in Chapter 5.
We have chosen to present the results for the cases specified in the FigLang 2022
challenge using three metrics: Accuracy@0 (Acc@0), which involves computing
label accuracy; Accuracy@50 (Acc@50), considering only the correctly predicted
labels with an explanation score greater than 50; and Accuracy@60 (Acc@60),
counting only the correct predictions with an explanation score exceeding 60.
It is important to note that in this context, the ’explanation score’ is once again
the one proposed by the challenge, representing the average between BLEURT and
BERTscore.

The baseline results, for both the FLUTE model and the DREAM-System1
model, are presented in Table 6.1. For each of our models, we provide results for
the entire Test Set and sometimes also break down the results for each rhetorical
figure. From these experiments those that surpass the baseline of the FLUTE
model will be identified with bold numbers.

Let’s begin by analyzing the Zero-shot scenario. Table 6.2 illustrates this case
with zero and positive temperatures, and the case where the input is enriched with
the entire Dream SE (i.e. all the 4 dimensions).
As observed, all obtained results are notably low. The challenge in this scenario
lies specifically in the prompt; without any examples, the model varies its output
format inconsistently. Given the lack of coherence with the required format, it is
not feasible to automatically save the requested label and explanation.

Shifting our focus to the results obtained in the Few-shot prompting scenario,
let’s start with the two simplest cases: K=1 and K=2. In Table 6.3, we maintain
the previous structure, including the case with zero and positive temperatures,

94

Experimental Results

FLUTE DREAM

Test Set
Acc@0 0,8168 0,9453
Acc@50 0,7476 0,8879
Acc@60 0,4833 0,6061

Idiom
Acc@0 0,792 0,924
Acc@50 0,772 0,916
Acc@60 0,668 0,808

Metaphor
Acc@0 0,733 0,9194
Acc@50 0,556 0,7621
Acc@60 0,237 0,4355

Sarcasm
Acc@0 0,916 0,9773
Acc@50 0,862 0,9413
Acc@60 0,562 0,6387

Simile
Acc@0 0,628 0,896
Acc@50 0,572 0,824
Acc@60 0,304 0,476

Table 6.1: Classification baseline metrics from FLUTE and DREAM-System1
models.

Zero-Shot
Temperature T=0 T=0.3 T=0 + Dream SE

Acc@0 0,5334 0,5414 0,4446
Acc@50 0,2570 0,2390 0,0070
Acc@60 0,0314 0,0294 0

Table 6.2: Classification metrics for zero-shot prompting. In the table, consider
the cases with temperature null and positive, and the case with the addition of
Dream SE in the input.

and the case where the input is enriched with Dream SE.
We can notice that the scenario with only one example in input, is similar to the
zero-shot case as the model’s output format is unstable. Furthermore, it is highly
influenced by the type of example provided as input. It has been observed that if an
’entailment’ example is passed, the model tends to classify all labels as entailment,
and a similar behavior occurs when the input example is a contradiction. For this
reason, in all few-shot trials with K≥2, we have imposed a constraint to have at
least one example for each category (entailment-contradiction).
In the case where we pass a pair (K=2) as input, we observe a slight improvement
in performance compared to previous cases. Additionally, contrary to what was
expected, enriching the output with Dream SE does not improve performance.

95

Experimental Results

Few-Shot
K=1 K=2

Temperature T=0 T=0.3 T=0 T=0 T=0.3 T=0
+ Dream SE + Dream SE

Acc@0 0,5574 0,5574 0,5574 0,7223 0,7296 0,6676
Acc@50 0,3945 0,3992 0,3385 0,5481 0,5487 0,3945
Acc@60 0,1288 0,1302 0,0494 0,2443 0,2543 0,1108

Table 6.3: Classification metrics for few-shot prompting with K=1 and K=2. In
the table, consider the cases with temperature null and positive, and the case with
the addition of Dream SE in the input.

For the experiments with few-shot prompting involving more than 2 examples,
we tested the three methodologies presented in Chapter 4 on the validation set. It
was found that the third approach, which is the one balanced with respect to the
figures in the training set, yielded the best results. Due to the substantial number
of experiments on the validation set, these results will be not reported.
We decided to evaluate on the Test Set only the cases related to the third strat-
egy, the so-called ’balanced’ one, and the top-performing cases from the others,
specifically the experiments with K=10 and K=20 utilizing the first strategy, the
random one.

The results for the ’random’ strategy are presented in Table 6.4. We can observe
that this is the first case in which our model, with K=10 and null temperature,
outperforms the corresponding baseline result. Upon studying this experiment
for each rhetorical figure, it is apparent that the model surpasses the baseline for
almost all rhetorical figures except for sarcasm. However, since sarcasm constitutes
half of the test set, the resulting score is either slightly better (Acc@0) or slightly
lower (Acc@50, Acc@60) than the baseline.

In Table 6.5, we present the results on the Test set for the experiments con-
ducted using the ’balanced’ method with a number of input examples K = 6, 12,
18, 24, 30, 36, 42. In the table, we report the results with null and positive tem-
perature. We can observe that there is a standard trend for both temperatures,
where as the input examples increase, so do the performances until a certain satu-
ration point is reached. After this point, any additional examples only add "noise,"
causing the performances to decrease again.
There are three cases where we outperform the baseline, these cases are better de-
scribed in Table 6.6, where the results for each rhetorical figure are analyzed. As
a general comment, we can say that the rhetorical figure that our model identifies
best is metaphor, while the one it classifies worst is idiom.

96

Experimental Results

Few Shot - random method
K=10 K=20

Temperature T=0 T=0.3 T=0 T=0 T=0.3 T=0
+ emotion + emotion

Acc@0 0,8211 0,8138 0,7490 0,7463 0,7430 0,7116
Acc@50 0,7109 0,7043 0,5981 0,6642 0,6615 0,6215
Acc@60 0,3845 0,4320 0,285 0,3912 0,3812 0,6215

Table 6.4: Classification metrics for few-shot prompting with K=10 and K=20,
where the examples are extracted with the ’random’ method. In the table, consider
the cases with temperature null and positive, and the case with the addition of
DREAM ’s dimension ’emotion’ in the input.

Few Shot - balanced method
K=6 K=12 K=18 K=24 K=30 K=36 K=42

Temperature: T=0
Acc@0 0,7156 0,7917 0,8431 0,8331 0,8258 0,7510 0,7430
Acc@50 0,6068 0,7023 0,7503 0,7550 0,7470 0,6856 0,6622
Acc@60 0,3271 0,4045 0,4346 0,4653 0,4460 0,4065 0,3705
Temperature: T=0.3
Acc@0 0,7176 0,7877 0,8445 0,8318 0,8204 0,7490 0,7443
Acc@50 0,6101 0,7003 0,7470 0,7477 0,7363 0,6856 0,6689
Acc@60 0,3258 0,4039 0,4379 0,4466 0,4266 0,4012 0,3772

Table 6.5: Classification metrics for few-shot prompting with K = 6, 12, 18, 24,
30, 36 e 42, where the examples are extracted with the ’balanced’ method. In the
table, consider the cases with temperature null and positive.

