
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

User Interface Development of a Modern

Web Application

Supervisors

Prof. Luca ARDITO

Candidate

Marzieh SOMI

December 2021

i

Summary

This thesis aims to explore the advantages of using a frontend library ‘React.js’ that
used to create a user-friendly and modern web application. React is an open-source
JS library designed based on components that are usually small and reusable
building blocks. The primary development approach employed for this project
was the Agile methodology, chosen for its adaptability to the project’s evolving
requirements. This approach helps teams deliver value to their customers more
quickly and efficiently by focusing on collaboration, adaptability, and continuous
improvement.

The thesis examines how react.js can reduce the effort needed to develop and
maintain applications. The development focused on react integration with External
Libraries. During the development we experienced utilization of Tailwind CSS
framework and libraries such as Formik, Redux, Axios and React-chartjs2.
External libraries often provide pre-built components, utilities, and tools that can
enhance the functionality of react application and save a significant amount of
development time and costs avoid writing repetitive code. Furthermore, libraries
tend to receive timely security updates and patches, enhancing application security.
Tailwind allows for rapid development of modern websites by enabling us to write
CSS directly in markup. It is very customizable, and empower developers to create
unique, efficient, and consistent UI while adapting to specific project. Installing
tailwind, it generates two files: ‘postcss.config.js’ which is a single export JavaScript
object that will instruct to run tailwind first. Utilizing ’PostCSS’ significantly
enhances the build speed of our projects, leading to improved performance. Another
file is ‘tailwind.config.js’. This configuration file allow customize and configure
various aspects of the tailwind. Tailwind’ directives (@tailwind base; @tailwind
components; @tailwind utilities) should be added at main css file index.css for each
of Tailwind’s layers. This is like importing tailwind styles to be recognized as real
css syntax and then import this css file to ’index.js’.
Formik is a third-party library used to implementing and manage forms in applica-
tion together with yup. This library helps with taking user input, form submission
and validation. We implemented components, creating a skeleton for each type of
input: TextArea, SelectField, TextFiel, this makes them easily reusable at different

ii

sections of our application such as developing report pages and landing page.
These components make use of ‘useField’ hook, provided by formik. we get ad-
vantages of ’Yup’ which is a schema-builder that allows us to define validation
rules and schemas for data validation. For using yup we should first define object
schema and its validation and then define all criteria for this object.

Redux is used to manage the application’s state in a single place and is suit-
able when dealing with large amounts of application state. It consists of three key
components:

• Actions, which are events to communicate with the redux store and trigger
state updates.

• Store, there is a central store that holds the application state and wach
component can access the it without having to send down props from one
component to another.

• Reducers, they are pure function that interpret the action. They accept the
initial state and the action type. They take an action and the previous state
of the application and returns the new state, sent back the updated state to
the view components of the react.

The store is created using ’createStore’ function. ’applyMiddleware’ function is
employed to incorporate the ’thunk middleware’ for handling asynchronous ac-
tions within Redux. Additionally, integration with the Redux DevTools extension
is achieved through the ’compose’ function, allowing for debugging within the
browser’s Redux DevTools extension, added as an extension in the browser. To
access data stored in Redux, the ’useSelector’ hook from Redux is utilized, which
simplifies the process of accessing and using data from the Redux store in functional
components, making it a crucial tool when working with Redux in react applications.

The client-side application for receive and update data from the database use
API. Communication between the client and the api is done through Http request
which can be achieved using ’Fetch’ or ’Axios’. We use Axios for its ease to use and
extensive browser support due to its use of the Bluebird Promise library, providing
better compatibility. It is a JS library that handle asynchronous operations and
manage the resulting values or errors. It can intercept and transform request and
response data, as well as cancel requests or automatic transforms for Json data,
so unlike FetchAPI we don’t need converting our request body to a Json. It is
implemented by creating two components:

• ‘axios.js’ which contains an axios instance configured for making HTTP
requests to an API. Firstly, it checks if the application is running on the
localhost, saved result in a constant. Then retrieves the ’token’ from local

iii

storage if it exists and parses it as Json. Then create an instance of Axios with
’axios.create()’ function. This instance can be used to make Http requests to
the specified ’baseURL’ which is including the Authorization header with the
token value. The code examines if token is exists, the authorization header
will be set as Bearer token, otherwise it set an empty string.

• ‘requests.js’ where an object defied that holds various api endpoint URLs.

The development process was involved implementing several components, each
assigned to different team members using a collaborative approach. I participated
in the development of ’Theme Selector’, ’Report pages’, ’Landing page’ and ’Im-
postazioni’.
Theme Selector, allowing users to choose their desired color palette from a range of
pre-created themes. This feature prioritizes user preferences, enhancing the design
of a modern web application. To implementation of this part, two files is created;
‘theme.js’ where we defined all color palettes constants and the ‘utils.js’ which is
contains an exportable function ‘applyTheme’.
The constants defined at them.js imported into the ’ThemeSelector’ component,
where dropdown list is render. To developing this component, we get advantages
of headlessUI library which is designed specially to work with Tailwind CSS and
provided pre-build components. This component imported necessary dependencies
from react, along with color palettes defined in theme.js component and the ‘ap-
plyTheme’ function from’utils.js’. By importing these constants into ’App.js’ we
make the theme selector drop-down available on other pages of application as well.
At App component, the useEffect hook is used to set the theme of the application
based on a value stored in the browser’s local storage. This hook runs once, when
the component is mounted and sets the initial theme based on the stored preference
in local storage.
Reports play a crucial role in modern web applications. They provide data trans-
parency, which is particularly important for businesses and organizations that
require regulatory compliance. We used ‘react-chartjs-2’ because of its easy-to-use.
’chart.js’ also installed which is like a core library used for any kind of application.
Data assigned to reports are fake because of lack of real data. For the initial phase
we implemented 3 report pages implemented different charts such as Bar, Pie, Line.
All Report pages contain three common components: a ’Date Picker’ for selecting
a date range for visualizing reports, and two drop down selector ’Gender’ and
’Sector’ for filtering data based on these two options. These components are written
individually and imported to main components of each report page. HeadlessUI is
integrated to development of reports. hide/show specific charts was implemented
managing by a button. This functionality is particularly useful for data privacy,
allowing users to hide specific charts when in the presence of some group of people.
To implementing this feature, charts are categorized into two principal components.
A component contains charts that can be hidden and another component which is

iv

include all other charts to be displayed on the page.
Using “useState” hook it manages charts visibility, initialized its value to ’false’
const [showAll, setShowAll]= React.useState(false) By clicking on a button which
is located at the top of the page the visibility of Report will be change.

Another required feature to developing web version was the implementation
of a Landing Page. This feature allows users of application to create static html
page within texts, images, and information for publishing purpose. This kind of
pages usually aims to attract new clients, improve user experience, and achieve
better results for business. Creating landing pages have an important impact on
the usability of the application. To develop a landing page, the first step is to
define the goals and know the target audience. For this application the goal was
giving the possibility to creating advertisements for specific services or products to
Nuage users. They can represent special promotion and events without needing
go thorough external landing page builder applications. It allows users to create
their own pages without requiring advanced computer skills. We’ve implemented
this functionality within two components, imported them into the main component
where the ’useState’ hook manage the visibility of components within an onClick
function assigned to a button.

• LandingPageList: This component displays a list of all the created landing
pages, where they are archived for a specified period. is developed using the
Formik. Users have the option to edit, delete, or copy the page’s link and
can access the main "Creator" page (AddLandingPage) through a Plus button
form this page.

• AddLandingPage: this component is where the development phase for creating
individual landing pages takes place. The page consist of three sections: a
Header with navigation buttons for going back to the previous page, a Form
completion area that forms the core of the page, and a Preview section that
updates in real-time as the user fills out into the forms. In the form section,
a limited number of blocks are provided for creating a landing page, with
the possibility to leave some of the blocks unused. The Form completion
and Preview are developed at separated components and imported to a main
component. To developing each of them various dependencies are imported,
some event handler functions, such as ’handleClick’ and states are defined to
manage various aspects of the landing page.

An object ‘staticMarkup’ is created that contains key-value pairs and include a code
generating a static HTML markup. The values are derived from the fields object
that receives as a Prop and other variables representing data that to be sending
in the Post request. An asynchronous function handles the form submission. It
constructs a request object, specifying the HTTP method as "POST," setting the

v

"Content-Type" header to "application/json," and include the staticMarkup object
as the request body. The code then makes an HTTP POST request using the
api.post method (provided by Axios). when it receives the response, it checks the
HTTP status code. If the status code is 201 or 200, it sets the link state variable
with the value of the "Link" property from the response data. If the status code is
different, it logs an error message.

Overall, the application’s development has been significantly aided by the
integration of libraries like Formik and the utilization of HeadlessUI components.
These tools have not only saved the team valuable time but also contributed to the
creation of a visually appealing user interface.

vi

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor professor
Luca Ardito for the trust and the opportunity I was given, and for his support
during the whole time.
I would also like to thank X-New for providing me with the opportunity to work
with their development team. I extend my appreciation to my colleagues, for their
guidance and support. I would also like to express my gratitude to Alessandro
Abbate, The company supervisor, for his trust throughout this journey.

A very special thank goes to my fiancé Walter for all the encouragement and
lovely support during the whole period of my study.
Last but not least, I would like to thank my family who believed in me and giving
their unconditional support during the whole period of my study.

vii

Table of Contents

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Motivation .. 1
1.2 Thesis objective .. 2
1.3 Thesis structure.. 2

2 Overview Of Web Concepts 4
2.1 Theoretical Concepts of Web Application .. 4

2.1.1 Single Page Application .. 4
2.1.2 Dynamic vs Static web page .. 6
2.1.3 RestAPI ... 7
2.1.4 Agile methodology.. 8
2.1.5 Webpack... 8
2.1.6 Node.js .. 8
2.1.7 DOM element .. 9

2.2 Libraries and frameworks ... 9
2.2.1 Compare between libraries and framework 9
2.2.2 React.js .. 10

3 Development Tools and Technologies 16
3.1 Technologies and Tools .. 16
3.2 Implementation of react app ... 16
3.3 Implementation of external libraries .. 17

3.3.1 Tailwind ... 17
3.3.2 HeadlessUI ... 20
3.3.3 Formik and yup ... 20
3.3.4 Redux ... 22
3.3.5 Axios ... 25

viii

3.3.6 Chart.js and React Chart js2 .. 27

4 Implementation Phase 28
4.1 Introduction of the Desktop version .. 28
4.2 Web version development ... 30

4.2.1 Files and Folders created by CRA and their structure 30
4.3 Required Pages and Their Implementation .. 34

4.3.1 Theme Selector .. 34
4.3.2 Reports ... 37
4.3.3 Landing page ... 45
4.3.4 Impostazioni .. 56

5 Conclusion and Future Works 60
5.1 Conclusion .. 60
5.2 Future Work ... 61

Bibliography 63

ix

List of Figures

2.1 Single page application VS Multiple page application............................... 5
2.2 Static web application’s approach ... 6
2.3 Dynamic web application’s approach... 6
2.4 Rest Architecture ... 7

2.5 Ranking of most libraries, satisfaction, interests and usage 10

3.1 Add reusable third-party plugin to tailwind ... 19
3.2 Customization at tailwind.config.js ... 20
3.3 Formik, developing TextArea component .. 21
3.4 Utilization of Yup library, creating schema ... 22
3.5 Redux data flow and main components .. 23
3.6 Store.js, redux global store file ... 24
3.7 Axios implementation and creating its instance 25
3.8 importing apis call in main App component .. 26
3.9 Rendering a react chart.js components ... 27

