
POLITECNICO DI TORINO

Master’s Degree in Mathematical Engineering

Master’s Degree Thesis

Review of Batch Process Scheduling

Supervisors

Prof. PAOLO BRANDIMARTE

Prof. EDOARDO FADDA

Candidate

LEONARDO TURRISI

03/2024

ii

“Alla mia famiglia,il mio tutto”

Table of Contents

1 Introduction 1
1.1 Abstract . 1
1.2 Problem specification . 2

2 Family scheduling models 6
2.1 Single Machine . 6

2.1.1 Total weighted completion time 6
2.1.2 Maximum lateness . 9
2.1.3 Weighted number of late jobs 10

2.2 Parallel machines . 12
2.3 Shop problems . 12
2.4 Identical jobs in each family . 13

3 Batch availability 16
3.1 Single machine . 16
3.2 Parallel machines . 20
3.3 Shop problems . 20
3.4 Batch delivery scheduling . 21
3.5 Multi-operations job . 22

4 Batching machine models 25
4.1 The unbounded model . 27

4.1.1 Minimizing a regular minsum function 27
4.1.2 Minimizing the number of tardy jobs 28
4.1.3 Minimizing total weighted completion time 29
4.1.4 Minimizing maximum lateness and maximum cost 30

4.2 The bounded model . 31
4.2.1 Minimizing total completion time 32
4.2.2 Restricted number of batches 33

4.3 Single batching machine . 33
4.3.1 Total weighted completion time 34

v

4.3.2 Maximum lateness . 34
4.3.3 Weighted number of late jobs 35
4.3.4 Total weighted tardiness . 36

4.4 Parallel batching machines . 36
4.4.1 Maximum lateness . 36
4.4.2 Number of tardy jobs . 38
4.4.3 Heuristic algorithms . 39
4.4.4 Machine learning techniques applied to parameter setting in

scheduling heuristics . 45
4.4.5 Application of the two techniques for setting the look ahead

parameter in the BATC-rule 46
4.5 Shop problems with batching machines 47

5 Conclusions 50

Bibliography 51

vi

Chapter 1

Introduction

1.1 Abstract

Extensive research has been conducted on models that combine scheduling with
decisions related to batching. Tasks may be grouped together if they utilize the
same setup on a machine. Another scenario for batching arises when a machine has
the capability to handle multiple tasks concurrently. This document examines the
existing body of literature concerning scheduling with batching, providing in-depth
information about fundamental algorithms and citing other noteworthy findings.In
the paper, we pinpoint areas where techniques developed independently should be
assessed and compared.As a multitude of articles have emerged in a short span,
there are instances where various researchers have independently addressed the
same issue, occasionally employing similar techniques, such as the genetic algorithm
or simulated annealing algorithm or dynamic programming. This paper categorize
the literature according to shop environments, including single machine, parallel
machines, flow shop, no-wait flow shop, flexible flow shop, job shop, open shop,
and others. In the past ten years, there has been a notable interest in scheduling
challenges that incorporate a batching element. In this context, the motivation
behind batching jobs lies in achieving increased efficiency, as it might be more
cost-effective or quicker to process jobs collectively rather than individually. A
scenario where advantages of batching become apparent is when machines require
setups to process jobs with distinct characteristics. Setups may involve changing
tools or cleaning the machine. In a family scheduling model, jobs are categorized
into families based on their similarities. Consequently, no setup is necessary for a
job if it belongs to the same family as the previously processed one. However, a
setup time is needed at the beginning of the schedule and whenever the machine
transitions from processing jobs in one family to those in another. In this model, a
batch represents the maximum set of jobs scheduled consecutively on a machine,

1

Introduction

sharing a common setup. Larger batches offer the benefit of enhanced machine
utilization due to fewer setup requirements. However, processing a large batch
might lead to delays in handling a crucial job from a different family. The family
scheduling model has two variations depending on when the jobs become available,
either for dispatch to the customer or processing on the next machine. In batch
availability, a job becomes available only when the entire batch it belongs to
has been processed. An alternative assumption is job availability, where a job
becomes available immediately after its processing is completed. Unless stated
otherwise, the assumption of job availability is adopted.Another scenario where
batching can enhance efficiency is when a batching machine can process multiple
jobs simultaneously. For instance, in the manufacturing of circuit boards, ’burn in’
operations are conducted in ovens capable of accommodating several jobs. Similar
applications occur in chemical processes performed in tanks or kilns. In these cases,
a batching machine processes a batch of jobs simultaneously, with occasional upper
limits on batch size. There are existing reviews of models that integrate scheduling
with batching by Potts and Van Wassenhove [63] and Webster and Baker [79]. In
this paper, an updated review is provided, encompassing many recent results in
this field. The review categorizes problems as polynomially or pseudopolynomially
solvable, binary or unary NP-hard (NP-hard in the ordinary or strong sense), or
open. Additionally, enumerative algorithms, heuristic procedures, and local search
methods are described, indicating their efficiency and effectiveness.

1.2 Problem specification
We are examining issues related to the arrangement of tasks for a single machine,
m parallel machines, and m-machine flow shops, job shops, and open shops. In
the case of parallel machines, the machines can be either identical, uniform, or
unrelated. This implies that the time it takes to process a job on a machine
depends solely on the job, depends solely on the job and the speed of the assigned
machine, or depends on both the job and the assigned machine, respectively. In
the context of flow shops, each job consists of m operations. The initial operation
requires processing on machine 1, the second on machine 2, and so forth, with the
final operation requiring processing on machine m. In job shops, each job follows
a predetermined sequence of operations on the machines, causing different jobs
to traverse the machines in varying orders. In open shops, every job involves an
operation on each of the m machines, but the order in which these operations are
processed can be selected freely.In a scheduling scenario, machines can be classified
as classical (handling one job at a time) or batching (processing multiple jobs
simultaneously). Batching machines determine the processing time of a batch as
the maximum processing time among the jobs or operations within the batch. All

2

Introduction

jobs or operations in a batch share the same completion time. The set of jobs to
be processed is denoted as 1; ...;n. For a single-machine problem, the processing
time of job j is represented by pj (j = 1; ...;n). Additional parameters for job j
may include a release date rj, a deadline d̄j, a due date dj, and a weight wj. In
the family scheduling model, jobs are grouped into F families, each containing a
certain number of jobs denoted as nf for f = 1; ...;F . No setup is needed between
jobs of the same family. However, when a job of family g immediately follows
a job of a different family f on machine i, a family setup time of sifg (or si0g if
there is no preceding job) is incurred. If the setup times are consistent across
families such that sifg = si0g = sig for all f /= g, then the setup times on machine i
are sequence independent; otherwise, they are sequence dependent. Additionally,
if for each machine i, the setup times are the same across all families f and g,
including the case f = 0 (denoted as sifg = sfg), then the setup times are machine
independent; otherwise, they are machine dependent. In the context of a single
machine, setup times are inherently considered machine independent. Additionally,
we adopt the reasonable assumption that the triangle inequality is valid for each
machine i, signifying that sifh ≤ sifg + sigh, for all distinct families f , g, and h,
including the case where f /= 0. Unless specified otherwise, the setups are presumed
to be anticipatory, implying that a setup on a machine doesn’t necessitate the
presence of any job. When release dates are present and in-shop problems, there
is occasional allowance for non-anticipatory setups. This means that the setup
preceding the processing of a batch cannot commence on the current machine until
all jobs of that batch are released and have completed processing on any previous
machine. In scenarios involving sequence-independent family setup times and batch
availability, there might be two or more successive batches of the same family. In
such instances, a family setup time is required before processing a batch, even if it
belongs to the same family as the previous one. If there exists a maximum batch
size for any machine i, it is denoted as bi. In the case of a single machine or when
restrictions on batch sizes are uniform across all machines, we use b to represent
any imposed maximum batch size. We establish the following variables for each
job j in a schedule:

Cj := the completion time of job j;
Lj := Cj − dj, the lateness of job j;

Uj :=
1, if job j is late (i.e., Cj > dj);

0, if job j is early (i.e., Cj ≤ dj);
Tj := max(Cj − dj, 0), the tardiness of job j.

The standard classification scheme for scheduling problems, as outlined by Graham
et al. [38], is represented as ψ1|ψ2|ψ3, where ψ1 denotes the scheduling environ-
ment, ψ2 describes the job and family characteristics along with any restrictive

3

Introduction

requirements, and ψ3 defines the objective function aimed at minimization. In this
scheme, we define ψ1 as am, where m is the number of machines, and a belongs to
the set {P,Q,R, F, J,O} for classical machines in identical, uniform, and unrelated
parallel-machine, flow shop, job shop, and open shop environments. For batching
machines in the same environments, we use a from the set {P̃ , Q̃, R̃, F̃ , J̃ , Õ}. If
m is not specified, the number of machines is considered arbitrary. In the case of a
single machine, we omit a, and m = 1 signifies a classical machine, while m = 1
signifies a batching machine.

• rj: each job j has a release date rj;

• dj: each job j has a deadline dj;

• pmtn: preemption of jobs is allowed;

• pj := p: all jobs have a common processing time p;

• d̄j := d̄: all jobs have a common deadline d̄;

• dj := d: all jobs have a common due date d;

• bi: the maximum batch size on machine i is bi;

• b: the maximum batch size on all machines is b;

• F := k: the number of families is a constant k;

• nf := n
F

: all families have the same number of jobs n
F

;

• sifg: there are general family setup times;

• sfg: there are machine-independent family setup times;

• sif : there are sequence-independent family setup times;

• sf : there are machine- and sequence-independent family setup times;

• sf := s: all families have a common (machine- and sequence-independent)
setup time s.

The goals that fall under the category ψ3 involve discovering a viable schedule in
which the minimization of one of the following cost functions is necessary.

• ∗: the constant cost function, which is minimized by any feasible schedule;

• Cmax = maxj=1...n{Cj}: the completion time of the last job, or the makespan;

• q
wjCj: the total (weighted) completion time of the jobs;

4

Introduction

• Lmax = maxj=1....n{Lj}: the maximum lateness of the jobs;

• q
wjUj: the (weighted) number of late jobs;

• q
wjTj: the total (weighted) tardiness of the jobs.

An illustration of the classification scheme is the instance denoted as problem
F̃2|b1 := 1, b2 := 2|Cmax , representing the minimization of makespan in a two-
machine flow shop. In this scenario, the first machine is a classical machine, while
the second is a batching machine capable of processing up to two jobs simultaneously.
Another case is represented by problem 1|sf g| q

j Cj , signifying the minimization of
the total completion time on a single (classical) machine. In this context, there are
job families and sequence-dependent family setup times. Throughout the paper, it
is assumed that all data defining a problem instance are integers.

5

Chapter 2

Family scheduling models

2.1 Single Machine

Monma and Potts investigated scheduling problems related to job families on a
single machine, considering various objective functions. Some of their algorithms
have undergone enhancements, and our review presents the most efficient algorithm
currently known. In describing these algorithms, it is helpful to represent the j-th
job of each family f (where f ranges from 1 to F) as the pair ⟨j, f⟩, where j ranges
from 1 to nf .

2.1.1 Total weighted completion time

Monma and Potts [59] demonstrate that, for the problem 1|sfg| q
j wj · Cj, there

exists an optimal schedule in which the Smith’s Weighted Processing Time (SWPT)
rule [66] is applicable within each family f . This implies that jobs are sequenced
in non-decreasing order of pj,f

wj,f
. Given that jobs within each family f are arranged

in SWPT order, a reindexing of the jobs is performed such that p1,f

w1,f
≤ . . . ≤

pnf ,f

wnf ,f
.

Ghosh [35] introduces a backward dynamic programming algorithm with job
insertion for the problem 1|sfg| q

j wj · Cj denote the minimum total weighted
completion time for schedules containing jobs {(qf , f), . . . , (nf , f)} for f = 1, . . . , F ,
where job (qg, g) is the first job to be processed, and its processing starts at time
zero. It’s important to note that qg ≤ ng, and the setup for the batch of jobs of
family g at the start of the schedule is not currently included. The initialization
for f = 1, . . . , F is defined as G{n1 + 1, . . . , nF + 1; f} = 0. The recursive formula
for qf = nf + 1, nf , . . . , 1 and f = 1, . . . , F , and g = 1, . . . , F , where qg /= ng + 1,
is expressed as

6

Family scheduling models

G{q1, . . . , qF ; g} = min
g′=1,...,F

G{q′
1, . . . , q

′
F ; g′} +

p(qg ,g) + sg,g′

FØ
f=1

nfØ
j=qf

w(j,f)

- sg,g′w(qg ,g)}

where q′
f = qf for f /= g, q′

g = qg+1, and sg,g′ = 0 if g = g′. This recursive process
selects a previous schedule into which job {qg, g} is inserted at the beginning. If the
first job of the previous schedule is from family g, then this schedule experiences a
delay of p(qg ,g). Conversely, if the first job of the previous schedule is from family
g0, where g0 /= g, then the delay is p(qg ,g) + sg,g′ , as the first job in the previous
schedule starts a batch, and the associated setup is also included. The optimal
solution value is determined by

min
g=1,...,F

G{1, . . . , 1, g} +
s0,g

FØ
f=1

nfØ
j=1

w(j,f)

 ,

where the final term in the minimization accounts for the delay resulting from
inserting the relevant setup at the beginning of the schedule.The time complexity of
the algorithm is O(nF), indicating a polynomial relationship with a fixed value of
F . For the problem 1|sfg| q

j Cj, Ahn and Hyun [2] introduce a forward dynamic
programming algorithm that involves appending jobs and also operates within
O(nF) time. Rinnooy Kan [67] demonstrates that the problem 1|sfg| q

j Cj is
unary NP-hard for any arbitrary value of F . Nevertheless, the computational
complexity status remains undetermined for 1|sf | q

j Cj and 1|sf | q
j wj · Cj

when considering arbitrary values of F . Mason and Anderson [57], along with
Crauwels et al. [24], propose branch and bound algorithms for the problem
1|sfg| q

j wj · Cj. Mason and Anderson employ a forward branching rule and
utilize dominance rules extensively to limit the size of the branch and bound
search tree.The lower bound is determined through the technique of objective
splitting. The overall weighted completion time is divided into components related
to processing times and setup times, each optimized independently. Crauwels et
al. establish a lower bound by employing Lagrangean relaxation on the machine
capacity constraints within a time-indexed formulation of the problem. Multiplier
values are obtained using either a constructive ’multiplier adjustment’ method or
subgradient optimization. In their initial algorithm, they apply a forward branching
rule incorporating various dominance rules and the multiplier adjustment method
to derive lower bounds. Their second algorithm employs a binary branching
rule that determines whether adjacent jobs (based on SWPT ordering) within
the same family should be in the same or different batches, using subgradient
optimization for lower bound computation. Computational results demonstrate

7

Family scheduling models

that the algorithm utilizing a forward branching rule and the multiplier adjustment
method effectively solves instances with up to 70 jobs and is more efficient than both
Mason and Anderson’s algorithm and the algorithm employing binary branching
and subgradient optimization.For addressing problem 1|sf | q

j Cj , several heuristics
have been proposed by Gupta [39], Williams and Wirth [80], and Ahn and Hyun
[2]. Gupta’s heuristic constructs schedules by iteratively adding jobs, with each job
chosen to minimize completion time. Williams and Wirth adopt a similar strategy
but incorporate the dominance rules of Mason and Anderson [57] to exclude certain
candidates. They also permit specific batch interchanges and backward insertions
of jobs into previous batches. Ahn and Hyun present a descent heuristic where
sub-batches are repositioned within the sequence of batches. Computational results
indicate that the heuristics by Williams and Wirth, as well as Ahn and Hyun,
produce higher-quality solutions compared to Gupta’s heuristic. An alternative
heuristic approach, inspired by Liao and Liao [55] for a more general problem,
involves gradually introducing complete families into the current schedule using
dynamic programming.Two investigations have formulated local search heuristics
for problem 1|sf | q

j wj · Cj. Mason [56] develops a genetic algorithm based on
the insight that knowledge of the first job in each batch allows constructing a
solution by ordering the batches using an extension of the SWPT rule. A binary
representation is employed, where each element denotes whether the corresponding
job initiates a batch. Standard genetic operators are applied to this representation.
Crauwels et al. [27] introduce various neighborhood search heuristics (descent,
simulated annealing, threshold accepting, and tabu search). The neighborhood
involves selecting a sub-batch at the beginning (end) of a batch and moving it to
an earlier (later) position in the sequence. Simulated annealing follows a periodic
temperature pattern, and a descent algorithm precedes each temperature change.
Threshold accepting is applied similarly to simulated annealing. In their tabu
search, sub-batches are restricted to a single job, and a limited batch reordering,
according to a SWPT rule, is implemented. Computational tests for different
problem sizes and family counts demonstrate that all local search methods produce
solutions close to the optimum. The best results are achieved with a multi-start
version of tabu search for a small number of families and Mason’s genetic algorithm
for a large number of families. Herrmann and Lee [42] propose a genetic algorithm
for problem 1|sfg, d̄j|

q
j Cj . They utilize a binary encoding of perturbations to the

original deadlines. To obtain a solution, a backward scheduling heuristic minimizes
setup time and processes longer jobs as late as possible. Since the resulting schedule
may not be feasible with respect to the original (or perturbed) deadlines, a penalty
function approach is employed to guide the solution towards feasibility.

