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Summary

In this thesis, we explore the formation control of unmanned ground vehicles
(UGVs) using a Nonlinear Model Predictive Control (NMPC) approach based on
the Pontryagin Minimum (maximum, in the original form) Principle. The UGV
model incorporates essential information about the involved agents dynamics, guid-
ing our pursuit of optimal trajectories while concurrently establishing a dynamic
network among them.

The main goal of the thesis is to bridge the theoretical constructs with practical
realities by introducing disturbances into the model. These disturbances, represent-
ing real-world uncertainties, contribute to the complexity of the control problem.
To address the robust NMPC problem, we formulate the optimal control problem,
in presence of exogeneous disturbance, as min-max optimization, wherein the goal
is to minimize the trajectories for formation while maximizing the disturbances.
To this end, we employ game theoretic approach, where the min-max optimal
control problem can be viewed as a zero-sum game, with the aim of determining the
minimum control inputs required for the formation while strategically maximizing
the impact of disturbances.

The incorporation of game theory introduces a strategic dimension to the control
problem, seeking a Nash equilibrium point which coincides with a saddle node point
of the Hamiltonian. By determining the parameters leading to this equilibrium, we
establish the optimal control inputs necessary for formation under the influence of
disturbances.

Extending our focus beyond UGVs, we also propose the management of collision
avoidance for drones within the formation. This is achieved through the imple-
mentation of the Artificial Potential Field (APF) method, enhancing the overall
robustness and safety of the multi-agent system.

The comprehensive approach outlined in this thesis combines advanced control
techniques, disturbance modeling, and game theory, offering a nuanced perspective
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on the challenges associated with formation control in dynamic environments. The
findings contribute to the growing body of knowledge in autonomous systems,
paving the way for practical implementations in real-world scenarios.
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Chapter 1

Introduction

In recent decades, there has been a significant surge in the utilization and de-
velopment of Unmanned Vehicles (UVs) Liu et al. [1]. The ability to operate
without human intervention and enhance autonomous systems has led UVs to find
applications in different fields. While initially predominantly employed in military
operations, there has been a notable shift towards extending their use to civilian
operations, such as search and rescue.

Depending on the specific application, various categories of UVs exist, in-
cluding Unmanned Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs),
Unmanned Surface Vehicles (USVs), and Autonomous Underwater Vehicles (AUVs).

When assessing the applications of these platforms, a frequently observed limi-
tation is their typically small size and limited capability, rendering them suitable
primarily for relatively straightforward missions. Additionally, a significant number
of current unmanned vehicle platforms exhibit low levels of autonomy, with some
being remotely controlled or only semi-autonomous.

To address and manage these limitations more effectively, deploying these small
vehicles in formation, constituting a fleet, proves to be a valuable strategy. This
approach allows for the coverage of wider mission areas with improved system
robustness, coordination, and fault-tolerant capabilities.

In the context of this thesis, the focus will be on the formation of Unmanned
Ground Vehicles (UGVs). Specifically, the study will delve into the application
of Nonlinear Model Predictive Control (NMPC) and its extensions to aid in the
formation of these devices. Additionally, Artificial Potential Field (APF) will be
employed to enhance management in this aspect, particularly in avoiding collisions
within the formation.
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1.1 Formation and State of Art
The fundamental notion of formation about UV systems finds its inspiration in the
intricate behaviors exhibited by animals, particularly in phenomena like bird flocking
or fish schooling. By closely mimicking these patterns, unmanned vehicles can
seamlessly navigate and operate within well-structured formations. This emulation
of nature’s inherent order not only facilitates the execution of various tasks but
also contributes significantly to the enhancement of overall system autonomy. The
utilization of formations enables a synchronized and cooperative approach, enabling
unmanned vehicles to accomplish complex missions with heightened efficiency and
adaptability. This paradigm not only leverages the wisdom of nature but also
represents a crucial stride in the evolution of autonomous systems, promoting a more
robust and intelligent integration of unmanned vehicles into diverse operational
landscapes Liu et al. [1].

Figure 1.1: Formation Layers

A generic hierarchical architeture for the formation has been proposed by Liu
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and Bucknall Liu et al. [2]. The structure is divided in 3 important layers: Task
Management Layer, Path Planning Layer and Task Execution Layer (as
we can observe in Figure 1.1). The Task Management Layer is designed to
address a particular type of mission in the most time-efficient manner possible.
The Path Planning Layer is dedicated to determining the optimal trajectory for
the formation. It is characterized by a real-time trajectory modification module, a
data acquisition module, and a cooperative path planning module.
Additionally, there is the Execution Layer, which establishes a direct connection
with the propulsion system of the unmanned vehicle and generates control laws.
To enhance system performance, real-time information, such as vehicle velocity
and position, is fed back to the upper layer to modify the trajectory in the near
future. This process creates a closed control loop, contributing to the improvement
of overall system efficiency.

1.1.1 Task Management Layer
In this layer, the primary objective is the optimization of a designated application,
with a focal point on minimizing the execution time required.

An illustrative example of such an application is discernible in various research
studies, as exemplified by references Song et al. [3] and Guerra et al. [4],
where exclusively Unmanned Aerial Vehicles (UAVs) are utilized. The central
concept revolves around configuring a formation through the utilization of a swarm,
concurrently or subsequently engaging in the pursuit of an unidentified object
(Figure 1.2). Another noteworthy application involving the collaborative operation
of UAVs and UGVs pertains to wildfire hotspot surveillance. In this context, UAVs
are employed to detect fires in the air, while UGVs focus on identifying specific
suspected hotspots, as depicted in the work presented by Pasini et al. [5].

However, this thesis does not extend to further exploration of information within
this layer, whereas it focuses on the path planning and the task execution layers.

Figure 1.2: Swarm Pursuit
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1.1.2 Path Planning Layer
The path planning layer is the heart of the shape of UVs formation. Our propose is
the usage of a leader-follower structure, also known as a master-slave configuration,
as outlined in Park et al. [6]. In this arrangement, a master or leader Unmanned
Ground Vehicle (UGV) occupies a designated position in space, while the other
vehicles calculate their positions based on the leader’s information. After that, the
scheme reached has to move maintaining the formation. All this is also described
and illustrated in Figure 1.3.

Figure 1.3: (a) Formation generation and maintenance. (b) Formation mainte-
nance while tracking trajectory. (c) Formation shape variation and re-generation.
Liu et al. [1]

In this layer, the Artificial Potential Fields (APF) method can be inserted. It is
used to avoid possible collisions between UVs and also between UVs and objects
(see (c) in Figure 1.3). It consists of potentials/forces, which can be repulsive or
attractive. Repulsive potentials/forces are used to avoid a certain collision, and
attractive potentials/forces are used to reach a certain objective (Figure 1.4 from
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Ravankar et al. [7]), optimizing the results and the time spent to reach the
objective.

Figure 1.4: Cobs: repulsive field; qgoal: attractive field

We can view, for example, an application in automated parking as in Dong et
al. [8], where a location contains an attractive potential, and the borders around
the location contain a repulsive potential, as we can observe in Figure 1.5.

Figure 1.5: Parking with APF

Another example can be viewed in Souza et al. [9], where APF method is
used to avoid collision for UAVs with obstacles on a 3D simulation (example in
Figure 1.6).

Another interesting example is the usage of APF applied to autonomous ren-
dezvous maneuvers to avoid obstacles, as detailed in Mancini et al. [10].

So in this layer, thanks to the decision of the shape of formation, it is possible,
in real-time, to find the right trajectory for the UVs, communicating information
with the Task Execution Layer and also with the Task Management Layer
for possible practical applications.

5
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Figure 1.6: APF application 3D

1.1.3 Task Execution Layer
In this layer, the incorporation of data derived from the Path Planning Layer is
essential for identifying optimal control parameters necessary for establishing a
specific trajectory and, consequently, the formation. Diverse models, encompassing
both stochastic and deterministic methodologies, are employed to ascertain suitable
parameters for the control of Unmanned Vehicles (UVs).

A prominent model within this layer, which interfaces concurrently with the Path
Planning Layer and is to be utilized in this study, is the Nonlinear Model Predictive
Control (NMPC). The significant interdependence with the aforementioned layer is
noteworthy, as the primary goal is to minimize a predetermined trajectory while
simultaneously optimizing control parameters.

NMPC finds widespread application across various domains such as finance
Primbs et al. [11], epidemic environments Stursberg et al. [12], automotive
environments Di Cairano et al. [13], and so on.
Its application varies across contexts, adapting and strengthening according to
specific requirements. For instance, in a study Pagone et al. [14], NMPC is
applied to an academic model known as the Lotka-Volterra model, demonstrating
its utilization in a nonlinear context with the Pontryagin approach. Another
instance involves the application of NMPC with the introduction of noise through
the utilization of game theory Pagone et al. [15]. This variant, known as robust
NMPC, aims to minimize a defined trajectory despite the challenges given by noise.

6
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Here, the academic model considered is the Van Der Pol model.
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1.2 Resume of Objectives
The primary objective of our thesis is to develop an advanced model for Unmanned
Ground Vehicles (UGVs) and implement effective formation control using the
Nonlinear Model Predictive Control (NMPC) algorithm with Pontryagin approach.
We plan to adopt a leader(master)-follower(slave) scheme where a master drone
defines a predetermined position, and other drones adjust their positions based
on the leader’s/master information. The goal will be to determine the optimal
trajectory and control parameters through the application of NMPC.

In addition, our goal is to inject a challenging element into the formation process
by introducing noise into the system, as form of friction for UGVs. We plan to
utilize game theory to optimize the formation in the presence of disturbances. This
will involve extending NMPC with a robust Pontryagin approach, employing a
non-cooperative game with two players, specifically a zero-sum game.

Moreover, an interesting aspect of our work will be addressing the issue of
collisions between drones during formation. To achieve this, we intend to use
the Artificial Potential Field (APF) method to avoid collisions, ensuring safe and
coordinated movement within the formation.

In summary, our research focuses on creating an advanced UGV model capable
of forming a coordinated swarm through the use of NMPC and APF, effectively
managing noise through game theory, and implementing a robust NMPC approach.
This integrated approach aims to enhance the autonomy and overall efficiency
of vehicle operations without compromising safety, giving good performances in
trajectories and in time.

8



Chapter 2

Theoretical Background

This chapter aims to provide a comprehensive overview of the theoretical constructs
that form the basis for the models discussed herein, offering a detailed exploration
of their conceptual foundations and methodological grounds.

2.1 Unmanned Ground Vehicle (UGV) Model

2.1.1 UGV model without disturbances

Within the context of this thesis, the selected model for simulating a single Un-
manned Ground Vehicle (UGV) is characterized by the following set of motion
equations:

ẍ = F cos(θ) (2.1)
θ̇ = ω (2.2)

A simplified point model is employed for individual agents/UGVs, where F and
ω represent the control input parameters. Here, F denotes the input force that we
want to control, acting on the agent, and ω represents its angular velocity, also under
our control. Schematically, we define the control input as u = (F, ω) = (u1, u2).
These parameters will systematically determined by a governing algorithm to ensure
the accurate derivation of the trajectory for the formation, that we will describe
further on. The motion equations are then reformulated to operate solely at the
first order, resulting in:

9
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ẋ = vx (2.3)
v̇x = u1 cos θ (2.4)
θ̇ = u2 (2.5)

This formulation allows us to model the various UGVs considered in this work.
Consequently, we can extract the triple (x, vx, θ) from these equations. And
subsequently, utilizing polar coordinates, we can extract y through polar coordinates
as follows:

y = x tan(θ) (2.6)

This model is observable in figure 2.1.

Figure 2.1: UGV model without disturbances

2.1.2 UGV model with disturbances
In this subsection, we extend the UGV model (described in subsection 2.1.1) to
incorporate disturbances, into the second and third motion equations. The distur-
bances, denoted as w1 and w2, are extracted from a uniform distribution in the
interval (−0.2, 0.2).

10
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The modified motion equations become:

ẋ = vx (2.7)
v̇x = u1 cos θ + w1 (2.8)
θ̇ = u2 + w2 (2.9)

Here, w1 represents the disturbance affecting the variation on time of velocity
along x axis, acting as a form of friction, and w2 represents the disturbance affecting
the angular velocity.

Including disturbances in the model allows for a more realistic representation of
UGV behavior, considering uncertainties and external factors that may influence
the motion of the vehicle, such as frictional forces. This model is graphically shown
in figure 2.2.

Figure 2.2: UGV model with disturbances

2.2 Nonlinear Model Predictive Control (NMPC)
Nonlinear Model Predictive Control (NMPC), as discussed in Chapter 1, is widely
employed across diverse domains, primarily for computing optimal trajectories in
various contexts. In this context, we will explore two distinct implementations for
optimization problems characterized by a specific form.

11
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2.2.1 NMPC with Pontryagin approach
In this study, we consider a dynamic system with specific conditions outlined by
the following affine-in-the-input differential equation:

ẋ(t) = f(x(t)) + g(x(t))u(t) (2.10)

The system is subject to initial and terminal conditions:

x(t0) = x0, x(tf ) = xf . (2.11)

Here, t represents time, x ∈ Rn denotes the system variable, and u(t) ∈ U
stands for the control function, with U compact and convex subset of Rn. Our
primary goal is to find u∗ that minimizes the cost function J , where J is a cost
function defined on a Banach space as follows:

J : B(·) → R (2.12)

The optimization problem is a minimization problem. We assume that:

Assumption 1. f(x), g(x) are C1.

Assumption 2. u is piece-wise continuous.

In our Nonlinear Model Predictive Control (NMPC) framework, we formulate
an optimization problem as a minimization problem, and we consider [tk, tk + Tp]
as a sampled discretized time interval from a larger time interval, where tk = Tsk
with k = 0,1, ... (the different values for k permit to sample the entire time interval
considered), Ts is called sampling time (with Ts ≤ Tp) and Tp is called prediction
time horizon. The minimization problem takes the form:

minimize: J(u; tk, xk) := ψ(x(T )) +
Ú tk+Tp

tk

L(t, x(t), u(t))dt. (2.13)

Here, the components of J(u; tk, xk) are defined as:

L(t, x(t), u(t)) := x̃TQx̃+ uTRu; (2.14)

ψ(x(T )) := x̃T (tf )Px̃(tf ), (2.15)

with Q, P , R being diagonal positive-definite matrices. Specifically, x̃ = x̂k −xR,
where:
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• x̃ denotes the error in the component variables of the dynamic system under
consideration,

• x̂k represents the estimated values of the component variables of the dynamic
system,

• xR corresponds to the real/reference values for the component variables of the
dynamic system.

