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Summary

The evolution of technology used in the service of human work has led to the develop-
ment of human-machine interaction (HMI) systems. They enable the performance
of certain functions and the achievement of specific goals through collaboration
between humans and machines. These systems are incredibly innovative and can
be extremely useful for humans; moreover, the HMI systems can be used mainly
in two ways. In some cases, they are specifically designed to relieve the subject
of several tasks carried out directly by the machine. In other cases, the operator
must fulfill several duties simultaneously because of the interaction with the HMI
device. These situations generate high stress and mental workload (MWL) levels
in the subject, leading him or her to perform incorrect actions and risky situations
in which accidents are more likely to occur. Hence, HMI systems must be created
to avoid these dangerous situations for the person interacting with the machine
and those around him. These safety mechanisms are also based on measuring and
controlling the subjects’ stress and cognitive load, preventing them from performing
tasks or functions if these two altered states are too pronounced. In the context
of this study, reference is made to aviation pilots who increasingly interact with
machines during their work. There is also a tendency to move from having two
pilots per aircraft to only one by replacing the copilot with an HMI system; the
so-called Single Pilot Operation SPO. HMI technologies have the task of supervising
the pilots and, in case these systems notice that they are overloaded, giving support
by simplifying the charges they must fulfill or even replacing the pilots themself.
Various biosignals have been seen to visualize changes in these two altered states;
the most studied are the f-NIRS, the EDA, the ECG, the respiration, the body
temperature, and the ocular signal. The last one is the signal analyzed in this
thesis work, which gets more attention in the field of research, especially in the
aeronautical one. Therefore, this study aims to relate stress and cognitive load
variations to the eye signal. The goal was achieved through initial research of
the state of the art regarding the features and their trends that can be extracted
from the ocular signal and related to variations in stress and MWL. Subsequently,
a test session was carried out with 64 volunteer participants who were asked to
perform two kinds of tests, called Stroop and N-Back tests, explicitly designed
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to generate feelings of stress and MWL in the subjects. The signal was acquired
through the gold standard in eye-tracking Tobii Glasses 3. Finally, from the ocular
signal, different types of eye movements were identified, and from them, various
features were extracted. Some metrics were already analyzed in the literature, but
others were never investigated; among them, a few are coming from a frequency
analysis. The results showed that 83In conclusion, promising results have been
found in this thesis study that push us to continue research in this field to achieve
the development of increasingly reliable and safe HMI systems.
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Chapter 1

Introduction

Increasingly used in a variety of technological applications, Human-Machine Inter-
action (HMI) systems are evolving rapidly. HMI technologies are systems where
machines and humans collaborate for satisfying functions through interaction. They
are gaining more and more popularity thanks to the rapid advancement of technol-
ogy that can be used to support human work [1]. HMI systems are widely exploited
in healthcare applications, in particular, in the fields of medical diagnostics and
monitoring of patients to assess changes in vital signs [2]. Moreover, they are very
widespread in aviation and automotive fields because they form specific information
at the right time to ensure a proper reaction by the pilot in case of need [2][3]. In
some cases, they are specifically designed to relieve the subject of several tasks
carried out directly by the machine; in other cases, however, the subject finds
himself having to fulfill several tasks simultaneously. If these situations take place,
the mental workload (MWL) and stress levels of the subject increase [4][5]. In
particular, the rising of a high level of these two cognitive conditions could lead to
accidents and fatal errors. As key concepts in this context, stress and MWL must
be studied in order to apply their measurement knowledge to the safety systems
of HMI technologies. In general, they affect mental and emotional processes, thus
hindering decision-making in many situations, even in people’s daily lives. They
are concepts that are very difficult to fix but must be studied and defined to better
understand how to recognize and measure them [4].

MWL is a mental fatigue feeling; a person perceives a high level of MWL if
she or he is performing different tasks at the same time [6]. Instead, stress is a
feeling of discomfort; moreover, it is present in "fight or flight" contests [7]. It
is possible to ensure greater reliability of human performance and, therefore, a
higher level of safety, thanks to the knowledge of stress and MWL measurement
and the use of different real-time control systems and synchronous human-machine
communication [2]. This helps develop the most proper HMI systems.

There are several systems for measuring stress and MWL levels. Historically,
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Introduction

the most used have been subjective questionnaires and behavioral analysis, but
since the former are not applicable in industrial environments, and the latter do not
allow scalability of the approach, methods based on the analysis of physiological
parameters are increasingly being developed in recent years. This diffusion is also
due to the development of new technologies for sensors that made them wearable,
more reliable, and less invasive [8].

Figure 1.1: Tobii Glasses 3

Speaking about the physiological approach, according to the literature, many
biosignals can be related to the variation of stress and MWL; the most studied
are the functional near infrared spectroscopy (f-NIRS), the electrodermal activity
(EDA), the electrocardiogram (ECG), the respiration, the body temperature, and
the ocular signal. The last one is the signal analyzed in this thesis study, which
gets more attention in the field of research [9], especially in the aeronautical one,
for the strong relationship with stress and MWL states shown. Despite this, the
link between the two altered states and the ocular signal has not yet been well
understood; that’s the reason why this paper aims to investigate this relationship
and understand how to extract information about stress and MWL levels from
metrics derived from the signal itself.

To achieve the goal, a test session with 64 participants was carried out; they
were asked to do two tests, the Stroop Test and the N-Back Test. They are two
tests developed by researchers and widely used in literature, designed to generate
different levels of these altered cognitive conditions in the participants. The ocular
signals are acquired through eye-tracker Tobii Glasses 3, shown in Fig. 1.1, and
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later processed for feature extraction. Some of these features were already analyzed
in literature while others were never investigated before. In order to understand the
significance of the features, an analysis of results, followed by a statistical analysis,
has been performed.

The thesis study is structured in four chapters; the first provides the background
information needed to understand the results. All the information already present
in the literature are shown in this chapter: they are about the definition of stress
and MWL, the two tests performed by the participants, and the state-of-the-art
of eye movement processing for stress and MWL detection. Moreover, they are
described the devices used in the past and the present for ocular signal acquisition,
and the device used in this study, and the related software. Finally, there is the
description of the acquisition protocol. Chapter 3 describes the materials and
methods used in this study, in particular, the preprocessing and the processing of
the signal for feature extraction. In Chapter 4 results are described and discussed,
while in Chapter 5 the conclusive observations are listed.

1.1 Objectives of the thesis project
The objectives of the thesis are the following ones:

• Definition of the best significant eye-tracking features to evaluate stress and
mental workload variations.

• Definition and implementation of tests to detect mental workload variations
to gather a significant dataset.

• Extraction of the selected features from the data gathered from the tests.

• Evaluation of the correlation between stress, mental workload variations, and
eye tracking parameters variations.

3



Chapter 2

Background

In this section, background information are provided: the difference between MWL
and stress is highlighted, the Stroop and N-Back Tests are described, and an
overview of eye physiology and eye movements is carried out. Then, research about
the state-of-the-art of eye movement processing for stress and MWL detection, the
history of eye-tracking, and related devices and applications is performed. Then,
the dataset acquisition, with the device and the software used, is explained. Finally,
the theory part regarding the normalization, the comparison between Tobii Pro
Lab and the algorithm, and the statistical analysis.

2.1 Mental Workload

To date, there is no single definition of ’Mental Workload’ but different interpre-
tations depending on the field of research. For example, Alsuraykh et al. [7]
define Mental Workload (MWL) as the relationship between the demands on the
subject and the resources he employs to cope with them. It is closely related to the
processes of attention and the concept of effort; moreover, it is a person-specific
and complex construct. It is the cognitive effort required to complete a task in a
limited time [6], and it reflects not only task specificities but also the operator’s
abilities and performance. In fact, excessive cognitive load decreases both the
subject’s performance and his motivation by increasing the number of errors made
in performing the assigned task [7]. Instead, too low cognitive workload levels
may result in errors or accidents due to boredom. MWL is strongly related to the
sympathetic nervous system, so that it can be recognized in many physiological
signals. In this thesis study, the terms "mental workload" and "cognitive load" are
used as synonymous, as explained in the review of Luzzani et al. [8].
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Background

2.2 Stress
Hans Selye [10], also known as the "father of stress", was the first researcher to
define stress; according to him, it is "the nonspecific response of the body to any
demand". For others, Selye’s definition is too general and, it has to be taken into
account that, according to the various disciplines, the term "stress" has different
meanings. Richard Lazarus [11] has resumed them in these words: "For sociologists,
it is a disequilibrium, that is disturbances in the social structure within which
people live. Engineers conceive of stress as some external forces which produce
strain in the material exposed to it. Physiologists deal with the physical stressors
that include a wide range of stimulus conditions that are noxious to the body."
According to the different meanings of stress just named, the definition that best
fits, in this study, is the lack of balance between the ability of the subject and the
environmental context in which it is located [7].

From the physiological point of view the concept of stress is closely related to the
"fight or flight" mechanism. It is the body’s reaction to a threat, allowing humans
to survive situations of great stress and danger. It is regulated by the sympathetic
nervous system, which leads to the secretion of adrenaline and stress hormones by
the adrenal gland. The release of these hormones triggers a series of phenomena:
the heartbeat accelerates and, with it, the blood pressure increases, the respiratory
rate speeds up, digestion slows down and there is a diversion of blood flow to the
main muscle groups to give the body a burst of energy and strength. The body
becomes tense, ready to react, exactly to fight or fly. This stress response occurs
automatically and involuntarily and often helps to perform better when people are
under pressure and to increase their performance [12].

In recent years, the scientific contribution in the search for indicators that
can identify variations in stress and cognitive load has greatly increased. Several
biological signals have been detected, including the signal from eye movements.

2.3 Stress and MWL relationship
Stress and MWL are not two separate concepts with no relationship. In fact, as
explained in Luzzani et al. [8], stress is a factor that, with the MWL, could influence
activity performance. Analysing Fig. 2.1, the first block Task Load represents the
tasks and the duties that a subject must perform; the second block Mental Load
represents the amount of cognitive load necessary to carry out all the tasks with
and high-performance level. If the third block, called Deplation Factors is added,
then stress, fatigue and motivation are additional perceptions that the subject must
manage that lead to the fourth block Performance that represents how a person is
carrying out the tasks assigned.
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Figure 2.1: Stress and MWL relationship

2.4 Methods for stress and mental workload as-
sessment

This study is concerned with measuring stress and MWL variations; that is why it is
necessary to use tests to generate these states of alteration. Several tests have been
developed depending on the aim and context in which they take place; for example,
for aviation pilots, researchers developed different types of tasks, pursuit and tunnel
tasks, to be performed in a flight simulator [13]. Always in the aeronautic field, air
traffic controllers performed a Terminal Radar Approach Control [14]. All these
aeronautical tests are explained in section 2.6. In more general areas, other types
of tests have been developed; for example, in the study of Herten et al. [15] the
Trier Social Stress Test (TSST) was assigned. The participants have the task of
making a speech in public, which is a well-known stressful contest, in conditions of
control, so with a "friendly" committee, or not. In section 2.6, other tests applied
are explained: the Button Operation Experiment [16] and Digit Span Task [17].
Moreover, another way for generating altered states in the subjects is giving them
cognitive tasks to carry out within a virtual environment [18] or not [19]. Two tests
broadly applied for generating states of stress and high MWL are the Stroop Test
[20] and the N-Back Test [21]; they are also the two tests used in this research.

2.4.1 Stroop Test

The Stroop Test is designed to create stress conditions in the participant. In the
Stroop Test it is shown on the screen a word that means a color, colored any color.
The participant must type the color of the word and not the color representing the
meaning of the word. In Fig. 2.2 an example of Stroop Test interface is shown.

6



Background

Figure 2.2: Example of Stroop Test Interface

2.4.2 N-Back Test
The N-Back Test is designed to create conditions with different levels of MWL in
the participant. In the literature can be found several examples of this test applied
to stress different perceptual channels: auditory, visual, etc. In all these kinds
of tests the aim is to remember as many previous steps as possible. Fig. 2.3 an
example of N-Back Test interface is shown.

Figure 2.3: Example of N-Back Test Interface
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2.5 Eyes
The eyes are one of the most essential communication and sensing tools of the
human body. In general, the face, and in particular the eyes of people, are an
important means of communicating their feelings and helping others understand
what they are expressing [22]. The study of eye movements is, for example, used
in areas such as marketing to know how a subject makes decisions and thus buys
a product rather than another [23]. They are also studied in the medical field
because changes in the timing of eye movements or the suppression of some of them
can mean the presence of any pathological states [24].