4.1 Scheme of desktop application, Cash Desk page 29
4.2 Scheme of Web application, Cash Desk page .. 30
4.3 Folder structure home main page... 33
4.4 Creating color pallet at theme.js component ... 35
4.5 development of Theme Selector component .. 36
4.6 applyTheme function imported into Theme selector component 37
4.7 User Interface of report ‘Riepilogo Giornalieri’ ... 38
4.8 itergration headlessUI to developing dropdown 39
4.9 developing a single chart ’IncomeData’ .. 41
4.10 Doughnut chart configuration ... 41
4.11 Bar chart multiple datasets ... 42
4.12 Developing ’Produttività Collaboratori’ main page 43
4.13 Produttività Collaboratori user interface .. 44
4.14 Developing ’percentage sul fatturato totale’ .. 44
4.15 Implementation of random color generation ... 45

x

4.16 Landing Page main component development ... 47
4.17 User interface of LandingpageList ... 48
4.18 Form completion at Creator page with synch preview 49
4.19 Developing Creator main page ... 50
4.20 Formik implementation and importing Modals at ’Creator’ 51
4.21 Conditional rendering logic for showing or hiding a block 52
4.22 Static Markup object defining to hold the data .. 52
4.23 Preview main component development ... 53
4.24 Preview implementation, one block development 54
4.25 Displaying a single block and hiding all other blocks 55
4.26 Generated html landing page ... 56
4.27 Setting page, tab Impostazioni Azienda ... 57
4.28 main page development of Impostazioni .. 58
4.29 Formik, get value from validation component .. 59

xi

Acronyms

SPA

Single Page Application

MPA

Multi Page Application

REST

REpresentational State Transfer

JSON

JavaScript Object Notation

SOAP

Simple Object Access Protocol

NPM

Node Package Manager

CLI

Command-Line Interface

DOM

Document Object Model

JSX

JavaScript XML

DRY

Don’t Repeat Yourself

1

Chapter 1

Introduction

1.1 Motivation

From e-commerce platforms to social media networks and productivity tools, web
applications are transforming the way we interact with technology. As the demand
for feature-rich and user-friendly web applications continues to grow, there is a
pressing need for skilled professionals who can develop modern and intuitive user
interfaces.
The user interface (UI) of a web application plays a crucial role in determining its
success. A well-designed and responsive UI not only enhances the user experience
but also fosters user engagement, satisfaction, and ultimately, business success.
However, designing and developing a modern and effective UI for web applications
is a complex task that requires a deep understanding of user behavior, interaction
design principles, and emerging technologies.
This thesis aims to explore the advantages of using a modern frontend library
‘React.js’ that can be used to create a user-friendly web application. React.js was
initially released in 2013, created by "Jordan Walke", Facebook’s developer and now
it has becomes one of the most popular JavaScript libraries. Many big companies
apply React.js such as Facebook, Instagram, Firefox, PayPal, Netflix, etc.
This thesis studies the integration of React.js with the Tailwind CSS framework
along with the utilization of libraries such as Formik, Redux, Axios and React-
chartjs2. I briefly explained the theoretical background and implementation of
them at the corresponding sections.
Modern frameworks and libraries such as React assist web engineers in building
sophisticated applications using high-quality solutions. Using react we can create
reusable UI components which help developer to save time, didn’t repeat to writing
code. It will efficiently update and render just the right components when the
data changes[1]. Although UI design and definition of technologies to use was

Introduction

2

changed after 3 months from the start of my collaboration with the company and
the definition version of application is started, but it was a very useful period of
my study to work with a company and being familiar with the process of web
development to implementation of an application.

1.2 Thesis objective

Current work took place at Xnew srl, which is a company located at Turin, Italy.
The subject of thesis was developing the interface part of a management software
web application. The goal was the implementation of a modern web applications
following the Agile methodology with usage of innovative standards available at the
time in the technological and IT fields and leveraging various libraries and work
with APIs, utilizing the RestAPI for seamless integration and functionality.
The main method of development applied at this project was Agile methodology
as it is suitable for the changing requirements of the project. It is an iterative
approach to project management and software development that helps teams deliver
value to their customers faster. At agile methodology work is delivered in small
and consumable. There are possibility to evaluate continuously the requirements
and results, and team can respond quickly to changes[2]. The technologies used
to development of this application are: html, css, JavaScript, React, Redux and
Tailwind css framework. This thesis elaborates on the development process of
creating an application, which was an extension of an existing desktop version. It
also provides explanations of various theoretical concepts.

1.3 Thesis structure

The rest of thesis consists of 5 chapters:
Chapter 2 , provides an overview of some theorical concepts of web application,
include: Single Page Application (SPA), differences between SPA and Traditional
webpages, Dynamic versus static code, Webpack, Fetching Data and RestAPI.
The second part briefly explains the libraries and framework used for modern web
app and some differences between them. furthermore it explains about the React
Library and some of its principal concepts. Chapter 3, is dedicated to explaining
about the development tools and technologies used. At the third section of this
chapter, there are explanation about external libraries implementation used at
this application. Chapter 4, delves into the implementation phase, commencing
with an introduction to the application. It encompasses an exploration of the user
interface, followed by a demonstration of the application structure, including its

Introduction

3

files and folders created during the development phase. The remainder of this
chapter is dedicated to explaining the development phase of the pages which is
done by collaborating with other members of the development team. These tasks
include the Theme Selector, Reports, Landing Page, and Setting Pages. Chapter
5, concludes the thesis work by summarizing the outcomes. It also provides a brief
overview of upcoming improvements and future developments that were studied
and planned for implementation in the next phase.

4

Chapter 2

Overview Of Web Concepts

2.1 Theoretical Concepts of Web Application

This chapter is dedicated to some theoretical concept, which is divided at two cate-
gories. The following section provides a brief explanation of some Web applications
concepts and technologies used at this application to gives a better comprehension
of the context of this working thesis.

2.1.1 Single Page Application

A single page application is the implementation of web app that loads just a single
page (web document) and then via a JavaScript APIs such as: XMLHttpRequest
and Fetch, updates the body content of that single document. This feature allows
users to use a website without loading whole new pages from the server [3].
Html, Css and JavaScrip are building blocks for SPA, which will provide a fluid
and responsive web page. The SPA web applications or websites interact with the
user, rewriting the current page dynamically. The most popular SPA frameworks
are: ’React’, ’Angular’, ’Vue JS’, ’Ember JS’, ’Backbone’.
At this project, we got benefits of React which is one of the most popular SPA
framework to developing our web application. Lots of popular applications use this
technology, such as: Google Maps, Airbnb, Netflix, Paypal and many more.

Single Page Application vs Multi Page Application

Lets see some differences between SPA and traditional web page to understand
why SPA goes so popular. Multi-page application (MPA), consists of multiple
interconnected pages, each one represents a separate HTML document. Each page
has its own URL that used by the client to request that page and each request
gives a new version of whole page. This means for navigating from one page to

Overview Of Web Concepts

5

another, the entire page loads, the server re-renders a full page and sends it to our
browser. As shown in Fig 2.1, all the required components of the web page are
loaded when initial request.

Figure 2.1: Single page application VS Multiple page application

In SPA, page components are updated without reloading entire page. After browser
makes the first request to the server, the app will load with all its relevant assets
which can takes some time, then for all subsequent calls an API is called to fetch
new data. The data usually return in JSON format, the browser receives this data
and updates the app view. In this way, the page never reloads, the application
stays in the same page and there will be a single URL [4].
Both of these two architectures have benefits and disadvantages. Following are
listed some advantages and disadvantages of SPA.

SPA Advantages:

• Quick load full page regarding, as it only load a page at the first request.

• consume less bandwidth since they load web pages and main resources
(html,css,js) just once.

• Caching works better, even with a poor internet connection with SPAs, because
it request data from server one time.

SPA Disadvantages:

• No good performance regarding to SEO; one of the metrics search engine use
is the number of pages of a website and SPAs load only a single page.

• It require a lot of web browser resources since the browser do most of tasks
for the SPAs. So often we need to use the latest browsers with support of
some modern features.

Overview Of Web Concepts

6

2.1.2 Dynamic vs Static web page

At the "Static" web page after a server receives a request for a web page, sends
the response to the client and do not any additional process and the pages will
remain the same until will changes manually by someone. They usually written in
programming languages such as ’JavaScript’, ’html’, ’css’, etc.

Figure 2.2: Static web application’s approach

The "Dynamic" web page use where need changing frequently information, like:
stock prices, weather information, etc. They are written in languages such as ’Ajax’,
’Asp’, ’Asp.Net’, etc. They update the display of a web page/app to show different
page, generating new content as required. So, there are different content of pages
for different visitors and it takes more time to load than the static web page. The
meaning of dynamic at server-side and client-side is slightly different but related
and both approaches usually work together.
’Client-side’ js dynamically generates new content inside the browser on the client,
example create a new html table, filling it with data requested from the server and
display the table in a web page. Whereas ’Server-side’ code dynamically generates
new content on the server, example pulling data from a database [5].
The Fig 2.3 demonstrates the differences of this approach with the static web
application.

Figure 2.3: Dynamic web application’s approach

Overview Of Web Concepts

7

2.1.3 RestAPI

Data is often stored in database on the server for permanent data storage.
For the client-side application to receive and update data from this database an
API is used. We can think of it as a mediator between the users or clients and the
resources or web services they want to get and uses the http request to communi-
cation with the client. It can be design in several ways, one of the most used are
’RESTful API’.
A RestAPI, is an api that follows the principles of REST architecture, allowing
interaction with Restfull web services.
Api developers implement REST in various ways. When a client requests a resource
through a Restfull api for a resource, the server responds by providing the current
state of the resources in a standardized representation. This representation can
be delivered in several formats like Json , Html, XLT, python, php or plain text.
JSON is the most popular format, because it is readable by humans as well as
machines. Additionally it provides Http methods such as: Get, Post, Put, and
Delete.

RestAPI is faster, more lightweight and easier to use, compared to a prescribed
protocol like ’Soap’ which has specific requirements such as XML messaging, built-
in security, and transaction compliance that make it slower and heavier. Rest api
offered increased scalability and is perfect for IoT and mobile app development [6].
Fig 2.4 illustrates how Rest architecture work[7]:

Figure 2.4: Rest Architecture

Overview Of Web Concepts

8

2.1.4 Agile methodology

Agile is an iterative approach to project management and software development
that helps developer to deliver value faster to their customer. In such a way instead
of delivering a big project, an agile team delivers work in small, but consumable,
increments. So, they can evaluate continuously requirements, plans and results and
the team have a natural mechanism for responding to change quickly[8].

2.1.5 Webpack

For modern JavaScript applications Webpack is a static module bundler. Its main
purpose is to bundle js files for usage in a browser. Using webpack developing web
application becomes faster and more efficient.
’Bundlers’ in React are tool that can take all the files we have written and com-
bine/bundle them into a single js file, while keeping track of their dependencies.
They internally builds a dependency graph from one or more entry points of your
appliction, combines into one or more bundles, modules your project needs, they
figure out modules and libraries this entry point depends on. The entry point by
default is: ./src/index.js, but there can be different or multiple entry points, setting
up an entry property in the webpack configuration.[9]

2.1.6 Node.js

It is a server-side JavaScript runtime environment. Java script can be used as
a client-side either a server-side language. It allows developers to run JS code
outside of a web browser, enabling them to build scalable and high-performance web
applications. JS is single-threaded, and is not very suitable for multi-threaded tasks.
Node.js uses an event-driven, non-blocking I/O model that makes it lightweight
and efficient, this means it can handle multiple requests simultaneously without
blocking the execution of other code.

NPM (Node Package Manager)

One of the key features of Node.js is its package manager. It is one of the
largest software registry and command-line tool. NPM is commonly used in the
React development for managing front-end dependencies regardless of the back-end
technology we choose.
The CLI tool enables developers to download third-party open-source packages and
apply them, which makes the development faster. It is used to interact with the
npm registry and manage packages in a Node.js project. It provides commands to
install and publish packages, update dependencies, manage versioning, and more.

Overview Of Web Concepts

9

Node Module

In the context of React, it refers to reusable block of code that is packaged
and distributed through NPM (or Yarn) or available as a built-in module in the
Node.js runtime environment. These modules are JS library that provide specific
functionalities. They can be created by developers themselves or obtained from
the NPM registry, which hosts a vast collection of open-source modules.

2.1.7 DOM element

The Document Object Model is a programming interface for web documents which
represents the structure and content of a web page. A web page is a document that
can be either displayed in the browser window or as the Html source. In both cases,
it is the same document, but the dom representation allows it to be manipulated.
As an object-oriented representation of the web page, it can be modified with a
scripting language such as JavaScript. DOM was developed to deal with this issue
of communicating between the JS and html as they can’t communicate directly.

2.2 Libraries and frameworks

Frameworks and libraries provide solutions that speed up development process.
There are different types of libraries and framework for all kinds of applications
which help programmers to implement applications in front-end, back-end and
more. At this section provide some differences between libraries and framework.

2.2.1 Compare between libraries and framework

Library and framework both give us an excellent approach to write DRY code.
Although they sound similar, but they are different.

Framework is often more complex than a library. The architecture of appli-
cation is predefined, and the developers only must be concerned with implementing
domain-specific functionality. A disadvantages of using a framework is strict rules
and patterns that must be adhered to. This requirement often leads to a steep
learning curve. Additionally, the enforced rules and patterns can have a negative
impact on the size of the application, increasing its complexity and making it more
challenging to maintain and modify in the long run.
Libraries empower developers by providing them with the flexibility to incorporate
specific functionalities as required, enabling them to have complete control over
the architecture of their applications. Consequently, applications can be tailored
to include precisely the necessary functionality.

