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Abstract

Stroke is the second-leading cause of death and a prominent source of both
mortality and morbidity. Its profound impact necessitates a deeper understanding of
its physiology and consequences, as well as the development of innovative assessment
methods and treatments for post-stroke rehabilitation. This dual approach would
not only enhance our knowledge but also mitigate the substantial strain strokes
place on the healthcare system.

One pivotal aspect of understanding and addressing post-stroke complications
is the study of motor control strategies, particularly muscle synergies, employed by
the Central Nervous System (CNS). In healthy individuals, the CNS utilizes these
muscle synergies for efficient motor control, streamlining complex multi-muscular
movements and simplifying its computational tasks. However, following a stroke,
there’s substantial evidence indicating a disruption in these synergies. Past studies
have delved into the specific muscle coordination patterns in the affected arm of
stroke survivors, highlighting the preservation, merging, and fractionation of the
synergies observed in unaffected arms. Despite these insights, a significant gap
remains: the relationship between these disrupted muscle synergies and movement
kinematics isn’t well understood.

The proposed study aims to bridge this gap by quantifying the disruption in
muscle synergies and the associated motor primitives due to cortical damage in
stroke survivors. While assessing muscle synergies offers valuable clinical insights,
the process is resource-intensive, time-consuming, and requires specialized personnel.
Ideally, clinicians could gauge the health status of the CNS by observing movement
patterns, inferring from there the state of muscle synergies and the impact of the
stroke event. Establishing a solid link between muscle synergies and movement
kinematics would be a game-changer, allowing for more efficient and accessible
evaluations. This research seeks to provide that missing link, empowering clinicians
to optimize rehabilitation based on biomechanical observations alone.

We collected kinematic and muscle activation signals and analyzed motor prim-
itives and muscle synergies of 7 stroke survivors across various tasks, including
drawing, reaching, targeted, and random movements. Motor primitives were de-
termined for each component of the velocity time series, defining a Cartesian
coordinate system aligned with the anatomical planes. This approach effectively
identified a variety of complex upper-limb movements that can be described as



combinations of motor primitives with a bell-shaped velocity profile. These prim-
itives also showed scalability across various movement sizes. For every drawing
and targeted task, we predicted the ideal trajectory and velocity profile, assessing
their similarity to the actual ones. Muscle synergies were derived from the acquired
sEMG signals via Non-Negative Matrix Factorization (NNMF). By comparing
the similarity between the unaffected and affected side’s muscle synergies and the
results from our kinematic analysis, we discovered a strong correlation between the
two. Our findings highlight the feasibility of quantifying muscle synergy disruptions
through biomechanical assessments alone.
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Chapter 1

The Motion Analysis Lab

The Spaulding Rehabilitation Hospital is situated in the Boston area (Massachusetts,
USA) and serves as the official teaching hospital for Harvard Medical School’s
Department of Physical Medicine and Rehabilitation. The hospital holds a remark-
able reputation in the field of rehabilitation domain, being consistently ranked
among the top rehabilitation hospitals in the United States. According to U.S.
News & World Report, it’s ranked as the #2 rehabilitation hospital in the country
for 2023-2024 and has maintained a ranking as a top rehabilitation hospital in New
England every year since 1995. Spaulding Rehabilitation is not only a hub for
exceptional patient care but also a vanguard in advanced rehabilitation treatment
and research.

Within the Spaulding Rehabilitation Hospital, the Motion Analysis Lab (MAL) is
a hub of cutting-edge technology and internationally recognized expertise dedicated
to the analysis of mobility-impairing conditions such as cerebral palsy, stroke,
traumatic brain injury, spinal cord injury, and Parkinson’s Disease. The Motion
Analysis Lab adopts an integrated approach to patient care, employing a team of
physiatrists, physical therapists, and biomedical engineers aimed at enhancing the
rehabilitation experience of patients both within and beyond the hospital walls.
Toward this end, the Motion Analysis Lab explores the rehabilitative potential of
robotics and wearable technology. Robotics offer the prospect of more intensive
rehabilitation, facilitating greater mobility improvements in a reduced timeframe.
Concurrently, wearable technology allows physicians and clinicians to track these
improvements, even when patients are at home. The Motion Analysis Lab holds
the distinction of being the pioneer in the United States to integrate robotics for
retraining gait in children afflicted with cerebral palsy, positioning itself at the
forefront of research aimed towards superior prosthetics for amputees, cutting-edge
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The Motion Analysis Lab

interactive technology for stroke survivors, individuals with traumatic brain injuries,
and those with burn-induced contractures.

The Director of the lab, Paolo Bonato, Ph.D., is an Assistant Professor in the
Department of Physical Medicine and Rehabilitation at Harvard Medical School
and is a member of the Affiliated Faculty of the Harvard–MIT Division of Health
Sciences and Technology in Cambridge, and the Wyss Institute for Biologically
Inspired Engineering. Dr. Donna Nimec serves as the Medical Director of the
Motion Analysis Lab. She is an Instructor in the Department of Physical Medicine
and Rehabilitation at Harvard Medical School and Director of the Pediatric Physical
Medicine and Rehabilitation Program at the Spaulding Rehabilitation Hospital.

1.1 My period in the Motion Analysis Lab

Throughout my tenure at the Motion Analysis Lab, from April to November 2023,
I was fortunate to collaborate with an incredible team. In these months, I not
only advanced my thesis but also had the chance to broaden my expertise across a
spectrum of projects. This experience allowed me to become proficient in utilizing
a variety of devices and technologies, such as motion capture systems and wearable
sensors.

In addition to refining my expertise in motion tracking and kinematic analysis,
I have substantially enhanced my capabilities in examining muscle function and
coordination. This advancement has been achieved through the meticulous analysis
of surface electromyographic (sEMG) signals, employing the sophisticated Cometa
Wave System. This system has allowed me to delve into the intricacies of muscle
activation patterns, offering a window into the neuromuscular activities that support
movement and posture. Through the precise capture and interpretation of sEMG
data, I have gained a deeper understanding of the complex interplay between muscles
during various activities, further enriching my analytical skill set in biomechanics.