Moreover:

• Q includes positive values on the diagonal to mitigate errors in the component
variables related to the dynamic system, when these values are high;

• R contains positive values on the diagonal that gives less considerations on
actions of control inputs, if the values are high;

• P incorporates positive values on the diagonal to minimize errors in the com-
ponent variables concerning the dynamic system at the end of the prediction
horizon, when these values are high.

Remark 1. So, the matrices in our particular work have the following forms:

• Q =

Q11 0 0
0 Q22 0
0 0 Q33

,

• R =
A
R11 0
0 R22

B
,

• P =

P11 0 0
0 P22 0
0 0 P33

.

Remark 2. Notice that the quadratic forms on J give the possibility to use this
algorithm in non linear cases.

NMPC is constituted by three fundamental phases:

• the prediction of the dynamic, in a certain time interval [tk, tk + Tp];

• an optimization phase;

• The receding of horizon. In particular, at the k-th step, obtaining u∗ =
[u∗

k, u
∗
k+1, ...]T ∈ [tk, tk + Tp], we apply to the system only the component u∗

k,
discarding all the other ones.
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Remark 3. The appropriate selection of Tp and Ts values is critical:

• Tp should be sufficiently large for effective operation, but excessive values may
compromise short-time tracking accuracy.

• Ts should be kept relatively small to maintain algorithmic efficiency, though
excessively small values may lead to significant slowdowns.

Remark 4. In general, a tradeoff must be found between consumption and the path
taken to reach the final objective.

The complete optimization problem can be expressed as:

u∗ = arg min
u∈U

Ú tk+Tp

tk

L(t, x(t), u(t))dt+ ψ(x(T )). (2.16)

s.t. 
ẋ = f(x) + g(x)u
t0 = tk

tf = tk + Tp

x(t0) = x0

with x ∈ Rn and u ∈ U . This represents a constrained problem.

Remark 5. For simplicity, we write all the conditions
t0 = tk

tf = tk + Tp

x(t0) = x0

as

Ψ = 0. (2.17)

Then, we passed to the augmented function cost, incorporating Lagrange multi-
pliers µ and costates λ, as follows:

Ĵ = ψ(x(tf )) + µT Ψ +
Ú tf

t0
{L(t, x, u) + λT (f(x) + g(x)u− ẋ)}dt, (2.18)

leading to:

arg min
u∈U

Ĵ . (2.19)

The necessary condition for optimality is then described, assuming that the sufficient
condition, related to second derivative, is granted.

14
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Necessary Condition for Optimality

To ascertain the necessary condition for optimality, the approach involves comput-
ing the Gâteaux derivative of Ĵ and subsequently setting dĴ = 0. This derivative
is employed due to the functional nature of the expression under consideration.

In this case we can calculate the Gâteaux derivative, using also the definition of
Hamiltonian given by:

H(t, x, u, λ) := L(t, x, u) + λT (f(x) + g(x)u) ∈ R (2.20)

so we obtain:

dĴ = (µT ∂Ψ
∂tf

+H(tf , x(tf ), u(tf ), λ(tf )) + λT
tf
ẋtf

))dtf

+(µT ∂Ψ
∂tk

−H(tk, x(tk), u(tk), λ(tk)) − λT
tk
ẋtk

))dtk

+ ∂ψ

∂xf

dxf + µT ∂Ψ
∂xk

dxk + µT ∂Ψ
∂xf

dxf + ∂ψ

∂tf
dtf+

Ú tf

tk

[∂(H(t, x, u, λ) − λT ẋ)
∂x

δx+ ∂(H(t, x, u, λ) − λT ẋ)
∂u

δu]dt (2.21)

using µ = 0 and neglecting what remains constant along certain directions, we
obtain:

dĴ = ∂ψ

∂xf

dxf + ∂ψ

∂tf
dtf +H(tf , x(tf ), u(tf ), λ(tf ))dtf

−H(tk, x(tk), u(tk), λ(tk))dtk +
Ú tf

tk

[∂(H(t, x, u, λ))
∂x

δx+ ∂(H(t, x, u, λ))
∂u

δu− λT δẋ]dt
(2.22)

Now, knowing that in 2.20 we can rewrite it as H(t, x, u) = L(t, x, u) + λT ẋ,
using δx = dx− ẋdt and integrating by part

s tf

tk
[−λT δẋ]dt neglecting an invarint

piece, we arrive to:

dĴ = ∂ψ

∂tf
dtf +H(tf , x(tf ), u(tf ), λ(tf ))dtf + ∂ψ

∂xf

dxf − λTdxf + λT δxt0+Ú tf

tk

[(∂(H(t, x, u, λ))
∂x

+ λ̇T )δx+ ∂(H(t, x, u, λ))
∂u

δu]dt− L(tk, x(tk), u(tk), λ(tk))dtk
(2.23)
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Posing to 0 each component of dĴ , we arrive to the Pontryagin Principle
(necessary condition of optimality):

• ∂H(t, x, u, λ)
∂u

= 0 which is the law of optimal control;

• λ̇(t) = −∂H

∂x
which is called Eulero-Lagrange equation;

with the following conditions:

• λ(tf ) = 2x̃T (tf )P ;

• λ(tk) = µ(tk).

So, we can reduce the numerical calculus to a two points boundary value
problem (TPBVP) 2.2.1.
(For more considerations about Gâteaux derivative, read Zaffaroni et al. [16]
and about all the calculus for the necessary condition of Pontryagin, see Section
2.8 of Jr Arthur et al. [17]).

2.2.2 More about necessary condition of Pontryagin Prin-
ciple

Using similar notations we have seen before, consider the initial condition

x(t0) = x0, (2.24)

and let

t → x(t) = x(t; t0, x0, u) (2.25)

the corresponding trajectory of a controlled system described by

ẋ = f(t, x, u), u(t) ∈ U (2.26)

with t time, x ∈ R the state variable and f such that:

|f(t, x, u)| ≤ C(1 + |x|) ∀(t, x, u) ∈ [0, T ] × Rn × U. (2.27)

So, consider the optimization problem

maximize : J(u; t0, x0) := ψ(x(T )) +
Ú T

t0
L(t, x(t), u(t))dt (2.28)
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where ψ is a terminal payoff and L(·) the running cost. For initial data (t0, x0)
(given), J should be maximized over measurable control functions u : [t0, T ] → U .

Consider t → u∗(t) and t → x∗(t) = x(t;u0, x0, u
∗) sequentially as the control

optimal function and the optimal trajectory. We use the Pontryagin Maximum
Principle (PMP) to have a set of necessary conditions for u∗(·) and x∗(·), con-
sidering initially the initial point given and the terminal point free.

Theorem 1 (PMP with free terminal point). Bressan et al. [18]. Consider
t → u∗(t) and t → x∗(t) the corresponding optimal control and optimal trajectory
for 2.26 - 2.28. Define the vector t → λ(t) as the solution of the adjoint system

λ̇(t) = −λ(t)∂f
∂x

(t, x∗(t), u∗(t)) + ∂L

∂x
(t, x∗(t), u∗(t)) (2.29)

with terminal condition

λ(T ) = ∇ψ(x∗(T )). (2.30)

Then, for almost every t ∈ [t0, T ], it holds that:

λ(t) · f(t, x∗(t), u∗(t)) − L(t, x∗(t), u∗(t))
= max

u∈U
{λ(t) · f(t, x∗(t), u(t)) − L(t, x∗(t), u(t))} (2.31)

So, the idea behind the theorem 1 to find optimal control can be achieved in
two steps:

• solve 2.31, obtaining the optimal control u∗ as function of t,x,λ:

u∗(t, x, λ) = arg max
u∈U

{λf(t, x, λ) − L(t, x, λ)}; (2.32)

• solve the two-point boundary value problem (TPBVP) on time interval
[t0, T ]: 

ẋ(t) = f(t, x(t), u∗(t, x, λ))

λ̇(t) = −λ(t)∂f
∂x

(t, x, u∗(t, x, λ)) + ∂L

∂x
(t, x, u∗(t, x, λ))

with initial conditions: x(t0) = x0

λ(T ) = ∇ψ(x(T ))
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An extension of Theorem 1 where initial and terminal points are constrained is the
following:

Theorem 2 (PMP with initial and terminal points constrained). Bressan et al.
[18]. Let t → u∗(t) and t → x∗(t) an optimal bounded control function and the
correspondent optimal trajectory for the problem

maximize : J := ϕ(x(0)) + ψ(x(T )) −
Ú T

0
L(t, x(t), u(t))dt, (2.33)

with dynamics 2.26 and with conditions

x(0) ∈ S0 x(T ) ∈ ST (2.34)

where f, L, ψ, ϕ are differentiable functions and S0, ST ∈ Rn are embedded manifolds,
both C1. Then:

• there exists t → λ(t) = (λ0, λ1, ..., λn)(t) absolutely continuous, which never
vanishes on [0, T ], with λ0 constant, satisfying

λ̇j(t) = −
nØ

j=1
λj(t)

∂fj

∂xi

(t, x∗(t), u∗(t)) + λ0
∂L

∂xi

(t, x∗(t), u∗(t)) i = 1, ..., n

(2.35)

• the initial and terminal values of p satisfy

(λ1, ..., λn)(0) = λ0∇ϕ(x∗(0)) + n0 (2.36)
(λ1, ..., λn)(T ) = λ0∇ϕ(x∗(T )) + nT (2.37)

where n0 and nT are vectors orthogonal in the order to manifold S0 at point
x∗(0) and manifold ST at point x∗(T ).

• The condition
nØ

i=1
λi(t)fi(t, x∗(t), u∗(t)) − λ0L(t, x∗(t), u∗(t))

= max
u∈U

{
nØ

i=1
λi(t)fi(t, x∗(t), u(t)) − λ0L(t, x∗(t), u(t))} (2.38)

holds for a.e. t ∈ [0, T ].

Definition 1. Bressan et al. [18]. We define as Hamiltonian function the
following:

H(t, x, u, λ) := λf(t, x, u) − L(t, x, u). (2.39)
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Moreover, we define as reduced Hamiltonian what follows:

H(t, x, u) := max
ω∈U

{λf(t, x, ω) − L(t, x, ω)}; (2.40)

where L is the running cost that you can find also here 2.28, f is the function
related to 2.26, t is time, x and u are in the order the variable which describes our
system and the control parameter.

Theorem 3 (PMP and concavity for the optimality). Bressan et al. [18].
Using the settings for theorem 1, let t → u∗(t) a measurable function and x∗(·), λ(·)
two absolutely continuous functions satisfying the following system:

ẋ = f(t, x, u∗(t))

λ̇ = −λ(t)∂f
∂x

(t, x, u∗(t)) + ∂L

∂x
(t, x, u∗(t))

with initial and terminal conditionsx(t0) = x0

λ(T ) = ∇ψ(x(T ))

all with maximality condition 2.31. Suppose that the set U is convex and that
x → H(t, x, λ(t)), x → ψ(x) are concave.
Then u∗(·) is an optimal control, and x∗(·) is the corresponding optimal trajectory.

Proof. Consider u : [t0, T ] → U measurable control function. Then, using definition
1 and equation 2.26 we obtain:

J(u) − J(u∗) = ψ(x(T )) − ψ(x∗(T )) −
Ú T

t0
[L(t, x(t), u(t)) − L(t, x∗(t), u∗(t))]dt

= ψ(x(T )) − ψ(x∗(T )) +
Ú T

t0
[H(t, x(t), λ(t), u(t)) − λ(t)ẋ(t)]

−[H(t, x∗(t), λ(t), u∗(t)) − λ(t)ẋ∗(t)]dt
(2.41)

u∗ satisfies the maximality condition 2.31, so for a.e. t ∈ [t0, T ] we have:

H(t, x∗(t), λ(t), u∗(t)) = H(t, x(t), λ(t)), H(t, x(t), λ(t), u(t)) ≤ H(t, x(t), λ(t))
(2.42)

Using inequalities 2.42 inside the previous passages in 2.41 we obtain:

J(u) − J(u∗) ≤ ψ(x(T )) − ψ(x∗(T ))

+
Ú T

t0
{[H(t, x(t)λ(t)) − λ(t)ẋ(t)] − [H(t, x∗(t), λ(t)) − λ(t)ẋ∗(t)]}dt. (2.43)
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Considering the map x → H(t, x, λ(t)) differentiable, the concavity assumption
implies

H(t, x(t), λ(t)) ≤ H(t, x∗(t), λ(t)) + ∂H

∂x
(t, x∗(t), λ(t))[x(t) − x∗(t)]

= H(t, x∗(t), λ(t)) − λ̇(t)[x(t) − x∗(t)] (2.44)

(All this is possible also for H not differentiable, following convex analysis).

Inserting 2.44 into 2.43 we obtain:

J(u) − J(u∗) ≤ ψ(x(T )) − ψ(x∗(T ))

−
Ú T

t0
{λ̇(t)[x(t) − x∗(t)] + λ(t)[ẋ(t) − ẋ∗(t)]}dt

= ψ(x(T )) − ψ(x∗(T )) − {λ(T )[x(T ) − x∗(T )] − λ(t0)[x(t0) − x∗(t0)]}
≤ 0 (2.45)

So, with initial and terminal conditions in theorem 3 and concavity of ψ we arrive
to the conclusion:

x(t0) = x∗(t0) = x0, ψ(x(T )) ≤ ψ(x∗(T )) + ∇ψ(x∗(T ))[x(T ) − x∗(T )]. (2.46)

Remark 6. Since the proof of the preceding theorem does not directly rely on
the initial and terminal conditions, it remains valid even when assuming a fixed
terminal condition.

2.2.3 Application of the NMPC to the UGV model
In this work, we consider as dynamic system, the system in 2.10 for the UGVs,
described in the subsection 2.1.1. So, considering

ẋ = vx (2.47)
v̇x = u1 cos θ (2.48)
θ̇ = u2 (2.49)

where, for simplicity, we call vx with v, and we have u = (u1, u2), x⃗ = (x, v, θ),
x̃ = (x− xref , v − vref , θ − θref );
we have as hamiltonian function

H = x̃TQx̃+ uTRu+ λ1v + λ2u1cosθ + λ3u2. (2.50)
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Now, we want to obtain the TPBVP.
First we consider the law of optimal control, obtaining:

u∗
1 = −(λ2cosθ

2R11
)

u∗
2 = −( λ3

2R22
)

Then we consider the Euler-Lagrange equation, obtaining:
λ̇1(t) = −2(x− xref )Q11

λ̇2(t) = −2(v − vref )Q22 − λ1

λ̇3(t) = −2(θ − θref )Q33 + λ2u1senθ

So, we obtained our TPBVP, and now numerically we can find the optimal control
and the corresponding optimal trajectory of single UGVs, fixing "boundary" condi-
tions.