Overview Of Web Concepts

10

A disadvantage of using libraries is that if the application is not designed properly,
it can result in less maintainable software.
There are a lot of libraries and frameworks available to assist the developers to
implementing complex web applications. The Fig 2.5 demonstrates a comparison
between the most framework and libraries used from 2016 since 2021 which as a
result the most usage are: ’React’ then ’Angular’ and ’Vue’ [10].

Figure 2.5: Ranking of most libraries, satisfaction, interests and usage

This result is confirmed also by a comparison made on npm trends which demon-
strates React had most download during the 2021 [11].

2.2.2 React.js

React is an open source JS library to building user interfaces and is usually use for
large-scale application. It is designed based on components which are self-contained
module that renders some output. These components are reusable and extendable.
The components are usually small building blocks because they can be combined
and to easily create complex and more feature-rich components. Every component
can have an internal state and manage its own state. React updates and render
just the right components when the data changes. Components take input data
and return what to display [12].
We can say we write react components that correspond to various interface elements,
then organize these components inside higher-level components which define the

Overview Of Web Concepts

11

structure of our application [13].
Let’s review some Principal Concepts of React, which is necessary to know
when speak about react application.

JSX

JSX defined by React document. It is a xml-like syntax extension to ECMAScript
without any defined semantics which helps developers to write React.js components.
It combines syntax between Html and JavaScript, allowing developers to write the
html code and embed JavaScript expression inside. It gives us the ability to write
html elements in JS and place them into DOM by converting Html tags into React
elements without the need of methods like createElement() [14].

React DOM

As we know the DOM was developed to solve the issue of directly communicate
between the JavaScript and HTML. The react-dom package provides dom-specific
methods that can be used at the top level of app to enable an efficient way of
managing DOM elements of the web page [15].
React uses ’Virtual DOM’ which is an in-memory and lightweight representation of
the dom. It means in React, for every dom object, there is a corresponding virtual
dom object, which has the same properties as a real dom object.

Changing the virtual dom is ’faster’ and more ’efficient’ than doing the same
operations on the real DOM. It renders components or jsx elements to the dom.
To use the react dom in any React web application we have to import ReactDOM
from the react-dom package. When we try to update the dom in React, the entire
virtual dom gets updated, at the end on the real dom only the changed objects get
update and changes on the real dom cause the change screen. [16]

React Router

React Router is a popular routing library for building single-page applications with
React. It allows to handle routing and navigation within the React application.
It keeps the UI in sync with the URL, enable navigation among views of various
components and allows changing the browsers url. React Router provides a set of
components and APIs that make it easy to define and manage routes in application.
To use React Router at our application, it need to install as a dependency using
’npm’ or ’Yarn’ and import the necessary components from the ‘react-router-dom’,
then define our routes and use the provided components to handle navigation and
rendering of different views based on the current url.
Components of React Router are divided to tree primary categories which are:

Overview Of Web Concepts

12

1. Router: at the core of every app must be a router.
Two kinds of Routers usually used for web projects are the ’BrowserRouter’
which uses History API to handle URL. It uses regular URL paths, and
required the server to be configured correctly and the ’HashRouter’ which
stores the current location in the Hash portion of URL. It changing URLs
and navigating between pages won’t make any request of server configuration
and has a simpler setup. We use hash and the url looks something like this:
https://www.nuageweb.it/#/cassa
It must render at the root of element hierarchy, usually top-level App element
in a router.

2. Route Matchers: they refers to the mechanism used to match the current
URL path to the defined routes in our application.
The two components of Rout Matching are the ’Route’ which It is responsible
to render some UI when its path matches the current url and the ’Switch’
which is used to wrap a collection of Route components. It iterates through
its child Route and displays the first one that matches the url is rendered.
After the version 6 of react router, the route is replaced effectively the switch
component.

3. Navigation (Route Changers): react router provides various mechanisms
for navigation and route changing.
The most common ways are Link, NavLink, useNavigate. The ’Link’ compo-
nent is used to create link that navigate to different rout. An anchor <a> will
be rendered in Html doc, wherever render a ’Link’.
The ’NavLink is a special type of Link that can style itself as ’active’ when
it’s to prop matches the current location.
The ’useNavigate’ hook is an add to react router v6. It provides a function to
navigate to different routes programmatically.[17]

Props vs State

Two important concepts at react are ’Props’ and ’State’. Both hold information
relating to the components, but they are used differently.

Props
Short for Properties, are objects that stores the values of attributes in react. They
are used to pass data between react components . The process involves defining or
retrieving data from the parent, attributes and their values are defined or obtained,
then assign it to child component’s “props” attribute (similar o arguments of
function in JS) and finally with dot notation we access and render the props data
props. Props facilitate a unidirectional data flow, means the data can be passed

http://www.nuageweb.it/%23/cassa

Overview Of Web Concepts

13

just from parent to child component and they are read-only.

State
React provides another feature for data manipulating known as “State”. This
concept addresses the limitation of read-only props. State holds initial data, which
can be modified using a special method called setState(). State changes based on
user actions or certain events, so components that use state rendered based on
the data in the state. When the state changes, react immediately re-renders the
DOM using setState. It doesn’t re-render the entire dom, but only the components
whose state has been updated. State is initialized inside its component, and state
updates should indeed be made using setState().

About states the important notes should be consider are: They modify by using
setState(), not directly and they affects the performance of app, so shouldn’t be
used unnecessarily.

The important differences between props and state are:

1. using ’Props’, components receive data from outside, whereas with ’State’ they
can create and manage their own data.

2. data from ’Props’ is read-only and cannot be modified by received component
(it is immutable), whereas ’State’ can modify its own component, but cannot
be accessed from outside (it is private).

3. in ’Props’, data is passed from one component to another, while the ’State’ is
a local data storage and cannot be passed to other components. [18]

React Classes and Functions Component

components are core building blocks of React applications. They are like JavaScript
functions but work in isolation which returns HTML. They are independent and
reusable block of code. They can be created in two ways in React:

Class Component are regular ES6 class that extends the component class of the
React library. They are stateful and have access to all different phases of a React
life cycle method. Before development of React hooks, the class components was
the only option to create a dynamic and reusable component, as they give us access
to life-cycle methods and all React functionalities. In React, before rendering, the
components go through a life cycle of events as follows

1. Mounting, means adding nodes to the dom

2. Updating, altering existing nodes in the dom

3. Unmounting, removing nodes from the dom

Overview Of Web Concepts

14

For example, if a component need to be updated, with a change in state or
props, after the ’mounting’, they go through ’updating’ phase, and at the end to
final phase which is ’unmounting’. Is possible they don’t go through every phase[19].

Functional Component are basically JS/Es6 functions. They receive props
as a parameter and return the JSX to render. Such as classes, they can use into
another components.
React Hooks revolutionized the usage of functional components by enabling them
to handles state and ustilization of lifecycle methods, making them even more
powerful and widely used in modern React development.

React Hooks

Hooks are functions that allow us to use ’state’ and other React features in func-
tional components, without need to writing a class. They are added to React at
the version 16.8 as a way to write reusable and more readable code, especially for
managing state and side effects in functional components.
In other word, they are functions that let us “hook into” React state and lifecycle
features from function components. Hooks don’t work inside classes and they can
be call only from react functions. The other important note about hooks is, we
must call hooks at top level of react functions[20].
There are many number of Hooks used in react such as: useState, useEffect, useC-
ontext, useCallback, useRef, etc. I provide a brief explanation about two most
important of them ’useState’, ’useEffect’ which are most used at this project. Some
details is presented about usage of hooks whenever we represent the usages of them
inside code.

State Hook, allows functional components to have their own internal state.
It uses useState() which allows setting and retrieving state. We pass the initial
state to this function, and it returns a variable with the current state value and
another function to update this value. [21] useState is a new way to use the exact
same capabilities that ‘this.state’ provides in a class. It should be first imported
from react and call directly inside our component.
As an example at the following line useState hook is used to declare a variable
named ’isNewPage’ and its corresponding setter function ’setNewPage’ which up-
dates the value of state variable: ’const [isNewPage, setNewPage] = useState(false)’

Effect Hook, It is the lifecycle hook which carries out an effect each time there
is a state change. It allows you to run code in response to certain events, such as
component ’mounting’, ’updating’, or ’unmounting’. It does same work as life-cycle

Overview Of Web Concepts

15

method used in React classes, but unified into a single api.
The motivation behind the introduction of useEffect is to eliminate the side-effects
of using class-based components. By default, it runs after the first render and every
time the state is updated.[22]
’useEffect’ is a function that would be called whenever the page re-renders. To
create useEffect hook, we must import it from react, then go through the function
and write useEffect, and then pass a function. This piece of code (useEffect) will
be called after the page has been rendered:

useEffect(()=> { ..here we can write what we want happen when the page render..})

Numerous hooks are frequently employed in react projects, offering versatility
in managing various facets of component behavior. Among the pivotal React hooks
are useContext, useReducer, useCallback, useRef, and several more.

16

Chapter 3

Development Tools and
Technologies

This chapter is devoted to explaining the technologies and tools employed in the
implementation of the application, particularly focusing on the React implementa-
tion phase. In the third section, a concise overview of external libraries utilized in
this project is provided.

3.1 Technologies and Tools

We capitalize on the advantages offered by Visual Studio Code, leveraging a suite
of carefully selected extensions to augment our coding experience throughout the
development phase. Our browser of choice is Google Chrome, equipped with a
comprehensive set of developer tools crucial for debugging. To streamline the
management of state changes, we integrate the Redux DevTools extension.
Postman is used as a tool for interacting with APIs. It enables us to seamlessly
create and dispatch a variety of HTTP requests, including Get, Post, Put, and
Delete, to our API endpoints.
Setting up a React application necessitated the installation of Node on our machines,
ensuring a minimum version of 10. Alongside node, the installation automatically
includes NPM, the package manager, with a minimum required version of 5.2. The
Git used as version control system to track the changes.

3.2 Implementation of react app

To implement the application, the initial step was to install Node and NPM, which
are necessary for creating a React app. Additionally, we needed to set up build

Development Tools and Technologies

17

tools like Babel and Webpack. However, by installing CRA (Create React App), we
can bypass the need to install separate build tools. It automatically generates the
required files and folders to kickstart the React application. Babel and Webpack
are essential because web browsers do not understand the Jsx syntax used in React.
They act as translators, converting JSX code into JavaScript that browsers can
interpret. Install CRA done via this instruction: - npm install -g create-react-app
To create a react application we can use the following command: - npx create-react-
app [app-name]. Alternatively, Yarn can also be utilized for this purpose.

3.3 Implementation of external libraries

The implementation of external libraries plays a crucial role in the development of
an application. Among many reasons that encourage developers to use libraries,
the most important ones include:

• They often provide pre-built, optimized solutions for common tasks, signifi-
cantly speeding up the development process.

• Libraries are typically well-tested and maintained by a community of develop-
ers, offering a wealth of documentation and forums to support users.

• They are regularly updated to address security vulnerabilities.

To facilitate the development of web applications, numerous external libraries exist
as reusable components that have been published by other developers. These
libraries can be easily installed and utilized. In a react project, the file named
’package.json’ located in the root folder contains a list of all installed libraries. The
most important libraries used at this project are:

• Tailwind

• HeadlessUI

• Formik and Yup

• Redux

• Axios

• Chart.js and react-chart-js2

In the following section, I provided a brief explanation of the listed libraries and
their implementation, which play a crucial role in the developing of this application.

3.3.1 Tailwind

Tailwind is the most popular Utility-First CSS Framework to build Custom UI in
the fastest and easiest way. It means, unlike UI kits such as Bootstrap, tailwind

Development Tools and Technologies

18

doesn’t provide pre-styled components. It doesn’t have a default theme. With
tailwind we style elements by applying pre-defined classes directly in the Html.
We defined it to write inline styling to achieve an awesome interface without write
css in the different files. Tailwind allows for rapid development of modern websites
by enabling us to write CSS directly in our markup. It offers high customization
capabilities to tailor the styles according to our specific needs. It scan all the
Html files, JS components, and any other templates for class names, generate the
corresponding styles and then write them to a static CSS file [23]. The only issue
with that is our markup maybe looks a lot longer.
For using and running tailwind we follow instruction of tailwind documentation for
install CLI tool which is the fastest way and recommended by tailwind. [24]. The
steps are as follows:

• First we installed tailwind via npm and run the init command to generate
files: ‘tailwind.config.js’ and ‘postcss.config.js’.