1.1.1 Innovation and Technologies

Working on a diverse range of projects beyond my thesis afforded me the opportunity
to harness Gold Standard technologies for motion tracking, such as Vicon (Oxford,
UK). I also gained expertise in utilizing cutting-edge wearable sensors - including
XSens (Movella Awinda Motion Sensors), Shimmer, and the Veristride System -
which facilitate the extension of movement tracking into more natural environments
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beyond the confines of a laboratory setting. In addition to these skills, I have
honed my expertise in capturing and analyzing kinematic and kinetic data across
populations of both healthy and impaired individuals. Concurrently, I acquired
practical experience in setting up hardware and capturing data using a sophisticated
exoskeleton designed in our laboratory.

Vicon

Vicon stands at the forefront of motion capture technology, providing advanced
systems renowned for precision and reliability across multiple sectors, including
entertainment, athletics, and healthcare. Established over three decades ago, Vicon
has set industry benchmarks, consistently delivering high-fidelity motion analysis.

Utilizing sophisticated tracking, Vicon’s technology meticulously captures the
dynamics of markers or sensors affixed to subjects, objects, or spatial settings. These
markers are tracked by cameras that capture their movement at high speeds and
with great precision. The data collected is then used to create detailed animations
that reflect the exact movements of the subject.

In the field of medicine and rehabilitation, motion capture can aid in the assess-
ment and treatment of various physical conditions by analyzing the movements of
patients and providing data that can inform therapeutic interventions. In biome-
chanics, Vicon’s systems represent the Gold Standard, capturing both kinematic
and kinetic data, which are essential for understanding human motion. Within the
Motion Analysis Labs, reflective markers are strategically positioned on anatomical
landmarks of subjects to track their movement, and high-resolution infrared cameras
enable the reconstruction of their 3D spatial positions. Before acquiring movement,
each camera must be meticulously calibrated to ensure accurate measurements.
The Motion Analysis Lab is equipped with 10 high-resolution infrared cameras and
2 normal RGB cameras. The RGB cameras are situated at the two extremities of
the acquired volume. The acquisition frame rate is usually set at 120 Hz, ensuring
the representation of fluid motion trajectories.

XSens

XSens is an innovative company known for developing state-of-the-art 3D motion
tracking technology and products. XSens provides sensor fusion technologies and
flexible, high-quality motion capture solutions.

Unlike traditional motion capture systems that often require a dedicated space
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with special cameras and markers, XSens offers a different approach with its inertial
sensor technology. XSens motion capture suits and sensors are designed to be
portable and easy to use, without the need for external cameras. This means they
can capture accurate, real-time motion data in virtually any environment, whether
it’s on set, in a studio, on the sports field, or in a research lab.

XSens’ products, like the MVN Animate and MVN Analyze, use inertial sensors
placed strategically across the body. These sensors collect data on acceleration,
angular velocity, and magnetic fields, which are then processed using advanced
algorithms to accurately reconstruct the wearer’s movement. The technology is
highly regarded for its ability to deliver clean, production-ready data in almost any
condition, even in challenging environments where optical systems might struggle.

The application of XSens technology extends beyond entertainment and sports;
it is also utilized for ergonomic studies, rehabilitation, and by researchers who
require detailed biomechanical analysis. The portability and ease of use of XSens
products mean that detailed motion analysis can be conducted outside of traditional
lab settings, thus providing valuable insights into real-world conditions.

Shimmer

In the realm of wearable sensor technology, Shimmer is an innovative technology
company that provides high-quality movement data capture in real-time.

Shimmer’s wearable sensors are designed to be unobtrusive, promoting ease
of integration into daily life and across various professional fields. These devices
are equipped to monitor a comprehensive range of physiological and kinematic
parameters — from heart rate, skin temperature, and galvanic skin response to
acceleration and orientation — making them exceedingly valuable for in-depth
human performance and health monitoring.

The company’s products are utilized extensively in academic research, healthcare,
clinical trials, sports science, and human-computer interaction. Shimmer’s wearables
are highly popular for their accuracy, wireless capabilities, and the actionable data
they provide. This data plays a crucial role in developing insights for health
advancements, therapeutic interventions, and enhancing athletic performance.

4
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Veristride System

The Veristride system offers a comprehensive solution for monitoring walking
patterns in individuals. As an innovative approach to gait training and analysis,
Veristride integrates wearable sensor technology to provide immediate feedback on
a person’s stride, making it a valuable tool for clinicians, physical therapists, and
researchers.

The system’s ability to record and store data also allows for tracking progress over
time, offering valuable insights into the efficacy of treatment plans and rehabilitation
strategies. The insights gained from Veristride’s detailed gait analysis can inform
personalized therapy programs, enhance patient outcomes, and drive research in
the field of human movement sciences.

As mobility is a fundamental aspect of health and independence, the Veristride
system stands out as a promising asset in enhancing the quality of life for those
looking to regain or improve their walking capabilities. It represents a synergistic
blend of biomechanical engineering and rehabilitative science, embodying the
potential of technology to make a tangible difference in personal health and well-
being.

1.2 Projects

While at the Motion Analysis Lab, my main task was to work on my thesis, titled
’Scaling Stroke’. However, during my tenure, I also engaged in a variety of projects,
spanning from wearable sensors to robotics. Each project was the result of a
collaborative effort, bringing together the expertise of brilliant biomedical engineers,
physiatrists, and physical therapists. The following paragraphs provide an in-depth
overview of the various projects I engaged in during this period.

1.2.1 HEART Gait Project

The HEART Gait project is an innovative research program aimed at understanding
and assessing gait impairments in children with Cerebral Palsy (CP), which is
known to cause distinctive gait patterns in affected children. One characteristic
gait pattern exhibited by these children is toe-walking. This research focused on
utilizing wearable Inertial Measurement Units (IMUs) developed by Veristride
Inc. (Salt Lake City UT, USA) as a potential tool to evaluate the severity of gait
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deviations in children diagnosed with CP.

