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Abstract 
 

The Magnetotelluric (MT) method is a passive geophysical technique used to study the Earth's 

subsurface, by measuring variations in natural electromagnetic fields.  In fact, from this geophysical 

method is possible to measure electric and magnetic field of the earth due to natural telluric 

currents, and from these measurements an apparent resistivity curve as a function of frequency is 

obtained. The apparent resistivity of a multi-layered subsurface reflects at each depth the impact of 

a sequence of layers with varying resistivities above the measurement point.  

Through inversion processes is possible to estimate the resistivity distribution in the subsurface 

starting from apparent resistivity curves, but these processes are characterized by a series of 

limitations: non-uniqueness of solutions, non-linearity, etc.  

This Thesis is a prosecution of the work done by Calderon Hernandez O., 2023 [15] , who described 

an alternative method to inversion, for rescaling 1D MT apparent resistivity data directly into 

layered subsurface resistivity models, using a relationship called depth/pseudo-depth rescaling 

function. To obtain the rescaling function a resistivity model relevant to the data is needed, and if 

the rescaling function is known for a specific sounding it can be used to rescale other sounding 

provided that the data are “similar enough” to those used to estimate the rescaling function. 

The added value of this study lies in applying clustering algorithms (the three employed are k-means, 

CURE, and OPTICS) to the apparent resistivity data, trying to reduce the number of rescaling 

functions needed (and therefore the number of resistivity models required through inversion 

processes) for the rescaling process, using one rescaling function for each cluster.  

In particular, clustering algorithms were employed in a multidimensional space, testing as clustering 

criteria, combinations of data patterns, related to a physical meaning, that describe the apparent 

resistivity curves.  

In the over 30 tests performed on randomly generated synthetic data, various iterations were 

carried out on Phyton scripts to determine the most effective clustering algorithm, and the best 

combination of parameters. The clustering algorithms and the parameters were evaluated by 

computing the error between the obtained rescaled models and the true models.  

The findings on synthetic data showed the benefit of clustering, in fact, it emerged that knowing 

less than 5% of resistivity models in a dataset, and applying the rescaling process using one 

depth/pseudo-depth rescaling function per cluster, yields very low errors (avg. error <5%) compared 

to rescaling all the data using a random model without considering clustering processes (avg. error 

>20%). 

Once the conditions were defined, this model was also tested on a real dataset (COPROD2) 

consisting of 35 apparent resistivity data. After clustering the data and rescaling them using a single 

'reference' depth/pseudo-depth rescaling function per cluster, the results confirmed, with minimum 

computational costs, the overall trend and the presence of the conductive bodies expected from 

the inverted models. 
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Chapter 1 

1. Introduction  
 

 

In geophysics, resistivity is a key factor for studying the subsurface properties of the Earth. Different 

materials (such as rocks, minerals, soils, and fluids) have distinct resistivity values. By measuring 

resistivity variations underground, geophysicists can infer valuable information about the 

composition, structure, and presence of subsurface features like groundwater, mineral deposits, oil, 

gas, and geological formations. In terms of values, as shown in Fig.1, higher resistivities may 

correspond to rocks such as granite, basalt, or quartz, while lower resistivities could indicate the 

presence of shales or clays. 

 

 

 

 

 

 

 

 

 

 

 

 

Since the early 20th century, electromagnetic methods (EM) have been extensively employed for 

subsurface exploration, aiming to map the electromagnetic characteristics of subsurface materials. 

In recent years, EM originally designed for deeper purposes like mining, hydrocarbon exploration, 

or crustal studies have been adapted for shallow applications such as environmental studies or 

geotechnical investigations (Pellerin, 2002) [2]. 

Figure 1 - Electrical resistivity (Ωm) and conductivity (S/m) of different rocks and formations [1] 



12 

The most commonly used techniques for obtaining underground resistivity models, starting from 

geophysical data, are inversion processes. By utilizing data acquired through diverse EM resistivity 

measurement methods such as Magnetotelluric (MT), Electrical Resistivity Tomography (ERT), and 

other geophysical surveys, inversion processes aim to reconstruct resistivity models of the 

subsurface, by achieving the best possible match (minimum misfit) between observed and 

simulated resistivity data. 

However, inversion processes are characterized by some limitations: 

→ Non-uniqueness: There are multiple geological models that can explain the observed data 
equally well, leading to non-unique solutions. 

→ Non-linearity: Many underlying geological processes may be nonlinear, making data 
inversion challenging and requiring the use of complex iterative algorithms. 

→ Computational complexity: Some inversion algorithms may require significant 
computational resources and long computation times, especially when dealing with large 
datasets or complex models. 

 

In recent years, there has been ongoing research into new techniques aimed at directly estimating 

geological models of the subsurface, starting from the measurements and bypassing the need for 

an inversion process. For instance, Florio (2018)[3] introduced a method to determine the depth of 

the basement by utilizing gravity or pseudo-gravity measurements, employing a linear iterative 

rescaling approach. Another example, is the one proposed by Socco et al. (2017) [4], a methodology 

that directly extract time average body waves velocity models of the subsurface starting from DCs 

of surface waves by applying a relationship between the surface waves wavelength and the 

investigation depth of the time-average velocity model. 

Based on these examples, the main idea of this Thesis is to find an alternative method to inversion 

processes, minimizing their contribution in obtaining underground resistivity models, starting from 

MT data. 

 

Indeed, this study will describe a methodology, that includes: 

→ Rescaling apparent resistivity data into resistivity models using a relationship between the 
depth of the models and the pseudo-depth of the apparent data (depth/pseudo-depth 
rescaling function), and  

→ Clustering apparent resistivity data based on mathematical parameters, in order to rescale 
an entire dataset into resistivity models using a limited number of rescaling functions (one 
per cluster), and thus reduce the needed known resistivity models, which have to be 
provided from inversion processes. 

 

The layout of the thesis is structured as follows: 

→ Chapter 2: In Chapter 2, the physics underlying the Magnetotelluric method will be 
described. It starts from the Maxwell/Heltmoltz equations and progresses to the formula for 
apparent resistivity for MT and that of pseudo-depth (through a data transformation of the 
frequency called the Niblett-Bostick method). Subsequently, a study developed by Calderon 
Hernandez et al. (2023) [15], which explains the theory of rescaling resistivity data into 
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models without the need for inversion, will be presented, and the results obtained from a 
synthetic test to understand the validity and limitations of the research will be shown. 
 

→ Chapter 3: Subsequently, in Chapter 3, the theory of clustering will be explained in detail. It 
includes a general explanation of the three major categories and then, in particular, a 
description of the three clustering algorithms (one per category) that have been used in the 
project. 
 

→ Chapter 4: Chapter 4 will discuss the methodology employed in the development of the 
project. This will be explained through synthetic data examples, encompassing the 
generation of synthetic 1D models, the computing of apparent resistivity data, the 
explanation of the clustering criteria and the clustering methodology, and the cross-rescaling 
of the clustered data to assess the quality of clustering results, investigating the best 
combination of criteria and the optimal algorithm. 
 

→ Chapter 5: In Chapter 5, all the main final results derived from the application of this 
methodology will be presented. These include the final outcomes, so the rescaled models, 
obtained from two synthetic datasets (200 and 1000 data), and in the end, those obtained 
from a real dataset. For the real ones, a comparison will also be made with models produced 
by an inversion to highlight the potential and validity of the model for future studies. 
 

→ In Chapter 6, all the conclusions and findings from this thesis work will be summarized. 
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Chapter 2 

2. Rescaling MT Apparent Resistivity Data 
 

 

This chapter aims to go deeply into resistivity as a central concept in geophysics. It will explore first 

the fundamental principles of the apparent resistivity and the Magnetotelluric (MT) method 

employed for its measurement. Furthermore, a research to obtain geoelectrical models of the 

subsurface from apparent resistivity curves, through the application of a depth/pseudo-depth 

rescaling function, will be outlined. As will be explained, this function is the relationship between 

the depth of the cumulative resistance and the depth of the apparent resistance. In the end to 

reduce the number of rescaling functions needed, clustering techniques will be introduced, and how 

clustering could be implemented to improve this work will be discussed. 

 

2.1 Apparent Resistivity and MT 

The apparent resistivity (in a multi-layer scenario) reflects, at each point in the subsurface,  the 

impact of a sequence of layers with varying resistivities above the measurement point. It can be 

directly calculated from the ground-acquired data and, “since apparent resistivity is a normalizing 

procedure with physical significance” [5], it is possible to formulate new definitions based on the 

methodology employed for data acquisition. 

The apparent resistivity curves used in this study are derived from the Magnetotelluric (MT) 

method. The MT method is a passive electromagnetic (EM) exploration technique, that records 

orthogonal components of both electric and magnetic fields on the Earth's surface. [6] 

As illustrated in Fig.2, above the 1 Hz threshold, MT fields largely originate from thunderstorms 

across the globe, emitting fields irradiated across large distances by lightning. Below the 1 Hz range, 

the majority of the signal arises from current systems within the magnetosphere induced by solar 

activity. 

The necessary instrumentation for conducting these measurements includes magnetometers 

designed for the relevant frequency range, sets of electrodes positioned at appropriate intervals to 

detect variations in the electric field, as well as amplifiers, filters, and digital recording and 

processing systems that enable the signals to be captured and analysed. The method allows to 

explore various depths, from 0 to tens of km, without the need for artificial power sources and with 

minimal environmental impact. [7] 
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To obtain an equation for apparent resistivity in the Magnetotelluric method, we have to start with 

Maxwell's theory, considering the propagation of plane waves (like those produced by solar activity 

in MT) within a medium. 

In particular the starting point are the vector Heltmoltz equations for the electric (E) and magnetic 

(H) fields (Eq. 1 and 2), that are constructed from the Faraday’s law and the Ampere-Maxwell one. 

[8] 

∇2𝐄 +  k2𝐄 = 0                                                                   (1) 

∇2𝐇 +  k2𝐇 = 0                                                                  (2) 

where k is the wavenumber (m-1). These equations are simplified according to D. J. Griffiths, 1999 

[9], which explains that the EM fields induced by plane waves are transversed to the direction of 

propagation, so xy is the polarisation plane. For these conditions a generical solution can be 

obtained for both E and H (Eq. 3 and 4),: 

𝐄 = 𝐄𝟎
−ei(kz−ωt) + 𝐄𝟎

+e−i(kz+ωt)                                                  (3) 

𝐇 = 𝐇𝟎
−ei(kz−ωt) + 𝐇𝟎

+e−i(kz+ωt)                                                 (4) 

From this solutions, applying boundary conditions (such as E(z → −∞, ω) = 0 and E(z = 0, ω) =

E0) and defining the wavenumber as: 

k =  α − iβ                                                                      (5) 

Is possible to derive these solutions for E and H (Eq. 6 and 7): 

𝐄 = 𝐄𝟎e𝛽𝑧ei(𝛼z−ωt)                                                              (6) 

Figure 2 - MT method, natural sources of EM fields: high-frequency signals (>1 Hz) from thunderstorms, or low-frequency 
(<1 Hz) from solar wind activity. [6] 
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𝐇 = 𝐇𝟎e𝛽𝑧ei(𝛼z−ωt)                                                             (7) 

In both of the previous expressions, the second part characterizes a simple harmonic motion with 

its own phase shift, where the real part of the wavenumber 𝛼, “determines the wavelength and the 

velocity of the plane wave”[8]. Instead the first one, includes the attenuation factor 𝛽 of the 

electromagnetic wave. [10]  Through this factor, it is possible to define the depth at which the wave 

will be attenuated by a factor 1/e. This distance is called the skin depth and its quasi-static 

approximation (ϵω << σ, 1/e=0.369) is defined as follows: 

δ =  
1

𝛽 
=  √

2

𝜔μσ
                                                               (8) 

where σ (S/m)  is the conductivity and μ (H/m) is the permeability. 

Then, from Eq. 6 and 7, by applying a quasi-static approximation, and knowing that the surface 

impedance Zxy (Ω) is defined as the ratio between the horizontal electric field, Ex, and the orthogonal 

horizontal magnetic field Hy[8]: 

Zxy =  
𝐄𝐱

𝐇𝐲
                                                                             (9) 

the apparent resistivity ρapp (Ω⋅m) for MT is defined as the ratio between the square of the surface 

impedance (in absolute value), and the product between the angular frequency 𝜔 (s-1) and the 

magnetic constant μ0 (4π×10 −7) (H/m), that is the permeability of free space [11][12]: 

ρApp =  
|Zxy|

2

ωμ0
                                                                     (10) 

 

The measuring domain for which apparent resistivity data are acquired is frequency, but starting 

from Eq. 8 and using the approach known as Niblett transformation (1/e=0.5), which directly 

estimates a point in depth for a given measured apparent resistivity data as function of the 

measuring domain, is possible to move into depth domain using the concept of pseudo-depth z̅(f), 

that is defined as [13]: 

z̅ =  √
ρApp(f)

ωμ0
                                                                (11)                                          

The simplest approach for MT surveying is to invert individual sounding using a 1D layered resistivity 

model as reference of the subsurface resistivity distribution. Even though 2D and 3D inversion 

approaches are available (like the work conducted by Jones, A., G., 1993 [14]), 1D inversion is often 

used to quickly generate initial models for further 2D/3D refinements. In those cases where the 

subsurface can be reasonably described as a layered system and the sounding spatial density is low, 

1D surveys might be an acceptable approximation. 1D inversion is highly non linear and many 

methods have been envisaged in the past decades to transform the apparent resistivity data in proxy 

of 1D models without inverting the data. 

