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SUMMARY

Wearable robotics represents a transformative advancement in the field of assistive

technologies, promising enhanced mobility and improved quality of life for individuals

with mobility impairments. However, despite their potential, these emerging technolo-

gies are often challenging to use and inaccessible to a wide range of users, particularly

medical professionals and patients. This thesis addresses the pressing need for user-

friendly interfaces in wearable robotics, focusing on the development of two interfaces

designed to enhance accessibility to complex systems. The first interface developed

is for managing a controller for an active ankle exoskeleton, a sophisticated wearable

device designed to assist with mobility. The challenge lies in creating a user interface

that simplifies the control of this exoskeleton. The second interface supports a machine

learning algorithm that personalizes the exoskeleton’s control parameters, minimizing

the patient’s energy expenditure during specific physical activities while wearing the

exoskeleton. The interface allows to control and visualize the outputs of this algo-

rithm. Additionally, this thesis introduces a third software, implemented in Matlab,

which connects to, calibrates, and collects data from a Nintendo Wii Balance Board.

This affordable and reasonably accurate device has gained popularity for its ability

to detect the Center of Pressure (CoP), indicating the patient’s weight distribution

during various activities. The culmination of this research represents a meaningful

step forward in the field of wearable robotics. Through the successful integration of all

three software components,this study demonstrates the effectiveness in using ad hoc



ix

software to make these wearable robotics systems accessible to everyone. By addressing

the challenges faced by users and simplifying the complexities of these technologies, this

thesis contributes to the ongoing efforts in creating more accessible and user-friendly

wearable robotics systems.



Chapter 1

INTRODUCTION

Wearable robotics, a cutting-edge field at the intersection of robotics and human

augmentation, is gaining prominence as a transformative technology with the poten-

tial to revolutionize various domains. This emerging field focuses on the development

of robotic devices that can be worn on the body to augment or enhance human ca-

pabilities. These wearable robotic systems aim to seamlessly integrate with the user,

providing assistance, support, or even restoring lost functionalities. In recent years, the

diffusion of wearable robotics has been accelerating, driven by advancements in materi-

als, sensors, and control systems. The technology’s applications span a wide spectrum,

ranging from healthcare and rehabilitation to industrial and military sectors. Wearable

robotic devices are designed to assist individuals with mobility impairments, enhance

physical performance, and optimize ergonomics in professional settings.

1
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1.1 Motivations

The motivation for undertaking this research comes from the engagement in a thesis

project within the Rehabilitation Robotics Laboratory (RRLab) at UIC, whose leader

is Dr. Myunghee Kim. The focus of this laboratory’s research initiative is to leverage

wearable robotics to enhance the rehabilitative capabilities of individuals experiencing

partial mobility loss. The wearable devices developed by RRLab, coupled with efficient

customization software, have demonstrated the ability to reduce users’ effort during

physical activities.

However, the complexity of these tools poses a significant hurdle, especially when

considering their potential application beyond laboratory environments for experimen-

tal purposes. The end users of these technologies, namely individuals affected by

disabilities or doctors utilizing the tools to aid patient recovery, underscore the critical

need to make these instruments more accessible. The motivation for this thesis arises

from this imperative.

The thesis comprises three key components: first is a MATLAB software capable of

interfacing with a Nintendo Wii Balance Board, second is an application programmed

using a commercial software for intuitive controlling an ankle exoskeleton, and third

is an application facilitating user monitoring of the wearable robot optimization pro-

cess. The latter serves as an interface designed to enhance the accessibility of the

Human-in-the-Loop toolkit, a tool developed by P. Kantharaju et al. in [1]. The au-

thors highlight that their optimization framework is primarily tailored for proficient
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engineers, presenting a potential barrier for less-experienced users or non-researchers.

Recognizing this limitation, the thesis aims to contribute to a more inclusive and user-

friendly approach by designing intuitive interfaces for wearable robotics applications,

making them accessible to a broader audience.

1.2 Thesis Structure

This thesis is organized into eight chapters. The second chapter provides contex-

tual information about the systems developed preceding this work. Understanding

these concepts is essential for comprehending the developments detailed in this thesis.

Subsequently, we deepen the Implementation chapters, spanning from Chapter three

to Chapter six. Within these sections, I elucidate the work and design choices defining

the development of the three main topics of this thesis: the MATLAB software for

Wii Balance Boards, the Control System Interface, and the Optimization Interface.

The final chapter in this Implementation section focuses on elucidating how the new

interfaces have been seamlessly integrated with the systems outlined in chapter two.

Chapter 7 narrates the experiment conducted to validate all the systems developed in

this work and their integration. Lastly, the conclusion synthesizes how these interfaces

have effectively facilitated the experiment and suggests potential modifications and

enhancements for the future.



Chapter 2

RELATED WORK

In order to develop the Optimization UI, several other systems have been used for

testing and debugging. This chapter wants to describe these systems. Comprehending

these tools is critical to understand the user interface and its functionality. This section

will explain in details the design and purpose of these systems. The section is divided

in Human In the Loop (HIL) toolkit, the Ankle Foot Orthosis (AFO) (both realized

by the Rehabilitation Robotics laboratory of University of Illinois at Chicago1) and a

biopatch electronic sensor for measuring high-quality ECG (designed by the Georgia

Institute of Technology2).

2.1 Human In the Loop toolkit

The first component under discussion is the HIL toolkit, developed and detailed by

P. Kantharaju et al. in [1]. This study successfully achieved the objective of creating

an open-source, device-independent personalization framework that enhances the ac-

1https://rehab-robotics.lab.uic.edu
2https://www.gatech.edu

4
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cessibility of HIL optimization. To maximize the effectiveness of wearable robots and

enhance user comfort, customization of these devices is essential. However, commonly,

optimization algorithms are tailor-made for the specific devices they are intended for,

posing challenges in terms of accessibility. This study addresses this limitation by de-

veloping an algorithm capable of personalizing any device based on any physiological

feedback. Moreover, the HIL toolkit addresses another significant issue. Many conven-

tional optimization algorithms are often slow, a constraint particularly impactful when

considering that the technology should be designed to support the elderly, injured, or

individuals with lower physical capabilities. Real-time optimization is crucial, and the

physical effort required from the user must not be prolonged. Kim et al. implemented

Bayesian optimization, a noise-tolerant, sample-efficient, and non-parametric method,

achieving notable improvements. They successfully obtained two parameters for con-

trolling an exoskeleton during a squat activity within 15 minutes.

These customization algorithms rely on physiological feedback. Han et al. [2] and

Jeong et al. [3] demonstrated that muscular activity can be employed as input for HIL

optimization. Various other signals and feedback have been implemented and proven

efficient for HIL optimization [4] [5]. In this paper, two types of feedback were pre-

dominantly utilized: indirect calorimetry feedback, which measures the inhaled oxygen

and exhaled carbon dioxide of the subject and ECG signal from a heart sensor, the

functionality of which is explored in a subsequent chapter. As for actuators, three dif-

ferent devices were implemented: ankle-foot prosthesis, robotic ankle exoskeleton, and
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personalization of gait parameters (step frequency). Through the utilization of diverse

feedback and devices, the researchers demonstrated the versatility of this framework.

The HIL toolkit comprises three components, as illustrated in Figure 1.

Figure 1: HIL framework’s overview. Screenshot from [1]

The initial module is denominated the Human-Machine System, encompassing the

wearable robots or commands from a device optimized to reduce the physical exertion

of the patient. Examples elucidated in this paper encompass an ankle-foot prosthesis,

a robotic ankle-foot orthosis, and an acoustic device capable of emitting sounds to

command the patient’s step frequency. The second component is the Cost Function

Estimation, a software segment designed to interpret physiological feedback signals de-

rived from dedicated sensors. It is imperative in this segment to explicate the features

of the signal concomitant with physical effort. These features facilitate the assessment

of energy expended by the patient during activity and, crucially, enable the quantifica-

tion of the assistance effect provided by the wearable robot. Examples of feedback for

cost estimation are indirect calorimetry, electrocardiogram, and foot contact forces.

The third constituent of this framework is Bayesian Optimization based on two pro-
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cesses. The initial process, called cost landscape, employs the Gaussian process to

predict the posterior distribution based on data and the use of kernel functions. The

kernel function is responsible for calculating the mean and standard deviation of the

posterior distribution from real cost function samples. Various types of kernel functions

exist; however, for this framework, the squared exponential kernel has been employed.

The subsequent process is New Parameter Selection that is possible thanks to the

Acquisition function which is derived from the mean and standard deviation of the

posterior function. This function guides the search in selecting points in the objective

function domain during the optimization process. Its purpose is to balance exploration

(the exploration of new regions in the domain) and exploitation (the exploration of

regions near where the function appears to be optimal). In essence, it is responsible for

choosing the next point to measure in the real cost function approximation. Different

types of Acquisition functions exist; in this framework, the Expected Improvement (EI)

was utilized. The repetition of these two processes (depicted in Figure 2) facilitates the

approximation of the real function. This framework underwent testing in three distinct

scenarios, incorporating varied types of feedback and devices. Across all instances, a

noteworthy reduction in physical exertion was achieved when comparing the Optimal

condition to the No device condition or General condition (the user has assistance from

non-personalized device).
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Figure 2: Pseudo-code for computing posterior distribution. x∗ are all the points of
the sample space. k is the kernel function. kn is a vector get by applying k on known
data points xn. K is a matrix obtained by applying k on the entire sample space. σnoise

is the hyper-parameter tuned during the optimization. Screenshot from [1]

2.2 Ankle Foot Exoskeleton

A fundamental device for the research of this thesis is the AFO. This is the mecha-

tronic device that will give assistance to the patient in doing the squatting activity.

The device is thoroughly described in [6] and it is a valuable solution to improve re-

search in wearable assistive robotics whose goal is to improve the gait of individuals

with reduced mobility. The paper cited above stresses the importance of developing a

device that can also mechanically adapt to the variations in body measurements and

walking mechanics, while taking into account the operational aspects of the device de-

termined by the user’s physical state and objectives in gait training.
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The mechanical design is made of two main parts: the Exo-foot and Exo-Tibia. Both

Figure 3: AFO’s modular components. Screenshot from [6]

of these components can easily be replaced with other similar parts whose dimensions,

however, meet the characteristics of the patient. Exo-Foot is the bottom part com-

posed by the sole and additional components in order to connect the Exo-Foot with

the Exo-Tibia. The latter is important to attach the exoskeleton to the patient’s tibia

and make sure that they are securely fixed. On the Exo-Tibia there is connected an

additional mechanical supporting piece in order to hold and route the cables coming

directly from the motors. The additive manufacturing technique was used to develop

the parts mentioned above. This allowed them to make lighter and more anthropo-

metrically efficient components. The material used is nylon-carbon fiber N12 Carbon

Fiber and the AFO is around 0.9kg in weight.
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Figure 4: Subject wearing the AFO on the
right leg. Figure from [6]

Figure 5: Portable actuator system in the
off-board emulator setting with the AFO
worn by a subject. Figure from [6]

The portable actuator system which controls the system explained above has two op-

tical encoders (HEDS-5500-A06, Broadcom Inc., CA, USA). They are located in the

joints between Exo-Foot and Exo-Tibia. One in the medial side and the other in the

lateral side. They are able to measure the angles of the joints in the sagittal plane.