8

Family scheduling models

2.1.2 Maximum lateness
A dynamic programming approach can be employed to tackle the challenge pre-
sented by problem 1|sfg| Lmax, utilizing similar reasoning as applied to problem
1|sfg| q

j wj ·Cj . The fundamental observation, as elucidated by Monma and Potts
[59], establishes the presence of an optimal schedule where the EDD rule of Jackson
[47] is applicable within each family f (jobs are ordered in non-decreasing fashion
based on d(j,f)). Since jobs within each family f are sequenced according to the
EDD rule, a reindexing of the jobs ensures d(1,f) ≤ . . . ≤ d(nf ,f). Ghosh and Gupta
[36] propose a backward dynamic programming algorithm with job insertion for
addressing problem 1|sfg| Lmax. Here, G(q1, . . . , qF , g) represents the minimum
value of the maximum lateness for schedules involving jobs (qf , f) . . . , (nf , f) for
f = 1, . . . , F . In this context, job (qg, g) takes precedence, commencing processing
at time zero, and the setup for the batch of jobs in family g at the schedule’s
outset is not presently taken into account.The initialization for f = 1, . . . , F is
given by G(n1 + 1, . . . , nF + 1, . . . , f) = −∞ and the recursion for qf is defined as
nf + 1, nf , . . . , 1, where f ranges from 1 to F , and similarly, g ranges from 1 to F ,
with the condition qg /= ng + 1, is

G (q1, . . . , qF , g) := min
g′=1...F

î
max

î
G (q′

1, . . . , q
′
F , g

′) + p(qg ,g) + sg,g′ , p(qg ,g) − d(qg ,g)
ïï

where q′f = qf for f /= g, q′g = qg + 1, and sg,g′ = 0 if g = g′. The optimal
solution value is then equal to ming=1...F {G(1, . . . , 1, g) + s0,g}. Bruno and Downey
[8] have demonstrated that, for any given value of F , the problem 1|sf | Lmax is
binary NP-hard, even when there are two jobs in each family or all setup times are
unitary, and there are three jobs in each family. Currently, the problem remains
open regarding unary NP-hardness. Hariri and Potts [40] propose a branch and
bound algorithm for the problem 1|sf | Lmax. They derive an initial lower bound by
neglecting setups, except for those associated with the first job in each family, and
solving the resulting problem using the EDD (Earliest Due Date) rule. This lower
bound is enhanced by a procedure that assesses whether specific families are split
into two or more batches. A binary branching rule determines whether adjacent
jobs in the same family, based on the EDD ordering, should be assigned to the
same batch or different batches. Computational outcomes indicate the algorithm’s
success in resolving scenarios involving up to approximately 60 jobs. Schutten
et al.[65] introduce a branch and bound algorithm for the problem 1|sf , rj| Lmax.
When release dates are present, there is no information available regarding the
job order within a family. An essential aspect of their algorithm involves using
dummy jobs to represent setup configurations. Rapidly computed lower bounds
are derived by relaxing setups and solving the corresponding preemptive problem,
employing a forward branching rule. Computational results demonstrate the
algorithm’s effectiveness in solving instances with up to about 40 jobs. Hariri and

9

Family scheduling models

Potts[40], Zdrzařka [83], and Woeginger [81] have devised approximation algorithms
for problem 1|sf | Lmax assuming that due dates are non-positive to guarantee a
positive objective function. In Hariri and Potts’ algorithm, two schedules are
considered: the first assigns all jobs of a family to a single batch, and the second
splits each family into at most two batches based on due dates. The algorithm has
a time complexity of O(n log n) and produces a schedule with maximum lateness
no more than 5/3 times the optimal value. Zdrzařka’s algorithm provides a better
performance guarantee at the cost of additional computation. The algorithm starts
with a schedule where each batch contains all jobs from a family and allows each
family to be split into at most two batches. In each iteration, a job is moved
from the first batch of its family to the second batch. The algorithm has a time
complexity of O(n2) and generates a schedule with maximum lateness no more
than 3/2 times the optimal value. These performance bounds of 5/3 and 3/2 are
proven to be tight. Zdrzařka notes that his algorithm can be adapted to problem
1|sf , rj| Lmax to produce a schedule with maximum lateness no more than 5/2
times the optimal value. Woeginger develops a polynomial-time approximation
scheme, which is a family of approximation algorithms denoted as Aϵ with the
property that for any ϵ > 0, algorithm Aϵ generates a schedule with maximum
lateness no more than 1 + ϵ times the optimal value. The time requirement of the
scheme is polynomial in the size of the input but may be exponential in 1/ϵ.

2.1.3 Weighted number of late jobs
Monma and Potts [59] have devised a forward dynamic programming algorithm
with job appending for problem 1|sfg| q

j wj · Uj . This algorithm leverages the
property that there exists an optimal schedule where the early jobs within each
family are sequenced in Earliest Due Date (EDD) order. Assuming the jobs
within each family f are reindexed so that d(1,f) ≤ . . . ≤ d(nf ,f), the algorithm
aims to minimize the makespan for schedules containing early jobs selected from
(1, f) . . . , (qf , f), for each family f (where qf is the number of early jobs selected
from the family), and u denotes the number of late jobs. Additionally, the last
(early) job in the schedule belongs to family g, and it’s worth noting that qg ≥ 1.
Problem 1|sfg| q

j wj · Uj is considered quasi-polynomial solvable for a fixed value
of F . This conclusion stems from the observation that the dynamic programming
algorithm mentioned earlier generalizes to minimize the weighted number of late
jobs in O(nFW) time, where W = qn

j=1 wj. Another dynamic programming
algorithm offers an alternative approach, employing the completion time of the
schedule of early jobs as a state variable, and expressing the weighted number of late
jobs as a function value. This alternative algorithm has a pseudopolynomial time
complexity of O(nF min{dmax, P}), where dmax = maxj=1....n dj and P = qn

j=1 pj +qF
g=1 ng maxf=0....F sf,g. The NP-hardness in the binary sense for the problem

10

Family scheduling models

1|sf | q
j Uj with an arbitrary F can be inferred from the analogous result established

for 1|sf | Lmax. Nevertheless, Rote and Woeginger [64] demonstrate that when all
jobs within the same family share a common due date, the problem 1|sf | q

j Uj

becomes solvable within a time complexity of O(n2) using dynamic programming.
The problems 1|sf | q

j Uj and 1|sf | q
j wj · Uj remain open concerning unary

NP-hardness. Crauwels et al.[25] introduce branch and bound algorithms designed
for addressing problem 1|sf | q

j Uj . They present two strategies for establishing
lower bounds. In the first scheme, setup times are relaxed, except for a single
setup time for each family, which is distributed among the job processing times.
The resulting problem is then solved using Moore’s algorithm [61]. The second
lower bounding scheme involves due date relaxation. By setting each due date to
be equal to dmax, the largest among all original due dates, the resulting problem
is tackled using dynamic programming. These lower bounds are integrated into
branch and bound algorithms that either employ a standard forward branching rule
or opt for ternary branching. In the ternary branching rule, each job is categorized
as either set to be late, set to be early and initiate a batch, or set to be early and
not start a batch. While forward branching allows the application of numerous
dominance rules, ternary branching offers more flexibility. Computational results,
considering various combinations of lower bounding schemes and branching rules,
indicate that the most efficient algorithm incorporates a lower bound based on
setup time relaxation and employs forward branching. Furthermore, this algorithm
proves successful in solving instances with up to approximately 50 jobs. Crauwels et
al.[26] propose enhanced versions of descent, simulated annealing, tabu search, and
a genetic algorithm as multi-start approaches for addressing problem 1|sf | q

j Uj.
These neighborhood search algorithms employ either a job or batch neighborhood.
In the job neighborhood, a job is removed from the sequence of early jobs, and an
attempt is made to insert one or more late jobs into the resulting sequence while
maintaining the early status of all jobs. The batch neighborhood is similar, but
it involves removing an entire batch, and then attempts are made to insert late
jobs. The genetic algorithm adopts a representation where two binary elements are
associated with each job, indicating whether the job is early or late, and whether
it ends a batch. To derive a corresponding schedule of early jobs, due dates are
associated with each batch of early jobs, and the batches are sequenced in Earliest
Due Date (EDD) order. If the resulting solution is infeasible, the algorithm of
Moore[61] is applied to remove the smallest number of batches. In computational
tests involving 30, 40, and 50 jobs, and 4, 6, 8, and 10 families, all heuristics
demonstrate good performance. The genetic algorithm, particularly a version that
includes a procedure aiming to enhance each solution in the final population, yields
the highest-quality solutions.

11

Family scheduling models

2.2 Parallel machines
According to observations made by Monma and Potts [59], the orderings of jobs
within each family, utilized in the development of dynamic programming algorithms
for problems such as 1|sfg| q

j wj · Cj , 1|sfg| Lmax, and 1|sfg| q
j(wj) · Uj, are

also applicable to each machine for identical parallel-machine scheduling. By
incorporating state variables to store the total setup plus processing time on each
machine, forward dynamic programming algorithms with job appending can be
formulated for problems P |sfg| q

j wj · Cj , P |sfg| Lmax, and P |sfg| q
j wj · Uj , all

of which require pseudopolynomial time for a fixed number of machines (m) and
families (F). Most NP-hardness results for scheduling an arbitrary number of
families of jobs on parallel machines are derived from the corresponding results for
classical parallel-machine scheduling. An exception is found in the case of problem
P |sf | q

j Cj, which Webster[77] demonstrates to be unary NP-hard. However,
the complexity of the corresponding problem with a fixed number of machines
remains an open question. Monma and Potts [59] demonstrate that the problem
P2|sf , pmtn| Cmax is binary NP-hard. In their subsequent work [60], they propose
an approximation algorithm for the problem P |sf , pmtn| Cmax, reminiscent of
McNaughton’s algorithm [58] for the classical scheduling problem P |pmtn| Cmax.
This algorithm has a time complexity of O(n) and produces a schedule with a
makespan no more than 2 − (1/(⌊m/2⌋) + 1) times the optimal makespan. For a
specific category of instances where the setup plus total processing time for each
single family doesn’t exceed the optimal makespan, Monma and Potts [60] and Chen
[10] demonstrate that this performance can be enhanced using an approximation
algorithm. This algorithm initially employs list scheduling for complete families
and subsequently splits families between selected pairs of machines. Specifically,
Chen’s algorithm has a time complexity of O(n log n) and generates a schedule
with makespan no more than max{3m/(2m + 1), (3m − 4)/(2m − 2)} times the
optimal makespan.

2.3 Shop problems
The classical two-machine flow shop problem, denoted as F2||Cmax, exhibits an
optimal permutation schedule where the job sequence is the same on both machines.
However, it remains an open question whether this characteristic extends to the
problem F2|sifg| Cmax. Potts and Van Wassenhove [63] point out that, in the
case of anticipatory setups, the search for an optimal permutation schedule can
be constrained to schedules where jobs within each family follow the sequencing
algorithm proposed by Johnson [48]. In such scenarios, similar arguments as those
presented in Sections 4.1.1 and 4.1.2 can be employed to develop a backward

12

Family scheduling models

dynamic programming algorithm with job insertion. This algorithm can find an
optimal permutation schedule in O(nF) time. Kleinau [50] demonstrates that prob-
lem F2|sif | Cmax, characterized by machine-dependent and sequence-independent
setup times, is binary NP-hard for both anticipatory and non-anticipatory setups.
However, the status of the problem remains open if setup times are machine inde-
pendent. Kleinau also establishes the binary NP-hardness of problem O2|sf | Cmax,
even when there are only two families. NP-hardness results for scheduling an
arbitrary number of families with various objective functions are derived from the
corresponding outcomes in classical shop scheduling. Chen et al. [11] propose two
approximation algorithms for problem F2|sif | Cmax, each with a time complexity
of O(n log n). The first algorithm assigns all jobs of a family to a single batch and
then schedules the batches, resulting in a makespan no more than 3/2 times the
optimal makespan. The second algorithm utilizes properties of the schedule created
by the first algorithm to generate another schedule by splitting each family into
at most two batches. The superior of the two schedules has a makespan no more
than 4/3 times the optimal makespan. Notably, these performance bounds of 3/2
and 4/3 are proven to be tight. Vakharia and Chang [74] and Skorin-Kapov and
Vakharia [71] present simulated annealing and tabu search techniques, respectively,
for addressing the permutation flow shop problem F |sif | Cmax. However, their
focus is specifically on schedules where each family is processed as a single batch.
Sotskov et al. [72] conduct a comparative analysis of heuristics applied to both the
permutation flow shop problems F |sif | Cmax and F |sif | Cj . Their approach involves
restricting the search to schedules that share the same batches and maintain an
identical processing order of batches on each machine. They introduce constructive
heuristics based on the successive insertion of jobs into the sequence, along with
local search methods such as simulated annealing, threshold accepting, and tabu
search. The neighborhood structure employed in their methods is similar to the
one utilized by Crauwels et al. [27] (refer to Section 4.1.1). In computational
experiments involving 40, 60, and 80 jobs, as well as 5 and 10 machines, the most
promising results are achieved using simulated annealing and tabu search, with the
former yielding slightly superior-quality solutions.

2.4 Identical jobs in each family
In this section, we consider scenarios where setups are assumed to be independent
of both sequence and machine. Additionally, each family, denoted as f , comprises
nf identical jobs, each having a processing time pf , and relevant parameters
such as deadline d̄, due date df , and weight wf for f ranging from 1 to F . For
problems 1|sf | q

j wj · Cj and 1|sf | Lmax, Dobson et al. [29] and Santos [68],
respectively, demonstrate the existence of an optimal schedule where no family is

13

Family scheduling models

divided. Moreover, the batches formed from complete families of jobs are arranged
based on a generalization of the Shortest Processing Time (SWPT) rule and the
Earliest Due Date (EDD) rule, respectively. Consequently, both of these problems
can be solved within a time complexity of O(F logF). Various special cases of
problem 1|sf | q

j wj · Uj have been investigated, leading to the development of
polynomial time algorithms and NP-hardness proofs. Specifically, the problem
is established as binary NP-hard in instances where 1|sf , pj = 1, dj = d| q

j Uj

and 1|sf = s, dj = d| q
j Uj [52]. Another NP-hardness result is demonstrated

for the case 1|sf = s, pj = 1, dj = d| q
j wj · Cj [51]. Furthermore, algorithms

with a time complexity of O(F logF), inspired by Moore’s algorithm [61], are
applicable to certain scenarios. These include cases such as 1|sf = s, dj = d| q

j Uj

[52], 1|sf , nf = n/F, dj = d| q
j Uj, and 1|sf = s, nf = n/F, pj = p| q

j Uj

[16]. Additionally, the problem 1|sf = s, nf = n/F, pj = p, dj = d| q
j wj · Uj

is proven to be solvable in O(n log n) time. However, the complexity of special
cases with general due dates remains an open question. Kovalyov et al.[52] and
Cheng and Kovalyov [16] have proposed pseudopolynomial dynamic programming
algorithms for addressing problems 1|sf | q

j Uj and 1|sf | q
j wj · Uj, respectively.