The signals that can be extrapolated from the eyes are their movement and the
size of the pupil. These signals can be acquired with different devices and methods:
the oldest is the electrooculogram (EOG), which is deeply described in section
2.7. The most modern devices are eye trackers, which are used for measuring the
position and movement of the eyes through different techniques.

2.5.1 Eye Movements
There are several types of eye movements that are distinguished mainly by their
frequency, amplitude, and duration; they are explained below.

• Fixations are used to examine a visual scene, they are present when a
person is staring at an object, and they last from 200 ms to several minutes.
During fixation, the gaze does not remain perfectly fixed, but rather, it is in
constant movement: these involuntary eye movements are called fixational eye
movements and are divided into groups such as tremor, drift, microsaccades,
and saccadic intrusions (SI) [25].

Precisely, these small movements allow to capture the details of a visual scene.
If a scene were completely static without a retinal image refresh, there would
be a rapid adaptation to it [26]. In fact, if the retina always receives the same
image, its receptors undergo uniform stimulation, and the visual scene dissolves
from sight; this loss of visual information is contrasted by the fixational eye
movements [27].

• Saccades are fast, jerky, and ballistic eye movements; they allow a shift of the
gaze from one point to another. Their velocity reaches 50 angular degrees per
second, and their duration ranges from 20 to 200 ms. These kinds of saccades
are classified as "regular saccades" to distinguish them from other types of
saccadic eye movements, as microsaccades and saccadic intrusions, explained
below.
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• Microsaccades and SIs, also being part of fixations, have the typical features
of saccades; in fact, they are also rapid deviations of the gaze, but they do
not change in substance its position; therefore the eye continues to stare at
the same visual scene. They are present only on the horizontal axis of the
eye and, they occur synchronously on both eyes in the same direction; it is
therefore said that they are conjugated [25]. What differentiates microsaccades
from SIs is mainly the amplitude of the eye movement. Microsaccades have
amplitudes smaller than 0.4° [28]. Regarding SIs, their amplitude goes from
0.4° to 4.1°, and they have a dwell time, so the time where the gaze is away
from the original position of the gaze, ranging from 60 to 870 ms [28]. They
are composed of a first rapid shift of gaze position and a consequent coming
back of the gaze to the original fixation point; the total path of the eye is
rounded. Both microsaccades and SIs have a duration of the one-way path of
30 ms and occur 0.1 to 3 times a second [29].
In Fig. 2.4, fixations, saccades, and SIs are graphically described.

Figure 2.4: Graphical description of fixations, saccades and SIs

• Tremor is an aperiodic oscillatory eye movement with a bandwidth ranging
from 30 to 80 Hz [28]. It has a small amplitude (15 minarc), and it is
independent in the two eyes. Due to his amplitude and bandwidth, which are
in the range of the recording system’s noise, it isn’t easy to detect it accurately
[27].

• Drift is a slow and not-conjugated eye movement (1-3 minarc) [28] that
occurs during the phases without microsaccades for maintaining accurate
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visual fixation in their absence. Both tremor and drift might result from
variability of neuronal firing to the ocular muscles and noise [27].

The characteristics of the eye movements just explained are resumed in Table 2.1.

Table 2.1: Summary table of characteristics of eye movements

Eye Movement Amplitude Lasting Frequency Velocity Bandwidth

Fixation <1° 200 ms - min - - -

Saccade >1° 20 - 200 ms - 50 °/s -

Tremor 15 minarc - - - 30 - 80 Hz

Drift 1-3 minarc - - - 0 - 0.5 Hz

Microsaccade <0.4° - 0.1 - 3 Hz - -

SI 0.4°- 4.1° 60 - 870 ms 0.1 - 3 Hz - -

2.6 State-of-the-art of eye movements assessment
A vast research in literature has been performed to understand which are the
relationships between features extracted by ocular signal and variation of stress and
MWL. From this analysis, it is possible to observe that the most studied features,
in past and current studies, are related to blinking, pupil diameter adaptation,
fixation and saccade eye movements, and to SIs. They are explained below:

Blinking
One of the main features related to blinking is the blink rate. In particular,

the issue of blink rate variation with different levels of stress and MWL is very
discussed:

• Brookings et al. [14] in 1996 dealt with the signal coming from eye movements
acquired by EOG of eight air traffic controllers performing a Terminal Radar
Approach Control. Their conclusions were that the blink rate decreases if
MWL increases.

• Veltman et al. [13] in 1998 studied blink interval, defined as the time in
between two successive eye blinks, and blink duration. The participants of this
study were twenty pilots in a flight simulator; they had to carry out two kinds
of trials. The first one is a pursuit task of a targeted jet at a large distance;
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this task was expected to be easy because the considerable distance enabled
a thorough anticipation of the maneuvers of the target jet. The second one
was a tunnel task where they were required to fly in a tunnel, with varying
levels of difficulty, with a continuous memory task with four levels of difficulty.
EOG acquired the eye movements, and the results were that blink interval
and blink duration decrease if MWL increases.

• Recarte et al. [19] in 2008 carried out two different trials: the first one was a
cognitive task with no visual demand, while the second one was a cognitive task
with visual need. The cognitive task could be listening, talking, or calculating.
The device used is the eye-tracking system ASL 5000 with a video recorder.
They found that the blink rate becomes bigger if MWL increases, but if a
visual task is performed, the blink rate decreases.

Pupil diameter
First of all, this feature is very sensitive to variations of stress and MWL but, on

the other hand, very sensitive to changes in the environment’s illumination. The
lighting of the domain is complex to keep constant; that is the reason why this
problem is difficult to overcome and can fake the results. Nowadays, researchers
are trying to find new sensitive features that are less dependent on external stimuli.

• Recarte et al. [19] also focused on the variation of pupil dimension with a
variation of MWL: they claim that there is a direct proportionality between
them.

• Tokuda et al. [29][25] in 2009 and later in 2011 carried out trials where
participants were asked to perform N-Back Tests while staring at one point or
while moving their gaze over a picture. The device used is the eye-tracker Tobii
1750 with a 50 Hz resolution. They found out that pupil diameter becomes
bigger if MWL increases.

• He et al. [16] in 2012 studied, among other features, the relative dimension of
the pupil and came to the same conclusions as the previous papers. The test
they implemented was a Button Operation Experiment where subjects were
required to press the keyboard key corresponding to the letter appearing on
the screen; the time pressure varied to increase the difficulty of the task.

• Coyne et al. [17] in 2016 enrolled ten volunteers who participated in an
experiment in which a Digit Span Task was employed to manipulate MWL.
In this study, they performed the auditory version where to participants were
presented series of numbers and then instructed to recall the digits in the
same order which they were heard. Eye movements were recorded through the
eye-tracker Eye Tribe. Researchers found out that pupil diameter increases if
MWL increases.
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• Hirt et al. [18] in 2020 used a virtual environment where there were different
stressors and tasks to fulfill, to induce stress in participants. The setup
consisted of an HTC Vive with an integrated eye tracker from Pupil Labs that
works at 200 Hz. Their findings were that pupil diameter increases if MWL
increases.

Fixation
Being one of the main groups of eye movements, fixations are deeply investigated.

In particular, their frequency and lasting are studied.

• Recarte et al. [30] in 2003 studied the effects of MWL on visual search and
decision-making in real traffic conditions with twelve participants who drove
an instrumented car. An unobtrusive eye-tracking system (Applied Science
Laboratories (ASL), Bedford, MA) with 50 Hz resolution was used. When
more relevant traffic targets were in the visual field, eye fixations on roadside
advertisements (irrelevant peripheral objects) were significantly reduced in
favor of traffic information. Moreover, tasks with high spatial imagery content
produced not only more pronounced effects but also a particular pattern of
long fixations.

• He et al. [16] studied fixations frequency (pcs/min) and average fixation time;
they found that both these features increase if MWL increases.

SI
SIs are a bit less investigated than the other eye movements:

• Tokuda et al. [25] found that features related to SIs are very sensitive to
variations in MWL. In particular, they studied the SI value: it is the average
amplitude in the evaluation period of a trial and represents the SI behavior. SI
value has a unit of measurement of deg/sec, and it increases if MWL increases.

Saccade
Being one of the main groups of eye movements, saccades are deeply studied.

In particular, their frequency and velocity are investigated.

• He et al. [16] were also interested in saccadic frequency (pcs/s) and average
saccades velocity (rad/s); they concluded that they increase if MWL increases.

Table 2.2 shows the trend of the features already investigated in the literature.
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Feature Trend
Blinking frequency ↑ ↓
Blinking lasting ↓
Blinking interval ↓
Fixation frequency ↑
Fixation lasting ↑
Saccades frequency ↑
Saccades velocity ↑
SI value ↑
Pupil diameter ↑

Table 2.2: Features trend showed by the literature

2.7 Eye-Tracking: history, devices and applica-
tions

Eye tracking allows recording eye movements and analysing human processing
of visual information for interactive and diagnostic applications. More precisely,
this technology’s application fields are neuroscience and experimental psychology,
human-computer interaction, and still computer vision and marketing. The methods
used to perform eye-tracking in the first studies concerning the movements of the
eyes were based on invasive technologies that required, for example, the use of
contact lenses and chin guards or bite bars to prevent the movement of the head
and, therefore, any artifacts due to them. An example is the EOG [31].

The EOG is a technique that allows the recording of eye movements by measuring
the electrical potential present between the cornea and the posterior pole of the eye.
Since this biopotential is proportional to the angle of rotation of the eye, the fixation
points can be found from the recorded signal. In Fig. 2.5 it is explained the EOG
principle of operation. An advantage of EOG over eye trackers is that it identifies
the fixation point even if the eyelashes are closed, and the surrounding environment
is dark. It is also easy to configure as it consists of two electrodes placed on the
right and left temples of the subject; the measured potential is amplified by DC or
AC amplifiers. The disadvantages of this method of recording, which makes it not
so popular, are the noise created by the movement of facial muscles and blinking
and the drift present in long recordings when using DC amplifiers [32].

Due to all these limitations, the discomfort caused to the subject, and the fact
that these technologies were applicable only to specific contexts, new eye-tracking
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Figure 2.5: EOG principle of operation

methods were developed, moving towards video-based techniques. Around 1935,
with the rise in popularity of film recordings, the first non-contact eye-tracker was
built: it was based on the reflection of beams of light from the cornea and their
recording on moving films. Later, in the post-second World War era, the issue of
immobilizing the head during eye-tracking experiments was no longer a problem
thanks to the development of the first head-mounted eye-tracker. However, there was
still the issue of discomfort due to the use of a mouth plate [33]. Nowadays, the newer
video-based techniques used for eye-tracking are less invasive, more comfortable,
and more accurate; in addition, they have different possible configurations: there
are head-mounted, desk-mounted, and eyeglass-mounted high-speed cameras [31].
Moreover, today, there is a move towards greater accessibility of eye-tracking by the
public; in fact, software that, without the help of additional devices and sensors,
works on hardware such as phones or tablets, has been developing. However,
the accuracy of the tracking of eye movements differs from that obtained with
video-based techniques [34].
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2.8 Data set acquisition
This thesis is part of the BiLoad research project of the Politecnico di Torino. The
protocol on which the acquisitions carried out in the study are based has been
approved by the Politecnico itself with a Protocol Number 1606. The Stroop Test
and the N-Back Test interfaces have been implemented during a previous step of
the project to generate stress and MWL states. In this section, the acquisition
protocol will be described; in particular, there will be a focus on the different
biosignals acquired, on Tobii Glasses 3 and Tobii Pro Lab that are, respectively,
the devices used for acquiring the signal and for processing it, and the structure of
the trial. In Fig. 2.6 and 2.7 the trial setup is shown.

Figure 2.6: Trial setup: side shot
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Figure 2.7: Trial setup: frontal shot
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2.8.1 Biosignals acquired
The participants were asked to perform two different kinds of tests, the Stroop
Test and the N-back Test, while wearing sensors costumed for acquiring various
biosignals. All the signals acquired, except to the ocular signal, were recorded
through Biosignalplux Professional KIT [35].

• fNIRS is the signal that measures the oxygenation of the brain and, conse-
quently, the most used areas in a particular moment. The signal is collected
with a single sensor placed on the forehead and held down through a belt; it
uses two different lights, one red and one infrared.

• Respiration is measured by a belt placed around the chest and closed with a
sensor consisting of an estensimeter that detects the variation of the dimension
of the chest and relates it with a variation of impedance. In this way, it allows
the estimation of the inhaled air volume.

• Body temperature is acquired by a thermocouple placed on a hand finger;
the principle of its functioning is that if the finger’s temperature changes, the
voltage measured by the sensor changes.