Torque feedback is given instead by two DYMH-103 tensile load cells. The torque

is given by two motors (EC i-52s Maxon Group, Switzerland). Two EPOS4 50/15

EtherCAT motor drivers (Maxon Group, Switzerland), on the other hand, take care of

controlling the motors and reading the feedback signals coming from the encoders and

load cells. The output torque of the AFO is controlled through a Simulink real-time

controller.

The motors are engaged in supporting plantar flexion. While for dorsiflexion, the de-

vice uses two elastic bands connected between the Exo-Tibia and Exo-Foot. Two small

and quick-response limit switches are placed on the medial and lateral sides of the AFO

in order to do not exceed the maximum expected plantarflexion angle for security pur-
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poses. As shown in the Figure 5, the motors can transmit torque to the exoskeleton

through two 2m long Bowden cables. The diameter of the cables is 5mm. The weight

of the whole system shown in the Figure 5 is about 6.5kg.

A portable dual cable-driven system was designed in order to offer assistance with

plantarflexion and in/eversion. With the following equations we can define the torques

applied for plantarflexion and in/eversion assistance:

Mpf = ML +MR (2.1)

Min−ev = (ML −MR) ·
wankle

2dankle
(2.2)

where ML and MR stands for torque caused by the motor connected to the left and

right side of the exoskeleton. Dankle and Wankle are dimensions taken from the geometry

of the Exo. It is possible to check these two features in Figure 4.

The controller is run in Simulink (Mathworks, MA, USA) at the frequency of 1KHz.

The controller is divided into mid level control and low level control. The mid level part

describes the angle/torque characteristic. So it is responsible for defining the plantar

and in/eversion torque needed to assist the human subject. The low-level controller, on

the other hand, is responsible for translating the desired torques into velocity commands

to be sent to the motors. The latter controller is of the proportional type and its output,
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that is the command in velocity, is defined by the Equation 2.3.

θ̇d = kgain(Md −Mm) (2.3)

where Md and Mm are desired torque and torque measured by the load cells. The Mid

level controller can work in different modes: No control to completely disable the mo-

tors and controller, Position control to enable the controller and set the desired torques

to zero. This enables to cancel the loosening of the transmission cables. Finally, we

have the Squat control mode, which instead is used for squatting activity and thus to

define the torque needed to support the patient during the various phases of the squats.

In Figure 6 it is possible to observe an approximate schematic of the characteristic that

represents the torque/angle characteristic used by the controller in this mode.

The characteristic is described by 6 states but here for simplicity we define three

Figure 6: Torque-angle characteristic

main steps: Descending, Bot2Asc and Ascending. For Descending and Ascending we

have a function that determines the desired torque based on the angle. The difference
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between these two steps is that they can have different stiffness, and therefore, different

resulting slopes in the characteristic. The red arrow instead represents the Bot2Asc

state that stands for “Bottom To Ascend” state. This state is critical to transition as

smoothly as possible from descending to ascending. An immediate transition from de-

scending to ascending, assuming that Kascending is greater than Kdescending, could cause

exaggerated resistance at the conclusion of the descending movement.

In the article, the authors also tested the whole system and obtained satisfactory re-

sults. The tests in a laboratory setup indicated that the device could generate 40Nm

of torque for plantarflexion and 16Nm of torque for inversion/eversion movements,

achieving rise times of 70ms for plantarflexion, 77ms for eversion, and 84ms for in-

version. The control bandwidth for torque exceeded 13Hz for both plantarflexion and

inversion/eversion. During a squat assistance task involving a human participant, the

device was able to closely reach the desired torque pattern, displaying a maximum av-

erage root mean square (RMS) error of 2.9 ±1.2Nm for plantarflexion assistance and

0.7 ± 0.5Nm for inversion/eversion assistance.

2.3 ECG biopatch sensor

As observed in the preceding chapters, within this field, the utilization of a HIL

framework is of paramount importance in order to ensure the personalizing process of

a wearable robot capable of assisting the subject. A fundamental constituent of the

HIL framework is the Biofeedback signal, which furnishes us with insights into the
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vital functions of the human subject. Specifically, biofeedback aids in comprehending

the level of physical effort experienced by the patient during a given activity. One of

the most commonly employed methodologies for this purpose entails estimating the

metabolic cost via indirect calorimetry and a respiratory mask, which measures the

inhaled oxygen and exhaled carbon dioxide of the subject. Nonetheless, despite its

reliability, the aforementioned system is also notably inconvenient, bulky, and imprac-

tical. Indeed, devices of this nature necessitate a rigid mask that fits snugly onto

the face without gaps and are equipped with a small backpack (worn by the subject)

housing the battery system and antenna for data transmission. These components can

affect the subject’s mobility. These cumbersome systems directly contradict the goal

of developing wearable robots aimed at assisting individuals in performing repetitive

motions. These systems entail a protracted setup, are confined to laboratory settings,

and offer discomfort due to their substantial dimensions and weight. Notably, this sys-

tem mandates a minimum of 3 minutes to estimate the required physiological signal.

An alternative solution, on the other hand, involves employing sensors capable of in-

terpreting the Electrocardiogram (ECG). The ECG signal is not perfectly periodic [7];

it varies according to the effort experienced by the patient [8], [9], [10]. Greater effort

corresponds to a more periodic heart rate. The variable that describes this character-

istic is known as Hear Rate Variability (HRV). To compute and quantify this variable,

Root Mean Square of successive Differences between normal heartbeats (RMSSD) is

used. RMSSD involves taking the square root of the sum of squared intervals between
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adjacent normal heartbeats. The time intervals are measured between adjacent peaks

of the ECG and are referred to as RR intervals, as depicted in Figure 7.

Figure 7: ECG signal description. Credits https://litfl.com/t-wave-ecg-library/

Numerous commercial devices are available in the market capable of measuring

HRV; however, these systems often entail discomfort during wear, thereby imposing

limitations on mobility. In [11] the authors delineate a study centered on the devel-

opment of a soft, flexible biopatch proficient in collecting ECG data and transmitting

them via Bluetooth. The core objective of this article resides in disseminating the de-

sign of the Soft Flexible Biopatch (SFB) and elucidating the outcomes of several exper-

iments that underscore the robust negative correlation between normalized metabolic

cost and normalized HRV-RMSSD.

The SFB consists of multiple layers. The initial layer, which makes contact with the

skin, comprises electrodes. Subsequently, an adhesive base is present and on top of

that there is a flexible Printed Circuit Board (fPCB) and the power supply. The fPCB

incorporates all the necessary electronics for data processing. Specifically, within its
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Figure 8: Soft flexible bioelectronic system (SFB) integrated with an ankle-foot-orthosis
(AFO) exoskeleton. Figure from [11]

structure, components such as the ECG analog-to-digital converter (ADS1292, Texas

Instruments), Microprocessor (NRF 52832, Nordic), and a high-frequency low-power

Bluetooth antenna are encompassed. As depicted in Figure 8, the fPCB is encapsu-

lated by a soft elastomer (Ecoflex™30, Smooth-On), enabling enhanced mechanical and

electrical resistance. Atop of this encapsulation, the charging port and a switch are

positioned. Notably, the device is equipped with a 3.7V , 40mAh battery that ensures

9 hours of uninterrupted operations. A complete recharge is accomplished within 30

minutes. Due to skin irregularities, the device must exhibit flexibility of more than

15° to maintain consistent contact with the sternum. This property has been vali-

dated through comprehensive mechanical testing, yielding no damage with regards to

mechanics, electronics, or overall performances.

The assessment of SFB quality hinges upon obtaining a reliable ECG signal. To

this end, the sensor records raw data which are subsequently filtered using a first-order
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Butterworth band-pass filter. Cut-off frequencies are 0.5Hz and 60Hz. The Signal-to-

Noise Ratio (SNR) is measured at 25 dB, facilitating clear distinction of ECG signal

characteristics, in particular the R peaks, across all usage scenarios: squatting, walk-

ing, and running. Subsequent to filtering, the signal undergoes convolution through

a moving average process, followed by application of an RMS envelope to eliminate

noisier periods. They developed an HR detection algorithm that compares the values

of the peaks with the threshold shown in Equation 2.4.

Threshold = NoiseLevel + 0.25(SignalLevel −NoiseLevel) (2.4)

If the value is higher than the threshold, the peak is identified as a valid R peak.

This threshold depends on two parameters: NoiseLevel and SignalLevel. They are

dynamically updated after every classification with Equation 2.5 and Equation 2.6. If

the valid R peak is higher than the result of Equation 2.5, SignalLevel will be updated

with Equation 2.5. If not, NoiseLevel will be updated with Equation 2.6.

SignalLevel = 0.125Peak + 0.875SignalLevel (2.5)

NoiseLevel = 0.125Peak + 0.875SignalLevel (2.6)

After this post processing of the ECG data, a python library called Neurokit2 [12] has

been used in order to calculate the HRV-RMSSD values.

In summary, this study presents a compact wearable bioelectronic system integrat-

ing a flexible biopatch and an ankle-foot exoskeleton. The compact biopatch replaces

bulky tools, offering accurate metabolic rate measurement. The conformal device en-
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sures close skin contact for precise ECG and HRV-RMSSD recording. Unlike traditional

mask-based calorimetry, this wearable setup, comprising SFB and AFO, exhibits strong

performance in various activities with a high signal-to-noise ratio (>25 dB) and robust

Pearson R correlation (−0.758, p-value: 1.2e− 7) with steady-state metabolic cost.



Chapter 3

IMPLEMENTATION - Wii Balance Board

The Wii Balance Board (WBB) is a peripheral device developed by Nintendo for

the Wii console. It was released in 2007 as part of the Wii Fit game package. The

Balance Board is a rectangular platform equipped with multiple sensors that can detect

shifts in weight and balance. The primary purpose of the Wii Balance Board is to

enhance game play and promote physical activity. It allows players to engage in various

interactive exercises and games that focus on fitness, balance, and coordination. The

board can measure a player’s center of gravity and movements in real-time, providing

feedback and tracking progress. As already discussed in chapter 2, WBBs are a very

cheap alternative for Biomedical applications. In terms of data precision, these systems

might not attain the level of accuracy demonstrated by force plates, yet they frequently

achieve satisfactory results. Our goal was to be able to detect the pattern drawn by

the Center of Pressure (CoP) of each foot of the subject during squatting activity. This

information can be used in two possible ways. The first is to use the CoP information

in real time as a BioFeedBack signal. This real time data could be the input for an

19



20

optimization algorithm like the Bayesian Optimization. In particular, the idea is to

compute a cost function using the CoP data and by minimizing this cost function, we

can optimize the selection of the control parameters for every subject. The second is to

simply compare the CoP data coming from different conditions of squatting during the

experiment. For example we can compare the CoP data when the subject is squatting

in a no device condition and the CoP data when the subject is in a optimal condition.