These algorithms introduce rounding techniques that enable the derivation of
a fully polynomial approximation scheme. This scheme comprises a family of
approximation algorithms denoted as Aε. The defining characteristic of such
algorithms is that, for any ε > 0, the algorithm Aε produces a schedule with
a weighted number of late jobs no more than 1 + ε times the optimal value.
Moreover, the time requirement of these algorithms is polynomial in both n and
1/ε. Building upon the framework established by Kovalyov et al.[52] and enhanced
by an idea introduced by Hassin [41], algorithm Aε, as part of the approximation
scheme, demonstrates a time complexity of O(n3/ε+n3 log log n). As a notable by-
product of their analysis, Kovalyov et al.[52] also derive an O(n log n) algorithm for
minimizing the maximum number of late jobs within each family. Cheng and Chen
[12] and Webster [77] have independently demonstrated that problems involving
machines with varying setup times and processing times, specifically denoted as
P2|sf , pj = p| q

j Cj, and their corresponding simplified version P |sf | q
j Cj, are

binary and unary NP-hard, respectively. Notably, the binary NP-hardness result
for P2|sf , pj = p| q

j Cj does not directly imply NP-hardness for the analogous
problem without the constraint of identical jobs[78], given the differences in input
size. As discussed in Section 4.2, the computational complexity of P2|sf | q

j Cj

remains an unresolved question. Brucker et al. [7] investigate the computational
complexity of various special cases within the unrelated parallel-machine problem
R|sj, d̄j|, where the objective is to find a schedule that satisfies the given deadlines.
Specifically, they establish that problem P2|sf = 1, pj = 1, d̄j = d̄| is binary
NP-hard. Additionally, problems P |sf = 1, pj = 1, d̄j = d̄| and Q|sf = 1, nf =
n/F, pj = 1, d̄j = 1| are proven to be unary NP-hard. The latter problem is

14

Family scheduling models

shown to be solvable in O(m ·m!) time through a modification of McNaughton’s
wrap-around rule [58], making it polynomially solvable for a fixed number of
machines (m). Furthermore, this algorithm’s polynomial solvability extends to
problem Qm|sf = s, nf = n/F, pj = p, d̄j = d̄| when s is a multiple of p. For
situations involving identical machines, an iterative algorithm is developed with
a time complexity of O(logm). In each iteration of this algorithm, the maximum
possible batch size is calculated, and batches of this size are assigned to all machines.
The study by Kovalyov and Shafransky [53] establishes that, in the absence of a
common deadline, these problems with an arbitrary number of machines become
unary NP-hard, even for the specific case of scheduling families with one machine,
unit processing time, and a deadline for each job. It is noteworthy that, when
scheduling families of identical jobs on parallel machines, the NP-hardness of a
special case implies the NP-hardness of the corresponding general problem, whether
binary or unary. Consequently, NP-hardness results for problems with identical
parallel machines and a zero cost function extend to analogous results for unrelated
parallel-machine problems and other introduced objective functions discussed in
Section 2, respectively. The outstanding questions pertain to the complexities of
specific problems when family sizes are fixed (sf = s) and processing times are
uniform (pj = p), with the condition that s is not a multiple of p. For the problem
R|sf , d̄j| , Brucker et al. [7] introduce a set of approximation algorithms denoted as
DPϵ. For any ϵ > 0 , the algorithm DPϵ generates a schedule where Cj ≤ (1 + ϵ)dj

for j = 1; . . . ;n, provided that a feasible schedule exists. The time complexity of
algorithm DPϵ is O(F 2m+1/ϵ2m) O(F 2m+1/ϵ2m)

15

Chapter 3

Batch availability

Batch availability, whether on a single machine or parallel machines, entails the
simultaneous completion of all jobs within the same batch. This occurs when
the last job in the batch finishes its processing. In the context of shop problems,
batch availability extends to the point where all jobs within a batch are ready for
processing on the next machine or are deemed complete if no further operations are
required, aligning with the batch’s processing completion. In both scenarios, jobs
within a batch undergo sequential processing, resulting in the batch’s processing
time being the sum of the individual processing times of its constituent jobs or
operations. The discussion of single-machine, parallel-machine, and shop problems is
presented in distinct subsections. It is worth noting that the majority of complexity
results pertain to scenarios involving a single family.

3.1 Single machine

Firstly, we examine the problem 1|sf = s, F = 1| q
j Cj . Coffoman et al. [23] have

demonstrated that there exists an optimal schedule in which jobs are arranged in
Shortest Processing Time (SPT) order. To facilitate further discussion, we redefine
the job indices such that p1 ≤ . . . ≤ pn. Coffman et al. [23] have introduced
a backward dynamic programming algorithm with batch insertion specifically
designed for addressing problem 1|sf = s, F = 1| q

j Cj. Let Gj represent the
minimum total completion time for schedules that include jobs from j to n, where
the schedule initiates at time zero with a setup time, followed by the processing of
a batch containing job j. The initialization is

Gn+1 = 0;

16

Batch availability

and the recursion for j = n, n− 1, . . . , 1 is

Gj = min
k=j+1,...,n+1

{Gk + (n− j + 1)
s+

k−1Ø
h=j

ph

}

The minimization process involves selecting a batch {j, . . . , k − 1} for insertion at
the beginning of the preceding schedule that contains jobs from k to n. The batch
{j, . . . , k − 1} completes at time s + qk−1

h=j ph, and the processing of the batches
containing jobs from k to n is delayed by s + qk−1

h=j ph due to the insertion. The
optimal solution value is then determined by G1. In the most straightforward
implementation, the algorithm has a time complexity of O(n2). Coffman et al.
[23] offer an implementation that solves the aforementioned recursion in O(n)
time, given that the jobs have been reindexed. Firstly, we examine the problem
1|sf = s, F = 1| q

j Cj. Coffman et al. [23] have demonstrated that there
exists an optimal schedule in which jobs are arranged in Shortest Processing Time
(SPT) order. To facilitate further discussion, we redefine the job indices such
that p1 ≤ . . . ≤ pn. Coffman et al. [23] have introduced a backward dynamic
programming algorithm with batch insertion specifically designed for addressing
problem 1|sf = s, F = 1| q

j Cj. Let Gj represent the minimum total completion
time for schedules that include jobs from j to n, where the schedule initiates at
time zero with a setup time, followed by the processing of a batch containing
job j. Hence, the problem 1|sf = s, F = 1| q

j Cj can be solved within a time
complexity of O(n log n). In this more efficient approach, a queue is employed to
store candidate jobs, denoted as k, that can initiate the second batch. Here, the
first batch begins with job j, where j ranges from n to 1. Through the derivation
of various properties of the dynamic program, Coffman et al. demonstrate that
the queue can be initialized and maintained in O(n) time. Alternatively, an
implementation utilizing the geometric techniques proposed by van Hoesel et al.
[75] achieves the same time complexity. Albers and Brucker [3] establish the unary
NP-hardness of the problem 1|sf = s, F = 1| q

j wj ·Cj . They further demonstrate
that, given a job sequence, a dynamic programming approach, as described above,
can solve the problem 1|sf = s, F = 1| q

j wj · Cj in O(n) time. Additionally,
Albers and Brucker prove that when the problem 1|sf = s, F = 1, pj = p| q

j wj ·Cj

involves an optimal schedule where jobs are sequenced in non-increasing order of
weights, the problem is solvable in O(n log n) time. Cheng et al.[14] address the
problem 1|sf | q

j Cj with an arbitrary number of families. They establish the
existence of an optimal schedule in which the jobs within each family are sequenced
in Shortest Processing Time (SPT) order. Drawing on concepts from Monma and
Potts [59] and Coffman et al.[23], Cheng et al.[14] propose a backward dynamic
programming algorithm with batch insertion, which has a time complexity of O(nF)
and is polynomial for a fixed F . For the problem 1|sf = s, F = 1, pj = p| q

j Cj

17

Batch availability

where all jobs are identical, a solution can be achieved in O(n) time using the
dynamic programming algorithm mentioned earlier. However, it is important to
note that this is not a polynomial algorithm since the input is solely comprised of
n, s, and p. Santos[68] and Santos and Magazine [69] offer a crucial contribution to
the development of a polynomial algorithm by analyzing a continuous relaxation
where batch sizes are not restricted to integers. In particular, they demonstrate
that the optimal number of batches is given by B = ⌈

ñ
1
4 + 2np

s
− 1

2⌉, and optimal
batch sizes are n/B + s(B + 1)/(2p) − ks/ p for k = 1, . . . , B. Shallcross [70]
presents an O(log p log(np)) algorithm for the discrete problem. However there are
similarities between the solutions for integer and continuous cases, the algorithm is
intricate. Hurink [46] conducts a comparison of tabu search algorithms applied to
problem 1|sf | q

j wj · Cj. In his approach, solutions are represented as sequences,
and he employs the O(n) dynamic programming algorithm to partition the sequence
into batches. Preliminary findings suggest that this representation outperforms an
alternative representation, where solutions are depicted as a set of batches sequenced
using a generalized version of the Shortest Weighted Processing Time (SWPT)
rule. The study involves evaluating the transpose neighborhood against a restricted
version of the insert or shift neighborhood. In the transpose neighborhood, two
adjacent jobs are exchanged, and Hurink develops an O(n) algorithm to identify the
best transpose neighbor. For the restricted insert neighborhood, a job is extracted
from its current position and reinserted into a new position, ensuring that the
absolute difference in positions is at most 3, 5, or 10. Computational results, based
on instances with up to 200 jobs, indicate that performance differences between the
two methods are minimal. Furthermore, the most superior solutions are obtained
through a hybrid approach that alternates between the two neighborhoods.Now,
let’s explore the objective function related to the maximum lateness. In the context
of problem 1|sf = s, F = 1| Lmax, Webster and Baker [79] establish the existence of
an optimal schedule in which jobs are arranged in Earliest Due Date (EDD) order.
To facilitate further discussion, we redefine the job indices so that d1 ≤ . . . ≤ dn.
Webster and Baker [79] introduce a backward dynamic programming algorithm
with batch insertion tailored for addressing problem 1|sf = s, F = 1| Lmax. In
this algorithm, Gj represents the minimum value of the maximum lateness for
schedules that include jobs from j to n, with the schedule commencing at time
zero, involving a setup time followed by the processing of a batch containing job j.
The initialization is Gn+1 = −∞ and the recursion for j = n, n− 1, . . . , 1 is

Gj = min
k=j+1,...,n+1

max

Gk + s+
k−1Ø
h=j

ph, s+
k−1Ø
h=j

ph − dj

 .

The optimal value of the solution is given by G1. The algorithm operates with
a time complexity of O(n2). For the problem 1|sf = s, F = 1, d̄j|, where the

18

Batch availability

objective is to find a feasible schedule respecting specified deadlines, Hochbaum
and Landy [43] propose a more efficient algorithm. The jobs are assumed to be
indexed in Earliest Due Date (EDD) order based on the deadlines. The algorithm
works as follows: The first batch comprises jobs 1 through j, where j is the
maximum number of jobs that can fit in the first batch without surpassing the
deadline d̄1. Similarly, each subsequent batch includes the maximum number of
jobs with the smallest indices (excluding those in the preceding batches) that
can be scheduled to complete by time d̄j+1. This process repeats until job n is
included in some batch, resulting in a feasible schedule, or until a job cannot be
included in a batch without violating the deadline for that batch, indicating that
no feasible schedule exists. The algorithm involves O(n log n) time for reindexing
the jobs and O(n) time for constructing the batches. We will now explore the
objective function related to the (weighted) number of late jobs. In the context of
problem 1|sf = s, F = 1| q

j wj · Uj, Hochbaum and Landy [43] demonstrate the
existence of an optimal schedule where early jobs are arranged in Earliest Due Date
(EDD) order, followed by any late jobs. For clarity, we redefine the job indices
so that d1 ≤ . . . ≤ dn. Brucker and Kovalyov [6] introduce a forward dynamic
programming algorithm with job appending specifically designed for addressing
problem 1|sf = s, F = 1| q

j Uj denote the minimum makespan for schedules
containing early jobs selected from jobs 1 to j, where u is the number of late jobs,
and h is the first job in the final batch of early jobs. If there are no early jobs in the
schedule, then we set h = 0, and define d0 = 0. The initialization is G0(0, 0) = 0,
and the recursion for j = 1, . . . , n, u = 0, 1, . . . , j, and h = 0, 1, . . . , j is

Gj(u, h) =

Gj−1(u− 1, h), if h < j;
Gj−1(u, h) + pj, if h < j and Gj−1(u, h) + pj ≤ dh;
minh′∈Hj(u) Gj−1(u, h′) + s+ pj, if h = j;
∞, otherwise.

The three components in the minimization correspond to scenarios where job j
is late, job j is early but doesn’t initiate a batch, and job j is early and starts a
batch, respectively. The minimum number of late jobs is determined by finding
the smallest u for which minh=0,1,...,n Gn(u, h) < ∞.

The algorithm’s time complexity is O(n3). For the problem 1|sf = s, F =
1| q

j wj · Uj, it is pseudopolynomially solvable in O(n2W) time, where W =qn
j=1 wj, through a straightforward extension of the aforementioned algorithm.

An alternative backward dynamic programming algorithm with job insertion is
proposed by Hochbaum and Landy [43], requiring O(n2 min{dmax, P}) time, where
dmax = maxj=1,...,n dj and P = ns + qn

j=1 pj. For the problem 1|sf = s, F =
1, pj = p| q

j wj ·Uj , this algorithm can be implemented in O(n4) time. Employing
standard rounding techniques, the dynamic programming algorithm by Brucker

19

Batch availability

and Kovalyov [6] results in a fully polynomial approximation scheme: the time
complexity to generate a schedule with the weighted number of late jobs, no more
than 1 + ϵ times the optimal value, is O(n3/ϵ+ n3 log log n).

3.2 Parallel machines
Two notable investigations focus on parallel-machine scheduling when batches are
available. Cheng et al. [13] developed a backward dynamic programming algorithm
with batch insertion for the problem P |sf = s, F = 1| q

j Cj. This algorithm
is built upon the concepts introduced by Coman et al. [23], as discussed in the
preceding subsection. It leverages the characteristics of an optimal schedule, where
jobs on each machine are sequenced according to Shortest Processing Time (SPT),
and each batch consists of adjacent jobs in the SPT order. The algorithm’s time
complexity is polynomial, specifically O(mnm+1), making it efficient for a fixed
number of machines (m). Cheng et al. also demonstrate that when there is a
common processing time, the problem P |sf = s, F = 1, pj = p| q

j Cj reduces to
a single-machine case. As a result, it becomes solvable in polynomial time using
Shallcross’s algorithm [70]. Another problem, R|sf = s, F = 1, d̄j|, is investigated by
Cheng and Kovalyov [18]. They introduce a dynamic programming algorithm along
with a family of approximation algorithms denoted by Aϵ. For any ϵ > 0, algorithm
Aϵ constructs a schedule in which the completion time of each job is at most (1 + ϵ)
times the value of its deadline, provided there exists a feasible schedule respecting
the deadlines. The time complexity of Aϵ is O(n2m+1/ϵm). Cheng and Kovalyov also
explore special cases, most of which are NP-hard, especially when the corresponding
classical parallel-machine problems with s = 0 are NP-hard. Additionally, problem
P |sf = s, F = 1, pj = p, d̄j| is proven to be unary NP-complete, in contrast to its
classical counterpart with s = 0, which is polynomially solvable. They present
a dynamic programming algorithm for this problem with a time complexity of
O(m2n2m+1). The exceptional case of problem P |sf = s, F = 1, pj = p, d̄j| for
which s = p is solvable in O(n log n) time.

3.3 Shop problems
Glass, Potts, and Strusevich [37] present complexity results and approximation
algorithms for problems involving two parallel machines. Specifically, the problem
F2|sif , F = 1| Cmax is proven to be unary NP-hard. In this context, an optimal
solution exists with identical batches on each machine, ensuring consistency. The
authors also introduce an approximation algorithm for problem F2|sif , F = 1| Cmax,
which produces a schedule with a makespan that is at most 4

3 times the optimal
value. It’s noteworthy that this bound is considered tight. The problem O2|sif , F =

20

Batch availability

1| Cmax is proven to be NP-hard in binary and has an optimal solution featuring
one, two, or three consistent batches on each machine. By establishing a close
connection between problem O2|sif , F = 1| Cmax and the task of minimizing
makespan on two and three identical parallel machines, the authors demonstrate that
O2|sif , F = 1| Cmax is solvable in pseudopolynomial time. Furthermore, algorithms
designed to approximate the scheduling of two and three identical parallel machines,
aiming to minimize the makespan, offer corresponding performance assurances
for the problem O2|sif , F = 1| Cmax. Cheng and Wang [21] investigate a specific
instance of the problem F2|sif , F = 1| Cmax, where the setup time on the first
machine is zero, resulting in a batch for each job’s initial operation. This problem
is established as being NP-hard for both anticipatory and non-anticipatory setups,
with some polynomially solvable special cases being outlined. Cheng et al. [20]
investigate the problem F2|sif , F = 1| Cmax under the condition of non-anticipatory
setups, with the additional constraint that batches must be consistent. The study
establishes the NP-hardness of the problem, even when each job’s processing time
on the first machine does not exceed that on the second machine (or vice versa).
The problem becomes solvable in O(n2) time if all jobs share a common processing
time on the first machine or the second machine, as demonstrated by algorithms
proposed by Cheng et al. [20]. Additionally, for cases where all operations have a
common processing time, an algorithm by Tanaev et al. [73] achieves a solution
in O (

√
n) time. However, it’s worth noting that the latter time complexity is not

polynomial, leaving the problem open when considering a common processing time
for all operations. Tanaev et al. [73] extend these results to the scenario where
setups are anticipatory. The methods developed by Sotskov et al. [72], as explained
in Section 4.3 for the permutation flow shop problem F |sif | q

j Cj, are employed
with slight modifications in the analogous problems involving batch availability and
mixed availability (where some machines follow job availability, and others follow
batch availability). The outcomes are comparable to those observed in the case of
job availability, with a slight preference for tabu search over simulated annealing
specifically in scenarios involving batch availability.