Note: As detailed in the Summary and also outlined in the Objectives section
(see 1.2), the next step involves explaining a robust version of Nonlinear Model
Predictive Control (NMPC) to address possible disturbances, as exemplified in
the model with disturbances described in 2.1.2. This new extension of NMPC
incorporates key concepts from Game Theory such as Nash equilibrium and Zero-
Sum Games. Therefore, prior to delving into the mechanics of robust NMPC, it’s
essential to provide a foundational understanding of these theoretical constructs.
Subsequently, we will elucidate how this particular typology of robust NMPC
operates.

2.2.4 Basic Concepts about Game Theory
In this work, we want to consider two players called "Player A" and "Player B".
They are constituted by:

• Two sets of strategies: A and B;

• Two payoff functions: JA : A×B → R and JB : A×B → R.

So, if the first player chooses the strategy a ∈ A and the second player chooses the
strategy b ∈ B, the payoffs are described, in order, by JA(a, b) and JB(a, b).

Definition 2. Bressan et al. [18]. A game is called zero-sum game if for
every pair of strategies (a, b) we have:

JA(a, b) + JB(a, b) = 0. (2.51)
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So, a zero-sum game is determined by one single payoff function J = JA = −JB.
Assumption 3. Bressan et al. [18]. A and B are compact metric spaces and
JA, JB are continuous functions.

Now we want to define what it is a best reply map for two players A and B.
Definition 3. Bressan et al. [18]. For a given choice b ∈ B by Player B the
set of best possible replies by player A is given by:

RA(b) := {a ∈ A; JA(a, b) = max
ω∈A

JA(ω, b)} (2.52)

Similarly, for player B, for a given choice a ∈ A we have:

RB(a) := {b ∈ B; JB(a, b) = max
ω∈B

JB(a, ω)} (2.53)

Nash equilibria

In general, it is difficult to speak of "optimal solution" in a game. An optimal
solution for a player can be a bad solution for the other one. So, there are different
concepts of equilibrium. In particular, we want to deal with a particular case:
Nash equilibrium.
In this case, this typology of equilibrium is used to model a symmetric situation
where players do not cooperate and they do not share information about their
strategies.
Definition 4. Bressan et al. [18]. Given a game with 2 players A and B, a
pair of strategies (a∗, b∗) is called Nash equilibrium for every a ∈ A and b ∈ B,
if it follows that:

JA(a, b∗) ≤ JA(a∗, b∗), JB(a∗, b) ≤ JB(a∗, b∗) (2.54)

In essence, no player is capable of augmenting their payoff through steadfastly
altering their strategy unilaterally, provided that the counterpart adheres to the
equilibrium strategy.

Observe that, with reference Definition 3 for best reply maps, a pair of strategies
(a∗, b∗) is a Nash equilibrium if and only if it is a fixed point of the best reply map:

a∗ ∈ RA(b∗), b∗ ∈ RB(a∗) (2.55)

Example 1. Bressan et al. [18]. In figure 2.3, player A determines the
horizontal coordinate, while player B determines the vertical coordinate. The payoff
function of A achieves its global maximum at point P , while that of B reaches its
global maximum at point Q. The pair of strategies (aNash, bNash) represents a Nash
equilibrium. It is noteworthy that at this juncture, the level curve of A exhibits a
horizontal tangent, while the level curve of B displays a vertical tangent.
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Figure 2.3: Nash equilibrium

We want to show in order, with examples, that:

• a Nash equilibrium may not exist;

• the Nash equilibrium can be not the unique;

• different Nash equilibrium can give different payoffs to players.

Example 2. Bressan et al. [18]. Assuming that each participant selects a
coin, opting to reveal either heads or tails, the outcome is determined by whether
the two coins match. In the event of a match, Player A gains 1 while Player B
incurs a loss of 1. Conversely, if the coins do not match, Player B earns 1, and
Player A suffers a 1 loss. This scenario constitutes a zero-sum game, as outlined
in figure 2.4. Upon thorough examination, it is evident that the game lacks any
Nash equilibrium solution.

Example 3. Osborne Martin et al. [19] Consider the "Battle of the Sexes"
game with two players, Player A and Player B. Both must choose between going to
the prize fight (PF ) or the ballet (B). The payoff matrix is showed in figure 2.5.

The Nash equilibrium are:

• (PF, PF ): If both choose to go to the prize fight, neither has an incentive to
deviate, as both prefer this outcome to both going to the ballet.;
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Figure 2.4: Example where Nash equilibrium does not exist

Figure 2.5: Example where Nash equilibrium is not unique

• (B,B): Similarly, if both choose to go to the ballet, neither has an incentive
to deviate.

Both of these outcomes are Nash equilibria. In this case, there are two stable
solutions, each representing a common preference for both players.

Moreover, in this example it can be noticed that different equilibrium gives
different payoff to players:

• (PF, PF ): If both choose to go to the prize fight, the payoff for the first player
is 10 and for the second is 7.

• (B,B): this is the case in which both choose to go to the ballet, and the payoff
for the first player is 7 and for the second is 10.

Now, we want to describe a particular situation in which it is always possible to
find a Nash equilibrium.

Theorem 4 (Existence of Nash equilibrium). Bressan et al. [18]. Consider a
non-cooperative game, where A and B are compact and convex subsets of Rn, the
payoff functions JA and JB are continuous and where

• a → JA(a, b) is a concave function of a, for each b ∈ B;
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• b → JB(a, b) is a concave function of b, for each a ∈ A.

Then the game admits a Nash equilibrium.

Before to demonstrate this theorem, we want to specify that non-cooperative
games are used in situations where there are competitions between the players of
the game Jhon et al. [20].
Moreover, zero-sum games are types of non-cooperative games Khalid et al. [21].

Proof. (idea) Consider best reply maps defined in Definition 3. We demonstrate
theorem 4 dividing the explanation in three parts:

• Since B is compact and JB is continuous, then the function a → m(a) :=
maxb∈B J

B(a, b) is continuous too.
Defining the set graph(RB) = {(a, b) : b ∈ RB(a)} = {(a, b) : JB(a, b) =
m(a)}, it is closed. So, the multifunction a → RB(a), with RB(a) subset of B,
is upper semicontinuous. (For more about these concepts view Bressan et al.
[18] and also Baggs Ivan et al. [22] and Ursescu Corneliu et al. [23]).

• We want to prove that each set RB(a) subset of B is convex. So, let b1, b2 ∈
RB(a), and we have JB(a, b1) = JB(a, b2) = m(a). Take θ ∈ [0,1]. Using
concavity of b → JB(a, b) we obtain: m(a) ≥ JB(a, θb1 + (1 − θ)b2) ≥
θJB(a, b1) + (1 − θ)JB(a, b2) = m(a).
Since B is convex, we have that θb1 + (1 − θ)b2 ∈ B. Hence θb1 + (1 − θ)b2 ∈
RB(a) proving the convexity.

• From previous facts, a → RB(a) is upper semicontinuous with compact and
convex values. Similarly, we have the same for b → RA(b).
Now, we consider (a, b) → RA(b) × RB(a) subset of A × B, on the product
space A×B.
Applying Kakutani’s fixed point theorem, that you can find for example in
Yoo et al. [24], we obtain a pair of strategies (a∗, b∗) ∈ (RA(b∗), RB(a∗))
which is a Nash equilibrium solution.

More about Zero-Sum Games

Considering a game with two Players A and B, we observed in definition 2 what is
a zero-sum game.
As we know it is possible to describe it with the usage of a single function

J : A×B → R (2.56)
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where if we consider any (a, b) with a ∈ A and b ∈ B, we can think J(a, b) the
amount that B pays to A, if these strategies are chosen.
The goal of Player A is to maximize this payoff, while Player B tries to minimizes it.

We need to assume that:

Assumption 4. Bressan et al. [18]. A and B are compact metric spaces and
the function J : A×B → R is continuous.

So, we have that

b → max Ja∈A(a, b), a → min Jb∈B(a, b) (2.57)

are both continuous.

Moreover, in a symmetric situation Players have to choose their choice without
a a priori knowledge of the choice of the other Player. But, there are also cases in
which one Player can have this advantage of information, as in the following cases.

• Player B chooses b ∈ B, and thus, Player A makes a choice based on the
selected strategy of Player B. This advantage in knowledge implies that Player
A can determine the best reply, denoted as α(b) ∈ A, satisfying

J(α(b), b) = max
a∈A

J(a, b). (2.58)

In this way, the minimum payment that the second Player can achieve is:

V + := min
b∈B

J(α(b), b) = min
b∈B

max
a∈A

J(a, b). (2.59)

• Player A chooses a ∈ A, and Player B makes a choice based on the selected
strategy of Player A. So, in this case, Player B can determine the best reply,
denoted as β(a) ∈ B, such that

J(a, β(a)) = min
b∈B

J(a, b). (2.60)

In this way, the maximum payment that the second Player can choose is:

V − := max
a∈A

J(a, β(a)) = max
a∈A

min
b∈B

J(a, b). (2.61)

Lemma 1. Bressan et al. [18]. With the previous settings, it holds that:

V − := max
a∈A

min
b∈B

J(a, b) ≤ min
b∈B

max
a∈A

J(a, b) =: V + (2.62)
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Proof. Consider the map a → β(a), possibly discontinuous (i.e.: best reply map
for Player B). Since (for the possible discontinuity we do not write "max")

V − := sup
a∈A

J(a, β(a)), (2.63)

for any ϵ > 0, there exists aϵ ∈ A such that:

J(aϵ, β(aϵ)) > V − − ϵ, (2.64)

And this fact implies that:

V + := min
b∈B

max
a∈A

J(a, b) ≥ min
b∈B

J(aϵ, b) = J(aϵ, β(aϵ)) ≥ V − − ϵ. (2.65)

For the arbitrary of ϵ, this proves the lemma.

Definition 5. Bressan et al. [18]. It is called value of the game, with the
previous settings, the situation in which V := V − = V +.

Moreover, always under previous settings:

Definition 6. Bressan et al. [18]. If there exist a∗ ∈ A and b∗ ∈ B strategies,
such that:

min
b∈B

J(a∗, b) = J(a∗, b∗) = max
a∈A

J(a, b∗), (2.66)

the pair (a∗, b∗) is a saddle point of the game.

If we nominate V the common values of quantities in definition 6, it holds that:

• if A considers strategy a∗, he surely receives no less than V ;

• if B considers strategy b∗, he surely pays no more than V .

Remark 7. In a zero-sum game the concept of saddle-node point is the same of
Nash equilibrium.

Theorem 5 (connection between value of game and saddle point). Bressan et
al. [18]. Consider assumption 4. The zero-sum game in 2.56 has a value V if
and only if there is the existence of the saddle point (a∗, b∗). In such case, one has

V = V − = V + = J(a∗, b∗). (2.67)

Proof. We divide the proof in two parts:
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• Suppose the existence of (a∗, b∗). This implies that:

V − := max
a∈A

min
b∈B

J(a, b) ≥ min
b∈B

J(a∗, b)

= max
a∈A

J(a, b∗) ≥ min
b∈B

max
a∈A

J(a, b) =: V +. (2.68)

By lemma 1 we arrive to V := V + = V −, which is for definition 5 a value.

• Now, consider V := V − = V +. Let a → β(a) the best reply map for the second
Player. For each ϵ, we select aϵ ∈ A for which 2.64 holds. For the compactness
of A and B, consider a subsequence ϵn → 0 for which the corresponding
strategies converge, called

aϵn → a∗, β(aϵn) → b∗. (2.69)

We want to prove that (a∗, b∗) is a saddle point.
The continuity of J yields

J(a∗, b∗) = lim
n→∞

J(aϵn , β(aϵn)). (2.70)

Since

V − − ϵn < J(aϵn , β(aϵn)) ≤ sup
a∈A

J(a, β(a)) = V + (2.71)

and holding ϵ → 0 we arrive to V − = V + and so we conclude the proof.

Remark 8. For a zero-sum game, if the Nash equilibrium exists, then all Nash
equilibrium give the same payoff:

V = min
b∈B

max
a∈A

J(a, b) = max
a∈A

min
b∈B

J(a, b). (2.72)

Applying theorem 4 on a zero-sum game, we obtain:

Corollary 1 (Saddle point existence). Bressan et al. [18]. Consider a zero-sum
game with the assumption 4. Moreover, consider A and B convex and

• a → J(a, b) concave function of a for each b ∈ B

• b → J(a, b) convex function of b for each a ∈ A

Then, the game has a Nash equilibrium (i.e. a saddle point).
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2.2.5 Robust NMPC
The robust Nonlinear Model Predictive Control (NMPC) framework proposed in
this study consistently employs the Pontryagin approach Pagone et al. [15].
The mathematical procedures involved closely mirror those outlined in subsection
2.2.1. However, the current formulation addresses a min/max optimization problem,
specifically within the context of a sum-zero game.

In this work, we identify two key players:

• u representing the control input parameter;

• w signifying the disturbance parameter.

To elaborate further, it is stipulated that u ∈ U ⊆ Rnu and w ∈ W ⊆ Rnw , with
the assumption that W is defined as the hyperrectangle:

W = {w : ∀i, |wi| ≤ w̄i} (2.73)

Unlike the dynamics outlined in 2.10, the present dynamic system is expressed
as:

ẋ(t) = f(x(t)) + g(x(t))u(t) + l(x(t))µ(t) (2.74)

This represents the "ideal" dynamic. We separate it from the "nominal" dynamic,
which contains the disturbance, and it is represented as follows:

˙̂x(t) = f(x̂(t)) + g(x̂(t))u(t) + l(x̂(t))µ̂(t) (2.75)

It is crucial to note that in this scenario, µ serves a different purpose and is not
a Lagrange multiplier, as denoted in the subsequent assumption.

Assumption 5. In the specific, µ and µ̂ are time-invariant parameters vector of
the system. And w := µ̂− µ is an unknown unbounded vector.

Remark 9. In subsection 2.2.1, in the NMPC with Pontryagin, the "prediction"
dynamic coincides with the "real" dynamic.

Given an arbitrary γ > 0, the constrained optimization problem is formulated
as follows:

(u∗, w∗) = arg min
u∈U

max
w∈W

Ú tk+Tp

tk

(∥x̃(t)∥2
R − γ∥w(t)∥2

2 + ∥u(t)∥2
Q)dt+ ∥x̃(tk + Tp)∥2

P .

(2.76)
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s.t. 

˙̂x(t) = f(x̂(t)) + g(x̂(t))u(t) + l(x̂(t))µ(t)
x̂(tk) = x(tk)
x̂(t) ∈ X, u(t) ∈ U,∀t ∈ [tk, tk + Tp]
u(t) ∈ KC([tk, tk + Tp]).

Here, x̃(t) = xr − x̂(t).

Remark 10. All assumptions in 2.2.1 remain valid and U , W and X are compact
subsets.