Traditionally, gait patterns are studied using motion capture systems such as
the Vicon (Oxford, UK), which are limited by their high costs and the need for
laboratory settings. However, the HEART Gait project aims to overcome these
limitations by utilizing wearable Inertial Measurement Units (IMUs) to continuously
monitor and analyze these gait patterns in real-world environments. The usage of
wearable sensors, such as the Veristride system, leads to cost reduction, improved
quality of care, and increased treatment effectiveness.

In the initial phase of this project, we explored the feasibility of using the
Veristride system to gauge the foot’s orientation relative to the ground during gait
as a proxy of clinical measures of toe walking severity. We gathered data from 7
children diagnosed with CP for this purpose. Simultaneously, we also collected
Vicon data for comparison purposes. Due to this approach, the data collection
remained confined to a laboratory environment.

The Veristride system consists of two 9-axis IMUs that are directly placed on
the shoes of children with CP. During the data collection, each subject was asked
to complete at least 10 trials of walking in their shoes with any braces they may
typically wear. The IMU data were filtered and subsequently given as input to the
Versatile Quaternion-based Filter in order to obtain the sensor orientation.

By comparing the estimated foot rotation angles with the ones obtained with
Vicon, we were able to differentiate between normal walking and toe-walking
patterns. These invaluable insights offer the potential to revolutionize care strategies,
introduce efficient monitoring methods, and enhance outcomes for children with
CP. The preliminary findings from the project also point to the exciting possibility
of using machine learning to further classify and understand gait patterns based
on IMU data.

In this project, my primary responsibility was to design the processing pipeline,
from the extraction of the data to the estimation of sensor orientation. Additionally,
I took charge of analyzing the results, comparing them with Vicon data, and
distinguishing between subjects of varying impairment levels. While an excellent
physiatrist managed the clinical assessment and placement of reflective markers, I
handled the calibration, synchronization, and data collection using both the Vicon
and Veristride systems during the study.

In acknowledgment of its innovation, this project was selected to be showcased
during the Poster Session at the IEEE-EMBS International Conference on Body
Sensor Networks, which took place at the MIT Media Lab in Cambridge (MA,
USA). Both myself and the talented physiatrist who oversaw this project had the
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honor of presenting our poster at this conference, which has been a significant
opportunity to showcase the efforts we have dedicated in the preceding months.

1.2.2 Exoskeleton Projects

Throughout my stay in the laboratory, I was privileged to be involved in two
projects that employed the use of an exoskeleton for studying motor perturbation
and adaptation. In these projects, I assisted with the data acquisition processes
and preparation of the hardware systems.

Motor Adaptation

The study aims to assess the influence of a lower-limb exoskeleton, the Ex-
oRoboWalker, on the walking patterns of healthy individuals in both over-ground
and treadmill settings. The ExoRoboWalker, designed in the Motion Analysis
Lab, can be set to either a ’transparent mode’, where it minimally interacts with
the user, or a ’training mode’, where it provides guidance to the user’s lower-limb
movements to assist during walking. The study hypothesizes that the transparent
mode will not significantly alter gait patterns, while the training mode will modify
them based on the assistive torques applied by the exoskeleton.

Commercially available exoskeletons typically force users into predetermined
movement patterns, which may hinder active learning during gait rehabilitation. To
overcome this, the ExoRoboWalker uses an ’assist-as-needed’ approach, encouraging
user participation by adjusting the support based on their movement deviations.

The study will involve up to 15 healthy individuals whose muscle activation
patterns will be recorded using surface electromyography (sEMG). Gait analysis
will be performed using the Vicon motion capture system, with force plates and
reflective markers on the participants to track movements.

Participants will walk in four different scenarios: without the ExoRoboWalker,
with an unpowered ExoRoboWalker, with the ExoRoboWalker in “transparent
mode”, and with it in “training mode”, both over-ground and on a treadmill. This
approach aims to evaluate the ExoRoboWalker’s potential clinical benefits for
future applications in gait rehabilitation.
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Motor Perturbation

The long-term goal of the project is to evaluate whether an exoskeleton (the
ExoRoboWalker), directed by a combination of EEG, EMG, and IMU data, can
prevent falls in older adults. Falls are the second leading cause of injuries and
deaths worldwide, according to the World Health Organization. The risk of falls
increases due to several factors such as advanced age, solitary living, cognitive and
sensory impairments, nervous system changes, and muscle weakness. The project
investigates whether exoskeletons can detect and correct balance instabilities in
real-time, thus preventing falls. While current exoskeletons use IMU data to sense
the onset of a fall, this project explores whether integrating neurophysiological
data (EEG and EMG) could improve fall detection and prevention.

The study involves collecting EEG, EMG, and IMU data from both young
(18-40 years) and older adults (65-85 years) while they undergo pull tests, which
is a commonly utilized method to assess balance impairments in patients with
neurological conditions affecting postural stability. The research aims to use
this data to refine exoskeleton algorithms to counteract balance disruptions more
effectively.

Participants underwent two test sessions, one without and one with the ex-
oskeleton, which was programmed to be “transparent”, not providing any active
movement or resistance. This study will potentially lead to the development of
exoskeletons that could identify the neural and muscular patterns preceding a loss
of balance and react accordingly to prevent falls in both younger and older adults.

1.2.3 Recover on Track

This study explores the feasibility and accuracy of a novel video-based platform
for the evaluation of rehabilitation exercises among stroke patients, aiming to
match the effectiveness of in-person therapy sessions. It seeks to validate the use
of advanced RGB-D cameras coupled with deep-learning algorithms to capture
and analyze the fine movement patterns of patients, with the ultimate goal of
developing a precise machine-learning model that can accurately classify varying
levels of motor impairment.