For all the experiments conducted so far, the LLM used has been LLaMA-2-
7b-chat-hf. It was decided to test the LLaMA-2-7b-hf model on the top 3 cases,
namely those just presented with K = 18, 24, and 30 examples in input. However,
as can be seen from Table 6.7, the results on the classification task are markedly
inferior.
Given that the LLaMA Chat is a fine-tuned version specifically designed for chat
applications, it is natural that it performs better for this task. The LLM, fine-
tuned for this purpose, is indeed able to interpret better the prompt.

97

Experimental Results

Few Shot - balanced method
K=18 K=24 K=30

Temperature T=0 T=0.3 T=0 T=0.3 T=0 T=0.3

Test Set
Acc@0 0,8431 0,8445 0,8331 0,8318 0,8258 0,8204
Acc@50 0,7503 0,7470 0,7550 0,7477 0,7470 0,7363
Acc@60 0,4346 0,4379 0,4653 0,4466 0,4460 0,4266

Idiom
Acc@0 0,8040 0,7880 0,7600 0,7640 0,7640 0,7680
Acc@50 0,7400 0,7240 0,6840 0,6720 0,6480 0,6480
Acc@60 0,4920 0,4640 0,4240 0,3960 0,4200 0,3760

Metaphor
Acc@0 0,8870 0,8387 0,7984 0,8105 0,7742 0,7621
Acc@50 0,6371 0,6532 0,6452 0,6492 0,6411 0,6089
Acc@60 0,3065 0,3024 0,2903 0,2702 0,2944 0,2742

Sarcasm
Acc@0 0,9120 0,9133 0,9360 0,9320 0,9307 0,9320
Acc@50 0,8320 0,8253 0,8760 0,8693 0,8813 0,8787
Acc@60 0,4627 0,4867 0,5720 0,5507 0,5413 0,5333

Simile
Acc@0 0,6800 0,7000 0,6320 0,6200 0,6240 0,5960
Acc@50 0,6280 0,6280 0,5720 0,5560 0,5480 0,5240
Acc@60 0,4200 0,4000 0,3600 0,3600 0,3280 0,3080

Table 6.6: Classification metrics for few-shot prompting with K = 18, 24 e 30,
where the examples are extracted with the ’balanced’ method. In the table, con-
sider the cases class-specif with temperature null and positive

LLaMA-2 7b-chat-hf 7b-hf
Temperature T=0 T=0.3 T=0 T=0.3

Fe
w

-S
ho

t

K=18
Acc@0 0,8431 0,8445 0,5975 0,6235
Acc@50 0,7503 0,7470 0,516 0,5287
Acc@60 0,4346 0,4379 0,2884 0,2977

K=24
Acc@0 0,8331 0,8318 0,7323 0,7096
Acc@50 0,7550 0,7477 0,6542 0,6335
Acc@60 0,4653 0,4466 0,3905 0,3578

K=30
Acc@0 0,8258 0,8204 0,6542 0,6522
Acc@50 0,7470 0,7363 0,5567 0,5527
Acc@60 0,4460 0,4266 0,2837 0,2797

Table 6.7: Classification metrics for few-shot prompting with K = 18, 24 e 30,
where the examples are extracted with the ’balanced’ method. In the table, there
is a comparison between the usage of the model LLaMA-2-7b-chat-hf and LLaMA-
2-7b-hf in cases with null and positive temperature.

98

Experimental Results

Let us now examine the case of Chain-of-Thought prompting. As explained in
Chapters 2 and 4, we decided to test this prompting method by adding, to each
input sentence, the corresponding scene elaboration produced by the DREAM
model. We analyzed five cases for each experiment done earlier: the first four
cases involve adding one dimension at a time (emotion, motivation, social norm,
and consequence), and the fifth case is the one where we have all four dimensions
together, called Dream SE. For this fifth category, there is an implementation issue
as the input grows significantly even with a few examples, and thus, above K=15,
it already exceeds the maximum limit of context window of LLaMA. Therefore,
we have results for this case only up to K=12.
In general, contrary to what was expected, it was observed that this method does
not improve the results obtained from a simple few-shot approach. In Table 6.8,
we have decided to report only the Accuracy@0, and only for the cases of K = 2
and K = 6, 12, 18, 24, 30 of the balanced method, with null temperature.
We can observe that only for the case of K=2 the method with the addition of
the entire Dream SE perform better than adding a single dimension; in all other
cases, the best method, for the classification task, is the one with the addition of
the ’emotion’ dimension.
Table 6.9 presents the results with the addition of ’emotion’ in the best cases, K
= 12, 18, and 24, for both temperatures. However, it is noted that these results
are much lower both compared to the baseline and compared to the experiments
presented before with a simple few-shot prompting.

Few Shot with DREAM
Temperature: T=0

Emotion Motivation Social Norm Consequence SE

A
cc

ur
ac

y@
0 K=2 0,6115 0,5694 0,6008 0,6162 0,6676

K=6 0,6615 0,5547 0,6175 0,5861 0,5668
K=12 0,7423 0,6162 0,6769 0,6168 0,6702
K=18 0,7210 0,6535 0,7036 0,6722 -
K=24 0,7670 0,7210 0,7029 0,7230 -
K=30 0,6742 0,6162 0,6789 - -

Table 6.8: Accuracy@0 for few-shot prompting with the use of DREAM with
K = 2, 6, 12, 18, 24 and 30. In the table, all the DREAM ’s input possible:
emotion, motivation, social norm, consequence and Dream SE, in the case with
null temperature.

99

Experimental Results

Few Shot with DREAM
K=12 K=18 K=24

+ emotion + emotion + emotion
Temperature T=0 T=0.3 T=0 T=0.3 T=0 T=0.3

Acc@0 0,7423 0,745 0,721 0,6929 0,7670 0,7470
Acc@50 0,6228 0,6248 0,6121 0,6061 0,6482 0,6101
Acc@60 0,3371 0,3518 0,3224 0,3151 0,3511 0,3298

Table 6.9: Classification metrics for few-shot prompting with K = 12, 18 and 24,
where the examples are extracted with the ’balanced’ method. In the table, there
are the cases with the adding of DREAM ’s dimension ’emotion’ with null and
positive temperature.

100

Experimental Results

6.2.2 Text Generation Task
To assess the quality of the generated explanations, we primarily employ two
metrics: BERTscore and ROUGE. For ROUGE, we consider two types: Rouge-N,
with N=1 and N=2, and Rouge-L. For each of these metrics, recall, precision, and
F1-score have been computed.