Remark 11. In this context, also l(x(t)) is supposed to be C1.

Remark 12. The notation used in 2.76 for the quadratic forms is the same as in
2.14-2.15, as follows

∥ · ∥2
A = (·)TA(·) (2.77)

with A positive-definite matrix.

Remark 13. Notice that if the parameter γ is properly "low", the action of
disturbance is more perceptible and so the robust algorithm can dampen it better.

Moreover:

Lemma 2. The pair (u∗, w∗) is the solution of the MIN-MAX problem if and only
if the following conditions are simultaneously verified:

u∗ = arg min
u(t)∈U

Jw(u,w), (2.78)

w∗ = arg min
w(t)∈W

−Jw(u,w) = arg max
w(t)∈W

Jw(u,w), (2.79)

for all t ∈ [tk, tk + Tp].

Definition 7. Consider 2.75, 2.76, 2.78 and 2.79. The pair of Hamiltonians H(u),
H(w) : C1(X ×X × U ×W ) → R are defined as:

• H(u) = ∥x̃(t)∥2
R − γ∥w(t)∥2

2 + ∥u(t)∥2
Q

+ λ(u)T [f(x(t)) + g(x(t))u(t) + l(x(t))(µ̂+ w(t))]

• H(w) = −∥x̃(t)∥2
R + γ∥w(t)∥2

2 − ∥u(t)∥2
Q

+ λ(u)T [f(x(t)) + g(x(t))u(t) + l(x(t))(µ̂+ w(t))]
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using µ = µ̂+ w(t) and λ(u), λ(w) ∈ Rnx covectors of the minimization and maxi-
mization problem, respectively.

Fundamental Note 1. Upon synthesizing lemma 2, theorem 5, and remark 7, a
significant observation emerges: the existence of a Nash equilibrium, denoted as
a saddle-node point, is contingent upon the condition that minu maxw J(u,w) =
maxw minu J(u,w). However, attaining this equilibrium is not universally achiev-
able. Such equilibrium is more likely in cases where the cost function J exhibits
separability, but this condition cannot be guaranteed in the majority of instances.

The focus of this section is directed towards the utilization of Hamiltonians.
Hamiltonians serve as a robust approximation for the cost function J . Consequently,
the objective is to identify a saddle-node point for Hamiltonians, representing an
unidentified equilibrium in the context of the initial problem 2.76. This equilibrium,
once found, will serve as an optimal solution for the optimization problem at hand.

You can observe in 2.6 an example of possible convex Hamiltonian (dashed
curve) which approximates a non linear cost function. You can imagine to find
an equilibrium for the cost function which can be not optimal globally, using the
Hamiltonian.

Figure 2.6: Approximation with Hamiltonian

Necessary condition for Optimality

Applying what is described from theorem 1 and similarly what we did in subsection
2.2.1, the necessary conditions for optimizaton are given by:

H(u)(x∗, u∗, w∗, λ∗(u), λ∗(w)) = min
u∈U

H(u)(x∗, u, w∗, λ∗(u), λ∗(w)), (2.80)

H(w)(x∗, u∗, w∗, λ∗(u), λ∗(w)) = min
w∈W

H(w)(x∗, u∗, w, λ∗(u), λ∗(w)) (2.81)

λ̇(u)(t) = −∇xH
(u) (2.82)
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λ̇(w)(t) = −∇xH
(w) (2.83)

λ(u)(tk + Tp) = 2x̃T (tk + Tp)P (2.84)

λ(w)(tk + Tp) = −2x̃T (tk + Tp)P (2.85)

Theorem 6. Pagone et al. [15]. Considering min-max necessary conditions
described from 2.80 to 2.85, then λ(u) and λ(w) are related as follows:

λ(w)(t) = −λ(u)(t), ∀t ∈ [tk, tk + Tp]. (2.86)

Proof. For simplicity, we consider the scalar case, when x, λ(u), λ(w) ∈ R. Anyway,
it remains all valid also in a multidimensional case.
From 2.84 and 2.85, we have that λ(w)(tk + Tp) = −λ(u)(tk + Tp).
If we put 2.75 into 2.82 and 2.83, we obtain:

λ̇(u)(t) = −(∂f
∂x

(x(t)) + ∂g

∂x
(x(t))u(t) + ∂l

∂x
(x(t)µ(t)))λ(u)(t) (2.87)

and

λ̇(w)(t) = −(∂f
∂x

(x(t)) + ∂g

∂x
(x(t))u(t) + ∂l

∂x
(x(t)µ(t)))λ(w)(t). (2.88)

They represent a set of backward first-order differential equation integration within
the TPVBP.
Let

ρ(t) = λ(u)(t)
λ(w)(t) (2.89)

a new auxiliary variable, whose final condition, from 2.84 and 2.84, is ρ(tk+Tp) = −1.
Taking the time derivative of 2.89, we have

ρ̇(t) = λ̇(u)(t)
λ(w)(t) − λ(u)(t)λ̇(w)(t)

λ(w)2(t) . (2.90)

Upon substituting 2.87-2.88 into 2.90, and defining

ξ(t) = −(∂f
∂x

(x(t)) + ∂g

∂x
(x(t))u(t) + ∂l

∂x
(x(t)µ(t))) (2.91)

one has that:
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ρ̇(t) = ξ(t)λ(u)(t) − ξ(t)λ(u)(t)
λ(w)(t) = 0. (2.92)

Using remark 10, from solution properties of Lipschitz-continuous differential
equations, we have that

ρ(t) = ρ(tk + Tp) −
Ú τ

tk+Tp

ρ̇(τ)dτ. (2.93)

Now, taking account 2.92 and the fact that ρ(tk +Tp) = −1, we lead to the following
expression

ρ(t) = λ(u)(t)
λ(w)(t) = −1, ∀t ∈ [tk, tk + Tp] (2.94)

which yields the statement.

Remark 14. The result obtained in theorem 6 yields the following observations:

• a joint Hamiltonian H and a common covector λ of the MIN-MAX problem
can be defined. We can pick H as H(u) and λ(t) = λ(u)(t) = −λ(w)(t) (or
taking H as H(w) and inverting the sign of covectors). Hence, we have

u∗(t) = arg min
u(t)∈U

H(x(t), λ(t), u(t), w(t)) (2.95)

and

w∗(t) = arg min
w(t)∈W

H(x(t),−λ(t), u(t), w(t)) (2.96)

∀t ∈ [tk, tk + Tp];

• There exists an equilibrium which coincides with the joint Hamiltonian saddle
point. So there is a pair (u∗, w∗) such that

H(u∗, w) ≤ H(u∗, w∗) ≤ H(u,w∗); (2.97)

• the previous facts imply that it is sufficient to find only the solution of one
TPBVP. Covectors of both problems are negative of each other and they can
be obtained from the first-order necessary conditions from the Hamiltonian.
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2.2.6 Application of the robust NMPC to the UGV model
In this study, we explore the application of robust Nonlinear Model Predictive
Control (NMPC) to the Unmanned Ground Vehicle (UGV) model, similar to the
approach discussed in subsection 2.2.3. However, we consider two scenarios: an
ideal scenario without disturbances and a nominal scenario with disturbances.
The ideal scenario is described by the following system dynamics:

ẋ = v (2.98)
v̇ = u1 cos θ (2.99)
θ̇ = u2 (2.100)

where u = (u1, u2) represents the control input, and x⃗ = (x, v, θ) denotes the state
variables extracted from the system 2.98.
The nominal scenario introduces disturbances:

ẋ = v (2.101)
v̇ = u1 cos θ + w1 (2.102)
θ̇ = u2 + w2 (2.103)

where w = (w1, w2) represents the disturbance vector.
The Hamiltonian function is given by:

H = ˜⃗xTQ˜⃗x+ uTRu− γwTw + λ1(v + w1) + λ2(u1cosθ + w2) + λ3(u2 + w3).
(2.104)

where ˜⃗x = (x− xref , v − vref , θ − θref ), and γ is a positive constant.

The resulting Two-Point Boundary Value Problem (TPBVP) is then solved.
The law of optimal control for the input is provided by:

u∗
1 = −(λ2cosθ

2R11
)

u∗
2 = −( λ3

2R22
).

The law of optimal control for disturbances is given by:w∗
1 = −λ(w)

2 /(2γ)
w∗

2 = −λ(w)
3 /(2γ)

Next, we determine the Euler-Lagrange equation for the control input since
λ(u) = −λ(w): 

λ̇1(t) = −2(x− xref )Q11

λ̇2(t) = −2(v − vref )Q22 − λ1

λ̇3(t) = −2(θ − θref )Q33 + λ2u1senθ
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Now we can simulate numerically the robust control, fixing "boundary" conditions.
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Chapter 3

Simulations and Results

In this chapter, an in-depth exploration of the simulations conducted for this thesis
is presented.
The software tools utilized for these simulations were MATLAB and Simulink.

3.1 Choice of Topology

This section focuses on the selection of network topology for the study.

As expounded in Chapter 2, specific motion equations tailored for various
Unmanned Ground Vehicles (UGVs) are at our disposal. The six UGVs considered
in this study collectively form a dynamic network. Each UGV, as previously
outlined, is characterized by its motion equation and has been implemented within
a subsystem, as depicted in Figure 3.1, where the "interpreted MATLAB function"
encapsulates the pertinent motion equations. Consequently, each subsystem serves
to represent an individual drone.

Here, the UGVs exhibit motion with random trajectories.
Our initial concept involved creating a topology that could vary over time. Subse-
quently, in another subsystem positioned hierarchically above the one illustrated in
Figure 3.1 and represented in Figure 3.2, the time-varying coordinates of UGVs
were extracted.

As evident in Figure 3.2, each rectangle contains the content depicted in Figure
3.1. The output of this subsystem consists of the extracted coordinates, which are
combined with the coordinates of other UGVs. It is noteworthy that the transition
from the coordinates of motion equations to Cartesian coordinates for simplicity
occurred earlier.
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Figure 3.1: Simulink - single UGV

Figure 3.2: Simulink - Topology
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The concept underlying the creation of the topology was implemented through
the following code:

1 f unc t i on [ A_f ] = adj_matrix ( x_in , y_in )
2 n=length ( x_in ) ;
3 A=ze ro s (n , n) ;
4 rad iu s =10;
5 f o r i =1:n
6 f o r j=i +1:n
7 i f s q r t ( ( x_in ( i )−x_in ( j ) ) ^2 +(y_in ( i )−y_in ( j ) ) ^2) <= rad iu s
8 A( i , j ) =1;
9 A( j , i ) =1;

10 end
11 end
12 end
13

14

15

16

17 dist_matr ix = ze ro s (n , n) ;
18 f o r i =1:n
19 f o r j =1:n
20 dist_matr ix ( i , j ) = sq r t ( ( x_in ( i ) − x_in ( j ) ) ^2 + ( y_in ( i ) −

y_in ( j ) ) ^2) ;
21 end
22 end
23

24 g = graph (A) ;
25 i s o l a t edNodes = f i n d ( degree ( g ) == 0)
26

27

28 i f numel ( i so l a t edNodes )==1
29 f o r i =1:n
30 A=sing le_node_f ix ing ( i ,A, dist_matrix , i s o l a t edNodes ) ;
31 end
32

33 end
34

35 A_f=A;
36

37

38 end

The code establishes connections between Unmanned Ground Vehicles (UGVs)
based on a specified distance criterion. If the distance between two UGVs is less
than or equal to the defined radius, a connection is established in the adjacency
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matrix. The code also addresses the scenario of isolated nodes, ensuring connec-
tivity by connecting a single isolated node to its nearest neighbour. The resulting
adjacency matrix, denoted as Af , reflects the established connections in the network
topology.

Examples of the varying topology in time of UGVs are illustrated in Figure 3.3,
3.4, 3.5.

Figure 3.3: Example of topology 1

The creation of a topology for drones using this approach is not simple and
demands substantial resources. Therefore, we have opted for a more streamlined
methodology, involving the utilization of a time-invariant matrix as adjacency
matrix.

As described in Chapter 1, a formation master-slave has been considered. A
UGV serves as the master and interconnects with all other UGVs, as illustrated in
Figure 3.6.

3.2 Implementation and Application of NMPC
In this section, we aim to delineate the implementation of the Nonlinear Model Pre-
dictive Control (NMPC) algorithm employing the Pontryagin approach. Our focus
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Figure 3.4: Example of topology 2

Figure 3.5: Example of topology 3
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Figure 3.6: Topology for this work

lies in elucidating its application, commencing with its deployment on a singular
Unmanned Ground Vehicle (UGV), and subsequently extending its utilization to
multiple UGVs within a formation context.

3.2.1 Implementation and Simulation of NMPC with Pon-
tryagin approach

Implementation on a single UGV

In the initial phase, the selection of parameters for developing the NMPC simulation
on a single UGV is a crucial step. The primary function, called main function,
encapsulated in the provided MATLAB code snippet, outlines key parameters and
configurations.

1

2 %I n i t i a l i z a t i o n o f parameters
3 Tstart = 0 ;
4 Tstop = 40 ;
5 Ts = 0 . 0 1 ;
6

7 par . Ts = Ts ;
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8 par . model = @Rover_dyn_2 ;
9 par . n = 3 ;

10 par . nu = 2 ;
11 par . ny = 3 ;
12 par . t o l = [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] ;
13 par . Tct r l = 0 ;
14 par .Tp = 0 . 1 ;
15 par .NS = 100 ;
16 par .MS = 10 ;
17 par .R = [15 0 ;0 1 5 ] ;
18 par .P = [30 0 0 ; 0 50 0 ; 0 0 5 0 ] ;
19 par .Q = [10000 0 0 ;0 500 0 ; 0 0 2 0 0 ] ;
20

21

22 %Number o f drones cons ide r ed
23 num_componenti=1;
24 f o r i = 1 : num_componenti
25 par ex t ra c to r { i } . Ts = par . Ts{ i } ;
26 par ex t ra c to r { i } . model = par . model{ i } ;
27 par ex t ra c to r { i } . n = par . n{ i } ;
28 par ex t ra c to r { i } . nu = par . nu{ i } ;
29 par ex t ra c to r { i } . ny = par . ny{ i } ;
30 par ex t ra c to r { i } . t o l = par . t o l { i } ;
31 par ex t ra c to r { i } . Tct r l = par . Tct r l { i } ;
32 par ex t ra c to r { i } .Tp = par .Tp{ i } ;
33 par ex t ra c to r { i } .NS = par .NS{ i } ;
34 par ex t ra c to r { i } .MS = par .MS{ i } ;
35 par ex t ra c to r { i } .R = par .R{ i } ;
36 par ex t ra c to r { i } .P = par .P{ i } ;
37 par ex t ra c to r { i } .Q = par .Q{ i } ;
38 end
39

40 Q = diag ( pa r ex t ra c to r {1} .Q) ;
41 K = nmpc_design0 ( pa r ex t ra c to r {1}) ;

The simulation duration spans from Tstart = 0 to Tstop = 40 with a sampling
time Ts = 0.01 and a prediction horizon Tp = 0.1. The tolerance for the system
estimation is uniformly set to 0.02. Key matrices R, P , and Q are defined as:

• Q =

10000 0 0
0 500 0
0 0 200

,

• R =
A

15 0
0 15

B
,
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• P =

30 0 0
0 50 0
0 0 50

.