3.4 Batch delivery scheduling
In this section, we consider a scenario where there is a single group of jobs, and a
setup time is necessary before processing each batch. All jobs within a batch are
released when the last job in that batch finishes processing. For any given schedule
where job j is part of batch k, we define Hj = Dk − Cj, where Dk represents
the completion time of batch k. This definition characterizes the holding time,
representing the duration during which job j awaits delivery. Cheng et al. [15]
demonstrate that problems involving single- and parallel-machine scheduling with

21

Batch availability

criteria based on job holding times Hj for j = 1, . . . , n are equivalent to traditional
parallel-machine scheduling problems. Consequently, existing algorithms designed
for parallel-machine scheduling can be appropriately adapted for these scenarios.
Additionally, Cheng et al. [19] establish that the single-machine problem, aiming to
minimize qn

j=1 wjHj + 1
B

qB
k=1 Dk, where B is the unknown number of batches, is

unary NP-hard. However, it becomes solvable in O(n2) time when all jobs share a
common weight or a common processing time. Yang [82] examines single-machine
problems where batch delivery dates, denoted as D1 ≤ . . . ≤ DB, are specified, with
DB = qn

j=1 pj . The objective is to allocate jobs to B batches in a way that ensures
batch k is completed no later than time Dk for k = 1, . . . , B. The optimization goal
is either to minimize the total weighted holding time qn

j=1 wjHj or the maximum
weighted holding time maxj=1,...,n{wjHj}. Yang proves that these problems are
unary NP-hard and become binary NP-hard when B = 2 and all weights are
equal. However, in the case of a common processing time, he demonstrates that
the problems can be solved in O(n log n) time.

3.5 Multi-operations job
This section explores the model of a single-machine, multi-operation job, where
each job (denoted as j) comprises a single operation belonging to a family (indexed
as f) within the range of f from 1 to F . Each operation has a processing time
denoted as pjf , although some operations within this context may be absent. The
completion time of a job is defined as the moment when the processing of its final
operation concludes. As highlighted by Julien and Magazine [49], this model finds
application when a job includes multiple orders that require simultaneous delivery
to the customer. Additionally, Gerodimos et al. [32] describe other scenarios in
which distinct components are manufactured for subsequent assembly into a final
product or when ingredients are produced for subsequent blending into a final
product. In this scenario, we assume that the time required for the final assembly or
blending stage is negligible. Consequently, the problem is simplified to scheduling
a single machine. To accommodate multi-operation jobs, we modify our problem
classification scheme, as outlined in Section 2, by introducing the entry "multi-op"
in w2 to signify the presence of jobs with multiple operations. Gerodimos et al. [34]
present complexity results for various single-machine multi-operation job problems.
They highlight an equivalence between the problem 1|sf ,multi − op| Lmax and
the single-operation problem 1|sf | Lmax. In the latter, operations are treated
as jobs, and each operation is assigned the due date of the corresponding job.
Using the outcomes discussed in Section 4.1.2, this correspondence demonstrates
that the problem 1|sf ,multi − op| Lmax is proven to be binary NP-hard for any
arbitrary F , as established by Bruno and Downey [8]. However, it can be solved

22

Batch availability

in O(nF) time utilizing the dynamic programming algorithm developed by Ghosh
and Gupta [36]. Additionally, Gerodimos et al. illustrate that the problem
1|sf = s,multi − op| q

j Uj is binary NP-hard, even when there are only two
families involved. Furthermore, the problem 1|sf = 1,multi− op| q

j Uj is unary
NP-hard, even when all operations (except those that are missing) have a processing
time of one unit. However, for a fixed value of F , a backward dynamic programming
algorithm efficiently solves problem 1|sf = 1,multi− op| q

j wj · Uj time, where
dmax is the largest due date. The crucial observation lies in scheduling the final
operation of a job, after which the remaining operations are grouped in a sub-batch
awaiting scheduling. It suffices to store the processing time of such sub-batches as
state variables. In a specific scenario of problem 1|sf ,multi− op| q

j Cj , where the
processing times of operations between families align harmoniously (there exists
a job indexing such thatp1,f < . . . < pn,f for f = 1, . . . , F), a similar dynamic
programming algorithm yields a solution in O(nF) time.However, the computational
complexity of the general instance of the problem 1|sf ,multi− op| q

j Cj remains
unknown. Coffman et al. [22] demonstrate that the two-operation problem 1|sf =
s,multi − op| q

j Cj can be solved in O(np) time, where p is a constant, given
that all operations in the first family share a common processing time, and all
operations in the second family share a common processing time. It’s important
to note that this time complexity is not polynomial. Gerodimos [31] establishes
that the previously mentioned NP-hardness results also apply when considering
batch availability. Additionally, the dynamic programming algorithms designed for
problems 1|sf ,multi− op| Lmax and 1|sf ,multi− op| q

j wj · Uj can be modified
to accommodate batch availability, albeit with a slight increase in time complexity.
Several complexity findings pertain to a distinct scenario within the two-operation
job model introduced by Baker [4]. In this particular instance, each job comprises
both a standard and a specific operation. The standard operations are grouped in
the same family, while each specific operation has its unique family. Gerodimos et
al. [33] unveil several inherent structural characteristics that lend themselves to the
development of dynamic programming algorithms. Specifically, for a special case of
problem 1|sf ,multi− op| q

j Cj where the processing times of the two operations
align harmoniously, they propose a backward dynamic programming algorithm
with a time complexity of O(n2)—an improvement over Vickson et al.’s [76] O(n3)
algorithm. A similar algorithm efficiently addresses problem 1|sf ,multi−op| Lmax

within O(n2) time. Additionally, Gerodimos et al. [33] demonstrate that problem
1|sf ,multi − op| q

j Uj is NP-hard in a binary sense but can be solved by a
forward dynamic programming algorithm within O(n2dmax) time. Moreover, the
specific instance of problem 1|sf ,multi−op| q

j Uj , where each standard operation
shares a common processing time, is solvable in polynomial time, and problem
1|sf ,multi−op|

q
j wj ·Uj can be solved in pseudo-polynomial time. In the presence

of batch availability, Gerodimos et al.[32] demonstrate that an optimal schedule

23

Batch availability

exists where the standard operation of any job precedes its specific operation, a
condition not applicable under job availability. For problem 1|sf ,multi−op| q

j Cj

under batch availability, assuming the mentioned agreeability, an algorithm by
Coffman et al.[23] with a time complexity of O(n log n) surpasses a previous
O(n2) algorithm by Baker. The findings of Gerodimos et al.[32] indicate that
the complexity results mentioned earlier for problems 1|sf ,multi− op| Lmax and
1|sf ,multi− op| q

j wj · Uj under job availability also extend to batch availability,
although the algorithms and proofs differ.

24

Chapter 4

Batching machine models

A batching machine, also known as a batch processing machine, is a device designed
to process multiple jobs simultaneously, with a key scheduling criterion being that
the completion times of jobs should not decrease. Jobs that are processed together
are grouped into a batch. More specifically, the focus is on the burn-in model,
where the processing time of a batch is determined by the maximum processing
time among the jobs assigned to it. All jobs within the same batch commence and
conclude simultaneously, as the completion time of an individual job aligns with the
completion time of the batch to which it belongs. The motivation behind this model
stems from the challenge of scheduling burn-in operations in the manufacturing of
large-scale integrated circuits.

Webster and Baker [85] provide an overview of algorithms and complexity results
associated with scheduling batch processing machines. They categorize three types
of models: the burn-in model, a model where the processing time of a batch is
the sum of the processing times of its constituent jobs , and a model where the
processing time of a batch remains constant, independent of the jobs it contains .

The analysis delves into two variations of the burn-in model: the unbounded
model, where b is greater than or equal to n, allowing for an effectively unlimited
number of jobs to be processed in the same batch; and the bounded model,
where b is a constant smaller than n, imposing a restrictive upper limit. The
unbounded model is applicable, for instance, in scenarios where compositions need
to undergo hardening in kilns, and the kiln is sufficiently large to accommodate
varying batch sizes without constraints. It is assumed throughout that both jobs
and the machine are available from time zero onwards, or equivalently, jobs have
equal release dates. Notably, when b equals 1, it corresponds to the classical
single-machine scheduling model, where the machine can handle only one job
at a time. Consequently, the bounded model introduces challenges that are at
least as difficult as their traditional counterparts. For the unbounded model,
a classification of optimal schedules is provided, leading to a versatile dynamic

25

Batching machine models

programming algorithm aimed at minimizing any regular cost function qn
j=1 fj.

This algorithm has a time complexity of O(n2P) and a space complexity of O(nP),
where P represents the sum of job processing times. The identified classification
serves as the foundation for polynomial dynamic programming algorithms tailored
to specific cost functions. Specifically, an algorithm with a time complexity of
O(n3) is presented for minimizing the number of tardy jobs qn

j=1 Uj, an algorithm
with O(n log n) time complexity for minimizing the total weighted completion
time qn

j=1 wjCj, and an algorithm with O(n2) time complexity for minimizing
the maximum lateness Lmax. The latter algorithm can be utilized to formulate a
polynomial algorithm for minimizing the maximum cost fmax. Additionally, it is
demonstrated that minimizing the weighted number of tardy jobs qn

j=1 wjUj and
the total weighted tardiness qn

j=1 wjTj are NP-hard problems.
As for the bounded model, Lee et al.[86] and Uzsoy [87] present polynomial

algorithms to minimize the number of tardy jobs qn
j=1 Uj and the maximum lateness

Lmax under specific assumptions regarding the relationship between processing
times, job release dates, and due dates. Minimizing the total completion timeqn

j=1 Cj is acknowledged as the most challenging problem in the bounded setting.
Chandru et al.[88,89] propose heuristics, a branch-and-bound algorithm, and an
O(m3bm+1) time dynamic programming algorithm for the case of m different job
processing times (m ≤ n). Hochbaum and Landy[90] introduce a more efficient
algorithm with a time complexity of O(m23m).

It is proven that minimizing the total completion time qn
j=1 Cj is solvable

in polynomial time for a fixed b, where b > 1, by devising an O(nb(b−1)) time
dynamic programming algorithm for its solution. The special case where b = 1
corresponds to a classical scheduling problem solvable in O(n log n) time. For the
scenario with m different processing times, a more efficient dynamic programming
algorithm than that of Hochbaum and Landy is presented, requiring O(b2m22m)
time. Moreover, we demonstrate that alternative criteria lead to problems that
are NP-hard. However, there are two noteworthy exceptions: the minimization of
makespan Cmax can be solved in time min{O(n log n), O

1
n2

b

2
}, while minimizing

the total completion time qn
j=1 Cj for arbitrary b and minimizing the total weighted

completion time qn
j=1 wjCj for both fixed and arbitrary b remain open problems.

In conclusion, we present a polynomial algorithm for minimizing any regular cost
function, specifically designed for the case where the number of batches is fixed.
Table 4.1 provides a summary of our key findings.

26

Batching machine models

Table 4.1: Overview of time complexities for problems with equal release dates

Obj. Function Unbounded (b ≥ n) Bounded (b = 1) Bounded (b ≥ 2)

fmax Polynomial O(n2) Unary NP-hard
Cmax O(n) O(n) min{O(n log n), O

1
n2

b

2
}

Lmax O(n2) O(n log n) Unary NP-hardqn
j=1 fj O(n2P) Unary NP-hard Unary NP-hardqn
j=1 Cj O(n log n) O(n log n) O(nb(b−1))qn

j=1 wjCj O(n3) O(n log n) Openqn
j=1 Uj O(n3) O(n log n) Unary NP-hardqn

j=1 wjUj O(n2P) O(nP) Unary NP-hardqn
j=1 Tj O(n2P) O(n4P) Unary NP-hardqn

j=1 wjTj O(n2P) Unary NP-hard Unary NP-hard

4.1 The unbounded model
In this section, we make the assumption that the batching machine has a capacity
greater than or equal to the total number of jobs, denoted by b ≥ n. This implies
that the batching machine is capable of simultaneously processing any number of
jobs. It’s important to note that minimizing the makespan becomes a straight-
forward task in this scenario, as it can be achieved by placing all jobs in a single
batch (B1). The minimum makespan, denoted as Cmax, is then determined by the
maximum processing time among the jobs, represented as p(B1) = max1≤j≤n{pj}.

For the remainder of this section, we consistently assume that the jobs have
been re-ordered based on the shortest processing time (SPT) rule, resulting in a
sequence where p1 ≤ . . . ≤ pn.

4.1.1 Minimizing a regular minsum function
In this section, we formalize the previously outlined generic forward dynamic
programming algorithm with batch enumeration. This algorithm is designed for
the task of minimizing any arbitrary regular minsum objective function

nØ
j=1

fj.

We demonstrate that the solution to this problem can be achieved in O(n2P) time
and O(nP) space, where P = qn

j=1 pj. Let Fj(t) represent the minimum objective
value for SPT-batch schedules that include jobs J1, . . . , Jj, given the condition
that the last batch completes at time t.Considering Fj(t) and any corresponding

27

Batching machine models

SPT-batch schedule, batch {Ji+1, . . . , Jj} (where 0 ≤ i ≤ j) appears in the last
position.

Now, we introduce our dynamic programming recursion. The initialization is
defined as follows:

F0(t) =
0 if t = 0

∞ otherwise

For j = 1, . . . , n and t = pj, . . . ,
qj

k=1 pk, the recursion is given by:

Fj(t) = min
0≤i≤j−1

Fi(t− pj) +
jØ

k=i+1
fk(t)

The optimal solution value is equal to minpn≤t≤P {Fn(t)}, and the correspond-

ing optimal schedule can be determined through backtracking. To enhance the
algorithm’s efficiency, the partial sums qj

k=1 fk(t) are precomputed and stored
for j = 1, . . . , n and t = pj, . . . ,

qj
k=1 pk during a preprocessing step that requires

O(nP) time. Subsequently, each application of the recursion equation necessitates
O(n) time. Therefore, the dynamic algorithm requires O(n2P) time and O(nP)
space.

Woeginger [91] establishes that dynamic programming algorithms with a specific
structure inherently lead to a fully polynomial approximation scheme. It is worth
noting that our dynamic programming algorithm can be easily transformed into a
form that possesses this structure.

4.1.2 Minimizing the number of tardy jobs
In this section, we introduce a dynamic programming algorithm with a time
complexity of O(n3) for the task of minimizing the number of tardy jobs. This
algorithm departs from the generic pseudopolynomial procedure in two significant
aspects. Firstly, the objective value serves as a state variable, and the makespan
represents the value of a state. This substitution alone leads to an algorithm with
a time complexity of O(n4). Secondly, to achieve an O(n3) time complexity, we
construct the schedule by adding individual jobs instead of entire batches, and we
fix the last job to be scheduled in the current batch.

We define a schedule for jobs J1, . . . , Jj to be in a state (j, u, k), where u ≤ j ≤ k.
This state indicates that the schedule contains exactly u tardy jobs, and the last
batch is to be expanded by including jobs Jj+1, . . . , Jk, but no others. Thus, the
goal is to create a schedule in which jobs Jj, . . . , Jk are contained in the same batch,
and this batch has a processing time pk. Let Fj(u, k) be the minimum makespan
for SPT-batch schedules in the state (j, u, k).