For optimal condition we mean that the Human subject is squatting wearing the ankle

exoskeleton with personalized assistance. By comparing, we can see if the assistance

given by the exoskeleton can positively affect the kinematics of the squatting movement.

Throughout this section, we will go over the implementation of the software able to

connect, calibrate and retrieve the data coming from the WBBs.

3.1 Wii Balance Board - hardware

Figure 9: Wii Balance Board from Nintendo. Credits: https://it.wikipedia.org /wik-
i/File:Wii_Balance_Board_transparent.png

The working principle is very simple. The device is a platform of dimension 23x43cm
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and it has 4 load cells in the 4 corners. The sensors are cantilevered metal bars with a

strain gauge that converts the applied force into a voltage.

Figure 10: Extracted pressure sensor. Credits: https://electronics.stackexchange.com
/questions/83861/connect-wii-balanceboard-pressure-sensor-to-an-arduino

Each bar has two strain gauges as represented in Figure 12. When a force is applied

to this system, the bar bends and we get a deformation of the two strain gauges. One

will tend to become narrower and the other will become wider. These deformations are

translated into a voltage signal for the electronic unit of the WBB. The cantilevered bars

are made of duralumin, an alloy with high strength-to-weight ratio. So the straining

on the metal is very slight. For example, if a weight of 100kg is applied, the bar

would only bend by 0.1mm. However, it is precise enough that it can accurately

detect weight differences of 500 grams. As per the available literature, the Wii Balance

Board is reported to sample each force channel at a notably high frequency of around

100Hz. This sampling rate exceeds the recommended minimum of 50Hz for accurately

capturing the Center of Pressure (COP) during postural sway assessments [13]. The

literature also suggests that the force sensors utilized in the WBB are designed to
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Figure 11: Disassembled pressure sensor. Credits: https://www.xsimulator.net/
community/threads/diy-load-cell-brake-pedal-short-tuto.6042/page-2

be linear and demonstrate COP noise levels of approximately 0.5mm [14]. It is also

important to notice that because of how this balance is designed, it is possible to detect

only vertical reaction forces [15]. This stands as one of the numerous reasons why force

plates command a higher cost compared to Wii balance boards.

Figure 12: Strain gauge used in WBB’s sensors. Credits [Video on http://www
.rehabtools.org/wii-balance-board.html]

3.2 WiiBalance Library - software

Over the past few years, Nintendo devices have proven to be very inexpensive and

fairly accurate solutions to be implemented in various research applications such as
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biomedical or virtual reality. For this very reason, some research laboratories have

been working on making these devices easier to use. In particular, the University of

Notre Dame explained how they developed low-level programming to facilitate the

connection between the Wiimote and Matlab [16]. WiiLab, as described in the pa-

per, is a combined collection of C# and Matlab libraries for Windows that produce

an intuitive API that greatly abstracts the difficulty of using the Wiimote. The Wii

Remote, commonly referred to as the Wiimote, is the gaming controller for Nintendo’s

Wii system. In order to connect to the WBB instead, Pete R Jones, from University of

London, developed another Matlab library called WiiBalance1. This library essentially

incorporates additional functionalities to the WiiLab library, enabling it to establish

connections not only with Wiimote devices but also with the WBB. For using these two

libraries, it is important to have installed Matlab 2012 onward and 32 bit Windows as

operating systems. On our computer with Windows 10 (64 bit), we used Matlab 2015

(32 bit) in order to run the library. Once the installation was completed, we performed

a test using the library. This was the outcome of the example given by the WiiLab

tool (Figure 14):

1https://github.com/petejonze/wiibalance
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Figure 13: Extracted pressure sensor Figure 14: Disassembled pressure sensor

In Figure 14 there are 3 plots. The two on the bottom represents the coordinates

(x and y) of the Center of Gravity (CoG) with respect to time. The vertical axes

have centimeters as units of measurement. The first plot at the top instead represents

the position of the CoG, indeed the x coordinate is on the horizontal axis (cm) and y

coordinate is on the vertical (cm). Figure 13 shows 4 plots that we easily implemented

in order to display the values read by each sensor in time. Because of the uncalibrated

device and little knowledge of how the data is retrieved from the hardware, we couldn’t

understand the unit of measure of the sensors’ outputs. However, the first important

thing was to check the linearity of measurements from each sensor. Without linear sen-

sors it would be very hard to compute the CoP. So we flipped the WBB with the sensors

facing up and we applied several weights to each sensor and saved the values given.

The Matlab script was developed to connect to the balance board and store single mea-

surements from the sensors. The list of the weights applied was: 4.75, 9.5, 14.12 and
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18.77kg. We applied the force using the system shown in Figure 15. The method for

applying the weights is shown in Figure 16. In particular we used a rod with a ring in

the middle. The ring is for blocking the weight disks that will be loaded on the rod. On

one end of the rod there is a circular pointing tip made of steel whose diameter is 7mm.

Figure 15: Weight application device
and weights

Figure 16: Load application method

The procedure was the following one. One disk at the time was applied using the

custom pointing device shown in Figure 15. Once the disk was stable on the sensor we

took the measurement. We did this on each sensor by measuring all the weights listed

before. When the procedure was done, the scripts showed the plots with the given

outputs. The result plots were all very similar like in Figure 17. On the horizontal

axis we have the values of the weights applied to the sensors in kilograms, on the y

axis instead, there are the respective values measured by the balance board. The red

asterisks are the samples, while the blue line is a function interpolating them. The

outcome is deemed satisfactory due to the fact that, despite the ambiguity of units of
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measurement, the sensors exhibit a consistent linearity.

Figure 17: Linearity check on WBB’s sensors

In light of the current circumstances, it has become increasingly important to recog-

nize the significance of developing scripts specifically designed to calibrate the WBB.

By doing so, we can effectively address and mitigate the challenges presented by this

situation. Before working on the calibration functions we found out a problem in the

computation of the CoP. The CoP, called CoG in the original library WiiBalance, was

retrieved by a function that we couldn’t open to get more information about:

1 CoG = obj . bb .wm. GetBalanceBoardCoGState ( ) ;

Code 1: WiiLab function for computing CoP

However, we wanted to test it in order to understand its behavior. So with our

custom application device we applied a force in a specific point on the balance. As

expected, we got a coordinate measurement that was within the ranges related to the

size of the Balance Board. However, by keeping the same position and sufficiently
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increasing the pressure, we were able to move the point measured even outside the

ranges. This is not tolerable for our application. We are interested in detecting the

position where most of the force of the foot is applied. It is intuitively that this CoP

point must be located inside the area where the foot is positioned. In the example

shown before instead, by changing the force applied to the same point, we were getting

different coordinates. The original goal of the WBB from Nintendo was to detect the

balance, not the CoP. In order to change this we deleted that function. We used two

formulas as defined in [14], [15]:

COPx =
L

2

(TR +BR)− (TL+BL)

TR +BL+ TL+BL
(3.1)

COPy =
W

2

(TL+ TR)− (BL+BR)

TR +BL+ TL+BL
(3.2)

For these equations we considered the center of the balance as the origin and we used

the its dimensions for L and W. In particular L is 43,3 cm and W is 22,8 cm. TL,

TR, BL and BR refer to the sensors. They stand for top-right, top-left, button-left

and button-right. Figure 18 represents the corners names and postions. Following the

aforementioned change, the experiment was conducted again, similar to the previous

test. Notably, even by increasing the applied weights, the center of pressure (CoP)

remained unchanged if the point of force application remained constant.
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Figure 18: Sensors’ labels

3.3 Calibration functions

From the experiment explained above it is clear that all the sensors were all ap-

proximately linear, however, the characteristics computed for each sensor were quite

different in terms of slope and offset. To contribute to the most precise measurements

possible, it is crucial that every sensor has exactly the same characteristic. In order to

calibrate the balance board we designed three calibration functions. WiiBalance is a

class that calls in its initialization function the WiiLab class. In order to add all the

calibration functions a higher class called WiiBwCalibration has been created. This

last class calls the WiiBalance library in its initialization function and it contains the

three calibration methods.

The first function NewtonTransform has the goal to change the characteristic of each

sensor to an ideal one. The ideal equation that a sensor needs to have is y = 9.81 ∗ x.
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This equation represents the formula to compute the gravitational force given a mass.

The sensor characteristic inputs will be in kilograms and the outputs will be in New-

tons. For example, by applying one kilogram on the sensor, we should read 9.81N . The

second calibration function is called CalibrationWdrift. As we said before, in the first

calibration the WBB is flipped with the sensor facing up to make it easier to place the

weights on the sensors. After this calibration, the sensors read zero when no force is

applied. However, when we flip again the balance (WBB feet facing down), the sensors

will perceive the weight of the balance itself. CalibrationWdrift is designed in order to

measure the weight of the balance and subtract it from the next measurements. The

third calibration is important for correcting the CoP equation.

3.3.1 NewtonTransform

The most complicated part for this calibration is the set up. It is important to

maintain the weight application device still on the sensors and to make sure the or-

der of the weights applied is respected. For this purpose, we designed a set up in

order to respect these requirements. As shown in the Figure 19, we used a metallic

parallelepiped shaped mechanical structure (available in the lab) and another metallic

component. By combining these two mechanical supports we created a structure able

to make the custom weight application device standing and still. Because of the height

of this structure, we used a rigid black box on which the WBB is then placed along

with a scale. In particular we placed the scale on the box and then we arranged the

flipped WBB (sensors facing up) on the scale.
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Figure 19: Setup for NewtonTransform calibration

The reason for using the scale is quite simple. It is crucial for this calibration function

to know exactly the value of the weight we are applying, the absolute value. In fact,

even if we know exactly the mass applied to the sensor, this value depends also on

how the load is placed on the device. If it is not perfectly vertical, this value could be

different. In this case, the weight force will break down into two components, vertical

and horizontal components. The WBB, because of the way it is designed, cannot sense

horizontal forces. This means we lose information. To resolve this problem, we decided

to place a scale under the WBB. So every time we have to start the calibration on a

sensor, we place the WBB on the scale, we make sure everything is stable, then push

the Tare button on the scale. After this process we can start the calibration. The Mat-

lab function asks the user to apply the first weight on the sensor, insert the value of

the weight read by the scale in the command window and then press Enter to measure.

Next step is adding the second weight and measuring again. Continue to the last
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Figure 20: NewtonTransform result

weight that is 18.77 kg. After the last measure we get the plot showing the result (Fig-

ure 20). The red asterisks are the values measured and the blue line is the characteristic

of the sensor before the calibration.

From the blue characteristic we can understand slope and offset. These two features

will be used in order to get the green characteristic that shows the relationship between

weights applied and values measured in Newtons after the calibration. The formula

used to calibrate the sensor is:

Ynew = (Yold − offset) · 9.81

slopeYold

(3.3)

Where Yold is the blue line and Ynew is the green one. This means that after this

calibration is performed, every single sensor measurement is subtracted from the offset

value of its initial characteristic, and then the result is multiplied by a constant given

by the gravitational acceleration over the slope of the characteristic prior to calibration.

