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Summary 

In the context of Climate Change, among the requirements for global 

emission reports is demanded to estimate the quantity of carbon in dead 

organic matter as a significant carbon reservoir in natural environments.  

The expression Large Woody Debris, LWD, or Coarse Woody Debris, 

CWD, refers to dead trees and the remains of branches lying on the 

ground, usually in forests or river wetlands. Until now, few studies have 

focused on the coastal marine ecosystem and wood accumulation at the 

seashore due to storm surges and on their role in being a significant 

carbon stock and influencing the carbon stock in soil, undergoing 

decomposition and humidification processes.  

The biological relevance of such wood deposits is also related to their 

contribution to characterising the geo-eco-morphodynamics of the coastal 

natural environment. They act as modulators of sediment transport 

across the backshore and as control and base structures for developing 

and maintaining dunes. This case study analyses the CWD carbon stock 

and the beach dynamics in two targeted areas along the backshore in San 

Rossore Regional Park, Italy, Tuscany (PI). 
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1. Introduction and contextualisation 

Evidence of human interference with the planet’s climatic balance 

emerged in the last century. The so-called climatic changes have 

consequences on ecosystems and natural resources worldwide.  

The most evident change in climate of the last 100 years is the increase 

in the global average temperature. After some debate in the past decades, 

it is now primarily acknown the correlation between this temperature 

raising and anthropogenic greenhouse gas emissions, among which CO2 

causes the greenhouse gas effect.  

Consequently, the United Nations Framework Convention on Climate 

Change (UNFCCC) and the Kyoto Protocol established 

Intergovernmental Panel on Climate Change (IPCC) Guidelines for 

National Greenhouse Gas Inventories. Nations signing are encouraged to 

quantify carbon fluxes and pools in natural environments.  

Climate change mitigation and adaptation measures need to be taken. 

Both strategies are necessary to compensate for the continuous emissions 

of greenhouse gases potentially leading to irreversible effects on the 

climate. 

The attention is on eco-engineering strategies that preserve natural 

terrestrial carbon sinks, for example, the vegetation, the ocean, and the 

soil. This approach tends to compensate for the loss of natural CO2 sinks 

and reservoirs that results, in around 12÷20% human-caused greenhouse 

gas emissions (Le Quéré  et al. 2009)  

The world’s forests are mainly considered (IPCC 2003) both living trees 

and dead wood. However, measurements of dead wood in forests are not 

as established in National Forest Inventories (NFI) as measurements of 

alive trees (Tomppo et al. 2010; Woodall et al. 2009). In fact, among the 

requirements for global emission reports is demanded to estimate the 

quantity of carbon in the form of dead organic matter as a significant 

carbon reservoir in the natural environment.  

Even less attention is paid to coastal areas and vegetated marine 

ecosystems that are instead of great interest both for their role in CO2 
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emissions mitigation but equally important in adaptation to sea-level 

rise, increasing wave energy, sea storms, and coastal erosion (Duarte et 

al. 2013). 

Related to the capacity of the marine ecosystem to act as carbon stock, 

but even less mentioned than marine vegetated areas, is the role of Large 

Woody Debris, LWD, deposits on the seashore. 

The expression Large Woody Debris or Coarse Woody Debris generally 

refers to dead trees and the remains of branches lying on the ground, 

usually in forests or river wetlands. Until now, few studies have focused 

on CWD accumulation on the seashore in coastal areas due to storm 

surges and on their essential contribution in characterising the geo-eco-

morphodynamics of such natural environments. In addition to being a 

carbon stock, LWD acts as a modulator of sediment delivery across the 

backshore and as a control and base structure of the development and 

maintenance of sand dunes. 

Traditional methods to study CWD have relied on field data collection, 

which can be expensive, time-consuming, and limited by accessibility to 

sampling sites. However, with advancements in high-speed computing of 

large amounts of data and remote sensing, automated solutions have 

been developed to identify and measure CWD structures and components 

using aerial and satellite imagery. 

This work aims at developing a case study on a CWD deposit at the 

seashore in San Rossore Regional Park, in Italy, Tuscany (PI). 

Integrating data collected during an in-site survey, remotely sensed 

aerial data, and using geomatics techniques and software, the goal is to 

indirectly estimate the volume of the wood accumulation in two large 

areas and consequently to retrieve an evaluation of the carbon stock 

associated.  
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2. Literature review  

2.1. Atmospheric carbon increase 

In recent years, awareness for what concerns the environmental impact 

associated with Climate Change is rising. Temperature increase, 

heatwaves, wildfires, more frequent and intense extreme events such as 

floods or drought, rising sea levels, and melting glaciers are some of the 

most relevant impacts of climate change. This expression refers to a 

modification in the state of the climate that can be identified, for example, 

through statistical tests, by changes in the mean and/or in the variability 

of its properties, which persists for an extended period, typically decades 

or longer. All these changes affect ecosystems, cities, animals and 

humans’ health, food, and water resources. 

One of the most relevant impacts of Climate Change is global warming. 

Such expression refers to the increase in the mean global temperature, 

related to the increment of greenhouse gasses (GHGs) emissions due to 

anthropogenic activities. These gases are water vapour, carbon dioxide, 

methane, nitrous oxide, ozone, fluorinated gases, and others. Most are 

naturally present in the atmosphere in such concentrations to prevent 

significant thermal variations between day and night. Without 

considering the presence of these gases, the global energy balance Earth's 

surface temperature result, of about 18° C, would drop to around -15°C. 

The different behaviours of GHGs address this phenomenon to the 

electromagnetic radiation considered in the energy balance. An 

exhaustive scheme of the global energy balance is shown in Figure 1. 
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Figure 1. Earth’s global mean energy balance (Wild et al. 2013). 

While GHGs are transparent to wavelengths corresponding to the visible 

range, they are opaque to lethal ultraviolet and infrared radiation. To 

better analyse the interaction between gas and radiation is shown the 

absorption spectrum for each gas is in Figure 2.  
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Figure 2. The absorption spectrum of different GHGs and the atmosphere (Höjgård-

Olsen 2020). 

Among GHGs, is CO2, which strongly absorbs energy with a wavelength 

falling in the infrared radiation region of the spectrum of around 15μm, 

corresponding to the thermal energy re-emitted by the Earth’s surface. 

This way, solar radiation with a much shorter wavelength penetrates the 
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atmosphere. According to Wien's law, the Earth’s surface absorbs 

sunlight and re-emits part of the absorbed energy as infrared radiation.  

𝜆𝑚𝑎𝑥 =
2897

𝑇
 [1] 

Considering the Earth’s temperature, T, around 300 K, is obtained a 

wavelength, λmax, in the thermal infrared range. 

Therefore, this energy remains trapped in the atmosphere due to the 

overall absorbing characteristics of GHGs. It corresponds to an 

atmospheric temperature increase and, consequently, to a rise in the 

Earth’s temperature.  

This warming is visible from the global mean temperature time series 

illustrated in Figure 3.  

  

Figure 3. Global annual mean temperature difference from pre-industrial conditions 

(1850–1900) for five global temperature datasets (Kennedy et al. 2021). 

In the last century, the global average temperature is increased by about 

1° C. Even if carbon dioxide is not the only GHG nor the one with the 

highest Global Warming Potential (GWP) index, the exponential increase 

in its atmospheric concentration due to human activities and the inability 

of terrestrial organisms to metabolise it at such high rates denote it as 

the most responsible gas for the greenhouse effect. Starting from the 
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twentieth century, the use of hydrocarbon combustion as the primary 

source of global energy production, and the increase of transportation and 

industrial processes, have meant a steep growth of CO2 concentration, 

visible from the graph in Figure 4.  

 

Figure 4. Time series of the global average of carbon dioxide concentration [ppm] 

(Brewer 2022). 

The preindustrial CO2 level was approximately 280 ppm, with an annual 

increase of about 2 ppm, was reached more than 400 ppm in 2019. 

Following this trend, the IPCC suggests that a constant concentration of 

CO2 alone at 550 ppm would cause an average increase in Earth’s 

temperature of ~3°C. Such global temperature variation would lead to 

risks associated with long-lasting irreversible changes, such as the loss 

of specific ecosystems. Limiting the temperature increase to 1.5°C and 

maintaining atmospheric CO2 concentrations around 450 ppm is 

considered a safeguard threshold. 

In this scenario, the climate change mitigation framework consists of all 

the policies and actions to anticipate, prevent and minimise the causes 

and the adverse effects of climate change, including the greenhouse effect 

and its implications. For example, climate change mitigation means 

preserving and restoring natural ecosystems, using new green 
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technologies, producing renewable energies, making older equipment 

more energy efficient, or changing management practices and consumer 

behavior to reduce GHG emissions. However, more than emitting less 

will be needed to achieve the climatic objectives established at the 

International Climate Conference held in Paris in 2015.  

Therefore, new strategies in the field of climate change mitigation are 

increasingly being studied to capture and remove greenhouse gases, 

mainly CO2, from the atmosphere.  

Innovative technologies may have a valuable role to play. The so-called 

Negative Emissions Technologies (NET) intervene in the earth's carbon 

cycle, directly addressing the root cause of climate change and 

permanently removing carbon dioxide from the earth's atmosphere. 

However, they are expensive, and they require encouragement with 

appropriate policies and support from research at a  global scale. Instead, 

among the mitigation possibilities, a cheap, safe, and easy one is related 

to protecting, conserving, and restoring vegetated ecosystems that act as 

carbon sinks through eco-engineering solutions. 

2.2. Carbon cycle and sinks 

To understand the role of natural carbon sinks is important to focus 

on the modifications in time of the natural exchange of carbon and 

nutrients among land, ocean, freshwater bodies, and the atmosphere.  

Essential elements for life are constantly delivered through the 

spheres of the climate system. In this global biochemical cycle, carbon 

is included as the main character because it constitutes the base for 

molecular structures of living organisms.  

Commonly the carbon cycle is intended as the vertical motion of such 

elements that involves the atmosphere, the vegetation on land, and 

the ocean. 

However, carbon transport is not only a vertical exchange in gaseous 

form between land and atmosphere; but also a lateral transfer across 

various ecosystems of the aquatic continuum, which connects all 
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water bodies, rivers, streams, lakes, reservoirs, estuaries, and coastal 

zones, to the open ocean. (Regnier et al. 2013). This second direction 

of the carbon flux and its importance have been known for decades; 

however, it has been underrated since recent times. The magnitude 

of this phenomenon is not negligible even if, at present, lateral carbon 

transport is not included in reports assessing the CO2 global budgets 

published by the IPCC.  

Indeed, understanding the mechanism driving the carbon cycle and, 

consequently, the quantitative estimation of lateral carbon flux is 

highly complex, especially because it cannot be taken as an invariant 

(Ver et al. 1999).  

Anthropogenic perturbations, such as land-use changes, soil erosion 

(Quinton et al. 2010), liming, the use of fertilisers and pesticides, 

sewage-water production, damming of water courses, water 

withdrawal, and human-induced climatic changes have a relevant 

impact on this global cycle. 

Data to build a boundless carbon cycle model are too sparse (Battin et 

al. 2009). The current Earth system models include the carbon cycle 

in the physical climate system but ignore the lateral carbon flow. A 

significant challenge is identifying the drivers of the human impact, 

predicting their evolution, and including anthropogenic forcings in 

Earth system models (Collins et al. 2011). 

Let us go deeper into analysing the different terms in the estimate of 

lateral carbon fluxes developed by Regnier et al. in 2013.  

Three different elements of the aquatic continuum are taken into 

account: 

- inland waters; 

- estuaries; 

- coastal ocean and beyond. 

Figure 5. is created to illustrate a simplified schema of the lateral 

carbon transport. 
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Figure 5. Lateral carbon flux. 

Starting from inland waters, the following carbon fluxes are the main 

ones considered: 

- F1 is the soil-derived carbon, which is fixed in the terrestrial 

biosphere by photosynthesis processes (Ittekkot et al. 2004); 

- F2 represents the chemical weathering of inorganic carbon 

from rocks (Hartmann et al. 2009); 

- F4 is one of the sewage water originating from biomass 

consumption (Prairie et al. 2007);  

- F5 is the net photosynthetic carbon fixation from terrestrial 

organic matter decomposition; 

- FR represents the part of the carbon physically eroded, 

resistant to mineralisation (Copard et al. 2007);  

- F6 is from lakes and some rivers as CH4 (Mendonça et al. 2017);  
- F7 is emitted to the atmosphere as CO2 (Bastviken et al. 2011). 