One of these concerns the rescaling of apparent resistivity data into geoelectrical models without 

the need for inversion, and it will be described below. 
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2.2 Data rescaling into models 

Following the research of Calderon Hernandez et al. (2023) [15] for MT data, it is possible “to 

transform the data measured from a resistivity survey directly into a model, developing a rescaling 

function, using a 1D cumulative resistance model”. 

 

Instead of considering a layered medium and trying to derive local parameters (resistivity and layer 

thickness) through inversion, this method, aiming to find a relationship between measured data and 

models, considers cumulative resistivity models that can be associated with apparent resistivity data  

(since they are also cumulative). This conversion process of layered resistivity models into 

cumulative resistivity models is done using the concept of equivalent layers, that is, the method of 

converting multiple horizontal layers into a single effective layer that exhibits a uniform resistivity 

value[15]. It is explained by the following equation: 

ρeq =  √
T

S
                                                                            (12) 

where T (Ω⋅m2) is the transverse unit resistance and S (Ω-1) is known as longitudinal unit 

conductance, defined by: 

 

T =  ρ1z1 +ρ2z2 + ⋯ +ρnzn  =  ∑ ρizi
n
i=1                                           (13) 

S =  
z1

ρ1

+
z2

ρ2

+. . . +
zn

ρn

= ∑
zi

ρi

n
i=1                                                        (14)                  

 
By using Eq.12 a cumulative resistivity model is obtained from a layered one. In Fig. 3 are shown, 

the acquired apparent resistivity data (in green) as a function of pseudo-depth, the stratified model 

obtained through inversion (in blue), and the cumulative model obtained from the layered one (in 

orange). 

 

 

 

 

 

 

 

 

 

 

Model 

 
relationshi
p is 
obtained 
between 
the depth 
of the 
model 
cumulative 
resistance 
and the 
pseudo-
depth of 
the data, 
for a given 
fixed value 
of 

Cumulative Model 

Data 

Figure 3 - Comparison between cumulative models (orange) and measured data (green) in  resistivity domain. In blue 
are also shown the 1D layered models from which the cumulative are computed. Models are displayed as functions of 
depth z(f) while data of pseudo-depth 𝑧̅(f). 
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From a physical point of view, these cumulative resistivity models incorporate the cumulative effect 

of all the layers above a given point in depth, showing the trend of resistivity similarly to how it is 

done by geophysical measurements, instead of the typical layered models used to describe the 

subsurface [15]. 

 

At this point, to find a function that allows transforming the data into models, it is necessary to 

establish a relationship between the depth at which the models (cumulative) are defined and the 

pseudo-depth of the apparent data. However, this cannot be done in the resistivity domain because 

one point in resistivity can be related to more than one point in depth (non-unique relationship). 

For this purpose, both the model and the data are transformed into the cumulative resistance 

domain, ensuring that the uniqueness condition is met (whereby each cumulative resistance value 

corresponds to one and only one pair of depth/pseudo-depth values). Furthermore, as illustrated in 

Fig. 3, in the resistivity domain the two trends (of the cumulative model and measured data) follow 

a similar path (being the cumulative resistivity model closely aligned with the physical phenomena), 

but discrepancies are significant. 

However, it is found that in resistance domain discrepancies between cumulative model and data 

are lower (Fig. 4). The transition from the cumulative resistivity data (Ω⋅m) to the cumulative 

resistance ones (Ω⋅m2) necessitates an integration process: 

 

R(z) =  ∫ ρ
z

0
(z)dz                                                           (15) 

 

 

 

 

 

 

 

 

 

 

 

In the resistance domain, the gap between depth and pseudo-depth is a ∆z for a given value of 

resistance. In the left plot of Fig. 5, two ∆z examples are depicted for two different cumulative 

resistance values. These ∆z are defined, for each value of cumulative resistance, by: 

Model 

Cumulative Model 

Data 

Figure 4 - Comparison between cumulative models (orange) and measured data (green) in resistance domain. As 
illustrated in resistance domain discrepancies between data and cumulative models are much lower than in resistivity 
domain. In blue are also shown the layered models from which the cumulative are computed. Models are displayed as 
functions of depth z(f) while data of pseudo-depth 𝑧̅(f). 
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Δz(R)  =  z(R) − z(Rapp)             when R ≈  Rapp                                (16) 

 

By approximating the ∆z function to a polynomial regression, a rescaling function that enables the 

transformation of data into models in the resistance domain is retrieved (Fig.5 right). 

 

 

 

 

By applying the depth/pseudo-depth rescaling function to the apparent cumulative resistance data, 

it is possible to retrieve cumulative models defined as rescaled models. After that resistance data 

have been rescaled, next step is to apply a numerical derivative to pass from resistance to resistivity 

domain, obtaining rescaled apparent resistivity cumulative models (Fig. 6 left). 

Last step is to pass from cumulative to layered models using the inverse formula of Eq.12, to retrieve 

1D layered resistivity models (Fig. 6 right)[15]. 

 

 

 

Figure 5 - Depth/pseudo-depth rescaling function (right). The relationship is obtained between the depth of the model 
cumulative resistance and the pseudo-depth of the data, for a given fixed value of resistance. In the left plot are shown 
two examples (∆z1 and ∆z2, respectively for 2 and 3.5 Ω⋅m2)  that explain how the relationship is generated 

 

 

Figure 18 – Cumulative (left plot) and layered (right plot) rescaled resistivity curves obtained by applying the depth-pseudo depth 
rescaling function to measured dataFigure 19 - Depth-pseudo depth rescaling function (right). The relationship is obtained between 
the depth of the model cumulative resistance and the pseudo-depth of the data, for a given fixed value of resistance. In the left plot 
are shown two examples (∆z1 and ∆z2, respectively for 2 and 3.5 Ω⋅m2)  that explain how the relationship is generated 

 

 

Figure 20 – Cumulative (left plot) and layered (right plot) rescaled resistivity curves obtained by applying the depth-pseudo depth 
rescaling function to measured data 

 

Figure 21- Partitional Clustering example, k-means application where 3 different labels are applied to unlabelled data and one 
centroid is defined for each cluster.[13]Figure 22 – Cumulative (left plot) and layered (right plot) rescaled resistivity curves obtained 
by applying the depth-pseudo depth rescaling function to measured dataFigure 23 - Depth-pseudo depth rescaling function (right). 
The relationship is obtained between the depth of the model cumulative resistance and the pseudo-depth of the data, for a given 
fixed value of resistance. In the left plot are shown two examples (∆z1 and ∆z2, respectively for 2 and 3.5 Ω⋅m2)  that explain how the 
relationship is generated 

 

 

Figure 24 – Cumulative (left plot) and layered (right plot) rescaled resistivity curves obtained by applying the depth-pseudo depth 
rescaling function to measured dataFigure 25 - Depth-pseudo depth rescaling function (right). The relationship is obtained between 
the depth of the model cumulative resistance and the pseudo-depth of the data, for a given fixed value of resistance. In the left plot 
are shown two examples (∆z1 and ∆z2, respectively for 2 and 3.5 Ω⋅m2)  that explain how the relationship is generated 

 

 

Figure 26 – Cumulative (left plot) and layered (right plot) rescaled resistivity curves obtained by applying the depth-pseudo depth 

Figure 6 - Cumulative (left plot) and layered (right plot) rescaled resistivity models obtained by applying the 
depth/pseudo-depth rescaling function to measured data. 
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As visible in the right plot of Fig.6, the layered 1D resistivity model (blue line) and the layered 

resistivity model obtained by rescaling apparent resistivity data (pink curve) have a similar trend, 

since the rescaled layered models obtained are smoother versions of the 1D stratified models. 

 

2.2.1 Applicability and limits of the rescaling method 

Once the depth/pseudo-depth rescaling function approach is described, the next aim is make this 

method feasible by using the rescaling function obtained for one model to rescale an entire dataset.  

This means having a dataset where, for each apparent resistivity curve, there is a corresponding 

resistivity model, then the depth-pseudo-depth rescaling function is derived from one ‘reference’ 

selected model, and this rescaling function is applied to all experimental curves to retrieve the whole 

set of models without inversion. 

To do so, a test was performed simulating 20 synthetic MT data obtained from randomly generated 

stratified models. To convert 1D resistivity models to MT apparent resistivity data, the Python 

routine "empymod" forward modelling (whose functioning will be explained in Chapter 4) by 

Werthmüller, 2017 [16] was used. In Fig.7 both 1D layered models generated and apparent data 

simulated are displayed with same colours. 

 

 

 

To conduct an extensive test, after generating the 1D resistivity models, a depth/pseudo-depth 

rescaling function for each model/data was obtained. After that multiple iterations were performed, 

considering in each iteration a single rescaling function as the 'reference' one of the dataset, and 

using it to rescale the entire dataset into models. 

In Fig. 8 are represented the depth/pseudo-depth rescaling functions obtained for each data/model 

and used one at a time to rescale the data. 

 

To test the efficiency of the method, since the data are synthetic and therefore the generated 

models are true, the rescaled models obtained at each iteration were compared with the true ones. 

This was done by calculating the error between true models and those estimated by the method for 

Figure 7 - 20 apparent resistivity curves dataset (right) defined as a function of pseudo-depth, obtained by empymod 
routine from the 20 randomly generated models (left). 
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each of the rescaling functions. This error is determined using a Python function (error_depth) that 

calculates (in the cumulative resistance domain) the difference between the rescaled models and 

the true ones at each depth, and divides it by the value of the true model, producing a measure of 

error that is then converted into a percentage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At this point, it is possible to represent the errors found in the form of box-plots (Fig. 9), where each 

box represents the errors produced by each rescaling function, it is delimited by the limit errors, and 

in each of them, is represented the average error value produced by the rescaling with an orange 

horizontal line. 

 

 

 

As visible from the graph, in a small dataset consisting of 20 curves (Fig. 7), huge errors can be 

reached, touching 250% (using model 17 as a ‘reference model’ to rescale the whole dataset), with 

an average error nearing 18%. From this conducted test, the limitations of the rescaling method 

emerged, indeed obtaining good results depends on the selection of the reference model used to 

obtain the reference depth/pseudo-depth rescaling function and then rescale the entire dataset.  

Figure 9 - Error box plot computed by cross-rescaling the whole dataset using a single random depth/pseudo-depth 
rescaling function. Avg. error is around 18%, with a peak value of 250% (model 17). 

Figure 8 - Set of 20 depth/pseudo-depth rescaling functions, related to the data/models of Fig.7. 
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As shown in Fig. 9, choosing models like No. 8 or No. 15 yields better results in terms of error 

(average error around 1/2%), but choosing others like No. 13 or No. 17 leads to significantly worse 

results with average errors above 20%. Moreover, considering that these errors were obtained with 

only 20 curves, huge errors are expected from a larger dataset. 

To this end, the added value of this Thesis is to find a method to use, considering a large dataset of 

apparent resistivity curves, only a small amount (since only with one is not feasible) of 

depth/pseudo-depth rescaling functions to rescale the whole dataset. This means that a large 

amount of apparent resistivity curves could be rescaled also knowing a limited number of models 

(obtained a priori or through inversion).  

Clustering apparent resistivity curves, in fact, could represents the solution to this problem, trying 

to use one single ‘reference’ depth/pseudo-depth rescaling function for each single cluster. 

Clustering methods are explained in detail in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

 

 

Chapter 3 

3. Clustering methods 
 

 

The primary focus of this study revolves around clustering apparent resistivity curves based on their  

mathematical properties (such as maxima, minima, gradients etc. that will be explained in the 

following chapter), to employ a single ‘reference’ rescaling function for depth/pseudo-depth (where 

depth represents model depth and pseudo-depth corresponds to the data) for each cluster. This 

approach is pursued to use these set of functions to rescale the apparent resistivity data acquired 

from MT surveys, and to obtain geoelectrical models of the subsurface for an entire dataset while 

having access to a limited number of models.  

The use of a single function per cluster is strategic, as it helps to reduce the requisite number of 

models as happens in real-life scenarios. In these cases, available models, can be obtained through 

inversion processes, but their limitations are one of the reasons for which this work was designed. 

Clustering is a set of techniques that organize data into distinct groups called clusters. These clusters 

are formed by grouping together data elements that have similar characteristics or features of 

interest (which can be defined as similarities), with each other than with elements in different 

clusters [17]. Based on this definition, high within-cluster similarity and low inter-cluster similarity 

are criteria to assess the quality of the clustering. Dissimilarities and similarities are evaluated by 

considering the feature values that describe the objects, frequently utilizing distance metrics. [18]  

Clustering is applied to many fields: from machine learning to biology, from social sciences to finance 

and to geophysical data, facilitating resource exploration. 

There are three main categories of clustering algorithms, and each of them is characterized by 

different criteria to define a cluster and its own advantages or disadvantages. These categories are: 

 

→ Partitional Clustering 
→ Hierarchical Clustering 
→ Density-Based Clustering 

 

Among these categories, the most effective clustering method for the dataset in question should be 

determined by considering aspects such as the nature of the clusters, dataset attributes, the 

presence of outliers, and the quantity of data points.  

These three categories will be analysed in detail in the following sections. For each of them, the 

methodology used during the testing phase of the project will be outlined. 
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3.1 Partitional Clustering 

Partitional clustering is the most widely used category of clustering, as it can be applied to various 

types of data across different domains, such as multidimensional data, which includes cases like 

ours where various mathematical parameters are considered for creating clusters of apparent 

resistivity data, with each parameter adding an extra dimension.  

In this category data items are divided into distinct groups that do not overlap, because by definition 

“no object can be a member of more than one cluster, and every cluster must have at least one 

object”. [17] So, given a set of unlabelled data, a label is assigned to each data (Fig.10) and the total 

number of labels must be decided by the user. In fact, a constraint of this category is that, the  

number of clusters ‘k’ (set a priori), must be found by the algorithm through an iterative process 

based on the distance to a centroid. Algorithms that belong to that category are non-deterministic 

so they could give different results with same data. An example and also the most used clustering 

algorithm is K-means. 