This step ensures that each new sensor measurement gives in output a value in newtons
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that is perfectly consistent with the weight applied to the measuring device.

3.3.2 CalibrationWdrift

This calibration is performed immediately after the NewtonTransform function to

delete the offset given by the weight of the balance. The user flips and places the WBB

on the ground. It is important to mention that this calibration needs to be performed

in the place where we want to conduct the experiment and use the calibrated WBB.

After the execution of CalibrationWdrift, the balance board shouldn’t be moved. This

is because this calibration may be different based on the surface where we place the

balance. When the device is in the desired position we can press Enter. The Matlab

script will start recording the data coming from all the sensors. When little weight is

applied to the balance we get very noisy signals from the sensors. In order to get a

more accurate estimate of the data, the script records the signals for ten seconds. Once

the data is recorded, it convolutes the signals with a one dimension digital filter. In

particular we take the data as a one dimension vector and then we perform a convolu-

tion between this vector and the filter, that is a vector with one hundred components

and every element is equal to 1/100. The design of the filter can be represented by the

following code:

8 windowSize = 100 ;
9 b = (1/ windowSize ) ∗ ones (1 , windowSize ) ;

Code 2: 1-D digital filter

The design consisted in tuning the value for windowSize. This value determines
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the size of the filter and the magnitude of each element. Every component of this 1D

digital filter is equal. Once the convolution is done the Matlab script prints the result

in Figure 21.

Figure 21: Raw data and filtered data from Sensor 1

The example in Figure 21 is for sensor 1. The sensor was reading a mean value of 16N

because of the weight of the WBB (blue signal). For a larger value of windowSize we

get a smoother signal in output but the filtered signal will take more time to converge

to the real signal. So the design of this filter consisted in trying different values for

windowSize in order to obtain a trade-off between smoothing of the signal and fast

convergence. After several attempts, we decided the parameter to be equal to 100. We

wanted to get a smooth output, but a fast convergence of the filtered signal was more

important. If the delay for convergence is too long, it means that more samples will

be neglected and that we have to collect more data, so the recording time should be

longer. We wanted to keep the recording time to less than 10 seconds in order to make

the calibration procedure faster.
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Figure 22: Second calibration result

The FilterData function, that is the function that performs this filtering, neglects

the first two thirds of the filtered data and then takes the mean of the other samples.

This procedure is performed on all the transducers. In Figure 22, we can see the effect

of this calibration on the post calibration measurements. Because of the pressure given

by the mass of the balance, all the sensors were giving in output values greater than

zero. We filtered these noisy signals, took the mean and then we subtracted these

correction values to the next measurements. As figured in the plots, all the sensors

experience a force of 0N after the calibrationWdrift execution.

3.3.3 CalibrationP

For this method the position of the device remains as set after CalibrationWdrift.

We exploited again the mechanical structure mentioned in the first calibration. This

time we can not use the box, otherwise we would change the position of the balance.
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We used the mechanical structure as it is shown in the Figure 23. The weight is always

Figure 23: CalibrationP setup

the same (18.77kg) and by moving the metallic support we were able to apply steadily

the load in all the points without moving the balance. As can be seen in Figure 23, we

covered the balance with transparent tape then we drew a grid on the tape with unit

measurements in centimeters. With this grid we were able to mark the points where we

wanted to measure. CalibrationP is for the formula that computes the position of CoP.

The idea is to place our custom weight application device with test load in three specific

points of the WBB. In each point we keep the weight application system stable and

in the meanwhile the balance records the data. Once the data is recorded, the matlab

function filters the signals like it has been done in the previous calibration function

(same filter too) and it computes the errors between actual position and measured

position for both x and y coordinates. The matlab script stores these two errors for all

the positions and then computes the average error in x and y coordinates.
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Figure 24: Map of points selected for calibration

These two averages will be the last correcting factors and they will be subtracted to

the future calculations of the CoP. In Figure 24 it is possible to notice the positions we

decided to explore for this calibration. With respect to the reference system, the posi-

tions [x,y] are: [-15, -7.5], [0,0] and [-3,6] where the unit of measure is centimeter and

these coordinates have been chosen randomly. The points selected are represented by

the blue crosses drawn on the balance. For all the positions we applied the weight and

we collected the data. In order to evaluate the measurements we created histograms

that plots the frequency of each value measured. Examples for position 1 are depicted

in Figure 25 and 26.
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Figure 25: Measures of CoPx Figure 26: Measures of CoPy

In the Figure 23, we have the x coordinate measured by the balance. With mean

equal to -15.0253cm and standard deviation of 0.109cm. For the y coordinate instead

we got a mean value of -7.3155cm and standard deviation of 0.062 cm. We can therefore

easily deduce errors of -0.1845cm for the vertical (y) coordinate and 0.0253cm for the

horizontal (x) coordinate. For this example we can also show the signal analysis of the

data coming from the sensors. Here we have the frequency of the Newtons measured

by the transducers.

Figure 27: Measures from sensor 1 Figure 28: Measures from sensor 2
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Figure 29: Measures from sensor 3 Figure 30: Measures from sensor 4

Sensor one is the closest to the point of application of the weight and it has the highest

mean (123.2447N). Sensor four is the farest and it has the lowest mean (3.9712N).

3.4 Two Wii Balance Boards integration

Figure 31: Reference system transformation

Our objective is to analyze the pattern of the Center of Pressure (CoP) signal dur-

ing the squat activity. When employing a single balance board for both feet, it becomes

unfeasible to effectively detect the CoP. As per its definition, the center of pressure is
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inherently associated with a single foot only. Consequently, utilizing a single WBB and

maintaining a state of perfect balance with both feet on it would result in the CoP po-

sition being registered somewhere between the two feet. Such a scenario aligns with the

concept of balance rather than that of the Center of Pressure. Because of this, once we

were able to connect and calibrate one balance, we worked on the code in order to make

it easier to connect and save the data coming from two WBBs simultaneously. Basi-

cally we rotate the balance anticlockwise and we had to change the reference system

accordingly with the convention mentioned in [13]. We changed the points coordinates

of the calibration function called calibrationP. In fact, we maintained the same points

but because of the new reference system, we changed their coordinates in [7, -15], [0,0]

and [3, 6]. In general the main matlab script has been changed in order to connect

and retrieve the data from two balance boards simultaneously. In the following lines

we can explain in detail the main Matlab code.

1 plot = true ;
2 wiiR = WiiBwCalibration ( ’RIGHT ’ , plot , 70 , 0 , path ) ;
3 Cal ibrat ionModule ( wiiR , 0 , 0 , 0 , ’RIGHT ’ , path )
4
5 wiiL = WiiBwCalibration ( ’LEFT ’ , plot , 70 , 0 , path ) ;
6 Cal ibrat ionModule ( wiiL , 0 , 0 , 0 , ’LEFT ’ , path )
7
8 Measure = 1 ; % 1 i f you want to measure , 0 i f not
9 i = 1 ;

10 %% MEASURING
11 while Measure == 1
12 input ( ’ \n\nPress Enter to s t a r t measuring\n ’ ) ;
13 t ic ( )
14 t=toc ( ) ;
15 fpr intf ( ’ Press A on 1 s t balance to stop measuring . . ’ ) ;
16 m = 0 ;
17
18 start ing_t ime = da t e s t r (now , ’HH:MM: SS :FFF ’ ) ;
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19 while ~isButtonPressedP ( wiiR . bc . bb , ’A ’ )
20 cyc l eS ta r t_sec = toc ( ) ;
21
22 % query the wi i f o r data
23 wiiR . update ( plot ) ;
24 wiiL . update ( plot ) ;
25
26 % when the Plo t i s o f f , t h i s w i l l h e l p the user in order to see
27 % i f the record ing i s go ing on
28 i f m == 75
29 fpr intf ( ’ Recording . . . \ n ’ )
30 m = 0 ;
31 else
32 m = m + 1 ;
33 end
34 % pause b e f o r e cont inu ing c y c l e ( s u b t r a c t i n g the time
35 % taken to proces s t h i s loop i t s e l f
36 cycleDur_sec = toc ( )−cyc l eS ta r t_sec ;
37 pause (1/ wiiR . Fs − cycleDur_sec ) ;
38
39 end
40 fpr intf ( ’ Measuring %d done\n\n ’ , i )
41 toc ( )
42
43 % save data
44 wiiR . bc . saveAndClearAllData ( ’RIGHT ’ , f a l s e , path , s tart ing_t ime ) ;
45 wiiL . bc . saveAndClearAllData ( ’LEFT ’ , f a l s e , path , s tart ing_t ime ) ;
46
47 Measure = input ( ’ Enter 1 to s t a r t measuring again or 0 to stop : ’ ) ;
48 i = i +1;
49 end
50 % c l e a r memory
51 wiiL . bc . delete ( ) ;
52 wiiR . bc . delete ( ) ;

Code 3: Portion of WBB.m

This Matlab file called WBB.m represented in Code 3 is the main file. Most of the

commands are repeated because they are for the two balance boards. On lines 2 and 5

there is the command WiiBwCalibration that is the initialization function for the class

mentioned few sections above. This class takes the properties of the library WiiBalance

plus the methods defined for calibrating the device. The first input of this function is

the label that can be ’RIGHT’ or ’LEFT’, then there is plot (true or false) for showing
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the plots during the collection of the data. It was important to implement this option

because enabling the plotting when more than one WBB is connected can really affect

the sampling frequency of the software. The first input number represents the sampling

frequency. The second number instead is the number of samples we neglect every second

only for updating the plots. This option can be a trade-off in case it is important to

show the plots but on the other hand it is necessary to reach a sufficient high sampling

frequency. The last entry of this function is the path in the computer for accessing

files with old calibration parameters or for saving performed measurements. In lines

3 and 6 there is the CalibrationModule function. This function has been defined for

starting the calibrations. The first entry is the WBB of interest. The following three

inputs can be only "0" or "1" where "1" is for running the calibration. The first "0"

corresponds to the NewtonTransform calibration then we have CalibrationWdrift and

CalibrationP. The user, therefore, can decide which calibration to perform. It is not

necessary to perform all the calibrations every time.

Another important detail is in lines 23 and 24. The method update is the actual

function that sample the data from the balance boards. Lines 44 and 45 are responsible

for saving the collected data and lines 51 and 52 are important for clearing the memory

and disconnecting the devices.



Chapter 4

IMPLEMENTATION - Control System Interface

The ankle exoskeleton discussed in Chapter 2.2 constitutes a rather intricate device.

As previously delineated, The actuators are two motors controlled by an external PC

programmed through a sophisticated Simulink program. The utilization of this device

is by no means straightforward; a series of essential commands precede its operation,

encompassing calibration and the implementation of systems to ensure a sufficient

level of safety. In fact, the motors possess the capacity to exert a force that could

impact the patient if not managed correctly. This sequence of sensor calibration com-

mands, programming, and actuator enabling is entirely orchestrated by a Simulink

program. This may be proved less intuitive for individuals unaccustomed to the use

of complex software such as Matlab or Simulink. It is imperative to acknowledge that

these technologies are intended for individuals lacking engineering or programming

hard skills. Therefore, the utilization of an interface facilitating an intuitive initial

setup was deemed crucial for device operation. Moreover, the operator must be able

to receive feedback on the wearable robot’s performance; hence, the user interface (UI)
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must be capable of gathering necessary information from the device’s sensors (such as

encoders), processing it if necessary, and presenting it to the user.