These presented fluxes result in a total carbon input in inland waters, 

Ftot
iw, of 2,7 ÷ 2,9 Pg C/y the efflux is compensated (Battin et al. 2009, 

Tranvik et al. 2009). This numerical estimation has to be taken with 

medium-low confidence because of the uncertainties due to the lack of 

direct flux measurements, the incomplete spatial coverage of the 



 

11 

 

sampling location, and the not negligible difficulty in effectively 

establishing the surface covered by inland waters. 

Follows the aquatic continuum portion of estuaries. Its carbon flux, 

Fe, is estimated at 0,95 Pg C/y. It considers the carbon: 

- F10 exchanged from estuaries to the atmosphere (Laruelle et al. 

2010, Cai et al. 2011); 

- F11 from vegetated ecosystems, like salt marshes, mangroves, 

seagrass, and macroalgae to estuaries (McLeod et al. 2011, 

Breithaupt et al. 2012); 

- F12 buried in sediments;  

- F13 from estuaries to the ocean (Duarte et al. 2005). 

The last term, Fo, is 0,75 Pg C/y, and it is related to the export from 

the coastal to the open ocean (Borges et al. 2005), resulting from:  

- F14 air-sea CO2 fluxes (Cai et al. 2006, Wanninkhof et al. 2012)); 

- F15 sediments sequestration (Krumins et al. 2013, Dunne et al. 

2007);  

- FR physical weathering (Blair et al. 2012).  

Again the number proposed has to be taken with low confidence. 

To these natural fluxes presented, the anthropogenic perturbation 

effect should be considered due to the impact of human activities on 

inland waters, estuaries, and the ocean. To give some examples, 

deforestation and land use change have led to an increase in the 

export of carbon from inland waters. Regarding estuaries, an increase 

in carbon export has been observed since preindustrial times due to 

man-caused perturbation in water drainage. Lastly, the nutrients 

supply to the ocean has been enhanced. As a consequence, it may 

increase coastal productivity and carbon burial while also raising the 

air-to-sea carbon flux.  

An accurate quantitative estimation of these fluxes is challenging. 

Indeed, it is possible to state that the lateral transport of carbon, and 

the vertical one, have been considerably modified by atrophic 
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activities, resulting in an excess carbon delivery to the aquatic 

continuum of around 1,1 Pg C/y.  

Extremely relevant is the contribution as carbon sinks of inland 

waters, estuaries, and coasts, sequestering around 50% of the excess 

carbon flux. The remaining is exported to the open ocean and emitted 

into the atmosphere. 

These considerations are a step forward in building a boundless global 

carbon cycle model. 

In this context, reminding the importance of carbon sinks and stocks 

seems unnecessary.  

2.3. Coastal carbon stock 

The marine ecosystem includes all those natural elements present 

along the coast. 

Right at the backshore are present marine vegetated habitats, which 

include seagrasses, saltmarshes, macroalgae, and mangroves, and 

occupy 0.2% of the ocean surface. In the past 50 years, more than a 

quarter of these areas have been lost due to different factors, such as 

the increasing nutrients input, heat waves, transformations of the 

coast, and land use (Waycott et al. 2009, Orth et al. 2006, Adam 2002, 

Reush et al. 2005, Marbà et al. 2010, Wernberg et al. 2011, Jordà et 

al. 2012). Even though the percentage of the entire Earth’s surface 

covered by this ecosystem is small, its contribution to carbon burial is 

enormous. It is responsible for almost 50% of carbon burial in marine 

sediments (Duarte et al. 2005, Nellemann et al. 2009). 

The role of vegetated marine ecosystems as carbon sinks is related to 

two main factors: 

- the community’s primary production that, in general, exceeds 

respiration;  

- the ability to trap carbon particles from the water flow and to 

deposit and store them in the soil. 
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Despite the extent of marine vegetation being less than 3% of 

terrestrial forests, its enhanced carbon burial capacity results in the 

two ecosystems storing a similar amount of organic carbon over 

millennia (Kennedy et al. 2010). This percentage corresponds to a 

global store of 10 PgC in the 1m layer of topsoil (Donato et al. 2011). 

Still an order of magnitude lower contribution than the terrestrial 

forests but large enough to play a key role in the carbon cycle. 

Furthermore, the presence of wood accumulations on the coast also 

contributes to the carbon stock behaviour of the marine environment. 

CWD deposit at the seashore is related to the natural deadwood 

transport from land, either by rivers or directly produced in 

mangroves, which is drifted from river estuaries to the open ocean, 

where it is subject to oceanic current mechanisms. Understanding 

and quantifying this flux is difficult due to the lack of related 

information on the input and the variability and the complexity of the 

oceanic circulation. The following paragraph goes deeper into 

analyzing the carbon content of dead wood.  

2.4. CWD carbon content quantification  

The interest in the role of carbon stock of coarse woody debris (CWD) 

in the global carbon cycle is growing. Indeed tree mortality is 

increasing as a consequence of climatic variability and disturbances 

(Hartmann et al. 2022). To quantify the carbon present in CWD is 

necessary to have an accurate estimation of its density, the 

concentration of carbon (Harmon et al., 2020; Maas et al., 2020), and 

the decomposition mechanism and rate of the dead wood.  

2.4.1. CWD density estimation 

The density calculation is not immediate because dead wood in the 

marine ecosystem undergoes degradation processes.  

To knowledge, few studies deal with wood decay at sea (Freschet 

et al. 2012, Fojutowski et al. 2014). Such a process is influenced 

by environmental factors, such as oxygen concentration, water 

temperature, and salinity, and by the chemical and structural 

characteristics of the wood itself. 
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Charles et al. in 2016 observed that, as wood decays, density 

decreases independently from the initial state of the wood. Their 

experiment uses standardized wood blocks of known initial 

density that are oven dried for 5 days and then weighted. Logs are 

kept up to more than a year in seawater under measured 

temperature and salinity conditions and are randomly sampled to 

determine the mass loss in time. The sampling procedure involves 

the freeze drying, cleaning, and weighting of a wood block. In this 

way, the decay is expressed in terms of mass loss, which is mainly 

due to biological degradation caused by the presence of wood-

boring species activity. The study shows how mass loss dynamics 

have a flat phase followed by a rapid decrease in mass loss and a 

final slowing down stage, reaching 48% by the end of the 

simulation time. It is estimated a daily mass loss of up to 0,38%. 

This datum is significant. Knowing the initial density of LWD 

according to the tree species allows an approximate estimation of 

the mass loss of wood in time. 

At this point, the average density of the sampled logs can be 

assumed to be representative of non-sampled logs. A critical 

aspect is the applicability of estimation density methods to sites 

that present different tree species of dead wood or that have an 

uneven distribution of CWD along the area. 

LWD density estimation can be performed with various methods, 

like the decay classification, the knife test, and the use of 

penetrometers (Larjavaara and Muller-Landau 2010). Each 

method follows an inventory step, during which samples are 

chosen with the line intersect method (Warren and Olsen 1964). 

The decay classification is done by visually examining a log at a 

time and assigning it to a decay class associated with a mean 

density. The first decay class is the one of lowly degraded wood, 

whereas the last is related to the high friability of logs (Brown 

2002). 

To avoid the subjectivity of the previous technique, the knife test 

is performed. A knife is pressed into a log and classified according 
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to the penetration (Rouvinen et al. 2002). Also, with this method, 

repeatability is not assured because of the influence of penetration 

of the knife type, its sharpness, the applied force, and the location 

and orientation of the blade relative to the wood fibres.  

Finally, penetrometers are used, which are not specifically 

designed to study dead wood, but in the field of soil science or for 

living trees. Having a standard instrument allows the 

involvement of multiple people in the data collection, shortening 

time requirements. 

There are still unknowns on how the wood degradation rate 

changes when the CWD passes from weather agents, such as air 

and water, to conditions in the sand and on whether the carbon is 

maintained unmodified also with respect to CWD’s position with 

respect to the aquifer (above or below).  

2.4.2. Carbon in CWD 

CWD come from living trees, and like all plants, during their 

photosynthesis, they take atmospheric CO2  and fix carbon into their 

ligneous structure. In particular, lignin has a considerably higher 

carbon concentration than cellulose and hemicellulose, making 

dead wood a greater carbon stock than other vegetation kinds. 

The questions that arise are: 

- how much carbon is embedded in living trees?  

- how much carbon is lost during wood decomposition? 

Figure 6. shows the carbon fraction in dead wood compared to 

living trees, using data from the global carbon fraction database. 

The two curves are similar, although the curve regarding dead 

wood is shifted to the right with respect to the other. 
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Figure 6. Carbon fraction in dead wood compared to carbon fraction living 

trees. Data source global carbon fraction database (Martin et al. 2021). 

Carbon quantitative estimation in CWD is strongly related to the 

relationships between wood density and moisture content of CWD. 

It is known that during wood decomposition, carbon is released. 

To elaborate a predictive model of this phenomenon, information 

on decay class, wood density, moisture, and initial carbon content 

is required (Fukasawa 2021, Martin et al. 2021).  

A study conducted by Shorohova et al. in 2021 on CWD 

degradation due to fungi and invertebrates and carbon 

concentration points out that:  



 

17 

 

- during decomposition, the highest variation in density 

decrease occurs in the first decay class; 

- the density decrease is negatively related to wood moisture 

content. Such aspect was also observed in other studies 

(Přívětivý and Šamonil 2021, Rinne-Garmston et al. 2019); 

- moisture in wood is higher in advanced decay classes than 

earlier ones;  

- moisture variation is independent of the decay class; 

- decomposition is independent from CWD proximity to the 

ground and high air humidity in the study sites; 

- the mean C concentration in wood was 46.5%. It did not change 

with the decay class. 

Carbon concentration calculation is effectively conducted by 

Köster et al. in 2015. Their study focuses on a hemiboreal forest; 

however, the procedure is valid regardless of the natural 

environment analysed.  

Standardised samples are cut after the fieldwork of collecting 

CWD pieces and dividing them into decay classes. In the 

laboratory, the volume of each disc was estimated by multiplying 

the cross-section area by the average disc thickness, and dry 

masses of samples are determined in the laboratory after oven 

drying the samples for 48 h, at 80oC, to a constant mass. 

Consequently, the basic density is estimated. To analyse the 

carbon concentrations in CWD, wooden material is grinded from 

half of the collected discs. An elemental analyser is used to express 

carbon concentration as a percentage of the weight, compared to 

the total weight of each sample. Results show that: 

- there are significant differences in density and consequently 

in carbon concentration of dead wood among tree species; 

- it is confirmed that the CWD density decreases from the decay 

class for all tree species; 

- there is no significant difference in wood density between 

moisture categories. 
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Weggler et al. in their study published in 2012, estimate wood 

carbon content by comparing four different cases based on the 

same approach. The parameters considered are the volume 

maintained the same for all cases, carbon concentration, and the 

density of CWD that vary. The first uses the 50% default value 

settled by the IPCC and the average wood density of living trees. 

The second is based on specific carbon concentration values of tree 

species and default density values. The third applies carbon 

concentration values again according to the tree species but 

average values of CWD density are specific for species and decay 

class. The fourth and last method uses species-specific CWD 

carbon concentration and species and site-specific CWD density 

values as predicted by climate-based regression models. The 

sensitivity analysis done to compare the four methods shows that 

by improving the accuracy of the CWD carbon concentration, the 

carbon quantified reduces. Nevertheless, by improving the CWD 

density, the carbon concentration estimated reduces consistently.  

It means that a lower accuracy of the carbon concentration and 

the wood density inputs leads to overestimating the carbon. 

A relevant aspect to point out is the influence that Climate change 

has and will have on carbon stock in LWD, on the dead wood 

origin, and transportation rate along the lateral carbon cycle. 

Deadwood volume loss depends on climatic variables such as 

temperature, precipitation and relative humidity (Oettel et al. 