A schedule in state (j, u, k) with value Fj(u, k) is created by making one of the
following decisions in a previous state:

28

Batching machine models

1. Add job Jj in a way that it does not initiate the last batch. The last batch,
to which Jj is incorporated, includes job Jj−1 and has a processing time pk.
This processing time pk contributes to the makespan of the preceding state,
which is Fj−1(u, k) or Fj−1(u− 1, k) based on whether Jj is timely or tardy.
If Fj−1(u, k) ≤ dj, then we consider (j − 1, u, k) as a prior state with Jj

scheduled to be timely; if Fj−1(u− 1, k) > dj, then we regard (j − 1, u− 1, k)
as a previous state with Jj scheduled to be tardy.

2. Incorporate job Jj in a way that initiates the last batch. The preceding
batch concludes with job Jj−1, and the processing time of the new batch is pk.
After factoring in the contribution from the previous state, the makespan is
determined as Fj−1(u, j−1)+pk or Fj−1(u−1, j−1)+pk, contingent on whether
Jj is timely or tardy. If Fj−1(u, j−1)+pk ≤ dj , then we regard (j−1, u, j−1)
as a prior state with Jj scheduled to be on time; if Fj−1(u− 1; j− 1) + pk > dj ,
then we consider (j − 1, u− 1, j − 1) as a previous state with Jj scheduled to
be tardy.

We are now prepared to present the dynamic programming recursion. The initial
conditions are defined as follows:

F0(u, k) =
0 if u = 0 and k = 0

∞ otherwise

The recursion is applied for j = 1, . . . , n, u = 0, . . . , j, and k = j, . . . , n as
follows:

Fj(u, k) = min

Fj−1(u, k) if Fj−1(u, k) ≤ dj

Fj−1(u− 1, k) if Fj−1(u− 1, k) > dj

Fj−1(u, j − 1) + pk if Fj−1(u, j − 1) + pk ≤ dj

Fj−1(u− 1, j − 1) + pk if Fj−1(u− 1, j − 1) + pk > dj

∞ otherwise

The minimum number of tardy jobs is then determined by the smallest value
of u for which Fn(u, n) < ∞, and the corresponding optimal schedule can be
obtained through backtracking. It is important to note that the algorithm has a
time complexity of O(n3) and requires O(n3) space.

4.1.3 Minimizing total weighted completion time
In this section, we introduce a dynamic programming algorithm with a time com-
plexity of O(n log n) for minimizing the total weighted completion time qn

j=1 wjCj .

29

Batching machine models

Given the additive minsum objective function, we leverage the generic backward
dynamic programming algorithm.

Let Fj represent the minimum total weighted completion time for SPT-batch
schedules that include the last n − j + 1 jobs Jj, . . . , Jn. The processing of the
first batch in the schedule commences at time zero. Additionally, when a new
batch is added to the beginning of the schedule, there is a corresponding delay in
the processing of all batches. Suppose a batch {Jj, . . . , Jk−1}, with a processing
time of pk−1, is inserted at the start of a schedule for jobs Jk, . . . , Jn. The total
weighted completion time of jobs Jk, . . . , Jn increases by pk−1

qn
i=j wi, while the

total weighted completion time for jobs Jj, . . . , Jk−1 is pk−1
qk−1

i=j wi. Thus, the
overall increase in total weighted completion time is pk−1

qn
i=j wi.

The dynamic programming recursion is initiated with Fn+1 = 0, and for j =
n, n− 1, . . . , 1, the recursion is defined as:

Fj = min
j≤k≤n+1

Fk + pk−1

nØ
i=j

wi

The optimal solution value is then equal to F1, and the corresponding optimal

schedule is determined through backtracking. In the standard implementation, the
algorithm requires O(n2) time and O(n) space, provided we compute and store the
values qn

i=j wi for j = 1, . . . , n in a preprocessing step. However, leveraging the
structural characteristics of our dynamic program, which permit the application of
geometric techniques, the time complexity can be reduced to O(n log n).

4.1.4 Minimizing maximum lateness and maximum cost
In this section, we introduce a dynamic programming algorithm with a time
complexity of O(n2) to minimize the maximum lateness Lmax. This algorithm
functions as a subroutine for a polynomial algorithm aimed at minimizing the
maximum cost fmax. Since Lmax is characterized as an incremental minmax objective
function, we utilize a backward recursion of the type .

Let Fj denote the minimum value of the maximum lateness for SPT-batch
schedules that include the last n− j + 1 jobs Jj, . . . , Jn, with processing starting
at time zero. If a batch {Jj, . . . , Jk−1} with processing time pk−1 is inserted at
the beginning of a schedule for jobs Jk, . . . , Jn, the maximum lateness of jobs
Jk, . . . , Jn increases by pk−1, while the maximum lateness for jobs Jj, . . . , Jk−1
is max _j<i≤k−1 (p_k − 1 − d_i).We are prepared to present the dynamic pro-
gramming recursion. We initialize with Fn+1 = −∞, and the recursion for
j = n, n− 1, . . . , 1 is defined as:

Fj = min
j≤k≤n+1

max{Fk + pk−1, max
j<i≤k−1

(pk−1 − di)}

30

Batching machine models

The optimal solution value is then F1, and the corresponding optimal schedule
is determined through backtracking. It’s important to note that the algorithm has
a time complexity of O(n2) and requires O(n) space.

We will now demonstrate how to devise a polynomial algorithm for minimizing
fmax using the O(n2) algorithm for minimizing Lmax as a subroutine. The problem
of minimizing fmax can be seen as a finite series of decision problems of the
form ’is fmax ≤ k?’, where k is iteratively adjusted using binary search over an
appropriate interval. Thus, if the decision problem is solvable in polynomial time,
then minimizing fmax is solvable in polynomial time, provided the optimal solution
value is an integer with a logarithm polynomially bounded in the input size. We
make the assumption that this is the case. This assumption is not overly restrictive,
as it holds when fj has the form fj = (βj)αj , where βj ∈ {wjCj, wjTj, wjUj}, and
αj is a polynomial in n. The question ’is fmax ≤ k?’ can be answered in polynomial
time as follows. Notice that the given upper bound, denoted as k, establishes a
deadline dj on the completion time of each job Jj , where j takes values from 1 to n.
Each deadline can be determined efficiently in O(logP) time through binary search
over the P + 1 potential completion times. Once the deadlines are established, the
algorithm for minimizing Lmax can be applied to ascertain whether there exists
a solution in which each job is completed before its respective deadline. In this
context, the deadlines are treated as due dates: if Lmax ≤ 0, then a schedule exists
where no deadlines are violated; otherwise, there is no such schedule. Consequently,
the question ’is fmax ≤ k?’ can be answered in O(n2 + n logP) time, which is
polynomial. Therefore, the problem of minimizing fmax can be resolved within
polynomial time.

4.2 The bounded model
In this section, we explore problems where the machine constraint, denoted as
b, is significantly small, specifically assuming 1 ≤ b ≤ n. These constrained
problems are deemed at least as challenging as their conventional counterparts, as
for the particular case b = 1, the machine’s capacity is limited to handling only
one job at a time. Moreover, these constrained problems inherently pose greater
difficulty compared to their unconstrained counterparts. The primary reason for
this increased complexity is that the search for an optimal schedule can no longer be
confined to SPT-batch schedules, with one exception being the case of minimizing
makespan, where an optimal SPT-batch schedule still exists.

For the bounded problem of minimizing makespan, we assume that n is an
integer multiple of b, denoted as n = br. This assumption is justified by the
insight that introducing dummy jobs with zero processing time does not affect the
minimum makespan. The approach to solving the problem involves assigning the b

31

Batching machine models

jobs with the smallest processing times to B1, the next b jobs with the next smallest
processing times to B2, and so forth, until the b jobs with the largest processing
times are assigned to Br. Consequently, the problem can be solved in O(n log n)
time if the jobs are initially ordered using the SPT rule. Alternatively, the problem
can be solved in O(rn) time by leveraging linear-time median-finding techniques.
Specifically, B1 ∪ . . . ∪ Br can be determined by identifying some job Jj in O(n)
time such that |{i | pi ≤ pj}| ≤ b and |{i | pi > pj}| ≤ b(r − l), and subsequently
introducing a subset of {i | pi = pj} into the first set in such a way that its
cardinality is exactly b. With this approach, the problem is resolved in O

1
n2

b

2
time.

In Subsection 5.2.1, we explore the task of minimizing the total completion time.
We illustrate that the problem can be efficiently solved using dynamic programming
in O(nb(b−1)) time, where b ≥ 1. Furthermore, for scenarios involving m distinct
processing times, we introduce an algorithm with a time complexity of O(b2m22m).
Lastly, Subsection 5.2.2 focuses on the special scenario where the number of batches
to be utilized is fixed. We reveal that bounded problems of this nature can be
resolved in O(nr+3) time, where r represents the given number of batches.

4.2.1 Minimizing total completion time
Chandru et al. [88] introduce the constrained problem of minimizing total comple-
tion time, providing a branch-and-bound algorithm along with some heuristics. It
can be demonstrated that the general problem can be solved within O(nb(b−1)) time
and O(nb(b−1)) space, considering the case where b is greater than or equal to 1. For
scenarios involving m distinct job types, with m less than or equal to n, Chandru
et al. [89] propose a dynamic programming algorithm with a time complexity of
O(m3bm+1). An even more efficient algorithm is presented by Hochbaum and Landy
[90], requiring O(m23m) time. Throughout this section, we assume a re-indexing
of jobs based on the SPT rule, such that p1pn. We now present two results from
Chandru et al. [7]. The first result establishes the existence of an optimal schedule
where each batch contains jobs with consecutive indices.

Lemma 2, as stated by Chandru et al.[88], asserts the existence of an optimal
schedule (B1, . . . , Br) under the SPT indexing, where each batch Bl is represented
as {Jil, . . . , Jjl} for indices 1 ≤ il ≤ jl ≤ n and l ranging from 1 to r.

Chandru et al.[88] provide a second result that extends the classical Shortest
Processing Time (SWPT) rule, traditionally used for sequencing jobs on a single
machine, to the sequencing of batches.

Lemma 3 (Chandru et al.[88]): For given batches B1,...,Br, an optimal sequence
is (B1,....Br) if and only if

p(B1)/|B1| ≤ . . . ≤ p(Br)/|Br| (1)

32

Batching machine models

Here, a batch is defined as "full" if it contains exactly b jobs, and otherwise,
it is termed "non-full." Additionally, a batch Bl is considered deferred concerning
another batch Bq if Bl is scheduled after Bq, and the processing time of Bl is less
than the processing time of Bq. A further result presented by Hochbaum and
Landy[9] addresses deferred batches.

Lemma 4 (Hochbaum and Landy [90]): In any optimal schedule, there is no
batch that is deferred with respect to a non-full bat

4.2.2 Restricted number of batches
In this section, we explore the constrained scenario of minimizing any regular
objective function, where the schedule is limited to include at most r batches. We
demonstrate that addressing this problem is achievable in O(nr+3) time, constituting
a polynomial time complexity when r is held constant.

It’s important to note that when the longest job within each batch is specified
along with the sequencing order of the r batches, the computation of processing
times p(B1), . . . , p(Br) and completion times C(B1), . . . , C(Br) becomes straight-
forward. The problem then transforms into assigning the remaining jobs to the r
batches, ensuring that no batch exceeds b jobs, and each job is assigned to a batch
without a designated longest job of smaller size. If a job Jj has a deadline d̄j, it is
imperative to guarantee Cj ≤ d̄j.

Given these considerations, the cost cij associated with assigning any of the n−r
remaining jobs Jj (j = 1, . . . , n) to batch Bi (i = 1, . . . , r) is defined as follows:

cij =
∞ if p(Bi) ≤ pj or C(Bi) ≥ d̄j

fj(C(Bi)) otherwise

Consequently, the task of minimizing a minsum cost function for given batch
processing times and a predetermined processing order of the r batches reduces to
a bipartite weighted matching problem, a challenge solvable in O(n3) time [92].

4.3 Single batching machine
Brucker et al. [5] investigate the intricacies of scheduling a single batching machine,
exploring scenarios with unrestricted batch sizes as well as situations where batches
are limited to containing at most b jobs. In the context of a batch B, defined as a set
of jobs, its processing time is determined by the maximum processing time among
the jobs within the batch. The completion time for each job in B corresponds to the
moment when the processing of batch B is completed. Assuming jobs are arranged
according to the SPT (Shortest Processing Time) rule, denoted as p1 ≤ . . . ≤ pn,
an SPT-batch schedule allows for grouping adjacent jobs in the sequence 1, . . . , n

33

Batching machine models

into batches. As an illustration, consider a possible batch schedule for a 10-job
problem represented by the sequence ({1,2,3},{4},{5,6,7,8},{9,10}). For problems
1̃ ∥ψ3 , where no restriction is imposed on the batch size and ψ3 is any objective
function introduced in Section 2, Brucker et al. [5] employ a straightforward
argument to demonstrate the existence of an optimal solution that conforms to an
SPT-batch schedule. Dynamic programming algorithms proposed by Brucker et al.
[5] are designed for various problems without imposing restrictions on the batch
size. These algorithms, along with other pertinent findings, are discussed in the
subsequent sections.

4.3.1 Total weighted completion time
For the problem 1̃ || q

j wj · Cj, Brucker et al. [5] introduced a backward dynamic
programming algorithm that incorporates batch insertion. The variable Gj rep-
resents the minimum total weighted completion time for SPT-batch schedules,
including jobs from j to n, with the processing of the first batch in the schedule
commencing at time zero. The initialization is Gn+1 = 0 and the recursion for
j = n, n− 1, . . . , 1 is Gj := mink=j+1,...,n+1

1
Gk + pk−1

qn
h=j wh

2
.The minimization

process involves selecting a batch j, . . . , k − 1, with a processing time of pk−1, to
be inserted at the beginning of a pre-existing schedule consisting of jobs k, . . . , n.
The optimal solution value is then represented by G1. Although the algorithm
typically requires O(n2) time under a standard implementation, its inherent struc-
ture allows the application of geometric techniques introduced by van Hoesel et al.
[75], leading to a reduced time complexity of O(n log n). In scenarios where batch
sizes are constrained by a limit b, Brucker et al.[5] present a dynamic programming
algorithm with a time complexity of O(nb(b−1)). However, for arbitrary b, the
computational complexity of 1̃|b| q

j Cj remains an open question, as does the
complexity of 1̃|b| q

j wj · Cj for both fixed and arbitrary b. When there are q
distinct processing times for problem 1̃|b| q

j Cj , dynamic programming algorithms
have been proposed by Chandru et al.[9], Hochbaum and Landy[44], and Brucker
et al.[5]. Among these, the most efficient is the algorithm by Brucker et al., with a
time complexity of O(b2q22q).

4.3.2 Maximum lateness
For the problem 1̃ || Lmax, Brucker et al. [5] introduce a backward dynamic
programming algorithm with batch insertion, akin to the one discussed in the
preceding subsection and the algorithm designed for the batch availability problem
1|sf , F = 1| Lmax, as explained in Section 4.5.1. The variable Gj denotes the
minimum value of the maximum lateness for SPT-batch schedules, encompassing
jobs from j to n, with processing commencing at time zero. The initialization is

34

Batching machine models

Gn+1 := −∞ and the recursion for j = n, n− 1, . . . , 1 is

Gj := min
k=j+1,...,n+1

{max{Gk + pk−1, max
h=j,...,k−1

(pk−1 − dh)}.}

The optimal solution value is represented by G1, and the algorithm has a time
complexity of O(n2). For a limited batch size b, Brucker et al. [5] demonstrate
the unary NP-hardness of the problem 1̃|b|Lmax. Lee et al. [54] investigate the
complexity of various specific instances of the problem 1̃|b, rj|Lmax, introducing
assumptions about release dates, processing times, and due dates.

4.3.3 Weighted number of late jobs
For the problem 1̃ || q

j Uj, Brucker et al. [5] introduce a forward dynamic pro-
gramming algorithm that involves appending jobs. The variable Gj(u, k) represents
the minimum makespan for SPT-batch schedules that include jobs from 1 to j.
Here, u denotes the number of late jobs in the schedule, and the last batch is
allocated a processing time pk. This is because it is designated to accommodate
jobs from j + 1 to k, excluding job k itself, where j < k. The initialization for

k := 0, 1, . . . , n is G0(0, k) =
0 if k = 0

∞ otherwise
and the recursion for j ∈ 1, . . . , n,

u ∈ 0, 1, . . . , j, and k ∈ j, . . . , n is

Gj(u, k) = min

Gj−1(u, k), if Gj−1(u, k) ≤ dj;
Gj−1(u− 1, k), if Gj−1(u− 1, k) > dj;
Gj−1(u, j − 1) + pk, if Gj−1(u, j − 1) + pk ≤ dj;
Gj−1(u− 1, j − 1) + pk, if Gj−1(u− 1, j − 1) + pk > dj;
∞, otherwise.