This model, initially built on clinician-simulated data, is expected to be refined
with actual patient data to improve its predictive power. Moreover, the research
investigates whether a monitored home-based therapy regimen, adapted through
the insights gained from this technology, can enhance the recovery trajectory over
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a 12/24-week period compared to standard clinical assessments. Additionally, the
study aims to use this technology to accurately estimate clinical scores from videos
captured during patient assessments.

The research is conducted in two phases: the first focuses on the technical
development with clinicians, and the second on a randomized controlled trial with
patients at Spaulding Rehabilitation Hospital, assessing the impact of personalized
home-based therapy against a control group over several weeks.

In this project, my responsibilities covered the acquisition of data and refinement
of the processing pipeline. This involved managing the entire flow from initial data
capture to the implementation of advanced pose estimation techniques, such as
MediaPipe (developed by Google Research), followed by the extraction of kinematic
features critical for evaluating the extent of impairment in individuals.

1.2.4 Ring Sensor Project

This project aims to innovate post-stroke rehabilitation by developing a machine
learning algorithm supported by data from finger-worn sensors that record the
daily activities of stroke survivors. Initially, the project aims to gather preliminary
data from up to 20 participants in a single laboratory session, setting the stage for
the algorithm’s development. The second phase will test the sensor’s accuracy in
measuring real-world upper-limb function by conducting a week-long field study
with up to 60 stroke survivors, supplementing the data with lab-based analysis.
These insights are expected to provide clinicians with valuable data on patient
progress outside clinical settings.

My role in this project was to assist with the data labeling process, which is
pivotal for the future development of an algorithm capable of accurately evaluating
upper-limb performance in real-world conditions for stroke survivors.
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Chapter 2

Introduction

This research delves into understanding and addressing the disruptions in movement
kinematics experienced by stroke survivors and the strategies the Central Nervous
System (CNS) employs in the coordination of upper-limb muscles during the
execution of various tasks.

To fully grasp the context and importance of this study, it’s essential to first
highlight the key elements that will be addressed in this paper.

2.1 Stroke

A stroke, often described as a "brain attack", occurs when the blood supply to
a part of the brain is interrupted or severely reduced, depriving brain tissue of
essential oxygen and nutrients. This sudden cessation can lead to the rapid death
of brain cells, with potentially severe or fatal outcomes.

The World Stroke Organization (WSO) states that stroke is the second-leading
cause of death and the third-leading cause of death and disability combined in the
world. From 1990 to 2019, the absolute number of cases increased substantially.
Specifically, there has been an increase of 70% in incident strokes, while the number
of deaths from stroke increased by 43% [1].

Strokes are broadly classified into two main types: ischemic and hemorrhagic.
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2.1.1 Ischemic strokes

Ischemic strokes, which account for about 85% of all cases, arise from an obstruction
within a blood vessel supplying blood to the brain, typically due to a coagulum [2].

There are several potential mechanisms which can result in an ischemic stroke,
including:

• Embolism: an embolus originated somewhere else in the body (e.g. in the
heart) causes obstruction of a cerebral vessel, resulting in hypoperfusion to
the area that the brain the vessel supplies.

• Thrombosis: a blood clot originates locally within a cerebral vessel (e.g. due
to the rupture of the atherosclerotic plaque).

• Systemic hypoperfusion: blood supply to the entire brain is reduced in conse-
quence of a systemic hypotension (e.g. a cardiac arrest).

• Cerebral venous sinus thrombosis: a blood clots forms in the veins that drain
the blood from the brain, resulting in venous congestion and tissue hypoxia.

The most commonly used classification system for ischemic stroke is the Bamford
Classification System, also known as the Oxford classification system [3]. This
system categorizes stroke based on the initial presenting symptoms and clinical
signs. This system does not require imaging to classify the stroke, but is based on
clinical findings alone.

2.1.2 Hemorrhagic strokes

Hemorrhagic strokes, on the other hand, occur when a weakened blood vessel
ruptures, causing blood to spill into the surrounding brain tissue [4]. There are
two sub-types of hemorrhagic stroke known as:

• Intracerebral hemorrhage: involves bleeding within the brain secondary to a
ruptured blood vessel. These hemorrhages can be intraparenchymal (within
the brain tissue) and/or intraventricular (within the ventricles).

• Subarachnoid hemorrhage: is a type of stroke caused by bleeding outside of
the brain tissue, between the pia mater and arachnoid mater.
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2.1.3 Consequences and disabilities

Stroke can result in a wide range of disabilities, including motor, cognitive, and
sensory impairments. While some individuals may experience only temporary
disruptions, others may face permanent disabilities. Common disabilities include
hemiparesis, speech or vision disorders, memory loss, behavioral changes, and
difficulties in performing daily activities. The degree of disability can vary depending
on the severity of the stroke and the affected brain region [5].

Recognizing the signs of a stroke and seeking immediate medical attention can
be life-saving. Common warning signs include:

• sudden paralysis or weakness of the face, arm, or leg, especially on one side of
the body.

• troubles in speaking or understanding speech.

• difficulty in seeing with one or both eyes.

• loss of balance or coordination.

• severe headache with no known cause.

• confusion.

Besides neurological deficits, stroke patients can face numerous non-neurological
challenges that profoundly influence their recovery journey and overall prognosis
[6]. In the immediate and following phases of a stroke, there’s an increased risk
of heart-related complications, such as heart attacks and irregular heart rhythms,
which are often linked to disruptions caused by the stroke to the autonomic nervous
system. Respiratory issues, like pneumonia and decreased oxygen levels, arise
frequently, typically due to swallowing difficulties or pre-existing health conditions.
Digestive problems, including swallowing difficulties (dysphagia) and internal
bleeding, can emerge. Swallowing issues might lead to nutritional deficiencies and
an increased risk of lung infections, while internal bleeding can significantly heighten
the chances of complications or death [7]. Issues related to the urinary system, such
as incontinence and infections, are prevalent, especially among older adults, leading
to extended hospitalizations and diminishing life quality. Post-stroke individuals
are also more prone to musculoskeletal problems, with hip fractures being notably
common, particularly within the first year after the incident. This risk becomes
even more pronounced in older adults, given the natural bone deterioration that
comes with aging. Blood clot-related conditions, like deep vein thrombosis and
lung clots, are particularly worrisome for those with paralyzed limbs.
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The road to recovery can be long and challenging, and many individuals facing
lasting impacts never regain their pre-stroke state.