2023). Considering, as an example, precipitation patterns 

variation, more intense precipitation events in a specific area 

could lead to more rapid degradation of trees falling and being 

drifted by the water. Moreover, precipitation could break logs 

down more rapidly, speeding up the carbon release in the 

atmosphere.  

2.5. CWD role in dunes geomorphology 

Taking CWD’s presence at the seashore for granted, let us focus on its 

role in influencing the coastal ecosystem and sustaining its 

biodiversity. 
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The coast is continuously threatened by erosion and modifications due 

to waves during storm events. As a consequence, the LWD matrix is 

periodically reorganised. The superficial exposed wood traps the sand 

blown by the wind reducing the forward sediments delivery. This 

leads to the burial of the superficial wood accumulation and the 

constant evolution of the complex dunes system. On the contrary, 

intense precipitation events may cause the unburial of wood.  

Grilliot et al., in their study of 2019, define foredunes as “vegetated 

shore‐parallel ridges of sand built by aeolian sand delivery across 

beaches”. From this description arises the concept that oceanic and 

aeolian mechanisms, such as sea storms and sea spray, strongly 

influence the dunes complex. It results from a strong, complex 

interaction among the atmosphere, sea, vegetation, and coarse woody 

debris accumulation. 

It is an accretion-erosion cycle effectively illustrated by the conceptual 

model in Figure 7. From case 1 to case 4, the presence of CWD 

becomes dominant. The transition from one state to another may be 

rapid depending on wind and wave conditions. 
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Figure 7. CWD burial-unburial cycles (Grilliot et al. 2019). 

Dunes geo-morphology, large or small dimension, continuous or 

discontinuous, and permanent or ephemeral features, depends on 

control elements, among which:  

- vegetation type, growth rate, density, and distribution 

(Keijsers et al. 2015, Hesp et al. 2013, 2017);  

- the presence of rough elements on the sand, for example, 

woody debris (Grilliot et al. 2018);  

- sand characteristics and supply (de Vries et al. 2014.  
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An important aspect to point out is the frequency and magnitude of 

the storm surge. Each time the coast is eroded and the CWD deposit 

is reworked, it is impacted its ability to modulate waves and function 

as dune basal structure evolution, and so its role in sediments store 

and transport to the dunes. 

The effect of the LWD matrix on foredune erosion, recovery, and 

growth varies according to the characteristics of the wood 

accumulation, such as density, apparent porosity, average diameter 

of logs and orientation with respect to the direction of incoming 

airflow. Moreover, it is also influenced by the intensity and timing of 

the aeolian sediment transport regime and by sea-related factors, 

such as the nature of the wave and the water level dynamics. 

In particular, when the LWD matrix is exposed, the incident wind 

speed is reduced because of the alteration of turbulence 

characteristics in the boundary layer. In such a way, sediment 

deposition is enhanced compared to a flat terrain profile. 

Furthermore, a denser wood accumulation means greater ground 

roughness, reducing short-distance sediment transport.  

To have a bigger picture, Figure 7 has to be integrated with the 

impact of wood accumulation on this complex interaction between the 

beach and the dunes complex, which is modelled in Figure 8. 
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Figure 8. Scenarios of beach dunes evolution (Grilliot et al. 2019). 

The A regime, on the left, shows the deposition of CWD, which acts as 

a skeleton for the progression of the dunes. In the middle, the B 

regime describes the inverse process of regression of the dune system 

due to the erosion of the sandy trap and the transport of the wood 

debris elsewhere. The variation of the geometric features of the coast 

could occur seasonally, influenced by meteorological conditions. 

Studies on the topic should distinguish short-term fluctuations from 

trends over a long-term time period. 
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2.6. Geomatics tools for environmental 

applications 

Geomatics is defined as a systemic, multidisciplinary, integrated 

approach for selecting the instruments and the appropriate techniques 

for collecting, storing, integrating, modelling, analysing, retrieving at 

will, transforming, displaying, and distributing spatially 

georeferenced data from different sources with well-defined accuracy 

characteristics and continuity in a digital format (Gomarasca 2010).  

For this study, among the techniques and disciplines constituting 

geomatics is important to highlight: 

- Global Navigation Satellite System (GNSS) to locate objects 

with high precision, reaching a few centimetres. A GNSS is 

based on a radiofrequency signal emitted from proper satellite 

constellations, for example, the Global Positioning System 

(GPS), which is collected by a ground receiver. Knowing the 

position of the satellite with respect to the Earth and 

calculating the distance satellite-receiver, it is possible to 

define the position of a point. This distance is indirectly 

retrieved by measuring the time or phase of the signal emitted 

by the satellite and received by the receiver; 

- Geographical Information Systems (GIS) are complex systems 

to store, manage, analyse, process, and visualise geographic 

data. It allows combining instruments able to receive, record, 

represent, and process georeferenced spatial data; 

- Photogrammetry, which from images allows the 

reconstruction of tridimensional models and determines 

intrinsic characteristics and their position in space; 

- Laser scanning or Light Detection and Ranging (LiDAR) 

systems use incident electromagnetic radiation in the optical 

frequencies (0,3÷15 μm)  to determine the position of objects 

and measure their distance with respect to the emitter. Laser 

scanners are of two main types: static or terrestrial and mobile 

mapping. They both first work emitting laser pulses and, by 
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measuring the distance from the device to a target, acquire X, 

Y, Z coordinates of numerous points on land. In particular, the 

laser scanner in mobile mapping modality is not static, 

meaning it can be mounted on a mobile device to gather high-

resolution and high-precision data on a large area in a short 

time (Vosselman and Maas, 2010). 

This survey technique is particularly significant because it 

gives a high-precision, complete, three-dimensional image of 

the object or the surface of interest.  

 

Moreover, photogrammetric and laser scanner tools have significantly 

expanded their support to a wide range of research activities from 

when the limitations of using these technologies in terrestrial or 

traditional aerial mode were overcome. Uncrewed Aerial Systems 

(UASs) were introduced to have versatile and flexible investigations 

on natural or anthropogenic environments. Several types of small 

UASs are on the market that can be carried by a single person and 

offer a high cost/benefit ratio. This approach allows to acquire images 

from low altitudes, enabling highly detailed reconstruction of 3D 

features. The necessary components to perform aerial surveys 

effectively using UASs include: 

- Camera capable of capturing high-resolution images. The 

camera has different specifications, such as resolution, lens 

type, and image stabilisation features; 

- GNSS receiver to determine their precise location and 

enable georeferencing of the captured imagery; 

- Inertial Measurement Unit (IMU) used to measure the 

UAS orientation and acceleration. It provides data on the 

UAS roll, pitch, yaw angles, and linear accelerations. This 

information helps stabilise the UAS and improve the 

accuracy of the results; 

- Wireless communication system to establish a connection 

with a ground control station. This link allows real-time 

monitoring of the UAS flight status, receiving commands, 
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and transferring data between the UAS and the ground 

station; 

- On board small computer processor that manages various 

tasks, such as image processing, data storage, flight control 

algorithms, and communication with other components. 

For photogrammetry, even a low-cost non-metric camera can be 

mounted on the drone and following the Structure from Motion, SfM, 

methodology, which involves capturing a series of overlapping 

images, and processing, a 3D scene is reconstructed (Iglhaut et al. 

2019). By employing a highly automated processing strategy, 

researchers can process the acquired images and generate dense point 

clouds representing the 3D geometry of the surveyed area. 

Remarkably, the spatial and temporal resolutions achieved through 

SfM can be exceptionally high, and the positional accuracy of the 

reconstructed features can be surprisingly precise. The point clouds 

obtained from best practices in close-range photogrammetry can 

exhibit spatial resolutions and accuracies comparable to those 

obtained through terrestrial laser scanning. As a result of these 

advancements, a significant number of scientific papers in recent 

literature highlight the successful applications of photogrammetric 

methodologies, particularly employing SfM, in various research 

fields.  

This same workflow is followed to process the photogrammetric data 

of the case study presented. More information is given in paragraph 

4.1.2. of the Methodologies chapter.  

The LiDAR sensor as well can be mounted on a UAS system. It 

collects millions of points of which is known the position, 

automatically converting energy from a primary form into laser light, 

a monochromatic and coherent electromagnetic radiation with high 

intensity. In several cases, photogrammetry and LiDAR techniques 

are combined to harness each method's strengths and enhance the 

results' overall quality. By integrating data from both sources, 

researchers can benefit from the high-resolution and accuracy of point 
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clouds derived from photogrammetry and the dense and detailed 3D 

representations obtained from laser scanning (Room et al. 2022). 

The applications extend beyond traditional geomatic disciplines. 

Specifically, these technologies are proven invaluable in studies 

related to archaeological investigations, infrastructure assessment, 

natural resource management, environmental monitoring, and many 

other areas. In particular, in the last decade, geomatics is essential in 

environmental studies and forecasting, also as a consequence of the 

Global Earth Observation System of Systems (GEOSS) established in 

2005 (Christian 2005). Its purpose is to incentive and engage all 

participating nations in producing and managing information in a 

way that benefits both humans and the environment. 

2.7. Beach-dunes evolution and coastal 

monitoring 

Until the introduction of UASs, coastal change monitoring was based 

on 2D information related to the shoreline position evolution 

supported by perpendicular shore profiles. These data could not fully 

capture rapid natural coastal modifications after severe events or just 

regularly. The transition was from quantifying change based on a 

beach profile every km or so to using photogrammetry and LiDAR 

technologies, which give a result with tens of millions of points every 

km, increasing the resolution of the analysis and its efficacy. The 

weather, particularly wind and rain conditions, may be a potential 

challenge when operating light UASs in coastal areas. Possible wind 

and precipitation can significantly impact the stability and 

manoeuverability of UASs, potentially affecting their flight 

performance and the quality of data collected. However, there are 

strategies to mitigate these challenges. Firstly the careful planning of 

the aerial survey during more favourable low wind hours (< 25 km/h), 

such as in the early morning, related to the specific UAS capability.  

Overall, the integration of low-cost non-metric cameras for 

photogrammetry, UASs, SfM technology, and complementary 

techniques such as LiDAR laser scanning and satellite imaging has 
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revolutionised the capabilities of geomatics. It has provided 

researchers and geoscientists with flexible tools to efficiently 

investigate and analyse natural and anthropogenic phenomena while 

achieving high-resolution and accurate three-dimensional 

reconstructions.  

For example, recent studies examine dune morphological changes 

using DEMs from various data acquisition methodologies, such as 

LiDAR, digital photogrammetry, or topographic surveys using laser 

total stations or GPS (Woolard and Colby, 2002; Mitasova et al., 2005, 

Anthony et al. 2006; Reitz et al. 2010).  

Harmonising information from diverse disciplines and multiple 

sources to describe coastal morphological vulnerability poses a 

significant challenge, as Bonaldo et al. (2019) highlighted. Assessing 

changes in coastal regions and understanding key physical processes 

occurring at different temporal and spatial scales requires the 

integration of shoreline geometry and position data. These 

fundamental indicators enable a quantitative analysis of shoreline 

evolution, offering insights into the erosion and accretion process (De 

Serio et al. 2018; Katz and Mushkin 2013; Thébaudeau et al. 2013; 

Oyedotun 2014). Researchers have explored and applied various 

statistical methods for estimating shoreline change rates to address 

this. 

2.7.1. Aerial photogrammetry 

In general, the potential of UASs photogrammetry has already 

been proven by several studies from different perspectives (Barry 

and Coakley 2013, Gülch 2011, Haala et al. 2009, 2011, 2012, 

2013, Küng et al. 2011, Vallet et al. 2011, Rosnell and Honkavaara 

2012).  

Among the advantages, it is relevant to mention the relatively low 

cost of both the system and the operations, the automation of the 

survey and its high repeatability, and the high resolution of the 

final product. Instead, disadvantages are related to the processing 

phase. 
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Specifically, the concept behind the application of 

photogrammetry for coastal monitoring is relatively easy 

(Gonçalves and Henriques 2015, Jaud et al. 2019, Scarelli et al. 

2017). Regardless of the UAS and the chosen camera, regular 

flights over a few years are performed. An appropriate camera to 

detect even objects of small dimension and volumetric and 

morphological beach changes might acquire images with around 

10 cm Ground Sampling Distance (GSD) from which retrieve a 

Digital Surface Model (DSM) or Digital Elevation Model (DEM) 

with vertical accuracy of approximately 20 cm (Gonçalves et al. 