All parameters prefixed with par. are organized into a MATLAB structure,
crucial for subsequent optimal control input calculations.

Figure 3.7: Simulink - single UGV

The simulation is executed using Simulink, integrating functions such as reference
point determination, optimal control input calculation, and UGV dynamics. The
key components include:

• fcn function box for the reference point;

• BVP law box for the ustar function (view also figure 3.8);

• UGV dynamics box for motion equations. (view also figure 3.9).

Simulation results, extracted from Simulink, include information about the
reference point, control input values, and error between the reference and current
UGV coordinates.

Now, the simulation can be initiated exclusively through the main function
(part of this function is described in the beginning of this subsection (3.2.1)), using
the following code:
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Figure 3.8: Simulink - BPV law

Figure 3.9: Simulink - UGV Dynamics

1 x0 = [ 5 ; 0 ; 0 ] ;
2 lambda0 = [ 0 ; 0 ; 0 ] ;
3 u0 = [ 0 ; 0 ] ;
4

5 % Here s imu la t i on s t a r t s
6 sim_model = s p r i n t f ( ’UGV_sim_1 ’ ) ;
7 Decimation = 1 ;
8 opt ions = s imset ( ’ dec imation ’ , Decimation , ’ s o l v e r ’ , ’ ode4 ’ , ’ FixedStep ’ ,

Ts , ’ OutputVariables ’ , ’ ty ’ ) ;
9 open ( sim_model ) ;

10 sim ( sim_model , [ Tstart , Tstop ] , opt i ons ) ;
11

12 % Here some p l o t s a f t e r s imu la t i on
13

14 % UGV t r j e c t o r y p l o t
15 f i g u r e
16 ax i s equal
17 x l a b e l ( ’ x ’ )
18 y l a b e l ( ’ y ’ )
19 hold on
20 g r id on
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21 p lo t ( x ( : , 1 ) , x ( : , 1 ) . ∗ tan ( x ( : , 3 ) ) , ’b ’ , ’ l i n ew id th ’ , 2)
22

23 % Control input p l o t in func t i on o f time
24 f i g u r e
25 ax i s equal
26 x l a b e l ( ’ t ’ )
27 y l a b e l ( ’u ’ )
28 hold on
29 g r id on
30 p lo t ( u_value ( : , 1 ) , ’ b ’ , ’ l i n ew id th ’ , 2)
31 p lo t ( u_value ( : , 2 ) , ’ b ’ , ’ l i n ew id th ’ , 2)

It is noteworthy that the initial position for the Unmanned Ground Vehicle (UGV)
has been set x0 = [5; 0; 0], which, in Cartesian coordinates, denotes the point (5,0).
Subsequently, the control input and Euler-Lagrange equations were initialized with
vectors comprising entirely of zero components. Notice that in fcn function box in
Simulink (figure 3.7), we considered as reference value y = [20; 0; π/6].

Following these specifications, the simulation was initiated employing the simset
and sim commands, invoking the Simulink platform and encapsulated functions.

After the simulation, graphical representations were generated to illustrate the
trajectory of the Unmanned Ground Vehicle (UGV) in Cartesian coordinates and
the temporal evolution of the control input.

The minimized trajectory of the UGV, taking into account the initial conditions
specified earlier, is depicted in Figure 3.10. Additionally, the time-dependent
behavior of the control inputs is presented in Figures 3.11 and 3.12. Notably, it is
evident from these figures that the control inputs exhibit a tendency to converge
to zero over time.

Implementation of NMPC on more UGVs and formation of a network

Implementation and Formation

In this part of work, we aim to expand the application of Nonlinear Model Predictive
Control (NMPC) to a fleet of six Unmanned Ground Vehicles (UGVs) operating in
formation. The underlying concept aligns with previously discussed principles, and
the MATLAB functions employed remain the same. However, a distinctive feature
is introduced where only one drone, referred to as the master drone, serves as the
reference point. All other drones derive their reference from the master drone and
are tasked with forming a predefined shape relative to the master drone.
The system’s structure is implemented in Simulink.
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Figure 3.10: trajectory of UGV using NMPC with Pontryagin approach
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Figure 3.11: Behaviour of control inputs in time (1)

The methodology commences with the utilization of the adjacency matrix,
illustrated in Figure 3.6, corresponding to the connectivity of the drones:

W =



0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


(3.1)
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Figure 3.12: Behaviour of control inputs in time (2)

To streamline the simulation, assuming a connection in each row of the matrix, we
intentionally disregard prior knowledge of the topology. Consequently, for each
drone, excluding the master, dedicated functions are employed to extract connection
information from the adjacency matrix, as demonstrated in Figure 3.13.

Figure 3.13 illustrates a function containing the adjacency matrix on the left,
with two subsequent functions containing the following MATLAB codes:

1 f unc t i on y = fcn (A)
2 % Number o f drones
3 n=6;
4

5 y=0;
6

7 % I want to ex t r a c t the in fo rmat ion about the connect ion with master
drone

8 f o r i =1:n
9 % Value 2 means that t h i s code i s about the second UGV in the

order o f the UGVs on Simulink
10 i f A(2 , i )==1
11 y=i ;
12 end
13 end
14 end
15

16 f unc t i on y = fcn ( u1 , u2 , u3 , u4 , u5 , par )
17 % Here , we want to pass the exact p o s i t i o n f o r the r e f e r e n c e o f

master drone
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18

19 i f par==1
20 y=u1 ;
21 e l s e
22 y=u2 ;
23 end
24 end

The latter function, on the right, encompasses information about the position
each UGV must assume concerning the master drone’s position. The adopted
formation law for our simulations is a regular polygon, specifically a pentagon sur-
rounding the master drone. The general law using Cartesian and polar coordinates
is expressed as:

(x, y) = (x0 + rcos(θ0 + θk), y0 + rsin(θ0 + θk)) (3.2)

with a given radius r, and where (x0, y0) is the current position and θ0 the current
angle of the master drone, θk = (2πk)/n with k = 1, ...,5 and n = 5 (since we have
5 drones around the master).
In our simulation, following the previous law, we consider the following code (this
one is about the second drone, in the order, on Simulink):

1 f unc t i on y = fcn ( x )
2

3 % We f i x here the ray
4 ray =3;
5

6 y=[x ( 1 , : )+ray ∗ cos ( x ( 3 , : ) +(2∗ pi /5) ∗2) ; 0 ; atan ( ( x ( 1 , : ) . ∗ tan ( x ( 3 , : ) )+ray ∗
s i n ( x ( 3 , : ) +(2∗ pi /5) ∗2) ) . / ( x ( 1 , : )+ray ∗ cos ( x ( 3 , : ) +(2∗ pi /5) ∗2) ) ) ] ;

7

8 end

where the fixed ray is 3.

Since the motion equations yield (x, vx, θ), the transformation between Cartesian
and polar coordinates is applied to determine the correct arrangement of individual
UGVs around the master drone.

Notice that in this case the main function provides the initialization of the
parameters for all the UGVs with the usage of cell arrays in MATLAB. The code
snippet below showcases the initialization process:

1 Tstart = 0 ;
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2 Tstop = 40 ;
3 Ts = 0 . 0 1 ;
4

5 % Value as f l a g to g ive in fo rmat ion to master drone about r e f e r e n c e
6 va lue_for_re f =0;
7

8 %% NMPC parameters
9

10 % Simulat ion parameters throught the usage o f a s t r u c t u r e with c e l l
a r rays

11

12 par . Ts = {Ts , Ts , Ts , Ts , Ts , Ts } ;
13 par . model = {@Rover_dyn_2 , @Rover_dyn_2 , @Rover_dyn_2 , @Rover_dyn_2 ,

@Rover_dyn_2 , @Rover_dyn_2 } ;
14 par . n = {3 , 3 , 3 , 3 , 3 , 3} ;
15 par . nu = {2 ,2 , 2 , 2 , 2 , 2} ;
16 par . ny = {3 , 3 , 3 , 3 , 3 , 3} ;
17 par . t o l = { [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ;

0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] } ;
18 par . Tct r l = {0 , 0 , 0 , 0 , 0 , 0} ;
19 par .Tp = { 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 } ;
20 par .NS = {100 ,100 ,100 ,100 ,100 ,100} ;
21 par .MS = {10 ,10 ,10 ,10 ,10 ,10} ;
22 par .R = {[15 0 ;0 1 5 ] , [ 1 5 0 ;0 1 5 ] , [ 1 5 0 ;0 1 5 ] , [ 1 5 0 ;0 1 5 ] , [ 1 5 0 ;0

1 5 ] , [ 1 5 0 ;0 1 5 ] } ;
23 par .P = {[30 0 0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0

0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0
5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0 5 0 ] } ;

24 par .Q = {[10000 0 0 ;0 500 0 ; 0 0 200 ] , [10000 0 0 ;0 500 0 ; 0 0
200 ] , [10000 0 0 ;0 500 0 ; 0 0 200 ] , [ 1 0000 0 0 ;0 500 0 ; 0 0 200 ] ,
[10000 0 0 ;0 500 0 ; 0 0 200 ] , [10000 0 0 ;0 500 0 ; 0 0 2 0 0 ] } ;

25

26 %Number o f drones cons ide r ed
27

28 num_componenti=6;
29 f o r i = 1 : num_componenti
30 par ex t ra c to r { i } . Ts = par . Ts{ i } ;
31 par ex t ra c to r { i } . model = par . model{ i } ;
32 par ex t ra c to r { i } . n = par . n{ i } ;
33 par ex t ra c to r { i } . nu = par . nu{ i } ;
34 par ex t ra c to r { i } . ny = par . ny{ i } ;
35 par ex t ra c to r { i } . t o l = par . t o l { i } ;
36 par ex t ra c to r { i } . Tct r l = par . Tct r l { i } ;
37 par ex t ra c to r { i } .Tp = par .Tp{ i } ;
38 par ex t ra c to r { i } .NS = par .NS{ i } ;
39 par ex t ra c to r { i } .MS = par .MS{ i } ;
40 par ex t ra c to r { i } .R = par .R{ i } ;
41 par ex t ra c to r { i } .P = par .P{ i } ;
42 par ex t ra c to r { i } .Q = par .Q{ i } ;
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43 end
44

45 % Extract the d i f f e r e n t p a r e x t r a c t o r s
46

47 Q = diag ( pa r ex t ra c to r {1} .Q) ;
48 K1 = nmpc_design0 ( pa r ex t ra c to r {1}) ;
49 Q = diag ( pa r ex t ra c to r {2} .Q) ;
50 K2 = nmpc_design0 ( pa r ex t ra c to r {2}) ;
51 Q = diag ( pa r ex t ra c to r {3} .Q) ;
52 K3 = nmpc_design0 ( pa r ex t ra c to r {3}) ;
53 Q = diag ( pa r ex t ra c to r {4} .Q) ;
54 K4 = nmpc_design0 ( pa r ex t ra c to r {4}) ;
55 Q = diag ( pa r ex t ra c to r {5} .Q) ;
56 K5 = nmpc_design0 ( pa r ex t ra c to r {5}) ;
57 Q = diag ( pa r ex t ra c to r {6} .Q) ;
58 K6 = nmpc_design0 ( pa r ex t ra c to r {6}) ;

It is noteworthy that the value_for_ref flag is incorporated in the Simulink
environment. This flag is crucial for choosing the reference point for the master
drone. The objective is to ensure a coherent formation and reformation after the
initial formation, targeting a distinct reference point.

The remaining initialization for this specific simulation is provided as follows:

1 %% I n i t i a l c o n d i t i on s
2 x0 = [ 5 ; 0 ; 0 ] ;
3 x1 = [ 5 . 1 ; 0 ; 0 ] ;
4 x3 = [ 5 . 2 ; 0 ; 0 ] ;
5 x4 = [ 5 . 3 ; 0 ; 0 ] ;
6 x5 = [ 5 . 4 ; 0 ; 0 ] ;
7 x6 = [ 5 . 5 ; 0 ; 0 ] ;
8 lambda0 = [ 0 ; 0 ; 0 ] ;
9 u0 = [ 0 ; 0 ] ;

The simulation is executed using the subsequent code within the main function:

1 % Simulat ion
2 sim_model = s p r i n t f ( ’UGV_sim_1 ’ ) ;
3 Decimation = 1 ;
4 opt ions = s imset ( ’ dec imation ’ , Decimation , ’ s o l v e r ’ , ’ ode4 ’ , ’ FixedStep ’

,Ts , ’ OutputVariables ’ , ’ ty ’ ) ;
5 open ( sim_model ) ;
6 sim ( sim_model , [ Tstart , Tstop ] , opt i ons ) ;

Subsequently, the trajectories of the drones in Cartesian coordinates and the
behavior of control inputs over time are visualized through the following code:
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1

2 %% Post Proce s s ing
3

4 % T r a j e c t o r i e s f i g u r e
5

6 f i g u r e
7 ax i s equal
8 x l a b e l ( ’ x ’ )
9 y l a b e l ( ’ y ’ )

10 hold on
11 g r id on
12 p lo t ( x ( : , 1 ) , x ( : , 1 ) . ∗ tan ( x ( : , 3 ) ) , ’b ’ , ’ l i n ew id th ’ , 2)
13 p lo t ( x11 ( : , 1 ) , x11 ( : , 1 ) . ∗ tan ( x11 ( : , 3 ) ) , ’ r ’ , ’ l i n ew id th ’ , 2)
14 p lo t ( x22 ( : , 1 ) , x22 ( : , 1 ) . ∗ tan ( x22 ( : , 3 ) ) , ’ g ’ , ’ l i n ew id th ’ , 2)
15 p lo t ( x33 ( : , 1 ) , x33 ( : , 1 ) . ∗ tan ( x33 ( : , 3 ) ) , ’ k ’ , ’ l i n ew id th ’ , 2)
16 p lo t ( x44 ( : , 1 ) , x44 ( : , 1 ) . ∗ tan ( x44 ( : , 3 ) ) , ’ c ’ , ’ l i n ew id th ’ , 2)
17 p lo t ( x55 ( : , 1 ) , x55 ( : , 1 ) . ∗ tan ( x55 ( : , 3 ) ) , ’m’ , ’ l i n ew id th ’ , 2)
18

19 % Control inputs in time
20

21 f i g u r e
22 ax i s equal
23 x l a b e l ( ’ t ’ )
24 y l a b e l ( ’u ’ )
25 hold on
26 g r id on
27 p lo t ( u_value ( : , 1 ) , ’ b ’ , ’ l i n ew id th ’ , 2)
28 p lo t ( u_value ( : , 2 ) , ’ b ’ , ’ l i n ew id th ’ , 2)
29 p lo t ( u_out1 ( : , 1 ) , ’ r ’ , ’ l i n ew id th ’ , 2)
30 p lo t ( u_out1 ( : , 2 ) , ’ r ’ , ’ l i n ew id th ’ , 2)
31 p lo t ( u_out2 ( : , 1 ) , ’ g ’ , ’ l i n ew id th ’ , 2)
32 p lo t ( u_out2 ( : , 2 ) , ’ g ’ , ’ l i n ew id th ’ , 2)
33 p lo t ( u_out3 ( : , 1 ) , ’ c ’ , ’ l i n ew id th ’ , 2)
34 p lo t ( u_out3 ( : , 2 ) , ’ c ’ , ’ l i n ew id th ’ , 2)
35 p lo t ( u_out4 ( : , 1 ) , ’m’ , ’ l i n ew id th ’ , 2)
36 p lo t ( u_out4 ( : , 2 ) , ’m’ , ’ l i n ew id th ’ , 2)
37 p lo t ( u_out5 ( : , 1 ) , ’ y ’ , ’ l i n ew id th ’ , 2)
38 p lo t ( u_out5 ( : , 2 ) , ’ y ’ , ’ l i n ew id th ’ , 2)

The resulting trajectories and control inputs are illustrated in Figure 3.14 and
Figures 3.15-3.16.
Notably, the first reference point for the master drone corresponds to yref =
[20; 0; π/6] as in the case of a single UGV.