The baseline results, for both the FLUTE model and the DREAM-System1
model, are presented in Table 6.10. For the subsequent tables, as before, the
numbers in bold will represent those that surpass the baseline of the FLUTE
model. Instead, for clarity, in most cases only the F1 metric will be reported,
excluding precision and recall, as F1 is a weighted average of the other two.

FLUTE DREAM

BERTscore
r 0,6598 0,6744
p 0,6633 0,6890
f 0,6601 0,6804

Rouge-1
r 0,463 0,486
p 0,452 0,524
f 0,443 0,490

Rouge-2
r 0,224 0,269
p 0,223 0,275
f 0,213 0,261

Rouge-L
r 0,413 0,449
p 0,403 0,482
f 0,395 0,452

Table 6.10: Text generation baseline metrics from FLUTE and DREAM-System1
models. Let ’p’ for precision, ’r’ for recall and ’f’ for F1-score

As before let’s begin by analyzing the zero-shot scenario. Table 6.11 illustrates
this case with zero and positive temperatures, and the case where the input is
enriched with the entire Dream SE (i.e. all the 4 dimensions).
As expected, the metrics are considerably lower compared to the baseline, and
they do not hold much significance. As said before the challenge in this scenario
lies specifically in the prompt; without any examples, the model varies its output
format inconsistently and it is not feasible to automatically save the requested
label and explanation.

Shifting to the results obtained in the few-shot prompting scenario, let’s start
again with the two simplest cases: K=1 and K=2. In Table 6.12, there is the case
with zero and positive temperatures, and the case where the input is enriched with
Dream SE.

101

Experimental Results

Zero-Shot
Temperature T=0 T=0.3 T=0 + Dream SE
BERTscore 0.5184 0.5212 0,2581

Rouge-1 0.221 0,223 0.001
Rouge-2 0.056 0,055 0
Rouge-L 0,163 0,160 0.002

Table 6.11: BERTscore and ROUGE, F1 metrics for zero-shot prompting. In the
table, consider the cases with temperature null and positive, and the case with the
addition of Dream SE in the input.

It can be observed that there is not much difference either when considering the
number of input examples or when considering the addition of Dream SE.

Few-Shot
K=1 K=2

Temperature T=0 T=0.3 T=0 T=0 T=0.3 T=0
+ Dream SE + Dream SE

BERTscore 0,5706 0,5724 0,5533 0,5962 0,5970 0,5817
Rouge-1 0,318 0,316 0.288 0,328 0,325 0.279
Rouge-2 0,102 0,101 0.095 0,116 0,113 0.092
Rouge-L 0,244 0,233 0.212 0,243 0,240 0.209

Table 6.12: BERTscore and ROUGE, F1 metrics for few-shot prompting with K=1
and K=2. In the table, consider the cases with temperature null and positive, and
the case with the addition of Dream SE in the input

For the experiments with few-shot prompting involving more than 2 examples,
we will present the same cases presented in the previous section.
The results for the ’random’ strategy with K=10 and K=20 are presented in Table
6.13. We can observe that in general, in these two cases, the use of the DREAM
dimension ’emotion’ lowers the ROUGE metric, but in the case of K=20, it slightly
increases the BERTscore.

In Table 6.14, we present the results on the Test set for the experiments con-
ducted using the ’balanced’ method with a number of input examples K = 6,
12, 18, 24, 30, 36, 42. In the table, we report the results with null and positive
temperature. We can observe that, as for the classification task, there is a stan-
dard trend for both temperatures, where as the input examples increase, so do
the performances until a certain saturation point is reached. After this point, any

102

Experimental Results

Few Shot - random method
K=10 K=20

Temperature T=0 T=0.3 T=0 T=0 T=0.3 T=0
+ emotion + emotion

BERTscore 0,6268 0,6254 0,6118 0,5962 0,5970 0,6245
Rouge-1 0,417 0,412 0,385 0,439 0,435 0,408
Rouge-2 0,195 0,190 0,174 0,206 0,201 0,186
Rouge-L 0,369 0,365 0,337 0,387 0,382 0,355

Table 6.13: BERTscore and ROUGE, F1 metrics for few-shot prompting with
K=10 and K=20, where the examples are extracted with the ’random’ method.
In the table, consider the cases with temperature null and positive, and the case
with the addition ofDREAM ’s dimension ’emotion’ in the input.

additional examples only add "noise," causing the performances to decrease again.
However, unlike the previous task, none of the configurations presented manage to
reach the baseline in terms of the quality of the explanations produced. The best
cases for the classification task, K = 18, 24, and 30, are reproduced in Table 6.15
for a more complete analysis.

Few Shot - balanced method
K=6 K=12 K=18 K=24 K=30 K=36 K=42

Temperature: T=0
BERTscore 0,6192 0,6348 0,6368 0,6418 0,6379 0,6319 0,6311

Rouge-1 0,402 0,394 0,443 0,421 0,418 0,417 0,399
Rouge-2 0,170 0,169 0,202 0,192 0,176 0,178 0,176
Rouge-L 0,338 0,331 0,384 0,365 0,352 0,356 0,344

Temperature: T=0.3
BERTscore 0,6193 0,6352 0,6366 0,6409 0,6358 0,6330 0,6303

Rouge-1 0,398 0,391 0,439 0,425 0,407 0,420 0,397
Rouge-2 0,167 0,166 0,203 0,195 0,168 0,178 0,164
Rouge-L 0,330 0,332 0,381 0,367 0,338 0,358 0,336

Table 6.14: BERTscore and ROUGE, F1 metrics for few-shot prompting with K
= 6, 12, 18, 24, 30, 36 e 42, where the examples are extracted with the ’balanced’
method. In the table, consider the cases with temperature null and positive.

Let us now revisit the experiments conducted with LLaMA-2-7b-hf instead of
LLaMA-2-7b-chat-hf. Regarding the classification task, as we had seen in the
previous section, the results remained significantly inferior to both the baseline

103

Experimental Results

Few Shot - balanced method
K=18 K=24 K=30

Temperature T=0 T=0.3 T=0 T=0.3 T=0 T=0.3

BERTscore
r 0,6408 0,6412 0,6453 0,6443 0,6420 0,6399
p 0,6354 0,6347 0,6410 0,6401 0,6362 0,6340
f 0,6368 0,6366 0,6418 0,6409 0,6379 0,6358

Rouge-1
r 0,487 0,477 0,467 0,466 0,469 0,453
p 0,430 0,428 0,400 0,409 0,395 0,387
f 0,443 0,439 0,421 0,425 0,418 0,407

Rouge-2
r 0,230 0,229 0,222 0,224 0,209 0,197
p 0,195 0,196 0,180 0,185 0,165 0,159
f 0,202 0,203 0,192 0,195 0,176 0,168

Rouge-L
r 0,424 0,415 0,405 0,405 0,396 0,378
p 0,371 0,370 0,346 0,352 0,333 0,321
f 0,384 0,381 0,365 0,367 0,352 0,338

Table 6.15: BERTscore and ROUGE metrics for few-shot prompting with K =
18, 24 e 30, where the examples are extracted with the ’balanced’ method. In the
table, consider the cases with temperature null and positive. Let ’p’ for precision,
’r’ for recall and ’f’ for F1-score

and the corresponding case with LLaMA-Chat. However, concerning the text
generation task, we can observe from Table 6.16 that the model change improves
performance, even surpassing the baselines on some occasions, especially with null
temperature.