The smallest number of late jobs is determined by finding the minimum value of u
for which Gn(u, n) < ∞. The algorithm’s time complexity is O(n3). When applied
to the problem 1̃ || q

j wj · Uj, the dynamic programming algorithm mentioned
above can be adapted to minimize the weighted number of late jobs within O(n2W)
time, where W = qn

j=1 wj. Another pseudopolynomial dynamic programming
algorithm, discussed in the subsequent subsection, provides a solution in O(n2P)
time, where P = qn

j=1 pj. Brucker et al. [5] demonstrate that this problem is
binary NP-hard. The problem 1̃|b| q

j Uj is demonstrated to be unary NP-hard,
drawing from the analogous outcome established for problem 1̃|b|Lmax. Lee et
al. [54] extend their analysis to explore specific instances of problem 1̃|b, rj|

q
j Uj

under diverse assumptions regarding release dates, processing times, and other
factors.

35

Batching machine models

4.3.4 Total weighted tardiness
For the problem 1̃ ∥ q

j wj · Tj, Brucker et al. [5] introduce a forward dynamic
programming algorithm that involves adding batches. The variable Gj(t) represents
the minimum total weighted tardiness for SPT-batch schedules that include jobs
from 1 to j, where the last batch completes at time t. The initialization is

G0(t) =
0, if t = 0;

∞, otherwise;

and the recursion for j = 1, . . . , n and t = pj, . . . ,
qj

k=1 pk is

Gj(t) = min
h=0,1,...,j−1

Gh(t− pj) +
jØ

k=h+1
wk max {t− dk, 0} .

The minimum value of the optimal solution is determined by considering the set

of completion times t ranging from qn
j=1 pj to the total processing time P = qn

j=1 pj .
The algorithm’s time complexity is O(n2P). Brucker et al. [5] establish that the
problem 1̃|| q

j wj · Tj is binary NP-hard. Additionally, the problem 1̃|b| q
j Tj

is shown to be unary NP-hard, building on the analogous outcome for problem
1̃|b|Lmax.

4.4 Parallel batching machines
In scenarios with m identical parallel batching machines and an arbitrary regular
objective function, where there are no limitations on the batch size for any machine,
Brucker et al. [5] note that an optimal solution can be formed by employing
an SPT-batch schedule on each machine. Consequently, for a fixed number of
identical parallel machines, the dynamic programming algorithms developed for
single-machine problems extend to provide pseudopolynomial algorithms.

4.4.1 Maximum lateness
In this portion, we introduce two algorithms designed to discover optimal schedules
for the P |batch| Lmax and P |batch| q

j Uj problems. Hochbaum and Landy (1994)
examined the single-machine problem to ascertain the existence of a viable sequence
within deadline constraints. The subsequent characteristic was outlined in their
publication.

Lemma 1 For the P |batch| Lmax (as well as P |batch| q
j Uj) problem, there

is an optimal schedule in which the jobs are arranged in EDD order on each machine.

36

Batching machine models

Proof The validity readily follows from job interchange arguments.

In the subsequent discussion, we initially formulate a dynamic program to
construct an optimal schedule for the maximum lateness problem. Leveraging the
property articulated in Lemma 1, an initial sequence is established by arranging jobs
in non-decreasing order based on their due dates. Consequently, job re-indexing
is performed to satisfy the condition i ≤ j if and only if di ≤ dj. The function
F (j, t1, t2, .., tm) is then defined as the optimal maximum lateness given that the
first j jobs have been scheduled, and the completion time of the last batch on
machine l is tl, 1 ≤ l ≤ m. Assuming the first j − 1 jobs have been properly
scheduled, the focus shifts to the processing of job j. This involves the choice
between creating a new batch exclusively for job j or appending job j to the last
batch on some machine. In the latter scenario, the lateness of each job in the batch
to which job j is appended might be affected. Consequently, a reevaluation of the
maximum lateness for the first j − 1 jobs is necessary. With these considerations,
the function F can be defined in a backward recursive form, as elucidated below.

Algorithm Maximum Lateness

Initial conditions:

F (j, t1, t2, ..., tm) =
0 if j = t1 = t2 = . . . = tm = 0,

∞ otherwise.
Recursive formula: For 0 ≤ j ≤ n, 0 ≤ tl ≤ ns+ q

i pi for 1 ≤ l ≤ m,

F (j, t1, t2, ..., tm) == min
l=1,....,m

{min

max{F (j − 1, t1, t2, ..., tl − s− pj, ..., tm),
tl − dj}
max{tl − dl(j − 1, t1, t2, ..., tl − pj, ..., tm),
F (j − 1, t1, t2, ..., tl − pj, ...tm)}

In this context, the term dl(j − 1, t1,, tl − pj, ..., tm) represents a variable that
holds the due date of the initial job within the last batch on machine l, as calculated
by the function F (j − 1, t1, ..., tl − pj, ..., tm). Once the value of F (j, t1, t2, ..., tm)
is established, the due date dl(j, t1, t2, ..., tm) for each machine l is subsequently
determined based on the specific outcomes of the solution scenarios.
Goal:

Minimize {F (n, t1, t2, ..., tm)|0 <= tl <= ns+ qn
i=1 pi, 1 <= l <= m}

37

Batching machine models

The recursive formula above describes two scenarios: one where job j indepen-
dently initiates a new batch on machine l, and another where job j is added to the
last batch on machine l. The function F encompasses O(n(ns+ q

i pi)m) possible
states, each requiring O(m) time for optimal decision-making. Consequently, the
overall computation time of this algorithm is dominated by O(mn(ns+ q

i pi)m).
This computational complexity is inherently exponential in relation to the in-
put length and becomes pseudo-polynomial when the number of machines (m) is
fixed. In an optimal schedule, the completion time of the last job on any machine
cannot exceed Lmax + dmax. Utilizing this observation, the recursive formula’s
inequality restricting the range of tl can be refined to 0 ≤ tl ≤ u1, where u1 is
determined by min(ns + q

i pi, Lmax + dmax). Although the exact value of the
objective Lmax is unknown initially, heuristic procedures can be designed and
invoked to approximate values for this refinement. If LH represents an approxi-
mate solution obtained through some heuristic, then Lmax is approximated as LH .
Consequently, the time complexity of Algorithm Maximum Lateness is adjusted to
O(mn(min{ns+ q

i pi, LH + dmax})m) without affecting the existence of optimal
solutions.

4.4.2 Number of tardy jobs
In this section, we move on to examining the objective related to the count of tardy
jobs. For clarity in presentation, we will instead focus on maximizing the number
of non-tardy jobs. A job is considered non-tardy if the batch it belongs to is fully
completed no later than its due date. We define the function G(j, t1, t2, ..., tm) as
the maximum number of non-tardy jobs, given that the first j jobs have been consid-
ered, and the completion time of machine l is tl, 1 ≤ l ≤ m. When considering job
j, three possible situations may arise: job j is discarded and treated as tardy, job
j is scheduled early or on time and independently forms a batch on some machine,
or job j is added to an existing batch without making other jobs in the same batch
tardy. With these observations, we can formulate the following recursive program
for constructing a schedule with the maximum number of non-tardy jobs.

Algorithm Number of Tardy Jobs

Initial conditions:

G(j, t1, t2, ..., tm) =
0 if j = t1 = t2 = . . . = tm = 0;

−∞ otherwise.

Recursive formula: For 0 ≤ j ≤ n, 0 ≤ tl ≤ ns+ q
i pi for 1 ≤ l ≤ m,

38

Batching machine models

G(j, t1, t2, .., tm) = max

G(j − 1, t1, t2, .., tm)
maxl=1,2,..,m{G(j − 1, t1, t2, .., tl − s− pj, .., tm) + 1},
maxl=1,2,..m{G′

l(j, t1, t2, .., tm)}

The function G′
l(j, t1, t2, ..., tm) is defined as the count of non-tardy jobs when

the first j jobs are under consideration, and job j belongs to the last batch on
machine l. Its value is determined by the following rule: if dl(j − 1, t1, ..., tl −
pj, ..., tm), the due date of the first job of the last batch on machine l in the solution
G(j − 1, t1, y, tl − pj, ..., tm), is no greater than tl, then G′

l(j, t1, t2,, tm) = G(j −
1, t1,, tl −pj, y, tm)+1; otherwise, G′

l(j, t1, t2, ..., tm) = N . Once G(j, t1, t2, ..., tm)
is determined, the variable dl(j, t1, t2, ..., tm) for each machine l will be defined
accordingly based on the scenarios of the solution.

Goal:: Maximize {G(n, t1, t2, ..., tm).: 0 ≤ tl ≤ ns+ qn
i=1 pi, 1 ≤ l ≤ m}.

With an analysis similar to that employed in Algorithm Maximum Lateness, we
can readily conclude that the Algorithm Number of Tardy Jobs requires O(mn(ns+qn

i=1 pi)m) time to identify an optimal set of non-tardy jobs. This is because the
completion time of any non-tardy job does not exceed dmax. To further streamline
the function G, certain states can be eliminated by imposing an upper bound on tl,
1 ≤ l ≤ m, defined as min{ns+ qn

i=1 pi, dmax}. Consequently, the time complexity
of the dynamic program is updated to O(mn(min{ns+ qn

i=1 pi, dmax})m).

4.4.3 Heuristic algorithms
The previous section introduced two dynamic programming algorithms designed to
generate optimal schedules for the two given problems. However, these algorithms
are more theoretically intriguing than practically significant due to their substantial
memory and computation requirements. Additionally, addressing the variable
dimensions of the recursive functions might necessitate advanced programming
skills. Another commonly employed approach in combinatorial optimization involves
implicit enumeration, particularly through the development of branch-and-bound
methods. Given that the problems P |batch| Lmax and P |batch| q

j Uj involve
simultaneous considerations of dispatching and grouping decisions, the solution
space experiences explosive growth with increasing problem sizes. Consequently,
formulating a successful branch-and-bound algorithm for a batch scheduling problem
alone poses a considerable challenge. In this section, we opt to develop heuristics as
an alternative, aiming to produce approximate solutions to the P |batch| Lmax and

39

Batching machine models

P |batch| q
j Uj problems within a reasonable time frame. It is noteworthy that the

single-machine cases P |batch| Lmax and P |batch| q
j Uj can be optimally solved

in polynomial time using dynamic programming algorithms developed by Brucker
and Kovalyov (1996) and Webster and Baker (1995), respectively. The algorithms
presented in this section will leverage these known algorithms for independently
composing batches of jobs on each machine. Initially, our focus is on minimizing the
maximum lateness, and considering the problem structures, our proposed algorithms
involve three key phases: sequencing (establishing a job sequence), dispatching
(assigning jobs to machines), and batching (grouping jobs on each machine into
batches). In the "sequencing" phase, we determine a suitable job sequence based
on the problem at hand. Moving on to the dispatching phase, we explore various
methods for assigning jobs to machines. Under the "Smallest Completion Time
First" (SCF) approach, unscheduled jobs are dispatched in ascending order of their
index to the machine with the smallest completion time, continuing until all jobs
are scheduled. Alternatively, the "Smallest Lateness First" (SLF) method involves
dispatching the first unscheduled job based on the lateness it will introduce to the
schedule. The details are outlined as follows:

Dispatching rule: SLF

Step 1: Set the completion time of each machine as zero.
Step 2: Let job i be the first unscheduled job.

2.1. For k = 1 to m:

– LCk = the maximum lateness on machine k after assigning job i into the
last batch of machine k;

– LNk = the maximum lateness on machine k after creating a new batch
for job i on machine k;

2.2. If min1≤k≤m LCk ≤ 0 or min1≤k≤m LCk ≤ min1≤k≤m LNk, then dispatch job i
into the last batch of the machine with min1≤k≤m LCk; else dispatch job i to
the machine with min1≤k≤m LNk and form a new batch on this machine.

Step 3: Update the completion time according to the outcome of Step 2; go to
Step 2 until all jobs are scheduled.

Initially, our attention is focused on minimizing the maximum lateness, and
given the problem structures, our proposed algorithms involve three main phases:
sequencing (determining the job sequence), dispatching (assigning jobs to machines),
and batching (grouping jobs on each machine into batches). In the sequencing

40

Batching machine models

phase, Lemma 1 suggests that the Earliest Due Date (EDD) sequence of jobs is a
promising starting point. Another consideration for job priority is based on slack
times, where jobs with tight temporal cushions receive higher priority. Thus, we
adopt EDD and Smallest Slack Time (SST) as our sequencing rules.

EDD rule: Re-index the jobs in non-decreasing order of their due dates.
SST rule: Re-index the jobs in non-decreasing order of slack time, di − pi.

Moving on to the dispatching phase, we explore two different ways of assigning
jobs to machines. Under the "Smallest Completion Time First" (SCF) approach,
unscheduled jobs are dispatched to the machine with the smallest completion
time. Alternatively, the "Smallest Lateness First" (SLF) method dispatches the
first unscheduled job based on the lateness it will introduce. After the sequencing
and dispatching phases, we enter the batching phase, where a subset of jobs
remains on each machine. For jobs dispatched using the SLF rules, they have
been grouped into batches. Leveraging an algorithm by Webster and Baker (1995)
designed for the single-machine case 1|batch|Lmax, we compose optimal solutions
for jobs on each machine, enhancing the overall solution quality. It’s important to
note that this algorithm assumes jobs are arranged in EDD order. Consequently,
if the SST rule is applied in the sequencing phase, the jobs on each machine
must be rearranged using the EDD rule. Arranging jobs in a specific order takes
O(n log n) time, dispatching jobs onto machines using a min-heap takes O(nm logm)
time, and finding optimal batch compositions for all machines takes O(mn2) time.
Therefore, the time complexities of the heuristic algorithms are dominated by
O(mnmax(n, logm)). Regarding the minimization of the number of tardy jobs,
Ho and Chang (1995) proposed two heuristic approaches: job-focused and machine-
focused. The job-focused heuristic involves dispatching and machine selection,
similar to our sequencing and dispatching phases. Additionally, a rejection rule
is used to remove the early-scheduled job with the longest processing time. In
the machine-focused approach, Moore’s algorithm is applied to each machine one
by one, treating a tardy job on the current machine as an unscheduled candidate
for the next machine. Brucker and Kovalyov (1996) developed an O(n3) dynamic
programming algorithm for the 1|batch| q

j Uj problem. Three heuristic algorithms
for P |batch| q

j Uj are then derived from the aforementioned algorithms.

• Heuristic H1: Utilizes the machine-focused approach followed by the activa-
tion of Baker and Kovalyov’s dynamic programming algorithm for the jobs
arranged on each machine.

• Heuristic H2: Similar to H1 but adopts a job-focused approach for dispatch-
ing jobs onto machines.

41

Batching machine models

• Heuristic H3: Modifies the job-focused approach to simultaneously address
dispatching and grouping issues, given that applying the dynamic programming
algorithm to all machines may be time-consuming for composing approximate
solutions.

Heuristic H3
Step 1: Remove all jobs i with di ≤ pi.
Step 2: Re-index the jobs in Earliest Due Date (EDD) order.
Step 3: For i = 1 to n do the following steps:

3.1 Identify the machine, denoted as k, which possesses the greatest completion
time while ensuring that incorporating job i into the last batch on this machine
does not breach the due date restriction of the initial job in this batch. If no
such machine is found, proceed to Step 3.2; otherwise, supplement the existing
batch on machine k with job i.

3.2 Identify the machine, denoted as k, which has the largest completion time,
making sure that job i can be finished by its due date if a new batch is created
for it on this machine. If there is no such machine meeting this condition,
proceed to Step 3.3; otherwise, create a new batch for job i on machine k.

3.3 Identify the job with the longest processing time among all the jobs that have
been scheduled early, specifically job j on machine k. If the processing time
of job i (pi) is greater than that of job j (pj), then exclude job i; otherwise,
exclude job j and arrange job i as the last job on machine k. Subsequently,
apply Hochbaum and Landy’s algorithm (Hochbaum and Landy, 1994) to
reorganize the batch formation on machine k.