Notice that control inputs tend to zero properly, in time.
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Figure 3.13: Information extraction from adj matrix
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Figure 3.14: Trajectories - six UGVs

Implementation and Reformation

In the process of reforming drones, the following codes were implemented within
the main function.

The initial piece of code serves the purpose of re-establishing the initial conditions
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Figure 3.15: variation in time of control inputs - six UGVs [1]
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Figure 3.16: variation in time of control inputs - six UGVs [2]

for the Unmanned Ground Vehicles (UGVs), representing the conditions of the
previously formed configuration. This occurs only if the previous formation exhibits
a tolerance of 0.02 for each motion component:

1

2 %% Finding new i n i t i a l cond i t i on a f t e r format ion
3 t o l l = [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] ;
4 dimerror=s i z e ( simout ) ;
5 dimarray=s i z e ( x ) ;
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6 dimerror=dimerror (1 ) ;
7 dimarray=dimarray (1 ) ;
8 i f a l l ( simout ( dimerror )<t o l l ) && a l l ( simout1 ( dimerror )<t o l l ) && a l l

( simout2 ( dimerror )<t o l l ) && a l l ( simout3 ( dimerror )<t o l l ) && a l l (
simout4 ( dimerror )<t o l l ) && a l l ( simout5 ( dimerror )<t o l l )

9 x0_new=x ( dimarray , : ) ;
10 x1_new=x11 ( dimarray , : ) ;
11 x2_new=x22 ( dimarray , : ) ;
12 x3_new=x33 ( dimarray , : ) ;
13 x4_new=x44 ( dimarray , : ) ;
14 x5_new=x55 ( dimarray , : ) ;
15 end
16

17

18 %% New I n i t i a l c o n d i t i o n s a f t e r format ion
19

20 x0 = x0_new ;
21 x1 = x1_new ;
22 x3=x2_new ;
23 x4=x3_new ;
24 x5=x4_new ;
25 x6=x5_new ;
26 lambda0 = [ 0 ; 0 ; 0 ] ;
27 u0 = [ 0 ; 0 ] ;

Subsequently, the simulation was restarted with the updated reference value for
the master drone by modifying the value_for_ref flag:

1 %% Simulat ion a f t e r format ion
2

3 va lue_for_re f =1;
4 sim_model = s p r i n t f ( ’UGV_sim_1 ’ ) ;
5 Decimation = 1 ;
6 opt ions = s imset ( ’ dec imation ’ , Decimation , ’ s o l v e r ’ , ’ ode4 ’ , ’ FixedStep ’ ,

Ts , ’ OutputVariables ’ , ’ ty ’ ) ;
7 open ( sim_model ) ;
8 sim ( sim_model , [ Tstart , Tstop ] , opt i ons ) ;

Additionally, the new trajectories of drones were plotted, along with the variation
of the master-slave distance over time. Discrepancies were calculated as the
difference between the maximum and minimum variations in the master-slave
distance:

1 % Plot o f t r a j e c t o r i e s
2

3 f i g u r e

54



Simulations and Results

4 ax i s equal
5 x l a b e l ( ’ x ’ )
6 y l a b e l ( ’ y ’ )
7 hold on
8 g r id on
9 p lo t ( x ( : , 1 ) , x ( : , 1 ) . ∗ tan ( x ( : , 3 ) ) , ’b ’ , ’ l i n ew id th ’ , 2)

10 p lo t ( x11 ( : , 1 ) , x11 ( : , 1 ) . ∗ tan ( x11 ( : , 3 ) ) , ’ r ’ , ’ l i n ew id th ’ , 2)
11 p lo t ( x22 ( : , 1 ) , x22 ( : , 1 ) . ∗ tan ( x22 ( : , 3 ) ) , ’ g ’ , ’ l i n ew id th ’ , 2)
12 p lo t ( x33 ( : , 1 ) , x33 ( : , 1 ) . ∗ tan ( x33 ( : , 3 ) ) , ’ k ’ , ’ l i n ew id th ’ , 2)
13 p lo t ( x44 ( : , 1 ) , x44 ( : , 1 ) . ∗ tan ( x44 ( : , 3 ) ) , ’ c ’ , ’ l i n ew id th ’ , 2)
14 p lo t ( x55 ( : , 1 ) , x55 ( : , 1 ) . ∗ tan ( x55 ( : , 3 ) ) , ’m’ , ’ l i n ew id th ’ , 2)
15

16

17

18 %% Var ia t ion o f d i s t ance s lave −master in time during the r i f o rmat i on
19

20 f i g u r e
21 hold on
22 g r id on
23

24 d1=sq r t ( ( x ( : , 1 )−x11 ( : , 1 ) ) .^2+ ( x ( : , 1 ) . ∗ tan ( x ( : , 3 ) )−x11 ( : , 1 ) . ∗ tan ( x11
( : , 3 ) ) ) . ^2 ) ;

25 d2=sq r t ( ( x ( : , 1 )−x22 ( : , 1 ) ) .^2+ ( x ( : , 1 ) . ∗ tan ( x ( : , 3 ) )−x22 ( : , 1 ) . ∗ tan ( x22
( : , 3 ) ) ) . ^2 ) ;

26 d3=sq r t ( ( x ( : , 1 )−x33 ( : , 1 ) ) .^2+ ( x ( : , 1 ) . ∗ tan ( x ( : , 3 ) )−x33 ( : , 1 ) . ∗ tan ( x33
( : , 3 ) ) ) . ^2 ) ;

27 d4=sq r t ( ( x ( : , 1 )−x44 ( : , 1 ) ) .^2+ ( x ( : , 1 ) . ∗ tan ( x ( : , 3 ) )−x44 ( : , 1 ) . ∗ tan ( x44
( : , 3 ) ) ) . ^2 ) ;

28 d5=sq r t ( ( x ( : , 1 )−x55 ( : , 1 ) ) .^2+ ( x ( : , 1 ) . ∗ tan ( x ( : , 3 ) )−x55 ( : , 1 ) . ∗ tan ( x55
( : , 3 ) ) ) . ^2 ) ;

29 ax i s equal
30 p lo t ( d1 , ’b ’ , ’ Linewidth ’ , 2)
31 p lo t ( d2 , ’ r ’ , ’ Linewidth ’ , 2)
32 p lo t ( d3 , ’ g ’ , ’ Linewidth ’ , 2)
33 p lo t ( d4 , ’ k ’ , ’ Linewidth ’ , 2)
34 p lo t ( d5 , ’m’ , ’ Linewidth ’ , 2)
35

36

37 x l a b e l ( ’ t ’ )
38 y l a b e l ( ’ d i s t anc e ’ )
39

40

41 %% Values o f d i s c r e p a n c i e s
42

43 maxdiscrepancy1=max( d1 )−min( d1 ) ;
44 maxdiscrepancy2=max( d2 )−min( d2 ) ;
45 maxdiscrepancy3=max( d3 )−min( d3 ) ;
46 maxdiscrepancy4=max( d4 )−min( d4 ) ;
47 maxdiscrepancy5=max( d5 )−min( d5 ) ;
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In this simulation, the new reference value for the master drone is specified as
yref = [10; 0; π/6].

The reformation of UGVs, along with the master-slave distance variations over
time, is illustrated in Figures 3.17, 3.18, and 3.19:
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Figure 3.17: Reformation - six UGVs

From the analysis of Figures 3.17, 3.18, and 3.19, it is evident that the reformation
of UGVs is effective, as the master-slave distance exhibits a coherent behavior from
the initial to the reformed formation, because it is observable that, after the first
formation, they move in formation. This observation is further supported by table
3.1, illustrating the discrepancies of the drones with respect to the master drone.

maxdiscrepancy1 4.1486
maxdiscrepancy2 3.7249
maxdiscrepancy3 2.8818
maxdiscrepancy4 3.4396
maxdiscrepancy5 3.1590

Table 3.1: Discrepancies
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Figure 3.18: Variation distance master-slave in time [1]
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Figure 3.19: Variation distance master-slave in time [2]

3.2.2 Implementation and Simulation of robust NMPC
with Pontryagin approach

In real-world scenarios, the motion of Unmanned Ground Vehicles (UGVs) is
often perturbed by external noises, such as wind or friction with the terrain. To
address this challenge, the objective is to make an algorithm capable of mitigating
such disturbances, thereby enabling precise movement of individual drones along
a predefined reference path. Furthermore, the algorithm should facilitate the
coordination of multiple drones to form cohesive formations coherently. This way
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entails the development of robust control strategies to ensure reliable and accurate
navigation among external perturbations.

Perturbation on motion equations

In our analysis of perturbations affecting the Unmanned Ground Vehicle (UGV)
model, we have considered the following perturbed dynamics:

ẋ = v (3.3)
v̇ = u1 cos θ + w1 (3.4)
θ̇ = u2 + w2 (3.5)

Here, w1 and w2 represent disturbances extracted from a uniform distribution
within the interval (−0.2, 0.2).

Given our decision, as outlined in Subsubsection 3.2.1, to maintain a fixed
distance ray of 3 units from the master drone in the formation component, pertur-
bations of maximum 0.2 or minimum -0.2 on the acceleration and angular velocity
equations can significantly impact our system.

Implementation of robust NMPC

In Simulink, the environment resembles what depicted in previous figures. The key
modifications occur within the bvp_law (figure 3.8), and the main function.

The idea of the code structure mirrors the previously discussed NMPC in section
3.2.1. And optimal values for noise and control inputs are determined, as outlined
in section 2.2.6. Notably, perturbations are introduced in the second and third
equations, impacting both motion and Euler-Lagrange equations.

It’s worth noting that we treat the Euler-Lagrange equations as related to the
control input. As demonstrated in section 6, we utilize the three solutions from
the Euler-Lagrange equations of control input, with altered signs, for optimal
disturbance calculation.

In this implementation, we have also introduced saturation for the optimal con-
trol inputs. This ensures that if the optimal control inputs exceed a predetermined
threshold (it has to be defined in the main function), they are saturated, thus
preventing the emergence of anomalous control inputs that are excessively high or
low.

Here we find the MATLAB function for the nominal scenario:
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1 f unc t i on [ s_dot , y ] = UGV_dyn( s , u )
2 g l o b a l d e l t a
3

4 s_dot ( 1 , : ) = s ( 2 , : )+de l t a ( 1 , : ) ;
5 s_dot ( 2 , : ) = u (1) . ∗ cos ( s ( 3 , : ) )+de l t a ( 2 , : ) ;
6 s_dot ( 3 , : ) = u (2)+de l t a ( 3 , : ) ;
7

8 y = s ;

Here we find the MATLAB function for the ideal scenario:

1 f unc t i on [ s_dot , y ] = UGV_dyn_pred( s , u )
2

3 s_dot ( 1 , : ) = s ( 2 , : ) ;
4 s_dot ( 2 , : ) = u (1) . ∗ cos ( s ( 3 , : ) ) ;
5 s_dot ( 3 , : ) = u (2) ;
6

7 y = s ;

Moving forward, let us delve into the changes made in the main function directly
for the six Unmanned Ground Vehicles (UGVs):

1 c l e a r a l l
2 c l o s e a l l
3 c l c
4

5 %% Parameters d e f i n i t i o n
6

7 g l o b a l d e l t a gamma x0 x1 x3 x4 x5 x6 lambda0 umax Q f l a g
8

9 %gamma parameter f o r the d i s turbance
10 gamma=1;
11

12 %cho i c e o f f l a g to s imulate : I d e a l case (0 ) − Nominal case (1 ) −
Robust case (2 )

13 f l a g =2;
14

15 %f i x seed f o r the d i s turbance
16 rng (42) ;
17

18 %no i s e ex t rac t ed from uniform d i s t r i b u t i o n U( −0 .2 ,0 .2 )
19 i n t e n s i t y 1 =0.2 ;
20 i n t e n s i t y 2 =0.2 ;
21 va l1=−1+2∗rand ;
22 va l2=−1+2∗rand ;
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23 no i s e1 = i n t e n s i t y 1 ∗ va l1 ;
24 no i s e2 = i n t e n s i t y 2 ∗ va l2 ;
25

26 i f f l a g == 0
27 di sp ( ’ I d e a l s c e n a r i o −> No unce r ta in ty in the system ’ )
28 de l t a = [ 0 ; 0 ; 0 ] ;
29 e l s e i f f l a g == 1
30 di sp ( ’ Nominal s c e n a r i o −> Uncerta inty in the system ’ )
31 de l t a = [ 0 ; no i s e1 ; no i s e2 ] ;
32 e l s e i f f l a g == 2
33 di sp ( ’ Robust s c e n a r i o ’ )
34 de l t a = [ 0 ; no i s e1 ; no i s e2 ] ;
35 e l s e
36 e r r o r ( ’ I n v a l i d f l a g ’ )
37 end
38

39 %% Simulat ion parameters
40 Tstart = 0 ;
41 Tstop = 40 ;
42 Ts = 0 . 0 1 ;
43