 
 
 
 
 
 
 
 

 

3.1.1 K-means 

The K-means algorithm starts with the user specifying the number 'k' of clusters to identify. A 

centroid is defined for each of these clusters, initially positioned randomly within the dataset, and  

each data point is then assigned to the closest centroid. [20] After that, the algorithm automatically 

calculates the SSE (Sum of the Squared Euclidean distance) summing the contributions of each point 

to its closest centroid. The SSE between two points (x and y) in a n-dimensional space is defined as: 
 

SSE(x,y) = ∑ (xi − yi)
2n

i=1                                                          (17) 
 

This distance is a measure of an error and have to be minimized through several automatic iteration 

steps by the algorithm. At each step, centroids are moved randomly in the dataset trying to obtain 

at each iteration a lower SSE value, recalculating it with Eq.17 till ‘centroids convergence’ that 

happens for the lowest value of SSE, and, achieving this condition final clusters are obtained.[17] 

The entire algorithm overview is displayed in Fig.11. 

Figure 10 - Partitional Clustering example, k-means application where 3 different labels are applied to unlabelled data 
and one centroid is defined for each cluster.[19] 
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Advantages of K-Means: 

→ Simplicity and speed: K-Means is simple, easy to implement, and computationally efficient. 

It works well even with spherical clusters. 

→ Versatility: It is versatile and can be applied to a wide range of data types and clustering 

problems. 

→ Guaranteed solution: K-Means always guarantees convergence to a solution (‘centroids 

convergence’), also if data items are totally different and so tough to be clustered together. 

 

Disadvantages of K-Means: 

→ Sensitivity to initial centroids: It is highly sensitive to the initial random placement of 

centroids by the algorithm (that cannot be modified by the user) which might result in 

different outcomes for different initializations (non-deterministic). 

→ Dependence on 'k': The choice of the number of clusters (k) can significantly impact the 

clustering result. Selecting an incorrect 'k' value might lead to poor clustering. 

→ Vulnerability to outliers: Outliers in the dataset can influence the initial position of centroids, 

leading to suboptimal clusters. 

→ Inability to handle complex data: K-Means struggles with non-linear clusters, clusters of 

different sizes, and varying densities. It assumes clusters to be spherical, which might not 

reflect the actual data distribution accurately. 

Figure 11 - K-means algorithm overview applied on a dataset formed by 50 items, 9 iteration steps from the first random 
centroids allocation to centroids convergence. The algorithm moves the centroids and recalculates the SSE at each 
step.[22] 
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3.1.2 Determination of the best ‘k’ 

After understanding how k-means works and its pros and cons, it is important to focus on the 

number of clusters to set before running the algorithm. There are two practical methods that could 

be performed in series to evaluate the best ‘k’ for the analysed dataset: 

 

→ Elbow method: In this method the SSE will be measured for an increasing k, so, multiple 
iterations of the k-means algorithm, incrementing 'k' with each run, and recalculating the 
SSE at each step, have to be performed. During the process, as the number of clusters 
increases, the SSE will decrease. However, there will be a specific point on the SSE vs number 
of clusters curve, known as the "elbow point," where the curve starts to bend (as illustrated 
in Fig.12, where at k=3 the gradient of the curve changes noticeably). This point represents 
a balance between SSE and the optimal number of clusters, denoted as 'k'. The value of 'k' 
corresponding to this point is selected as the optimal number of clusters. [17] 

 

 

 

 

 

 

 

 

                                              

 

 

→ Silhouette coefficient: An alternative methodology to the elbow is the determination of the 
silhouette coefficient. It is an average value of the entire dataset, calculated based on two 
principles; 1) how close a point is to other points in the same cluster (cohesion)  and 2) how 
far it is to points that belong to the others (separation). It is defined for a generic point ‘i’ as: 
 

S(i) =  
b(i)−a(i)

max [a(i),b(i)]
                                                         (18) 

 
where ‘a’ corresponds to the mean distance between 'i' and all other data points within the 
same cluster, and ‘b’ the mean distance between ‘i’ and all the other data points that belong 
to other clusters. It goes from -1 (worst value) and 1 (best value), and it is recalculated, as 
the elbow, incrementing the number of clusters, and the optimal value of ‘k’ is found at the 
highest silhouette coefficient [17][23]. In Fig.13, there is an example applied to the same 
dataset of Fig.12 that shows the same result of the elbow method, k=3. 
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Figure 121 - 
Elbow 

method 
applied to a 

dataset 
formed by 10 
items, ‘elbow 
point’ found 
for k=3 [11] 

 

Figure 122 

- Elbow 

method 

Figure 12 - Elbow method applied to a dataset formed by 10 items, the ‘elbow point’ is found for k=3 [13] 

 

Figure 132 - Elbow method applied to a dataset formed by 10 items, ‘elbow point’ found for k=3 [11] 

 

Figure 133 - Elbow method applied to a dataset formed by 10 items, ‘elbow point’ found for k=3 [11] 

 

Figure 134 - Elbow method applied to a dataset formed by 10 items, ‘elbow point’ found for k=3 [11] 

 

Figure 135 - Elbow method applied to a dataset formed by 10 items, ‘elbow point’ found for k=3 [11] 

 

Figure 136 - Elbow method applied to a dataset formed by 10 items, ‘elbow point’ found for k=3 [11] 

 

Figure 137 - Elbow method applied to a dataset formed by 10 items, ‘elbow point’ found for k=3 [11] 

 

Figure 138 - Elbow method applied to a dataset formed by 10 items, ‘elbow point’ found for k=3 [11] 
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3.2 Hierarchical Clustering 

Hierarchical Clustering is considered one of the most suitable clustering algorithms for handling large  

datasets, particularly when dealing with hundreds or thousands of data points. It excels over 

Partitional Clustering in outlier detection, identifying data that do not conform to any specific cluster 

and are incorrectly assigned to one.  

In this second category, cluster assignments are determined by constructing a Hierarchical structure 

or tree-like representation of the data, also known as ‘dendrogram’, for which the X-axis represents 

individual objects that remain distinct, while the Y-axis indicates the distance at which clusters 

combine. There are two approaches as illustrated in Fig.14: Agglomerative (or bottom-up) and 

Divisive (or top-down). In the agglomerative approach, each data point starts as its own cluster and 

gradually merges at each step until a single cluster is formed, while in the divisive approach, there is 

the opposite process starting with a single large cluster and dividing it at each step. [21][24] The user 

must also specify the desired number of clusters 'k' to obtain, so the level at which cut horizontally 

the ‘dendrogram’. An example of this category is CURE. 

 
 
 
 
 
 
 
 
 
 
 

Figure 13 - Silhouette coefficient calculated for the same dataset of elbow method, as expected, the highest score is 
obtained for k=3 [13] 

 

Figure 158- Hierarchical Clustering, representation of the "dendrogram". Agglomerative approach from the bottom to the top and 
Divisive approach from the top to the bottom. Dashed lines represent the ‘k’ number of clusters at which cut the dendrogram (in 
this case k=4) [18]Figure 159 - Silhouette coefficient calculated for the same dataset of elbow method, as expected, the highest 
score is obtained for k=3 [1] 

 

Figure 160- Hierarchical Clustering, representation of the "dendrogram". Agglomerative approach from the bottom to the top and 
Divisive approach from the top to the bottom. Dashed lines represent the ‘k’ number of clusters at which cut the dendrogram (in 
this case k=4) [18] 

 

 

 

Figure 161 - CURE algorithm overview, (a) random sample of data, (b) Data are partitioned and partially clustered (dashed lines), 
representative points are marked with a ‘+’, (c) The partial clusters are merged following the ‘dmin’ process and at each merging 
step, rep. points are shrunk towards the centroid of a fraction ‘α’, (d) final clusters and outliers obtained.[19]Figure 162- 
Hierarchical Clustering, representation of the "dendrogram". Agglomerative approach from the bottom to the top and Divisive 
approach from the top to the bottom. Dashed lines represent the ‘k’ number of clusters at which cut the dendrogram (in this case 
k=4) [18]Figure 163 - Silhouette coefficient calculated for the same dataset of elbow method, as expected, the highest score is 
obtained for k=3 [1] 

 

Figure 164- Hierarchical Clustering, representation of the "dendrogram". Agglomerative approach from the bottom to the top and 
Divisive approach from the top to the bottom. Dashed lines represent the ‘k’ number of clusters at which cut the dendrogram (in 
this case k=4) [18]Figure 165 - Silhouette coefficient calculated for the same dataset of elbow method, as expected, the highest 
score is obtained for k=3 [1] 

 

Figure 166- Hierarchical Clustering, representation of the "dendrogram". Agglomerative approach from the bottom to the top and 
Divisive approach from the top to the bottom. Dashed lines represent the ‘k’ number of clusters at which cut the dendrogram (in 
this case k=4) [18] 

 

 

 

Figure 167 - CURE algorithm overview, (a) random sample of data, (b) Data are partitioned and partially clustered (dashed lines), 
representative points are marked with a ‘+’, (c) The partial clusters are merged following the ‘dmin’ process and at each merging 
step, rep. points are shrunk towards the centroid of a fraction ‘α’, (d) final clusters and outliers obtained.[19]Figure 168- 
Hierarchical Clustering, representation of the "dendrogram". Agglomerative approach from the bottom to the top and Divisive 

Figure 14 - Hierarchical Clustering, representation of the "dendrogram". Agglomerative approach from the bottom to 
the top and Divisive approach from the top to the bottom. Dashed lines represent the ‘k’ number of clusters at which cut 
the dendrogram (in this case k=4) [25] 
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Figure 140 - 
Silhouette coefficient 
calculated for the 
same dataset of 
elbow method, as 
expected, the highest 
score is obtained for 
k=3 [1] 
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3.2.1 CURE 

CURE stands for Clustering Using REpresentatives and it is a Hierarchical Clustering algorithm that 

uses partitioning. The first step of CURE is to pick random samples (partitioning) in the dataset, and 

form first initial clusters. At this point, a number ‘c’ of scattered points (as dispersed as possible) are 

selected for each cluster to represent them. These points are then shrunk towards the centroid (of 

the cluster for which they are representatives) of a fraction ‘α’ (usually 20%). [22] 

The distance between each representative point and the corresponding centroid is defined as 

‘dmin’, and this parameter is used for the hierarchical merging. Indeed, each data point that does 

not already belong to a cluster and, has a d<dmin with ‘d’ (distance from a representative point), is 

merged into the cluster. Following that methodology, two separated clusters could be merged if 

their related representative points have d<dmin. At each merging step, new points are selected as 

representative points, and the ‘dmin process’ is repeated. [27][28]  

 

 

 

       

 

 

 

 

 

 

 

In Fig.15 are shown the 4 phases of CURE, the initial samples picking, the selection of the 

representative points (with the ‘+’), the shrinking, and in the end, the hierarchical merging and the 

final clusters with the outliers.  

 

Advantages of CURE: 

→ Cluster Shape Variability: CURE excels in identifying clusters of various shapes, including non-

spherical ones, unlike algorithms like K-Means which are limited to spherical clusters. 

→ Suitability for Large Datasets: Specifically designed for large datasets, CURE efficiently 

handles and clusters substantial amounts of data. 

→ Outlier Robustness: It exhibits low sensitivity to outliers and possesses the ability to 

effectively identify and handle outliers, which is an added advantage compared to K-Means. 

Figure 15 - CURE algorithm overview, (a) random sample of data, (b) Data are partitioned and partially clustered (dashed 
lines), representative points are marked with a ‘+’, (c) The partial clusters are merged following the ‘dmin’ process and 
at each merging step, rep. points are shrunk towards the centroid of a fraction ‘α’, (d) final clusters and outliers 
obtained.[26]  

 

Figure 202 - CURE algorithm overview, (a) random sample of data, (b) Data are partitioned and partially clustered (dashed lines), 
representative points are marked with a ‘+’, (c) The partial clusters are merged following the ‘dmin’ process and at each merging 
step, rep. points are shrunk towards the centroid of a fraction ‘α’, (d) final clusters and outliers obtained.[19]  

 

Figure 203 - CURE algorithm overview, (a) random sample of data, (b) Data are partitioned and partially clustered (dashed lines), 
representative points are marked with a ‘+’, (c) The partial clusters are merged following the ‘dmin’ process and at each merging 
step, rep. points are shrunk towards the centroid of a fraction ‘α’, (d) final clusters and outliers obtained.[19]  

 

Figure 204 - CURE algorithm overview, (a) random sample of data, (b) Data are partitioned and partially clustered (dashed lines), 
representative points are marked with a ‘+’, (c) The partial clusters are merged following the ‘dmin’ process and at each merging 
step, rep. points are shrunk towards the centroid of a fraction ‘α’, (d) final clusters and outliers obtained.[19]  

 

Figure 205 - CURE algorithm overview, (a) random sample of data, (b) Data are partitioned and partially clustered (dashed lines), 
representative points are marked with a ‘+’, (c) The partial clusters are merged following the ‘dmin’ process and at each merging 
step, rep. points are shrunk towards the centroid of a fraction ‘α’, (d) final clusters and outliers obtained.[19]  

 



29 

Disadvantages of CURE: 

→ Initial sample size and representative points: The performance of CURE can be highly 

influenced by the initial selection of sample size and representative points. 

→ Dependence on 'k': Similar to K-Means, the selection of the number of clusters ('k') is crucial 

and can significantly impact the clustering outcome. 