• Electrodermal Activity (EDA) represents the electrical activity of the skin
surface. This signal is measured by two electrodes placed on the forefinger
and the middle finger of one hand.

• Electrocardiogram (ECG) indicates the electrical activity of the heart,
measured on the body surface. Three electrodes placed on the upper left side
of the chest are used.

• Eyes Movements are recorded by Tobii Glasses 3 eye-tracker worn by the
participant.

2.8.2 Tobii Glasses 3
Eye movement data are taken using the Tobii Glasses 3 eye-tracker [36], shown in
Fig. 2.8, and considered the gold standard for acquiring data on fixations, saccades,
and the subject’s pupil size. Tobii Glasses 3 is a wearable eye-tracker for academic,
commercial, and industrial use to capture truly objective and deep insights into
human behavior in a real-world environment. The glasses are designed to capture
what the wearer is viewing while providing robust and accurate eye-tracking data.
The complete Tobii Glasses 3 system consists of a head unit, a recording unit, and
the Tobii Glasses 3 controller application installed on an external device. Tobii
Glasses 3 collects the visual data of the wearer and records a video with audio
of the surrounding environment. The time resolution is 50 Hz while the spatial
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Figure 2.8: Tobii Glasses 3 setup and his additional devices

resolution is 0.6°, the video resolution is 1920x1080 at 25 fps and the Field of View
(FOV) is 63° vertically and 95° horizontally. In Table 2.3, the characteristics just
named of resolution and Field of View of the device Tobii Glasses 3 are listed. It is

Table 2.3: Tobii Glasses 3 characteristics of resolution and Field of View

Resolution Field of View

Time Spatial Video Vertical Horizontal

50 Hz 0.6° 1920x1080 63° 95°

based on the most widely used technique PCCR [37], the corneal reflection of the
center of the pupil. This method uses a light source close to infrared to illuminate
the eye, thus causing evident reflections, which are highlighted in the pupil and
cornea and photographed by an infrared camera. The image obtained allows to
identify the reflections of the light source. Then it is performed the calculation of
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the vector, composed of the angle between the two reflections on the different parts
of the eye: the direction of the vector is then used to determine the direction of
the gaze [33].

The coordinate systems used by Tobii Glasses 3 are two: the first one is called
Media Coordinate System (MSC), it is a 2D system with its origin in the upper left
corner of the FOV; the x-axis is horizontal and directed towards the right while
the y-axis is vertical and downward, as shown in the Fig. 2.9.

Figure 2.9: Tobii Glasses 3 coordinate system MCS

The second is the Head Unit Coordinate System HUCS which is a 3D coordinate
system with its origin in the center of the scene camera; the axis are directed as
shown in the Fig. 2.10. In both coordinate systems the gaze location uses pixels as
measurement unity. The data exported from Tobii Glasses 3, called Raw Data, has
different fields, as explained below:

• Timestamp: it is the instant related to an eye movement, time axis should
have samples at 20 ms intervals, but some samples are missing due to the
large amount of data recorded;

• Position of the gaze according to the MSC coordinate system in pixels (gaze2D);

• Position of the gaze according to the HUCS coordinate system in pixels
(gaze3D);
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Figure 2.10: Tobii Glasses 3 coordinate system HUCS

• For both, the left and right eye, the gaze origin, the gaze direction, and the
pupil diameter.

Figure 2.11: Extract of raw data

In Fig. 3.9 the first fields of raw data are shown: the timestamp and the gaze
position in the MCS coordinate system. In particular, the first two rows don’t
show the gaze coordinates because the eye tracker couldn’t detect it during the
acquisition phase, this is due to eyelash interference or blinking.

2.8.3 Tobii Pro Lab
Tobii Pro Lab software [38] is adopted for eye-tracking data processing. In general, it
receives input recordings done by Tobii Glasses 3 and provides a visual user interface
and dedicated features extraction software that efficiently guides and supports the
user through all phases of eye-tracking data management and processing.

It is an efficient tool specifically designed for this kind of application. The
interface of Tobii Pro Lab is shown in Fig. 2.12 with all the indications on its
components. Two predefined filters can be applied to raw data: both are based on
velocity threshold algorithms, later explained in Section 3.2, and they are different
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Figure 2.12: Interface Tobii Pro Lab: 1) Data Export; 2) Metrics; 3) Recording
information; 4) Snapshot; 5) Events list; 6) TOIs; 7) TOIs shown graphically; 8)
Events shown graphically

Figure 2.13: TOIs and events shown graphically

just for the threshold they apply in order to distinguish fixations and saccades.
"Fixation" filter has a threshold of 30 degrees/second while "Attention" filter of 100
degrees/second. The first one is used in situations where the subject wearing the
glasses is not moving a lot, while the second is used if, for example, the participant
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is walking or doing other physical activities. Tobii Pro Lab offers the possibility to

Figure 2.14: Metrics file creation

Figure 2.15: Data Export file creation

the user to design other filters, different from the predefined ones, according to the
application and the data quality. These filters are used to classify eye movements; in
fact, Tobii Pro Lab processes data from the eye-tracker and performs a classification
of eye movements. It distinguishes among "Fixations", "Saccades", "Unclassified",
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Figure 2.16: Data Export from Tobii Pro Lab

Figure 2.17: TOIs creation Figure 2.18: Events creation

and "Eyes Not Found". The samples that result as "Unclassified" do not match the
requirements for being classified as saccades and neither for fixations. "Eyes Not
Found" (ENF) is the label to indicate a non-detection of the gaze by the eye-tracker;
this could be due to blinking, eyelash interference, or other reasons. Another tool
is the possibility of performing an Assisted or Manual Mapping of the fixations in
a snapshot. Snapshots are still images of environments and objects of interest; they
can be imported in box 4 if Fig. 2.12. It is also possible to create Events, Time of
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Interest TOIs and Areas of Interest AOIs by mapping eye movements. Moreover,
data chosen by the user, if needed, even related to TOIs and AOIs, can be exported
in TSV files. The user can also decide if to export them in the MSC or the HUCS
coordinate systems; in both coordinate systems, the gaze location uses pixels as
measurement unity. TOIs creation is possible through the boxes 6 and 7 in Fig.
2.12, that are better shown in Fig. 2.17 and 2.13. Events are created through
boxes 5 and 8 in Fig 2.12, which are better shown in Fig. 2.18 and 2.13. Finally, it
extracts a set of features about saccades, fixations, glaces, and visits from data.
An example of Data Export is shown in Fig. 2.16 where among the fields exported
there are the timestamp, the gaze position in MCS coordinate system, the pupil
diameter right and left, and the eye movement type. The interfaces for exporting
metrics and data are in Fig. 2.14 and 2.15 and they can be obtained from boxes 1
and 2 in Fig 2.12.

2.8.4 Structure of the trial
The first very important part of the test session is the explanation of the tests
the participants have to perform. This is followed by the filling of the documents
regarding the privacy policy by the participants themselves, as wanted by the
approved protocol. All the sensors of Biosignalplux Professional KIT and the Tobii
Glasses 3 are worn by the subjects. The trial is structured in different phases:

1. Relax phase: for recording the baseline of every biosignal, it lasts 2 minutes
for the first six participants and 3 minutes for the others.

2. Stroop Test phase: the Stroop Test principle as been already explained
in section 2.4.1, in particular, the test designed for this study consists of a
word shown in the central upper part of the screen, whose meaning is a color,
but its color could be different from the meaning. The participant has to
decide among five different possibilities of colors that are shown in the part
of the screen below. The test aims to click on the color of the region below
corresponding to the meaning of the upper word. The Stroop Test interface
adopted in the research is shown in Fig. 2.19.
At the beginning of the test there is a rest of 5 seconds. Then, it is divided
into three levels designed to be the first one the less stressful and the last one
the most stressful. In particular, the first one is based on congruent words
and noise, the second one on incongruent words and noise while the third one
on incongruent words, noise and color names playing. Each level is divided
from the others by a short phase of relaxation lasting 15 seconds.

3. Relax phase: for coming back to a state of relaxation, it lasts 3 minutes.
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Figure 2.19: Stroop Test interface

4. N-Back Test phase: based on the examples of N-Back Tests in literature
explained in section 2.4.2, in this study the test was developed in three different
versions: visual, auditory, or both visual and auditory tasks. Moreover, it was
decided to structure the tests as follows:

• Visual N-Back Test: it consists of a rectangle that, every two seconds,
moves in a grid-changing position.

• Auditory N-Back Test: it consists of listening to a set of letters through
earphones.

• Dual N-Back Test: it consists of a combination of visual and auditory
tasks, where at the same time, both previous tasks must be managed.

The test aims to remember the order of apparition of the rectangle or the
order in which letters are heard, for remembering the N-th position of the
rectangle before the current one or the N-th letter heard before the current
one. The Dual N-Back Test interface is shown in Fig. 2.20.
The first group of the N-Back Test is the visual one, the second group is the
auditory one, and the last group is a combination of visual and auditory tasks.
Each group has three different levels of difficulty, from the easiest one to the
most difficult one (N=1,2,3).
At first, there are 5 seconds of rest; then, there are the three levels of the Visual
N-Back Test divided each one with 5 seconds of rest. Before the Auditory
N-Back and the Dual N-Back there are 10 seconds of rest, while each level is
divided from the others with 5 seconds of relaxation.
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Figure 2.20: Dual N-Back Test interface

5. Relax phase: for coming back to a state of relaxation, it lasts 20 seconds.
During it, the participant can look at his results.

6. Questionnaire: At the end of the trial, the participant has to fill in a
questionnaire where he is asked to match each level of the tests with one of
the three possible levels of "difficulty". This "difficulty" is not just a simple
concept of effort needed to do the tests but is differentiated by stress and
MWL. In Fig. 2.21 and 2.22 two parts of the questionnaire are shown: the
request of personal data to the participant and the request of the level of
"difficulty" faced in each test.

In Fig. 2.23 the flowchart of the acquisition protocol is explained.
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Figure 2.21: Questionnaire: personal data

Figure 2.22: Questionnaire: level of "difficulty"
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Figure 2.23: Flowchart acquisition protocol

2.9 Different kinds of normalization
To find the most meaningful representation of the data a study about four different
kinds of normalization is carried out during dataset investigation. The types of
normalization are:

• Z-score normalization or standardization: the formula for passing from the
original data vector X to the standardized one Z is Equation2.1.

zi = xi − µ

σ
(2.1)

where zi is the value standardized, xi is the original value of the dataset X, µ
is the mean of all the elements in X and σ is the standard deviation of the
elements in X.
Z is the distance of a data point from the mean in terms of the standard
deviation. The standardized data vector has a mean equal to zero, a standard
deviation equal to one, and retains the shape properties of the original dataset,
in particular skewness and kurtosis. Moreover doesn’t have a fixed range,
isn’t much affected by outliers and it is the best kind of normalization if the
distribution of the data is gaussian.

• Euclidean norm standardization: the formula for passing from the original
data vector X to the standardized one S is Equation 2.2.

si = xi

||x||2
(2.2)

where si is the value standardized, xi is the original value of the dataset X
and ||x||2 is the Euclidean norm of the elements in X.
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The Euclidean norm is calculated in Equation 2.3.

||x||2 =
òØ

|xi|2 (2.3)

The standardized dataset has no fixed range and has an Euclidean norm equal
to zero.

• Mean normalization: the formula for passing from the original data vector X
to the standardized one S is Equation 2.4.

si = xi − µ

max(X) − min(X) (2.4)

where si is the value standardized, xi is the original value of the dataset X
and µ is the mean of all the elements in X.
The standardized dataset has no fixed range.

• Min-Max Scaling: the formula for passing from the original data vector X to
the standardized one S is Equation 2.5.

si = xi − min(X)
max(X) − min(X) (2.5)

where si is the value standardized and xi is the original value of the dataset X.
The new standardized data are scaled in a range [0,1] if there are just positive
values. It is easily affected by outliers but is the best normalization if the
distribution is unknown.

2.10 Comparison Tobii Pro Lab - Algorithm
In this thesis project, an algorithm that extracts the features from the ocular
signal starting from the classification of eye movements is developed. Saccades and
fixation points found with the developed algorithm are compared with the ones
found by the gold standard Tobii Pro Lab. The parameters calculated are accuracy,
sensitivity, specificity, PPV and NPV, and then the F1 score.