Given the gravity of its consequences, understanding stroke – its causes, symp-
toms, treatments, and preventative measures – is of paramount importance. As
the second-leading cause of death globally and a major cause of disability, strokes
pose significant challenges to healthcare systems, necessitating a multidisciplinary
approach to management and rehabilitation. Our research is aimed at optimizing
rehabilitation strategies in order to improve long-term outcomes for stroke survivors.

2.2 Kinematic analysis

In biomechanics, kinematic analysis refers to the study and analysis of the motion
of biological organisms, particularly the human body, without considering the
forces involved. This analysis is crucial for understanding the motion mechanics of
different body parts in various activities such as walking, running, jumping, or any
other movement. Kinematic parameters such as position, velocity, and acceleration
of body segments are studied using various tools and technologies like motion
capture systems, video analysis software, and inertial measurement units (IMUs).

Through kinematic analysis, researchers and practitioners can analyze movement
patterns, detect abnormalities, improve athletic performance, and design better
prosthetic or orthotic devices. Additionally, kinematic studies in biomechanics are
essential for injury prevention, rehabilitation, and enhancing the understanding of
complex motor tasks [8].

Furthermore, kinematic analysis is often paired with kinetic analysis, which
considers the forces and torques causing or resulting from motion. Together,
kinematics and kinetics provide a comprehensive understanding of motion and the
forces involved, which is pivotal for many fields including sports science, physical
therapy, orthopedics, and ergonomics.

In our research, kinematic analysis serves as a fundamental tool for evaluating
the impact of stroke on motion.

2.2.1 Stereophotogrammetry

The gold standard for studying kinematics is represented by motion capture systems
[9], such as Vicon (Oxford, UK). Motion capture systems leverage the principles of
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stereophotogrammetry to reconstruct the three-dimensional coordinates of points
within a scene. By employing high-resolution cameras and sophisticated software,
motion capture systems can accurately capture and analyze the motion of objects or
individuals within a defined environment. This is particularly useful in biomechanics,
sports science, animation, and other fields where understanding and analyzing
motion is critical.

Stereophotogrammetry is a sophisticated technique employed to extract three-
dimensional information from two-dimensional photographic images. By capturing
images from different viewpoints, similar to how human eyes perceive depth, this
technique allows for the precise measurement and reconstruction of the shape and
size of objects within a scene.

The core principle of stereophotogrammetry lies in triangulation [10], where
corresponding points are identified on pairs of images taken from distinct positions.
By knowing the geometry of the camera setup and the positions from which
the images were taken, the three-dimensional coordinates of the points can be
computed.

In the realm of biomechanics, stereophotogrammetry is often utilized to perform
detailed kinematic analyses of human movement. It enables researchers to capture
complex motions accurately and to derive quantitative data regarding the position,
velocity, and acceleration of different body parts during motion. This is invaluable
in understanding the mechanics of human motion, identifying abnormal movement
patterns, and optimizing performance in athletics or rehabilitation settings. Its
ability to provide accurate three-dimensional measurements and models makes it a
powerful tool for both research and practical applications. Through the advance-
ments in camera technology and computational methods, stereophotogrammetry
continues to evolve, offering increasingly precise and detailed insights into the
three-dimensional world.

2.2.2 Motor Primitives

Utilizing a motion capture system like Vicon, we examined the kinematics of
participants as they performed a series of tasks. Specifically, we concentrated on
analyzing fundamental movements or actions from which more complex, coordinated
movements can be reconstructed.

At the heart of understanding complex motor behaviors is the concept of
“motor primitives”, which are defined as fundamental, predefined neural patterns or
modules that the Central Nervous System can combine in various ways to produce a
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wide array of movements [11]. Motor primitives are often likened to the alphabet of
movement since as we can construct sentences using a set of basic words, similarly,
intricate actions can be broken down into these foundational patterns. Motor
primitives provide a framework that simplifies the massive task of motor control.
By understanding motor primitives, we aim to uncover the basic units of movement
generation, offering insights into motor learning, rehabilitation, and even robotic
design.

In the realm of motor primitives, researchers have attempted to identify the
principles underlying the generation of complex upper-limb movements in humans
[12, 13]. By analyzing the velocity vector of the hand’s trajectory during point-
to-point movements and drawing geometrical figures, Viviani and Terzuolo [14],
Lacquaniti [15], and Hoff [16] showed that movements can be decomposed into
fundamental components - also called “motor primitives” or “movement elements”
- with a bell-shaped velocity profile.

While Uno et al. [17] demonstrated that the hand motion during the execution of
one-dimensional point-to-point movements is characterized by motor primitives with
bell-shaped velocity profiles, other studies [18, 19, 20] have explored whether motor
primitives that exhibit a similar shape mark also complex upper-limb movements.
They have pursued their research by examining the magnitude of the velocity
vector of the hand trajectory. However, this method has not successfully detected
motor primitives characterized by a bell-shaped velocity profile as the fundamental
components responsible for generating complex upper-limb movements. Recently,
Miranda et al [21] investigated the possibility that a broad category of upper-limb
movements can be looked upon as a combination of one-dimensional point-to-point
movements. They proposed a novel strategy by analyzing the velocity vector along
the medio-lateral, antero-posterior, and vertical directions. They achieved this by
defining a Cartesian coordinate system aligned with the anatomical planes. This
method effectively identified a range of complex upper-limb movements that could
be represented as combinations of motor primitives characterized by a bell-shaped
velocity profile.