 

3.3 Density-Based Clustering 

In this third class, clusters are determined by considering the density of data points in a region. 

These groups are identified where there are significant concentrations of data points divided by 

areas with lower density (in which outliers are found) [17]. A notable contrast in comparison to the 

first two categories is that the user must not specify the clusters target ‘k’ but there are other two 

parameters to define, ‘ε’ and ‘MinPts’, to investigate the density of data points: 

 

→ ‘ε' is defined as the radius (or maximum distance) of neighbourhood in which identify 
neighbour points, while  

→ ‘MinPts’ is the minimum number of points required to define a ‘core point’, if they are 
present in its neighbourhood ε.  

The user can choose the MinPts value, starting from a minimum of 3 and increasing it based on the 

dataset size, while, the optimal ε distance can be determined in many different ways, one is by 

investigating the average distances of each point to its MinPts (set by the user) nearest 

neighbours.[29] In this category, points are divided in classes. 

 

→ A point p is a ‘core point’ if there is a number of points (considering p itself) higher or equal 
to MinPts within a distance ε from it (point A in Fig.16), on the other hand,  

→ q is a ‘reachable point’ if it is not a core point, but it is within a distance ε from a core point 
p (points B and C).  

→ In the end, points that are not core points and not even reachable from any core points are 
‘outliers’ (point N)  

The most important rule of this class is that only core points can reach other points and not vice-

versa. Two examples of density-based clustering are, the most widely known DBSCAN ,or its 

upgraded version that will be analysed here (and used during testing): OPTICS.  

DBSCAN (Density-Based Spatial Clustering Application with Noise) is the most used algorithm for 

density-based clustering, and it is based on all the previously explained parameters. In simple terms, 

the algorithm works by examining the ε-neighborhood of a point called p. If it determines that this 

point is a core point, based on user-defined parameters, it assigns the point to a cluster. The 

algorithm then moves on to other points. If another core point is found and grouped in the same 

cluster as the first one, the ε-neighborhood of that cluster expands to include all points reachable 

from the core points in that cluster. The process continues until all points are analyzed, resulting in 

identified clusters and detected outliers. [30][31] 
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3.3.1 OPTICS 

OPTICS, which stands for Ordering Points To Identify the Clustering Structure, is an enhanced and 

more comprehensive version of its predecessor, DBSCAN. The significant advantage of this 

algorithm lies in the fact that the ε does not need to be manually chosen by the user, instead, it is 

dynamically determined by the algorithm. Specifically, each point is associated with a different ε 

value based on the user-defined MinPts parameter. This feature addresses the major limitation of 

DBSCAN, which assumes a fixed ε value for investigating cluster densities and so that completely 

different clusters have same densities, whereas OPTICS dynamically adjusts ε for each point based 

on the specified minPts value and so it can handle different density clusters.[33] 

Moreover, OPTICS introduces the definition of two types of distances: core distance and reachability 

distance.  

→ The ‘core distance’ is the minimum distance at which a point p can be considered a core 
point. If the point is not a core point, this parameter remains undefined.  

→ The ‘reachability distance’ is the minimum distance at which a point q can be considered 
reachable from a core point p. This value cannot be lower than the core distance and remains 
undefined (for the point q with respect to the point p), if for example, the point p is not a 
core point. 

In Fig. 17 is shown an example to better understand the two definitions stated here above. The 

MinPts is set equal to 4 and so the core distance for the point A is equal to d(A,B) being B the 4th 

point to satisfy this condition. On the other hand, analysing reachability distances, the one between 

A and D is just the distance between the two points, while, the reachability distance between A and 

C is equal to the core distance because the distance between two points is lower than the core one.   

CORE POINTS 

REACHABLE POINTS 

OUTLIERS 

MinPts = 4 
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Figure 210 - 

Density-based 

clustering, 

classes of 

points: Core 

points (red), 

reachable 

points (yellow) 

and outliers 

(blue)  [25]CORE 
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Figure 211 - 

Density-based 

clustering, 

classes of 

points: Core 

points (red), 

reachable 

points (yellow) 

and outliers 

(blue)  [25]CORE 

POINTS 

REACHABLE POINTS 

Figure 16 - Density-based clustering, classes of points: Core points (red), reachable points (yellow) and outliers (blue). 
Point A and the other red points are classified as core points because they have a number of points higher or equal then 
MinPts=4 in their distance ε. Points B and C are reachable points because they are included in the ε of a core point, while 
N is an outlier because is not part of both precedent classes. [32] 
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The ultimate goal of OPTICS is to construct reachability plots from which clusters can be extracted. 

These graphs are generated through multiple iterations by rearranging the reachability distances of 

all the points of the dataset with respect to core points.  The algorithm begins with the first iteration 

by randomly selecting a point p, it analyses its ε-neighborhood and, if this point qualifies as a core 

point based on the chosen MinPts value, it calculates its core distance. Subsequently, it computes 

all reachability distances of other points relative to it (which are included in a list), following the 

rules explained earlier and initially setting its reachability distance as undefined.  

If, however, this point is not a core point, the algorithm moves on to another random point q. 

In the subsequent iterations, OPTICS automatically selects the first core point from the list of 

reachability distances obtained in the previous iteration. It then recalculates the reachability 

distances of other points from this core point. If distances shorter than those in the first iteration 

are found, these values are updated with the new ones. The algorithm continues until all points 

have been investigated, and after this, reachability plots are generated rearranging data points 

based on their reachability distances, thus forming valleys. 

After that, clusters are extracted from reachability plots using the Xi method, an automatic threshold 

that detect the steepness of the valleys formed in reachability plots. In Fig. 18 left is displayed an 

example of 3 valleys found by applying the reachability distance methods of OPTICS on a dataset 

composed by 60 items, and on the right are illustrated the 3 extracted clusters [34]. 

 

 

Figure 17 - Core and reachability distances. Core distance for the core point A is equal to d(A,B); Reachability distance 
between (A,D) is equal to the distance between the two points, while, the one between (A,C) is equal to core distance 
(d(A,B) [30] 

MinPts = 4 

Core distance = d(A,B) 

Reachability distance (A,D) = d(A,D) 

Reachability distance (A,C) < Core distance → 

Reachability distance (A,C) = Core distance (=d(A,B)) 

Figure 18 - Reachability plot (left) composed by 3 valleys detected by OPTICS algorithm and the three corresponding 
clusters (right) extracted with the Xi threshold.[30] 
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Advantages of OPTICS clustering: 

→ Parameter-less approach: OPTICS is a parameter-less algorithm, eliminating the need to 

specify the number of clusters ‘k’ and the ‘ε-neighbourhood’ 

→ Robust handling of noise and outliers: It effectively identifies core points and non-core 

points, enabling robust clustering even in the presence of noise and outliers. 

→ Handling varying densities and shapes: In addition to DBSCAN, it can extract clusters of 

varying densities and shapes, making it versatile for different cluster structures. 

 

Disadvantages of OPTICS clustering: 

→ Computational expense and slowness: Can be computationally expensive and slow, 

particularly for large datasets, impacting processing time and, it requires more memory 

compared to DBSCAN. [35] 

 

After analysing in detail the clustering techniques and the three selected examples for each of them 

that were used in the testing phase, the next chapter will focus on the methodology underlying this 

project. Specifically, it will delve into how these algorithms work and what their limitations are when 

dealing with apparent resistivity data. 
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Chapter 4 

4. Methodology 
 

 

This chapter will discuss the methodology employed in the development of the project. This will be 

explained through synthetic data examples, encompassing the generation of synthetic 1D models, 

the computing of apparent resistivity data, the explanation of the clustering criteria and the 

clustering methodology, and the cross-rescaling of the clustered data to assess the quality of 

clustering results, investigating the best combination of criteria and the optimal algorithm. 

 

4.1 Synthetic 1D model and apparent resistivity curves simulation 

The methodology begins with the simulation of synthetic 1D resistivity models, which were used to 

develop the method before applying it to real data (an example of which will be discussed in the 

results chapter). To generate these models, and in the whole project, Python language was used, 

and its Integrated Development Environment (IDE) employed were specifically JupyterLab and 

PyCharm. In approximately 30 tests conducted with synthetic datasets, the initial 1D models were 

randomly generated, starting from 20 models, to 50 (this test will be used as a sample in this chapter 

to explain the method), then ranging up to 200, and finally creating a set of 1000 models, the results 

of which will be discussed in the next chapter. The algorithm was allowed to simulate the models, 

and the only constraints imposed were the intervals to be respected for the three key values: 

frequency, depth, and resistivity. These values are listed in Table 1. 

 

frequency depth resistivity 

100 samples in range  
[1, 104] Hz 

n. of layers = 4 + 1 
(halfspace) 

5 values in range  
[100,3000] Ω⋅m 

 
thickness of each layer 
in range [200,500] m 

 

 

 

After defining the ranges of values for each parameter, the algorithm proceeds with the simulation 

of 1D resistivity models. In Fig. 19, is depicted an example of 50 synthetic layered resistivity models. 

Table 1 - Frequency, depth and resistivity interval values to generate random 1D resistivity models.  
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To convert 1D resistivity models to MT apparent resistivity data, the Python routine "empymod" 

forward modelling by Werthmüller (2017) [16] was used. This routine takes input data such as: 

 

→ Source position used to simulate plane waves, which is positioned at a distance of 100,000 
[km] from the receivers, to emulate the natural currents of the sun. 

→ Model Depth values generated, so layer boundaries 
→ Model Resistivity values generated, both air and subsurface resistivities 
→ Frequency values generated 

 

Through these input data, the routine automatically calculates the values of the horizontal electric 

field (Ex), and orthogonal magnetic field (Hy) measured. These values are then inserted into Eq.9 to 

measure the impedance value Zxy (Ω), which is subsequently used in Eq.10 to determine the 

apparent resistivity values. 

At this point, the apparent resistivity curves could be represented as a function of frequency, but to 

compare them with resistivity models, a domain change is necessary. Through the Niblett-Bostick 

transformation (Eq.11), pseudo-depth values for each curve are obtained. 

In Fig.20 are illustrated apparent resistivity curves obtained with empymod routine from the 50 

randomly generated models of Fig.19. As shown, they are depicted with same colours of the models 

from which are computed.  

 

 

 

Figure 19 - 50 1D resistivity models randomly generated and defined as a function of depth.  
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4.2 Clustering criteria and methodology 

Once the apparent resistivity curves have been obtained, the next step is to divide them into clusters 

considering mathematical parameters as clustering criteria, so requiring that curves within the same 

cluster have similar parameters (or a combination of them). The aim of clustering, is to obtain, in 

the end, a depth/pseudo-depth relationship for each cluster able to rescale all the data cluster into 

models with the lowest possible error. 

The idea for initializing the clustering algorithms is to create a multi-dimensional input matrix that 

contains a set of mathematical features/geometrical parameters (linked to a physical meaning) for 

each apparent resistivity curve. Each parameter added to the matrix will effectively constitute an 

additional dimension, in fact the three tested algorithms, k-means, CURE, and OPTICS, will have to 

work to form clusters of apparent resistivity data operating in a multi-dimensional space. They will 

group, data that have the most similar mathematical parameter values or combination of such 

parameters. 

Several tests and implementation of clustering algorithms were conducted, starting from using all 

parameters together and gradually reducing their number, trying to identify the most significant 

ones that ensure the best clusters. This means finding the ultimate combination of clustering 

parameters, and the best algorithm, that ensures the grouping of depth/pseudo-depth relationships 

that are most similar to each other into the same clusters, and so the minimum error in the cross-

rescaling and direct transformation of data into models.  

The different parameters (or clustering criteria) considered, and their physical meanings, are listed 

hereinafter. 

Figure 20 - 50 apparent resistivity curves dataset, obtained by empymod routine (from the 50 randomly generated 
models of Fig.19) and defined as a function of pseudo-depth 
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4.2.1 Clustering parameters 

The investigated clustering parameters (or criteria) are divided into 3 main categories: 

→ Resistivity values based parameters 
→ Gradient based parameters 
→ Overall trend/tendency of the curve based parameter 

 

1. Resistivity parameters: In this first category, the 8 parameters are mainly related to the 
numerical value of apparent resistivity, and corresponding pseudo-depth, for the different 
feature of interest: 

 

→ Average resistivity and average pseudo-depth: This set of parameters provides a 
comprehensive perspective on the entire curve, reflecting the average values of resistivity 
for the geological materials involved.  
The average resistivity not only captures the overall behaviour in terms of resistivity, but also 
aids in categorizing the curve within a specific field: resistive (higher avg. resistivity values), 
conductive (lower avg. resistivity values), or neutral (values between the first two fields).  
Regarding average pseudo-depth, it represents the middle point of the maximum 
investigation depth, so, the mean thickness of the whole geological body that was studied.  

 

Fig. 21 shows the representation of the average pseudo-depth/average resistivity point for the 

profile n.5 of the dataset under examination (Fig.20).  

 
 

 

 

 

 

 

 

 

 

 

 

→ Initial resistivity and final resistivity: This pair of parameters represents the initial and final 
values of the resistivity curves. Physically, it symbolizes the resistivity value of the first layer 
(Initial resistivity), and a resistivity value that takes into account the cumulative effect of all 
layers (Final resistivity).  