The ankle foot exoskeleton is entirely managed by an external computer provided by

Beckhoff Automation GmbH & Co. KG1, a German company specializing in industrial

automation and control technologies. The Simulink program operates on the exter-

nal computer through Beckhoff TwinCAT software, offering a real-time PC-based au-

tomation environment. This TwinCAT software incorporates an additional tool called

Figure 32: Twincat by Beckhoff

TwinCAT HMI (Figure 32), which constitutes a human-machine interface (HMI) sys-

tem crafted to empower users to create graphical and intuitive interfaces for industrial

automation and control systems. This software is employed for designing and display-

ing control screens, operator panels, and graphical interfaces, facilitating operators in

1https://www.beckhoff.com/en-us/
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monitoring and controlling industrial processes to enhance interaction between oper-

ators and control systems. TwinCAT HMI typically supports various functionalities,

including real-time data visualization, remote access and control, alarm management,

and data logging. Its design allows flexibility and adaptability to the specific require-

ments of diverse industrial applications. Through this tool, it was possible to develop

the interface depicted in Figure 33. The interface comprises three sections: the left

Figure 33: Control System User Interface

column contains functional flags to indicate potential errors or the current system sta-

tus. The ESTOP button appears in red if the ESTOP switch is deactivated. Limit

switch represents the state of the safety switch installed on the exoskeleton. If the angle

becomes lower than -5 degrees it will change state and it disables the motors. Left and

right motor error circles notify possible error messages coming from the motor drivers.

The lowest row encompasses all the commands necessary for the user to calibrate and

set the AFO. The first two buttons, labeled Torque Tare and Angle Tare, facilitate
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encoders calibration to the patient’s standing position. Subsequently, the UDP/User

button alters the parameter input mode for the controller’s ascending and descending

gains. In its default state, the button sets the UDP mode, where new parameters

are transmitted from the computer executing the optimization process. The operator

observes an automatic update of the parameters in the first two boxes (filled with the

numbers 15 and 40 in Figure 33). At this point, the user can confirm the update by

clicking the Descending_stiff and Ascending_stiff buttons below. If the UDP/User

button state is changed, the User mode is activated, requiring the operator to manu-

ally input parameters whenever changes are necessary, using the lower boxes. Further

to the right, there is a dropdown menu enabling the selection of the controller mode.

The configurations are No control, Position control, and Squat control. Finally, two

switches allow the user to decide whether to save the data represented by the graphs

and to enable the motors. The remaining central section contains six graphs divided

into three columns: Angle, Torque, and Angle-Torque curve. Rows differentiate be-

tween left and right. For instance, the signal in the top-left graph represents the angle

read by the left-side encoder. In the plots of the first column, there is also a discrete

black signal representing the controller’s changing of the state. In the central column’s

windows, two signals per graph are discernible. The red signal denotes the desired

torque, while the blue signal represents the actual torque. Finally, the top-right graph

displays the desired and actual angle-torque characteristics. The bottom-right graph,

however, is not used.
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In conclusion, we obtained an intuitive user interface designed for ease of operation.

The application, incorporating safety flags, calibration controls, and graphical feedback,

ensures user-friendly interaction and real-time monitoring. Overall, this system enables

efficient and secure utilization of the ankle exoskeleton.



Chapter 5

IMPLEMENTATION - Optimization Interface

The main goal is to personalize the assistance of an ankle exoskeleton through incor-

porating user ECG feedback. The optimization algorithm (HIL toolkit) implemented

in Python plays a crucial role in this scope, enabling the discovery of optimal solu-

tions to assist the subject wearing the exoskeleton. However, the initial version of the

optimization algorithm lacked a comprehensible graphical interface, hindering its ac-

cessibility for non-experts in the domain [1]. In this project, we address this limitation

by developing a user-friendly application to enhance the configurability and real-time

monitoring of the optimization process. The previous implementation required users

to manually access the correct directory, access a YAML file and then modify it to

change the initial settings, which proved cumbersome for non-technical individuals.

Additionally, the absence of real-time progress tracking, pause functionality, and other

features further restricted the algorithm’s utility.

While the missing functionalities could have been incorporated by adding a few

lines of Python code, we opted to create a dedicated application. This approach was
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chosen to ensure that users, including those unfamiliar with programming languages,

could intuitively interact with the optimization algorithm without requiring extensive

technical knowledge.

The newly designed application introduces an intuitive graphical interface, simpli-

fying the process of modifying initial configurations. Furthermore, it allows users to

monitor the optimization process in real-time, offering pause and resume capabilities,

and providing access to view other features of the optimization process.

In this chapter we will describe the design. In Software structure we will show all

the Python scripts that we had to implement in order to make the structure reliable

and efficient. It will also focus on the design of the Server.py file. In GUI Design we

will talk more in detail about all the features of the web application.

5.1 Software structure

Figure 34: Software main architecture

In this part of the explanation we will often mention an Optimization Code, by

this we mean the set of Python scripts that had been developed in order to run the

Bayesian optimization algorithm. In other words, it is the HIL toolkit described in [1].
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This code contains also the scripts needed to detect and retrieve the data from the

ECG sensor. This optimization algorithm is responsible for creating all the outputs

that we want to show in the UI. For UI code instead, we refer to all the Python scripts

that are necessary to build the web application and to make working all the callbacks

that it has within.

The goal was to design something that was independent from the optimization process.

The rationale behind this decision is straightforward: it is possible to encounter errors

during the execution of the Bayesian optimization, which may result in a terminal fail-

ure. In such a scenario, it is essential to prevent the application from failing altogether.

Instead, we aim to enable the user to continue viewing the outputs and, if necessary,

receive appropriate notifications regarding the possible errors the optimization process

is undergoing. Moreover, it is imperative to ensure that any errors within the UI com-

ponent do not in any way compromise the optimization process. It is important to bear

in mind that the optimization procedure can span anywhere between 15 to 20 minutes

approximately. Throughout this duration, the subject is required to perform squats, a

physically demanding activity. Consequently, it is absolutely important that a simple

UI error does not affect the optimization process, leading to the need for a complete

restart of the entire experiment. Ensuring the separation of UI and optimization is

essential in this context. The clear distinction between these components will promote

a more reliable and resilient system, guaranteeing that both the user interface and the

optimization algorithm can proceed harmoniously and without any undue interference.
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For this reason, we decided to develop a third Python script called Server.py. This

file is essential for the separation of the processes mentioned before. Its goal is to

constantly listen to the optimization code in order to get new data, store it and share

it whenever the UI calls for downloading the information. In Figure 34 we have green

and red arrows. Green arrows represent all the data created by the optimization process

and shared with the UI. The red arrows instead represent the command that the UI is

able to send to the optimization code. These commands are “0” or “1”, they stand for

“PAUSE” and “RESUME”. Moreover, on each arrow there is a label. That label says

the protocol or mean through which the data is shared. We used the protocol ZMQ

for sharing in an asynchronous manner the data of the optimization with the Server

class. For the remaining connections we used a REST API.

5.1.1 REST API

REST API stands for Representational State Transfer Application Programming

Interface and it is a set of rules on how to connect and communicate between client

and server. In particular a REST API is an API that respects a specific architectural

style. This style uses HTTP requests to access and use data. The methods that can

be used by client/server are GET, PUT, POST and DELETE which refers to reading,

updating, creating and deleting data on a specific endpoint of the server. The working

principle is that clients can make a HTTP request described by one of the methods

listed before. Then the server will respond with a status code. For example “200” means

“Ok” and “404” means “Not found”. In order to exploit this communication method
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we imported the python library called Requests1. The Python library Requests is a

widely used and essential tool for handling HTTP-based interactions within Python

applications. It provides developers with a simple powerful interface to send various

types of HTTP requests and effectively communicate with APIs. By abstracting away

the underlying complexities of network communication, it significantly reduces the de-

velopment time and effort required to implement HTTP functionalities within Python

applications. Code 4 represents a portion of Server.py. This is an example on how to

share the data when the client makes a request.

151 @app . get ( ’ /OptimizationData ’ )
152 def l i s t_Optimizat ionData ( ) :
153 return saved . share_data ( )

Code 4: Function for sharing data with UI

Whenever the client asks for a GET method on the endpoint ‘/OptimizationData’

the Server returns to the client the outputs of the function share_data(). This function

simply gives all the data related to the optimization stored by the server in format json.

JSON (JavaScript Object Notation) is a text-based data format. It is a set of key-value

pairings, where the value can be a number, string, object, array, or boolean and the

key must be of the string type.

Here instead we can see the Python command for the client in order to download

the data from the server.

18 def download_data ( obj , c on f i g ) :

1https://pypi.org/project/requests/
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19 n_parm = con f i g [ ’ Optimizat ion ’ ] [ ’ n_parms ’ ]
20 s e rve r_ f l ag = reque s t s . get ( f ’ http ://{ obj . s e rve r IP } :{ obj . s e rve rPor t }/

OptimizationData ’ )
21 i f s e rv e r_ f l ag . status_code == 200 :
22 obj . f l a g s [ ’ s e r v e r ’ ] = ’ON’
23 else :
24 obj . f l a g s [ ’ s e r v e r ’ ] = ’OFF ’
25 data = se rve r_ f l ag . j son ( )

Code 5: Downloading data from Server

In Code 5, the output of the command on line 20 is the status code of the response by

the server. If the response corresponds to ’ok’ then we can save all the data in line 25

using the method .json() of the library Requests.

5.1.2 ZMQ

Optimization code and Server use the ZMQ library in order to exchange the data.

ZMQ2 is a high-performance, open source asynchronous messaging library. It is built

in C++ but there are several libraries translating this set of commands for other pro-

gramming languages. ZMQ allows you to send messages (binary data, simple strings,

objects) over the network through various methods like TCP (Transmission Control

Protocol). The messages are exchanged through sockets. The sockets differ from type

of message and properties. Types of socket are for example REQ/REP and PUB/-

SUB. We decided to use the PUB/SUB type because, unlike REQ/REP, in this case

the publisher pushes the messages out and all the associated subscribers receive the

messages without sending responses or acknowledgments. After some tests, we under-

stood it was the best method for exchanging our data. In order to use this library we

2https://pyzmq.readthedocs.io/en/latest/
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created a class called ServerCommunication. In its initialization function there are all

the steps to create the socket. In input we have to specify the host IP, the port and the

communication type (if it is a socket for sending or receiving). These three inputs are

defined in a YAML file called ECG_configs.yml that is situated in the folder "configs"

of the HIL toolkit. In Code 6 there are two examples of inputs needed for creating a

socket. This is a portion of code of ECG_configs related to the communication settings.