The generation of complex upper-limb movements in humans from a kinematic
point of view has been extensively explored over the past century. Yet, the
relationship between the principles underlying the generation of complex movements
and muscle coordination remains unclear.
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2.3 Analysis of Muscle Activation and Coordina-
tion

The exploration of muscle activation and coordination is pivotal in biomechanics,
rehabilitation, sports science, and neuromuscular research. While muscle activa-
tion analysis delves into how muscles are engaged and controlled by the nervous
system during various movements, the analysis of muscle coordination extends
to understanding how different muscle groups work together to execute complex
motions. Techniques such as electromyography (EMG) are employed to measure
the electrical activity produced by skeletal muscles, enabling the study of the onset,
duration, and intensity of muscle activation during different phases of movement.

Analyzing muscle coordination involves studying the timing and sequencing of
muscle activations, and how they are orchestrated to achieve desired movements.
This analysis is critical for understanding the synergies and interaction between
various muscle groups, and how they contribute to the efficiency, stability, and
adaptability of movement. The data gathered from such analyses are instrumental in
assessing muscle function, identifying impairments, and designing tailored treatment
plans or facilitate recovery from injury.

Moreover, understanding muscle activation and coordination is fundamental
for analyzing the mechanics of human movement. It provides invaluable insights
for a multitude of applications, including the design of prosthetic devices, athletic
training, and the development of rehabilitation protocols. The examination of
muscle coordination also unveils the motor control strategies employed by the
nervous system, improving the comprehension of human motor behavior.

2.3.1 Muscle Synergies

In the realm of muscle coordination, for many years, scientists have debated
whether the Central Nervous System (CNS) activates muscles individually or
employs strategies such as the coordinated activation of groups of muscles together,
to simplify the complex task of motor control. Notably, the research conducted
by Bizzi and his team [22, 23, 24, 25, 26, 27] has significantly contributed to
understanding motor control, validating the latter hypothesis, which has since been
termed “muscle synergy theory”.

The “muscle synergy theory“ has been proposed in the realm of human motor
control. In this perspective, the Central Nervous System (CNS) doesn’t activate
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muscles in isolation but clusters them into groups, coordinating their activation in
concert to produce fluid and intentional movements. Like musicians in an orchestra,
each group of muscles plays its part, contributing to the overall symphony of
movement. This modular approach adopted by the CNS simplifies the enormous
complexity of coordinating the human body’s vast array of muscles, allowing various
muscles to work together in harmony to achieve a specific motion. By understanding
these synergies, we gain insights into the strategies that our CNS uses to reduce
the complexity of motor tasks, turning the various possibilities of movement into
efficient, coordinated actions. Furthermore, delving into muscle synergies provides
invaluable insights into understanding motor control, rehabilitation processes, and
the intricate cooperation of muscles that enable our daily activities.

Delving into the “muscle synergy theory”, the research conducted by Bizzi
et al. showcased that the spinal motor systems in vertebrates generate complex
movements through the combination of a small number of motor output units.
Specifically, electrical signals originate from the motor cortex and are sent to the
spinal cord, where central pattern generators (CPGs) reside. These CPGs then
relay commands through peripheral nerves to activate specific groups of muscles
[27]. The patterns of EMG activity from these groups of muscles are modules of
predetermined levels of co-contraction of different muscles and are known as “muscle
synergies”. This organized coordination reduces the computational demands on the
CNS, streamlining the control process for intricate movements.

Building on Bizzi’s foundational work, Ivanenko and his team delved into the
lower limb’s movement dynamics, especially during normal and abnormal walking,
simplifying motion into distinct synergies [28].

After consolidating the muscle synergy theory, it is important to consider this
concept in the context of pathological conditions. In this regard, Cheung et al
[24] analyzed muscle synergies in 31 stroke survivors. In their study, they have
been able to decompose the electromyographic (EMG) signals recorded from 14
muscles of the upper limbs into distinct muscle synergies. They identified 3 primary
post-stroke scenarios, including preservation, merging, and fractionation of the
synergies observed in the unaffected arm.

The merging and fractionation phenomena observed in stroke survivors’s syner-
gies demand special attention, as they can be characterized as “pathological” or
“compensatory” synergies. It is indeed crucial to highlight the neural alterations
that occur after a stroke. Specifically, following a stroke, the Central Nervous
System undergoes spatial reorganization, marked by changes in neural connections
[29]. In this process, some brain areas may enhance their connectivity, while others
might become more isolated, resulting either in a positive or negative influence
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on movement. Such adaptability in the neural network is commonly referred to
as “neural plasticity”, and plays a pivotal role in post-stroke recovery strategies.
The merging and fractionation of muscle synergies can provide a physiological
explanation for the spasticity and co-contractions often observed in stroke survivors.
Essentially, these compensatory synergies act as adaptive mechanisms for the CNS
to cope with neuromuscular deficits; however, they can unintentionally interfere
with functional movement. Understanding these compensatory mechanisms and the
role of neural plasticity is crucial for designing effective rehabilitation interventions
for post-stroke recovery.

2.4 Aim of the study

While numerous studies have delved into the disruption of muscle synergies following
a stroke, the connection between these disrupted synergies and movement kinematics
remains unclear. This study aims to clarify this relationship by quantifying the
disruption in muscle synergies and the associated motor primitives resulting from
cortical damage in stroke survivors.

Although muscle synergy analysis has been extensively pursued, the process
is resource-intensive, time-consuming, and requires specialized personnel. Many
prior studies have faced this problem, arguing the need for multiple intricate steps
to reach their goal, from skin preparation and electrode placement to EMG data
collection and muscle synergy extraction and analysis. Establishing a clear link
between muscle synergies and movement kinematics could provide clinicians with
an indirect measure of the Central Nervous System’s health based on movement
patterns observation. Such a connection could be a game changer in research and
rehabilitation, leading the way for more simplified and effective evaluations. It
would also facilitate the creation of tailored rehabilitation programs, simultaneously
offering insights into the post-stroke recovery process.