- postcss.config.js is a single export JavaScript object that will instruct
to run tailwind first. By installing PostCSS and its associated tools such as
’Autoprefixer,’ we can leverage the framework’s capabilities to optimize our
development process.

This configuration file is used to customize the default theme and properties
of Tailwind. such as: custom fonts, color, line spacing, etc.
Utilizing ’PostCSS’ significantly enhances the build speed of our projects,
leading to improved performance.

- tailwind.configure.js, at this file we added the path to all template files.

• Then at main css file index.css add ’@tailwind’ directives for each of Tailwind’s
layers: @tailwind base; @tailwind components; and @tailwind utilities;
This is like importing tailwind styles to be recognized as real css syntax.
Finally import this css file in the entry file of react which is ’index.js’.

• Finally, execute the CLI tool to scan the template files for classes and build
the CSS: -npm run start

Development Tools and Technologies

19

Tailwind Customization

Tailwind is designed to be customizable, which is one of its key advantages. It
allows to break out the constraints when needed, enabling us to add our own custom
CSS and extend various plugins. Tailwind’s customization advantages empower
developers to create unique, efficient, and consistent user interfaces while adapting
to specific project needs and maintaining a scalable development workflow.
Fig 3.1 illustrates the ’tailwind.config.js’ configuration file, which exports a
’module’ object. This configuration object contains various properties, including
content, theme, plugins.
In ’Content’ added the path to all template files. The ’plugins’ property specifies
additional Tailwind CSS plugins to enable. An advantage of tailwind is its capa-
bility to integrate reusable third-party plugins, expanding the range of styles and
functionality available. By simply installing the desired plugins through npm and
importing them, we can easily incorporate them into our project. We can then call
the specific plugins we want to utilize within the ’plugins’ array.

Figure 3.1: Add reusable third-party plugin to tailwind

’Theme’ is contains various configuration options. It includes customizations such
as defining additional ’keyframes’ for animations, adding new colors, custom font
families. Inside screens we defines the breakpoints for responsive design. At Fig
3.2 we can see more details of developing of this part:

Development Tools and Technologies

20

Figure 3.2: Customization at tailwind.config.js

3.3.2 HeadlessUI

HeadlessUI is a set of accessible UI components, designed specially to work with
Tailwind CSS. This library provided components such as: dropdown menu, lightbox,
Switch (Toggle), Transition, Tabs, ecc for adding to our project [25].
To using these components, after installing headless UI library via npm, we import
them from ’@headlessui/react’ and write the code with the customization we need
to apply to our components. We got advantages of this library at different parts of
application utilized components like Listbox, Tab pages, Switch, and more. further
details about implementing these components at this application explained at
chapter 4, Requirements of application.

3.3.3 Formik and yup

Formik is a third-party library that used to implement and manage forms in this
application together with Yup. It is one of the most popular open-source libraries
for building forms in React and React Native. Using Formik repetitive actions are
reduce and we can save time. It helps with ’Taking the user input and change the
current state’, ’Form submission’ and ’Validation’.
It sets the state for the form’s value and exposes it to form via props. It provides
reusable methods and event handlers, helps to greatly facilitate the development

Development Tools and Technologies

21

process. These include handleChange, handleBlur, and handleSubmit, that stream-
line the handling of form input changes, blur events, or form submissions. Using
these built-in functionalities, developers can efficiently manage form interactions
and improve the overall user experience.

development Skeleton of Formik components

Formik is implemented into separate components, making them easily reusable
across different sections of application. This approach allows us to integrate
Formik’s form management capabilities efficiently and promotes code reusabil-
ity. These components handle different types of input TextArea, SelectField,
TextField, placed in a unic folder called formik. These components makes use
of useField hook, which is provided by Formik and returns an array with two
elements: ’field’ and ’meta’. The Fig 3.3 is demonstrating ’TextArea’ component
as an example, the two other components are also implemented at these way:

Figure 3.3: Formik, developing TextArea component

This component renders a custom textarea input element. It takes props ’textar-
eaStyle’ and ’...props’ which is a "spread" operator that is used to pass all the
properties of the props object to this element. The ’field’ object contains properties
and event handlers that need to be attached to the ’textarea’ element for proper
form handling. The spread operator (...field) is used to pass these properties and
event handlers to the ’textarea’ element. The ’meta’ object contains additional
metadata about the field, such as whether it has been touched or has an error.
This information is used to apply certain styles and display error messages.

The style attribute is set dynamically based on the meta object and finally the
’ErrorMessage’ component is used to display the error message. This component as
an example imported into the ModalPromo component which is a child component
of landing page, where the CSS style of the textarea element defined and assigned
to textareaStyle var. Chapter 4 provides more detailed examples of how we used
Formik components in different parts of application.

Development Tools and Technologies

22

A brief explanation about Yup

Another component implemented at formik folder is Validation.js. This file is
contains data validation rules for forms and it is imported to the components
where there are need data validations. At this file we get advantages of Yup. It
is a schema-builder that allows us to define validation rules and schemas for data
validation. For using Yup we should:

• first defined object schema and its validation.

• then define all the criteria for objects[26]

Yup can test whether a value is an email address with one method call, the same
for date, time and etc. The Fig 3.4 is demonstrates ‘newCustomerSchema’ as an
example. The schema is defined using the object().shape() method provided by
Yup, which allows creating a schema with multiple validation rules for different
fields. for example the telephone number should have a length of exactly 10 digits
and should only contain numeric characters.

Figure 3.4: Utilization of Yup library, creating schema

The required() forces user to insert a value and it can’t be left. This schema then
imported to the components wher utilize formik and inputs need to be validate,
assigning the name of schema to ValidationSchema which is a special config op-
tion/prop for Yup object schema.

3.3.4 Redux

Redux is a library for managing and updating the state of application. It is suitable
when having large amounts of application state that need be use in many parts of
application and might be worked on by many people. As we worked with a large
and complex application which needed frequently update of state over time, we got
advantages of this library. It can be use with any other JS framework or library.
It allows to manage the application’s state in a single place, serving a centralized
store for state that need to be used across our entire application[27].

Development Tools and Technologies

23

To utilize Redux, we need to install the ’redux’ package. Additionally, we also
require another dependency called ’react-redux’ to integrate redux into our react
application. ’Redux Thunk’ is imported which is used to handle action. It is
a midleware commonly used for data fetching and help to handle asynchronous
operations, such as API calls. Redux has tree building parts:

• Actions: They are events and a way to communicate with the redux store,
triggering state updates. Internal actions are JS objects that have a ‘type’
property describing the type of action and a ‘payload’ property containing
additional data associated with the action, which is send to the store.

• Store: There is a central store that holds the application state. each com-
ponent in the application can access the stored state directly, so they don’t
have to rely on passing data (props) from one component to another through
a chain[28].

• Reducers: They are pure function that takes the current state and an action,
and returns the new state. Reducers are used to specify how the state of the
store should change for dispatched actions. The new state is then sent back
to the view components of the react to make the necessary changes[29].

These tree parts have ‘one way data flow’ which is demonstrates at the Fig 3.5.

Figure 3.5: Redux data flow and main components

Development Tools and Technologies

24

Implementation of Redux components

A file ‘store.js’ is created and located in the redux folder, where all redux-related
files are kept. This file serves as a global store. After importing statements, the
store is created using createStore function and the ’rootReducer’ is passed as an
argument, which is the combination of multiple reducers. The thunk middleware is
applied by applyMiddleware to handle asynchronous actions in Redux.

The integration of the Redux DevTools extension is accomplished through the
application of the compose function. This function is employed to facilitate de-
bugging within the browser’s Redux DevTools extension, which must be added
to the browser. In essence, it provides a way to enhance and inspect the state
management of a Redux application in a browser environment.
Finally the ’persistStore’ function from redux-persist is called with the redux store
as an argument to create a persistor. The persistor in Redux enables the storing
and retrieval of the application state. It automatically stores the state whenever
it changes and retrieves the stored state when the application starts or refreshes,
ensuring the Redux store is rehydrated with the saved state.

Figure 3.6: Store.js, redux global store file

There are more than one ’reducers’ created at reducer folder imported into index
file presented at this directory. The ’CombineReducers’ function from Redux lets
us merge several reducers. We use it to create a ’rootReducer,’ which is then passed
as an argument to the ’createStore’ function.

’actions’ in our project are written in separate files and imported where they
are needed for defining actions.
The types for these actions are defined in the ’type.js’ file, found in the constants
folder of redux directory. These action types are subsequently imported into both
the ’actions’ and ’reducer’ files, ensuring consistency across the project.

Development Tools and Technologies

25

3.3.5 Axios

Dealing with web applications, one of the fundamental tasks is communicate with
back-end servers. The client-side application for receive and update data from the
database use the API and communication with api is done through Http request,
which can be achieved using ’Fetch’ or ’Axios’ [30]. While both options serve similar
purposes, Axios is chosen for this project for its ease-to-use and extensive browser
support. Some of the features of this JS library are:

• It allows making HTTP requests from both the browser using XMLHttpRe-
quest, and from Node.js.

• Supports for the Promise api, which handle asynchronous operations and
manage the resulting values or errors.

• Ability to intercept and transform both request and response data.

• It also can cancel requests or automatic transforms for Json data, so unlike
FetchAPI we don’t need converting our request body to a Json[31]

It need to be installed by npm in react application, then added to the project. At
this project, it is implemented by creating two components ’axios.js’ and ’requests.js’
both placed at api folder. Fig 3.7 demonstrates ’axios’.js component.

Figure 3.7: Axios implementation and creating its instance

This component make HTTP requests to an API. Firstly, it checks if the application

Development Tools and Technologies

26

is running on the localhost, saved result in a constant. Then retrieves the ’token’
from local storage if it exists, and parses it as Json. Then it creat an instance
of Axios with ’axios.create()’ function. This instance can be used to make Http
requests to the specified ’baseURL’ which is including the Authorization header
with the token value.
The code examines if token is exists, the authorization header will be set as Bearer
token, otherwise it set an empty string. Bearer token is a type of access token
commonly used for authentication and authorization in Api requests.
The last part of this component, ’Request interceptor’, is an error callback function
which is called on this instance to add a request interceptor. This interceptor
modifies the request configuration before it is sent.
At the ‘requests.js’ component an object is defied that holds various api endpoint
URLs. Each key in the object represents a specific request, associated a name to
each of them, such as: fetchServices: "/get-servizi.php" or postService: "/post-
servizi.php",...
These requests imported at ’App.js’ file where handles routing and api calls and
renders the appropriate content based on the authentication status.
Fig 3.8 demonstrates a part of ’App.js’ where after import ’request.js’ component
from api directory, perform api calls and fetch data.

Figure 3.8: importing apis call in main App component

Development Tools and Technologies

27

The useEffect hook is used to call api and fetch data. It has dependencies [au-
thenticated, dispatch], meaning it will re-run when either of these dependencies
changes. It retrieve authentication State from redux store.
The useDispath hook from redux is used to dispatch actions to the Redux store,
triggering state changes. If the user is authenticated, a series of API calls is
initiated. The API calls are wrapped in an asynchronous function, and await is
used to ensure that each API call completes before moving on to the next one.
This ensure the correct order of fetching data.
The dispatch function used to send actions to the redux store.

3.3.6 Chart.js and React Chart js2

Chart.js is a popular open-source JavaScript library for creating interactive and
customizable charts and graphs on web pages. It provides a wide range of chart
types, including line charts, bar charts, pie charts, scatter plots, and more.
’React Chart.js2’ is a React wrapper for chart.js, specifically designed to integrate
chart.js functionality into react applications. It simplifies the process of integrating
chart.js into react applications and follows the react component-based architecture,
allowing us to create reusable chart.
To implementing charts, after install the necessary packages, we should import
required components at the our file. A simple syntax of implementing the charts is
demonstrates at the Fig 3.9:

Figure 3.9: Rendering a react chart.js components

Once imported desired charts, we define data object of chart, customize them, and
render the chart component.
We got advantages of these libraries for creating reports . The more details about
implementation of charts finds at chapter 4, at the Report section.

There are other external libraries were utilized during the implementation of
this application, such as: ’react-icons’, ’react-barcode’, ’react-progressbar’, ’react-
slick’, ’Jshint’, cloudinary’ and etc.
Most of these libraries are relatively easy to integrate, and comprehensive guides
are often available to assist users with the implementation process. In this docu-
mentation, i focused on providing detailed insights into the most important of them.