2010, 2011). 

The GSD [m] depends on the flight height, H [m], the focal length, 

f [mm], the sensor’s dimension, and on image’s dimension. It is a 

simple geometric ratio that can be estimated through calculators, 

for example, the PIX4D calculator.  

After using a photogrammetric processing software based on the 

SfM approach, the 2D DSM and the orthomosaic are retrieved. 

Then, the model can be georeferenced. This procedure can be 

performed through direct photogrammetry, which is possible 

thanks to the GNSS receiver embedded in the UAS, whose 

accuracy is as good as the GNSS signal. Another possibility for the 

georeferencing of the model is the use of known-coordinate points, 

called Ground Control Points (GCPs). They can be represented by 

natural elements detectable from the collected images or markers 

placed on the ground, for this specific purpose, before the survey.  

Specifically, the photogrammetric methodology is suitable to be 

applied to the study of dunes dynamics. A topographic change is 

detected by subtracting elevation coordinates, Z,  of the same point 

belonging to two different DEMs retrieved from two 

photogrammetric campaigns performed in two time periods. In 

this way, the volumetric change related to CWD deposition, is 

computed for each cell location. The resulting volume may be 

positive, negative, or zero and is subsequently interpreted in 

deposition, erosion, or no change phenomena. Just by summing 
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these cell values, it is possible to have the desired information over 

the entire study area (Yoo and Oh 2016). 

2.7.2. Aerial LiDAR 

Given the increasing use of LiDAR in environmental applications 

and the high potential they have to be integrated with other 

remote sensing techniques, particularly in studying the coastal 

ecosystem, it is relevant to develop a straightforward 

methodology. 

Primarily the acquisition of high-resolution 3D models was 

related to airborne LIDAR because, with respect to 

photogrammetry, the processing of the final product is automated 

(Baltsavias, 1999), Other studies have already provided 

information on the LiDAR data acquisition and processing and 

have proved the effectiveness in assessing coastal evolution in 

response to natural forcings, assess sand-dune volume 

modifications (Brock et al. 2002, Mitasova et al. 2004, 2009, 

Sallenger et al. 2003, Saye et al. 2002, Shrestha et al. 2005, White 

and Wang, 2003 and Woolard and Colby 2002). 

Particularly interesting is a study conducted by Eamer and 

Walker in 2010. It examines coastal CWD accumulations' 

morphology and sand storage capacity on northeastern Graham 

Island, British Columbia, Canada. Using coincident high spatial 

resolution LiDAR data and digital orthophotos, they are able to 

retrieve DEMs for different ground cover classes, distinguishing 

sand from wood. These DEMs were then used to quantify the 

relative storage capacities of LWD. 

This approach is quite similar to the one intended to be applied in 

this study because it uses remote sensing high-resolution data to 

look at changes in the volume and morphology of the beach-dune 

complex. In this specific case, digital aerial photography data are 

used to perform a supervised classification, which assigns the land 

coverages, sand, and CWD to different classes. The choice to 

perform the supervised classification is related to the similar 
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spectral signatures of the elements willing to be distinguished. 

Consequently, the algorithm training phase is highly critical and 

done manually. Then, this procedure is transferred to the LiDAR 

datum, retrieved during an in-site survey, considering that a point 

in a specific location in the LiDAR point cloud will be in the same 

class as the same point in the aerial photo already classified. In 

this step, the LiDAR point cloud is rasterised and to points in the 

orthophoto UTM (Universal Transverse Mercator) coordinates are 

assigned. As a result, the original LiDAR points contain UTM 

coordinates, elevation, and ground cover class information. 

Follows the DEM generation for sand and woody debris through 

gridding and Kriging interpolating the data with a 2 cm surface 

spatial resolution. To calculate the volume of the portion including 

CWD buried under the sand and the sand, are defined: 

- HHWMT [m], highest high water mean tide, a horizontal 

baseline above which sand transport and deposition are 

governed by the wind and not by the waves; 

- MSL [m], mean sea level. 

At this point, it is possible to conclude that HHWMT is above the 

mean sea level of a quantity equal to HHWMT-MSL. The volume 

of the sand surface DEM, Ce, is calculated from that baseline. In 

this way, it is possible to predict the amount of wood that acts as 

a structure of the current dunes complex. The volume of the wood 

visible above the sand surface, Cp, is considered as a potential for 

the further evolution of the dunes system. Figure 9 allows to 

picture the reasoning behind the entire study. 



 

31 

 

 

Figure 9. Model of CWD deposit. Ce is the volume occupied by both CWD and 

sand transported and deposited due to the wind, while Cp is the volume of 

superficial wood potentially buried in the future (Eamer and Walker 2010). 

2.7.3. Satellite imaging 

Using satellite optical remote sensing technology can greatly 

enhance ecosystem management, providing synoptic and frequent 

coverage of large coastal areas that offers valuable information for 

decision-makers and researchers. Indeed, satellite optical remote 

sensing allows for monitoring environmental dynamics, such as 

shoreline changes, coastal erosion, and sediment transport. By 

regularly analysing satellite imagery, it is possible to identify 

areas at risk, track coastal evolution and implement appropriate 

management strategies. Thanks to their capability of capturing 

multispectral data, they enable the detection and monitoring of 

specific components of coastal habitats like coral reefs, seagrass 

meadows, mangrove forests, and wood deposits. Moreover, 

satellite imaging use is promoted by the great advantage of free 

access to data sources. Comprehensive and up-to-date information 

is available and can be combined with other kinds of data, such as 

ground-based observations or with data from other data sources, 

to obtain a more complete understanding of the coastal ecosystem 

and its dynamics (Kachelreiss et al. 2014; Pettorelli et al. 2012, 

2014). 
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According to the level of detail desired for a specific application, 

the choice of the data source is based on the trade-off among the 

satellite sensors’ characteristics: spatial resolution, spectral 

resolution, and temporal resolution. Some sensors prioritise 

higher spatial resolution but may have lower temporal resolution 

or limited spectral bands. Others may prioritise frequent revisits 

and spectral diversity but have a coarser spatial resolution.  

Bergsma and Almar, 2020, underline that for specific 

environmental applications such as coastal monitoring, Sentinel-

2 data belonging to the European Copernicus constellation are 

effective. In fact, high-frequency Sentinel 2 data are able to cover 

coastal areas and describe coastal, physical, and biological 

processes. Sentinel 2 based methods are capable of having a large 

spatial scale DEM for mid- to high-latitude coastal zones and 

sporadic spots for lower latitudes where 2 orbit swaths overlap 

and coastal bathymetries. According to the location of the site 

surveyed, the European Sentinel-2 satellite has a spatial 

resolution from ~ 10 to 60 m depending on the band, spectral 

bandwidths from 10 to 60 nm, and a revisit period of ~ 2÷3 days 

(McCarthy et al. 2017). 

However, some open challenges are still associated with the 

interpretation of satellite data for beach-dunes evolution and 

coastal analysis. They include cloud coverage and the presence of 

light-absorbing aerosols in the marine environment. To address 

the atmospheric effects from satellite imagery, such as scattering 

and absorption by gases and aerosols, advanced atmospheric 

correction techniques specific to the coastal zone may be required 

(McCarthy et al. 2017). 

Furthermore, the number of studies using satellite imaging to 

gather field information specifically about wood deposits in 

different natural environments is increasing. In fact, the 

possibility of having access to very high resolution (<1 m) satellite 

data makes detecting CWD over large areas real. In this case, an 

additional issue is related to automatically extracting wood with 

respect to other natural elements present in the images, because 



 

33 

 

of the similarity in spectral characteristics, for example, of CWD 

with sand or vegetation; especially since information on the 

spectral signature of different wood deposit types in natural 

depositional environments is scarce.  

The study of Sendrowski and Wohl, 2012, is relevant to be 

reported to fill this gap. Their objective is to apply the 

classification workflow shown in Figure 10 to automatically 

individuate five CWD accumulation types in three natural 

riparian environments in North America. The wood deposits have 

different spatial heterogeneity, distribution, and orientation 

characteristics.  
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Figure 10. Workflow for image analysis and classification (Sendrowski and 

Wohl, 2012). 

For the study purpose, cloud-free multispectral images are used, 

with low water levels, to avoid LWD being submerged and 

corresponding to peak vegetation greenness to bypass spectral 

confusion.  

Object-based and pixel‐based image analysis classification results 

with supervised (support vector machine, SVM) and unsupervised 

(ISO clustering) approaches are compared. The labelled classes are 

vegetation, water, sand, and wood. In the supervised classification 

process, 100 training samples were manually selected for each 
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class. These training samples serve as representative examples of 

the different categories in the image. By having a sufficient 

number of training samples, the classification algorithm learns 

and differentiates between the various classes accurately. For 

both approaches, the accuracy of the classification procedures is 

verified by looking at the confusion matrix; overall are achieved 

accuracies of 65÷99%, proving that the automated image 

classification is valuable in CWD analysis. Supervised 

classification has led to more accurate wood maps, even in 

dispersed deposition areas. However, it is important to consider 

that the classification outcomes can vary significantly across 

different environments, particularly due to the spatial 

arrangement of wood in the landscape. 

In fact, the conclusion is that LWD deposits show variable 

responses across environments. 

The Mackenzie River Delta case study presents a recent example 

of wood deposit detection and carbon estimation from high-

resolution satellite imagery (Sendrowsky et al. 2023). This area is 

considered “the world’s biggest cumulative logjam mapped in the 

N.T.K.,” with more than 400,000 superficial caches of wood, 

resulting in 3.4 million tons of carbon. To understand the 

significance of this carbon stock, such quantity is “equivalent to a 

year’s worth of emissions from 2.5 million cars.” The research also 

analyses the origin of all this wood, concluding that dead trees in 

the forest are drifting because of the snow melting into rivers and 

getting transported to the target site. 

This study highlights the validity of satellite imagery in this field 

and once again recalls the importance of carbon stocks and the 

relevancy of the lateral carbon cycle. 

The significant limitation of satellite imagery is that it only maps 

what is visible. No information is retrieved on what is hidden 

below living vegetation or buried underground. From what 

concerns the previous case study presented, considering buried 

biomass, it is possible that the river delta stores twice as much 

carbon than what is calculated.  
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2.8. Spatial Statistics for environmental 

applications 

Caution needs to be exercised when quantifying and interpreting 

volumetric changes and related geomorphic responses from DEMs 

because uncertainties and errors related to surveying and 

interpolation methods affect their precision and accuracy. 

Furthermore, to detect volumetric changes, DEMs are subtracted, 

adding an uncertainty associated with the comparison of DEMs with 

their uncertainties already. 

Complementary to geomatics, spatial statistics have the potential to 

identify and quantify spatial and temporal trends in landscape 

morphodynamics with the application of the Local Indicators of 

Spatial Association (or Autocorrelation) method.  

The end-point rate (EPR) method, proposed by Genz et al. (2006), is 

one of the simple, straightforward approaches for estimating 

shoreline movement by calculating the distance between the oldest 

and most recent shorelines divided by the time elapsed. Foster and 

Savage (1985) introduced the average of rates (AOR) method, which 

computes separate end-point rates for various combinations of 

shorelines. Another approach is the linear regression rate-of-change 

(LRR) statistic, which involves fitting a least-squares regression line 

to all shoreline points along a transect to determine the rate as the 

slope of the line (Dolan et al. 1977). The jackknife (JK) method, as 

implemented by Dolan et al. (1991), utilises an iterative linear 

regression by omitting one shoreline point in each iteration. 

Furthermore, the weighted linear regression (WRL) method (Genz et 

al. 2006) assigns greater weight or emphasis to more reliable data, as 

determined by the variance in measurement uncertainty. 

However, concerns arise regarding the suitability of linear models in 

this field, given that shorelines often exhibit non-uniform patterns of 

recession and accretion (Douglas and Crowell, 2000; Thieler and 

Danforth, 1994 a, b). Other studies have used parabolic curve fitting 
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and other regression models that are more representative  (Armenio 

et al. 2017b, 2019, Short and Trembanis 2004, Blossier et al. 2015).  