Through this project, we aim to determine if subjects utilize normative synergies
during rehabilitative exercises. If this can be identified through kinematics, we
can then encourage patients to activate these synergies, potentially aiding in their
recovery from the stroke. Given the existing gaps in the literature, our study’s
goal is to quantify the changes in muscle synergies and motor primitives due to
stroke-induced cortical damage and establish their relationship. By doing so, we
hope to offer clinicians a more efficient method to analyze the Central Nervous
System’s health and refine rehabilitation strategies based solely on biomechanical
observations, streamlining the muscle synergy analysis process.
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Chapter 3

Experimental setup

The experimental study was comprehensively conducted in the Motion Analysis
Lab (MAL) at Spaulding Rehabilitation Hospital (Boston, MA). An experienced
clinician was responsible for all clinical aspects, including participant recruitment
and the execution of clinical assessments. The Institutional Review Board (IRB)
of Spaulding Rehabilitation Hospital provided full approval for all the procedures
conducted within this study.

In this chapter, we explore the detailed data collection procedures. To begin,
preliminary trials were conducted on healthy volunteers within the laboratory
setting to refine our methodology. After these preparatory sessions, we embarked
on the main phase of data collection, involving stroke survivors, over the period
from June to September 2023.

3.1 Participants

All the participants involved in this study were first-time stroke survivors with at
least six months since the neurological event. We collected data from 7 individuals
(3 males, 58.2 ± 7.8 years of age), who were recruited from the Spaulding Rehabilita-
tion Hospital. All patients suffered from a mostly unilateral cortical and subcortical
lesion resulting from a stroke. 4 participants experienced an ischemic stroke, while
the other 3 have had a hemorrhagic stroke. Furthermore, all the participants were
medically stable, lacking acute cardiopulmonary diseases or conditions affecting
vital prognosis.
In summary, the inclusion criteria for the study were:
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• male or female with an age of 18-80 years old.

• first-time stroke survivors, with at least six months since the neurological
event.

• medically stable, without vital prognostic engaged or acute cardiopulmonary
diseases.

The study excluded individuals with a cognitive impairment that could interfere
with the comprehension of instructions. Eligibility was determined using the Mini-
Mental State Examination (MMSE) score, requiring a score above 23. Exclusion
also applied to those who were unable to perform reaching movements or simple
movements with the upper limbs. Furthermore, recent Botox injections in the upper
limbs within the past six months determined the ineligibility of individuals. Addi-
tional exclusion criteria included severe spasticity affecting the upper extremities
(Modified Ashworth Scale - MAS - score of 3 or higher), a Fugl-Meyer Assessment
of Upper Extremity (FMA-UE) score below 21 or above 60, but also the presence
of fractures or skin lesions affecting the upper limbs, infectious diseases requiring
contact precautions, neurological disorders affecting upper-limb movements such as
Parkinson’s disease or Huntington’s disease, and allergies to adhesives or silicone.
In conclusion, the exclusion criteria involved:

• cognitive impairments (MMSE score < 23)

• subjects who were unable to perform reaching movements or simple movements
with the upper limbs

• injections of Botox in the upper limbs in the previous 6 months from the
collection of data

• severe spasticity (MAS score ≥ 3)

• FMA-UE < 21 or > 60

• fractures or skin lesions affecting the upper limbs

• infectious diseases that required contact precautions

• neurological movement disorders that would affect the generation of upper-limb
movements

• allergy to adhesives or silicone.

All participants provided informed consent before the experiments.
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3.2 Materials

The data collection process involved capturing both biomechanical and surface elec-
tromyographic (sEMG) data. These were utilized to analyze the motion kinematics
and muscle activation during various upper-limb exercises. However, it’s worth
noting that the data was collected in a laboratory setting, which doesn’t replicate
a home or more natural environment.

For examining the kinematics of motion and upper-limb muscle activities, we
employed several tools available in the Motion Analysis Lab. These included
systems like Vicon (Oxford, UK) and the Cometa Wave System. Additionally, we
made use of specially crafted materials tailored for the execution of the diverse
exercises.

3.2.1 Vicon

The Vicon motion capture system represents the Gold Standard for capturing
precise kinematic and kinetic data, facilitating a deep comprehension of human
biomechanics. This system employs passive reflective markers, strategically posi-
tioned on anatomical landmarks, and high-resolution infrared cameras to recreate
their 3D spatial positions. Each camera must be meticulously calibrated to ensure
accurate measurements.
The Motion Analysis Lab is equipped with 10 high-resolution infrared cameras and
2 normal RGB cameras. The RGB cameras are situated at the two extremities of
the acquired volume, with one positioned upfront and the other to the left. With
an acquisition frame rate set at 120 Hz, it ensures the representation of fluid motion
trajectories.

In our experimental study, we were interested in monitoring the movements of
the upper limbs, trunk, and notably, the pen tip used by subjects during drawing
exercises. Additionally, three reflective markers were affixed to the table edges
directly in front of the subject. To be precise, markers were placed on the edge
furthest from the subject, and on the left and right corners. This triangular marker
setup provided a spatial reference to locate the table’s position in 3D space. To
capture the movement dynamics of the upper limbs and trunk, we utilized nine
reflective markers positioned on these anatomical landmarks:

• C7 vertebra

• T10 vertebra
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• Offset

• Superior end of the sternum

• Inferior end of the sternum

• Shoulder acromion

• Lateral Epicondyle of the humerus

• Ulnar styloid process

• Midpoint between the 2nd and 3rd metacarpophalangeal joint

The Offset marker was strategically placed on one of the subject’s scapulae to
facilitate easier labeling. Furthermore, three additional markers were mounted on
a 3D-printed support fitted to the pen, ensuring precise tracking of the pen tip.
In total, 15 reflective markers were leveraged to meticulously track the subject’s
movements during various exercises.

3.2.2 Cometa Wave System

We used the Cometa Wave System to record surface electromyographic (sEMG)
signals from 16 upper-limb, chest, and back muscles. This system records high-
quality sEMG data with minimal interference, ensuring accurate and reliable
readings.