The generic confusion matrix is shown in Fig. 2.24 and the equations for the
calculation of each parameter are 2.6, 2.7, 2.8, 2.9, 2.10, 2.11.

accuracy = TN + TP

TN + TP + FN + FP
(2.6)
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Figure 2.24: Confusion matrix

sensitivity = TP

TP + FN
(2.7)

specificity = TN

TN + FP
(2.8)

PPV = TP

TP + FP
(2.9)

NPV = TN

TN + FN
(2.10)

F1score = 2 ∗ PPV ∗ sensitivity

PPV + sensitivity
(2.11)

where TP are the eye movements correctly identified as the eye movements of
interest by the algorithm with respect to the gold standard; TN are eye movements
correctly identified as not being the eye movements of interest by the algorithm
with respect to the gold standard; FP are the eye movements incorrectly identified
as the eye movements of interest by the algorithm respect to the gold standard;
FN are eye movements incorrectly identified as not being the eye movements of
interest by the algorithm respect to the gold standard.
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2.11 Statistical Analysis
Statistical analysis is an important step for the analysis of results. In fact, it allows
to generalize the results found for a population sample to the whole population.
It has been carried out with statistical methods widely used in research. At first,
a Kruskal-Wallis H Test [39] is chosen because the distribution of the classes for
each feature is not Gaussian, so an ANOVA test is not suggested. Then, a Python
code is selected because the classes are not equally populated and, in this language,
the function of this statistical test supports this condition. The calculation of
statistical parameters, p-value and H statistic, is done for each feature, for each
data set, and differentiating between stress and MWL.

2.11.1 Kruskal-Wallis H Test and Mann-Whitney U Test
The Kruskal-Wallis H Test returns two outputs; one is the p-value and the second is
the H statistic. The null hypothesis says that the data in each class of the dataset
comes from the same distribution; the alternative hypothesis is that not all samples
come from the same distribution. The null hypothesis is rejected if the p-value is
smaller than the level of significance (α). The level of significance is chosen to be
0.05. The Kruskal-Wallis H Test is performed on four classes, this means that if the
p-value is smaller than the significance level, at least one couple of classes doesn’t
come from the same distribution. H statistic is calculated with the equation 2.12.

H = 12
N ∗ (N + 1) ∗

kØ
i=1

R2
i

ni

− 3 ∗ (N + 1) (2.12)

where H is the statistic of Kruskal-Wallis H Test, k is the number of classes,
ni the number of observations of classi, N is the sum of all the ni with i going
from 1 to k, Ri the rank assigned to class i. H statistic follows the χ2 distribution
depending from the level of significance and the degrees of freedom, equal to k-1.
H statistic increases if the statistical difference between classes increases either and,
in particular, if H statistic is higher than χ2 distribution corresponding to a level
of significance of 0.05 and a number of degrees of freedom equal to 4-1=3, then the
null hypothesis is rejected. In particular, with a level of significance of 0.05 and a
number of degrees of freedom equal to 3, then the H statistic limit is 7.815. If the
H statistic is higher than this number, then the feature results to be significant.

To better understand which and how many couple of classes are statistically
different in each data set, further statistical analysis post hoc is carried out. A
Mann-Whitney U Test [40] is performed on each couple of classes in each data set
and, even for this test, if the p-value is smaller than the level of significance the
null hypothesis is rejected in favor of the alternative hypothesis, where the null
and the alternative hypotheses are the same as the previous ones.
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Chapter 3

Materials and Methods

This chapter describes how the validation of pixels-degrees conversion is carried
out. Then the signal pre-processing and processing to extract features from it, are
explained. Finally, the dataset is described.

3.1 Validation of Pixels - Degrees Conversion
Tobii Pro Lab Data Export gives the coordinates of each gaze point according
to the MCS reference system originating in the upper left corner of the Field of
View (FOV). The x-axis is directed horizontally, and it is positive on the right side
of the origin, while the y-axis is directed downwards. The developed algorithm,
explained in section 3.6, works with degrees coordinates with a reference system
centered in the center of the FOV, with the x-axis directed horizontally and positive
on the right side of the origin and the y-axis directed upwards. Considering the
two different reference systems, a conversion from the first to the second one, and
between pixels and degrees should be carried out. The different coordinate systems
and the passing from the first described to the second one are shown in Fig. 3.1.

Diaz et al.[41] deal with this kind of double conversion and, referring to Fig. 3.2
they reached the formulas 3.1 and 3.2:

ϕS = −tan−1 2y − pixY

2d
(3.1)

θS = tan−1 2x − pixX

2d
(3.2)

Where ϕS is the angle on the vertical plane that links the participant to the
screen and θS is the angle on the horizontal plane that connects the participant to
the screen. x and y are the gaze coordinates in the MCS coordinate system, while
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Figure 3.1: Reference systems of the Field of View of Tobii Glasses 3 and of the
snapshot representing the screen of the PC

Figure 3.2: Reference systems explained of Diaz et Al. paper
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pixx and pixY are the width and the height of the FOV with the MCS reference
system with origin in the upper left corner.

In order to validate these formulas, a test has been carried out. Two Matlab
interfaces have been created; a rounded marker moves horizontally and vertically,
and his location, which changes every 5 seconds, is known step by step. These
Matlab interfaces are full-screen, this means that their resolution is 1920x1080
pixels as specified by the PC specificities. The interfaces are shown in Fig. 3.3 and
3.4.

Figure 3.3: Interface n.1 with all
marker positions

Figure 3.4: Interface n.2 with all
marker positions

The participant sits in front of the screen with the interface at a known distance
and, wearing Tobii Glasses 3 and without shifting the head, moves his gaze in
order to stare at the marker. In Fig. 3.5 the real setup of the experiment, with
all the parameters used, is shown. In the picture, the FOV indicated is the one
of Tobii Glasses 3, thanks to Tobii Pro Lab the Data Export has a reference
system with the origin in the upper left corner of the screen of the PC. This can
be done thanks to the snapshot corresponding to the screen of the PC imported
in Tobii Pro Lab. Width corresponds to pixx while High corresponds to pixY

of the Equations 3.1 and 3.2. The trial record is loaded on Tobii Pro Lab, and
Assisted and Manual Mappings are performed on the snapshot in Fig. 3.3 and 3.4,
representing the interface. Tobii Pro Lab carries out a mapping of gaze fixation
points on the snapshot giving them in a MCS reference system, with the origin in
the upper left corner of the snapshot itself. Both types of Mapping were performed
in order to understand if eventual errors in the conversion are due to the formulas
themselves or are just due to an offset caused by the calibration of Tobii Glasses
3. Another possible problem could be that there are involuntary saccades of the
participant while staring at the marker that leads the gaze away from it. During
the elaboration of the data coming from Tobii Pro Lab the position of the gaze
is found by averaging the gaze points found by the software; if there are several
saccades and so several gaze points far from the position of the marker, the average
location of the gaze results shifted respect to the marker position.
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Figure 3.5: Real setup of the experiment

It is also added an event Event_start that denotes the marker’s appearance in
the first location. Then, the mapped gaze points, the events, the time axis, the
Width and the Height of the snapshot are exported and loaded in a Matlab script.
The flowchart of the validation of the pixels-degrees conversion is shown in Fig.
3.6.

The steps followed are:

1. A Conversion Factor is calculated: the length of the PC screen in mm is
divided by the horizontal resolution of the screen, that is 1920 pixels, and it
results to be 0.1765 mm/pixel;

2. The measured distance between eyes and screen in mm is converted in pixels
through the Conversion Factor;

3. TOBII PRO LAB: The instant where Event_start was added is detected; from
this moment it is known that every 5 seconds the marker changes position
and so the participant’s gaze;

4. TOBII PRO LAB: From Event_start the Mapped Gaze Points detected every 5
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Figure 3.6: Flowchart pixels-degrees conversion validation
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seconds are averaged; they represent the position of marker according to Tobii
Pro Lab with a pixel measurement unit and referred to the MCS reference
system (green snapshot in Fig. 3.5);

5. TOBII PRO LAB: The angles on the vertical ϕS and on the horizontal θS

planes that link the participant to the screen, which refers to the average
position of the gaze of the participant while staring at the marker are calculated
through the Equations3.1 and 3.2. The picture of reference is Fig. 3.2;

6. MATLAB: While creating the interface, the positions of the marker are set
up and are referred to the reference system of the Matlab picture that has
the origin in the upper left corner of the image, moreover they are in pixel
measurement unit;

7. MATLAB: the known coordinates are expressed in a new reference system
centered in the center of the picture as shown in Fig. 3.1;

8. MATLAB: Equations 3.1 and 3.2 are applied to the known positions of the
marker, and ϕM and θM are obtained;

9. The two couples of angles are compared.

3.1.1 Dataset description for validation
The participants are 4, for a total number of registrations of 15. Some of these
recordings are done with a distance between the person and the screen of about 50
cm while others with a distance of about 1 meter and a half.

3.2 Algorithm for saccades identification
There are two main categories of algorithms used to classify fixations and saccades.

• Fixation picker method: the fixation candidates and, therefore, the inter-
fixation intervals are identified; if the inter-fixation intervals exceed a minimal
duration and amplitude, they aren’t removed from the list of inter-fixation
intervals; if they don’t exceed the two fixations at the ends are merged.

• Saccade picker method: the saccade candidates are identified, and the ones
that don’t satisfy the selection rules based on minimal saccade amplitude and
minimal saccade duration are removed. In this way, the inter-saccade intervals
are fixation candidates. Finally, with the minimal fixation duration rule, the
fixations are identified.
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In these two categories, there are different kinds of algorithms, based on different
principles, for identifying the two types of eye movements [42].

• Dispersion-based algorithms: they belong to the fixation picker category; they
are based on the fixations identification through rules about the location and
the duration of the fixations itselves. The more used is the Disperion-Threshold
Identification algorithm; although it is well established and an integrated part
of many commercial software, it is very sensitive to noise and drifts in the
data and is poor at providing accurate temporal estimates of event onsets
and offsets [43]. Robustness and accuracy are the best between the different
groups of algorithms, and speed and implementation ease are high [44].

• Velocity-based algorithms: they are based on a velocity threshold that decides
if a sample belongs to a fixation or a saccade. They are easy to implement
and more transparent than dispersion-based algorithms, but they are more
sensitive to noise around the threshold, and even choosing the right threshold
isn’t easy. They are sometimes combined with acceleration criteria to find
saccade onset and offset; the issue rising is that additional filtering is needed
since the level of noise increases with the numerical differentiation [43]. The
accuracy is good, speed and implementation ease are the best between the
different groups of algorithms, while robustness is not as good [44].

• Area-of-Interest Identification algorithms: they identify fixations that occur in
certain AOIs and use a threshold on the duration of the fixation. The methods’
accuracy is not as good while speed and robustness are high; moreover, it is
easy to implement [44].

The characteristics of the different methods are summarized in Table 3.1.

Method Accuracy Speed Robustness Impl. Ease

Disperion-Based Alg. ✓✓ ✓ ✓✓ ✓

Velocity-Based Alg. ✓ ✓✓ X ✓✓

Area-of-Interest Alg. X ✓ ✓ ✓

Table 3.1: Summary of methods for saccades and fixations identification

3.2.1 Implemented algorithm description
The algorithm developed in this study follows Tokuda’s one, implemented in 2009
and improved in 2011. It belongs to the saccade-picker group and, in particular, to
the velocity-based algorithms.
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The algorithm wants to detect and distinguish saccades and fixations. At first,
the algorithm wants the division of saccades and fixational eye movements through
two thresholds: the first is an amplitude threshold of 1 degree of visual angle in the
two-dimensional plane (signal on horizontal and vertical direction). The second
one is a time threshold that wants the gaze to stay in the new gaze location and
not return to the previous one for at least 1000 ms. Saccades are identified with
the double threshold in both signals, the gaze displacement on the horizontal plane
and the one on the vertical plane; a logical OR between them is performed. Since
saccades are identified, inter-saccade intervals are fixations [25]. In Fig. 3.7 the
saccades identification made by the paper is shown. In particular, the signal of the
horizontal eye position of a subject, from 20 to 32 seconds, is shown and fixations
and saccades are pointed.

Figure 3.7: Tokuda algorithm

Drift and tremor removal are performed through a double moving median
procedure: the first moving median has a window length of 5 samples, so 100 ms;
it is used to remove tremor from the signal. Then, a second moving median with a
window length of 100 samples, so 2 seconds, is carried out to calculate the drift.
The calculated drifts are removed from the tremor-free line [29].

3.3 Tobii Pro Lab Use
Each participant has been imported in Tobii Pro Lab, the events related to the start
and the end of each phase are placed in order to create TOIs for every phase of the
trial. TOIs are shown in Fig. 2.17 and 2.13. Then the data are exported in TSV
files in the form of Data Export with, among the fields, time axis, gaze position on
x and y direction in an MCS coordinate system and eye movements assigned to
each sample by Tobii Pro Lab (Fixation, Saccade, ENF, and Unclassified). Finally,
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metrics calculated by Tobii Pro Lab and related to each phase are exported in TSV
files. Metrics TSV files and Data Export TSV files are created from the interfaces
in Fig. 2.14 and 2.15.