Even concerning the text generation task, the addition of DREAM did not lead
to any improvement. In Table 6.17, we report the BERTscore F1 metric in the
cases of Few-shot prompting with the ’balanced’ method. As can be seen, besides
all metrics being below the baseline and below the corresponding case without the
addition of DREAM, there is practically no difference among the different types of
information additions used, whether adding one dimension at a time or the entire
Dream SE. In Table 6.18, we provide more detailed results for the best cases, i.e.
K=12, 18, 24, in the case of adding the DREAM dimension ’motivation’.

In order to improve the performance related to explanation generation, we at-
tempted to prompt LLaMA assuming knowledge of the rhetorical figure corre-
sponding to the input sentence of the test set to be analyzed. In this way, depend-
ing on the type of premise-hypothesis pair we need to classify, input examples will
not be balanced on the general distribution of the four types of rhetorical figures,
but examples related exclusively to the type of rhetorical figure to be analyzed

104

Experimental Results

LLaMA-2 7b-chat-hf 7b-hf
Temperature T=0 T=0.3 T=0 T=0.3

Fe
w

-S
ho

t
K=18

BERTscore 0,6368 0,6366 0,6192 0,6190
Rouge-1 0,443 0,439 0,474 0,468
Rouge-2 0,202 0,203 0,219 0,208
Rouge-L 0,384 0,381 0,415 0,405

K=24

BERTscore 0,6418 0,6409 0,6325 0,6284
Rouge-1 0,421 0,425 0,459 0,450
Rouge-2 0,192 0,195 0,221 0,199
Rouge-L 0,365 0,367 0,406 0,387

K=30

BERTscore 0,6379 0,6358 0,6204 0,6195
Rouge-1 0,418 0,407 0,474 0,458
Rouge-2 0,176 0,168 0,209 0,204
Rouge-L 0,352 0,338 0,410 0,393

Table 6.16: BERTscore and ROUGE, F1 metrics for few-shot prompting with K =
18, 24 e 30, where the examples are extracted with the ’balanced’ method. In the
table, there is a comparison between the usage of the model LLaMA-2-7b-chat-hf
and LLaMA-2-7b-hf in cases with null and positive temperature.

Few Shot with DREAM
Temperature: T=0

Emotion Motivation Social Norm Consequence SE

B
E

R
T

sc
or

e

F
1s

co
re

K=6 0,6126 0,6115 0,6079 0,5996 0,6074
K=12 0,6204 0,6212 0,6120 0,6099 0,6020
K=18 0,6163 0,6172 0,6167 0,6043 -
K=24 0,6193 0,6261 0,6135 0,6079 -
K=30 0,6157 0,6219 0,6160 - -

Table 6.17: BERTscore F1 metric for few-shot prompting with the use of DREAM
with K = 6, 12, 18, 24 and 30. In the table, all the DREAM ’s input possible:
emotion, motivation, social norm, consequence and Dream SE, in the case with
null temperature

will be passed. In this way, it is as if we "train" the model in a specific manner,
thus improving its ability to provide adequate explanations. The theoretical idea
is confirmed by the results, Table 6.19, where the baseline is practically always
surpassed.
In Table 6.20, we expand the results for the top 3 K values in general, K = 18,
24, and 30, providing the F1 metrics specific for each class. We note that the

105

Experimental Results

Few Shot with DREAM
Temperature: T=0

K=12 K=18 K=24
+ motivation + motivation + motivation

BERTscore 0,6212 0,6172 0,6261
Rouge-1 0,376 0,390 0,414
Rouge-2 0,150 0,166 0,183
Rouge-L 0,316 0,339 0,347

Table 6.18: BERTscore and ROUGE, F1 metrics for few-shot prompting with K
= 12, 18 and 24, where the examples are extracted with the ’balanced’ method. In
the table, there are the cases with the adding of DREAM ’s dimension ’motivation’
with null and positive temperature.

rhetorical figure that performs best with this specific method, is simile.

Few Shot - class specific method
K=6 K=12 K=18 K=24 K=30 K=36 K=42

Temperature: T=0
BERTscore 0.6527 0.6638 0,6619 0,6625 0,6604 0,6657 0,4582

Rouge-1 0,465 0,464 0,469 0,477 0,469 0,471 0,470
Rouge-2 0,230 0,246 0,242 0,250 0,238 0,246 0,241
Rouge-L 0,416 0,422 0,427 0,430 0,425 0,428 0,427

Temperature: T=0.3
BERTscore 0,6512 0,6624 0,6605 0,6625 0,6601 0,6614 0,457

Rouge-1 0,469 0,466 0,464 0,469 0,473 0,468 0,465
Rouge-2 0,231 0,242 0,234 0,244 0,244 0,245 0,236
Rouge-L 0,420 0,421 0,424 0,427 0,433 0,427 0,457

Table 6.19: BERTscore and ROUGE, F1 metrics for few-shot prompting with K
= 6, 12, 18, 24, 30, 36 e 42, where the examples are extracted with the ’balanced’
method. The prompt is personalized according to the type of rhetorical figure in
input. In the table, consider the cases with temperature null and positive.

The latest analysis conducted to better evaluate the produced explanations
involved a comparison between the utilized models. Specifically, we compared each
of our models to both the base model of FLUTE and the System1 of DREAM.
What we did was select examples where both models being compared produced the
same label, and then we evaluated ROUGE and BERTscore for the explanations
produced in these cases. The second step involved evaluating the explanations

106

Experimental Results

Few Shot - class specific method
K=18 K=24 K=30

Temperature T=0 T=0.3 T=0 T=0.3 T=0 T=0.3

Idiom

BERTscore 0,7000 0,6992 0,7111 0,7118 0,7229 0,7212
Rouge-1 0,529 0,527 0,545 0,551 0,577 0,573
Rouge-2 0,338 0,339 0,344 0,346 0,370 0,366
Rouge-L 0,489 0,491 0,504 0,507 0,537 0,532

Metaphor

BERTscore 0,6286 0,6277 0,6183 0,6192 0,6253 0,6265
Rouge-1 0,323 0,322 0,326 0,329 0,339 0,345
Rouge-2 0,133 0,134 0,125 0,132 0,146 0,149
Rouge-L 0,281 0,279 0,270 0,272 0,282 0,288

Sarcasm

BERTscore 0,6625 0,6602 0,6626 0,6623 0,6543 0,6524
Rouge-1 0,376 0,370 0,366 0,363 0,363 0,359
Rouge-2 0,123 0,118 0,116 0,114 0,114 0,115
Rouge-L 0,280 0,276 0,272 0,270 0,272 0,270