Figure 21 - Average resistivity/Average pseudo-depth point for the profile n.5 of the 50 apparent resistivity curves 
examined 
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→ The highest local maximum, the lowest local minimum and corresponding pseudo-depths: 
this is a set of 4 values, two related to resistivity and the other two associated with depth. 
Mathematically, they correspond to inflection points (first derivative of the curve = 0).                     
The highest local maximum is defined as the highest point among local maxima in the 
apparent resistivity curve, and the corresponding depth, is the depth at which this maximum 
occurs. A local maximum is a point in the curve at which the value is greater than the values 
of nearby points, but not necessarily the highest within the entire curve and it occurs when 
the first derivative of the curve in this point is equal to 0 and the second one is lower than 0. 
Physically, it might represent a layer, or a formation, with very high resistivity, such as rocks 
or compacted soil, that are located between formations characterized by lower resistivity.                                                                                         
Like the local maximum, the lowest local minimum values represent the lowest point among 
local minima in the resistivity curve, and the corresponding depth, is the depth at which this 
minimum occurs. In contrast to the local maximum point, a local minimum is a point in the 
curve at which the value is lower than the values of surrounding points, but not necessarily 
the lowest within the entire curve and it occurs when the first derivative of the curve in this 
point is equal to 0 and the second one is higher than 0. It could indicate areas with very low 
resistivity, such as more permeable soil or water-bearing formations, located between zones 
of higher resistivity. 

In the case where local maxima or minima are not found in the entire apparent resistivity curve, 

such as a profile that is either only increasing or only decreasing, fictitious values (e.g., 1) are 

assigned to the highest local maximum or the lowest local minimum (and also to their corresponding 

pseudo-depths) of the curve, replacing the values of these parameters. This approach informs the 

algorithm that no maxima or minima are present in the curve, indicating that resistivity increases or 

decreases linearly with depth. In other words, there are no layers with higher resistivity between 

layers with lower resistivity and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 22 is illustrated one of the 50 apparent resistivity curves examined, more specifically the 

profile number 5, and on this curve are depicted the highest local maximum, and the lowest local 

minimum point. 

Figure 22 - Highest local maximum and lowest local minimum of the profile n. 5 of the dataset 
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2. Gradient parameters: In this category, parameters are related to the different gradients that 
make up the apparent resistivity curves. Each gradient between two points of the curve is 
obtained by: 
 

∇(1,2) =  
ρ2−ρ1

z̅2− z̅1
                                                        (19) 

 
Each transition from one gradient to another, for simplicity, is represented by the shift from a 
positive gradient to a negative one, that from a mathematical point of view corresponds to the 
first derivative of the curve equal to 0. Initially, all gradients between the points of the curve 
are calculated. If a change in sign occurs (f ‘ =0), the gradient from the first point to the last 
with the same sign is calculated and considered as the first gradient. Subsequently, another 
gradient is considered, starting from the point of the sign change to the last with the same sign, 
and so on until the last gradient found. This means that two gradients of the same sign but 
different shape will be treated as a single gradient, calculating the gradient between the first 
point of the first gradient and the last of the second one. The two parameters considered are: 
 

→ Number of gradients: They correspond to the number of sign changes in gradients of the 
entire curve + 1, so to the number of zeros of the derivative + 1 (or also the number of local 
maxima/minima detected in the curve +1). Physically, each shift from a positive to a negative 
gradient is a detectable transitions between a resistant to a conductor layer (or vice versa). 
So, they represent the number of significant alterations in the subsurface geological 
structure or material properties. 
 

 

 

 

 

 

 

 

 

 

 

 

→ Highest gradient change and corresponding pseudo-depth: These values correspond to the 
most significant variation in gradient sign (f ‘ =0) across the entire curve. Mathematically, it 
corresponds to the point of minimum distance between two inflection points. By indicating 
the highest shift from a positive gradient to a negative one, these parameters symbolize the 
most abrupt transition from a resistant to a conductor layer (or vice versa). The highest 
gradient change is evaluated by considering the highest absolute value, by calculating the 

Figure 23 - Values of the 3 identified gradients of the profile n. 5 of the dataset and highest gradient 
change 

number of gradients = 3 
gradient 1 = +1.775 

gradient 2 = - 2.557 

gradient 3 = +0.188 

max gradient change = - 4.332 

depth max gradient change = 269 

m 

  

Gradient 2 

Gradient 3 

Gradient 1 
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differences between the contiguous gradients along the curve. Instead the pseudo-depth 
correspond to the depth at which this transition happens, so to the point in the curve at 
which the 1st gradient ends and the 2nd one starts.  

Also with these parameters, if no sign change values of the gradient are found, fictitious values are 

assigned instead of the highest gradient change value and the corresponding pseudo-depth. 

Fig. 23 displays the same curve as Fig. 22, but with added information on the number of gradient, 

their values and the highest gradient change identified in that profile (red dot). 

 

3. Overall tendency of the curve parameter: In this last category of clustering parameters, a 
factor has been introduced to take into account the overall trend of the curves, considering all 
behaviours of different segments. This parameter is: 

 

→ Ratio between total area and length of the curve: This parameter is a ratio between two 
factors. The first one is an integral, so an area calculated between each apparent resistivity 
curve and a straight line drawn at its mean value. The integral computation is performed by 
summing two components: the first is a positive area corresponding to the region on the 
right side of the line and to the left of the curve, while the second is a negative area formed 
by the portion to the left of the line and to the right of the curve. 
The second factor is the effective length of the apparent resistivity curve, or “length of the 
arc”, measured by approximating the curve to a set of segments connecting the points from 
which it is composed, and then summing the contribution of each segment. This parameter 
has been chosen to differentiate and avoid clustering of curves with similar total area values, 
but exhibiting completely different characteristics (e.g., 4 gradients vs only one). 
The ratio between these two values is considered as a clustering parameter. Therefore, for 
each curve, a factor is determined, whose sign corresponds to the general tendency of the 
curve, considering the individual contributions of all the layers. It can be resistive if the sign 
is positive or conductive if it is negative. Furthermore, the magnitude of this parameter 
symbolizes the trend, differentiating more resistive/conductive curves, from less 
resistive/conductive ones. 

 

 

 

 

 

 

 

 

 

 
Figure 24 - Total area/length ratio calculation of the profile n.5 of the dataset. Computed results are shown in a table on 
the right. The negative sign and the magnitude of the ratio confirm a clear conductive overall tendency of the curve. 
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In Fig. 24, the calculation of the ratio between the total area and the length of the curve is shown 

for profile n.5 under analysis. As expected, the sign of the ratio is negative, and the magnitude is 

quite low, describing a low conductive trend. 

Once these parameters are determined by the algorithm, before being inserted into the input matrix 

of clustering algorithms, they are normalized. This process involves applying to each parameter (X) 

calculated for each apparent resistivity curve, this relationship: 

Xnormalized =
X−Xmin

Xmax−Xmin
                                                           (20) 

where Xmin and Xmax are the lowest and the highest value obtained for the analysed parameter. 

By doing so, values ranging from 0 to 1 are obtained, and the algorithm treats them all equally. This 

ensures that parameters with higher magnitudes, such as average resistivity values, do not have a 

greater contribution than parameters with lower magnitudes, such as the number of gradients. 

 

4.2.2 Parameters reduction 

Not all the parameters contribute equally to the purpose of this project, i.e., some parameters are 

more efficient than others. To establish the combination of these parameters that ensures the best 

solution (lowest possible error between rescaled models using a rescaling function per cluster and 

true ones), about 30 tests were conducted using k-means as the reference algorithm. Throughout 

the various tests (the score of which will be shown in the results chapter, section 5.1), we started 

by considering all 12 parameters in the input matrix of the clustering algorithm, and then various 

combinations were tested, gradually reducing the number of parameters. The overall result, which 

will be anticipated here to also explain the choice of the best algorithm, is that the 8 'resistivity 

parameters' proved to be more efficient in terms of results compared to the other two categories. 

In particular, the first 4 explained criteria: 

→ Average resistivity 
→ Average pseudo-depth 
→ Initial resistivity 
→ Initial pseudo-depth 

 

were selected as the ultimate combination of parameters for the input matrix of the 3 clustering 

algorithms. 

 

4.2.3 Selection of the best algorithm 
 

After the definitive set of criteria for clustering resistivity data was established, k-means, CURE, and 

OPTICS were tested to determine the best algorithm and thus obtain the final results. 

 

1. K-means 

Starting with k-means and always considering the dataset shown in Fig. 20 as the case study, the 

first objective is to determine the desired number of clusters. To this end, the two methods 

presented in section 3.1.2, Elbow and Silhouette, are employed. In Fig. 25, the results of both 
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methods are shown, and following this logic, in this case the optimal number of clusters is 4, at 

which the elbow curve starts to bend and the Silhouette Coefficient has the highest value. 

 

         

 

At this point, with the input matrix determined and the number of clusters established, k-means is 

run a certain number of times, which can be decided or left by default as in this case (number of 

iterations = 10), and in a few seconds, it returns the results found for the iteration with the lowest 

possible SSE. These values include the position of the centroids in space (kmeans.cluster_centers_) 

, the lowest SSE value found for centroid convergence (kmeans.inertia_), and in particular, the 

number of cluster labels for each data point (kmeans.labels_), in this case, at each curve of apparent 

resistivity is assigned 0, 1, 2 or 3. In Fig. 26, apparent resistivity curves of Fig.20, divided into the 4 

clusters by k-means, are represented. 

Figure 25 - Elbow (top) and Silhouette Coefficient (bottom) methods for the dataset of Fig.20. They both retrieve 4 as the 
optimal ‘k’. 
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Fig. 27 shows the curves of apparent resistivity for the 4 clusters, with each individual subplot that 

illustrate the curves that belong to the cluster. 

 

 

 

 

 

Figure 26 - K-means results for dataset of Fig.20. Apparent resistivity curves are divided in 4 clusters, 0 (blue), 1 (green), 
2 (brown) and 3 (magenta) 

Figure 27 - Same results of Fig.26 but each plot represents the set of curves that belong to a single cluster. 
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Following this approach, it is also possible to derive, as a test of clustering efficiency, the 

depth/pseudo-depth relationships belonging to the different clustered curves (Fig. 28). These 

rescaling functions are obtained by comparing the data and models in the cumulative resistance 

domain, using the method explained in section 4.2.2. The graphs of the clustered depth/pseudo-

depth relationships are an useful check, because achieving a good level of clustering, and thus 

minimizing the error in rescaling the data into models, requires clustering together rescaling 

functions that are as similar to each other as possible. 

 

 

 

 

 

 

 

 

Analysing the picture above, for clusters 0, 2, and 3, the rescaling functions are similar to each other, 

while for cluster 1 they appear to be slightly more different. Consequently, a slightly larger error is 

expected for this cluster. 

The final check to determine the best algorithm, quantify the quality, and assess the added value of 

clustering the data before rescaling them, is to calculate the percentage error resulting from cross-

rescaling the clustered data into models. This error is measured between the rescaled cumulative 

resistance models obtained using a depth/pseudo-depth per cluster (testing with iterations one 

rescaling function of each cluster at a time to rescale all cluster data), and the real cumulative 

resistance models (obtained from the models used to generate the data in the first place). The error 

is then depicted in graphs with sets of box-plots divided by cluster, where each box of each box plot 

represents the error produced by each individual rescaling function used to rescale all the cluster 

Figure 28 - Depth/Pseudo-depth relationships computed between models and data in the cumulative resistance domain, 
and divided in clusters based on the k-means clustering of apparent resistivity data. 
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data in each iteration. These box plots have been filtered from some outliers, delimiting the boxes 

with an upper and a lower limit (maximum and minimum error) defined as ‘ whiskers’, that establish 

the range of the non-outlier data points [36]. Furthermore, in each box, an orange line is drawn, 

representing the mean error given by each rescaling function. 

In Fig. 29, the error box plots produced by the depth/pseudo-depth rescaling functions of the 4 

clusters from Fig. 26 are shown. They represent the results given by k-means on this dataset. In 

numerical terms, they are particularly positive compared to those obtained on the same dataset but 

using a random rescaling function to rescale all the data (peak of 400%, Fig.7); indeed, the mean 

errors are respectively 6.5%, 13%, 2, and 2.4%. As for the whiskers, extreme values are -24% and 

67% (due to the presence of the outliers, profile n. 4, 9 and 11 of the cluster 1). 

 

 

 

 

 

Figure 29 - Error box-plots of the 4 detected clusters by k-means algorithm. Avg. errors found are respectively 6.5%, 13%, 
2% and 2.4%. Instead lower and upper limits are -24% and 67% (due to the presence of the outliers of the cluster 1).  
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2. CURE 

CURE algorithm, unlike k-means, takes as input not only the clustering parameters matrix and the 

desired final number of clusters (which is set equal to the number 'k' found for k-means from elbow 

and silhouette, in the investigated dataset equal to 4), but also the number of representative points 

for each cluster. This parameter must be set equal to the desired number of clusters, which means 

that, in the case under consideration, this parameter will also be equal to 4. 

After setting these parameters, CURE is run, and it automatically returns the cluster labels for each 

apparent resistivity curve to the command cure.get_clusters. At this point, it is possible to obtain 

the plot of the curves and the depth/pseudo-depth rescaling functions divided into clusters (Fig.30). 

 

As done for the previous algorithm, in this case as well, the error percentages due to rescaling with 

a depth/pseudo-depth per cluster are measured and represented in box plots. 

 

 

Figure 30 - CURE results for dataset of Fig.20. Apparent resistivity curves on the left, are divided in 4 clusters, 0 (blue), 1 
(green), 2 (brown) and 3 (magenta). On the right are shown the corresponding depth/pseudo-depth rescaling functions 
for each curve, divided in clusters. 
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In Fig. 31, the error box plots produced by CURE algorithm are shown. Error results are very similar 

to the k-means one, in fact, the mean errors are respectively 5.5%, 13%, 2.6%, and 2.7%. As for the 

whiskers, extreme values are -32% (due to outlier 17 of cluster 0) and 67%. The main difference with 

these set of results and the one with k-means, is the distribution of curves in the clusters (just 6 

curves in cluster 1 vs 20 in cluster 0), that represents a problem, in datasets composed by 200 or 

1000 apparent resistivity curves like the ones tested in this Thesis and shown in the next chapter.  