28

Chapter 4

Implementation Phase

4.1 Introduction of the Desktop version

The Xtouch application is a dedicated desktop management solution designed
exclusively for hairdressers and beauty centers, addressing a wide range of user
needs within this industry. Some of the most important features of this application
are as follows:

• Payment system: customer payments is very easy as this application gives
possibility to payment with mix modality. They can pay with cash and with
credit card half/half, or the payment can be proceeded by mix of gift/promotion
cards and other payment type at the same time.

• Managing Promotions: the other aspect of this application is to manages
promotions (gift cards, subscriptions, discount cards, vouchers, temporary
promotions, accumulation services, point management).

• Manage appointments: managing appointments of salons respecting the
real timing of the services and the availability of the collaborators, print or
send (either, email) to the customer a detailed reminder.

• Agenda: it is a multi-platform app created to keep in touch with its customer
and provides them with the possibility of online booking appointments thanks
to having the "Agenda on the Web".

• Warehouse management: the possibility to know in real time the status of
the warehouse and each product is an important feature of this application.
The functionality is managed with a simple Barcode Reader When users make
a sale or use a product intended for the salon. The barcode speeds up the
operations of app which is integrated with all types of barcode readers.

Implementation Phase

29

• Email and SMS: this software integrates a system that allows use to send
mail and sms directly to his/her customers. It also gives the opportunity
to make a specific selection for the strategies the user is creating. Birthday
wishes, lost customers, customers who only get one kind of treat, ecc.

The Figure 4.1 illustrates the schematic layout of the ’Cash Desk’ page, which serves
as the entry point of the desktop application due to the absence of a dashboard.

This screenshot showcases the working process of the application, where demon-

strates by selecting a ’Service’ from the available ’Categories’, followed by choosing
an ’Operators’ subsequently, the right side of the page dynamically displays rele-
vant information regarding the chosen operation. Additionally, the bottom section
presents detailed Payment information related to this process.

Figure 4.1: Scheme of desktop application, Cash Desk page

In the process of implementing the web version, the team thoroughly analyzed

the requirements with the conclusion of including most of the features already
present in the desktop application at web version and introduce some additional
features which represents a modern web application.

Implementation Phase

30

4.2 Web version development

The Fig 4.2, demonstrates the ’Cash Desk’ user interface of web version, as the
development process initiated with the implementation of this page, recognizing
its pivotal role as the cornerstone of this application and representing a critical
development effort. It serves as a crucial navigational hub, directing users to other
pages within the application in the absence of a dashboard.
The web version is named ’Nuage’. The structure of this page was defined, com-
prising the principal components: Category, Services, Operators, Client area, and
Payment sections. Furthermore, there was plan to introduce a dashboard page in
the future, intended to serve as the application’s entry point, after its structure
and user interface is defined completely.

Figure 4.2: Scheme of Web application, Cash Desk page

4.2.1 Files and Folders created by CRA and their structure

There is not a proper way to structure a react application, we can decide structured
the files and folders as it will be more significant for our project.
A popular way is to group similar files together [32]. We follow this approach at
our project, as an example we put all api files in a folder, all pages we go around
by rout placed in a unique folder and etc.

Implementation Phase

31

After installing CRA and created the project using the command npx create-
react-app Project-Name, react generates a folder named "Project-Name". This
folder encompasses various files and sub-folders that holds the project code. Some
important files and folders are: ’node-module’, ’public’, ’src’ and ’build folders, and
’readme.md’, ’package.json’, ’package-lock.js’, ’.gitignore’ files.
The remaining files and folders are added to the project during the development
phase. In the following section, I provide a brief explanation of some of these files
and folders.

- package.json This file is a configuration file that provides information or meta-
data about the project and specifies its dependencies. Dependencies are external
libraries or packages that the project relies on to function properly. The ’de-
pendencies’ field list all the dependencies of project that are available on npm.
The npm install command reads this package, retrieves the specified dependencies
from the npm registry, and installs them locally in the node-modules directory
which helps npm to setup same environment on different machine for our project.[33]

- package-lock.json This file is generated automatically when create a react
app and provides a low-level, detailed snapshot of the exact versions of packages
installed, ensuring consistency across different installations and environments.

- Readme.md This file is containing basic information about user’s project.
It can be used to define summary of project, build instructions, etc. It uses markup
language to create content.

- .gitignore This file specifies intentionally untracked files that git should ig-
nore.

build folder To publish our application run the following command: ’npm run
build’, it creates this folder inside the root directory.

- node module folder This folder is containing all the node packages that
our application requires. In other word all dependencies that are need for initial
working of react application are placed at this folder. [34]

PUBLIC folder
This folder is containing three files created automatically by create-react-app:
- A Manifest.json is metadata file which provide information about application
such as its name, version, etc. It is primarily associated with PWAs and is used
to define how the application should behave when installed on a user’s device and
utilized by modern web browsers.

Implementation Phase

32

- An Index.html is the main Html file that serves as the entry point for the
application. All dynamic content of the app will be injected in the root div of this
file. React components are typically defined in separate JS files and rendered into
the this file using the ReactDOM library.
- A Favicon.ico which is logo of application and referenced in the index.html.

SRC folder
This folder is a crucial directory in a react application and typically contains the
source code of the app, including the main JS files, components, stylesheets, and
other related assets. Usually some files and folder found within the Src, which the
two most important files are:

An App.js file, which represents the main component of the application, we
can say the application content is coming from this file.

An Index.js file which serves as the entry point of the application. It is re-
sponsible for rendering the root component and initiating the React rendering
process.
The folder structure can vary based on the project’s setup. Often there are pre-
sented folders such as ’component’, ’pages’, ’utils’, etc.
Here’s a brief explanation of the files and folders created at our application, orga-
nized based on grouping approach to bring similar files and folders together:

➢ components folder: this folder contains all the components we have created
and assets. Each component is organized within hierarchical sub-folders and
has a main file which by assembling them in the main file, we can construct
different parts of the application. The benefit is that these components can
be imported and reused to creating other components. The most important
sub-folder are:
- data: all pages presented at ‘Anagrafiche’ (placed at Sidebar) find here.
- home: the main components for creating the CashDesk page are located in
this folder. Each component related to a different part is grouped in sub-folders
like ’modals’, ’families’, ’work’. The Families folder contains the Category
development code, while the Work folder includes the development files for
the Services and Operators section. By combining these components in the
main file, the Cash Desk page is created.
The modals created for different activities, such as adding, deleting, etc placed
at Modal folder and imported in various parts of the application to use.
- report: this folder contains the main page and sub-folders with all the
developed code for creating reports. Development details find at section 4.3.
- setting: at this folder we placed all the work related to creating the Setting
page. Development details find at section 4.3.

Implementation Phase

33

Figure 4.3: Folder structure home main page

- promotion: this folder contains files and folders related to the different
type of promotion, such as gift cards, packets, subscriptions, landing page.
Development details about Landing Page find at section 4.3 .
- assets: this folder is contains files relate to header and some other compo-
nents provided to use in different parts of application.

➢ api folder: two files placed at this folder are: ’request.js’ which defines an
object with various properties that represent Api endpoints. A ’axios.js’ file
where placed a function to determine localhost, created new instance of axios
and authorization checks.

➢ formik: this folder contains files and components created related to Formik,
which are written in four separate files. By importing these components when
needed, we can easily customize them based on our requirements instead of
writing them from scratch every time.
These four components are: ’TextField’,’TextArea’,’SelectField’,’Validation’.
At chapter 3 presented some details about the implementation of Formik.

➢ image: as the name says, all the images and logo placed at this folder.

➢ pages: such as the most large applications, the pages folder is created to
organize components that represent individual pages. Each page consists of a
combination of components (usually a Navbar and Main and handles specific
user interactions or displays specific content.

➢ redux: all redux-related files are located in this folder. We import these
components wherever needed to avoid repetitive code writing. There are
presented a central store file and sub folders: ’Action’, ’Constants’, ’Reducer’.
At chapter 3 presented some details about the implementation of Redux.

➢ themes: there find two files related to implementation of themes of application
find here util.js and themes.js. Detail explained at the section 4.3.

Implementation Phase

34

Additional files and folders presented such as: ’utilities’ folder, which contains
the ’function.js’ file with various functions like Truncate and Capitalize, as well as
custom hooks. The ’tailwind.config.js’ and ’postcss.config.js’ files are also present,
where the configurations related to the Tailwind library are located. Further details
about the Tailwind library can be found in the ’Requirements of Application’
section.

4.3 Required Pages and Their Implementation

The development process involved implementing several components, each assigned
to different team members using a collaborative approach to handle various parts
of the project. I actively participated in the development of the following sections
in collaboration with other team members: ’Theme Selector’, ’Report pages’,
’Landing page’ and ’Impostazioni’ . In the following section, I provided a
detailed explanation of the development and integration process for each of these
components within the application.

4.3.1 Theme Selector

One of the requirements of this application was inclusion of a theme selector,
allowing users to choose their desired color palette from a range of pre-created
themes. The desired theme can be selected through a dropdown list, enabling easy
switching between available options.
A theme selector enhances the design of a modern web application by prioritizing
user preferences, accessibility and brand consistency. It’s a powerful tool for creating
an appealing, customizable, and user-centric application that meets the demands
of today’s users. To implementation of this part, we created two files at themes
folder:

• theme.js: at this file, we defined all color palettes constants.

• utils.js: it is contains an exportable function ‘applyTheme’.

The Fig.4.4 demonstrates theme.js where defined varius exported objects such as
’greenLanternTheme’, ’PruneTheme’, which represented pre-defined pallets. Each
object defines various CSS custom properties (css variables) and each property is
represented by a name and its associated color value. The colors are defined for
various subjects, such as ’warning’, ’info’, ’error’, and are categorized into different
groups, like ’primary’, ’secondary’, ’neutral’.
All these constants are imported into the ’ThemeSelector’ component where the
developing part of theme selector drop down is written. By importing these pallets
into ’App.js’ we make the theme selector drop down available to users on other

Implementation Phase

35

Figure 4.4: Creating color pallet at theme.js component

pages of application as well. This enables them to conveniently switch themes from
any page, ensuring a consistent visual experience throughout the entire application.
The important note for implementation of pallets to having a completely different
pallet is define the same number of attributes for all pallets, otherwise if one color
code is missed at a pallet it takes the value of last active theme.

Theme Selector developing phase

The structure of theme selector and its functionalities implemented within the
’ThemeSelector.js’ component. This component is responsible for rendering the
dropdown list, providing users with the ability to customize and choose their
preferred color theme effortlessly.

The Fig 4.5 illustrates a part of implementation of this component. The component
imports necessary dependencies from react and headlessUI libraries, along with
color palettes defined in ’theme.js’ component and the ‘applyTheme’ function from
’utils.js’.
There are also prepared an array of available themes at the begining which contains
objects representing various color theme.

Each object has properties such as id, name, class, palette and type, which are
required for implementation of theme selector, then using Usestate hook we defined
the state variable ’theme’ and its corresponding set function ’setTheme’, which

Implementation Phase

36

Figure 4.5: development of Theme Selector component

has responsibility of manage the selected theme, allowing for theme switching and
rendering the appropriate color palette based on the user’s preference or the default
theme. The initial state of ’theme’ is being set using the value returned by the
expression.
const [theme, setTheme] = useState(JSON.parse(localStorage.getItem(’theme’)) ||
themes[0])

It attempting to retrieve a ’theme’ value from the browser’s localStorage ob-
ject using the ’getItem’ method. If successful, the value is parsed as JSON. If this
fails or if there is no ’theme’ value stored in localStorage, then the default value of
theme is set to an array containing a single element of 0.

At the following of code function ‘handleTheme’ manages changing theme. This
function is placed at Listbox tag as an ’onChange’ function. The ‘theme’ passes
as value and every time an option is selected from the dropdown list, this value
passes as props to the function handleTheme, then this function will update the
theme with the new one, setting all its item.
The ‘applyTheme’ function imported to this component from ’utils.js’ allows to
change the appearance of the user interface by applying the custom theme.
It takes a theme object as an argument, which contains CSS variables and their

Implementation Phase

37

Figure 4.6: applyTheme function imported into Theme selector component

corresponding values. Then, it sets these css variables on the root element.
To create the selector dropdown in this component, we utilize the ’Listbox’ com-
ponent from the HeadlessUI library, which provides the possibility of having a
custom and beautiful select menu for our application.