Furthermore, recent research conducted by Eamer and Walker in 

2013 aims at detecting a change, in time and space, in the beach-

dunes profile, such as erosion or deposition, applying local Moran’s Ii 

statistics on data retrieved from topographic surveys and airborne 

LiDAR. It distinguishes positive and negative spatial autocorrelation 

according to a location's attribute value in relation to its neighbours' 

values (Nelson and Boots, 2008). 

Their study is an evolution of a previous work (Eamer et al. 2013), 

which uses a simplified student’s t distribution method (Wheaton et 

al. 2010). More in detail, data airborne data collected are integrated 

and compared to more frequent laser total station surveys to generate 

DSMs. Then DEMs subtractions are performed, generating interval 

maps of topographical change normalised against the initial LiDAR 

surface to show seasonal trends in volumetric change at the study 

area. At this point, the local Moran’s Ii is implemented, using the 

GeoDa™ software, to filter the DSMs subtraction with the local 

Moran’s method. The results demonstrate the utility and the validity 

of Moran's Ii method in detecting and quantifying significant 

volumetric changes and associated morphodynamic patterns in the 

coastal dunes complex.  

There are evident advantages of incorporating spatial statistics into 

a geomorphic study, among which: 

- the investigation is statistically grounded rather than 

largely observational or arbitrary; 

- the analyses are spatially guided or based on the variation 

of an attribute of interest within a spatial neighbourhood. 

- the potential to provide new insight into underlying 

process-response relations in ecosystems through 

computational pattern recognition. 

  



 

38 

 

2.9. Gap and research questions  

From the analysis of existing literature, a knowledge gap is 

perceived. 

Is it possible to develop an indirect method using geomatics tools 

for volumetric CWD estimations? 

Which dataset, between photogrammetric and LiDAR, is able to 

represent the area better? 

Which tool among the presented ones is better for volumetric 

estimation? 

Is there a correlation between the geometrical characteristics of 

the photogrammetric and LiDAR point clouds and the physical 

properties of the wood? 

Is there a correlation between the LiDAR dataset’s characteristics 

and the physical properties of the wood? 

Is it possible to representatively model a large area having 

information on subsampled small regions? 

This work aims at answering those research questions with the 

case study developed in Chapter 3. 

3. Case study: San Rossore Regional Park, 

sand dune habitat and ecosystem 

The Natural Park of San Rossore, Migliarino, Massaciuccoli 

is a protected area that covers 23.000 hectares, to which is added the 

Protected Marine Area Secche della Meloria. As Figure 11 illustrates, 

this area is located in Italy, in the northern part of the region of Tuscany 

(latitude,43.6-43.9° N; longitude, 10.2-10.5° E; altitude,5 m.a.s.l.). It 

stretches from the sea to the inland, between the Italian provinces of 

Pisa, Lucca and Livorno.  

The ARPAT (Agenzia Regionale per la Protezione Ambientale Toscana) 

reports that this area has a sub-humid Mediterranean climate with an 

Annual Average Temperature of >15oC and Annual Average Rainfall of 

around 800 mm. 
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The landscape is characterised by the meeting between land and sea, 

which creates a large variety of flora and fauna, habitats, and ecosystems.  

34 km of coast evolves  in two main components: 

- a complex dune system along the backshore; 

- woods in the inland. 

The park was officially established in 1979, and in the last decades, it has 

been included in projects activated and implemented to follow purposes 

of territorial protection and governance for this area, among which: 

- the protection and environmental recovery of wetlands and dunes; 

- the ecological balance of the area; 

- the safeguarding, qualification and strengthening of agro-

forestry-cultural activities in line with the destination of the area; 

- the cultural and recreational use of the environment by citizens. 

These design paths are mainly dedicated to conserving and redeveloping 

natural areas, especially those of particular environmental importance, 

such as wetlands, woodlands, and dunes. 

In fact, there is the alternation of open access parts for bathing and 

recreational purposes, such as trekking, sports, laboratories, and other 

activities, with an integral natural reserve not accessible to the public. 

Natural reserves cover 10% of the territory itself and refer to areas with 

a high level of protection, to preserve the ecosystems and their 

peculiarities as much as possible, safeguarding all the species hosted by 

the park. 

In particular, the ISPRA (Istituto Superiore per la Protezione e la Ricerca 

Ambientale) reports that San Rossore is included among the sites in the 

national program for the restoration of the coastal-marine ecosystem 

through natural engineering strategies, thanks to its peculiar three 

dunes complexes. The dune systems, consisting of a mosaic of natural 

habitats, are composed of the typical sequence: embryo dune, mobile 

dune, fixed dune, and back dune, with sparse vegetation and pine forests. 

This study focuses on two large test areas, A2 and A3, located in San 

Rossore Regional Park. San Rossore is one of the 16 natural reserves 
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within the park territory, at the seashore of the Tyrrhenian Sea, a few 

kilometers from the center of Pisa. From the sea to the interior, it is 

characterized by beaches, dunes, forests, marshes and waterways, 

agricultural landscapes, and urban areas. As a consequence, it is full of 

biodiversity. Among the easily observable animals, are the fallow deer, 

the wild boar, and a high presence of birdlife. In addition, there is a large 

variety of vegetation, with more than 500 species of vascular plants.   

A2 and A3 are shown, delimited respectively in yellow and in red, in the 

zooming-in satellite map below, in Figure 11.  

 

Figure 11. San Rossore Regional Park location and zoom in the study areas A2, in 

yellow, and A3, in red (Ciccarelli et al. 2010). 

Further zooming in, the two areas are shown in more detail in Figure 12. 

Both are rectangularly shaped, around 115 m2 wide. Looking at the true 

color images, it is possible to distinguish different landscape elements 

clearly. From left to right:  

- the sea is colored greenish; 

-  the beach and the dunes system in beige tones, with the darker 

part representing the accumulated mixture of woody debris and 

other materials; 

- the vegetated part, from small shrubs to thick maritime pine 

wood.   
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Figure 12. Zooming in A2 and A3. 

The woody debris deposit all along the coast is the target of this case 

study. Figure 13 illustrates two photos of the wood accumulation in A2 

and A3, taken during the site survey in May. It is possible to notice the 

abundance of logs and debris smoothed by the seawater. The 

accumulation extent goes all along the beach in length and around 10m 

wide. 
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Figure 13. Photos of the coarse woody debris accumulation in A2 and A3. 
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4. Methodologies 

The methodologies applied are illustrated for each of the tasks reported 

below: 

1. Data collection 

2. CWD volume calculation scenarios for the subareas A2a, A2b, 

A3a, A3b; 

3. CWD volume calculation method choice and CWD density 

calculation; 

4. Total CWD Weight in A2 and A3;  

5. Conversion from weight to carbon stock; 

6. Statistical analysis of the photogrammetric and LiDAR datasets.  

In addition, the flow chart in Figure 14 summarizes the steps of the 

methodology followed. 

 

Figure 14. Methodology flow chart. 
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4.1. Data collection 

The data collection was performed during a survey in May for both A2 

and A3, structured in the following steps: 

1. Subareas delimitation A2a, A2b, A3a, A3b 

2. UAS flights and data processing 

3. Removal and weighting of CWD (Coarse Wood Debris) 

4.1.1.  Subareas delimitation A2a, A2b, A3a, A3b 

This paragraph explains the delimitation procedure of two small 

subareas for each large area. For this purpose, a warning tape and 

a measuring tape are required. These four portions of the large 

areas are chosen after an in situ visual inspection. The idea is to 

have at least a sample characterised by more sparsely distributed 

large logs and a sample with a dense accumulation of smaller 

woody debris. The deposit density has to be considered more as an 

apparent porosity, meaning the presence of voids filled with sand 

among logs and woody debris of different dimensions. In addition, 

for each subarea, coordinates of a central point are stored using 

the GNSS dual frequency receiver in Network Real Time 

Kinematic (NRTK) technique; such coordinates are shown in 

Table 2. 

4.1.2. UASs flights and data processing 

UAS flights with high-efficiency instruments are performed. In 

particular, photogrammetric and LiDAR flights are performed 

with the DJI M300 RTK (Real Time Kinematics) drone.  For the 

photogrammetric flight, the DJI_P1 sensor is used 

(https://enterprise.dji.com/zenmuse-p1). It integrates a 45 MP 

full-frame sensor with interchangeable fixed-focus lenses on a 3-

axis stabilised gimbal. While, the LiDAR data are collected with 

the DJI_L1 sensor (https://enterprise.dji.com/zenmuse-l1), which 

integrates a Livox Lidar module and a high-accuracy IMU on a 3-

axis stabilised gimbal. Both sensors are shown in Figure 15.  

https://enterprise.dji.com/zenmuse-p1
https://enterprise.dji.com/zenmuse-l1
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Figure 15. DJI_P1 and DJI_L1 sensors, mounted on the DJI M300 RTK drone, 

respectively, for photogrammetric and LiDAR flight. 

The objective is to retrieve a 3D model of the study area with 

respect to the global reference system. For this purpose, from 

seven to ten GCPs are placed in each test area. They have to be 

well distributed around the area, adequately fixed on the ground, 

and put in such a place as to be visible from an aerial survey. The 

GNSS receiver is used in NRTK modality, reaching a few 

centimeter accuracies.  

https://www.dronefly.com/dji-matrice-300-drone.html
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Figure 16. GCP settling. 

Then, two flights with each system are performed for each area. 

In particular, a first flight is done right after the subarea 

delimitation described in step 1 to obtain a DSM. A second one 

follows step 3 to get a Digital Terrain Model, DTM,  of the 

delimited subareas. 

These data acquired are processed to obtain the final product, 

which is a high-resolution georeferenced orthomosaic (EPSG: 

32632) with a 2cm GSD. The processing was realized by the 

researchers from the geomatics lab of the Department of 
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Environment, Land and Infrastructure Engineering (DIATI) of 

Politecnico di Torino.  

Although a full explanation of such processing steps is not the 

purpose of this study, adding a little information about point cloud 

generation is important. 

Starting from the photogrammetric dataset, P1, standard 

structure from motion, SfM, the photogrammetric workflow has 

been applied using Agisoft Metashape Software (AM) (Girod et al. 

2017); the reports of the processing can be found in Annex 1. This 

procedure is shown in the flow chart in Figure 17. It produces a 

georeferenced DEM and an orthomosaic giving as inputs imagery 

and geolocation data (Westoby et al., 2012; Kääb et al., 2014; 

Ouédraogo et al., 2014 Nolanet al., 2015; Eltner et al., 2016). The 

information related to the camera intrinsic parameters, such as 

sensor and optics, the relative camera location and angles, the 

camera position during the survey, and GCPs, is all combined to 

produce a reconstruction of the terrain through stereo matching. 
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Figure 17. Standard SfM photogrammetry processing workflow. Green boxes 

are processing steps, and grey boxes are products. (Girod et al. 2017) 

The characteristics of the resulting DEM from the 

photogrammetric data are reported in the following Table 1. 

 

Table 1. P1 processing results report. 



 

49 

 

Moreover, for what concerns the LiDAR dataset, the DJI Terra 

proprietary software was used for the point cloud processing. 

The UAS data are opened in the proprietary software DJI Terra.  

The following setting parameters are applied:  

4.2. point cloud density → high;  

4.3. optimize point cloud accuracy → yes;  

4.4. output coordinate system → WGS84;  

4.5. reconstruction output → PNTS, LAS.  

At this point, the point cloud is exported in the chosen format, 

which records additional attributes for each point as the RGB 

color, the signal intensity, and other information (Štroner et al. 

2021).  

4.1.3. Removal and weighting of CWD 

This paragraph illustrates the wooden material's removal and 

weighting in the previously delimited targeted subareas.  

Working gloves, a pair of work trousers, a chainsaw, a suspension 

balance, and a rubble bag with a metal hook are used for this step. 

Considering a delimited subarea, sized around 2m x 3m or 3m x 

3m, loads of superficial wooden pieces are picked up and placed in 

the rubble bag. Particular attention is paid to evaluating and 

leaving aside what is outside the limit and what is covered by 

sand. Logs are cut using the chainsaw, taking all the required 

precautions when necessary. Follows the calibration of the 

suspension balance and the weighting, lifting the bag manually, 

and reading the value on the screen.  