Simile

BERTscore 0,6551 0,6550 0,6574 0,6568 0,6514 0,6554
Rouge-1 0,469 0,464 0,477 0,469 0,469 0,473
Rouge-2 0,242 0,234 0,250 0,244 0,238 0,244
Rouge-L 0,427 0,424 0,431 0,428 0,425 0,433

Table 6.20: BERTscore and ROUGE, F1 metrics for few-shot prompting with K
= 18, 24 e 30, where the examples are extracted with the ’balanced’ method. The
prompt is personalized according to the type of rhetorical figure in input. In the
table the results are divided for each figure of speech, considering the cases with
temperature null and positive.

produced when the label, in addition to being corresponding, was also correctly
predicted. In none of the normal cases did the explanations produced by our
models surpass those of the baseline models. The only exception lies in the case
where we used LLaMA, specifically class by class. In these cases, the explanations
produced by the models with K=12, 18, 24, 30, and 36 are superior compared to
the baseline model of DREAM but not compared to that of FLUTE.
To better understand these comparisons, we report in the Tables 6.21 and 6.22 a
subset of results concerning the comparison between the two baseline models and
our model obtained through few-shot prompting, using the ’balanced’ method,
zero temperature, and K=24.

107

Experimental Results

Comparison of generated explanations

Number of elements Correspondence Correspondence & Correctness
1234/1498 1200/1498

Model LLaMA 2 FLUTE LLaMA 2 FLUTE
BERTscore 0,649 0,684 0,650 0,686

Rouge-1 0,369 0,455 0,371 0,456
Rouge-2 0,141 0,231 0,143 0,232
Rouge-L 0,295 0,394 0,296 0,395

Table 6.21: Comparison of the generated explanations between the FLUTE model
and our model, prompted through a few-shot approach with K=24 and null tem-
perature. BERTscore and ROUGE F1 metrics reported.

Comparison of generated explanations

Number of elements Correspondence Correspondence & Correctness
1138/1498 1056/1498

Model LLaMA 2 Dream-S1 LLaMA 2 Dream-S1
BERTscore 0,645 0,665 0,649 0,668

Rouge-1 0,364 0,411 0,366 0,410
Rouge-2 0,136 0,178 0,138 0,177
Rouge-L 0,288 0,339 0,290 0,337

Table 6.22: Comparison of the generated explanations between the DREAM-
System1 model and our model, prompted through a few-shot approach with K=24
and null temperature. BERTscore and ROUGE F1 metrics reported.

108

Experimental Results

6.2.3 Qualitative Analysis
Let’s complete the automatic evaluation with a qualitative analysis. Specifically,
we will show some examples from the best performing configuration, including two
successful ones and two failures. The outputs of our model will be compared with
the ground truth and with the outputs of the two baseline models, FLUTE and
DREAM-System1.
The explanation score required by the FigLang 2022 challenge is reported only to
provide a general indication of how much that explanation has been evaluated.

First example, a correct prediction regarding the ’Entailment’ class.
Premise = I can’t believe my ex won’t just move on.
Hypothesis = I don’t understand why my ex-boyfriend can’t just move on and
find someone new.
Figurative Type = sarcasm

Ground Truth:
Label = Entailment
Explanation = It’s often hard to move on after a break-up and it can be even
harder to see an ex-partner move on before oneself.

LLaMA model:
Predicted Label = Entailment
Model Explanation = When someone is still hung up on an ex, it can be hard
for them to understand why the ex won’t just move on and find someone else.
Explanation score = 56

FLUTE model:
Predicted Label = Entailment
Model Explanation = It is natural to want to move on from an ex-boyfriend
who has hurt you in the past and so it is understandable to wonder why he won’t
do that.
Explanation score = 53

DREAM-System1 model:
Predicted Label = Entailment
Model Explanation = It is natural to want to move on from an ex-boyfriend who
has hurt you and is still a person, so it is understandable to want to understand
why he won’t just move on.
Explanation score = 51

Given this pair of input sentences, it is easy to understand that it is an entailment,
and indeed all three models correctly predict the label. We note that the expla-
nations produced by the reference models are very similar and differ from the one

109

Experimental Results

produced by our model, which, however, obtains the highest score. A particular
detail that we can highlight is that, while the concept of the difficulty of moving on
after the end of a relationship is present in all 4 explanations, the concept that it
can be even harder to see an ex-partner move on before oneself is explicitly stated
only in the gold explanation.

Second example, a correct prediction regarding the ’Contradiciton’ class.
Premise = My friend is always at least 30 minutes late to everything.
Hypothesis = I’m always waiting 30 minutes for my super disciplined friend.
Figurative Type = sarcasm

Ground Truth:
Label = Contradiction
Explanation = Most people would not call someone disciplined if they are con-
sistently late and do not have good time management skills.

LLaMA model:
Predicted Label = Contradiction
Model Explanation = Someone who is consistently late is not super disciplined,
they are just consistently late.
Explanation score = 60

FLUTE model:
Predicted Label = Entailment
Model Explanation = The friend is always late to everything and so the person
who is waiting for them is not disciplined.
Explanation score = 54

DREAM-System1 model:
Predicted Label = Contradiction
Model Explanation = A friend who is always late to things is not disciplined
and hence the person waiting for them is not disciplined.
Explanation score = 55

In this case as well, it is very easy to understand that the two input sentences
contradict each other. However, unlike the first example, not all three models cor-
rectly predict the label. The baseline model FLUTE erroneously predicts the label
and creates a rather confusing explanation; however, we note that the obtained
score is not even so low.
The other reference model, DREAM, although correctly predicting the label, does
not produce a clear explanation. In fact, it states that the person waiting for the
latecomers is not disciplined, which cannot be inferred from the input sentence pair
and is not present in the ground truth. The best output is from our model, which
not only assigns the correct label but also generates a correct and comprehensive

110

Experimental Results

explanation.