By importing these constants into ’App.js’ we make the theme selector drop-
down available on other pages of application as well. At App component, the
useEffect hook is used to set the theme of the application based on a value stored in
the browser’s local storage. This hook runs once, when the component is mounted
and sets the initial theme based on the stored preference in local storage.
A Listbox is renders with options for selecting a theme. Every time a theme is
selected, the handleTheme function is called which updates the state with the
new theme. wrapping the ’Listbox.Options’ in a transition tag, the ’Transition’ is
applied to this component to have animate open/close panel.
The ThemeSelector component is imported to the ‘Navbar.js’, where it put together
all the components related to header.

4.3.2 Reports

Nowadays data visualization is one of the most required features for implementing
applications. Reports play a crucial role in modern web applications. They provide
data transparency, which is particularly important for businesses and organizations
that require accountability and regulatory compliance. Reports enable users to
gain a better understanding of ongoing activities, and through charts, anyone can
easily analyze multiple sets of data on a regular basis. This is essential for making
informed decisions and evaluating the success of strategies.
There are many other advantages to having a reporting page on websites that
I won’t cover in detail here. There are numerous libraries available for creating

Implementation Phase

38

charts in React applications, one of the most used library is ‘react-chartjs-2’
which we get advantages of that for creating reports of this application. It is an
easy-to-use library for creating different kinds of charts, like Bar, Pie, Line. We
installed another package ’chart.js’ that is like a core library used for any kind
of application not just React app. The react-chart-js-2 is used as a wrapper for
chart.js, which let use chart.js elements as React components.

In the initial phase, we prepared three report pages, with the expectation of
adding more reports, as soon as all the related APIs become available and their
requirements definitions are finalized. These three report pages are: ’Fatturato
Generale’, ’Riepilogo Giornalieri’, ’Produttività Collaboratori’.
All the report pages are developed as individual components that are include child
components imported to the main component of each report page. Additionally
three common components are created and imported into all report pages. A ’Date
Picker’ for selecting a date range to visualizing reports, a ’Gender’ drop-down for
visualizing data, based on gender, and ’Sector’ drop-down for data filtering based
on sectors.

Developing ’Riepilogo Giornalieri’ reports

Figure 4.7 depicts a schematic representation of the ’Riepilogo Giornalieri’ report,
with the date picker and drop-downs selectors positioned at the top of page.

Figure 4.7: User Interface of report ‘Riepilogo Giornalieri’

This report page is created within five individual components, each represents a
different report. The reports within the Doughnut chart, is divided into segments.
Each segment represents the proportional value of individual data on the chart.

Implementation Phase

39

Below the charts, there are additional information related to these datasets, which
are based on three categories: ’Cassa,’ ’Proposte’, and ’Totale’ highlighted with
tree different color Red, Blue and Black. The total amount for these categories
displayed at the top of the page within a Bar chart, reporting the total amount
earned individually for the two categories, ’Cassa’ and ’Proposte’.

HeadlessUI utilization with Report pages

To create drop-down of ’Selector’ components, ListBox is imported from ’HeadlessUI’
library. The Fig 4.8 demonstrates a part of developing of ‘SelectSector’ component.

Figure 4.8: itergration headlessUI to developing dropdown

Initially it fetch data from redux by utilizing the ’useSelector’ hook enabling the
extraction of data from the redux store and saved it to Sectors array. Later in jsx, a
mapping function iterates over each sector object of this array, which conditionally
rendered if the Sectors array exists. Subsequently, it employs the ’useState’ hook
to manage the currently selected sector, initializing its default value with ’seleziona’.

Implementation Phase

40

In jsx, the value prop is set to SelectSector, that holding the current value of
the state and the callback function ’onChange’ set to the ’setSelectedSector’ that
when a new value is selected from the dropdown, this function will be invoked with
the updated value and displays the new value.

The ’Listbox.Button’ is rendered which represents the button that triggers the
opening and closing of the dropdown list with a dynamic expression {SelectedSec-
tor.Descrizione || SelectedSector}. It displays the description of the selected sector
if it exists, otherwise default value ’Seleziona’ will be appear. A Transition effect is
applied to dropdown to animate the appearance and disappearance of elements.

The ’className’ prop defined at the top of this page, is set using a function
that takes an object with an ’active’ property and returns a string of classes using
the ’classNames’ utility function. This function commonly used in react projects
to conditionally apply CSS classes to element. At this code it is applied based on
whether the option is ’active’ or not.
There’s also a nested function that takes the selected and active properties as
arguments and it renders the sector description. The option’s appearance and
behavior are determined by the applied classes and the provided description.

Implementing individual charts

Each segment or chart is implemented individually. Figure 4.9 illustrates one chart
development the ’Dettagli Incassi,’ as an example.

After importing the chart from the react-chart-js2, we proceeded to develop this
part by creating data object. The data first retrieve from the redux store using the
’useSelector’ hook and saving into "reports".
Then these data assigned to the ’datasets’ property of ‘IncomeData’ object which
is contains the actual data and background colors for each category.

To development the second part below the chart which displays information related
to these datasets, a ’dataIncome’ array is defined, containing details for each income
category, including properties such as category name, total cash, total proposals,
and a mapping function is employed to iterate through the data set ’dataIncome’
rendered these items.

Inside the JSX code the chart is rendered within a div with inline styles to
control its height, margin and width. It receives also the IncomeData object as the
data prop mapping through this array.

Implementation Phase

41

Figure 4.9: developing a single chart ’IncomeData’

Fig 4.10 displays more details of this chart component Doughnut configuration.

Figure 4.10: Doughnut chart configuration

It is important ensure that the data points are numerical values, this allows Chart.js

Implementation Phase

42

to sum all the numbers and calculate the relative proportions accordingly.
The report page ’Fatturato Generale’ follows the same approach, however to
developing reports in ’Produttività Collaborati’, we employ different chart type.

Developing ’Produttività Collaborati’ report page

This page is developed using Bar charts, which excel at precise value measurement
and are well-suited for comparing multiple data sets across different categories
compared to doughnut charts. This chart like the other charts, offers various
customizable properties, like ’backgroundColor’, ’borderRadius’.
This report page features also a doughnut chart, to displaying the percentage of
total sales by each colleague.
An additional requested feature for this report page, was the ability to hide two
specific charts by clicking a button located at the top of the page. This functionality
is particularly useful for data privacy, allowing users to hide specific charts in the
presence of colleagues or customers.
The charts created for this report page are categorized and placed into two com-
ponents. The charts that will be hidden are written within the ’HideReports’
component, while the other charts are written in individual components and then
imported into ’Productivity’ component as their main components.

Fig 4.11 illustrates a Bar chart with multiple data sets named ’Fatturato Collabo-
ratori’. The button located at the top of the page "mostra tutto" has responsability
of hide/show specified charts.

Figure 4.11: Bar chart multiple datasets

To implementing this report page, a main component ’Collaborators’ is created
where using a useState hook manages charts visibility defining a variable ’showAll’

Implementation Phase

43

with initialized value to ’false’, meaning do not demonstrate the charts of ’HideRe-
port’ as default. const [showAll, setShowAll]= React.useState(false).
The Fig 4.12 illustrate structure of main page.

Figure 4.12: Developing ’Produttività Collaboratori’ main page

The return statement defines the structure and layout of the component’s UI. The
button ’mostra tutti’ toggles the value of showAll, when clicked. The icon will
changed within a conditional rendering logic based on the value of ’showAll’. If its
value is true, all report components are rendered, otherwise only the ’Productivity’
component is rendered which includes a defined number of reports component.

The Fig 4.13 demonstrates implementation of Doughnut chart of this page for the
report ’Fattuarto Totale’. The chart represents the report of percentage of total
sales attributed by different collaborators, along with corresponding average values
of each.

A function to generate random colors is implemented and applied to to this
chart to managed to created color beacuse the number of collaborators can be vary
at different beauty center.

Implementation Phase

44

Figure 4.13: Produttività Collaboratori user interface

The Fig 4.14 demonstrates development of this chart. This part is implemented by
defining an object which is contains an array of ’labels’ representing the names of
collaborators and the ’dataset’ TotSalesChartData.

Figure 4.14: Developing ’percentage sul fatturato totale’

The dataset represnts ’data’ getting from DataTotalsale array and the ’background-
Color’ getting from randomColorTotalSale array were stored the generated colors.

Implementation Phase

45

The spread operator (...) is employed to generate a new array by spreading the
elements of the ‘randomColorTotalSale’ array into the backgroundColor property
of the datasets object. This ensures that the backgroundColor property of the
datasets object is populated with a fresh array containing individual colors.
Inside the JSX the chart is rendered within a div with inline styles and receives
the ’TotSalesChartData’ object as the data prop.

Random colors generation is written inside a while loop. The ’graphBack-
ground’ variable is created by concatenating the random RGB values into a string
format: "rgb(randomR, randomG, randomB)" and then it is pushed into the ’ran-
domColorTotalSale’ array, which then assigned to ’backgroundColor’ property of
TotSalesChartData object. This object is the data assigned to the chart. The
development of random color is demonstrated at the Fig 4.15.

Figure 4.15: Implementation of random color generation

4.3.3 Landing page

One of the required features for the web version was the implementation of a
landing page, which is an additional feature compared to the desktop version.

This feature allows users of application to create static html page within texts,
images, and information for publishing, without needing go thorough external
landing page builder applications. They often feature product descriptions and
calls to action to encourage visitors to make a purchase. Some landing pages creates
to promote and facilitate event registration. Some characteristics of effective landing
pages include:

Implementation Phase

46

1. Simplicity: They usually very focused and have a clear, unambiguous purpose.

2. Persuasive Content: its content including headlines, images, and text, are
usually highly compelling and tailored to the target audience.

3. Clear Message: visitors will immediately understand what the page is about
and what action is expected from them.

4. Mobile Responsiveness: given the diverse devices visitors might use, landing
pages should be responsive and display well on mobile devices.

To develop a landing page, we need:

1. Define the goal: determine the primary goal of our landing page. At this
application it is implemented to create advertisements for specific services or
products, representing special promotions and events.

2. Know our audience: Nuage users are the person who works at beauty center.
The page should be design as clear as possible and users be able to build their
own page without having a special computer skill.

3. Having a clean and visually appealing design: we should design the page to
attract the visitors using high-quality images, videos, and fonts.

This feature is implemented within two components.

1. ’LandingPageList’, This component displays a list of all the created landing
pages, where they are archived for a specified period and users have the option
to edit, delete, or copy the page’s link and can access the main "Creator" page
(AddLandingPage) through a Plus button form this page.

2. ’AddLandingPage’, as the name suggests is where the development phase for
creating each individual landing page is presented.

These two components are imported into a main component ’LandingPage’ where
using a useState hook, it manages the visualization of these two components.

Fig 4.16 demonstrates the implementation of this part. There are a conditional
rendering based on the value of isNewPage state. If it is true, the AddLandingPage
component is rendered, otherwise the LandingPageList is rendered. The outer div
contains another conditional rendering, indicating when the isNewPage state is
False, the LandingPageList should be rendered within displaying the ’Plus’ icon
defined into the PromotionsNavbar component. This icon is a button which has
functionality of adding a new landing page.

The landing page is located in sidebar under ‘Promozioni’, going through Creator

tab, it leads user to the ’LandingPageList’ as the default value of the isNewPage

Implementation Phase

47

Figure 4.16: Landing Page main component development

state sets to False in the main landing page component.

Developing Landing Page List

’LandingPageList’ is developed by implementing a table allowing users to view all
landing pages created and they stored for a specified period of time. Each row
contains information about individual created pages, including id, link, ecc. The
’plus’ button at the top of the table leads to open a new page where users can
create a new landing page.

Figure 4.17 illustrates the user interface of this component, that is written as
a functional component taking two props ’isNewPage’ and ’setNewPage’ from its
parent LandingPage and returns a jsx element, which is it container.

It utilizes the useSelector hook to extract data from redux, promotions section. We
make use of some functions like useSorableData and ToEuropean at this component,
that are imported from utility folder and they are written for the purpose of being
used in different parts of the project.

To the icons presented at each row associated an event handler ’onClick’ for
user interaction with the purpose of copy the link, edit or delete the selected page.
We got advantage of CopyToClipBoard react component to copy the link of the
created page, offering an alternative method for copying text in React. It should
be installed via npm, imported into the component, and then used to wrap the
copy icon.

To implement the grid, we make use of the Tailwind CSS ‘grid-cols’ functionality
to organize the page into columns. The container consists of two main sections

Implementation Phase

48

Figure 4.17: User interface of LandingpageList

header and content. Inside the content section, we map through an array called
’items’ rendering each item from the array as a row in the grid.