 

3. OPTICS 

The third and final clustering algorithm tested is OPTICS. Unlike the first two, OPTICS does not 

require the user to specify a fixed number of clusters, but is able to determine it autonomously. The 

only parameter that is manually set is the minimum number of data points (in this case, curves) 

required to form a cluster (MinPts). This parameter is selected based on the composition of the 

dataset, for example in the case at hand, it is set equal to 8. 

The particularity of this algorithm lies in the calculation of reachability distances and the 

composition of reachability plots, as explained in section 3.3.1, based on the steepness of the valleys 

found. Despite OPTICS working well with smaller datasets (e.g., 20 tested curves), as the number of 

profiles increases, the algorithm does not perform as expected. In fact, as shown in Fig.32, where 

the Reachability plot is depicted, OPTICS manages to identify the first two clusters (so it finds 2 

valleys in blue and green) but then stops and classifies all the remaining profiles as outliers (black 

dots). This issue is not solved by increasing or decreasing the MinPts parameter, on the contrary, it 

leads to even worse results, such as finding only one single cluster or labelling all profiles as outliers. 

Figure 31 - Error box-plots of the 4 clusters detected by CURE algorithm. Avg. errors found are respectively 5.5%, 13%, 
2.6%, and 2.7%. Instead lower and upper limits are -32% and 67%. 
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After that OPTICS computes the reachability plot, it automatically returns the cluster labels for each 

apparent resistivity curve to the command optics.labels_. At this point, it is possible to obtain the 

plot of the curves and the depth/pseudo-depth rescaling functions divided into clusters (Fig.33).  

The results shown by the Reachability plot are confirmed by the OPTICS results graphs, confirming 

the unreliability of the algorithm on this type of dataset. 

 

 

 

 

Figure 33 - OPTICS results for dataset of Fig.20. Apparent resistivity curves on the left, are divided in 2 clusters, 0 (blue), 
1 (green) and all the other profiles are considered as outliers (black) On the right, are shown the corresponding 
depth/pseudo-depth rescaling functions for each curve, divided in clusters. 

Figure 32 - Reachability plot, result of OPTICS clustering applied on the dataset of Fig.20. Two valleys are detected, so 
two clusters are found: 0 (blue) and 1 (green), all the other profiles are marked as outliers (black). 
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Given the not meaningful results obtained from OPTICS, the box plots related to the cross-rescaling 

of data into models will not be shown, as they would not consider more than 50% of the data, 

classifying them as outliers. 

At this point, it is possible to determine the best algorithm among the three by analysing the test 

results. The choice is between the first two, k-means and CURE. Although the second one provides 

similar results to the first, for this type of dataset and for datasets composed of a higher number of 

curves, based on how the curves are distributed among clusters, k-means represents the best 

choice. 

 

4.3 Final results 

Once the ultimate combination of parameters is obtained and the best algorithm is determined, the 

final results are achieved. These consist of the whole set of rescaled resistivity models (of unknown 

models), obtained using a reference depth/pseudo-depth rescaling function for each cluster.  

In the following graphs (Fig.34) one example of each cluster is shown. In the plot the unknown 

rescaled cumulative results (dashed purple line) obtained from the application of the reference 

rescaling functions, produced by the base known models of each cluster (solid orange line), are 

compared to their respective true cumulative resistivity models generated (dashed orange line). 
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Same comparison, always one for each cluster, is done for the unknown rescaled layered models vs 

the generated layered resistivity ones (Fig. 35). 

Figure 34 - 4 examples of the cumulative results obtained, 1 for each cluster. In each plot are represented, with a solid 
line, the cumulative base model (in orange) from which the depth/pseudo-depth rescaling function for the cluster in 
analysis is obtained and the rescaled one (in purple). On the other hand, with a dashed line, are shown the unknow 
cumulative model (in orange) and the rescaled one (in purple). 
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Figure 35 - 4 examples of the layered final results obtained, 1 for each cluster. In each plot are represented, with a solid 
line, the layered base model (in blue) from which the depth/pseudo-depth rescaling function for the cluster in analysis is 
obtained and the rescaled one (in purple). On the other hand, with a dashed line, are shown the unknow layered model 
(in blue) and the rescaled one (in purple), the whole set of rescaled unknow models correspond to the final results of the 
methodology. 
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In Fig. 35, the final results (rescaled layered unknown models, dashed purple line) obtained from 

the application of the reference depth/pseudo-depth rescaling functions, produced by the base 

known models of each cluster (solid blue line), are compared to the resistivity models generated at 

the beginning of the test (dashed blue line). 

From the graphs, it can be observed that while the results for Clusters 0, 2, and 3 are highly positive 

(rescaled layered resistivity of the unknown model close to its resistivity model), this is not the case 

for Cluster 1. This is due to the fact that the results of this cluster are influenced by the presence of 

outliers, which increase the error in rescaling other models using the rescaling functions produced 

by these outliers (as shown in the second plot of Fig. 29). 

Following the description of the method used in this Thesis, the next chapter will specifically show 

the results obtained with larger datasets compared to the sample used for explaining the method, 

consisting of 200 and 1000 curves respectively. Lastly, will be shown a real-case test. 
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Chapter 5 

5. Results 
 

 

In this chapter, the main results provided from the application of the method explained in the 

previous one, tested on larger datasets, are collected. The designated algorithm for the tests is k-

means, which has proven to be the best algorithm for achieving the lowest errors percentage. The 

analysis of the results, will begin with the selection of the best combination of parameters, as 

preannounced in section 4.2.2, but here it will be demonstrated by comparing the results (always in 

terms of error due to the rescaling of clustered models) given by the combination of different 

parameters. This will be followed by the results obtained on a synthetic dataset composed of 200 

curves, one composed of 1000 and, in the end, final test on a real dataset. 

 

5.1 Best combination of clustering criteria  

To find the best parameter combination that provides the lowest error between the models rescaled 

with a depth/pseudo-depth rescaling function per cluster, and the real one (used to generate the 

synthetic data), 31 tests were conducted on a dataset consisting of 200 apparent resistivity curves 

divided in 10 clusters, trying different parameter combinations, the results of which are reported in 

Tab. 2. In each test, the input matrix of k-means was modified by adding or removing parameters 

(and therefore dimensions). In the table are shown, for each test, the weighted average errors, 

computed calculating the mean value across all clusters (taking into account the number of curves 

in each cluster), and the maximum errors values (whisker) without considering outliers. These 

findings, led to the selection of the best parameter combination (grade 1). The 12 clustering criteria, 

for simplicity and clarity of the table, were assigned to a list of letters as follows: 

a) Average Resistivity 
b) Average Depth 
c) Initial Resistivity 
d) Final Resistivity 
e) Highest Local Maximum 
f) Lowest Local Minimum 
g) Pseudo-Depth of the Local Maximum 
h) Pseudo-Depth of the Local Minimum 
i) Number of Gradients 
j) Highest Gradient Change 
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k) Pseudo-Depth of the Highest Gradient Change 
l) Ratio between Total Area and Length of the Curve 

 

N. of 
test 

N. of 
dimensions 

Combination of parameters 
Avg. Error 

 [%] 
Whisker 

[%]  
GRADE 

INDIVIDUAL CATEGORY PARAMETERS 

1 2 a + b 5.2% 96% 2 

2 2 c + d 5.2% 185% 4 

3 4 e + f + g + h 12.6% 383% 27 

4 3 i + j +k 25% 3205% 29 

5 1 l 36.8% 2680% 31 

MIXED SET OF PARAMETERS 

6 4 a + b + c + d 4.8% 93% 1 

7 6 a + b + e + f + g + h 6.9% 122% 13 

8 6 c + d + e + f + g + h 7% 183% 15 

9 4 i + j + k + l 25.3% 3205% 30 

10 7 e + f + g + h + i + j + k 9.7% 236% 25 

11 5 e + f + g + h + l 12.6% 383% 28 

12 8 e + f + g + h + i + j + k + l 10.3% 397% 26 

13 5 c + d + i + j + k 6.4% 96% 9 

14 3 c + d + l 5.4 185% 7 

15 6 c + d + i  + j + k + l 7% 185% 16 

16 5 a + b + i + j + k 6% 90% 8 

17 3 a + b + l 5.4% 117% 5 

18 6 a + b + i + j + k + l 6.2% 170% 10 

19 9 a + b + e + f + g + h + i + j + k 7.9% 222% 23 

20 7 a + b + e + f + g + h + l 7.3% 122% 18 

21 10 a + b + e + f + g + h + j + i + k + l 8.1% 236% 24 

22 9 c + d + e + f + g + h + i + j + k 7.5% 236% 21 

23 7 c + d + e + f + g + h + l 7.1% 190% 17 

24 10 c + d + e + f + g + h + i + j + k + l 7.7% 236% 22 

25 8 a + b + c + d + e + f + g + h 6.5% 146% 12 

26 7 a + b + c + d + i + j + k 5.5% 93% 6 

27 5 a + b + c + d + l 5.1% 99% 3 

28 8 a + b + c + d + i + j + k + l 6.2% 185% 11 

29 11 a + b + c + d + e + f + g + h + i + j + k 7.3% 190% 19 

30 9 a + b + c + d + e + f + g + h + l 6.9% 146% 14 

31 12 a + b + c + d + e + f + g + h + i + j + k + l 7.5% 190% 20 

 

 

As shown in the table above, the results that ensure the lowest possible error, emerge from the 

combination of resistivity parameters (1st category, section 4.2.1). Specifically, most combinations 

containing initial & final resistivity, avg. resistivity & average depth, yielded average errors around  

Table 2 - Selection of the best combination of parameters. Among the 31 different combinations, the test number 6 is 
selected as the best result, as it shows the least value of avg. error and max. error (whisker) percentages. 
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5% on the tested dataset, with peaks around 90%. For this reason, combining these 4 parameters 

resulted in the best outcome (Test 6, highlighted in the table). Different outputs has occurred for 

the parameters of gradients and ratio area/length, which, although characterizing the curves, did 

not prove useful to the cause with average errors above 15-20%. 

After confirming the final set of parameters, the results of k-means with those criteria, on the same 

dataset of 200 curves used for error calculation in 5.1, will be presented. 

 

5.2 Results with 200 synthetic data 

As explained in section 4.1, the first step of the method is the random generation of 1D resistivity 

models, according to the limits shown in Tab.1. In this case, 200 models were generated, which will 

not be shown here due to the low comprehensibility of the plot. Subsequently, through the 

implementation of the Python routine "empymod," 200 resistivity curves were obtained. The 

dataset is reported in Fig. 36 as a function of pseudo-depth. 

 

 

 

 

 

 

 

 

 

 

 

 

At this point, the Elbow and Silhouette methods are tested to establish the optimal number of 

clusters for this dataset, which is set equal to 10. 

Thus, the initial and final resistivity values, average resistivity, and average depth are calculated to 

compose the input matrix for k-means. In Fig. 37, the results of k-means on this dataset are 

illustrated. As visible from the legend, 10 colours have been randomly generated to define the 10 

clusters. 

Figure 36 - 200 apparent resistivity curves dataset, obtained by “empymod” routine and defined as a function of pseudo-
depth. 
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Fig. 38 shows the curves of apparent resistivity for the 10 clusters, with each individual subplot that 

illustrate the curves that belong to the cluster. 
 

 

 

Figure 37 - K-means results for the dataset of Fig.36. Apparent resistivity curves are divided in 10 clusters, shown in 
the legend. 
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After obtaining the 10 clusters of apparent resistivity curves, the test on the depth/pseudo-depth 

rescaling functions is performed. They are divided into their respective clusters related to the 

clustered curves. This check is done to qualitatively assess the efficiency of clustering, so defining a 

good clustering if similar rescaling functions are grouped in the same cluster. Fig. 39 displays the 

200 depth/pseudo-depth rescaling functions related to the dataset of Fig. 36. 

Figure 38 - Same results of Fig.34 but each plot represents the set of curves that belong to a single cluster. 
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Instead, Fig. 40 represents the same rescaling functions but divided into the 10 clusters. 

 

  

 

 

 

 

 

 

 

 

 

 

 

From Fig. 41, which represents the rescaling functions divided by clusters, the results given by the 

clustering can be perceived. Among them, there are clusters that are nearly perfect, such as cluster 

no. 3 or no. 7, where the rescaling functions are very close to each other, and so, low errors due to 

cross-rescaling are expected. At the same time, there are worse clusters such as no. 1 or no. 6, with 

more distant rescaling functions, and higher errors are expected from them. 

Figure 39 - Set of 200 depth/pseudo-depth rescaling functions, related to the apparent resistivity curves of Fig.36. 

Figure 40 - K-means results of Fig. 37, applied on the set of depth/pseudo depth rescaling functions. These relationships 
are divided in 10 clusters, taking same colours for each cluster obtained with the related apparent resistivity data. 
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The last step, before obtaining the final results from the cross-rescaling of the different clusters, is 

to calculate the error due to the cross-rescaling of each cluster computed by in turn using a 

reference depth-pseudo depth to rescale all the cluster data at each iteration. In Fig. 42, these 

results are represented in the form of box plots. In numerical terms, they are the same as those of 

Test n.6 in Table 2, with an average error of 4.8% and a maximum error of 93% due to outlier n.10 

in cluster 1. 