Step 4: Output the schedule.

For each machine, the application of Moore’s algorithm takes place sequentially.
In this process, a tardy job on the current machine is considered as a candidate job
that is unscheduled for the next machine. This iterative procedure continues until
all machines or all jobs have been scrutinized. Brucker and Kovalyov (1996) intro-
duced an O(n3) dynamic programming algorithm to address the P |batch| q

j Uj

problem. Subsequently, three heuristic algorithms for P |batch| q
j Uj are pre-

dominantly derived from the previously mentioned algorithms. In Step 3.3, there
is a possibility of replacing job j with job i. To create a new batch configura-
tion, we employ Hochbaum and Landy’s algorithm, which, in compliance with
the deadline constraints, can rearrange the jobs into batches. Concerning the
time complexities of heuristics H1 and H2, it is evident that the O(n3) dynamic

42

Batching machine models

program developed by Brucker and Kovalyov (1996) plays a dominant role. As a
result, the overall time complexity becomes O(n4). Since Hochbaum and Landy’s
algorithm requires O(n) time and Steps 3.1 and 3.2 may take O(m) time, and
the time complexity of H3 is O(nmax{n,m}). Another heuristic is used in this
research as a dispatching rule to resolve the parallel machine scheduling prob-
lem: it is ATC heuristic proposed by Vepsalainen and Morton. At each time
point t when a machine becomes available, a single batch is selected from each
family, and one batch is chosen and scheduled on the machine from the consid-
ered batches. A time window (t, t + δt) is defined, and the set of unscheduled
jobs from family j with arrival times less than the upper boundary of the time
window interval is represented as M(j, t, δt) := {ij | rij ≤ t + δt}. Then, the
set M̃(j,t,δt, thres) := {ij | ij ∈ M(j, t, δt) and pos(ij) ≤ thres} is derived, where
"thres" is the maximum number of jobs in M̃(j,t,δt, thres).

The criterion for evaluating jobs (Iij) and the position of job ij with respect to
Iij (pos(ij)) are defined, based on the ATC (Batched Apparent Tardiness Cost)
index. The ATC index Iij,AT C for job i belonging to family j and calculated at
time t is given by:

Iij,ATC(t) = wij

pj

exp −((dij − pj + (rij − t)+))
kp̄

In Iij,AT C , "k" is a look-ahead parameter, and pŕ is the average processing time
of the remaining unscheduled jobs. The jobs in the set M(j, t, δt) are sorted in
non-increasing order according to Iij,AT C , and the first "thres" of them are selected
to form the set M (j; t;Dt; thres).

For the evaluation of a particular batch combination, the index Ibj(t) is consid-
ered, given by:

Ibj(t) =
nbjØ
i=1

wij

pj

exp −((dij − pj − t+ (rij − t)+))
kp̄

nbj

B

Here, "nbj" is the number of jobs in the batch, and rbj := maxi∈Bbj(rij) represents
the maximum ready time of the jobs in the batch. This rule aims to increase the
fullness of the batches by adding (rbj − t) to the slack when jobs for a batch are
not available. The BATC-based (Batched Apparent Tardiness Cost) dispatching
heuristic follows these steps. It is noted that this rule outperforms other rules
suggested in related studies (Mason et al., 2002; Mönch). The BATC-based
(Batched Apparent Tardiness Cost) dispatching heuristic can be outlined through
the following steps:

1. At time t, determine a window size δt and select at most thres jobs from the
set M(j, t, δt). Consequently, compute the corresponding Iij indexes for each

43

Batching machine models

family with unscheduled jobs and arrange them in descending order. This
process yields sets of jobs M̃(j, t,D, thres).

2. Choose a machine m with a ready time less than or equal to t.

3. Calculate the BATC index for all batch combinations in each family and then
choose the batch b with the highest BATC index.

4. Schedule the selected batch b on the machine m.

5. Update the ready time of machine m to max(t, rbj) + pb, where pb is the
processing time of the family to which batch b belongs.

6. If all jobs are scheduled, proceed to step 7; otherwise, return to step 2.

7. Terminate the process.

The choice of the look-ahead parameter depends on the closeness of due dates and
ready times, with the range of these factors also influencing the decision. The
degree of closeness and the overall range should be linked to the makespan of the
schedule. To estimate the makespan Cmax, the batch-machine factor µ := n

mbeff B

is introduced. The batch efficiency factor beff is employed to simulate situations
where not all batches are complete, with beff = 0.75 used in our experiments. It’s
important to note that m represents the average number of batches on a single
machine. The average processing time of the considered jobs is denoted by p̄, and
Ĉmax := p̄µ serves as a rough estimator of Cmax. The tightness of due dates is
defined as T := 1 − d̄

p̄µ
, where d̄ denotes the mean due date. A due date tightness

close to zero indicates that most due dates are clustered around the makespan. If T
approaches one, a large portion of due dates is clustered at time t = 0. To measure
the range of due dates, the quantity R := 1

d̄

ñ
12

(n−1)
qn

j=1(dj − d̄)2 is introduced. R
is essentially an estimator of the variance of due dates relative to d̄. Utilizing the
expression d̄ = (1 − T)Ĉmax, d̄ linearly depends on Cmax.

In the case of uniformly distributed due dates for large sample sizes, the approx-
imation 1

n−1
qn

j=1(dj − d̄)2 ≈ (dmax−dmin)2

12 is valid, where dmax is the maximum due
date among the samples, and dmin is the minimum. Therefore, an expression for R
is obtained that closely resembles the quantity used in Lee and Pinedo (1997).

For characterizing ready times, a similar approach is adopted. The quantity T̃ :=
1− r̄

p̄µ
is defined as the tightness of ready times, where r̄ represents the average ready

time. The range of ready times can be estimated by R̃ := 1− 1
r̄

ñ
12

(n−1)
qn

j=1(rj − r̄)2.

44

Batching machine models

4.4.4 Machine learning techniques applied to parameter
setting in scheduling heuristics

This section covers the exploration of neural networks and inductive decision trees
as approaches for parameter estimation. Aytuk et al. (1994) conducted a survey of
various machine learning techniques employed in addressing scheduling problems.
Jain and Meeran (1998) specifically delve into the application of neural networks
in scheduling and explore related literature.

Neural networks

Neural networks are composed of interconnected nodes, connected by directed links,
as explained by Mitchell (1997). The transmission of activation from one node
to another occurs if there is a direct link between them. Each link is assigned a
weight, denoted as wj,i, determining the strength and direction of the connection.
To compute the output ai of a node i, it first calculates the weighted sum of its
inputs. Subsequently, an activation function g is applied to this sum. The feed-
forward networks lack internal states beyond the weights, functioning as a direct
transformation of their inputs. Learning in neural networks involves adjusting the
weights to minimize error on the training set. Feed-forward networks are often
organized into layers, where each layer’s nodes receive input exclusively from the
preceding layer. In addition to input and output layers, hidden layers are commonly
incorporated, expanding the representational capacity of the network. Networks
with hidden layers are termed Multi-layer Perceptrons (MLP). Learning in MLPs
involves back-propagating errors from the output layer to the input layer. The
backpropagation (BP) algorithm, a gradient descent technique, is widely utilized
for training MLPs (Mitchell, 1997).

Inductive decision trees

The text discusses inductive decision trees, characterized as straightforward and
potent learning algorithms according to Utgoff (1998). These trees receive a
situation described by a set of attributes as input and, based on this input, make a
decision while providing output values. The structure of a decision tree comprises
leaves, representing classes, and decision nodes that outline tests on the attributes
of the test case, guiding the branching into sub-trees. The learned decision tree’s
structure consists of disjoint hypercubes created by partitioning attribute domains
into intervals. Commonly, algorithms employed for learning inductive decision trees
involve variations of a top-down greedy search algorithm, with the ID3 and C4.5
algorithms being widely used in tree learning (Mitchell1997, Quinlan1993).

Two fundamental approaches exist for determining input attributes. The first
method divides the complete dynamic range of inputs and outputs into a predefined

45

Batching machine models

number of equal intervals. The second approach involves dividing only the output
into equal intervals, with machine learning determining optimal attribute borders
for the inputs. Functional dependencies between input and output variables are
described through rules. Fuzzy design principles enhance model performance
by creating fuzzy sets for selected ranges and applying fuzzy methods for data
processing. Triangular membership functions are initially assigned to input intervals,
intersecting at interval borders with a parameter denoted as m equal to 0.5. The
edge intervals receive one-sided open membership functions, allowing input values to
belong to two intervals with different membership values. Subsequently, input values
are transformed into linguistic attributes based on the fixed intervals, resulting in
a description of static and/or dynamic process behavior in the form of linguistic
expressions.

The ID3 algorithm (Quinlan1993) generates an optimal decision tree from lin-
guistic examples. To further enhance fuzzy models, variable membership functions
are expected to be more effective than homogeneous ones. An optimization of fuzzy
sets is performed by minimizing the mean square error between the representation
given by the decision tree and the measured output. This optimization involves
describing the membership functions of input variables using four pivot places, and
a standard method for solving the resulting constrained non-linear optimization
problem is employed (Otto2002).

4.4.5 Application of the two techniques for setting the look
ahead parameter in the BATC-rule

The utilization of two machine learning techniques aims to determine effective
look-ahead values k, and the proposed methodology involves two distinct phases.

During Phase I, both the inductive decision tree and the neural network undergo
training. The near-optimal value for k is computed for each factor combination. This
involves setting k in the form k = 0.1j for j = 1, . . . , 30 and k = 0.5j + 3.0 for j =
1, . . . , 7. The scheduling problem is solved for a fixed k using the dispatch scheme
from Section 5.2.2. The schedule yielding the minimum total weighted tardiness
determines the optimal k value. The mean k-value of the 10 independent test
instances for the same parameter combination is calculated, ensuring statistically
significant results. Additionally, the median of the 10 k-values is considered as an
alternative.

Moving to Phase II, the quantities R, T , m, R̃, and T̃ are computed for the
given job set. Subsequently, either the inductive decision tree or the neural network,
as trained in Phase I, is employed to determine the parameter value k. This k
value is then used to apply the BATC rule, resulting in the generation of a feasible
schedule.

For activation purposes in the neural network, a Multi-Layer Perceptron (MLP)

46

Batching machine models

with a sigmoid function is utilized. The hidden layer is configured with three, five,
or seven nodes, and the network weights are learned through repeated examination
of training cases. Input nodes R, T , m, R̃, and T̃ are incorporated, while the
output layer of the neural network provides the k values. The employed neural
network is depicted in Figure 4.1. The NeuralWorks Professional II/Plus tool from
NeuralWare is employed to conduct the neural network experiments.

The ID3 algorithm is utilized to derive tests, where a rule essentially corresponds
to traversing the decision tree. The construction of the trees is facilitated by custom-
developed software (Otto)[84]. Specifically, the partitioning of the interval (0.0, 6.5)
of the look-ahead parameter into 15, 20, and 25 different classes is considered,
resulting in the presentation of an inductive decision tree for the current situation,
as illustrated in Figure 4.2.

Figure 4.1: Neural network with seven hidden nodes for choosing k

4.5 Shop problems with batching machines
Potts et al. [62] investigate the complexity associated with minimizing the makespan
in open shops, job shops, and flow shops equipped with two batching machines. In
the case of open shops, they demonstrate that the problem Õ2||Cmax can be solved
in O(n) time. This solution involves creating two batches based on whether a job’s
processing time is shorter on the first machine than on the second. Subsequently,
these batches are scheduled on the respective machines. On the contrary, the
problem Õ2|b1|Cmax is proven to be binary NP-hard for a fixed value of b1, where
b1 ≥ 1. Despite this, Potts et al. [62] establish that the problem has an optimal
solution that involves a maximum of three batches on the second machine. They
introduce a pseudopolynomial dynamic programming algorithm to address this.
Additionally, they propose an algorithm with a time complexity of O(nb2(b2−1)) for

47

Batching machine models

Figure 4.2: Inductive decision tree

the problem Õ2|b1 = 1, b2|Cmax, which can be executed in O(n log n) time when
b2 = 2. For both the flow shop and job shop scenarios, they demonstrate that the
problems F̃2||Cmax and J̃2||Cmax, where there are at most two operations per job,
can be solved in O(n log n) time by creating schedules with at most two batches and
at most three batches on each machine, respectively. The problems F̃2|b1, b2|Cmax

and J̃2|b1, b2|Cmax are proven to be binary NP-hard for fixed values of b1 and b2,
where the maximum of {b1, b2} is at least 2, and for fixed b1 when b1 is at least 2 and
b2 is less than or equal to n. The problem F̃2|b1 = 1|Cmax can be transformed into a
single-machine problem 1̃||Lmax, and Brucker et al.’s O(n2) algorithm, as discussed
in Section 5.1.2, can be employed. Similarly, the corresponding job shop problem
J̃2|b1 = 1|Cmax, with at most two operations per job, is also polynomially solvable,
albeit with a more intricate dynamic programming algorithm. It’s important to
note that, due to symmetry, the complexity outcomes for shop problems with
the makespan objective remain consistent when interchanging b1 and b2. Ahmadi
et al. [1] address the scheduling problem in a two-stage flow shop, where either
or both stages may involve a batching machine. In their model, the processing
time of a batch on a batching machine is fixed and not influenced by the jobs it
contains. They conduct a comprehensive complexity classification for the Cmax andq

j Cj objectives. For situations involving a batching machine in the first stage and
the q

j Cj objective, Hoogeveen and van de Velde [45] propose a lower bounding
scheme based on Lagrangean relaxation of constraints linking completion times
of operations in the two stages. They also develop an approximation algorithm
that produces a schedule with a total completion time no more than 5

3 times the

48

Batching machine models

optimal value. Dannenberg et al. [28]examine permutation flow shop problems
denoted as F̃ |sif , b|Cmax and F̃ |sif , b|

q
j wj ·Cj . In these problems, jobs belonging

to the same family, up to a specified limit b, can be processed together in a batch.
The investigation focuses on schedules with identical batches and a consistent
processing order on each machine. Following a methodology akin to Sotskov et
al. [72], the authors assess various heuristics, including insertion heuristics and
traditional local search techniques such as multi-start descent, simulated annealing,
and tabu search. Additionally, they explore a ’multi-level’ simulated annealing
approach, where a neighbor is derived by executing a move in a relatively large
neighborhood, followed by descent in a smaller neighborhood. Computational
experiments conducted on problem instances featuring 40, 60, 80, 100, and 120
jobs, along with 5 and 10 machines, reveal that insertion heuristics are effective.
Moreover, the results indicate a preference for the multi-level approach over other
local search methods in terms of performance.

49

Chapter 5

Conclusions

This review examines research related to two types of scheduling models that
necessitate the formation of batches. In the family scheduling model, similar
tasks can be grouped into batches if they require the same setup. Conversely, the
batching machine model creates batches of tasks processed simultaneously. The
analysis of these models reveals that, in certain scenarios, the sequencing and
batching of tasks can be separated. Once the sequence of tasks (within a family,
in the family scheduling model) is determined, dynamic programming proves to
be a valuable technique for addressing the batching dilemma. Many of the issues
addressed in this article are known to be either solvable in polynomial time or
NP-hard. Of the few remaining open problems, several involve the total (weighted)
completion time objective function. For the NP-hard problems, there is a limited
number of studies on the development of branch and bound and approximation
algorithms. Given the interest in scheduling with batching, investing research
efforts into devising algorithms for NP-hard problems is deemed worthwhile. Other
models exist that incorporate both batching and scheduling, but they are not
discussed in this review. For example, consider a scenario where jobs are delivered
to customers in batches. In this model, consolidating larger batches helps reduce
delivery costs, but it also leads to longer job completion times (assuming batches
are readily available). Another instance where batching decisions are essential is
highlighted by Fazle Baki and Vickson [30]. They examine multi-machine problems
with a single operator, where each operation requires the operator’s presence. As
the operator moves between machines, a time delay, which can be considered a
setup, is incurred.

50

Bibliography

[1] J.H. Ahmadi, R.H. Ahmadi, S. Dasu, C.S. Tang, Batching and scheduling jobs
on batch and discrete processors, Operations Research 39 (1992) 750-763

[2] B.-H. Ahn, J.H. Hyun, Single facility multi-class job scheduling, Computers
and Operations Research 17 (1990) 265-272.

[3] S. Albers, P. Brucker, The complexity of one-machine batching problems,
Discrete Applied Mathematics 47 (1993) 87-107

[4] K.R. Baker, Scheduling the production of components at a common facility,
IIE Transactions 20 (1988) 32-35.