Third example, a wrong prediction regarding the ’Entailment’ class.
Premise = The animal looked like a small German shepherd, but with a reddish-
brown coat and a black mask over its eyes.
Hypothesis = With its black mask and those ears, the animal was like a small
german shepherd, but the rest of its fur was like a chestnut mare’s.
Figurative Type = simile

Ground Truth:
Label = Entailment
Explanation = A chestnut mare is a horse with a reddish brown coat, so saying
the animal’s fur was like a chestnut mare’s would mean it would have a reddish
brown coat

LLaMA model:
Predicted Label = Contradiction
Model Explanation = A chestnut mare is a type of horse with a reddish-brown
coat, so it would not be correct to say that the animal’s fur was like a chestnut
mare’s.
Explanation score = 75

FLUTE model:
Predicted Label = Contradiction
Model Explanation = A chestnut mare is a reddish-brown horse, so saying its
fur is like s chestnut mare’s would imply that its coat is red and not brown.
Explanation score = 74

DREAM-System1 model:
Predicted Label = Contradiction
Model Explanation = A chestnut mare’s coat is reddish-brown, not red
Explanation score = 54

This third example presents a more challenging premise-hypothesis pair to classify
as it requires a deeper understanding of the language and of the vocabularies.
All models under consideration have indeed failed in the label assignment phase.
The reference model DREAM performs the worst, while the FLUTE and LLaMA
models, on the other hand, generate two explanations that are very similar to each
other and both with very high scores (74 and 75). This high score is due to the
fact that, although incorrect explanations are provided, they are very similar to
the gold one, with only a few words changing. For example, between the ground
truth and the explanation generated by our model, practically only a ’not’ differs.
So, the sentences are similar to the gold one in terms of syntax but differ in terms
of semantics.

111

Experimental Results

Fourth example, a wrong prediction regarding the ’Contradiciton’ class.
Premise = He’s very smart.
Hypothesis = He’s smart as a brick.
Figurative Type = simile

Ground Truth:
Label = Contradiction
Explanation = A brick is an inanimate object, therefore it would not be con-
sidered smart.

LLaMA model:
Predicted Label = Entailment
Model Explanation = Smart as a brick means that someone is very intelligent
and so this statement entails that the person being referred to is indeed smart.
Explanation score = 47

FLUTE model:
Predicted Label = Entailment
Model Explanation = To be smart as a brick means to be very smart, which
is what the speaker is trying to convey.
Explanation score = 42

DREAM-System1 model:
Predicted Label = Contradiction
Model Explanation = A brick is not a very smart object, so saying someone is
as smart as a brick would imply that they are not very smart.
Explanation score = 56

The last example provides us with another pair that is very easy to classify, but
surprisingly only the DREAM model manages to correctly predict the label. The
explanation provided by this model is correct and complete, but it is presented
syntactically differently from the gold standard, so the explanation score is not
actually that high. On the other hand, the FLUTE and LLaMA models generate
two explanations that are completely wrong from a semantic point of view. Also
the syntax is different from the gold standard, so the final scores are low.

We can conclude this qualitative analysis by saying that although the LLM
used in our experiments performs quite well, the so-called bottlenecks of Figurative
Language Understanding are still present.
The main issues in our case are twofold. When the model predicts correctly, it’s
still possible that evaluating the generated explanation results in a low score. This
occurs because the two sentences, while having the same semantic meaning, differ
too much in terms of syntax.
The second problem is practically the opposite, it occurs when the model fails to

112

Experimental Results

predict the correct label, but evaluating the explanation produced we get an high
score. This happens because the generated text, compared to the ground truth,
differs semantically but remains very similar syntactically.

113

7 Conclusions
In general, we can say that this work once again demonstrates the enormous po-
tential of LLMs. Observing the results obtained, we notice that our model almost
always reaches the baseline proposed by the authors of the FigLang2022 challenge
and, in some cases, even surpasses it. For example, in the case of few-shot prompt-
ing with examples extracted through the ’balanced’ method, the model is able to
achieve an Accuracy@0 between 83% and 85%, surpassing the 81.68% of the ref-
erence model FLUTE.
This is a remarkable outcome because unlike the baseline and all other proposed
solutions, our model is not trained or fine-tuned specifically for this task.

Taking a comprehensive look at all the experiments conducted, we can also list
some of the weaknesses of this method.
The first observation is that the LLM is greatly influenced by how the prompt is
written. In fact, during the initial phase, various types of prompts were tried, all
with the same purpose, but for some, the model did not provide the sought-after
response at all.
And the second one is that the quality of the response is highly influenced by
the type of examples provided as input. Taking examples randomly is not a good
choice; they should be selected from the Train set with a criterion if higher per-
formance is desired.

In overall experiments, we have noticed that on average the model seems to
struggle with the figure of speech known as "idiom." This figure, being the most
complex, requires the model to have a more advanced reasoning ability and a
higher level of abstraction. Conversely, the rhetorical figure that appears to be
better identified is the metaphor.

Analyzing the methodologies of zero-shot and few-shot prompting, one of the
initial conclusions we can draw is that the zero-shot method is not suitable for
this task. Indeed, without any input examples, the model varies its output format
inconsistently and given the lack of coherence with the required format, so, it is
not feasible to automatically save the requested label and explanation.
On the other hand, moving to the few-shot case and analyzing the number of
examples to give in input, we can reach a couple of conclusions. When K is
less than 10, there are too few input examples, particularly since we deal with 4
different classes of figures of speech. Conversely, when K exceeds 30, there are too

114

Conclusions

many input examples; this abundance of data might introduce too much noise into
the process, potentially hindering the model’s ability to accurately learn patterns
and make predictions. To achieve optimal model performance in this few-shot case
is hence crucial to strike a balance in the number of examples used.
For this case, we have observed that if the figurative class membership is known in
advance, the model predicts better. This happens because, assuming knowledge
of the class, only examples consistent with that specific class are passed as input.
Therefore, one could consider a different model that first predicts the class and
then provides this prediction to the LLM to better guide it in generating the label
and its explanation.

Regarding the use of DREAM, it can be concluded that it hasn’t yielded the
improvements initially envisioned. The idea was that adding context to the pair of
sentences to be analyzed would facilitate classification by our LLM. However, this
hasn’t been the case. The reason behind this could be that this approach requires a
sufficiently large number of examples (18, 24, 30) as input to work effectively. This
is because the rhetorical figures to be analyzed are divided into 4 distinct classes,
and there isn’t an initial training phase specific to the task. So we think that the
problem arises here because DREAM adds at least one contextual sentence for
each input sentence. Therefore, even with few input examples an excessive noise
is transfer to the model and moreover the maximum token threshold accepted by
LLaMA is quickly reached.
With a full fine-tuning, as seen in DREAM-FLUTE, it would probably be possible
to better utilize the additional context provided by DREAM. However, with an
LLM, the model appears to be more sensitive to noise, leading to no improvement
in performance.

Future Works

Here we present the possible modifications or future work that can be carried out
based on this work.
The first idea is to try other variations of the pipeline used, such as solving the two
tasks separately, with two separate prompts, or even using two different models.
Alternatively, as mentioned earlier, predicting the type of rhetorical figure before
and then passing it as input to the LLM could also help.
Additionally, one could consider using a LLaMA Chat model version 13B or 70B,
which will perform better compared to the version we used, the 7B.
Alternatively, like the one used in the FigLang 2022 challenge, one could train or
fine-tune LLaMA before prompting it. This method is certainly more computa-
tionally expensive, but it should better refine the model for the task of figurative

115

Conclusions

language understanding, and with a "trained" model, performance is likely to im-
prove.
Of course, all these experiments can be reproduced using other LLMs, even non-
open-source ones such as GPT-3.5 or GPT-4. In this last case is therefore possible
to further compare the performance of open-source models with proprietary ones.