 

50 

 

 

Figure 18. Wood weighting. 

For example, Figure 19 below shows two delimited subareas in A2 

before and after the removal and weighting of the coarse woody 

debris.  
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Figure 19. A2a and A2b delimited subareas before (A2_PRE) and after 

(A2_POST) the wood removal and weighting. 
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The same procedure is performed in A3. 

Table 2 sums up the LWD weighting output. In particular, the 

total net weight already considers the tare subtracted.  

 

Table 2. Total net weight for each subarea. 

A relevant aspect observed is that the wood accumulation is not 

only superficial. Digging a 40 cm deep hole in the sand, it was still 

possible to find wooden pieces, as shown by the photo in Figure 

20. This aspect is strictly related to the complex dune structure. 

 

Figure 20. CWD was found digging a 40 cm deep hole in the sand. 
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4.2. CWD volume calculation scenarios for the 

subareas A2a, A2b, A3a, A3b 

One of the goals of this study is to use an indirect method to estimate 

the total volume of the large woody debris in A2 and A3 to retrieve an 

estimation of the carbon stock. Thus, the photogrammetric and the 

LiDAR point clouds are considered. In this specific case, the 

photogrammetric point cloud is more accurate than the LiDAR data 

because this last one has a sparser point cloud distribution; probably 

due to a too high flight height.  

Such an aspect is observable just by zooming in on the two images 

and focusing on the points distribution in space.  

For example, Figure 21 illustrates the same region in A2 represented 

by the photogrammetric dataset on the left and by the LiDAR dataset 

on the right using the same zoom of the working space. The point 

cloud density difference is evident. In particular, the white rectangle 

highlights a reddish plastic debris easily detectable in the image on 

the left, correspondent to the photogrammetric dataset. In contrast, 

it is almost unrecognizable in the LiDAR point cloud on the right.  

 

Figure 21. Photogrammetric and LiDAR point cloud densities comparison. 

For the photogrammetric and the LiDAR datasets are available a 

_PRE point cloud with the target subareas delimited and a _POST 
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point cloud resulting from a UAS flight performed after the wood 

removal and weighting. In both cases is followed the same procedure. 

The two, _PRE and _POST 3D point clouds, are loaded in the 

processing software CloudCompare. Using the segmentation tool are 

segmented the subareas: A2a_PRE, A2b_PRE, A3a_PRE, A3b_PRE 

and A2a_POST, A2b_POST, A3a_POST, A3b_POST. Moreover, 

Cloud Compare is able to create raster files, which are then loaded 

into QGIS software to work on geospatial data. It is important to set 

the same, correct reference system both in the workspace and for the 

files, WGS 84/UTM zone 32N. 

Three different methods are applied to perform the volume 

calculation: 

1. Automatic method applied on the point cloud; 

2. Automatic method applied on the raster files; 

3. Manual method applied on the raster files.  

Volume calculation scenarios according to the input data type and the 

software used are summarised in Table 3 below. 

 

Table 3. Volume calculation method according to the data type in input and the 

software used. 

4.2.1. Automatic method applied on the point cloud 

Directly in CloudCompare, there is a tool called “Volume” that 

needs in input a DSM (“Cell/After”) and a DTM (“Ground/Before”) 

to which respect calculate the volume. In this case, respectively 

are inserted the segmented subareas _PRE and _POST from the 

two flights. The segmentation of the subareas is shown in Figure 

22 for A2  working on the photogrammetric dataset. Showing the 
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cut of the LiDAR data is not effective due to the sparse point cloud 

density distribution already pointed out in Figure 21. 

 
Figure 22. Segmentation of A2a, A2b from the photogrammetric dataset. 
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Looking closely at Figure 22, the white arrow helps to notice the 

warning tape that delimits the subarea A2a. The white polygon 

highlights the wood removal area in A2b. 

The same procedure is followed also for A3a and A3b and is 

illustrated in Figure 23. 

 

Figure 23. Segmentation of A3a, A3b from the photogrammetric dataset. 
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4.2.2. Automatic method applied on the raster files 

In Cloud Compare, the command “Rasterize” generates a raster 

grid based on the following generation parameters in input: 

- the desired grid step → 0,02 m; 

- the projection direction → Z; 

- the height to store among the ones of all points falling in 

that cell → maximum height.  

No interpolation is done to fill the empty cells at this point. Once 

the base parameters are properly settled, and the “Update grid” 

button is clicked, CloudCompare computes and displays the grid.  

The raster files _PRE and _POST just created are used in QGIS 

software. The “Volume Calculation Tool” is downloaded from the 

Plugin and is then shown in the curtained window “Raster,” from 

where it is selected. The identification of a polygon to apply the 

calculation is required; as a consequence, a new shapefile layer is 

generated.  

At this point, with a sampling step size of 0,02m,  the tool 

calculates the volume of a _PRE area with respect to the 

correspondent reference layer _POST.  
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4.2.3. Manual method applied on the raster files 

The raster files _PRE and _POST are loaded in QGIS software 

and is used the “Raster Calculator” to create a new raster, 

performing the operation:  

𝑉𝑐𝑒𝑙𝑙  =  𝛥𝐻(𝑃𝑅𝐸−𝑃𝑂𝑆𝑇)  ×  0,022 [2] 

The height is multiplied by the cell’s area for each cell, so the 

result is the added volume of wood for each cell.  

To get the total volume of wood over the subarea, the sum of all 

these volumes per cell is calculated. In the Processing Toolbox is 

selected the “Raster Statistics” that allows to read a sum, which 

represents the total volume:  

𝑉𝑡𝑜𝑡 =  ∑ 𝑉𝑐𝑒𝑙𝑙
𝑐𝑒𝑙𝑙

 [3] 

4.3. CWD volume calculation method choice 

and CWD density calculation 

Among these methods, 4.1.1. Automatic method applied on the point 

cloud is chosen to retrieve the density of the wood deposit because it 

does not require the rasterisation of the data, instead works directly 

on the photogrammetric point clouds.  

Then, the density is calculated as: 

𝜌 =  
𝑊

𝑉
 [4] 

Where W is the weight in Table 2 measured during the survey, 

following the procedure explained in Chapter 4.1.3. ; and V the 

volume calculated. The formula calculates an apparent density for 

each of the two subareas, ρA2a, ρA2b, ρA3a, and ρA3b. A partial mean 

density for each large area is computed ρA2 and ρA3. This choice is 

based on considerations concerning geography, location, and the 

different visual characteristics of the deposit. In fact, is observed that 

A2a and A2b are characterised by a dense accumulation of smaller 
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woody debris, whereas in A3a and A3b, bigger logs spaced out by 

sandy voids are present. Two details are reported in Figure 24 to 

understand the difference in deposit.  

 

Figure 24. A2 wood is denser but smaller than A3 logs. 

4.4. Total CWD weight in A2 and A3 

Working on the entire large areas is performed the same process 

backwards. Having the densities ρA2 and ρA3 and applying method 1. 

Automatic method applied on the point cloud is chosen to calculate 

the volume of the large woody debris accumulation, the weight in kg 

of wood is estimated according to the equation:  

𝑊 =  𝜌 × 𝑉 [5] 

For what concerns the large areas is not directly available a _POST 

image. Therefore, the DTM is created, in CloudCompare, from the 

photogrammetric point cloud, visually classifying the ligneous pile 

and manually segmenting out those portions. This is illustrated, for 

the photogrammetric dataset, in Figure 25.  

The decision is made to perform the classification manually instead 

of using an automatic classification algorithm. A first trial applying 

the CSF (Cloth Simulation Filter) does not lead to an accurate and 

relevant result despite changing the input parameters, such as the 

cloth resolution. The spectral response of wood is very similar to the 
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one of sand, and only RGB data are available. Therefore, CWD 

classification is performed manually.  

 

Figure 25. Segmentation of the CWD for A2 and A3 photogrammetric point clouds. 

For both areas, on the right the CWD segmented out is shown. The 

remaining portion of sand and vegetation is placed aside, on the left.  

For the remaining terrain, a point cloud is created from the command 

“rasterise,” filling the empty cells with the interpolated value.  

Based on the segmentation of the photogrammetric dataset, the 

LiDAR dataset is segmented. Its visual classification is challenging 

as a consequence of the low point cloud density. 
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4.5. Conversion from weight to carbon stock 

At this point, knowing the LWD weight along the large areas, a 

simple linear relationship taken from the literature is applied to 

convert the wood’s weight into carbon stock.  

𝐶𝑠𝑡𝑜𝑐𝑘 =  50% ×  𝑊 [6] 

The operation is performed two times, one for each dataset. 

4.6. Statistical analysis of the 

photogrammetric and LiDAR datasets 

The willing is to verify whether there is a relationship between a 

spatial statistics variable and a physical parameter. In particular, 

only the part including CWD is considered for the entire area.  

Starting from the photogrammetric dataset, as the spatial variable is 

taken, the point cloud density and the apparent density of the wood 

deposit as the physical parameter. The point cloud density is 

computed in CloudCompare going in “Tools - Geometric features,” 

fixing a radius (r = 0,09m). The number of neighbours, surface 

density, and volume density are loaded. These three are just different 

ways to express the same quantity. The number of neighbours [pt] 

estimates for each point the number of points N in a  neighbourhood 

of radius r. Surface density [pt/m2] and volume density [pt/m3] are the 

number of neighbours, respectively, divided by the surface and 

volume containing the neighbours. Switching from RGB visualisation 

to Scalar Field, it is possible to display the point cloud density 

histogram.  

Of this distribution, an approximate mean point cloud density is 

computed in Matlab by downloading the .txt file that stores the point 

cloud density values, among other data such as the point coordinates  

(X,Y,Z) and radiometric information.  

Secondly, the same analysis is performed with the LiDAR dataset. 
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For both datasets, the ratio between the approximate surface density 

[pt/m2] and the maximum surface density is computed as a 

representative value of the point cloud density. Such normalisation is 

necessary to compare areas in time and space.  

In addition, for what concerns the LiDAR dataset, the correlation 

between intensity and wood density is analysed. The goal is to 

distinguish wooden pieces of different dimensions or parts of the 

accumulation with different characteristics, one from another. 
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5. Results 

This chapter illustrates the results corresponding to the tasks 

methodologies already developed in Chapter 4.  

5.1. CWD volume calculation scenarios for 

the subareas A2a, A2b, A3a, A3b 

The concept behind the three methods applied for the wood volume 

calculation is the same; however, the outcomes differ slightly. This 

could be due to the different approximations that the software 

algorithms compute. 

5.1.1.  Automatic method applied on the point 

cloud 

The Volume Calculation tool used in CloudCompare requires a 

grid step that is settled equal to 0,1m. Such a grid is loaded on the 

right space of the tool window, and it is reported as an example 

for the photogrammetric dataset in Figure 26. It highlights in red 

the relative height that represents the volume of wood removed 

from the _PRE image. The relevant volumetric result of this 

method for the photogrammetric dataset is also reported in Figure 

26. 
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Figure 26. Relative height in the Volume Calculation tool for the 

photogrammetric segmented subareas. 

The same methodology is used for the LiDAR data, for which 

results are directly reported in the summary Table 4. 
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5.1.2. Automatic method applied on a raster file 

After the settling of the input parameters, as it is illustrated in 

paragraph 4.1.2.; the raster volume calculation tool is launched. 

On the right of the tool window, it is possible to read the inputs 

height layer _PRE and base layer _POST, used as DEM. This is 

illustrated in Figure 27 for the photogrammetric data. In addition, 

the volume results are pointed out by the red arrow. 

 

Figure 27. QGIS Volume calculation tool results log for the photogrammetric 

segmented subareas. 

Results with the LiDAR data are directly reported in the summary 

Table 4. 
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5.1.3. Manual method applied on a raster file 

The methodology illustrated in paragraph 4.1.3. is applied.  

Figure 28 shows the significant volume raster file retrieved from 

the photogrammetric data. Each image contains the removed 

volume of wood in the _POST raster, with respect to the _PRE one. 

Indeed, the reddish parts are wood cumuli. Darker the color in a 

part of the image, the greater the volume of CWD in that area. 

 

Figure 28. Raster file from the photogrammetric data showing the CWD. 