3.4 Eye movements and gaze points
In this section it is explained the distinction between gaze point and eye movement.
The gaze point is a single sample acquired every 20 ms by Tobii Glasses 3, it is
classified as saccade, fixation or SI point. The eye movement is a set of consequent
gaze points classified in the same way. In Fig. 3.8 this difference is shown: the
single points are gaze points while the lines represent the eye movements.

Figure 3.8: Eye movements and gaze points

3.5 Preprocessing
In this project, the "main" code follows the sequent steps for each participant:

1. A table with data coming from Raw Data extracted by Tobii Glasses 3 is
imported, and the fields with time axis and gaze position on x and y directions
in an MCS coordinate system are saved in vectors. In the table, where no
signal was detected by Tobii Glasses 3, the gaze location is assigned at zero
pixels. In Fig 3.9 a set of raw data imported from Tobii Glasses 3 are shown; it
could be seen that there are horizontal lines due to a time axis with, sometimes,

40



Materials and Methods

a difference between samples smaller than 20 ms. Moreover, in the initial
part, a more regular signal could be noticed: that’s why the participant was
performing the Stroop Test so the moving of the eyes is mainly limited to the
screen. Later, the signal is more irregular: that’s why the participant is doing
a phase of rest, so she or he can move the gaze all around.
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Figure 3.9: Raw data imported from Tobii Glasses 3

2. Data Export, whose obtaining is explained in section 3.3, coming from the
elaboration of Raw Data by Tobii Pro Lab are imported, and the fields with
the time axis, gaze position on x and y direction in an MCS coordinate system,
eye movements assigned to each sample by Tobii Pro Lab (Fixation, Saccade,
ENF, and Unclassified) and the events created in Tobii Pro Lab are saved in
vectors. The time axis extracted by Raw Data and the one from Data Export
are not the same because some samples are missing in the Data Export time
axis.

3. Time instants and samples related to the events created by the user in Tobii
Pro Lab for identifying tests beginning and ending are identified. This step
is carried out by looking in the vector containing the events for the ones of
interest and, therefore, for their corresponding indexes, that are the same on
the time axis. Knowing the indexes, the timestamp related to each event can
be saved.
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4. The time axis extracted by raw data, as already introduced, has missing
samples, so the difference between the timestamp of two consecutive samples
is not constant to 20 ms. A time axis "filling" is carried out: the difference
between each consecutive timestamp is calculated; if it is lower than 20 ms,
the timestamp is corrected with the average of the two extreme timestamps.
If it is bigger, new samples are created corresponding to the instants missing
in the original one, each one separated from the previous one by 20 ms. The
location of the gaze in the x and y directions is calculated by looking at their
values at the extremes of the missing data and assigning them a value with a
linear interpolation.

5. Since that the time axis has been "filled", the indexes of the events found
before aren’t the right ones anymore, so they are calculated again on the new
time axis.

6. Where the gaze signal is zero, there should be missing samples, as explained
in point 1, because Tobii Glasses 3 couldn’t detect the gaze position. This
means these samples correspond to the ENFs classified by Tobii Pro Lab. A
vector with the indexes of ENFs is created, looking to the zeros in the signal,
and the vectors with the position of the gaze on x and y directions, in these
indexes, are changed from zeros to a missing value (NaN).

7. Cause the data of gaze signal are in a pixel unity measure in an MCS coordinate
system, but the algorithm of Tokuda et al. [25] works on data in a degree
unity measure in a centered coordinate system; a conversion from pixels to
degrees, and between the two coordinate system, is carried out. It implements
the formulas explained in the section 3.1. In Fig 3.10 a piece of signal is shown:
in particular, ENFs are shown, in the picture above they are zeros, while below
they are converted to NaNs.

In Fig. 3.11 horizontal and vertical signals after "time axis filling", changing
of ENFs as NaNs and pixels-degrees conversion are shown.

8. Saccade detection is carried out following the Tokuda algorithm already
explained in Section 3.7. Samples classified as saccade points on both signals
coming from the location of the gaze in the x and y direction are detected.
Then a logic OR between them is performed. A vector with all the indexes of
saccade samples is created. Close saccade points represent together, a unique
saccadic eye movement, as shown in Fig. 3.8. In Fig. 3.12 Tokuda algorithm
applied on the horizontal signal is shown. In particular, it could be noticed
that sample i-1 and i have a difference in amplitude bigger than 1° and the
signal doesn’t come back to the i-1 location before 1000 ms.
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Figure 3.10: Eyes Not Found
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Figure 3.11: Horizontal and vertical signals after "time axis filling" and pixels-
degrees conversion
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Figure 3.12: Tokuda algorithm applied to the horizontal signal

9. Fixation candidates points are identified as the samples that are not saccades
and are not ENFs. For finding the real fixations, defined as sets of fixation
points, some selection rules are applied. As suggested by the Tobii Pro Lab
manual, a set of ENFs lasting less than 50 ms are not blinking but are due to
eyelash interference or other kind of movements. So, another vector is created
with just the indexes of the ENFs that probably are blinking. If before and
after a short set of ENFs, there are fixations with a difference in amplitude
between them smaller than a threshold of 1 degree, this set of ENFs becomes
part of a unique bigger fixation which includes the previous and the following
fixations. The last selection rule is related to short fixations that are excluded:
the threshold is 60 ms. This threshold and the saccade threshold amplitude
are the selection rules identified by Hooge et al. [42] in 2022 for finding a
similar fixation duration distribution, whichever is the algorithm applied. A
vector with all the indexes of the fixation points is created. Close fixation
points represent together, a unique fixation eye movement, as shown in Fig.
3.8.

10. Saccadic intrusions are identified following the steps described by Tokuda et
al. [25]: once saccades and fixations are identified, just the indexes related
to fixation points are considered since saccadic intrusions are fixational eye
movements. Moreover, just the signal of gaze movements in a horizontal
direction is considered because SIs are just on this axis. At first, the signal is
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interpolated in order to avoid the loss of samples once the filters are applied.
The baseline is calculated through the application of two median moving
filters: the first moving median has a window length of 5 samples, so 100 ms,
is used to remove tremor from the signal. Then, a second moving median with
a window length of 100 samples, so 2 seconds, is carried out to calculate the
drift. The calculated drifts are removed from the tremor-free line. Then, just
the samples where the absolute value of the gaze deviation is bigger than 0.4
degrees are saved as possible SIs. The second criteria is related to the dwell
time, which should be between 60 and 870 ms, so the gaze shifts from one
location to another and comes back within that dwell time [29]. A vector with
all the indexes of the SIs points is created. Close SI points represent together,
a unique SI eye movement, as shown in Fig. 3.8.

11. Duration phases are calculated and the closest indexes to event indexes, in
gaze signal, in each vector containing the indexes of ENFs, fixations, saccades,
and SIs, are found. In Fig. 3.13 horizontal and vertical signals with division
in tests phases are shown.
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Figure 3.13: Horizontal and vertical signals with division in tests phases

In Fig.3.14 the flowchart of the pre-processing of the signal is shown. The next
step will be the feature extraction through the processing of the signal.
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Figure 3.14: Preprocessing flowchart
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3.6 Processing
In this section, it is described the processing of the signal for the feature extraction.
In Fig.3.15 the flowchart used for describing the features extracted is shown.

Figure 3.15: Processing flowchart

The calculated features can be divided mainly into two groups: those based on
the pupil diameter and those calculated based on the signal from the eye movements.
The first are extracted from the signal concerning the pupillary diameter provided
directly by the device, while the latter are based on eye movements previously
identified in the preprocessing of the signal provided by Tobii Glasses 3, and
therefore are related to fixations, saccades, and SI.

Speaking about the first category of features, they are related to the relative
pupil diameter of the left and right eyes. The absolute pupil diameter signal can’t
be used because it is very sensitive to changes in the environment’s illumination.
The lighting of the environment is complex to keep constant; that is the reason
why a relative measurement with respect to a natural condition is preferred. The
diameter of the eyes in the natural condition is found as the average diameter of
the pupil in the first relaxation phase. The relative diameter is calculated with the
formula 3.3 for right and left eyes:

RelativeDiameter = Pi − P0

P0
(3.3)

where Pi is the pupil diameter measured during the experiment, and P0 is the pupil
diameter in natural conditions, so during relaxation. P0 is obtained through the
mean of the pupil diameter during the first relaxation phase.

Then, the second group of features extracted can be divided into metrics obtained
through a time analysis (Time-Based TB) of the signal and those obtained through
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a frequency analysis (Frequency-Based FB) of the signal. Considering the TB
group, for each type of eye movement, some features extracted have already been
analyzed in the literature, while others are investigated in this study for the first
time. In the FB group, features extracted from the power spectral density (PSD)
and related to stress and MWL could be found; moreover, they have not yet been
analyzed in the literature.

The description of the TB group follows:

• BLINKING: Duration, frequency, and interval blinking are found.

• FIXATIONS: Duration and frequency saccades are calculated. Fixation lasting
is shown in Fig. 3.16.

• SACCADES: Duration, frequency and velocity of saccades in x and y direction
are calculated. Saccade lasting is shown in Fig. 3.16.

• SI: SI value is calculated as the absolute values of the SI measures accumulated
over the evaluation phase divided by the lasting of the phase. Duration and
frequency of SIs are calculated and the mean of single SI velocities and the
mean of single SI velocities throughout the phase are obtained. For these two
features the velocity is calculated as the maximum displacement with respect
to the baseline of a single set of SI gaze points, in absolute value, divided
by the lasting of the single SI. SI velocity is calculated as the mean of the
difference in amplitude of the gaze position of the first index of a set of SI
gaze samples and the index before, if it is not an ENF, over the lasting of that
set of SI gaze points.

Figure 3.16: Fixation and saccade lasting
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The FB group treats features coming from analysis in frequency observation. In
particular, for both signals in the x and y direction, are found the power provided
by the low-frequency (LF) bandwidth (0-1 Hz) and by the high-frequency (HF)
bandwidth (1-3 Hz), as the area underlying the normalized PSD in the right range
of frequency. Moreover, the ratio between these two powers is calculated.

3.6.1 Frequency Analysis
In order to achieve features coming from frequency analysis, several steps have
been performed:

1. Steps from 1 to 7 of preprocessing are carried out.

2. The signal is interpolated in order not to have the contribution of ENFs and
to preserve the original time axis. In Fig. 3.17, the PSD of the interpolated
raw signal of one participant is shown. The PSDs of other participants are
similar to the one shown, and the peak of the PSD is close to zero, and it
ranges from 0.02 to 0.05 Hz. The peak for this participant is better shown in
the graph below in Fig. 3.17 thanks to a zoom of it, in this particular case
the peak is at 0.025 Hz.

Figure 3.17: PSD of interpolated raw signal
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3. Filtering: according to literature, there are two main kinds of noise in ocular
signal [27]: the drift has a bandwidth from 0 to 0.5 Hz, and, as shown in Fig.
3.17 it is the noise that provides more power to the signal. The second kind of
noise is the tremor; it has a bandwidth of 30-100 Hz, and Fig. 3.17 shows that
his contribution is really low because the signal in that range of frequencies
provides no power.

• Tremor filtering: The first operation carried out is the tremor removal; it
is tried to remove it with two methods. The first one is a moving median
filtering with a moving window of five samples, so 100 ms [29]. While, the
second one is a Butterworth filter of sixth order with the mask shown in
Fig. 3.18 and with a cutting frequency of 24 Hz, the maximum possible
with this kind of filter (sampling frequency/2-1). In Fig. 3.19 they are
shown: in the picture above the PSDs of the raw interpolated signal, the
filtered signal with moving median method and the filtered signal with
Butterworth filter method. In the same figure, but in the picture below,
the three signals are displayed. As shown the three PSDs are very similar,
in particular the PSD of raw interpolated signal and of Butterworth signal
are practically overlapped, this is confirmed by the signals displayed in the
second picture. The moving median filter cuts more the high frequency
respect to the Butterworth filter.

Figure 3.18: Mask of Butterworth filter for tremor removal

It is chosen to go on with the signal filtered with the moving median
because it smooths more the raw signal and, moreover, it is the strategy
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Figure 3.19: Raw signal, filtered signal with moving median and filtered signal
with Butterworth filter: PSD and signal

used by Tokuda et al. [25].
• Drift filtering: This filtering of the signal is performed with two methods.