116

Bibliography
[1] Demystifying the temperature parameter: A visual guide to understanding its

role in large language models., 2023.

[2] Giuseppe Attanasio, Eliana Pastor, Chiara Di Bonaventura, and Debora
Nozza. ferret: a framework for benchmarking explainers on transformers.
In Danilo Croce and Luca Soldaini, editors, Proceedings of the 17th Confer-
ence of the European Chapter of the Association for Computational Linguis-
tics: System Demonstrations, pages 256–266, Dubrovnik, Croatia, May 2023.
Association for Computational Linguistics.

[3] Irina Bigoulaeva, Rachneet Singh Sachdeva, Harish Tayyar Madabushi, Aline
Villavicencio, and Iryna Gurevych. Effective cross-task transfer learning for
explainable natural language inference with t5. In Debanjan Ghosh, Beata
Beigman Klebanov, Smaranda Muresan, Anna Feldman, Soujanya Poria, and
Tuhin Chakrabarty, editors, Proceedings of the 3rd Workshop on Figurative
Language Processing (FLP), pages 54–60, Abu Dhabi, United Arab Emirates
(Hybrid), December 2022. Association for Computational Linguistics.

[4] Jose Camacho-Collados and Mohammad Taher Pilehvar. Embeddings in natu-
ral language processing. In Lucia Specia and Daniel Beck, editors, Proceedings
of the 28th International Conference on Computational Linguistics: Tutorial
Abstracts, pages 10–15, Barcelona, Spain (Online), December 2020. Interna-
tional Committee for Computational Linguistics.

[5] Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blun-
som. e-snli: Natural language inference with natural language explanations.
2018.

[6] Tuhin Chakrabarty, Debanjan Ghosh, Adam Poliak, and Smaranda Muresan.
Figurative language in recognizing textual entailment. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli, editors, Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pages 3354–3361, Online,
August 2021. Association for Computational Linguistics.

[7] Tuhin Chakrabarty, Arkadiy Saakyan, Debanjan Ghosh, and Smaranda Mure-
san. FLUTE: Figurative language understanding through textual explana-
tions. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language

117

BIBLIOGRAPHY

Processing, pages 7139–7159, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics.

[8] Tuhin Chakrabarty, Arkadiy Saakyan, Debanjan Ghosh, and Smaranda Mure-
san. A shared task on understanding figurative language, 2022.

[9] Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas,
and Prithviraj Sen. A survey of the state of explainable AI for natural language
processing. In Kam-Fai Wong, Kevin Knight, and Hua Wu, editors, Proceed-
ings of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on
Natural Language Processing, pages 447–459, Suzhou, China, December 2020.
Association for Computational Linguistics.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

[11] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming
Xiong, Richard Socher, and Byron C. Wallace. Eraser: A benchmark to eval-
uate rationalized nlp models. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4443–4458, Online, July 2020.
Association for Computational Linguistics.

[12] Denis Emelin, Ronan Le Bras, Jena D. Hwang, Maxwell Forbes, and Yejin
Choi. Moral stories: Situated reasoning about norms, intents, actions, and
their consequences. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, pages 698–718, Online and
Punta Cana, Dominican Republic, November 2021. Association for Compu-
tational Linguistics.

[13] Maxwell Forbes, Jena D. Hwang, Vered Shwartz, Maarten Sap, and Yejin
Choi. Social chemistry 101: Learning to reason about social and moral norms.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 653–670, Online, November 2020. Association for Compu-
tational Linguistics.

118

BIBLIOGRAPHY

[14] Debanjan Ghosh, Elena Musi, and Smaranda Muresan. Interpreting verbal
irony: Linguistic strategies and the connection to theType of semantic incon-
gruity. In Allyson Ettinger, Gaja Jarosz, and Joe Pater, editors, Proceedings
of the Society for Computation in Linguistics 2020, pages 82–93, New York,
New York, January 2020. Association for Computational Linguistics.

[15] Yuling Gu, Bhavana Dalvi, and Peter Clark. DREAM: Improving situational
QA by first elaborating the situation. In Marine Carpuat, Marie-Catherine
de Marneffe, and Ivan Vladimir Meza Ruiz, editors, Proceedings of the 2022
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1115–1127, Seattle,
United States, July 2022. Association for Computational Linguistics.

[16] Yuling Gu, Yao Fu, Valentina Pyatkin, Ian Magnusson, Bhavana
Dalvi Mishra, and Peter Clark. Just-DREAM-about-it: Figurative lan-
guage understanding with DREAM-FLUTE. In Debanjan Ghosh, Beata
Beigman Klebanov, Smaranda Muresan, Anna Feldman, Soujanya Poria, and
Tuhin Chakrabarty, editors, Proceedings of the 3rd Workshop on Figurative
Language Processing (FLP), pages 84–93, Abu Dhabi, United Arab Emirates
(Hybrid), December 2022. Association for Computational Linguistics.

[17] Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP sys-
tems: How should we define and evaluate faithfulness? In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages
4198–4205, Online, July 2020. Association for Computational Linguistics.

[18] Sarthak Jain and Byron C. Wallace. Attention is not explanation. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 3543–3556, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics.

[19] Yash Kumar Lal and Mohaddeseh Bastan. SBU figures it out: Models explain
figurative language. In Debanjan Ghosh, Beata Beigman Klebanov, Smaranda
Muresan, Anna Feldman, Soujanya Poria, and Tuhin Chakrabarty, editors,
Proceedings of the 3rd Workshop on Figurative Language Processing (FLP),
pages 143–149, Abu Dhabi, United Arab Emirates (Hybrid), December 2022.
Association for Computational Linguistics.

[20] Perci Liang. Stanford-cs324, Winter 2022.

119

BIBLIOGRAPHY

[21] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries.
In Text Summarization Branches Out, pages 74–81, Barcelona, Spain, July
2004. Association for Computational Linguistics.

[22] Chi-kiu Lo. YiSi - a unified semantic MT quality evaluation and estimation
metric for languages with different levels of available resources. In Ondřej
Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham,
Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André
Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt
Post, Marco Turchi, and Karin Verspoor, editors, Proceedings of the Fourth
Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1),
pages 507–513, Florence, Italy, August 2019. Association for Computational
Linguistics.

[23] Scott Lundberg and Su-In Lee. Axiomatic attribution for deep networks. 2017.

[24] Andreas Madsen, Siva Reddy, and Sarath Chandar. Post-hoc interpretability
for neural nlp: A survey, 2021.

[25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Pierre Isabelle,
Eugene Charniak, and Dekang Lin, editors, Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA, July 2002. Association for Computational
Linguistics.

[26] Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell
Power. Semi-supervised sequence tagging with bidirectional language mod-
els. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1756–1765, Vancouver, Canada, July 2017. Association
for Computational Linguistics.