Developing Creator Page

This page has evolved into the ’AddLandingPage’ component, where the develop-
ment phase for creating individual landing pages takes place.
The page consists of three parts: a header containing buttons used for navigating
back to the previous page, a form completion section which serves as the skeleton
of page, and a preview section that synchronizes with the form section, updating
the preview of created page in real-time as the user fills out the form.

In the form section a limited number of blocks are provided for creating a landing
page with the possibility to leave some of blocks unused. By default, all the blocks
are in an ’active’ state to make them visible to users. The visibility of each block
can be managed by clicking on the eye button (nascondi/visualizza) positioned at
the top of each block.

At Fig 4.18 displays the user interface of ’Creator’ page, where the preview of
the landing page is synchronously visible to user once he/she inserted title ’Test
Create landing’ and company name ’xnew srl’. This functionality is implemented
for all blocks, allowing users to check the results of the created page immediately
in the preview section.

Implementation Phase

49

Figure 4.18: Form completion at Creator page with synch preview

The Creator’s main component development is demonstrates at Fig 4.19. It
imported the GetInputAddLanding and Preview components and renders the user
interface.

The main content is structured within a two columns layout. The left column
houses the ’GetInputAddLanding’ component where developed ’form completion’
and the right column features the ’Preview’ component.
Props are passed to these two components to manage content and state for their
respective sections. The ’GetInputAddLanding’ is dedicated to the form section
and is responsible for rendering input fields and handling user input. It receives
various state variables and setter functions as props, since the ’Preview’ component
is responsible to displaying a preview of the block contents.

The useState hook managed various state variables such as: carouselImg, Img-
Promo1 which hold the data for different images and fields and setFiels is used to
store texts data. The showComponent keeps track of which components to show in
the preview section.

Utilization of Formik library with landing page

As mentioned previously ’GetInputAddLanding’ component is dedicated to form
implementation. At this component after importing various dependencies defines

Implementation Phase

50

Figure 4.19: Developing Creator main page

states to manage various aspects of the landing page configuration and also some
event handler functions such as ’handleClick’, ’handleCarousel1’ that triggered
when certain events occur. We get advantage of Cloudinary service to upload
images, that is an image and video management services and enables users to
upload, store and deliver images for websites and applications. [35].

To developing this component we utilizes the ’Formik’ library to manage form
state and form submission. It wraps the form fields and handles form validation.
The form is divided into sections based on different components of the landing
page, include Header, Promo1 , Carousel, Promo2, Contact Box and Footer. As I
explained in chapter 3, a skeleton for each Formik type is creted. This involved
importing Formik components, such as TextField from the Formik folder.

The Fig 4.20 demonstrates a part of the developing of this component. The
’handleSubmit’ function referenced in the onSubmit of Formik component will be
call when the form is submitted, passing the form values as the argument. The
values, setFieldValue props is defined that provide access to the current form values
and update individual field values.

The initialValues props passes to the ’name’ attribute associated to each item. The

Implementation Phase

51

Figure 4.20: Formik implementation and importing Modals at ’Creator’

code renders components such as header, promo1, ecc, conditionally based on the
value of showComponent props defined at the beginning of the code.

The Fig 4.21 illustrates how ’promo2’ takes the initial value by name attribute.
There are other attributes defined such as lable, type and a css class to be applied
to the input field. The code checks if "Promo2" is included in the showComponent
array, the section should be shown, a button with the class eyeStyle is rendered
and clicking on it triggers the removal of "Promo2" from the showComponent array
using the setshowComponent function and if it is not included section will hide
with changing eye icon.

The Modal components shown at the bottom of the image are provided for writing
longer texts where we need to have multiple lines of text, such as descriptions in
the form section. They are written as separated components, imported to this file
and have default values false. An onClick event handler assigning to them, set
isModalOpen to True when clicked and triggers the opening of modals.

The Fig 4.22 demonstrates the object ‘staticMarkup’ is created that contains key-
value pairs and include a code generating a static HTML markup. The values are

Implementation Phase

52

Figure 4.21: Conditional rendering logic for showing or hiding a block

derived from the fields object that receives as a prop and other variables represent-
ing data to be sending to the api within Post request.
The form submission is handled through an asynchronous function . It constructs
a request object, specifying the Http method as POST setting the "content-type"
header to "application/json" and includes the staticMarkup object as the request
body. The code then makes an Http Post request using the api.post method
(provided by Axios). When it receives the response, it checks the http status code.
If the status code is 201 or 200, it sets the link state variable with the value of the
"Link" property from the response data. If the status code is different, it logs an
error message.

Figure 4.22: Static Markup object defining to hold the data

Implementation Phase

53

Preview component development

The ‘Preview’ component is responsible for displaying blocks. Separate components
are created for each block and then imported into the main preview component.
Preview receives several props, including fields, setFields, showComponent and
image-related props. It conditionally renders different child components based on
the values received from the showComponent prop, that is defined in the Creator
component and passed down to control which components are displayed within
preview.

In Fig 4.23 you can see the development of the ’Preview’ component, where
illustrates how each child component is wrapped inside a conditional statement
that checks if component should rendered or not. The props are passed to each
child component based on the props received by the Preview component and their
appearance is determined by the provided data.

Figure 4.23: Preview main component development

The Fig 4.24 demonstrates development of one block, Promo1 component that is
imported to Preview. This component after receiving props such as fields, setFields,

Implementation Phase

54

ImgPromo1 conditionally renders the user interface.
The content of the this block is dynamic and based on the props received it displays
a title, an image, and a description. There are provided default value for each
option, if there are not any user input the default will be displays.
For example for displaying image, the code checks If ’ImgPromo1’ prop is provided,
it uses the image specified in ImgPromo1, otherwise it uses the default image
specified in ’ImgP1’. The the Description gets the value of ‘userInput’ associated
with ’name’ attributes which is defined at ’GetInputAddLanding’ component. Users

Figure 4.24: Preview implementation, one block development

have the option to toggle the visibility of different components within the interface.
This can be achieved through a button located at the top of each block, which is
represented by an eye icon.

The user interface for this functionality is depicted in Figure 4.25. As shown
in the image, users have the ability to select the visibility option for a specific
component, in this case, ’Promo 2,’ while keeping all other components hidden.

An ’onClick’ function is used to manage the opening of a modal for writing the
text on image and the ’Description.’ When a user clicks on the corresponding icons,
this function is activated, enabling users to input text for these elements within
the modal.

Implementation Phase

55

Figure 4.25: Displaying a single block and hiding all other blocks

The button is positioned at the bottom of creator page will generates the link of
html page once user finished creating the desired page. In this way clicking on this
button, the link of landing page will be generated.

By clicking on the link we can go to the advertise page created. The Fig 4.26 is
demonstrates the user interface of generated page.

Implementation Phase

56

Figure 4.26: Generated html landing page

4.3.4 Impostazioni

Nuage provides a ’Settings’ section which can be reach from the sidebar. Settings
pages offer users with a range of customizable options to personalize their website
experience. For example they can configure privacy and security settings, or acces-
sibility options.

For the implementation of ’Impostazioni,’ we leveraged the advantages of creat-

ing tabbed pages. This approach effectively organizes content into distinct sections,
enabling users to seamlessly switch between different sections and significantly
enhancing their overall experience.

The Fig 4.27 demonstrates a user interface of page Impostazioni Azienda inside the
setting section.

This page includes information related to the company which can be updated
by user and saved via dedicated button positioned at the end of each page. We
used Formik library to developing of this part. The tabs are created at separated
components and imported to the main component to build whole setting page.

Implementation Phase

57

Figure 4.27: Setting page, tab Impostazioni Azienda

At the Fig 4.28 we can see a part of development of the main page where af-
ter importing all components to main page, there are conditions to setting the
active tab. A useState is defined to manages which tab is currently open. It takes
a value between 1 to 5 which means the Setting page includes 5 tabs.

When a tab is clicked, the onClick handler updates the ’openTab’ state to switch
to the selected tab’s content and consequently the component renders different
content based on the currently open tab.

Pages implementation and form validation

The pages are created by importing components such as ’TextField’ from the
Formik folder. These components are then configured with labels, classes, and
names in the TextField tags. The names assigned to these tags are defined in the
’initialValues’, where the values for each item are obtained via an API and assigned
to them. An ‘onSubmit’ function presented at the Formik tags which passed the
form values.

The input data entered in forms must undergo validation. To handle this
validation process, we’ve imported the ’validations’ component from the ’formik’
folder. This component is developed and utilized wherever input validation rules
are required. We get advantage of Yup for its implementation. It allows creating a
schema with multiple validation rules for different fields. The Fig 4.27 shows the

Implementation Phase

58

Figure 4.28: main page development of Impostazioni

ValidationSchema is get ’newSetting’ validation rule from Formik library, where
defined almost all schemas.
At chapter 3 detailed how we created schemas and defined the criteria and its
requirements at validation component for each part. For example the required rule
for the ‘cellophane’ is having the 10 characters which must be just number, etc.
Then we imported these objects to the components at different part of application.
The Fig 4.29 demonstrate how we import and used validation schema for setting
page.

Implementation Phase

59

Figure 4.29: Formik, get value from validation component

60

Chapter 5

Conclusion and Future
Works

5.1 Conclusion

In the following sections, i will highlight the most significant contributions of this
thesis work and outcomes achieved during its development.

The aim of this project was to develop a web version of desktop application.
While working in collaboration with the company, the ultimate design and techno-
logical choices underwent revisions and adjustments, but this gives me opportunity
to study on some more technologies. This period served as a valuable learning
experience and allowed me to gain insights into working with a company and be-
come well-versed in the process of web development and application implementation.

The ’Nuage’ web application is already a comprehensive platform, continually
growing and evolving to meet the changing needs of its users. Utilization of Agile
methodologies and user involvement has been crucial to the success of this ap-
plication, allowing to rapidly respond to user feedback, incorporate new features,
and maintain a high level of user satisfaction in the rapidly evolving landscape of
modern web applications.

The incorporation of Tailwind CSS has significantly influenced and enhanced
the implementation of this application, fostering a more efficient and maintainable
codebase. The framework’s customizable nature has empowered development team
to swiftly adapt to evolving design requirements and deliver a visually appealing
user interface.

Conclusion and Future Works

61

Utilization of External Library significantly speed up the development process, as
they provide pre-built components and functions. They often come with a wide
range of features and functionalities that can enhance application.

The development of a Landing Page provides the opportunity to attract new
clients for beauty centers. With effective search engine optimization (seo), the
landing page not only becomes discoverable in pertinent search results but also
serves as a potent tool for attracting new clients within the beauty sector. This
functionality can serves as a powerful tool for optimizing marketing campaigns,
improving user experience, and achieving better results for businesses.

Creating Report pages have an important impact on the usability of the application.
Well-designed reports and data visualizations help users understand and interpret
data. In particular, by using react-chart-js, complex data can be represented in a
structured manner.

In the ’Future Work’ section, I have outlined several upcoming improvements
planning for the application as it keeps growing. There are many new features and
developments in the works, and these upgrades will help make the application even
better and more refined over time.

5.2 Future Work

Responsive page

Nowadays having a responsive web site is one of the most important require-
ments as smartphones and tablets catching up the lifestyle of users. Responsive
design allows a website content to flow across all screen resolution and sizes.
Tailwind enables us to create responsive designs just like any other part of our
design, utilizing utility classes. we experienced implementing this feature at some
part of application and this approach is now set to be implemented across the
entire application for a cohesive and responsive user experience.

Every utility in Tailwind is also available in screen-size specific variations. This
is done using predefined screen sizes (media query breakpoints), each of them are
given a unique name like sm, md, lg and xl. There are five breakpoints by default in
Tailwind: ‘sm’, ‘md’, ‘lg’, ‘xl’, ‘2xl’, which is set for the common device resolutions
[35] We can define more customize break-point if we need at tailwind.config.js.
Writing the responsive with tailwind can be done in an easy way, applying every
utility class conditionally at different breakpoints to control the appearance on

Conclusion and Future Works

62

specific screen sizes range. For doing that we add the break-point name followed
by the ‘:’ character and then the name of utility.
As an example at the main page of ’Creater’ we give condition to span different
number of columns at different screen size, enable vertical scrolling if needed and
round its corners, with the option to disable corner rounding on small screens:
’<div className="col-span-2 my-4 xl:col-span-3 overflow-y-scroll scrollbarStyle
shadow-2xl rounded-lg sm:rounded-none">’

Adding a dashboard

The development phase began with the implementation of a cash desk, primarily
due to the absence of a desktop dashboard. For the web version, a dashboard
needed to be created from scratch.
A dashboard serves as the primary entry point of an application, providing users
with a centralized and organized interface where they can access key information,
features, and functionalities. It acts as a control center, offering an overview of
relevant data and allowing users to navigate to specific areas or perform various
tasks within the application. They play a pivotal role in ensuring users can quickly
and effectively engage with the application and its offerings.