22 Communication :
23 Sending : t rue
24 RECEIVING: true
25 IP : tcp : / / 1 9 2 . 1 6 8 . 1 . 4 9
26 HIL :
27 Cost samples :
28 NAME: Cost_samples
29 TYPE: send
30 PORT: 4501
31 FLAGS:
32 NAME: FLAGS
33 TYPE: send
34 PORT: 4507

Code 6: Setting up the ZMQ communication

As clear from Code 6, on line 23 and 24 we enable the communication for sending

and receiving data. On the 25th row we set the IP of the device where we run the

optimization. The IP is the address by which the device is recognized in the local

network. Consequently, for each variable we define name, type and port. Every chan-

nel of communication has a different port. For example cost_samples is the vector

containing the sample of the cost function. We defined this variable as type “sending”

and all the messages containing this variable will be exchanged on port 4501. In the

class mentioned before, ServerCommunication we have listed also the methods that we



54

can use for all the sockets created.

22 def send ( s e l f , message : str ) −> None :
23 s e l f . _socket . send_str ing (u=message )
24
25 def send_obj ( s e l f , obj : object ) −> None :
26 s e l f . _socket . send_pyobj ( obj )
27
28 def send_json ( s e l f , j s on : dict ) −> None :
29 s e l f . _socket . send_json ( j son )

Code 7: ZMQ sending functions

Code 7 shows the three types of sending functions. Command on line 22 is for sending

strings. Command on line 27 is for sending python objects like lists or dictionaries and

command on line 31 is for sending messages in json format. We can show the same

methods for receiving.

22 def r e c e i v e ( s e l f −> str None :
23 try :
24 obj = s e l f . _socket . r ecv_str ing ( )#f l a g s=zmq .NOBLOCK
25 except zmq . e r r o r . Again :
26 obi = None
27 return obj
28
29 def rece ive_obj ( s e l f ) −> object :
30 try :
31 obj = s e l f . _socket . recv_pyobj ( )
32 except zmq . e r r o r . Again :
33 obj = None
34 return obj
35
36 def rece ive_ j son ( s e l f ) −> Any :
37 try :
38 obj = s e l f . _socket . recv_json ( )
39 except zmq . e r r o r . Again :
40 obj = None
41 return obj
42
43 def recv_bytes ( s e l f ) −> bytes None :
44 try :
45 obj = s e l f . _socket . recv ( )
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46 except zmq . e r r o r . Again :
47 obj = None
48 return obj

Code 8: ZMQ receiving functions

We have similar commands for receiving ZMQ messages in the Server code.

5.1.3 Server Architecture

The Server file is divided in two sides: ZMQ and REST API side. The ZMQ side is

the one responsible for receiving the data coming from the optimization code and the

REST API side is connected to the UI code. For the first side, it is fundamental to be

able to run many subprocesses in parallel. We have numerous variables, leading to a

substantial number of channels for exchanging messages between Bayesian algorithm

and UI. The conventional approach of using a single loop to sequentially receive mes-

sages from all the channels is proven to be inefficient. A potential issue arises when

the sender transmits a message through a channel that is not actively being monitored

at that moment due to our focus on another channel, resulting in information loss. To

address this challenge, we propose employing Python’s Asyncio library3. This powerful

tool enables the execution of multiple subprocesses asynchronously and in parallel. By

adopting this approach, we can concurrently run numerous subprocesses, with each

subprocess dedicated to listen to a specific channel. Consequently, we can create sub-

processes equal to the number of sockets or channels utilized for exchanging messages

coming from the optimization code. Such an arrangement ensures that each subpro-

3https://docs.python.org/3/library/asyncio.html
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cess remains continuously attentive to its designated channel, effectively eliminating

the risk of missing any message. In the following figure we can see an example of an

asynchronous process for the acquisition of ECG data.

87 async def data_ecg ( ) :
88 sock = ctx . socke t (zmq .SUB)
89 sock . sub s c r i b e ( "" )
90 sock . connect ( f "{ saved . IP } :{ saved . port }09" )
91 while True :
92 try :
93 msg = await sock . recv_json ( f l a g s=zmg .NOBLOCK)
94 except zmq . ZMQError :
95 msg = None
96 i f msg i s not None :
97 saved . ecg = msg
98 await async io . s l e e p ( 0 . 1 )

Code 9: Server’s subprocess for receiving ZMQ messages

We have seven subprocesses. Each of them looks like the one in Code 9 and it has the

three commands that are shown in lines 88, 89, 90 for creating the socket and binding

it with the sender at the specific address defined by IP and port. Then we have a While

loop. In this loop we constantly try to receive a message, if we don’t get anything the

variable msg will be set to None. If we receive a message, instead, this will be saved

in a local variable called saved.ecg. Because of this design with seven subprocesses,

every time the system encounters an await function, like on line 93, it means that the

system doesn’t need to wait for that function to finish but it can move on with the

other functions or subprocess.

The other side of Server.py is related to the Flask app, the REST API that provides

the data to the UI. We mentioned the local variable saved.ecg. saved is an object of
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the class Store that is defined in the beginning of Server.py. This class is important

for initializing, storing and sharing all the variables with the web application. Code 10

shows two methods defined in the class Store.

16 def r e s e t data ( s e l f ) :
17 s e l f . p l o t = { ’ x ’ : [ ] , ’ y ’ : [ ] }
18 s e l f . gp = { ’mean ’ : [ ] , ’ x ’ : [ ] , ’ y ’ : [ ] }
19 s e l f . ecg = [ ]
20 s e l f . acq = None
21 s e l f . hyp = { ’ l i k e l i h o o d . noise_covar . raw_noise ’ : [ ] ,
22 ’mean_module . raw_constant ’ : [ ] ,
23 ’ covar module . raw_outputscale ’ : [ ] ,
24 ’ l e n g t h s c a l e parm1 ’ : [ ] ,
25 ’ l e n g t h s c a l e parm2 ’ : [ ] ,
26 }
27 s e l f . s t a t e = "OFF" #s t a t e o f the op t im i za t i on proces s
28 s e l f . hrv = None
29 s e l f . opt_comand = "1" #command from UI fo r op t im i za t i on
30
31 def share data s e l f :
32 in_memory_datastore = {
33 "data p l o t " : s e l f . p lot ,
34 "data_gp" : s e l f . gp ,
35 "data_acq" : s e l f . aca ,
36 "data_hyp" : s e l f . hyp ,
37 "data_ecg" : s e l f . ecg ,
38 "data hrv" : s e l f . hrv ,
39 " s t a t e " : s e l f . s t a t e }
40 return in_memory_datastore

Code 10: Methods used by Server code

The function share_data on line 31 is called by the client. Indeed the client makes

a request with method GET on the endpoint ’/OptimizationData’ and the server will

respond by giving the output of the function share_data. This connection between

client requests and share_data is clear from the callback shown in Code 11.

151 @app . get ( ’ /OptimizationData ’ )
152 def l i s t_Optimizat ionData ( ) :
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153 return saved . share_data ( )

Code 11: Callbacks for sharing data with UI code

As explained before, UI code can make different kinds of client requests. Here is

Code 12 showing other callbacks in response to client’s requests.

155 @app . get ( ’ /OptCommand ’ )
156 def sendOptcommand ( ) :
157 return saved . opt_comand
158
159 @app . post ( ’ /OptimizationData ’ )
160 def reset_OptimizationData ( ) :
161 saved . reset_data ( )
162 return ’ data r e s e t ’
163
164 @app . post ( ’ /OptResume ’ )
165 def resume_opt ( ) :
166 saved . opt_comand = "1"
167 return ’ comand r e c e i v ed ’
168
169 @app . post ( ’ /OptPause ’ )
170 def pause_opt ( ) :
171 saved . opt_comand = "0"
172 return ’ comand r e c e i v ed ’

Code 12: All callbacks used by Server code

Briefly the first callback is for the Optimization code. The HIL code can download

the command "RESUME" or "PAUSE" set by the UI. The second callback is for

clearing all the stored variables in the Server. The last two callbacks, resume_opt and

pause_opt, are used by the UI to send the command of "RESUME" or "PAUSE" to

the optimization process. Indeed with these two callbacks we basically change the local

variable called saved.opt_comand and with the callback on line 155, the optimization

code retrieves the value of saved.opt_comand from the Server.
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5.2 GUI design

The design of this application is based on Dash, a python library4. Dash by Plotly

is a dynamic web app framework that allows developers to create interactive web

applications using Python. It uses Plotly’s visualization features to transform data

into user-friendly charts, and graphs. Dash’s straightforward syntax integrates data

manipulation, visualization, and user interaction, making it a versatile tool for creating

intuitive web interfaces.

The Web application is constituted of two layers. The first layer is fixed and it

contains the title of the application, two badges that give some information to the

user and then we have a row that is a list of tabs. These tabs are Initialization,

Optimization, Signals and Hyperparameters tab. This first layer occupies the top row

of the screen and it is fixed, it’s always present. The most important features of this

layer are the badges. These badges are indicators of the status of Server code and

Optimization code. Based on which color they get, they represent a different status.

Table 1 describes the status for each color of the badges. For Server there are only

RED GREEN ORANGE BLUE
Server Not working Working - -

Optimization Not started Finished Exploration Optimization

Table 1: Legend for badges’ colors

two colors because only two status are possible. The user has to know that if the

Server badge is red that means that some error may occurred on the Server code or
4https://dash.plotly.com/minimal-app
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the it hasn’t been started yet. In this situation it is still possible to run the Bayesian

algorithm but it won’t be possible to see the outputs on the UI. For the optimization

badge instead there are 4 states. Red when the optimization hasn’t been started yet,

orange when the optimization started and it is in the Exploration phase. Finally blue

when the Bayesian algorithm is in the Optimization phase.

The second layer of this UI describes the remaining part of the screen and its

configuration depends on which tab has been selected by the user. When UI code is

executed and we open the application for the first time, the initial tab selected is the

Initialization tab.

5.2.1 Initialization tab

Figure 35: Initialization tab

In Figure 35 it is shown the appearance of the first tab called Initialization. This tab



61

is the interface through which the user is able to change the settings before starting the

optimization algorithm. There are many features that can be set for the HIL toolkit,

however only the most important settings have been displayed for the UI. The user can

select the number of parameters to optimize with the slider in the top left part of the

app. By changing the marker’s position on the slider, we change the number of boxes

in the central column of the screen. If the slider is set on 5 parameters for example, the

central column will display 5 couples of boxes, one couple for each parameter. In this

central column, the boxes on the left are for setting the minimum value the parameter

can be and the right boxes are for setting the maximum. By taking a look at the

bottom of the slider it is possible to notice two other boxes. The upper box is useful

for determining how many steps and in particular samples, the user wants to analyze

for the optimization. The second box determines how many seconds each step should

last. Finally, the right column has two dropdown components. By clicking on the first

dropdown we can select one of the available Gaussian process models. By clicking on

the second it is possible to select the type of Acquisition function.

5.2.2 Optimization tab

Figure 36 illustrates the second tab titled Optimization. The primary purpose

of this window is to present the evolution of the two main functions utilized in the

Bayesian optimization algorithm: the Gaussian process and the Acquisition function.