Figure 3.20: Mask of Butterworth filter for drift removal
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The first one wants to calculate the drift with a moving median filter
[25] with a window length of 100 samples and so of 2 seconds, and later
to subtract the drift found to the signal. The second one is a highpass
Butterworth filter with a cutting frequency of 0.5 Hz and sixth order, that
wants to remove directly the continuous component of the signal. In Fig.
3.20 the mask of the Butterworth filter is shown. In Fig. 3.21 they are
shown: in the picture above the PSDs of the signal at which the tremor
has been already removed, the filtered signal with moving median method
and the filtered signal with the Butterworth filter method. In the same
figure, but in the picture below, the three signals are displayed. It could
be noticed that with both methods the main original peak in 0.02-0.05
Hz has been removed; in the second picture it could be seen that the drift
is effectively removed and the signal is shifted to a baseline of 0°. It is
decided to use the signal filtered with the Butterworth filter.

Figure 3.21: Raw signal, filtered signal with moving median and filtered signal
with Butterworth filter: PSD and signal

4. For data filtered, for a better understanding of the location of the peaks, PSDs
in the first phase of relax, in the Stroop phase, in the second phase of relax,
and in the N-Back phases are calculated. It can be noticed in Fig.3.22 that
the main peak in all phases is around 0.5 Hz, while the second main peak is
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approximately 1.2-1.3 Hz. The figure is related again to the same participant
whose pictures are shown before, but this trend is similar in all participants.
This is the reason why it is decided to distinguish the LF bandwidth from
the HF bandwidth with the delimiter frequency at 1 Hz. In particular, LF
bandwidth ranges from 0 to 1 Hz while HF bandwidth ranges from 1 to 3 Hz;
in fact, after 3 Hz the contribution of PSD is really low. The two frequency
limits are shown in the figure with two black vertical lines. Moreover, it could
be noticed that in both phases of relaxation, there is a higher contribution of
LF bandwidth than in the Stroop and N-Back phases.
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Figure 3.22: PSD of filtered signal in each macro-phase

5. In order to calculate the feature of power from LF and HF bandwidth and
their ratio, the PSD of the filtered signal in all phases has been calculated and
normalized with respect to each maximum value of PSD. Later, the power
of the signal in LF and HF bandwidth was calculated as the area below the
signal in the right range of frequencies. Finally, the ratio between the power in
the LF bandwidth and the power provided by the HF bandwidth is obtained.

Each feature is resumed in a matrix containing the values related to it for all
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the participants. Each participant is represented on each row, while the columns
represent the phases of all the tests. The resume of all the features extracted is
shown in table 3.2.

Table 3.2: Eye movement features and trends, if known in literature, are shown.

Eye Movement Feature Expected Trend

Fixations
Lasting ↑

Frequency ↑

Saccades

Lasting -
Frequency ↑
X velocity ↑
Y velocity ↑

Blinkings
Lasting ↓

Frequency ↑ ↓
Interval ↓

SIs

Lasting -
Frequency -
SI value ↑

SI velocity -
Single SI velocity -

Single SI velocity over phase -

Pupil
Relative diameter Left ↑

Relative diameter Right ↑

PSD

Low frequency power X -
High frequency power X -

Ratio X -
Low frequency power Y -
High frequency power Y -

Ratio Y -
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3.7 Dataset description
The data set gathered during the trial comes from 64 participants; one participant
was removed because of missing data from Tobii Glasses 3. Without the participant
removed the percentage of females is about 49 while the percentage of males is
about 51; this means that the investigated population is well distributed regarding
gender. Looking at the age of the participants goes from 19 to 40 years old, with
an average of 23.5 years old and a standard deviation of 3 years. This leads to the
conclusion that the investigated population isn’t representing all the age groups.
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Chapter 4

Results

This chapter is structured in the following way: at first, the results of pixels-degrees
conversion validation are shown. Then, it is explained the assessment of stress
and MWL in results and the steps for choosing the best normalization possible.
Later, the dataset investigation is performed and the comparison between the gold
standard and the developed algorithm is shown. Finally, the statistical analysis of
the results is carried out.

4.1 Validation of Pixels-Degrees Conversion

For the pixels-degrees conversion validation, already treated in section 3.1 the
snapshots imported in Tobii Pro Lab and used for the Manual Mapping are in
Fig. 3.3 and 3.4, while for the Assisted Mapping, the snapshots are the same as
before but without drawn all the positions of the marker. The snapshots must
be easily recognizable by Tobii Pro Lab Assisted Mapping, which is why some
logos and writings are present. At first, for both the Assisted and the Manual
Mapping, a plot is performed with the ideal and calculated angles ϕ and θ. They
are, respectively, the angles on the vertical and on the horizontal planes that link
the participant to the screen. In Fig. 4.1, it is shown the comparison of ideal and
calculated angles with both, Assisted and Manual Mapping of one recording. For
further graphs about the other recordings go to Section A. In order to resume the
results for all the 15 recordings the mean error and the standard deviation of the
gaze location corresponding to each marker position with Assisted and Manual
Mapping is calculated and shown in Fig. 4.2. The results will be later commented
in section 4.1.1.
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Figure 4.1: Comparison of ideal and calculated angles of one recording of example

Figure 4.2: Mean error and standard deviation of the gaze location corresponding
to each position of the marker with Assisted and Manual Mapping
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4.1.1 Discussion of validation of pixels-degrees conversion
As shown in Fig. 4.1, both types of mapping give angles that are close to the ideal
ones; this leads to the conclusion that the formulas for the conversion of gaze
location from pixel to degrees are consistent in this use case. Another observation
is that for most of all plots, the Assisted Mapping gives an error visibly higher
than the Manual Mapping and usually with a constant bias. This observation is
strengthened by Fig. 4.2, which shows a mean error an order of magnitude lower
for the Manual Mapping with respect to the Assisted Mapping. The higher error
made by Assisted Mapping could be due to the initial not perfect calibration of
Tobii Glasses 3 that causes the shifting of the gaze in the whole recording with
respect to the real position of the gaze itself. In the code created for this contest,
every 5 seconds the position of the marker changes; so later, while elaborating the
data, the positions of the gaze recorded by Tobii Glasses 3 in these 5 seconds are
averaged. If the participant involuntary moves his gaze while staring at the marker,
even this location will be averaged, causing a shifting of the calculated average
position. This could be another issue that leads to the worst performance of the
Assisted Mapping.

4.2 Stress and MWL assessment in results
The questionnaire is structured in a way that for each phase of the tests, the
participant can give a score from 1 to 3 for both, the stress and MWL levels felt.
Anyway, it is chosen to consider the answers of the stress just for the Stroop Test
and the ones of the MWL just for the N-Back Tests. This choice is made because
the participants could find it difficult to differentiate between the two concepts of
stress and MWL, and they could be confused if it is asked to give a score about
the stress felt on a test designed just for creating different levels of MWL and vice
versa.

4.3 Steps for choosing the best normalization
method

In section 2.9 they are described the four kinds of normalization applied to the
datasets. The steps followed for assessing the best kind of normalization for reducing
error bars and having the most meaningful representation of the data, are the
following ones. For each feature:

1. The matrix containing all the values is imported;
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2. The matrix is divided in the four datasets, one for each test (Stroop, Visual
N-Back, Auditory N-Back, and Dual N-Back). Each row corresponds to a
participant and in the first column, of each dataset there are the values of
the feature in the initial relax, while in the last three columns, there are the
values of the feature in the three levels of each test. For each dataset:

• The four kinds of normalizations are applied on each row, so for each
participant.

• Four different matrices are created, one for each normalization. For each
matrix:

– The matrix is divided into classes.
– The standard deviation is calculated on each class.
– In a vector, created for a specific kind of normalization, the four values

are added.

This process is carried out for all the 23 features. For each dataset, the resulting
four vectors, one for each kind of normalization, are 23*4 long. Four histograms
for each test are represented, one for each kind of normalization.

The normalization that permits the smallest error bar is the one that has a
distribution of the standard deviation closer to zero. This means that the majority
of standard deviations are small, and so the error bars are shorter.

4.3.1 Evaluation of different kinds of normalization

Figure 4.3: Stroop Test: histogram of standard deviations

59



Results

Figure 4.4: Visual N-Back Test: histogram of standard deviations

Figure 4.5: Auditory N-Back Test: histogram of standard deviations

Looking at the histograms shown in the Fig. 4.3, 4.4, 4.5, 4.6, for each test,
could be concluded that:

• The normalization through Euclidean norm gives values of standard deviations
close to 0, the majority of them are in the range 0-0.1;

• The z-score normalization gives the highest values of standard deviation among
the four normalizations; the majority is in the range of 0.6-0.8;
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Figure 4.6: Dual N-Back Test: histogram of standard deviations

• The mean scaling gives values of standard deviation between the ones given
by the Euclidean norm and the ones given by the z-score; the majority of
standard deviations have values between 0.3 and 0.4;

• The min-max scaling gives values of standard deviation between the ones given
by the Euclidean norm and the ones given by the z-score; the majority of
standard deviations are around 0.4.

The normalization that permits the smallest error bars is the one that has a
distribution of the standard deviation closer to zero; as shown in the pictures, the
normalization done through Euclidean norm, in all four tests, is the one that satisfies
this condition. This means that the error bars will be shorter if a normalization
done through Euclidean norm is used.

The normalization through Euclidean norm is applied to each row, so to
each participant, of each data set of all the features.

4.4 Dataset Investigation
A dataset investigation is carried out. Each matrix containing the values of each
feature for all the participants is loaded one by one. The first step is the division of
the matrix into four submatrices, or data sets, one for each test (Stroop, Visual N-
Back, Auditory N-Back, and Dual N-Back). Each row corresponds to a participant,
and in the first column, there are the values of the feature in the initial relax, while
in the last three columns, there are the values of the feature in the three levels of
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each test. A normalization through the Euclidean norm on each participant of each
data set is carried out. Dataset investigation is performed on four classes according
to the subjective perception in the participants themselves of the level of stress,
caused by the Stroop Test, and MWL, caused by N-Back Tests, as explained in
section 4.2. The first phase of relaxation is assigned to class 0, while the other three
classes (1, 2, 3) are filled according to the participants’ answers to the questionnaire.

They are plotted:

• The histograms that represent the distributions of classes in each phase related
to Stress, for the Stroop Test, and MWL, for the N-Back Tests.

• The mean value of the normalized feature for each class and the standard
deviation for each class, for each data set.

• The boxplots of the data in each class in each data set, to see how much the
data are widespread and how many outliers there are.

4.4.1 Dataset distribution in classes

Figure 4.7: Distribution of classes

The histograms in Fig. 4.7 represent the distributions of classes in each phase
related to Stress, for the Stroop Test, and MWL, for the N-Back Tests. Each
class is well represented in every test, unless Class 1 in Dual N-Back Test. This is
anyway considered suitable for this analysis. Class division is carried out for each
feature for each dataset; in particular, the values of the feature in the first phase of
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relaxation are assigned to class 0, while the other three classes are filled according
to the answers of the participants to the questionnaire.

4.4.2 Dataset investigation results
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Figure 4.8: Data set investigation: Ratio of powers in horizontal signal

.
As said previously, for each feature, and for each dataset, the mean value

and the standard deviation value, according to the four classes, are represented.
Above two features that qualitatively show a significant difference between rest
state and altered state, and other two features that qualitatively don’t show any
difference between the two states are shown. A statistical analysis must confirm
these qualitative observations.

Fig. 4.8 and 4.9 show a sharp distinction between the values of the class 0 and
the ones of the other three classes; this leads to the hypothesis that these features
could be used for a binary classification between rest and altered states for all the
four tests.

In Fig. 4.10 and 4.11, no difference can be graphically noticed between the
four classes; this leads to the hypothesis that these features couldn’t be used for
a binary classification between rest and altered states. As said previously, this
hypothesis must be confirmed during the statistical analysis. Further plots of mean
and standard deviation and of boxplots of the features are in Section B.
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Figure 4.9: Data set investigation: single SI velocity over phases duration
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Figure 4.10: Data set investigation: Blinking duration
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Figure 4.11: Data set investigation: SI duration

4.5 Comparison with Tobii Pro Lab
Two different kinds of comparison of the two methods, Tokuda et al. [25] algorithm
and Tobii Pro Lab, could be done. First, the comparison of saccade and fixation
points found through the first method and the ones identified by the second one.
Then, the comparison between the features found through Tokuda et al. [25]
algorithm and the ones found by Tobii Pro Lab.