[5] P. Brucker, A. Gladky, J.A. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tauten-
hahn, S.L. van de Velde, Scheduling a batching machine, Journal of Scheduling
1 (1998) 31-54.

[6] P. Brucker, M.Y. Kovalyov, Single machine batch scheduling to minimize the
weighted number of late jobs, Mathematical Methods of Operations Research
43 (1996) 1-8.

[7] P. Brucker, M.Y. Kovalyov, Y.M. Shafransky, F. Werner, Batch scheduling
with deadlines on parallel machines, Annals of Operations Research 83 (1998)
23-40.

[8] J. Bruno, P. Downey, Complexity of task sequencing with deadlines, set-up
times and changeover costs, SIAM Journal on Computing 7 (1978) 393-404.

[9] V. Chandru, C.-Y. Lee, R. Uzsoy, Minimizing total completion time on a batch
processing machine with job families, Operations Research Letters 13 (1993)
61-65.

[10] B. Chen, A better heuristic for preemptive parallel machine scheduling with
batch setup times, SIAM Journal on Computing 22 (1993) 1303-1318.

[11] B. Chen, C.N. Potts, V.A. Strusevich, Approximation algorithms for two-
machine flow shop scheduling with batch setup times, Mathematical Program-
ming 82 (1998) 255-271.

[12] K.R. Baker, Scheduling the production of components at a common facility,
IIE Transactions 20 (1988) 32-35.

[13] T.C.E. Cheng, Z.-L. Chen, Parallel machine scheduling with batch setup times,
Operations Research 42 (1994) 1171-1174.

51

Bibliography

[14] T.C.E. Cheng, Z.-L. Chen, M.Y. Kovalyov, B.M.T. Lin, Parallel-machine
batching and scheduling to minimize total completion time, IIE Transactions
28 (1996) 953- 956

[15] T.C.E. Cheng, Z.-L. Chen, C. Oguz, One-machine batching and sequencing of
multiple-type items, Computers and Operations Research 21 (1994) 717-721.

[16] T.C.E. Cheng, V.S. Gordon, M.Y. Kovalyov, Single machine scheduling with
batch deliveries, European Journal of Operational Research 94 (1996) 277-283.

[17] T.C.E. Cheng, M.Y. Kovalyov, Batch scheduling and common due date assign-
ment on a single machine, Discrete Applied Mathematics 70 (1996) 231-245.

[18] T.C.E. Cheng, M.Y. Kovalyov, Single machine batch scheduling with sequential
job processing, in submission.

[19] T.C.E. Cheng, M.Y. Kovalyov, Algorithms for parallel machine batch schedul-
ing with deadlines, in submission.

[20] T.C.E. Cheng, M.Y. Kovalyov, B.M.T. Lin, Single machine scheduling to mini-
mize batch delivery and job earliness penalties, SIAM Journal on Optimization
7 (1997) 547-559.

[21] T.C.E. Cheng, A. Toker, B.M.T. Lin, Makespan minimization in the two-
machine ¯ow-shop batch scheduling problem, Working paper 04/95-6, The
Hong Kong Polytechnic University, Faculty of Business and Information Sys-
tems, 1995.

[22] T.C.E. Cheng, G. Wang, Batching and scheduling to minimize the makespan
in the two-machine flowshop, IIE Transactions 30 (1998) 447-453.

[23] E.G. Coffman Jr., A. Nozari, M. Yannakakis, Optimal scheduling of products
with two subassemblies on a single machine, Operations Research 37 (1989)
426-436.

[24] E.G. Coffman Jr., M. Yannakakis, M.J. Magazine, C.A. Santos,Batch sizing
and job sequencing on a single machine, Annals of Operations Research 26
(1990) 135-147.

[25] H.A.J. Crauwels, A.M.A. Hariri, C.N. Potts, L.N. Van Wassenhove, Branch
and bound algorithms for single machine scheduling with batch set-up times
to minimize total weighted completion time, Annals of Operations Research
83 (1998) 59-76.

[26] H.A.J. Crauwels, C.N. Potts, L.N. Van Wassenhove, Local search heuristics
for single-machine scheduling with batching to minimize the number of late
jobs, European Journal of Operational Research 90 (1996) 200-213.

[27] H.A.J. Crauwels, C.N. Potts, L.N. Van Wassenhove, Local search heuristics for
single machine scheduling with batch set-up times to minimize total weighted
completion time, Annals of Operations Research 70 (1997) 261-279.

[28] D. Dannenberg, T. Tautenhahn, F. Werner, A comparison of heuristic algo-
rithms for ¯ow shop scheduling problems with setup times and limited batch
size, Preprint No. 52, Fakultat fur Mathematik, Otto-von-Guericke-Universitat

52

Bibliography

Magdeburg, Germany, 1997.
[29] G. Dobson, U.S. Karmarkar, J.L. Rummel, Batching to minimize flow times

on one machine, Management Science 33 (1987) 784-799.
[30] M. Fazle Baki, R.G. Vickson, One-operator, two-machine scheduling with

setup times for machines and maximum lateness objective, Technical paper
205-MS, Department of Management Sciences, University of Waterloo, Canada,
1997.

[31] A.E. Gerodimos, Private communication, 1998.
[32] A.E. Gerodimos, C.A. Glass, C.N. Potts, Scheduling the production of two-

component jobs on a single machine, European Journal of Operational Research,
in press.

[33] A.E. Gerodimos, C.A. Glass, C.N. Potts, Scheduling customised jobs on a
single machine under item availability, Report OR88, Faculty of Mathematical
Studies, University of Southampton, UK, 1997.

[34] A.E. Gerodimos, C.A. Glass, C.N. Potts, T. Tautenhahn, Scheduling multi-
operation jobs on a single machine, Annals of Operations Research, in press.

[35] J.B. Ghosh, Batch scheduling to minimize total completion time, Operations
Research Letters 16 (1994) 271-275.

[36] J.B. Ghosh, J.N.D. Gupta, Batch scheduling to minimize maximum lateness,
Operations Research Letters 21 (1997) 77-80.

[37] C.A. Glass, C.N. Potts, V.A. Strusevich, Scheduling batches with sequential
job processing for two-machine flow and open shops, Report, Faculty of
Mathematical Studies, University of Southampton, UK, 1998.

[38] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization
and approximation in deterministic machine scheduling: A survey, Annals of
Discrete Mathematics 5 (1979) 287-326.

[39] J.N.D. Gupta, Single facility scheduling with multiple job classes, European
Journal of Operational Research 33 (1988) 42-45.

[40] A.M.A. Hariri, C.N. Potts, Single machine scheduling with batch set-up times
to minimize maximum lateness, Annals of Operations Research 70 (1997)
75-92.

[41] R. Hassin, Private communication, 1996.
[42] J.W. Herrmann, C.-Y. Lee, Solving a class scheduling problem with a genetic

algorithm, ORSA Journal on Computing 7 (1995) 443-452.
[43] D.S. Hochbaum, D. Landy, Scheduling with batching: Minimizing the weighted

number of tardy jobs, Operations Research Letters 16 (1994) 79-86.
[44] D.S. Hochbaum, D. Landy, Scheduling semiconductor burn-in operations to

minimize total flowtime, Operations Research 45 (1997) 874-885.
[45] J.A. Hoogeveen, S.L. van de Velde, Scheduling by positional completion times:

Analysis of a two-stage flow shop with a batching machine, Mathematical
Programming 82 (1998) 273-289.

53

Bibliography

[46] J. Hurink, A tabu search approach for a single-machine batching problem
using an efficient method to calculate a best neighbor, Journal of Scheduling 1
(1998) 127-148.

[47] J.R. Jackson, Scheduling a production line to minimize maximum tardiness,
Research report 43, Management Science Research Project, University of
California, Los Angeles, CA, 1955.

[48] S.M. Johnson, Optimal two- and three-stage production schedules with setup
times included, Naval Research Logistics Quarterly 1 (1954) 61-68.

[49] F.M. Julien, M.J. Magazine, Scheduling customer orders: An alternative
production scheduling approach, Journal of Manufacturing and Operations
Management 3 (1990) 177-199.

[50] U. Kleinau, Two-machine shop scheduling problems with batch processing,
Mathematical and Computer Modelling 17 (1993) 55-66.

[51] M.Y. Kovalyov, Batch scheduling and common due date assignment problem:
An NP-hard case, Discrete Applied Mathematics 80 (1997) 251-254.

[52] M.Y. Kovalyov, C.N. Potts, L.N. Van Wassenhove, Single machine scheduling
with set-ups to minimize the number of late items, Report, Econometric
Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1992.

[53] M.Y. Kovalyov, Y.M. Shafransky, Batch scheduling with deadlines on parallel
machines: An NP-hard case, Information Processing Letters 64 (1997) 69-74.

[54] C.-Y. Lee, R. Uzsoy, L.A. Martin-Vega, Efficient algorithms for scheduling
semiconductor burn-in operations, Operations Research 40 (1992) 764-775.

[55] C.-J. Liao, L.-M. Liao, Single machine scheduling with major and minor setup
times, Computers and Operations Research 24 (1997) 169-178.

[56] A.J. Mason, Genetic Algorithms and Scheduling Problems, Ph.D. Thesis,
Department of Engineering, University of Cambridge, UK, 1992.

[57] A.J. Mason, E.J. Anderson, Minimizing flow time on a single machine with
job classes and setup times, Naval Research Logistics 38 (1991) 333-350.

[58] R. McNaughton, Scheduling with deadlines and loss functions, Management
Science 6 (1959) 1-12.

[59] C.L. Monma, C.N. Potts, On the complexity of scheduling with batch setup
times, Operations Research 37 (1989) 798-804.

[60] C.L. Monma, C.N. Potts, Analysis of heuristics for preemptive parallel machine
scheduling with batch setup times, Operations Research 41 (1993) 981-993.

[61] J.M. Moore, An n job, one machine sequencing algorithm for minimizing the
number of late jobs, Management Science 15 (1968) 102-109.

[62] C.N. Potts, V.A. Strusevich, T. Tautenhahn, Scheduling batches with simul-
taneous job processing for two-machine shop problems, Report, Faculty of
Mathematical Studies, University of Southampton, UK, 1998.

[63] C.N. Potts, L.N. Van Wassenhove, Integrating scheduling with batching and
lot-sizing: A review of algorithms and complexity, Journal of the Operational

54

Bibliography

Research Society 43 (1992) 395-406.
[64] G. Rote, G.J. Woeginger, Minimizing the number of tardy jobs on a single

machine with batch setup times, Report Woe-23, START Project Y43-MAT,
Institut fur Mathematik, TU Graz, Austria, 1998.

[65] J.M.J. Schutten, S.L. van de Velde, W.H.M. Zijm, Single machine scheduling
with release dates, due dates and family setup times, Management Science 42
(1996) 1165- 1174.

[66] W.E. Smith, Various optimizers for single-stage production, Naval Research
Logistics Quarterly 3 (1956) 59-66.

[67] A.H.G. Rinnooy Kan, Machine Scheduling Problems, Martinus Nijho, The
Hague, 1976.

[68] C.A. Santos, Batching and Sequencing Decisions under Lead Time Considera-
tions for Single Machine Problems, M.Sc. Thesis, Department of Management
Sciences, University of Waterloo, Canada, 1984.

[69] C.A. Santos, M. Magazine, Batching in single operation manufacturing systems,
Operations Research Letters 4 (1985) 99-103.

[70] D. Shallcross, A polynomial algorithm for a one machine batching problem,
Operations Research Letters 11 (1992) 213-218.

[71] J. Skorin-Kapov, A.J. Vakharia, Scheduling a flow-line manufacturing cell: A
tabu search approach, International Journal of Production Research 31 (1993)
1721-1734.

[72] Y.N. Sotskov, T. Tautenhahn, F. Werner, Heuristics for permutation flow shop
scheduling with batch setup times, OR Spektrum 18 (1996) 67-80.

[73] V.S. Tanaev, M.Y. Kovalyov, Y.M. Shafransky, Scheduling Theory. Group
Technologies (in Russian), Institute of Engineering Cybernetics, National
Academy of Sciences of Belarus, Minsk, 1998.

[74] A.J. Vakharia, Y.-L. Chang, A simulated annealing approach to scheduling a
manufacturing cell, Naval Research Logistics 37 (1990) 559-577.

[75] S. van Hoesel, A. Wagelmans, B. Moerman, Using geometric techniques to
improve dynamic programming algorithms for the economic lot-sizing problem
and extensions, European Journal of Operational Research 75 (1994) 312-331.

[76] R.G. Vickson, M.J. Magazine, C.A. Santos, Batching and sequencing of com-
ponents at a single facility, IIE Transactions 25 (1993) 65-70.

[77] S.T. Webster, The complexity of scheduling job families about a common due
date, Operations Research Letters 20 (1997) 65-74.

[78] S.T. Webster, Note on “Parallel machine scheduling with batch setup times”,
Operations Research 46 (1998) 423.

[79] S.T. Webster, K.R. Baker, Scheduling groups of jobs on a single machine,
Operations Research 43 (1995) 692-703.

[80] D. Williams, A. Wirth, A new heuristic for a single machine scheduling
problem with set-up times, Journal of the Operational Research Society 47

55

Bibliography

(1996) 175-180.
[81] G.J. Woeginger, A polynomial time approximation scheme for single machine

sequencing with delivery times and sequence independent batch setup times,
Report Woe 17, START Project Y43-MAT, Institut fur Mathematik, TU Graz,
Austria, 1997.

[82] X. Yang, Scheduling with generalized batch delivery dates and earliness penal-
ties, IIE Transactions, in press.

[83] S. Zdrzaøka, Analysis of approximation algorithms for single-machine schedul-
ing with delivery times and sequence independent batch setup times, European
Journal of Operational Research 80 (1995) 371-380.

[84] Mo¨nch, L., Otto, P., 2002. Scheduling jobs on parallel batch processing
machines using dispatching rules and machine learning techniques. In: Al-
Akaidi, M (Ed.), Proceedings of the Fourth Middle East Simulation Symposium,
Sharjah, UAE, (MESM 2002), pp. 192–196

[85] . S. Webster and K. R. Baker, ‘Scheduling groups of jobs on a single machine’,
Oper. Res., 43, 692–703 (1995)

[86] . C.-Y. Lee, R. Uzsoy and L. A. Martin-Vega, ‘Efficient algorithms for schedul-
ing semiconductor burn-in operations’, Oper. Res., 40, 764–775 (1992).

[87] . R. Uzsoy, ‘Scheduling batch processing machines with incompatible job
families’, Int. J. Prod. Res., 33, 2685–2708 (1995)

[88] . V. Chandru, C.-Y. Lee and R. Uzsoy, ‘Minimizing total completion time on
batch processing machines’, Int. J. Prod. Res., 31, 2097–2122 (1993).

[89] . V. Chandru, C.-Y. Lee and R. Uzsoy, ‘Minimizing total completion time on
a batch processing machine’, Oper. Res. Lett., 13, 61–65 (1993).

[90] . D. S. Hochbaum and D. Landy, ‘Scheduling semiconductor burn-in operations
to minimize total owtime’, Oper. Res., 45, 874–885 (1997).

[91] . G. J. Woeginger, ‘When does a dynamic programming formulation guarantee
the existence of an FPTAS?’, Technical Report Woe-27, TU-Graz, Austria,
1998

[92] .. E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, New York, 1976.

56

	Introduction
	Abstract
	Problem specification

	Family scheduling models
	Single Machine
	Total weighted completion time
	Maximum lateness
	Weighted number of late jobs

	Parallel machines
	Shop problems
	Identical jobs in each family

	Batch availability
	Single machine
	Parallel machines
	Shop problems
	Batch delivery scheduling
	Multi-operations job

	Batching machine models
	The unbounded model
	Minimizing a regular minsum function
	Minimizing the number of tardy jobs
	Minimizing total weighted completion time
	Minimizing maximum lateness and maximum cost

	The bounded model
	Minimizing total completion time
	Restricted number of batches

	Single batching machine
	Total weighted completion time
	Maximum lateness
	Weighted number of late jobs
	Total weighted tardiness

	Parallel batching machines
	Maximum lateness
	Number of tardy jobs
	Heuristic algorithms
	Machine learning techniques applied to parameter setting in scheduling heuristics
	Application of the two techniques for setting the look ahead parameter in the BATC-rule

	Shop problems with batching machines

	Conclusions
	Bibliography