44 %% NMPC parameters
45 %simula t i on parameters throught the usage o f a s t r u c t u r e
46 par . Ts = {Ts , Ts , Ts , Ts , Ts , Ts } ;
47 par . model = {@UGV_dyn,@UGV_dyn,@UGV_dyn,@UGV_dyn,@UGV_dyn,@UGV_dyn} ;

%non c ’ è i l tempo qui perch è è s h i f t i n v a r i a n t ( come prima
componente )

48 par . pred ={@UGV_dyn_pred,@UGV_dyn_pred,@UGV_dyn_pred,@UGV_dyn_pred,
@UGV_dyn_pred,@UGV_dyn_pred} ;

49 par . n = {3 , 3 , 3 , 3 , 3 , 3} ; %numero s t a t i
50 par . nu = {2 ,2 , 2 , 2 , 2 , 2} ; %numero input
51 par . ny = {3 , 3 , 3 , 3 , 3 , 3} ; %numero output = 3
52 par . t o l = { [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ;

0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] , [ 0 . 0 2 ; 0 . 0 2 ; 0 . 0 2 ] } ;
53 par . Tct r l = {0 , 0 , 0 , 0 , 0 , 0} ;
54 par .Tp = { 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 } ; %p r e d i c t i o n hor izon
55 par .NS = {100 ,100 ,100 ,100 ,100 ,100} ;
56 par .MS = {10 ,10 ,10 ,10 ,10 ,10} ;
57 par .R = {[15 0 ;0 1 5 ] , [ 1 5 0 ;0 1 5 ] , [ 1 5 0 ;0 1 5 ] , [ 1 5 0 ;0 1 5 ] , [ 1 5 0 ;0

1 5 ] , [ 1 5 0 ;0 1 5 ] } ;
58 par .P = {[30 0 0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0

0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0 5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0
5 0 ] , [ 3 0 0 0 ; 0 50 0 ; 0 0 5 0 ] } ;

59 par .Q = {[10000 0 0 ;0 500 0 ; 0 0 200 ] , [10000 0 0 ;0 500 0 ; 0 0
200 ] , [10000 0 0 ;0 500 0 ; 0 0 200 ] , [ 1 0000 0 0 ;0 500 0 ; 0 0 200 ] ,
[10000 0 0 ;0 500 0 ; 0 0 200 ] , [10000 0 0 ;0 500 0 ; 0 0 2 0 0 ] } ;

60 umax = 20 ;
61

62 %number o f drones cons ide r ed
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63 num_componenti=6;
64 f o r i = 1 : num_componenti
65 par ex t ra c to r { i } . Ts = par . Ts{ i } ;
66 par ex t ra c to r { i } . model = par . model{ i } ;
67 par ex t ra c to r { i } . pred = par . pred { i } ;
68 par ex t ra c to r { i } . n = par . n{ i } ;
69 par ex t ra c to r { i } . nu = par . nu{ i } ;
70 par ex t ra c to r { i } . ny = par . ny{ i } ;
71 par ex t ra c to r { i } . t o l = par . t o l { i } ;
72 par ex t ra c to r { i } . Tct r l = par . Tct r l { i } ;
73 par ex t ra c to r { i } .Tp = par .Tp{ i } ;
74 par ex t ra c to r { i } .NS = par .NS{ i } ;
75 par ex t ra c to r { i } .MS = par .MS{ i } ;
76 par ex t ra c to r { i } .R = par .R{ i } ;
77 par ex t ra c to r { i } .P = par .P{ i } ;
78 par ex t ra c to r { i } .Q = par .Q{ i } ;
79 end
80

81 % Extract the d i f f e r e n t pa r ex t ra c to r
82 Q = diag ( pa r ex t ra c to r {1} .Q) ;
83 K1 = nmpc_design0 ( pa r ex t ra c to r {1}) ; %crea una s t r u t t u r a tramite

nmpc_design0 con i parametr i d e f i n i t i in precedenza
84 Q = diag ( pa r ex t ra c to r {2} .Q) ;
85 K2 = nmpc_design0 ( pa r ex t ra c to r {2}) ;
86 Q = diag ( pa r ex t ra c to r {3} .Q) ;
87 K3 = nmpc_design0 ( pa r ex t ra c to r {3}) ;
88 Q = diag ( pa r ex t ra c to r {4} .Q) ;
89 K4 = nmpc_design0 ( pa r ex t ra c to r {4}) ;
90 Q = diag ( pa r ex t ra c to r {5} .Q) ;
91 K5 = nmpc_design0 ( pa r ex t ra c to r {5}) ;
92 Q = diag ( pa r ex t ra c to r {6} .Q) ;
93 K6 = nmpc_design0 ( pa r ex t ra c to r {6}) ;
94

95 %% I n i t i a l c o n d i t i on s
96 x0 = [ 5 ; 0 ; 0 ] ;
97 x1 = [ 5 . 1 ; 0 ; 0 ] ;
98 x3 = [ 5 . 2 ; 0 ; 0 ] ;
99 x4 = [ 5 . 3 ; 0 ; 0 ] ;

100 x5 = [ 5 . 4 ; 0 ; 0 ] ;
101 x6 = [ 5 . 5 ; 0 ; 0 ] ;
102 lambda0 = [ 0 ; 0 ; 0 ] ;
103 u0 = [ 0 ; 0 ] ;
104

105

106 %% Simulat ion
107

108 sim_model = s p r i n t f ( ’UGV_sim_1 ’ ) ;
109 Decimation = 1 ;
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110 opt ions = s imset ( ’ dec imation ’ , Decimation , ’ s o l v e r ’ , ’ ode4 ’ , ’ FixedStep ’
,Ts , ’ OutputVariables ’ , ’ ty ’ ) ;

111 open ( sim_model ) ;
112 sim ( sim_model , [ Tstart , Tstop ] , opt i ons ) ;
113

114 %% Post Proce s s ing
115

116 %t r a j e c t o r y p l o t
117

118 f i g u r e
119 ax i s equal
120 x l a b e l ( ’ x ’ )
121 y l a b e l ( ’ y ’ )
122 hold on
123 g r id on
124 p lo t ( x ( : , 1 ) , x ( : , 1 ) . ∗ tan ( x ( : , 3 ) ) , ’b ’ , ’ l i n ew id th ’ , 2)
125 p lo t ( x11 ( : , 1 ) , x11 ( : , 1 ) . ∗ tan ( x11 ( : , 3 ) ) , ’ r ’ , ’ l i n ew id th ’ , 2)
126 p lo t ( x22 ( : , 1 ) , x22 ( : , 1 ) . ∗ tan ( x22 ( : , 3 ) ) , ’ g ’ , ’ l i n ew id th ’ , 2)
127 p lo t ( x33 ( : , 1 ) , x33 ( : , 1 ) . ∗ tan ( x33 ( : , 3 ) ) , ’ k ’ , ’ l i n ew id th ’ , 2)
128 p lo t ( x44 ( : , 1 ) , x44 ( : , 1 ) . ∗ tan ( x44 ( : , 3 ) ) , ’ c ’ , ’ l i n ew id th ’ , 2)
129 p lo t ( x55 ( : , 1 ) , x55 ( : , 1 ) . ∗ tan ( x55 ( : , 3 ) ) , ’m’ , ’ l i n ew id th ’ , 2)
130

131 %plo t o f consumation f o r the c o n t r o l input
132

133 t rapz ( 0 : s i z e ( u_final_1 ( : , 1 ) ) −1,abs ( u_final_1 ( : , 1 ) ) )
134 t rapz ( 0 : s i z e ( u_final_2 ( : , 1 ) ) −1,abs ( u_final_2 ( : , 1 ) ) )
135 t rapz ( 0 : s i z e ( u_final_3 ( : , 1 ) ) −1,abs ( u_final_3 ( : , 1 ) ) )
136 t rapz ( 0 : s i z e ( u_final_4 ( : , 1 ) ) −1,abs ( u_final_4 ( : , 1 ) ) )
137 t rapz ( 0 : s i z e ( u_final_5 ( : , 1 ) ) −1,abs ( u_final_5 ( : , 1 ) ) )
138 t rapz ( 0 : s i z e ( u_final_6 ( : , 1 ) ) −1,abs ( u_final_6 ( : , 1 ) ) )

This function commences with the definition of simulation and NMPC parame-
ters, adopting a structured approach to enhance comprehension. Notably, one of
the parameters initialized here, differing from previous cases, is the value of gamma.
Gamma serves the purpose of weighting the considered noise in the equations.
Additionally, this is where disturbances are selected from a uniform distribution,
as described before.

Furthermore, the distinction between the ideal, nominal, and robust scenarios
is delineated through the "flag" parameter. In the ideal scenario, the application
of NMPC occurs without any disturbances, essentially representing the absence
of external influences. The nominal scenario employs the conventional NMPC
with Pontryagin (see 2.2.1), which is non-robust, aimed at addressing disturbed
scenarios. Conversely, the robust scenario utilizes both nominal and ideal models to
iteratively adjust the nominal model, thereby minimizing disturbances and aligning
it with the ideal scenario.
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Following parameter initialization, the simulation is executed, and postprocessing
procedures are considered. Trajectory plots and control input "consumptions" are
visualized. Specifically, in the plots, we display, as control input consumptions, the
integral of the absolute value of the first component of the control input, which
represents a force. This allows us to quantify the "consumption" of the force over
time. It’s noteworthy that with robust control, we aim to demonstrate a reduced
"consumption" of force, indicating improved efficiency and performance, than the
usage of non robust NMPC on the distrubed UGV model.

Simulation of robust NMPC and comparison with ideal and nominal
scenarios

Simulations have been conducted using a reference of [10; 0; π/6] for the master
drone.

Robust simulations have been assumed varying values for γ. Specifically, γ
values of 2, 4, 10, and 25 have been employed.
It has been observed that when γ = 2, the algorithm encounters computational
failure. This failure happens from the necessity, as elucidated in Remark 13, for
γ to assume an appropriately "low" value. When γ is excessively low, the noise
becomes excessively perceptible to the system, resulting in algorithmic failure. In
this simulation, an appropriately low value has been determined to be 4.

Remark 15. If γ is too low, we encounter the failure of concavity with respect to
w and convexity with respect to u of the Hamiltonian functions.
For this reason, there exists a critical value for γ for which w → ∞.

In Figures 3.20, 3.21, and 3.22, simulations can be observed in ideal, nominal,
and robust (with γ = 4) scenarios, accompanied by errors post-simulation of the
three coordinates extracted by motion equations, as presented in Table 3.2.

You can see also the errors post-simulation in robust cases with γ = 10 and
γ = 25 in table 3.3 and moreover the behavior of the disturbance in time using
robust algorithm (on master UGV, for simplicity) with γ = 4,10,25 in figures: 3.25
- 3.28 - 3.31.
Notice that in these last cited figures, it is evident that if γ is lower, the system
perceives more the disturbance.
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Figure 3.20: ideal scenario
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Figure 3.21: nominal scenario
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Figure 3.22: Robust scenario with γ = 4

Ideal Scenario Nominal Scenario Robust Scenario
(0.0051,-0.0036,0.0000) (0.0258,-0.0051,-0.0357) (0.0197,-0.0051,-0.0273)
(0.0116,-0.0060,-0.0001) (0.0383,-0.0051,-0.0357) (0.0267,-0.0051,-0.0273)
(0.0119,-0.0057,-0.0000) (0.0359,-0.0051,-0.0357) (0.0254,-0.0051,-0.0273)
(0.0156,-0.0058,-0.0000) (0.0229,-0.0051,-0.0357) (0.0180,-0.0051,-0.0273)
(0.0159,-0.0057,-0.0000) (0.0224,-0.0051,-0.0357) (0.0177,-0.0051,-0.0273)
(0.0123,-0.0062,0.0000) (0.0274,-0.0051,-0.0357) (0.0205,-0.0051,-0.0273)

Table 3.2: Errors of the 3 components from motion equations for the 6 UGVs in
the different scenarios

Robust Scenario (γ = 10) Robust Scenario (γ = 25)
(0.0236,-0.0051,-0.0323) (0.0249,-0.0051,-0.0343)
(0.0340,-0.0051,-0.0323) (0.0366,-0.0051,-0.0343)
(0.0320,-0.0051,-0.0323) (0.0343,-0.0051,-0.0343)
(0.0211,-0.0051,-0.0323) (0.0222,-0.0051,-0.0343)
(0.0206,-0.0051,-0.0323) (0.0217,-0.0051,-0.0343)
(0.0248,-0.0051,-0.0323) (0.0264,-0.0051,-0.0343)

Table 3.3: Errors of the 3 components from motion equations for the 6 UGVs in
robust cases with γ = 10 and γ = 25

It is evident that classical NMPC applied to the disturbed model yields inferior
performance compared to the case of robust NMPC applied to the disturbed
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Figure 3.25: Behaviour of disturbance in time with γ = 4
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Figure 3.28: Behaviour of disturbance in time with γ = 10

model. Furthermore, it is discernible that the perturbed case, mitigated through
the utilization of robust NMPC, provides a better approximation than the nominal
case to the ideal case. This comparison is further elucidated by the overlapping
depiction of the three aforementioned cases in Figure 3.32.
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Figure 3.31: Behaviour of disturbance in time with γ = 25
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Figure 3.32: Ideal (continuous line), Nominal (dashed line), Robust (dashed line
with dot) together

67



Simulations and Results

Investigation was also conducted, as delineated in the preceding subsubsection,
into the "consumption" metrics employed by robust algorithms across varying
degrees of γ. As depicted in Figure 3.33 and detailed in Table 3.4, we examined
instances where γ took values of 4, 10, and 25. Notably, the optimal configuration
emerged with γ set to 4, wherein a reduced module of force input was necessitated
for the maneuvering of UGVs (see also table 3.5 which contains information of the
very bad "consumption" with γ = 2).
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Figure 3.33: Comparison with consumption in function of γ
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Robust γ = 4 Robust γ = 10 Robust γ = 25
533.2519 582.7184 602.8995
342.5116 385.8224 406.7327
531.1568 583.6731 607.1400
403.6320 461.3818 483.8935
346.5876 401.6685 423.1607
381.3436 442.5844 466.5228

Table 3.4: "Consumption" considered in robust case with different values of γ for
the 6 UGVs

Robust γ = 2
5.8957e+06
5.5427e+05
1.7197e+07
4.0951e+06
1.9892e+06
5.5326e+05

Table 3.5: Very bad "consumption" in the robust case with γ = 2

Furthermore, an analysis encompassing "consumption" metrics was undertaken,
encompassing ideal, robust scenarios with γ values of 4, 10, and 25, alongside
nominal scenarios, with respect to the six UGVs. It was observed (figure 3.34) that
the "consumption", ordered according to the aforementioned scenarios, exhibited
an escalating trend (see also table 3.6 which contains "consumption" in ideal and
Nominal scenarios, for a better comparison with cases just described).
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Figure 3.34: Comparison with consumption in function of the ith UGV

Ideal Nominal
461.3220 615.7744
242.0500 421.4187
420.1609 623.4009
368.3623 498.8878
314.4419 437.3979
349.7583 482.2566

Table 3.6: "Consumption" considered in Ideal and Nominal Scenarios

The figures 3.33 - 3.34 are extracted by the following codes:

1 f i g u r e ;
2 hold on ;
3
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4 n=6;%number o f drones
5 f o r i = 1 : n
6 p lo t ( gamma_values , [ u_int_4 ( i ) , u_int_10 ( i ) , u_int_25 ( i ) ] , ’−o ’ ) ;
7 end
8

9 x l a b e l ( ’Gamma ’ ) ;
10 y l a b e l ( ’ Consumption ’ ) ;
11 g r id on ;

and

1 n = 6 ; %number o f UGVs
2 f i g u r e ;
3 hold on ;
4 g r id on ;
5

6 f o r i = 1 : n
7 p lo t ( i ∗ ones (1 , 5 ) , [ u_int_4 ( i ) , u_int_10 ( i ) , u_int_25 ( i ) ,

u_int_nominal ( i ) , u_int_ideal ( i ) ] , ’ o− ’ ) ;
8 end
9

10 x l a b e l ( ’ Drone ’ ) ;
11 y l a b e l ( ’ Consumption ’ ) ;
12 l egend ( ’ Drone 1 ’ , ’ Drone 2 ’ , ’ Drone 3 ’ , ’ Drone 4 ’ , ’ Drone 5 ’ , ’ Drone

6 ’ ) ;

For all other data and figures it is all described in the main function explained
in the previous subsubsection, with some little changes of the considered variables.