 

 

Figure 41 - Same results of Fig.40 but each plot represents the set of relationships that belong to a single cluster. 
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Apart from the overall results, the outcomes obtained for each cluster confirm the predictions given 

by the clustering of the depth/pseudo-depth rescaling functions, with clusters 1 and 6 characterized 

by higher average errors (14% and 8.4%, respectively), while clusters 3 and 7 show the best findings 

(average error 1.8% for both). 

An example for each of these 4 clusters is depicted in Fig. 43, where the unknown rescaled 

cumulative results (dashed purple line) obtained from the application of the reference 

depth/pseudo-depth rescaling functions, produced by the base known models of each cluster (solid 

orange line), are compared to their respective true cumulative resistivity models generated (dashed 

orange line). 

Figure 42 - Error box-plots of the 10 detected clusters by k-means algorithm. Global avg. errors found is 4.8% confirming 
the values on Tab.2. Instead maximum error is around 90% (due to the presence of the outlier 10 of the cluster 1).  
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Same comparison, for same clusters, is done for the unknown rescaled layered models vs the 

generated layered resistivity ones (Fig. 44). 

Figure 43 - 4 examples of the cumulative results obtained, 1 for each cluster (number 1,3,6 and 7). In each plot are 
represented, with a solid line, the cumulative base model (in orange) from which the depth/pseudo-depth rescaling 
function for the cluster in analysis is obtained and the rescaled one (in purple). On the other hand, with a dashed line, 
are shown the unknow cumulative model (in orange) and the rescaled one (in purple), the whole set of rescaled unknow 
models correspond to the final results of the methodology. 
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Figure 44 - 4 examples of the final layered results obtained, 1 for each cluster (number 1,3,6 and 7). In each plot are 
represented, with a solid line, the layered base model (in blue) from which the depth/pseudo-depth rescaling function 
for the cluster in analysis is obtained and the rescaled one (in purple). On the other hand, with a dashed line, are shown 
the unknow layered model (in blue) and the rescaled one (in purple), the whole set of rescaled unknow models 
correspond to the final results of the methodology. 
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In this case the final results (rescaled layered unknown models, dashed purple line) obtained from 

the application of the reference depth/pseudo-depth rescaling functions, produced by the base 

known models of each cluster (solid blue line), are compared to the resistivity models generated at 

the beginning of the test (dashed blue line). 

As demonstrated by the 4 graphs of Fig. 43 and Fig. 44, both in cumulative and layered domain, the 

trends of the rescaled unknown models of clusters 3 and 7 appear to be very similar to their own 

generated resistivity models, while the other two clusters example show larger discrepancies. These 

worst cases are exceptions, confirming the validity of the model given by the very low average error 

<5%, obtained knowing only 10 out of the 200 rescaled models (5% of the models). 

To confirm the validity of the proposed methodology, a larger dataset consisting of 1000 apparent 

resistivity data was examined. The results are reported in the next sub-chapter. 

 

5.3 Results with 1000 synthetic data 

With the same approach used for the dataset analysed previously, 1000 models were randomly 

generated, and subsequently, through "empymod," the 1000 apparent resistivity curves, 

represented in Fig. 45, were obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, k-means is run on this dataset keeping the number of clusters equal to 10, 

to observe how the algorithm performs with larger datasets while keeping the number of clusters 

constant, which in this case corresponds to 1% of the dataset (10 out of 1000). In Fig. 46, the results 

of k-means on this dataset are illustrated with the same colours as the previous dataset. 

Figure 45 - 1000 apparent resistivity curves dataset, obtained by “empymod” routine and defined as a function of 
pseudo-depth. 
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Fig. 47 shows the curves of apparent resistivity for the 10 clusters, with each individual subplot that 

illustrate the curves that belong to the cluster. 
 

 

 

 

Figure 46 - K-means results for dataset of Fig.45. Apparent resistivity curves are divided in 10 clusters, shown in the 
legend. 
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Figure 47 - Same results of Fig.46 but each plot represents the set of curves that belong to a single cluster. 
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Fig. 48 displays the 1000 depth/pseudo-depth rescaling functions related to the dataset of Fig. 45. 
 

 

 

 

 

 

 

 

 

 

 

Fig.49 shows the depth/pseudo-depth rescaling functions divided into their respective clusters 

related to the clustered curves, to qualitatively assess the efficiency of clustering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 50, which represents the rescaling functions divided by clusters, the results given by the 

clustering can be estimated. Among them, there are clusters that are nearly perfect, such as cluster 

no. 2 or no. 4, where the rescaling functions are very close to each other, and low errors due to 

Figure 48 - Set of 1000 depth/pseudo-depth rescaling functions, related to the apparent resistivity curves of Fig.45. 

Figure 49 - K-means results of Fig. 46, applied on the set of depth/pseudo depth rescaling functions. These relationships 
are divided in 10 clusters, taking same colours for each cluster obtained with the related apparent resistivity data. 
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cross-rescaling are expected. At the same time, there are worse clusters such as no. 1 or no. 9, with 

more distant rescaling functions, and higher errors are expected from them. 
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The last step, before obtaining the final results from the cross-rescaling of the different clusters, is 

to calculate the error due to cross-rescaling of each cluster computed by in turn using a reference 

depth-pseudo depth to rescale all the cluster data at each iteration. 
 

In this case, the errors are not represented by the usual box plots, as they were too confusing due 

to the high number of curves in each cluster, but are summarized in Tab. 3. As visible from the table, 

the application of this methodology yields excellent results even with a dataset composed of 1000 

curves divided into 10 clusters. In fact, a global average error of 5.7% and a maximum error of 

around 170% due to the whisker of cluster 1 are obtained. 
 

 Cluster 
0 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
6 

Cluster 
7 

Cluster 
8 

Cluster 
9 

number 
of curves 

124 120 90 114 107 65 103 92 118 67 

avg error 
[%] 

3.9% 13.5% 1.8% 7.9% 1.5% 6% 3.8% 2.6% 5.3% 11.6% 

whisker 
[%] 

44.7% 174% 13% 124% 8.5% 164% 32.7% 30.1% 41.4% 89.4% 

Figure 50 - Same results of Fig.45 but each plot represents the set of relationships that belong to a single cluster. 
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Apart from the overall results, the outcomes obtained for each cluster confirm the predictions given 

by the clustering of the depth/pseudo-depth rescaling functions, with clusters 1 and 9 characterized 

by higher average errors (13.5% and 11.6%, respectively), while clusters 2 and 4 show the best 

findings (average error 1.8% and 1.5%, respectively). 
 

An example for each of these 4 clusters is depicted in Fig. 51, where the unknown rescaled 

cumulative results (dashed purple line) obtained from the application of the reference 

depth/pseudo-depth rescaling functions, produced by the base known models of each cluster (solid 

orange line), are compared to their respective true cumulative resistivity models generated (dashed 

orange line). 

 

As demonstrated by the graphs below, the trends of the rescaled unknown models of clusters 2 and 

4 appear to be very similar to their own generated resistivity models, while the other two clusters 

example show larger discrepancies. Also for this dataset, these worst cases are exceptions, 

confirming the validity of the model given by the very low average error <6%, obtained with only 10 

out of the 1000 rescaled models (1% of the models), consequently improving the result obtained 

with 200 curves (5% of avg. error, knowing the 5% of the models). 

 

 

 

GLOBAL CLUSTERING RESULTS 

Avg. error of clustering [%] 5.7% 

Whisker of clustering [%] 174% 

Table 3 - Error box-plots of the 10 detected clusters by k-means algorithm. In the first table are reported avg. errors and 
whiskers of each single cluster. Below are shown global results; avg. errors found is 5.7%. Instead maximum error is 
around 170% (due to the whisker of the cluster 1).  
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Figure 51 - 4 examples of the cumulative results obtained, 1 for each cluster (number 1,2,4 and 9). In each plot are 
represented, with a solid line, the cumulative base model (in orange) from which the depth/pseudo-depth rescaling 
function for the cluster in analysis is obtained and the rescaled one (in purple). On the other hand, with a dashed line, 
are shown the unknow cumulative model (in orange) and the rescaled one (in purple), the whole set of rescaled unknow 
models correspond to the final results of the methodology. 
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Same comparison, for same clusters, is done for the unknown rescaled layered models vs the 

generated layered resistivity ones (Fig. 52). In this case the final results (rescaled layered unknown 

models, dashed purple line) obtained from the application of the reference depth/pseudo-depth 

rescaling functions, produced by the base known models of each cluster (solid blue line), are 

compared to the resistivity models generated at the beginning of the test (dashed blue line). 
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After achieving good results with two synthetic datasets, the method was submitted to a final test 

on a real-case scenario. 

 

5.4 Real Dataset 

The real dataset concerned is "COPROD2," consisting of a set of 35 apparent resistivity data acquired 

from an MT Geological survey in Canada. More precisely, “the data are from stations along a 400 

km east-west profile in southern Saskatchewan and Manitoba, Canada, crossing the thick Palaeozoic 

sediments of the Williston Basin”. [14] 

These data, before being clustered, were trimmed within the available frequency range [1.1-3, 0.5] 

Hz, and a depth limit of 30 km was imposed. The COPROD2 dataset is represented in Fig. 53. 

 

 

 

 

 

 

 

 

 

 

Figure 53 - COPROD2 dataset composed by 35 apparent resistivity curves, represented as function of pseudo-depth. 

Figure 52 - 4 examples of the final results obtained, 1 for each cluster (number 1,2,4 and 9). In each plot are represented, 
with a solid line, the base model (in blue) from which the depth/pseudo-depth rescaling function for the cluster in analysis 
is obtained and the rescaled one (in purple). On the other hand, with a dashed line, are shown the unknow model (in 
blue) and the rescaled one (in purple), the whole set of rescaled unknow models correspond to the final results of the 
methodology. 
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The second figure (Fig.54), was obtained using the "colormesh" function in Python, and the data 

were sorted by increasing East coordinate. 

 

The next step, is to compose the input matrix of the k-means algorithm using the combination of 

parameters established in section 5.1. Before running the algorithm, the optimal number of clusters 

was determined using Elbow and Silhouette methods, which converge to k=3. The results of 

clustering on the COPROD2 dataset are represented in Fig. 55. In particular, Cluster 2 (black) groups 

the three models that can be considered outliers (higher resistivity values) compared to the data 

belonging to the other two clusters (0 in blue, and 1 in red). 

 

 

 

 

 

 

 

 

 

 

In Fig. 56, the "colormesh" plot of Fig. 54 is represented with the addition of coloured circles 

depicting the three clusters. As visible from the graph, Cluster 0 (blue circles) is characterized by 

Figure 54 - “Colormesh” plot representing the data distribution of the COPROD2 dataset as function of pseudo-depth. 
Data are sorted on the East-West line.  

. 

Figure 55 - K-means results for the COPROD2 dataset. Apparent resistivity curves are divided in 3 clusters, 0 (blue), 1 
(red), 2 (black) 
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lower resistivity values, Cluster 1 (red circles) by higher amplitudes, and finally, Cluster 2 (black 

circle), which has much larger values than the other two. Furthermore, in the top of the figure, there 

are also represented 3 reversed coloured triangles corresponding to the colour of each cluster, 

which denote the location of the three data selected as 'reference' or base of each cluster, which 

are inverted to obtain one resistivity model for each cluster. 

 

 

The inversion process, performed on the three apparent resistivity data, generates three 1D layered 

resistivity models defined for fixed depths. These models were then used to determine (in the 

cumulative resistance domain) the three reference depth/pseudo-depth relationships, one for each 

cluster, used to rescale the entire dataset into resistivity models.  

The set of rescaled models, and so the final results of the methodology on this dataset, is 

represented in the 'colormesh' plot of Fig. 57, where they are sorted in the East direction, 

interpolated between each other and horizontally smoothed.  

Figure 56 - Clustered version of the “colormesh” plot of Fig. 54. Apparent resistivity curves are divided in 3 clusters, 0 
(blue), 1 (red), 2 (black). In addition, are shown (with coloured reversed triangles) the three selected curves as 
representative for each cluster. These data are then inverted to obtain three models, used for the computation of the 
three rescaling functions, one for each cluster. 

  

. 

Figure 57 - “Colormesh” plot of the rescaled models, sorted onto the East-West line, obtained from the rescaling of the 
COPROD2 dataset. 
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Since COPROD2 is a dataset of crustal depth, it has been the focus of various inversion tests 

conducted by several geophysicists between the 1980s and 1990s. From the resulting models of 

these processes, as visible in Fig. 58, all the limitations of inversion and the problems in terms of 

solution that can derive from it emerge, even if they result in solutions to the same problem. The 

only solutions comparable to our results are the last two tests produced by Rasmussen and Wu, in 

which conductive bodies (white areas) are retrieved, as in our case, among the remaining resistive 

layers. [14] 

 

Figure 58 - Inverted resistivity models of COPROD2 MT data done by many geophysicist through 80’s and 90’s [14]  
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Since it's not possible to consider these results as benchmarks, an inversion process was conducted 

in this Thesis starting from the 35 apparent resistivity data (Fig. 53) and inverting them one by one. 

The results are shown in Fig. 59. As we can see from the comparison between these benchmark 

results and the rescaled ones, the overall behaviour is being retrieved by the rescaled models, and 

it is possible to locate the effect of some conductive body or bodies in the stations at 530-580 km 

East that can also be seen in the inverted profile. Additionally, in the easternmost section of Fig. 57, 

there is also a conductive effect between 2 layers (10-25 km depth), and even if it doesn't have the 

same values as the inverted profile (Fig. 59), the conductive effect is retrieved. 
 

 

As shown in the graphs, there is a bulk shift in values between the rescaled data and the inverted 

benchmark ones. This is because the benchmark results were obtained through inversion. As 

explained, these processes are affected by the non-uniqueness and the non-linearity problems, 

whereby completely different results may yield the same solution (as we can see in the 80’s and 90’s 

tests of Fig.58).  