Furthermore, within this tab, users have the capability to manage the optimization

process through the utilization of three buttons located at the bottom of the window.
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Figure 36: Optimization tab

On the left-hand side of the window, a graph is provided to plot the cost samples rep-

resented by blue points, which are utilized in the computation of the Gaussian process.

Additionally, the graph displays the Gaussian process itself in the form of a colored

surface. A useful feature of this graph is that by positioning the cursor on any of the

blue points, a small dropdown is triggered, displaying the corresponding coordinates’

values for that particular point. On the right-side of the window instead, it is possible

to follow the evolution steps of the Acquisition function. Both the Gaussian process

and the Acquisition function are interactive, as users can manipulate the orientation

of the surface by dragging it. This enables users to observe the surfaces from various

perspectives. However, it is worth noting that the application periodically updates

the surfaces at fixed intervals of every three seconds, restoring their orientation to the
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original position during each update. Three seconds should ensure that users have

enough time to explore different perspectives before the update takes place. The three

buttons available in this tab are CLEAR, PAUSE, and RESUME. When users activate

the CLEAR button, the application initiates a POST request, prompting the client to

request a reset on the server. Upon receiving this request, the server proceeds to delete

all variables that were saved up to that point. Consequently, clicking on this button

results in clearing all plots within the application, rendering them empty. As for the

PAUSE and RESUME buttons, their functionality is explained in detail in section 5.1.

These buttons allow users to halt and subsequently resume the optimization process

as needed.

5.2.3 Signals tab

This section talks about the third tab labeled Signals. Here, we explore other

essential signals related to the process. In the top left corner, we find the Biofeedback

signal, which, for this project, is represented by the ECG signal used to compute the

cost. The bottom left plot displays the trend of the RMSSD value, representing the cost

computed using the ECG data. A slight difference exists between the RMSSD plot and

the one in the bottom right of the screen. The plot on the bottom left illustrates the cost

instant by instant, showing its variations over time. The optimization process samples

this function to identify the optimal combination of parameters. All the sampled

values from the cost function are shown in the bottom right plot. Lastly, the top-right

graph demonstrates all the parameter values investigated during the exploration and
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Figure 37: Signals tab

optimization phase. This graph allows the user to understand how distributed the

exploration phase is or whether instead the optimization process found the optimal

point more quickly.

5.2.4 Hyperparameters tab

The fourth tab is useful for evaluating the trend of the hyperparamenters. Hyperpa-

rameters are some parameters describing the Kernel used for calculating the Gaussian

Process (GP) at each iteration. As already discussed in chapter 2.1 and in [1], these

hyperparameters are very hard to set before starting the optimization. For this reason,

a parallel machine-learning algorithm has been employed in the toolkit only for tuning

the best value for the hyperparameters. Thanks to this tab, the users can evaluate the



65

Figure 38: Hyperparameters tab

quality of the tuning of the hyperparameters. In fact, by looking at the plots showing

their values over time, the user can check the convergence. If a hyperparameter con-

verged to a certain value, there is a better chance of having achieved a good tuning

of that hyperparameter. The number of hyperparameters depends on the number of

parameters that we want to optimize for the wearable robot of interest. In particular

the hyperparameters are as many as the optimized parameters plus three. In the ex-

ample shown in Figure 34, we were testing optimizing two parameters that result in

five hyperparameters to show. Indeed five graphs are filled out with the relative data

and the sixth plot on the bottom right is empty. The idea behind this tab is to create

as many graphs as number of hyperparameters. If there are more than six graphs, the

user can scroll down this window and check all of them.



Chapter 6

IMPLEMENTATION - System Integration

In the field of wearable robotics, the concept of portability is of paramount impor-

tance. Currently, due to their complexity, limited practicality, and portability, these

technologies are predominantly utilized within laboratory setups. Individuals with lim-

ited mobility can only take advantage of these technologies in specific locations, such

as medical or rehabilitation facilities. For the advancement of this sector to be truly

effective, it is imperative that individuals concerned have the opportunity to integrate

this technology into their daily lives. This becomes particularly significant considering

that a rehabilitation journey can span several weeks or even months. This reasoning

led H. Jeong et al. to develop their exoskeleton with two compact actuators that can

be accommodated, along with all other electronic components, within a backpack worn

in conjunction with the Ankle-Foot Orthosis (AFO) [6]. The concept is to empower

the user to harness the potential of the wearable device at any point during the day,

whether at work or during a walk.

To achieve this goal, we committed ourselves to making all the discussed tools
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as portable as possible, focusing on ease of use. Initial efforts were directed towards

optimization. Optimization algorithms inherently require a computer for execution.

Specifically in our case, a computer is essential for receiving sensor data providing

biofeedback, processing it, and subsequently executing the optimization process. In

line with our goal of maximizing portability, the decision was made to migrate the en-

tire responsibility of running the Hardware-in-the-Loop (HIL) toolkit to a Raspberry Pi

3 Model B. The Raspberry Pi 3 Model B, developed by the Raspberry Pi Foundation, is

a compact, credit-card-sized single-board computer designed for educational and hob-

byist purposes, serving as a low-cost computing platform. It encompasses all essential

components of a typical computer, including a processor, memory, input/output ports,

and support for various peripherals. Operating on Linux-based systems, users can in-

stall diverse applications. With integrated Wi-Fi and Bluetooth, along with 4GB of

RAM, this board offers extensive capabilities. Leveraging the potential of this device

enabled the transfer of not only the data collection and computation aspects of the HIL

toolkit but also the two essential scripts for running the Optimization UI. Given its

diminutive size, this single-board computer is highly portable. Furthermore, the user

does not require a cumbersome screen to monitor the activities of the exoskeleton (via

the Beckhoff interface) or the HIL toolkit (via the optimization interface). These inter-

faces are accessible throughout the local network, making them available to any device

capable of connecting to the same Wi-Fi network and equipped with a web browser.

To facilitate this accessibility, we integrated a simple tablet into our portable setup.
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The patient can easily search for the Raspberry Pi’s IP address in the web browser

and get access to the Optimization UI. Similarly, by entering the IP address of the

computer running Twincat HMI (the laptop running the Simulink project), the user

can access the Control System Interface. A more illustrative diagram is presented in

Figure 39. The two green dashed lines in the figure represent wireless communications.

Figure 39: System Integration. Both interfaces are opened from the tablet.

Conversely, the blue lines represent wired Ethernet communications. The lowermost

line makes the connection between the external PC and the PC running the Simulink

control. The uppermost line, on the other hand, is a connection implemented to fa-

cilitate parameter updates. The toolkit has been slightly modified to share the new

parameters through UDP communication protocol. Whenever a new set of parameters

is generated during optimization, they are shared with the Beckhoff system, and the

input boxes of the Control System Interface are updated. At that point, the operator
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only needs to confirm the new inputs by clicking the appropriate buttons on the page

open on the tablet (Figure 40). This integration of all systems makes the technology

Figure 40: The Control System Interface opened on tablet.

potentially straightforward and independent of the need for support from others for

its use. As explained in the introduction of this thesis, the achieved design is not yet

sufficient to be truly considered portable and accessible to non-experts. The reasons

are manifold. The control unit capable of independently managing commands for the

exoskeleton is still executed in a bulky laptop. Another issue is power supply; the

system is currently powered by a bench power supply. There are other bottlenecks as

well. To use the Optimization UI, it is crucial to run the associated servers. In the

current design, these scripts are executed on the Raspberry Pi (Single Board Computer

SBC), requiring a monitor and keyboard to manually run these scripts. Access to the
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Optimization app via the tablet is possible only locally. In other words, the applica-

tion is not public, and the tablet must be connected to the same Wi-Fi network as

the SBC to access them. In the proper functioning of this system, users should not be

burdened with the task of initiating the servers to gain access to the interface, as it

may prove to be a complex procedure for the majority of individuals. A viable solution

involves employing an external computer (not necessarily connected to the same Wi-

Fi network) dedicated to consistently running the scripts to keep the interface active.

The single-board computer (Raspberry Pi) shares optimization data online with this

external computer, allowing users to access the application simply by searching for the

appropriate IP address in a web browser. However, it is important to note that the

current technology is employed for experimental purposes, involving the processing of

personal data, the privacy of which is paramount and must be protected. Sharing these

data online to facilitate interface access from any location would pose a greater risk to

privacy.

The focus on portability in wearable robotics is crucial for expanding beyond lab-

oratory settings. Current limitations confine these technologies to specific locations,

hindering daily use for individuals with limited mobility. The development of a portable

exoskeleton represents a step towards integrating these technologies into users’ daily

lives. Our efforts, including migrating UI optimization scripts to a Single board com-

puter and making User interfaces accessible through wireless devices, aim to enhance

the accessibility and usability of wearable robotics. However, hardware challenges and
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privacy concerns underscore the need for further refinements to achieve true portability

and user-friendly integration.



Chapter 7

EXPERIMENT

To validate and assess the methodologies delineated in this thesis, an experiment

involving a human subject was conducted. As elucidated in the introduction, the design

of the two interfaces was iteratively formulated and tested incorporating the utilization

of the Ankle-Foot Orthosis and Electrocardiogram sensor as biofeedback sensor. Dur-

ing the experimental phase, the interfaces developed in this thesis were employed in

conjunction with a different optimization method, specifically a method based on Elec-

tromyography (EMG) sensors. The objective of this experiment was to demonstrate

the effectiveness of EMG-based optimization in customizing the assistance provided

by the exoskeleton during a squat activity. Operators leveraged the tools constructed

and documented in this thesis, validating the systems (both interfaces and software for

the Wii Balance Boards) and their integration. In addition to the system detailed in

Chapter 6, EMG sensors, WBBs, and a respiratory mask (K5, Cosmed, Rome, Italy)

were employed. The use of Wii Balance Boards was solely aimed at showcasing the

functionality of the software for connecting and collecting CoP data. Conversely, EMG
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sensors (Trigno, Delsys, MA, USA) served as biofeedback for the Human-In-the-Loop

system. These surface sensors, with a sampling rate of 1259 Hz, were strategically

positioned on specific points of both lower limbs following the SENIAM guidelines[17].

From these electrical signals, it became feasible to compute an average of the obtained

signals and subsequently derive a cost function associated with the patient’s physical

effort. In terms of adapting the systems to this new feedback, the Human-In-the-Loop

toolkit was inherently designed to accommodate various physiological signals. Simi-

larly, the Optimization User Interface, owing to its versatility, seamlessly adapted to

this feedback. Only the titles and labels of the graphs required modification, with no

other alterations. The result of this adaptation is illustrated in Figure 41.

Figure 41: Signal tab from Optimization UI adapted to EMG optimization. Screenshot
taken during the experiment.

The lower-left graph was not utilized. The plot in the top-left illustrates the mean

voltage computed from the outputs of all EMG sensors. From this signal, the graph
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in the lower-right is derived, representing the normalized cost for each iteration or set

of parameters. The other tabs of the Optimization UI remained unchanged. For the

WBBs, a separate laptop was employed. This latter device was utilized to execute the

Matlab codes discussed in Chapter 3. Indeed, the initial step in commencing the ex-

periment involved performing the calibration procedure for the WBBs (one for the left

foot and one for the right foot). They were positioned to maintain an approximately

similar distance to that between the subject’s shoulders [18][19]. Following their place-

ment and calibration, they were not relocated to avoid the necessity of re-calibrating

the software.