[27] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. In Marilyn Walker, Heng Ji, and Amanda Stent, editors, Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics.

[28] Khoa Thi-Kim Phan, Duc-Vu Nguyen, and Ngan Luu-Thuy Nguyen.
NLP@UIT at FigLang-EMNLP 2022: A divide-and-conquer system for shared
task on understanding figurative language. In Debanjan Ghosh, Beata

120

BIBLIOGRAPHY

Beigman Klebanov, Smaranda Muresan, Anna Feldman, Soujanya Poria, and
Tuhin Chakrabarty, editors, Proceedings of the 3rd Workshop on Figurative
Language Processing (FLP), pages 150–153, Abu Dhabi, United Arab Emi-
rates (Hybrid), December 2022. Association for Computational Linguistics.

[29] Hannah Rashkin, Antoine Bosselut, Maarten Sap, Kevin Knight, and Yejin
Choi. Modeling naive psychology of characters in simple commonsense stories.
In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2289–2299, Melbourne, Australia, July 2018. Association for
Computational Linguistics.

[30] Marco Ribeiro, Sameer Singh, and Carlos Guestrin. “why should I trust
you?”: Explaining the predictions of any classifier. In John DeNero, Mark
Finlayson, and Sravana Reddy, editors, Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Demonstrations, pages 97–101, San Diego, California, June 2016. Association
for Computational Linguistics.

[31] Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Oskar van der Wal. Inseq:
An interpretability toolkit for sequence generation models. In Danushka Bolle-
gala, Ruihong Huang, and Alan Ritter, editors, Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations), pages 421–435, Toronto, Canada, July 2023. Association for
Computational Linguistics.

[32] Thibault "Sellam, Dipanjan Das, and Ankur" Parikh. "bleurt: Learning robust
metrics for text generation". In Dan "Jurafsky, Joyce Chai, Natalie Schluter,
and Joel" Tetreault, editors, "Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics", pages 7881–7892, Online, 2020.
Association for Computational Linguistics.

[33] Hiroki Shimanaka, Tomoyuki Kajiwara, and Mamoru Komachi. RUSE: Re-
gressor using sentence embeddings for automatic machine translation eval-
uation. In Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark
Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno
Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mar-
iana Neves, Matt Post, Lucia Specia, Marco Turchi, and Karin Verspoor,
editors, Proceedings of the Third Conference on Machine Translation: Shared
Task Papers, pages 751–758, Belgium, Brussels, October 2018. Association for
Computational Linguistics.

[34] Sia. Adaptation to downstream tasks, 2023.

121

BIBLIOGRAPHY

[35] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
2014.

[36] Miloš Stanojević and Khalil Sima’an. BEER: BEtter evaluation as ranking. In
Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, and Lucia Specia, editors, Proceedings of
the Ninth Workshop on Statistical Machine Translation, pages 414–419, Balti-
more, Maryland, USA, June 2014. Association for Computational Linguistics.

[37] Kevin Stowe, Prasetya Utama, and Iryna Gurevych. IMPLI: Investigating
NLI models’ performance on figurative language. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 5375–5388, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

[38] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. A unified approach to
interpreting model predictions. 2017.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. Llama: Open and efficient foundation language models. 2023.

[40] Hugo Touvron, Louis Martin, Kevin Stone, and Yasmine Babaei Nikolay
Bashlykov Soumya Batra Prajjwal Bhargava Shruti Bhosale Dan Bikel Lukas
Blecher Cristian Canton Ferrer Moya Chen Guillem Cucurull David Esiobu
Jude Fernandes Jeremy Fu Wenyin Fu Brian Fuller Cynthia Gao Vedanuj
Goswami Naman Goyal Anthony Hartshorn Saghar Hosseini Rui Hou Hakan
Inan Marcin Kardas Viktor Kerkez Madian Khabsa Isabel Kloumann Artem
Korenev Punit Singh Koura Marie-Anne Lachaux Thibaut Lavril Jenya Lee
Diana Liskovich Yinghai Lu Yuning Mao Xavier Martinet Todor Mihaylov
Pushkar Mishra Igor Molybog Yixin Nie Andrew Poulton Jeremy Reizen-
stein Rashi Rungta Kalyan Saladi Alan Schelten Ruan Silva Eric Michael
Smith Ranjan Subramanian Xiaoqing Ellen Tan Binh Tang Ross Taylor Ad-
ina Williams Jian Xiang Kuan Puxin Xu Zheng Yan Iliyan Zarov Yuchen
Zhang Angela Fan Melanie Kambadur Sharan Narang Aurelien Rodriguez
Robert Stojnic Sergey Edunov Thomas Scialom Peter Albert, Amjad Alma-
hairi. Llama 2: Open foundation and fine-tuned chat models. 2023.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. 2017.

122

BIBLIOGRAPHY

[42] Lena Voita. Nlp course | for you, 2018.

[43] Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, and
Hyung Won Chung. What language model architecture and pretraining ob-
jective work best for zero-shot generalization? 2022.

[44] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,
Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting
elicits reasoning in large language models. 2022.

[45] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi. Bertscore: Evaluating text generation with bert. 2020.

[46] Wayne Xin Zhao, Zou Khun, and Yunji li. A survey of large language models,
2023.

[47] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao,
Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike
Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more for alignment.
2023.

[48] Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A robustly optimized BERT
pre-training approach with post-training. In Sheng Li, Maosong Sun, Yang
Liu, Hua Wu, Kang Liu, Wanxiang Che, Shizhu He, and Gaoqi Rao, editors,
Proceedings of the 20th Chinese National Conference on Computational Lin-
guistics, pages 1218–1227, Huhhot, China, August 2021. Chinese Information
Processing Society of China.

123

	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation
	Contribution
	Structure

	Fundamentals of DeepNLP
	Introduction to NLP
	Deep Contextualized Word Representation
	Language Models
	Sequence-to-Sequence Models
	The Attention Mechanism
	Transformers
	Large Language Models
	LLM Adaptation
	LLaMA 2

	Figurative Language Understanding
	Introduction
	FLUTE Dataset
	FigLang 2022 Shared Task on Understanding Figurative Language
	Participants and Results

	DREAM method
	DREAM - FLUTE

	Methodology
	Data Preparation
	LLM Pipeline
	Evaluation
	Implementation

	Evaluation Metrics
	Metrics for Classification Task
	Confusion Matrix
	Receiver Operating Characteristic Curve (ROC) & Area Under the Curve (AUC)
	Accuracy

	Metrics for Text Generation Task
	Overview on Base Metrics
	BERT Score
	BLEURT
	ROUGE

	Explainable Artificial Intelligence
	Post-Hoc Features Importance Methods
	Evaluation Metrics
	Potential Application to Our Case Study

	Experimental Results
	Experimental Setup
	Results
	Classification Task
	Text Generation Task
	Qualitative Analysis

	Conclusions
	Bibliography