Multi language support

The application should supports multiple languages, offering users the conve-
nience of selecting their preferred language when using the application. To achieve
this goal ’react-i18next’ should be used that is a powerful internationalization
framework. We need install all the required dependencies from i18n and create the
i18n file for all the configurations. Then creting Json files for each language that
we’re gonna have in our our app inside a folder named locale. The jsons will have
the following structure:
{
"translations": {
"key": "Translated Value"
...Other key-value pairs... }
}

63

Bibliography

[1] React documentation authors. A JavaScript library for building user inter-
faces). https://reactjs.org/. 2022 (cit. on p. 1).

[2] Attlassian documentation authors. The Agile Coach). https://www.atlassi
an.com/agile/ (cit. on p. 2).

[3] MDN authors. SPA (Single-page application). https://developer.mozilla.
org/en-US/docs/Glossary/SPA/. 2021 (cit. on p. 4).

[4] Developedia authors. SPA (Single Page Application). https://devopedia.
org/single-page-application. 2020 (cit. on p. 5).

[5] Maneesh Kumar Singh. Difference between Static and Dynamic Web Pages.
https://www .geeksforgeeks .org /difference- between - static- and -
dynamic-web-pages/. 15 Jun,2020 (cit. on p. 6).

[6] RedHat authors. What is a REST API? https://www.redhat.com/en/
topics/api/what-is-a-rest-api. 8 May,2020 (cit. on p. 7).

[7] Gabriel Gitonga. Rest Architecrure. https://www.linkedin.com/pulse/
understanding- rest- architecture- gabriel- gitonga. 5 Jun,2021 (cit.
on p. 7).

[8] Atlassian authors. What is a Agile? https://www.atlassian.com/agile
(cit. on p. 8).

[9] Maneesh Kumar Singh. webpack concepts-webpack documentation. https:
//webpack.js.org/concepts/. 2020 (cit. on p. 8).

[10] website authors. Frontend Framework. https://2020.stateofjs.com/en-
US/technologies/front-end-frameworks/ (cit. on p. 10).

[11] npm trend collaboratos. Angular VS React vs Vue. https://npmtrends.com/
angular-vs-react-vs-vue (cit. on p. 10).

[12] react documentation authors. Getting started of react. https://reactjs.
org/docs/getting-started.html. 2022 (cit. on p. 10).

[13] Ari Lerner. 30 days of React - an introduction to react. https://www.newline.
co/fullstack-react/30-days-of-react/ (cit. on p. 11).

https://reactjs.org/
https://www.atlassian.com/agile/
https://www.atlassian.com/agile/
https://developer.mozilla.org/en-US/docs/Glossary/SPA/
https://developer.mozilla.org/en-US/docs/Glossary/SPA/
https://devopedia.org/single-page-application
https://devopedia.org/single-page-application
https://www.geeksforgeeks.org/difference-between-static-and-dynamic-web-pages/
https://www.geeksforgeeks.org/difference-between-static-and-dynamic-web-pages/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.linkedin.com/pulse/understanding-rest-architecture-gabriel-gitonga
https://www.linkedin.com/pulse/understanding-rest-architecture-gabriel-gitonga
https://www.atlassian.com/agile
https://webpack.js.org/concepts/
https://webpack.js.org/concepts/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://npmtrends.com/angular-vs-react-vs-vue
https://npmtrends.com/angular-vs-react-vs-vue
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.newline.co/fullstack-react/30-days-of-react/
https://www.newline.co/fullstack-react/30-days-of-react/

BIBLIOGRAPHY

64

[14] authors of W3school. React Tutorial. https://www.w3schools.com/react/
react_jsx.asp (cit. on p. 11).

[15] react documentation authors. ReactDOM. https://reactjs.org/docs/
react-dom.html. 2022 (cit. on p. 11).

[16] Code Academy authors. Virtual DOM. https :// www . codecademy . com /
article/react-virtual-dom (cit. on p. 11).

[17] REACT ROUTER authors. Primary Components. https://v5.reactroute
r.com/web/guides/primary-components (cit. on p. 12).

[18] Cem Eygi. React.js for Beginners-Props and State Explained. https ://
www.freecodecamp.org/news/react-js-for-beginners-props-state-
explained/. Feb, 2020 (cit. on p. 13).

[19] Ohans Emmanuel. React lifecycle methods: An approachable tutorial with
examples. https :// blog . logrocket . com / react - lifecycle - methods -
tutorial-examples/. Apr, 2021 (cit. on p. 14).

[20] reactJS doc authors. Hooks at a glance. https://reactjs.org/docs/hooks-
overview.html (cit. on p. 14).

[21] Esteban Herrera. State in React: A complete guide. https://blog.logrocket.
com/a-guide-to-usestate-in-react-ecb9952e406c/. Dec, 2020 (cit. on
p. 14).

[22] Ihechikara Vincent Abba. React Hooks Tutorial – useState, useEffect, and
How to Create Custom Hooks. https :// www . freecodecamp . org / news /
introduction-to-react-hooks/. Oct, 2021 (cit. on p. 15).

[23] Obinna Ekwuno. Tailwind CSS vs. Bootstrap: Is it time to ditch UI kits?
https://blog.logrocket.com/tailwind-css-vs-bootstrap-ui-kits//.
July, 2021 (cit. on p. 18).

[24] tailwindcss authors. Installation - integratio guides. https://v2.tailwindc
ss.com/docs/installation (cit. on p. 18).

[25] tailwindLABS authors. Completely unstyled, fully accessible UI components,
designed to integrate beautifully with Tailwind CSS. https://headlessui.
com/ (cit. on p. 20).

[26] Techzaion Blog authors. Validation with Yup. https://www.techzaion.com/
validation-with-yup (cit. on p. 22).

[27] Redux Documentation authors. Redux Essentials, Part 1: Redux Overview
and Concepts. https://redux.js.org/tutorials/essentials/part-1-
overview-concepts (cit. on p. 22).

[28] Alex Bachuk. Redux - an introduction. https://www.smashingmagazine.
com/2016/06/an-introduction-to-redux/ (cit. on p. 23).

https://www.w3schools.com/react/react_jsx.asp
https://www.w3schools.com/react/react_jsx.asp
https://reactjs.org/docs/react-dom.html
https://reactjs.org/docs/react-dom.html
https://www.codecademy.com/article/react-virtual-dom
https://www.codecademy.com/article/react-virtual-dom
https://v5.reactrouter.com/web/guides/primary-components
https://v5.reactrouter.com/web/guides/primary-components
https://www.freecodecamp.org/news/react-js-for-beginners-props-state-explained/
https://www.freecodecamp.org/news/react-js-for-beginners-props-state-explained/
https://www.freecodecamp.org/news/react-js-for-beginners-props-state-explained/
https://blog.logrocket.com/react-lifecycle-methods-tutorial-examples/
https://blog.logrocket.com/react-lifecycle-methods-tutorial-examples/
https://reactjs.org/docs/hooks-overview.html
https://reactjs.org/docs/hooks-overview.html
https://blog.logrocket.com/a-guide-to-usestate-in-react-ecb9952e406c/
https://blog.logrocket.com/a-guide-to-usestate-in-react-ecb9952e406c/
https://www.freecodecamp.org/news/introduction-to-react-hooks/
https://www.freecodecamp.org/news/introduction-to-react-hooks/
https://blog.logrocket.com/tailwind-css-vs-bootstrap-ui-kits/
https://v2.tailwindcss.com/docs/installation
https://v2.tailwindcss.com/docs/installation
https://headlessui.com/
https://headlessui.com/
https://www.techzaion.com/validation-with-yup
https://www.techzaion.com/validation-with-yup
https://redux.js.org/tutorials/essentials/part-1-overview-concepts
https://redux.js.org/tutorials/essentials/part-1-overview-concepts
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/

BIBLIOGRAPHY

65

[29] @archnabhardwaj. explain Reducers in Redux. https://www.geeksforgeeks.
org/explain-reducers-in-redux/. Feb, 2022 (cit. on p. 23).

[30] vermaanushka. Difference between Fetch and Axios.js for making http requests.
https :// www . geeksforgeeks . org / difference - between - fetch - and -
axios-js-for-making-http-requests/. Jul, 2021 (cit. on p. 25).

[31] authors of Axios-Http.com. Getting Start- what is Axios. https://axios-
http.com/docs/intro (cit. on p. 25).

[32] authors of reactJS authors of. File structure. https://it.reactjs.org/
docs/faq-structure.html/ (cit. on p. 30).

[33] Node Js authors authors. What is Node.js. https://www.javascripttutor
ial.net/nodejs-tutorial/what-is-nodejs/ (cit. on p. 31).

[34] Abhishek Singh. Create-react-app files/folders structure explained. https://
medium.com/@abesingh1/create-react-app-files-folders-structure-
explained-df24770f8562/. 14 June, 2020 (cit. on p. 31).

[35] authors of Wikipedia. Cloudinary. https :// en . wikipedia . org / wiki /
Cloudinary/ (cit. on p. 50).

https://www.geeksforgeeks.org/explain-reducers-in-redux/
https://www.geeksforgeeks.org/explain-reducers-in-redux/
https://www.geeksforgeeks.org/difference-between-fetch-and-axios-js-for-making-http-requests/
https://www.geeksforgeeks.org/difference-between-fetch-and-axios-js-for-making-http-requests/
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://it.reactjs.org/docs/faq-structure.html/
https://it.reactjs.org/docs/faq-structure.html/
https://www.javascripttutorial.net/nodejs-tutorial/what-is-nodejs/
https://www.javascripttutorial.net/nodejs-tutorial/what-is-nodejs/
https://medium.com/%40abesingh1/create-react-app-files-folders-structure-explained-df24770f8562/
https://medium.com/%40abesingh1/create-react-app-files-folders-structure-explained-df24770f8562/
https://medium.com/%40abesingh1/create-react-app-files-folders-structure-explained-df24770f8562/
https://en.wikipedia.org/wiki/Cloudinary/
https://en.wikipedia.org/wiki/Cloudinary/

	Summary
	Acknowledgements
	Table of Contents
	List of Figures
	Acronyms
	SPA
	MPA
	REST
	JSON
	SOAP
	NPM
	CLI
	DOM
	JSX
	DRY

	Introduction
	1.1 Motivation
	1.2 Thesis objective
	1.3 Thesis structure

	Overview Of Web Concepts
	2.1 Theoretical Concepts of Web Application
	2.1.1 Single Page Application
	Single Page Application vs Multi Page Application
	SPA Advantages:
	SPA Disadvantages:

	2.1.2 Dynamic vs Static web page
	2.1.3 RestAPI
	2.1.4 Agile methodology
	2.1.5 Webpack
	2.1.6 Node.js
	NPM (Node Package Manager)
	Node Module

	2.1.7 DOM element

	2.2 Libraries and frameworks
	2.2.1 Compare between libraries and framework
	2.2.2 React.js
	JSX
	React DOM
	React Router
	Props vs State
	Props
	State
	React Classes and Functions Component
	React Hooks

	Development Tools and Technologies
	3.1 Technologies and Tools
	3.2 Implementation of react app
	3.3 Implementation of external libraries
	3.3.1 Tailwind
	Tailwind Customization

	3.3.2 HeadlessUI
	3.3.3 Formik and yup
	development Skeleton of Formik components
	A brief explanation about Yup

	3.3.4 Redux
	Implementation of Redux components

	3.3.5 Axios
	3.3.6 Chart.js and React Chart js2

	Implementation Phase
	4.1 Introduction of the Desktop version
	4.2 Web version development
	4.2.1 Files and Folders created by CRA and their structure
	PUBLIC folder
	SRC folder

	4.3 Required Pages and Their Implementation
	4.3.1 Theme Selector
	Theme Selector developing phase

	4.3.2 Reports
	Developing ’Riepilogo Giornalieri’ reports
	HeadlessUI utilization with Report pages
	Implementing individual charts
	Developing ’Produttività Collaborati’ report page

	4.3.3 Landing page
	Developing Landing Page List
	Developing Creator Page
	Utilization of Formik library with landing page
	Preview component development

	4.3.4 Impostazioni
	Pages implementation and form validation

	Conclusion and Future Works
	5.1 Conclusion
	5.2 Future Work
	Responsive page
	Adding a dashboard
	Multi language support

	Bibliography