About figures: 3.25-3.28-3.31 we list here:

1 f i g u r e
2 ax i s equal
3 x l a b e l ( ’ t ’ )
4 y l a b e l ( ’ d i s turbance ’ )
5 hold on
6 g r id on
7 %plo t o f d i s turbance
8 p lo t (Lambda ( : , 1 ) , ’b ’ , ’ l i n ew id th ’ , 2)
9 p lo t (Lambda ( : , 2 ) , ’b ’ , ’ l i n ew id th ’ , 2)

the code for the plot;

1 dstar2 = ( ( s o l . y (5 , 1 ) ) . / ( 2 . ∗gamma) ) ;
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2 dstar3 = ( s o l . y (6 , 1 ) ) . / ( 2 . ∗gamma) ;
3 dstar =[ dstar2 , ds tar3 ] ;

the code where we extracted the values for the disturbance, inserted into bvp_law
after the calculus of ustar, considering dstar as a global variable;

Figure 3.35: Box for disturbance - Simulink

the figures of boxes added inside bvp_law box in Simulink, where the MATLAB
interpreted function is given by:

1 f unc t i on d_star = lambda_fun ( )
2 g l o b a l ds ta r f l a g
3 i f f l a g == 2
4 d_star = dstar ;
5 e l s e
6 d_star = 0 ;
7 end
8 end

3.3 Application of APF together with robust
NMPC

In this final section of the work, we aim to introduce a technique known as Artificial
Potential Fields (APF) method. As previously outlined in the Introduction 1, APF
offers a viable approach to facilitating the formation of Unmanned Ground Vehicles
(UGVs) while reducing the risk of collision.
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3.3.1 Implementation and Simulation of APF with robust
NMPC

The idea of implementing and simulating Artificial Potential Fields (APF) method
lies in its union with robust Nonlinear Model Predictive Control (NMPC), given
the global presence of disturbances in real-world scenarios.

Implementation of APF

First of all, we delineated the modifications made in Simulink. In contrast to the
configurations depicted in figure 3.7, an augmentation has been introduced within
the bvp_law box. Specifically, the coordinates of neighboring drones have been
integrated, as depicted in figure 3.36.

Figure 3.36: Simulink addition for APF

Within the bvp_law box, the transition occurs from the representation depicted
in Figure 3.8 to that shown in Figure 3.37.

Figure 3.37: Simulink - modified BVP law
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Subsequently, we have introduced a function within the function inside the
bvp_law box to generate a repulsive force to be applied to the coordinates of a
specified drone when a connection exists between this drone and another one. This
function is described as follows:

1 f unc t i on r epu l s i v eFo r c e= apf ( dronePos1 , dronePos2 )
2 rad iu s =1;
3 r e p u l s i o n I n t e n s i t y =5;
4 d i s t anc e=norm( dronePos1−dronePos2 ) ;
5 i f d i s tance <rad iu s
6 forceMagnitude=r e p u l s i o n I n t e n s i t y ∗exp(− d i s t anc e ) ;
7 f o r c e D i r e c t i o n =(dronePos1−dronePos2 ) / d i s t anc e ;
8 r epu l s i v eFo r c e=forceMagnitude ∗ f o r c e D i r e c t i o n ;
9 e l s e

10 r epu l s i v eFo r c e = [ 0 , 0 ] ;
11

12 end
13 end

The repulsion force is determined by the following function:

Frepulsion =
me(−d)(x1−x2

d
) if d ≤ r

0 otherwise

where x1 and x2 represent the positions of the considered drones, d denotes the
distance between the drones, calculated as ||x1 − x2||2, m represents the intensity
of repulsion and r is the ray fixed.

Finally, within the function UGV_dyn_aug, the calculation of the repulsion
force is implemented. This calculation incorporates the previously described
function and inserts the component along the x-axis of the force into the motion
equations.

Simulation of APF with robust NMPC

Simulations were conducted with the same reference as in subsubsection 3.2.2.

The robust case was considered with γ = 4, determined to be the optimal
parameter in subsubsection 3.2.2.

Various scenarios were explored by altering the parameters of the system, specif-
ically the ray r and intensity m previously described.
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Cases were tested with r = 1,2,3.5, with the assumption that the scenario with
r = 3.5 represents the worst condition, as it corresponds to a formation ray of 3
units. However, it is useful to determine the positive work of the method.

Furthermore, different intensity levels were assessed with m = 5,10,17.5,25. It
is evident that higher intensity fosters improved perception among Unmanned
Ground Vehicles (UGVs).

The ensuing figures, tables detailing errors, and tables detailing "consumption"
delineate these scenarios:
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Figure 3.38: Intensity m = 5
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Figure 3.39: Intensity m = 10
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Figure 3.40: Intensity m = 17.5
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Figure 3.41: Intensity m = 25

Figure 3.42: Case APF with r = 1

Summing up, the usage of the APF method is evident from graphics and tables.
As mentioned earlier, it is noticeable that the case of r = 3.5 does not perform well:
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Figure 3.43: Intensity m = 5
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Figure 3.44: Intensity m = 10
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Figure 3.45: Intensity m = 17.5

2 4 6 8 10 12 14

x

0

2

4

6

8

10

y

Figure 3.46: Intensity m = 25

Figure 3.47: Case APF with r = 2

m=5 m=10 m=17.5 m=25
(0.0197,-0.0051,-0.0273) (0.0180,-0.0051,-0.0273) (0.0180,-0.0051,-0.0273) (0.0180,-0.0051,-0.0273)
(0.0267,-0.0051,-0.0273) (0.0177,-0.0051,-0.0273) (0.0177,-0.0051,-0.0273) (0.0177,-0.0051,-0.0273)
(0.0254,-0.0051,-0.0273) (0.0206,-0.0051,-0.0273) (0.0206,-0.0051,-0.0273) (0.0205,-0.0051,-0.0273)
(0.0180,-0.0051,-0.0273) (0.0197,-0.0051,-0.0273) (0.0197,-0.0051,-0.0273) (0.0197,-0.0051,-0.0273)
(0.0177,-0.0051,-0.0273) (0.0268,-0.0051,-0.0273) (0.0267,-0.0051,-0.0273) (0.0267,-0.0051,-0.0273)
(0.0205,-0.0051,-0.0273) (0.0254,-0.0051,-0.0273) (0.0254,-0.0051,-0.0273) (0.0254,-0.0051,-0.0273)

Table 3.7: Errors - APF with r = 1

there are high errors as results, although the consumption is not correspondingly
high. However, in the other cases, with different rays and different intensity levels,
the performance is quite good. It is also evident that an intermediate repulsion
does not necessarily imply an amplification in "consumption"; instead, it can also
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Figure 3.48: Intensity m = 5
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Figure 3.49: Intensity m = 10
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Figure 3.50: Intensity m = 17.5
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Figure 3.51: Intensity m = 25

Figure 3.52: Case APF with r = 3.5

m=5 m=10 m=17.5 m=25
(0.0180,-0.0051,-0.0273) (0.0180,-0.0051,-0.0273) (0.0180,-0.0051,-0.0273) (0.0179,-0.0051,-0.0273)
(0.0177,-0.0051,-0.0273) (0.0177,-0.0051,-0.0273) (0.0177,-0.0051,-0.0273) (0.0176,-0.0051,-0.0273)
(0.0206,-0.0051,-0.0273) (0.0206,-0.0051,-0.0273) (0.0205,-0.0051,-0.0273) (0.0205,-0.0051,-0.0273)
(0.0197,-0.0051,-0.0273) (0.0197,-0.0051,-0.0273) (0.0197,-0.0051,-0.0273) (0.0197,-0.0051,-0.0273)
(0.0268,-0.0051,-0.0273) (0.0268,-0.0051,-0.0273) (0.0267,-0.0051,-0.0273) (0.0266,-0.0051,-0.0273)
(0.0254,-0.0051,-0.0273) (0.0254,-0.0051,-0.0273) (0.0254,-0.0051,-0.0273) (0.0253,-0.0051,-0.0273)

Table 3.8: Errors - APF with r = 2

yield good performance.
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m=5 m=10 m=17.5 m=25
(0.0048,-0.0051,-0.0273) (-0.0163,-0.0051,-0.0273) (0.0110,-0.0051,-0.0273) (-0.0786,-0.0050,-0.0272)
(0.0373,-0.0051,-0.0273) (0.0585,-0.0051,-0.0273) (0.0264,-0.0050,-0.0273) (0.1649,-0.0050,-0.0271)
(0.0265,-0.0051,-0.0273) (0.0330,-0.0051,-0.0273) (-0.0113,-0.0050,-0.0273) (0.0574,-0.0051,-0.0273)
(0.0175,-0.0051,-0.0273) (0.0151,-0.0051,-0.0273) (-0.0457,-0.0050,-0.0273) (0.0065,-0.0051,-0.0273)
(0.0267,-0.0051,-0.0273) (0.0267,-0.0051,-0.0273) (0.1075,-0.0050,-0.0273) (0.0266,-0.0051,-0.0273)
(0.0156,-0.0051,-0.0273) (0.0053,-0.0051,-0.0273) (0.0443,-0.0051,-0.0273) (-0.0287,-0.0051,-0.0272)

Table 3.9: Errors - APF with r = 3.5

m=5 m=10 m=17.5 m=25
479.0979 505.2509 699.6652 950.2264
268.8904 289.8247 357.9049 545.2180
445.3716 443.4987 437.3584 430.7935
335.6292 332.2154 331.3976 347.4342
290.2688 299.1804 314.6031 367.9954
324.6251 409.8196 552.6861 752.3440

Table 3.10: "Consumption" - APF with r = 1

m=5 m=10 m=17.5 m=25
484.0819 495.2283 583.0073 791.4292
274.1915 290.1431 353.9051 532.1420
447.6367 435.5248 420.3880 414.3952
338.0854 329.6243 323.0639 345.6368
296.3677 302.4533 316.7385 381.4621
326.3702 383.2978 501.7252 586.5063

Table 3.11: "Consumption" - APF with r = 2

m=5 m=10 m=17.5 m=25
479.8665 488.5016 630.4948 911.6613
272.1435 285.7205 338.3536 498.7317
445.1032 430.8560 404.3890 401.8973
335.8302 325.0471 309.7783 332.1906
292.2752 294.6156 297.2111 351.3405
323.2664 380.4826 484.4003 631.6077

Table 3.12: "Consumption" - APF with r = 3.5
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Chapter 4

Conclusion and Future
Works

In this thesis, the implementation of Nonlinear Model Predictive Control (NMPC)
on a network of six Unmanned Ground Vehicles (UGVs) for formation control was
considered. The selection of the network’s topology started with deliberation on
various structures, ultimately opting for a Master-Slave architecture. Although
alternative topologies were explored, including non-shift invariant configurations,
the inherent complexity led to the adoption of the aforementioned structure.

Subsequently, NMPC was employed to optimize trajectory minimization for
individual UGVs in undisturbed conditions. Formation of the UGVs was con-
structed with the master drone serving as a reference point, with follower drones
adjusting their coordinates relative to the master drone to form a regular polygonal
arrangement.

Following this initial phase, robust NMPC was introduced to address distur-
bances, such as friction and wind, affecting the motion equations of the UGVs.
The formation process was repeated under these perturbed conditions, contrasting
the outcomes with the ideal scenario governed solely by NMPC and the disturbed
scenario employing the initial NMPC formulation. The findings unequivocally
supported the superiority of robust NMPC in mitigating disturbances.

Finally, trying to enhance realism, the Artificial Potential Field (APF) method
was integrated to prevent collisions between drones. This addition augmented the
fidelity of the simulations, knowing that there were not other spatial entities.
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4.1 Future Works
Exploring diverse topologies to map the network of Unmanned Ground Vehicles
(UGVs) presents a possible approach for further investigation. These topologies
could extent structures similar to those detailed in subsection 3.1, where we con-
ducted simulations to analyze dynamic topologies over time. Alternatively, searching
into simpler network configurations differently from the conventional master-slave
paradigm can offer another interesting approach. For instance, adopting a method
like to the one outlined in Sarras et al. [25], which examines consensus dynamics
within the network framework, holds potential for new explorations.

Another possible direction involves revising the structure of motion equations
governing UGV behavior. In this thesis, we opted for a simplified point model for
simplicity.
However, expanding this model to incorporate more complex representations, such
as rigid body dynamics, could significantly enhance the sense of our simulations.
For instance, Khan et al. [26] (figure 4.1) presents a detailed model of a UGV
with two wheels, while Guivant et al. [27] (figure 4.2) offers insights into UGVs
with four wheels, illustrating the range of possibilities for refining our modeling
approaches.
By adopting such sophisticated models, we can attempt towards more realistic
applications of formation control algorithms on UGVs, manipulating the theoretical
considerations elucidated in preceding sections to drive practical advancements in
autonomous vehicle technology.
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Figure 4.1: Example of future work - UGV with two wheels

Figure 4.2: Example of future work - UGV with four wheels
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