7.1 The Protocol

The experimental protocol was adopted from [17] and received approval from the In-

stitutional Review Board at the University of Illinois at Chicago, in accordance with the

Declaration of Helsinki. A summarized schematic is presented in Figure 42. Primarily,

Figure 42: Experiment protocol. Figure from [17].

the experiment is divided into two days. The first day is termed the Acclimatization
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Day, crucial for aiding the subject in acclimating to the device. On this day, four con-

ditions are executed, during which the device is activated with random parameter sets.

Following these four conditions, the Unpowered condition follows, where the AFO is

worn but with deactivated motors, then there is the No Device condition, where squats

are performed without the AFO. The exoskeleton is worn on the subject’s dominant

leg, while the non-dominant foot wears an insole to compensate for the height disparity

caused by the device. During this acclimatization, only the Control System Interface

is used, as no optimization is performed. On the second day, the Optimization Day

or HIL Day, three total squat sessions occur. The first session involves optimization,

utilizing the Optimization UI and lasting a maximum of 18 minutes, approximately

corresponding to the execution of 105 squats. Subsequently, there is a rest period of

54 minutes, during which the subject rests in a seated position. The last three con-

ditions follow: Optimal condition, where the exoskeleton is customized based on the

HIL toolkit results, and finally, the Unpowered and No Device conditions. In all ex-

ertion sessions, squats must be executed in one second to descend and one second to

ascend (totaling 2 seconds), followed by a 6-second standing position before restarting.

In cases where a complete squat cannot be performed, the subject is instructed to go

as low as possible while keeping their feet positioned at the center of the two WBBs.

An operator monitors the subject’s movements, providing verbal corrections in case

of errors. A metronome marks the seconds, enabling the subject to follow squat and

standing timings. The effort-to-recovery time ratio is 1:3. Hence, after the optimization
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session, there is a 54-minute rest period, while after a set of 4 minutes, a 12-minute

rest follows. This design allows the subject long time for complete recovery, rendering

the fatigue measured by two distinct sessions independent.

7.2 The Results

This section is divided into two parts. The first part displays the interfaces and

their behavior during the experiment. The second part presents the results through

the Optimization interface, the data collected from the balance boards and the results

of the experiment itself.

7.2.1 During Experiment

Figure 43: Screen of the laptop connected to WBBs. Screenshot taken during the
experiment.

Figure 43 illustrates the screen of the laptop connected to the WBBs during the

experiment. The user could observe the real-time movement of the right and left CoP.
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At the end of the experiment, the user utilized the button on the WBB to halt data

collection, and through the software, it was possible to save the collected data during

the experiment.

As previously discussed in Chapter 5, the HIL toolkit and its corresponding UI

operate in two phases known as Exploration and Optimization. The distinction be-

tween the two lies in the fact that in the former, the parameters for sampling the real

cost function are already chosen by the operator and set in the code. In the latter

phase, there is the Acquisition function, which, through exploration and exploitation

methods, determines the optimal point at which to measure the real cost. The two

phases of exploration and optimization are clearly distinguishable in the interface, as

indicated by the color of the badge at the top, as depicted in Figures 44 and 45.

Figure 44: Optimization tab during exploration phase. Screenshot taken during the
experiment.
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Figure 45: Optimization tab during optimization phase. Screenshot taken during the
experiment.

As evident, the badge color undergoes a change. However, the more substantial

distinction lies in the graphs. During the exploration phase (orange badge, Figure 44),

only samples of the real cost function (depicted as blue dots) are available, the GP

landscape is absent, and the Acquisition function is yet to be computed. Once the

predetermined 5 points are measured, the optimization phase (blue badge, Figure 45)

starts. In this phase, an initial approximation of the real cost function is established,

and the Acquisition function is calculated on the right. The Hyperparameters tab

serves a purpose solely in the Optimization phase. This is due to the absence of the

GP cost function in the exploration, thereby precluding the tuning of Hyperparam-

eters. Consequently, in the Exploration phase, the plots remain empty, while in the

Optimization phase, they manifest as depicted in Figure 46.
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Figure 46: Hyperparameters tab. Screenshot taken during the experiment.

Transitioning to the Control System Interface, there are only two conceivable sce-

narios as it has been employed exclusively in the Unpowered condition (when the AFO

is worn but inactive) and in the Optimization/Optimal condition (when the AFO is

worn and active). In Figures 47, 48, and 49, various instances of exoskeleton application

under different conditions are observable.

Figure 47: Control System Interface. Unpowered condition, desired torques and angle-
torque characteristics are zero.
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Figure 48: Control System Interface. Powered condition 1 with parameters 5 and 19.

Figure 49: Control System Interface. Powered condition 2 with parameters 14 and 38.

7.2.2 After Experiment

In this section, we present the results obtained at the conclusion of the experiment.

We commence by examining the data recorded from the two WBBs. Due to privacy

considerations protected by the Institutional Review Board (IRB), it was not feasible

to share here the experiment results. Consequently, to illustrate the functionality

of the developed software, we conducted preliminary squats with the Wii Balance
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Boards. Illustrative examples for the right foot are provided, Figure 50 shows the

history movements of the CoP on the WBB surface. Figure 51 and 52 depict the x and

y coordinates of the Center of Pressure over time. From Figure 50, it is discernible

Figure 50: CoP movements during the squatting session.

that the equilibrium point during the standing position is located approximately at

coordinates (-1, -6). The foot position on the balance board is notably open, elucidating

the substantial variability in both signals (x and y). Properly placing the foot in a

more vertical position could have resulted in appreciably more variable signals in the

y-axis and less variability in the x-axis. When all the evaluations have been made and

the optimization is done, the researcher can check the results. By keeping the web

page open, the user can review the final outcomes (see Figure 53). At this point, the

operator can employ the map to find out the parameter combination leading to the

minimum effort. The user has the ability to drag the plot orientation, facilitating a

more comprehensive view and analysis of the entire surface. Hovering the cursor over

the surface provides precise cost values at specific points. Through an examination of
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Figure 51: CoP x coordinate during 6 squats in time.

the surface in Figure 53, the experiment’s researchers identified the optimal parameter

combination, namely, 5 for descending (parameter 1) and 40 for ascending (parameter

2).

Following an extended rest period of nearly an hour, the subject was instructed to

proceed with the final three conditions. The initial condition entailed the Unpowered

condition, succeeded by the Optimal condition utilizing the aforementioned parameters,

and concluding with the No device condition. In a post-processing analysis of the

data, the researchers compared the normalized costs derived from EMG signals during

the three conditions: The results are evident: the normalized cost of the Optimal

condition is the lowest, registering at 2.56. It is followed by the Unpowered condition

with a value of 2.72, and lastly, the No device condition exhibits the highest cost at

2.86. Consequently, the customization of the Ankle-Foot Orthosis resulted in a 5.9%
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Figure 52: CoP y coordinate during 6 squats in time.

improvement over the Unpowered condition and a 10.4% enhancement compared to

the No device condition.

The two interfaces haven’t significantly contributed to the likelihood of achieving

this outcome. However, they have concurrently enhanced the ease of managing and

monitoring the experiment itself.
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Figure 53: Final Gaussian process and Acquisition function.

Figure 54: Comparative analysis of costs across the three squatting conditions



Chapter 8

CONCLUSION

In the course of this endeavor, the objective was to design tools to take a step to-

wards simplification and enhanced portability of Wearable Robotics technologies. The

Rehabilitation Robotics Laboratory had already made significant progress toward this

goal, exemplified by the portable exoskeleton and the HIL toolkit. This thesis succeeded

in developing two tailored interfaces to maximize the functionality of these systems in

the simplest manner possible. For the AFO, a dedicated commercial software was

employed to create human-machine interfaces in industrial applications or automated

systems. Notably, the development of this interface consumed considerably less time

than the second, the Optimization UI, which was programmed in Python using the

Plotly Dash library. Additionally, this application required some modifications to the

HIL toolkit itself to efficiently collaborate with the toolkit, resulting in an interface

capable not only of displaying optimization process outputs but also of sending inputs,

thereby allowing users to customize initial settings and decide to pause, resume, or re-

set the process. Regarding the Wii Balance Boards, they represent a cost-effective tool
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that could unlock incredible research opportunities. We undertook the task of taking

an existing library, enhancing it by implementing various features for calibration, data

visualization, and storage. The program was also modified to enable the simultaneous

connection of multiple WBBs. Here, the aim was to simplify its use, and although a

User Interface is not present, the program prints messages in the terminal during its

execution, guiding users through various procedures. The experiment documented in

this thesis aimed to support another research project (EMG-based optimization of the

AFO). However, researchers from this other project were able to leverage and benefit

from the tools described in this work. The experiment yielded positive results, and the

interfaces facilitated the management of the experiment itself, demonstrating versatil-

ity, simplicity, and effectiveness. These achieved results represent only a preliminary

step towards the true potential these interfaces can offer. One immediate improvement

concerns the software for the Wii Balance Boards. If their data is to be used in real-

time as a physiological signal for the HIL toolkit, translating this code into Python

would be necessary. Since Python has a library (PyLSL, Lab Streaming Layer) that

allows the optimization process to effortlessly acquire all necessary data, the current

software can only be useful for post-collection data analysis and cannot easily commu-

nicate in real-time with the HIL toolkit. As for the Control System Interface, there are

still too many limitations to make the system truly portable. A possible improvement

could involve migrating the computational power and the Simulink controller from the

laptop to a single-board computer or a PC capable of entirely managing the AFO con-
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troller while being portable and be incorporated into the Portable Actuator System.

In this case, the interface would be created again from scratch since Twincat software

wouldn’t be accessible anymore. Turning to the Optimization UI, there are solutions

that could be implemented immediately. The most crucial is improving its portability.

The codes for opt UI currently managed by the Single Board Computer (Raspberry

Pi) could be migrated to a laboratory computer. This computer executes the codes

to keep the interface associated with the optimization process active. This system

would ensure that the interface servers are always active, making the UI accessible at

any time without requiring a non-expert to manually execute Python codes to start

the application. In this case, however, and unlike the current system, the application

should be public, accessible even from devices outside the local network. Currently,

the tools have been utilized in laboratory environments and for experimental purposes,

emphasizing the protection of personal data of subjects participating in experiments.

However, in the future, consideration could be given to developing a more complex in-

terface with an initial login section where the user must enter a username and password

to access personal data. Another improvement could involve adding a tab to config-

ure the physiological signal. Depending on the inserted type of feedback, the Signals

tab adjusts the names of the graphs and their units of measurement. In conclusion,

the tools developed and discussed in this thesis represent a possible solution for the

portability and accessibility in Wearable Robotics, paving the way for further enhance-

ments and applications. These tools have demonstrated their utility in experimental
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settings, and as technology continues to evolve, the potential for broader applications

and improvements remains promising.
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