Performing the summation over all cells, the result of the current 

method is directly illustrated in Table 4, for the photogrammetric 

and the LiDAR data. 
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CWD volume calculation results for each method applied and for each 

subarea are summarised in Table 4. 

 

Table 4. The volume of CWD in [m3] calculated in A2a, A2b, and A3a, A3b according 

to methods: 1. Automatic method applied on the point cloud; 2. Automatic method 

applied on the raster file; 3. Manual method applied to the raster file. Results are 

shown for the photogrammetric and the LiDAR data. 

5.2. CWD volume calculation method choice 

and CWD density calculation 

In Table 4, the highlighted lines correspond to the chosen method’s 

volumetric results calculated with the photogrammetric and the 

LiDAR data. Consequently, the density is retrieved from the volume 

and weight of the CWD.  

The motivation behind the volume calculation method choice is 

reported in the discussion in Chapter 6.2. 

Useful data for this calculation are all reported in Table 5.  
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Table 5. Weight [kg], Volume [m3] Density [kg/m3] for A2a, A2b, A3a, and A3b, and 

Partial Mean Density [kg/m3] for A2 and A3. Results are shown for the 

photogrammetric and the LiDAR data. 

5.3. Total CWD Weight in A2 and A3 

Having the partial mean densities previously calculated, ρA2 and ρA3, 

the total volume of CWD in A2 and A3 are computed in CloudCompare 

with method 1.  

The total weight resulting is tabled in Table 6.  

 

Table 6. Total CWD weight [kg] calculated from the photogrammetric and LiDAR 

data in A2 and A3. 
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5.4. Conversion from weight to carbon stock 

Applying 50% as the conversion factor, the resulting carbon stock is 

illustrated in Table 7. 

 

Table 7. Carbon stock [kg] calculated from the photogrammetric and LiDAR data in 

A2 and A3. 

5.5. Statistical analysis of the 

photogrammetric and LiDAR datasets 

For the photogrammetric and the LiDAR dataset, the point cloud 

density histogram is plotted and shown in Figure 29 for A2 and A3. 

Volume density and surface density are taken as representative of the 

density to compare values. Comparing the output with the one 

resulting from CloudCompare, from the photogrammetric point, cloud 

density low values seem to correspond to the borders of the 

segmentation. As a consequence, the data file is reduced, eliminating 

values lower than a threshold. Similarly, the LiDAR dataset is 

subsampled because high values correspond to the sandy or vegetated 

parts, which are not of interest.  
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Figure 29. Point cloud density histogram. 
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The approximate mean is evaluated as the sum of the relative 

frequencies of each histogram’s bar, calculated as the mean value of 

the histogram’s bar time, the bar’s frequency, divided by the sum of 

all the frequencies. Results are reported in Table 8. 

 

Table 8. Point clouds approximate mean. 

To verify the correctness of the result, this approximate mean is 

compared to the mean value. It follows Table 9 with the same 

structure as the previous Table 8 but contains the mean value 

computed as the sum of all numbers divided by the total number of 

data in the sample.  

 

Table 9. Point clouds mean value. 

In Table 10 is reported the surface density normalised for both 

datasets and areas. 

 

Table 10. Normalized surface density for the photogrammetric and the LiDAR data. 

Furthermore, the intensity histogram of the LiDAR data is plotted for 

A2 and A3 and illustrated in Figure 30.  
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Figure 30. LiDAR intensity histogram. 

6. Discussion 

6.1. CWD volume calculation scenarios for 

the subareas A2a, A2b, A3a, A3b 

To visualise the results, from data in Table 4, are constructed the 

plots in Figure 31, for the photogrammetric data and in Figure 32, for 

the LiDAR data. The three different symbols characterize each of the 

methods applied for the CWD volume calculation. Method 1. 

Automatic method applied on the point cloud is represented by the 

cyan star; method 2. Automatic method applied on the raster file, by 

the magenta triangle and method 3. Manual method applied on the 

raster file by the green plus.  
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Figure 31. Photogrammetric dataset CWD volume [m3] methods comparison for the 

subareas A2a, A2b and A3a, A3b. The cyan star represents method 1. Automatic 

method applied on the point cloud; the magenta triangle illustrates method 2. 

Automatic method applied on the raster file, and the green plus is method 3. 

Manual method applied to the raster file.  
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Figure 32. LiDAR dataset CWD volume [m3] methods comparison for the subareas 

A2a, A2b and A3a, A3b. The cyan star represents method 1. Automatic method 

applied on the point cloud; the magenta triangle illustrates method 2. Automatic 

method applied on the raster file, and the green plus is method 3. Manual method 

applied to the raster file.  

Focusing first on the photogrammetric dataset CWD volume methods 

comparison in Figure 31, it is noticeable that the volume of CWD in 

the subareas calculated with the three methods 1, 2, and 3 is slightly 

different but still comparable.  

The numbers obtained applying 1 and 2 are similar but still not 

coincident from one to the other. Indeed, both use an automatic 

volume calculation tool; however, belonging to different software, 

CloudCompare, and QGIS software. 

Method 3, the manual method applied on the raster file, is rejected 

for multiple reasons. Starting from the evidence that its result 

diverges from the other two. In particular, it tends to underestimate 

the volume with respect to the other two methodologies. This is 
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related to the fact that through the rasterisation procedure, 

information is inevitably lost. Following by the fact that method 3 

requires additional software compared to method 1, which uses only 

CloudCompare and a longer computational time than 1 and 2, which 

are instead automatic approaches.  

For what concerns the LiDAR dataset the CWD volume methods 

comparison is shown in Figure 32. It is important to point out once 

again that the sparse nature of this point cloud leads to a quantitative 

LWD volumetric estimation that must be taken cautiously. In the 

computation of method 1, it appears the warning “At least one of the 

point clouds is sparse! You should fill the empty cells,” however, even 

interpolating, the result remains approximate. Indeed, the behaviour 

among the methodologies does not coincide with the one of the 

photogrammetric data. Method 2 tends to overestimate with respect 

to the others. 

It is possible to conclude that both the point cloud density used in the 

computation and the algorithm applied impact the result obtained. 
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6.2. CWD volume calculation method choice 

and CWD density calculation 

Summing up the considerations of the previous chapter 6.1.; method 

1, the automatic method applied on the point cloud is chosen because: 

- it is easily applicable; 

- it is automatic, consequently computational time is shorter 

than a manual method; 

- it uses CloudCompare as the only software, whereas the other 

two require also QGIS software; 

- it works directly on the point cloud without losing information 

during the rasterization procedure. 

The density calculation depends on weight data retrieved during the 

in situ survey and on volume calculation performed through 

geomatics tools.  

The weighting procedure, explained in detail in the methodologies 

chapter 4.1.3., is strictly related to the visual, subjective evaluation of 

the CWD to be taken into account. There were logs completely or 

partially submerged by the sand and deciding which to consider 

superficial was equivocal.  

Moreover, even trying to precisely remove the sand from wood pieces, 

it is unrealistic to think that the sand was eliminated, given the 

roughness of the wood itself and the humid terrain.  

For what concerns the volume calculation, it is performed from point 

clouds and even if minimal, also the reconstruction procedure 

accuracy of the could affect the final result. 

Figure 33 compares the results obtained by applying the chosen LWD 

volume calculation method 1 using the photogrammetric and the 

LiDAR data. In the graph, blue dots represent the CWD volume 

obtained from the photogrammetric data, whereas the red cross 

marks illustrate the LiDAR results. 
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Figure 33. The volume of CWD in [m3] calculated in A2a, A2b, and A3a, A3b 

according to method 1. Automatic method applied on the point cloud 2. Automatic 

method applied on the raster file; 3. Manual method applied to the raster file. 

Results are shown for the photogrammetric and the LiDAR data. 

In general, it is noticeable that the distribution of the point cloud 

affects the wood volume estimation. In a sparse point cloud such as 

the LiDAR punctual information is lost, and CWD pieces could not be 

recognised, especially in subareas characterized by a deposit of 

smaller wooden material; especially because method 1 does not apply 

further operations on the input data.  

The weight measured, the volume calculated and consequently the 

density values retrieved, shown in Table 5 are quite different from 

one subarea to another. The LWD accumulation in the subareas are 

visually dissimilar, as Figure 22 and Figure 23 show. In particular, in 

A2a and A2b the woody material is of smaller dimension and quite 

concentrated. Instead in A3a, there are bigger logs interspersed with 
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sand. A3b is similar to A3a but has fewer and smaller voids among 

logs.  

Intuitively, whether the weight is high and the volume still low, the 

density results in a high value. As a consequence, going back to Table 

5 to look at the numbers, the value of the apparent density in A3a is 

the greatest. On the contrary, especially in A2a, the apparent density 

results are low because both weight and volume are low. 

As expected, it is possible to conclude that wood density depends on 

the deposit characteristics. 

No information is available on the tree species of the coarse woody 

debris accumulation in the study areas targeted. It is assumed this 

parameter would not significantly affect the density result as well as 

knowing from where the wood is coming.  

The results obtained in this study are compared to previous studies 

from the literature. Even though scientific articles on woody 

accumulation on the coast are rare, it is still possible to consult those 

based on biomass in other natural environments such as forests. 

Intuitively it is expected to find a lower density value for CWD at the 

seashore, given that the degradation process of the wood will be in 

different, more severe, conditions.  

It is peculiar how the density value is strongly related to the degree 

of degradation expressed in terms of decay class, whose evaluation is 

not straightforward nor univocal. In all studies, the density is around 

280 kg/m3 considering a mean among decay classes two, three and 

four (Larjavaara and Muller-Landau 2010, Charles et al. 2016, 

Shorohova et al. 2022, Köster et al 2015). 

A critical aspect to highlight is that it is not possible to know the exact 

CWD volume and consequently the site-specific wood density with the 

procedure applied in this study. The potential of indirectly retrieving 

these results is evident, however, such estimations are not validated 

through other procedures rather than the in situ visual inspection of 

the targeted area. It could be possible to expand the study evaluating 

the LWD density on-site through a specific procedure, among visual 
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decay classification, knife test, spring penetrometer, or dynamic 

penetrometer. This last method is considered to be the one that works 

best (Larjavaara and Muller-Landau 2010). Another possibility is to 

evaluate the density of wood samples in the laboratory. 

Furthermore, it could be interesting to monitor the decay of 

standardized logs in the laboratory to build a quantitative description 

of CWD mass loss in time. 

6.3. Total CWD Weight in A2 and A3 

In this step, an important aspect to point out is that to create the DTM 

of the two large areas, a manual classification of what is wood is 

performed from what is not in the photogrammetric image.  

A possibility to get a more precise DTM is to increase the accuracy of 

the classification of woody debris from other materials such as sand, 

vegetation, or plastic. This could be done by trying to use other 

automatic classification tools. 

Indeed, a major challenge in the application of remote sensing 

techniques is the lack of a fundamental understanding of materials’ 

behaviour along the spectrum to incident electromagnetic radiation, 

the so-called spectral signature. As a consequence, future 

development of this study could include the training of the sensor in 

the laboratory in extracting wood from sand or other vegetation that 

have all quite similar spectral signatures. 

Nevertheless, these first results show that other information can be 

included in the classification procedure. For example, considering the 

intensity of the LiDAR point cloud could help in classifying CWD. 

Moreover, improving the accuracy of the point clouds by performing 

high-resolution flights, with low flight height and low flight speed, 

could help in better describing the geometry of the LWD.  

Furthermore, the choice of taking two partial mean densities is 

related to the fact that from visual analysis of the areas, from the two 

photogrammetric point clouds, it is observable that in A2 the CWD 

deposition seems to be more dispersed and mixes with other 

materials, for example plastic debris, whereas in A3 is more 
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continuous and localized. Indeed the resulting weight is higher in A3 

than in A2. 

A possible upgrade to improve the result's precision could be 

classifying CWD in classes according to the CWD size and associating 

a specific density value to each class. It is noticed that the dimension 

of the logs present influences wood density values among the four 

subareas. Areas with CWD of greater dimensions are linked to a 

higher LWD density. 

6.4. Conversion from weight to carbon stock 

In the step from wood weight to Carbon content is taken 50%, which 

is the default conversion factor representing the average carbon 

content in biomass according to the IPCC. In general, this percentage 

of carbon in biomass ranges between 35÷65% of the dry weight.  