Saccade and fixation samples detection

Saccades and fixations found with the Tokuda et al. [25] algorithm are compared
with the ones found by the gold standard Tobii Pro Lab. In order to compare the
same samples, only the instants present in both the Raw Data time axis extracted
by Tobii Glasses 3, and used in eye movements detection in Tokuda et al. [25]
algorithm, and the Data Export time axis from Tobii Pro Lab are compared. The
parameters calculated are accuracy, sensitivity, specificity, PPV and NPV, and then
the F1 score, already explained in Section 2.10. In Fig. 4.12 there is the specific
confusion matrix with the values of TN, TP, FN, FP found for a participant, in
the whole recording.

In Fig. 4.13 and 4.14, the parameters described related to saccades detection
are calculated and shown in each macro-phase (Relax1, Stroop, Relax2, N-Back,

65



Results

Figure 4.12: Confusion matrix for this use case

Relax3) and for the whole recording. The same is shown for fixations detection in
Fig. 4.16 and 4.17. The F1 scores of saccades detection and fixation detection are
shown in Fig. 4.15 and 4.18.

From the analysis of agreement between the two methods for saccades detection
shown in Fig. 4.13 and Fig. 4.14, it could be concluded that:

• The sensitivity is around 0.4-0.5; this means that FN is high, and so the
algorithm classifies fewer saccades than the gold standard;

• The specificity is high; this means that the FP are a few, and consequently,
the algorithm classifies saccades well;

• The accuracy is over 0.9, which means that the sum of TP and TN is much
higher than the sum of FP and FN; in particular, TN is very high being the
sum of all the fixation, Unclassified, and EyesNotFound;

• Both PPV and NPV are very high and close to 1.

From Fig. 4.15, it can be concluded that the F1 score ranges from 0.5 to 0.6, which
means that saccade detection is quite good.
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Figure 4.13: Accuracy, Specificity and Sensitivity of saccades detection

Figure 4.14: PPV and NPV of saccades detection
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Figure 4.15: F1 score for saccade detection

Figure 4.16: Accuracy, Specificity and Sensitivity of fixations detection
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Figure 4.17: PPV of fixations detection; TN is equal to 0 so NPV can’t be shown

Figure 4.18: F1 score for fixation detection
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From the analysis of agreement between the two methods for fixations detection
shown in Fig. 4.16 and 4.17, it could be concluded that:

• The sensitivity is 1, which means that FN is equal to 0; this happens because
the amount of fixations is much higher than the amount of all the other eye
movements;

• The specificity is 0, which means that the TN is equal to 0; the reason is the
same as described above;

• The accuracy is over 0.9, which means that the sum of TP and TN is much
higher than the sum of FP and FN; in particular, TP is very high being the
number of fixations much higher than the sum of all the other eye movements.

• NPV can’t be calculated because TN is equal to 0. PPV values in all the
phases are high and close to 1.

From Fig. 4.18, it can be concluded that the F1 score ranges from 0.9 to 1, which
means that fixation detection is excellent; this happens also because the number of
fixation samples are much higher than the number of saccade samples.

Features

The features found through Tokuda et al. [25] algorithm and the ones found by
Tobii Pro Lab have been compared. This comparison is possible just for three
features: fixations duration, fixations frequency, and saccades frequency. This is
because they are the three features in common calculated by the two methods. The
Metrics TSV files, explained in 3.3, of all the participants, obtained from Tobii Pro
Lab, are imported. From these data, a table is created for each feature of interest.
In particular, these matrices have on each column a phase of the tests, and each
row contains the values of the feature of a participant. The comparison is carried
out in two ways:

• The first one wants to calculate the percentage relative difference between
the features calculated by Tobii and the ones calculated by the developed
algorithm;

• The second one wants to create, for each phase, a graph with the values of
Tobii features on the x-axis and the values of the algorithm features on the
y-axis. In the graph, a point is plotted for each participant. Then, a linear
fitting is carried out, and the Pearson Coefficient is calculated. The closer
this coefficient is to 1 or -1, the better the correlation is. If the coefficient is 0,
there is no correlation. Therefore, a Pearson Coefficient is calculated for each
phase.
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A figure is shown for each of the three features: duration fixations, frequency
fixations, and frequency saccades. In each picture, the graph above represents the
percentage of relative difference of the considered feature with a boxplot of the
values. In contrast, the graph below shows the trend of the Pearson Coefficient in
all phases.

• Duration fixations:
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Figure 4.19: Comparison: Duration fixations

As shown in Fig. 4.21, the percentage relative difference is quite high; in the
majority of phases, it is around 100-150%; this means that usually, the values
of the feature calculated by the developed algorithm are, at least, the double,
of the values of the same feature calculated by Tobii Pro Lab. This leads
to the conclusion that the gold standard recognized more saccades than the
algorithm, which is in line with the conclusions of the sensitivity of saccades
detection. Moreover, the Pearson Coefficient is good since, for most of the
phases it is higher than 0.5. As shown in the graph below of Fig. 4.21 the
Coefficient is a bit lower than 0.5 just in the first level of the Stroop Test. This
could be because during the Stroop Test phase the signal in both directions,
horizontal and vertical, is more regular than in other phases. The developed
algorithm, being quite conservative as regards the rules in amplitude and in
time chosen, doesn’t detect all the saccades in this part of the signal, and this
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Figure 4.20: Comparison: Duration fixations with SI and saccades considered as
saccades

leads to a different detection of fixations that will be longer. In fact, it could
be that Tobii Pro Lab uses less restrictive rules in identifying saccades and so,
what the algorithm classifies as SIs, which are the second eye movement for
amplitude, the gold standard classifies as saccades. This hypothesis could be
tested considering both the SI and the saccades found by the algorithm as
saccades. As shown in Fig. 4.20, the percentage relative difference decreases
under 50%, this is because there are more fixations that last less. The Pearson
Coefficient increases above 0.6, compared to the previous situation, so the
feature calculated with the two methods gives more correlated values.

• Frequency fixations:
As shown in Fig. 4.21, the percentage of relative difference is less than 50%;
this means that the algorithm calculates feature values higher than the ones
calculated by the gold standard of less than the half of them. The Pearson
Coefficient, in the majority of phases, is higher than 0.5. Just in the third
relax it is next to zero, so there is no correlation between the two methods.
Considering again the SIs found by the developed algorithm as saccades, it
could be noticed, as expected, that the frequency of fixations, and so the
percentage of relative difference, increases. The Pearson coefficient remains
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Figure 4.21: Comparison: Frequency fixations
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Figure 4.22: Comparison: Frequency fixations with SI and saccades considered
as saccades
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mainly equal to the one in the situation before: just for the second and the
third level of the Stroop Test, it drops; this is probably due to the more
conservative characteristic of the developed algorithm with respect to the gold
standard, as explained before. This observations are supported by Fig. 4.22.

• Saccades frequency:
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Figure 4.23: Comparison: Frequency saccades

As shown in Fig. 4.23, the percentage of relative difference is less than 50%,
while the Pearson Coefficient is around 0.5 in all the phases unless the second
and the third level of Stroop Test and all the levels of Dual N-Back where it is
between 0 and 0.5. In the third relax phase, the Pearson Coefficient becomes
negative around -0.5; this means that the relationship is inverse, but the two
methods are correlated anyway.

4.6 Statistical Analysis results
The choices made about which kinds of statistical tests to carry out are explained
in Section 4.6. For each feature, the outputs considered for the Kruskal-Wallis
H Test are the p-value and the H statistic, while the output considered for the
Mann-Whitney U Test is the p-value. For each feature, the summary parameters
are saved in a CSV file. These results are imported and summarised. In particular,
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two tables are created: each one with four columns, one for each test (Stroop
Test, Visual N-Back Test, Auditory N-Back, Dual N-Back). The column related
to Stroop Test comes from the stress analysis, while the three columns related to
N-Back Tests from MWL analysis:

• In Table 4.3 overall statistical results are shown: in the first row, the number of
features, in each phase, with a p-value smaller than 0.05 in the Kruskal-Wallis
H Test are counted. Considering that for the Mann-Whitney U Test, there
are six possible couples of classes (Class 0 - Class 1, Class 0 - Class 2, Class 0 -
Class 3, Class 1 - Class 2 etc.), the next rows indicate the number of features
with a number of couples with a p-value smaller than 0.05 bigger than n, with
n going from 1 to 5 going through the table.

• In Table 4.1, the aim is to understand if there is a statistical difference between
the relaxed state or the altered state; this means that there are three possible
couples of classes(Class 0 - Class 1, Class 0 - Class 2, Class 0 - Class 3). The
first row is the same as the previous table, while the sequent ones refer to the
number of features with a number of couples with a p-value smaller than 0.05
bigger than n, with n going from 0 to 2 going through the table.

By analyzing Tables 4.1 and 4.3, it is possible to observe that the first row
of both tables indicates if there are at least a couple of classes among the four
possibles with a p-value smaller than 0.05. If it is present, for the feature analyzed,
and for the data set taken in count, there is at least a significant difference between
two classes. This statement is insufficient for drawing conclusions; that’s why the
Mann-Whitney U Test is performed.

4.6.1 Binary Classification Results
Table 4.1 resumes the statistical analysis of binary classification without any
threshold on H value.

Table 4.1: Resume of binary classification results

Stroop Visual N-Back Auditory N-Back Dual N-Back

Test Significance 20 19 16 19
Feature Significance (>0) 20 19 15 19
Feature Significance (>1) 20 17 15 16
Feature Significance (>2) 18 13 13 12

Analyzing the binary classification of Table 4.1, the most significant features
that allow for differentiation between a rest state and an altered state are the ones
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with all the three couples of classes with a p-value smaller than 0.05. In other words,
Class 1, Class 2, and Class 3, which represent the altered state, are statistically
different from Class 0, which represent the rest state.

In particular, over 23 total features, for the Stroop Test, about 80% of them result
to be significative, so able to detect a difference between rest state and stressed
state. Then, for the Visual N-Back and the Auditory N-Back, the significant
features are almost 60%, while for the Dual N-Back, they are over 50%; these
selected features can distinguish between a rest state and a state at a high MWL.
Considering the significant features in the four tests, they are 83% of the total;
this means that most of the extracted metrics are able to perfectly distinguish the
state of relaxation of the subject with its stressed or at high MWL state. They
are, therefore, significant for at least one of the four tests. The 40% of the total
number of features extracted are the resulting significative features common to all
four kinds of tests. In other words, they show simultaneously sensitivity to stress
and cognitive load variations. Therefore, they allow a binary classification between
rest state and altered state, which could be both, stressed and with high MWL.
They are listed below:

• Frequency saccades,

• Single SI velocity,

• Single SI velocity over phase duration,

• Frequency fixations,

• Power provided by HF bandwidth in horizontal signal,

• Power provided by LF bandwidth in horizontal signal,

• Ratio of powers in horizontal signal,

• Power provided by HF bandwidth in vertical signal,

• Ratio of powers in vertical signal.

Boxplots and plots of these features’ mean and standard deviation are shown in
the section B.

In particular, concerning feature trends, the altered state has smaller values
than the relaxed state for saccades and fixations frequency, for the ratio of powers
in both vertical and horizontal signals, and for single SI velocity. While the altered
state has higher values than the relaxed state for the powers provided by HF and
LF bandwidth in both, vertical and horizontal signals and for the single SI velocity
over phase duration.
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Moreover, here it could be confirmed the significance of the ratio of powers in
horizontal signal and of the SI velocity over phases duration used as examples
previously and shown in Fig. 4.8 and 4.9. These two features permit a perfect
distinction between the relaxed state and the altered states. Instead, the features
about the SIs duration and the duration of blinking, shown in Fig. 4.11 and 4.10,
don’t permit a full distinction between the two states; the number of couples (Class
0 - Class 1, Class 0 - Class 2, Class 0 - Class 3) with a p-value smaller than the
level of significance is not equal to three, so the maximum, but lower.
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Figure 4.24: SI value in Stroop Test dataset, low H statistic

Class 0 Class 1 Class 2 Class 3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

T
im

e
(s

)

Stroop Test

Figure 4.25: Fixation lasting in Stroop Test dataset, medium H statistic
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Figure 4.26: Single SI velocity in Stroop Test dataset, high H statistic

In order to enhance the statistical evaluation level, it is decided to refine the
thresholds of the H statistic, the second output of the Kruskal-Wallis H Test. This
would lead to the discard of features, significant for the Kruskal-Wallis H Test, but
not so highly related to variation in stress and MWL. In Fig. 4.24, 4.25 and 4.26
are shown, as examples, three features for the Stroop Test dataset, with different
values of H statistic in order to show their graphical differences.