Apart from this bulk shift, the results have demonstrated the validity of the method, which with only 

3 known models, is able to transform the entire dataset into models and obtain a similar trend to 

the results obtained from a traditional inversion process where all the data are inverted one by one 

(much higher computational cost). 

This enhances the value of the findings, making the rescaled models (almost at this stage of 

development of this methodology) useful as reference models for subsequent 2D inversion 

processes as a way to avoid biases. 
 

 

 

 

 

Figure 59 - Inverted resistivity models of COPROD2 MT data. These results are used as a benchmark to compare  
rescaled data of Fig. 52 obtained using our methodology.  
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Chapter 6 

6. Conclusions 
 

 

The Thesis work outlined, has demonstrated a methodology to cluster apparent resistivity curves 

,acquired through the MT method, in order to reduce the number of known models required to 

rescale an entire set of apparent data into 1D layered resistivity models. This method constitutes an 

alternative to the conventional inversion processes used to determine resistivity models from MT 

data. 

The Rescaling process, following the research of Calderon Hernandez O., 2023 [15], is performed by 

applying to apparent data the so called depth/pseudo-depth rescaling function, computed from the 

relationship between the depth for which cumulative models are defined, and the measured 

pseudo-depth of the apparent data.  

The main problem, addressed by the present study, was the inability to rescale an entire dataset of 

heterogeneous curves with a single depth/pseudo-depth rescaling function relative to only one 

resistivity model, as huge errors were obtained, even for small datasets. 

The Clustering process represents the solution to this problem. Indeed, by grouping the apparent 

resistivity data, according to criteria related to the mathematical parameters of the curves, it is 

possible to use one rescaling function for each cluster to rescale an entire dataset. 

About 30 tests were conducted on synthetic datasets, to determine the best algorithm among those 

tested (k-means, CURE, and OPTICS), and the best combination of mathematical parameters among 

those explored (local maxima and minima, gradients, average values, etc.) which compose the 

multidimensional input matrix for the clustering algorithms. These results were chosen because 

they guaranteed the lowest error between: the cross-rescaled models using a depth/pseudo-depth 

rescaling function per cluster, and the true models generated randomly in the first place. 

The findings were: 

→ Best algorithm: K-means 
→ Best combinations of parameters : Initial and Final Resistivity, 

                                                               Average Resistivity and Average Depth 
 

Then, this methodology was tested on two datasets composed of 200 and 1000 apparent resistivity 

data, obtained through a Python routine ("empymod") from synthetic resistivity models generated. 

After creating the datasets, in both cases, these curves are clustered in 10 clusters using the criteria 
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and algorithm stated previously, and finally cross-rescaled by in turn using a depth/pseudo-depth 

for each cluster.  

The errors due to each cross-rescaling constitute the main results to assess the validity of that 

methodology, in fact, low average errors were found in both tests: 

→ 200 data test: average error <5%, knowing 5% of the models (10 out of 200) 
→ 1000 data test: average error <6%, knowing 1% of the models (10 out of 1000) 

 

After achieving good results with two synthetic datasets, the method was submitted to a final test 

on a real-case scenario. In this test, the COPROD2 dataset consisting of 35 apparent resistivity data 

acquired with the MT method in a geological survey in Canada, was divided into 3 clusters. 

Subsequently, one 'reference' data per cluster was inverted, thus obtaining a layered resistivity 

model for each cluster, and computing one rescaling function per cluster used to rescale the entire 

dataset. The rescaled data were then compared with the benchmark models obtained from an 

inversion process, and they confirmed the presence of conductive bodies in the investigated area 

with a bulk shift between the two sets of results due to inversion issues.  

In the end, rescaled models exhibited the same overall trend found in the inversion results                        

(with a significantly reduced computational cost), so almost at this stage of the clustering+rescaling 

methodology, they can be used in real scenarios as reference starting models for 2D inversion 

processes, as a way to avoid biases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

 

 

References 

 

[1] Simpson, J., ”Magnetotelluric data for exploration – Geological surveying of Queensland” 
available at: https://smi.uq.edu.au/files/43560/Dec18KTW_MT_workshop.pdf 

[2] Pellerin, L., “Applications of electrical and electromagnetic methods for environmental and 

geotechnical investigations”, 2002. 

[3] Florio, G., “Mapping the depth to basement by iterative rescaling of gravity or magnetic data”, 

2018. 

[4] Socco, L. V., Comina, C., and Khosro Anjom, F., “Time-average velocity estimation through 

surface-wave analysis: Part 1—s-wave velocity”, 2017. 

[5] Basokur, A.T., “Definitions of apparent resistivity for the presentation of magnetotelluric 

sounding data”, 1994 

[6] “Magnetotellurics” available at:  
https://em.geosci.xyz/content/geophysical_surveys/mt/index.html#mt-index 

[7] Nabighian, M.N.,  “Chapter 8 - The Magnetotelluric Method, Electromagnetic Methods In Applied 
Geophysics – Part A&B”, 1991 

[8] “General Solution of Maxwell equations for a Planewave”, 2018, available at: 

https://em.geosci.xyz/content/maxwell1_fundamentals/harmonic_planewaves_homogeneous/de

rivation.html#harmonic-planewaves-homogeneous-derivation 

[9] Griffiths, D., J., “Introduction to electrodynamics”, 1999. 

[10] Di Giuseppe, M., G., “SEPARAZIONE DI CONTRIBUTI DI ONDA PIANA E DI CAMPO VICINO PER 

L’INVERSIONE DI DATI MAGNETOTELLURICI”, available at:  

https://amsdottorato.unibo.it/154/1/TesiDottorato.pdf 

[11] “Apparent Resistivity” available at: 
https://em.geosci.xyz/content/maxwell1_fundamentals/harmonic_planewaves_homogeneous/ap
parentresistivity.html 

[12] NIST, “Fundamental physics constant – vacuum magnetic permeability”, 2006, available at: 
https://physics.nist.gov/cgi-bin/cuu/Value?mu0 

[13] Jones, A., G., “On the Equivalence of the "Niblett" and "Bostick" Transformations in the 

Magnetotelluric Method”, 1983 

[14] Jones, A., G., “The COPROD2 Dataset: Tectonic Setting, Recorded MT Data, and Comparison of 

Models”, 1993 

https://smi.uq.edu.au/files/43560/Dec18KTW_MT_workshop.pdf
https://em.geosci.xyz/content/geophysical_surveys/mt/index.html#mt-index
https://em.geosci.xyz/content/maxwell1_fundamentals/harmonic_planewaves_homogeneous/derivation.html#harmonic-planewaves-homogeneous-derivation
https://em.geosci.xyz/content/maxwell1_fundamentals/harmonic_planewaves_homogeneous/derivation.html#harmonic-planewaves-homogeneous-derivation
https://amsdottorato.unibo.it/154/1/TesiDottorato.pdf
https://em.geosci.xyz/content/maxwell1_fundamentals/harmonic_planewaves_homogeneous/apparentresistivity.html
https://em.geosci.xyz/content/maxwell1_fundamentals/harmonic_planewaves_homogeneous/apparentresistivity.html
https://physics.nist.gov/cgi-bin/cuu/Value?mu0


81 

[15] Calderon Hernandez, O., “Direct 1D Resistivity Estimation from Data Rescaling Using Cumulative 
Resistance Models”, 2023 

[16] Werthmüller, D., “empymod Phyton routine – Magnetotelluric“, 2017, available at: 
https://empymod.emsig.xyz/en/stable/gallery/fdomain/magnetotelluric.html 

[17] Arvai, K., “K-Means Clustering in Python: A Practical Guide”, 2020, available at: 
https://realpython.com/k-means-clustering-python/#what-is-clustering 

[18] Beigy, H., “Machine learning theory - Theory of clustering”, 2022, available at:  

https://sharif.edu/~beigy/courses/14002/40718/Lect-28.pdf 

[19] Jeffares, A., “K-means: A Complete Introduction”, 2019, available at: 

https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c 

[20] Di Giuseppe , M., Troiano, A., Troise, C., De Natale, G., “k-Means clustering as tool for 

multivariate geophysical data analysis”, 2014 

[21] Tan, P.N., Steinbach, M., Kumar, V., “ Introduction to Data Mining”, 2014, available at: 

https://www.ceom.ou.edu/media/docs/upload/Pang-

Ning_Tan_Michael_Steinbach_Vipin_Kumar_-_Introduction_to_Data_Mining-Pe_NRDK4fi.pdf 

[22] “Visualizing K-means clustering”, available at: https://www.learnbymarketing.com/methods/k-

means-clustering/ 

[23] Banerji, A., “K-Means: Getting the Optimal Number of Clusters”, 2023, available at: 

https://www.analyticsvidhya.com/blog/2021/05/k-mean-getting-the-optimal-number-of-

clusters/#Methods_to_Find_the_Best_Value_of_K 

[24] Joshi, S., “What is Clustering in Machine Learning: Types and Methods”, 2022, available at: 

https://www.analytixlabs.co.in/blog/types-of-clustering-algorithms/ 

[25] Sharma, H., “Hierarchical Clustering”, 2021, available at: 

https://harshsharma1091996.medium.com/hierarchical-clustering-996745fe656b 

[26] Xu, A., “Clustering Algorithms BIRCH and CURE”, 2019 

[27] Leskovec, J., Rajaraman, A., Ullman, J., “The CURE Algorithm (Advanced)”, 2016, available at: 

https://www.youtube.com/watch?v=JrOJspZ1CUw 

[28] “Basic understanding of CURE algorithm”, 2021, available at: 

https://www.geeksforgeeks.org/basic-understanding-of-cure-algorithm/ 

[29] Kassambara, A., “Advanced Clustering - DBSCAN: Density-Based Clustering Essentials”: available 

at: https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/ 

[30] Plakalovic, A., “Clustering Algorithms: DBSCAN vs. OPTICS”, 2023, available at: 

https://www.atlantbh.com/clustering-algorithms-dbscan-vs-optics/ 

[31] Pegoraro, E., “Statistica per Data Science - Capitolo 9 Introduzione all’algoritmo DBSCAN”, 2019, 

available at: http://www.r-project.it/_book/introduzione-allalgoritmo-dbscan.html 

[32] “DBSCAN” available at: https://it.wikipedia.org/wiki/Dbscan/ 

https://empymod.emsig.xyz/en/stable/gallery/fdomain/magnetotelluric.html
https://realpython.com/k-means-clustering-python/#what-is-clustering
https://sharif.edu/~beigy/courses/14002/40718/Lect-28.pdf
https://www.ceom.ou.edu/media/docs/upload/Pang-Ning_Tan_Michael_Steinbach_Vipin_Kumar_-_Introduction_to_Data_Mining-Pe_NRDK4fi.pdf
https://www.ceom.ou.edu/media/docs/upload/Pang-Ning_Tan_Michael_Steinbach_Vipin_Kumar_-_Introduction_to_Data_Mining-Pe_NRDK4fi.pdf
https://www.learnbymarketing.com/methods/k-means-clustering/
https://www.learnbymarketing.com/methods/k-means-clustering/
https://www.analyticsvidhya.com/blog/2021/05/k-mean-getting-the-optimal-number-of-clusters/#Methods_to_Find_the_Best_Value_of_K
https://www.analyticsvidhya.com/blog/2021/05/k-mean-getting-the-optimal-number-of-clusters/#Methods_to_Find_the_Best_Value_of_K
https://www.analytixlabs.co.in/blog/types-of-clustering-algorithms/
http://cs.stanford.edu/~jure/
https://twitter.com/anand_raj
http://infolab.stanford.edu/~ullman/
https://www.youtube.com/watch?v=JrOJspZ1CUw
https://www.geeksforgeeks.org/basic-understanding-of-cure-algorithm/
https://www.datanovia.com/en/lessons/dbscan-density-based-clustering-essentials/
https://www.atlantbh.com/clustering-algorithms-dbscan-vs-optics/
http://www.r-project.it/_book/introduzione-allalgoritmo-dbscan.html


82 

[33] Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J., “OPTICS: Ordering Points To Identify the 

Clustering Structure”, 1999, available at: 

https://www.dbs.ifi.lmu.de/Publikationen/Papers/OPTICS.pdf 

[34] “Illustration of the "reachability distance" concept in the DBSCAN, OPTICS and LOF algorithms”, 

2010, available at: https://en.m.wikipedia.org/wiki/File:Reachability-distance.svg 

[35] Eric, J., “OPTICS Clustering: From Novice to Expert in Simple Steps”, available at: 

https://datarundown.com/optics-clustering/ 

[36] TIBCO, “TIBCO Statistica User's Guide Conceptual Overviews - 2D Box (and Means with Error) 

Plots”, 2020, available at: https://docs.tibco.com/pub/stat/14.0.0/doc/html/UsersGuide/GUID-

CD68E5DD-DCC2-49D0-9C5A-84D8526F9DB7.html 

 
 

 
 

 

 

https://www.dbs.ifi.lmu.de/Publikationen/Papers/OPTICS.pdf
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/OPTICS_algorithm
https://en.wikipedia.org/wiki/Local_Outlier_Factor
https://en.m.wikipedia.org/wiki/File:Reachability-distance.svg
https://datarundown.com/optics-clustering/
https://docs.tibco.com/pub/stat/14.0.0/doc/html/UsersGuide/GUID-CD68E5DD-DCC2-49D0-9C5A-84D8526F9DB7.html
https://docs.tibco.com/pub/stat/14.0.0/doc/html/UsersGuide/GUID-CD68E5DD-DCC2-49D0-9C5A-84D8526F9DB7.html