Although studies (Martin et al. 2018, 2021) suggest that this number 

overestimates carbon, the 2019 Refinement to the 2006 IPCC 

Guidelines for National Greenhouse Gas Inventories included no 

updates to this default dead wood carbon fraction. 

This conversion factor is not a constant. It should vary significantly 

among decay classes, wood type characteristics, and location of the 

case study.  

Returning to Table 7 and comparing the carbon obtained in both areas 

from the photogrammetric data to the one retrieved from the LiDAR 

data values are almost doubled. Overall, the results obtained from 

both datasets agree on the A3 LWD deposit being a greater carbon 

pool.  
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6.5. Statistical analysis of the 

photogrammetric and LiDAR datasets 

In this specific case, the photogrammetric point cloud density is 

higher than the LiDAR one. Such a thing was discussed previously 

and shown in Figure 21.  

This leads to the question of which aspect influences such parameters. 

For sure flight characteristics have a crucial role, among which the 

flight height. Increasing the flight height, the density of the resulting 

point cloud decreases.  

Just looking at the plots in Figure 29, it is noticeable how 

photogrammetric and LiDAR point cloud densities distributions are 

different in shape and value ranges. Despite the LiDAR point cloud 

density of A3 that looks like a gamma distribution, the behaviour of 

the fitting curves is not directly related to one of the common 

probabilistic models. 

Moreover, comparing the scalar field point cloud density and the RGB 

image, there is no correlation between the point cloud density and the 

physical density of the LWD. This comparison is performed only with 

the photogrammetric dataset because the LiDAR image has a point 

cloud density so low that it is not possible to well recognise objects 

visually.  

As an example, Figure 34 illustrates a portion of the A2 

photogrammetric dataset. In the RGB image, on the right, is 

highlighted in white a big log which is not detectable for the scalar 

field showing the Volume Density of the same part of the area, 

reported on the left. Further studies would be necessary to conclude 

whether or not a correlation between the density of the 

photogrammetric or the LiDAR point cloud and the density of the 

wooden deposit is present.  

Up to now, it does not seem so.  
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Figure 34. Volume Density and RGB comparison. 

Worth noticing from Figure 34 is that the borders of the CWD 

accumulation are all characterized by the blue colour, meaning that 

the Volume Density is low in that region. This is probably a 

consequence of the segmentation procedure. This leads to the choice 

of discarding very low point cloud density values in the histogram 

and, consequently, in the evaluation of the approximate mean point 

cloud density. 

As expected, a greater point cloud density may correspond to higher 

elevation points in space. Alternatively, it might be the lateral part of 

a log, which is not visible from the sensor since no oblique images 

were collected. 

In Table 8, the approximate mean calculated confirms that the 

photogrammetric dataset is more accurate and its point cloud density 

is more than three times the one of the LiDAR dataset. Table 10 

includes the normalized surface density for the photogrammetric and 

the LiDAR data. The two areas, A2 and A3, have comparable values. 

It means that considering a data collection technique, 

photogrammetry or LiDAR, the spatial arrangement of points in the 

two point clouds is similar. Potentially, these values could be relevant 

for comparison with further studies.  
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In addition, for the LiDAR dataset also the intensity distribution is 

plotted.  

It is relevant to observe that a correlation between intensity value 

and log characteristics is possible.  

In CloudCompare, visually looking at the scalar field intensity image 

and at the RGB one, for both A2 and A3 point clouds, to higher 

intensity values logs of bigger dimensions are related. On the 

contrary, low-intensity values correspond to voids among CWD 

cumuli, so basically sand or vegetation. An intermediate-range 

represents areas that have a more or less dense accumulation of small 

woody debris.  

Regulating saturation from the image properties window in Cloud 

Compare, the portion of LiDAR point cloud in Figure 35 well 

represents what has been just explained. For example, on the bottom 

left, there is a circular shaped sandy part, among logs, clearly 

coloured blue. While the log on the top left is coloured in red.  

 

Figure 35. LiDAR intensity and RGB comparison. 
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In particular, Table 11 summarizes the intensity ranges coloured 

differently, which are analogous for A2 and A3. 

 

Table 11. LiDAR point cloud intensity correlation to CWD deposit characteristics. 

Moreover, the RGB is shown in the left image of Figure 36. In the 

image, there is a visible blue plastic piece which is not particularly 

recognised as a different material in the left image that describes 

again the scalar field intensity of the LiDAR camera. This aspect is 

noted all over the image whether there is debris of different nature 

rather than wood. Such observation may lead to the conclusion that 

the properties of the two objects as a response to incident 

electromagnetic radiation are not so different one from the other.  

All considered this correlation between LiDAR intensity and CWD 

deposit characteristics could be used in the future to build a more 

accurate and realistic volumetric model, better recognising sandy 

portions among logs in the accumulation.  

 

Figure 36. LiDAR intensity and RGB comparison, detail on plastic debris. 
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7. Conclusions 

This study analyses the role of coarse woody debris both as the base 

structure for dynamic coastal dunes systems and as relevant carbon 

stock. Understanding the global carbon cycle is impossible without 

estimates of carbon stocks in coastal marine ecosystems. In fact, not only 

CWD itself is an important carbon pool but, it also significantly 

influences the carbon stock in soil undergoing decomposition and 

humidification processes. To assess the dead wood contribution to the 

total coastal carbon pool, it is necessary to convert dead wood volumes 

into biomass by using density values.  

This case study analyses the CWD carbon stock in A2 and A3 areas along 

the backshore in San Rossore Regional Park, in Italy, Tuscany (PI). 

During a field survey in the larger areas A2 and A3, four subsampled 

areas are delimited, A2a, A2b and A3a, A3b. A first aerial 

photogrammetric and LiDAR campaign is performed. Then, CWD is 

weighted and removed from the subsampled areas, and a second aerial 

photogrammetric and LiDAR campaign is conducted. CWD volumes are 

calculated using geomatics tools thanks to the 3D reconstructions of the 

areas modelled before and after the wood removal. Three different 

indirect methods (Table 3) are applied to work on the photogrammetric 

and the LiDAR point clouds in Cloud Compare and QGIS. The automatic 

volume calculation method applied on the point cloud is chosen among 

these. With weight and volume for each subarea, is calculated the 

density. To retrieve a density result for A2 and A3 two partial mean 

densities (Table 5) are estimated. The CWD resulting volume in A2 and 

A3 (Table 6) is retrieved by applying the same volume calculation method 

used for the subsampled areas. This time the creation of the DTM is 

needed, which is performed through visual segmentation of the CWD 

region, cutting out whatever is sand or vegetation.  

With density and volume, the total LWD weight in the large areas A2 and 

A3 is calculated, and subsequently, it is converted into carbon content by 

applying the 50% average conversion factor from biomass to carbon 

(Table 7). 
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The conclusion is that it is possible to develop and use geomatics tools for 

volumetric estimations in natural environments. 

Moreover, the quality and accuracy of the photogrammetric and the 

LiDAR dataset are analysed. The volumetric estimates using the 

photogrammetric point cloud are confirmed to be more reliable by 

comparing the mean point cloud densities. Indeed, the photogrammetric 

point cloud density results are significantly higher than the LiDAR 

dataset, which is sparser (Table 8, Table 9). This statistical information 

of the datasets is correlated with the physical density of the CWD deposit. 

It seems that there is no correlation between point cloud density and the 

physical apparent density of the wood accumulation.  

Instead, a good correlation between the LiDAR datum's intensity and the 

CWD's characteristics is visible. In particular, logs of bigger dimensions 

are related to higher intensity values. On the contrary, low-intensity 

values correspond to voids among CWD cumuli, sand, or vegetation. An 

intermediate range represents areas that have a more or less dense 

accumulation of small woody debris (Table 11).  

As a whole, the study shows promising results. It is a starting point of a 

continuative much larger research.  
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8. Future developments 

After the analysis of existing literature and the research conducted in 

this work, potential future developments that arise are to:  

- improve the accuracy of the point cloud performing high-

resolution flights (low flight height and low flight speed) to better 

describe the geometry of the LWD; 

- build a more accurate and realistic volumetric model. Better 

extract wood from sand and vegetation, using the observed 

correlation between LiDAR intensity and CWD deposit 

characteristics;  

- improve the precision of the result by classifying CWD in classes 

according to the size and associating a specific density value to 

each class; 

- gather information on the spectral signatures of wood, sand, and 

vegetation by training the sensor in the laboratory; 

- use other automatic classification tools than CSF to extract wood; 

- validate the density estimation through other procedures than in 

situ visual inspection of the targeted area (decay classification, 

knife test, spring penetrometer, or dynamic penetrometer);  

- monitor the decay of standardized logs in the laboratory to build 

a quantitative description of CWD mass loss in time due to 

weathering in the marine environment; 

- take core samples of sand to investigate the carbon stock buried; 

- investigate the frequency and magnitude of the wave‐induced 

erosional (LWD exposing) and aeolian depositional (LWD burying) 

events to situate the volumetric sand changes within the overall 

wave and wind process regimes;  

- determine the main factors that drive the beach-dunes system 

variability in the study area and examine the sand volumetric 

changes at the site to determine if there is a correlation with CWD 

deposit 

- apply spatial statistics to ground the coastline temporal and 

spatial analysis statistically. 
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8.1. Coastline temporal evolution  

After the discussion on the beach-dune system dynamics and the 

possible progression or regression of the coastline as a consequence of 

the complex oceanic and atmospheric forcings interaction, discussed 

in chapter 2.5; it arises the idea to develop, in the future, a model 

capable of evaluating the quantitative volumetric modification of the 

woody debris deposit related to the coastline evolution.  

For this purpose, it is essential to highlight that this analysis requires 

the strong assumption that these parameters remain invariant in 

time: 

- sea storm dynamics; 

- mean sea level; 

- sediments transport dynamics; 

- CWD deposition rate. 

The following conceptual model in Figure 37 is developed to picture 

the reasoning better.  

It shows that CWD acts as a basal structure for the further accretion 

of the dunes complex, ΔVCWD, in association with the potential 

progress of the coastline Δx. 

 

Figure 37. Conceptual model of the beach-dunes dynamics consequent to coastline 

evolution. 
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Δx is determined as the horizontal distance connecting two specific 

points. The “old” and the “new” interception, between the beach 

profile and the line from which the CWD deposition starts, correspond 

to a height SLCWD. The influence of seawater, waves, and tide is 

negligible from this height.  

A height, SLCWD, above the mean sea water level from which the wood 

accumulation theoretically begins, is required. Such datum is 

retrieved from published data of the “Rete Mareografica Nazionale.  

Specifically, Figure 38 illustrates the 2 cm resolution orthophotos of 

A2 and A3 in which, from left to right, the following profiles are 

reported for both areas:  

- mean sea water level [m.slm] correspondent to the white dots 

and a value SLmean = 0,48258 m.slm. 

- 95 percentile sea water level [m.slm] illustrated in green. Such 

quantity, SL95 = 1,1505 m.slm, represents the value of the sea 

water level exceeded 95% of the times in a considered time 

interval of observations; 

- maximum sea water level [m.slm] shown by the blue dots, 

equal to SLmax = 2,1531 m.slm; 

- dune crest depicted by the red triangles. 
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Figure 38. 2 cm resolution orthophotos of A2 and A3 reporting data from the “Rete 

Mareografica Nazionale”. White dots are the mean sea water level, SLmean; green 

dots are the 95 percentile sea water level, SL95, blue dots are the maximum sea 

water level, SLmax, and red triangles represent the dune crest. 

In particular, SL95 and SLmax are considered representative of the 

wave runup and highly relevant for the definition of SLCWD.  

With these data, the temporal evolution of the coastline could be 

studied by looking at satellite images from Google Earth Engine 

(GEE). This tool allows time series analysis on remotely sensed data, 

giving access to decades of imagery without the limitation of needing 

to download, organise, store, and process this information. 

The volume corresponding to the horizontal progress of the coastline 

is approximately equal to the volume of the total CWD biomass 

accumulation: ΔZCWD × Δx × L, with L length of the coastline 

considered, and height variation among years. 
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