It could be noticed in Fig.4.24 that the SI value among the four classes results
to be significant for the Kruskal-Wallis H Test but with an H statistic equal to
14; this means that the difference between the four classes is not very high. For
the research, a feature with this value of H statistic must be discarded in order
to be as strict as possible. In Fig. 4.26, it can be seen that the single SI velocity
has the values of class 0 and of the other three classes in two completely different
bandwidths. In fact, the H statistic value confirms this high significance of the
feature being equal to 143. All the features with this kind of significance must be
kept for the statistical analysis. Fig. 4.25 shows the fixation lasting; the H statistic
value is 48. It is decided to keep the features with this range of H values because,
even if there isn’t a sharp distinction between rest state and altered states, there
are anyway mostly different values. After observing all the features with these
more dubious values, it is decided to use a threshold on the H statistic values of 44.

Table 4.2 is created, with the same structure of 4.1, but with the imposition of
the threshold on the H statistic. So, the first row will be about the features that
result to be significant at the Kruskal-Wallis H Test and overcome the threshold
on the H statistic. The other rows are about the results of the Mann-Whitney U
Test applied just to the features "saved" in the H statistic threshold application.
So, Table 4.2 shows the results of binary classification but just for the features
that overcome the Kruskal-Wallis H Test with the threshold on the H statistic.
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Table 4.2: Resume of binary classification results with H statistic threshold

Stroop Visual N-Back Auditory N-Back Dual N-Back

Test Significance 14 10 6 8
Feature Significance (>0) 14 10 6 8
Feature Significance (>1) 14 10 6 7
Feature Significance (>2) 14 10 6 6

In particular, the first row can be compared to the first row of Table 4.1: it is
shown that more or less half of the features that result to be significant at the test
have a H statistic smaller than 44. Just for the dataset related to the Stroop Test,
three-quarters of the features are still significant. It can be noticed that, even if for
some datasets there is a drop in the number of features that result to be significant
in the Mann-Whitney U Test going through the table, the number of features in the
fourth row (Feature Significance (>2)) are very close to the number of features in
the first row (Test Significance at the Kruskal-Wallis H Test). This means that the
threshold put on the H statistic saves the features most significant, with a sharper
difference between the rest state and altered states. The 17% of the total number
of features extracted are the resulting significative features common to all four
kinds of tests with the application of this threshold. So, they show simultaneously
a very high sensitivity to stress and cognitive load variations. Therefore, they allow
a binary classification between rest state and altered state, which could be both,
stressed and with high MWL. They are listed below:

• Single SI velocity,

• Single SI velocity over phase duration,

• Ratio of powers in horizontal signal,

• Ratio of powers in vertical signal.

4.6.2 Overall Statistical Results
In order to increase the granularity of stress and MWL conditions prediction, it is
important to analyze Table 4.3. From the fourth row (Feature Significance (>3))
could be observed a sharp drop of the number of features with a number of couples
between classes with a p-value smaller than 0.05 in the Mann-Whitney U Test.
This means it is difficult to distinguish the four states one from another perfectly.
Moreover, the majority of features that allow a higher granularity of prediction
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Table 4.3: Resume of overall statistical results

Stroop Visual N-Back Auditory N-Back Dual N-Back

Test Significance 20 19 16 19
Feature Significance (>1) 20 19 15 18
Feature Significance (>2) 19 17 14 14
Feature Significance (>3) 14 5 2 6
Feature Significance (>4) 6 1 0 1
Feature Significance (>5) 0 1 0 0

(Feature Significance (>3)) also permit a binary classification between relaxed and
altered states.

The features listed in Table 4.27 are the ones with a number of couples between
classes with a p-value smaller than the level of significance in the Mann-Whitney
U Test higher than three. The features colored in blue are the ones with a number
of couples with a feature significance higher than four; they will be listed below.
The only feature colored in yellow, single SI velocity over duration phase, is the
one with all the couples showing a statistical difference among them, just for the
Visual N-Back Test. Crossing the results of binary classification with the ones just
shown, there are only two features that don’t permit a binary classification but
permit a beginning of a trend identification among the four classes: they are the
SI value for the Stroop Test and the SIs frequency for the Visual N-Back Test. All
the other features permit a binary classification between relaxed and altered states
and moreover a beginning of a trend indentification. In particular, the features
that permit, with a feature significance of the Mann-Whitney U Test higher than
four couples, a good trend identification for the Stroop Test are:

• Interval blinking;

• Frequency saccades;

• frequency fixations;

• Frequency SIs;

• Single SI velocity over phase duration;

• Ratio of powers in vertical signal.

The feature that perfectly permits a trend identification for the Visual N-Back
Test is:
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Figure 4.27: Overall results: features resulting to have a feature significance >3

• Single SI velocity over phase duration.

No features allow a trend identification with more than four couples of classes
with a statistical difference in Auditory N-Back.

Finally, the feature that better permits a trend identification for the Dual N-Back
Test is:

• Relative diameter of the right eye.

H statistic

Setting the threshold on the H statistic it could be seen that the first three rows of
Table 4.4 are almost equal, that’s why the feature selected are more significant and
so they result to permit also an higher granularity.
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Table 4.4: Resume of overall statistical results with H statistic threshold

Stroop Visual N-Back Auditory N-Back Dual N-Back

Test Significance 14 10 6 8
Feature Significance (>1) 14 10 6 8
Feature Significance (>2) 14 10 6 8
Feature Significance (>3) 11 3 2 3
Feature Significance (>4) 5 1 0 1
Feature Significance (>5) 0 1 0 0

4.6.3 Resume of statistical analysis results
In conclusion, we can therefore say that the extracted features are, for the most
part, able to make a binary classification differentiating the state of relaxation from
the altered one, which is due to stress or MWL. In particular, it is important to
note that among the most significant features, there are many never investigated
before in the literature, including those resulting from the frequency analysis of
the signal. Almost all those extracted from the PSD of the signal, are metrics
able, without any threshold imposition on H statistic, to identify in two distinct
bandwidths the states of relaxation and altered. While, with the setting of this
threshold, the ratio features on both the horizontal and the vertical signal allow
a binary classification. Moreover, it could be seen that a greater granularity of
results is more difficult.
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Chapter 5

Conclusions

HMI system design focuses on the safety and reliability of the performance of the
subject that interacts with the machine. He or she can be submitted to high levels
of stress and MWL that the HMI system must be able to detect, measure and report
in real-time. Many physiological signals have been seen to be sensitive to stress and
MWL variations; one of them is the signal coming from eye movements. It seems
to be promising in this field of research, but there is still no clear relationship in
the literature between it and different stress and MWL levels. This study wants to
investigate this relationship reaching all the objectives listed in Section 1.1.

At first, the definition of the best significant eye-tracking features to evaluate
stress and mental workload variations has been carried out through a deep research
in literature. Other features never investigated in literature concerning stress and
MWL variations were added, almost the 50% of the totality, with a total number
of 23. Then, the definition and implementation of tests to detect mental workload
variations to gather a significant dataset has been carried out. The test session
consisted of the performing of the Stroop Test, specifically created for generating
stress conditions in the subject, and the N-Back Test, in three versions, to develop
different levels of cognitive load in the participant, by the 64 participants enrolled.
The signal acquired through Tobii Glasses 3 during these tests was then analyzed.
The extraction of the selected 23 features from the data gathered from the tests is
carried out. These metrics concern the ocular movements analyzed both, in the
time and frequency domain, and the pupil diameter. Moreover, a questionnaire
has been filled in by the subjects and, according to their answers to it, four classes
have been created.

The main objective of this thesis study is the evaluation of the correlation
between stress, mental workload variations, and eye tracking parameters variations.
The achievement of this goal is supported by the results of the statistical analysis:
it has been seen how 83% of the extracted features allow a binary classification
between the relaxation state and altered state in at least one type of test. The
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features that enable this type of classification for all four tests are the 40% on the
totality. Moreover, in order to have rest state and altered states in two sharply
separated bandwidths of values a threshold on the H statistic value, one of the two
outputs of the Kruskal-Wallis H test, has been used. The number of significant
features left in the binary classification decreases and the percentage of features
extracted, in common to all four kinds of tests, resulting significative drops to 17%.

Speaking about the overall statistical result, with or without any threshold on
the H statistic value, it could be concluded that it is difficult to distinguish the four
states one from another perfectly, so a greater granularity of prediction of stress
and MWL from the analysis of features is more complex.

In particular, the majority of the new features extracted from frequency domain
analysis result to be significant in the binary classification without the H statistic
threshold and the ratio of power on both signals, horizontal and vertical, is significant
also with the threshold. This means that it detects finely the distinction between
rest state and altered states.

To achieve these macro goals, other steps have been made and other conclusions
have been drawn. The first one consists of ascertaining that the formulas for the
conversion of gaze location from pixels to degrees, and between the two reference
systems, are consistent in this use case. It was carried out through both Assisted
and Manual Mapping of Tobii Pro Lab, and they give angles close to the ideal ones.
This leads to the conclusion that the initial claim is verified. Another observation
is that for most of all plots, the Assisted Mapping gives an error visibly higher than
the Manual Mapping, this means that Manual Mapping better permits calculated
angles closer to the ideal ones.

Another objective of the research is, after the identification of different kinds
of eye movements with the developed algorithm, their comparison with the ones
found by the gold standard in the field of eye-tracking. This comparison between
the two methods of classification of eye movements has been carried out in two
different ways: the first one is a comparison of the saccade points found, while the
second one is the comparison of three features in common calculated by the two
methods. Regarding the saccade points, looking to Fig. 4.13, it could be concluded
that all the saccade points detected by the algorithm are also detected by the gold
standard, but not all the gaze points classified by Tobii Pro Lab as saccades are
also found by Tokuda’s algorithm. Speaking about the second kind of comparison,
it could be concluded that for all the three features, saccade frequency, fixation
frequency, and lasting, the correlation between the two methods is quite good,
having mainly a Pearson Coefficient higher than 0.5.

Finally, thinking about future studies in this field that should be carried out, it
must be noticed that among the features extracted those not yet investigated in
the literature give encouraging results. In particular, metrics regarding frequency
analysis are promising and should be deepened. Moreover, it is demonstrated that
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the eye signal is very sensitive to changes in stress and cognitive load and, therefore,
deserves further research in this field.

With the aim of the creation of safer HMI systems with risk reduction for
humans, the future steps to carry out in this field are, at first, the implementation
of results with other biosignals. The objective is to create a model for discrimination
of stress and MWL states from rest state with just the most significant features.
Then, the development of a wearable device for stress and MWL control by the
acquisition of some selected biosignals should be carried out.
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Pixels-degrees conversion
validation

Figure A.1: Comparison of ideal and calculated angles: Recording 2
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Pixels-degrees conversion validation

Figure A.2: Comparison of ideal and calculated angles: Recording 3

Figure A.3: Comparison of ideal and calculated angles: Recording 4
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Pixels-degrees conversion validation

Figure A.4: Comparison of ideal and calculated angles: Recording 5

Figure A.5: Comparison of ideal and calculated angles: Recording 6
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Pixels-degrees conversion validation

Figure A.6: Comparison of ideal and calculated angles: Recording 7

Figure A.7: Comparison of ideal and calculated angles: Recording 8
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Pixels-degrees conversion validation

Figure A.8: Comparison of ideal and calculated angles: Recording 9

Figure A.9: Comparison of ideal and calculated angles: Recording 10
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Pixels-degrees conversion validation

Figure A.10: Comparison of ideal and calculated angles: Recording 11

Figure A.11: Comparison of ideal and calculated angles: Recording 12
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Pixels-degrees conversion validation

Figure A.12: Comparison of ideal and calculated angles: Recording 13

Figure A.13: Comparison of ideal and calculated angles: Recording 14
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Pixels-degrees conversion validation

Figure A.14: Comparison of ideal and calculated angles: Recording 15
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Appendix B

Features boxplots

Figure B.1: Duration fixations
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Features boxplots

Figure B.2: Duration saccades

Figure B.3: Frequency blinking
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Features boxplots

Figure B.4: Frequency fixation

Figure B.5: Frequency saccades
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Features boxplots

Figure B.6: Frequency SI

Figure B.7: X velocity
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Features boxplots

Figure B.8: Y velocity

Figure B.9: Single SI velocity
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Features boxplots

Figure B.10: SI value

Figure B.11: Left eye relative diameter
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Features boxplots

Figure B.12: Right eye relative diameter

Figure B.13: X HF bandwidth
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Features boxplots

Figure B.14: Y HF bandwidth

Figure B.15: X LF bandwidth
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Features boxplots

Figure B.16: Y LF bandwidth

Figure B.17: Interval blinking
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Features boxplots

Figure B.18: SI velocity

Figure B.19: Y ratio
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