After skin preparation, the 16 electrodes were placed according to the Non-
Invasive Assessment of Muscles (SENIAM) guidelines:

• Rhomboid Major: midway between spine and inferior angle of scapula just
medial to the vertebral border

• Latissimus Dorsi: 3 finger-breadths distal to and along the posterior axillary
fold

• Infraspinatus: 2 finger-breadths below the medial portion of the spine of the
scapula

• Trapezius Superior

• Deltoid Anterior: 1 finger width distal and anterior to the acromion
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• Deltoid Medial: halfway between the tip of the acromion and the deltoid
tubercle

• Deltoid Posterior: 2 finger-breadths caudal to posterior margin of the acromion

• Pectoralis Major: above the anterior axillary fold

• Triceps Brachii Lateral: at 50 % on the line between the posterior crista of
the acromion and the olecranon at 2 finger widths lateral to the line

• Triceps Brachii Medial: 3 finger-breadths proximal to the medial epicondyle
of humerus

• Biceps Brachii – Short Head: medially and higher

• Biceps Brachii – Long Head: laterally on the line between the medial acromion
and the fossa cubit at 1/3 from the fossa cubit

• Brachialis: 2 finger-breadths proximal to elbow crease along and just lateral
to the tendon and the bulk of the biceps

• Brachioradialis: lateral aspect of the radius, just above the styloid process

• Pronator Teres: 2 finger-breadths distal to the midpoint of a line connecting
the medial epicondyle and biceps tendon

• Supinator: radial to the most distal part of the insertion of the biceps tendon,
the electrode will travel through the extensor digitorum communis

Each electrode was firmly affixed with additional tape to guarantee its stability.

Once each electrode was positioned on the respective muscles, we meticulously
examined the raw signal by visual inspection, confirming an acceptable signal-to-
noise ratio and ensuring no discernible crosstalk was present.

3.2.3 Drawings

The majority of tasks that participants were asked to perform included drawing
geometric shapes, such as circles, ellipses, spirals, and flowers. For this purpose,
we produced stickers of these geometric figures and affixed them to plastic mats,
which were then accurately positioned on the table using four supports located at
its edges. This method ensured a consistent alignment of the drawings for each
participant. A designated starting point was clearly marked on each drawing. The
following illustrations depict the varied drawings utilized in our study:
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Figure 3.1: Circle drawings of four different dimensions. The red marker represents
the designated starting point. Subjects were asked to follow the drawing line with
a pen. The arrow represents the direction followed when performing the task with
the right arm.

R

L

Figure 3.2: Ellipse drawings of four different dimensions. The red marker
represents the designated starting point. Subjects were asked to follow the drawing
line with a pen. The arrow represents the direction followed when performing the
task with the right arm.

It’s important to note that each drawing was to be executed in a specific direction
based on whether the participant used their right or left arm. For instance, the circle
was drawn clockwise when performed with the right arm and counterclockwise with
the left. Consequently, each drawing was printed in two variations, each indicating
the starting position and respective movement direction.

Additionally, for the reaching exercises, we designed a sticker showing 10 reaching
targets. These were set in two semi-elliptical patterns, each 10 cm apart. The
targets were oriented at specific angles: 30°, 60°, 90°, 120°, and 150°, relative to
the plane that intersects both the body’s midline and the designated target (see
Figure 3.5).
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R

R

Figure 3.3: Flower drawings (3 out of 4 dimensions). The black line marker
represents the designated starting point. Subjects were asked to follow the arrows
to complete the drawings.

R

R

Figure 3.4: Spiral drawings (3 out of 4 dimensions). The red cross marker
represents the starting point.

Lastly, two tasks incorporated the use of a ruler, which was replicated on a
sticker and adhered to a mat, consistent with the setup for the other exercises:

All the drawings were realized using the software Inskspace.
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Figure 3.5: Reaching targets
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Figure 3.6: Ruler targets

3.2.4 Fat grip pen

All the exercises required the manipulation of the fat-grip pen along one, two, or
three dimensions. To accurately estimate the position of the pen’s tip, we designed
a 3D-printed support structure that was then glued to the upper portion of the
pen, as depicted in Figure 3.7. This plastic support featured a circular ring within
which the pen was secured, along with three vertical supports designed to hold
three reflective markers.
This support was carefully designed to ensure that the three markers occupied a
plane perpendicular to the pen’s axis and maintained an equidistant distance from
it, forming an equilateral triangle. This configuration enabled the estimation of
the position of the pen’s tip.
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Figure 3.7: 3D-printed support featuring 3 reflective markers (left), alongside the
fat grip pen equipped with the attached support

Due to this design, we can estimate the pen tip’s position using a model developed
in MATLAB, as detailed in section 4.2.1.

3.2.5 Softwares

Three primary software applications served distinct roles:

• Vicon Nexus 2.15 was responsible for collecting kinematic and sEMG data.
Through a specialized plugin, it was integrated with the Cometa Wave System,
ensuring synchronized capture of both analog signals.

• MATLAB ®2022b (The MathWorks Inc., MA) facilitated the data processing.

• Inskspace 1.3 was employed for crafting the various drawings, as well as for
defining reaching and ruler targets.

3.2.6 Other materials

During data collection, we used some additional equipment, including a table
and a custom-designed bench without armrests or backrests. This design ensured
that participants’ movements weren’t influenced by these features during exercises.
Additionally, for the reaching exercise, we utilized a wooden support inclined of
25°, onto which the sticker marking the 10 reaching targets was affixed.
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Figure 3.8 presents the prepared experimental environment, showcasing the
subject in the midst of performing the exercise Flower03. Visible in the scene are
the table covered with a mat, the fat-grip pen, and the array of reflective markers
and electrodes strategically placed on the subject’s left arm.

Figure 3.8: Subject during the execution of the exercise Flower03.

For the initial clinical assessment, we employed:

• A handheld dynamometer to measure grip strength.

• A divided box with blocks, facilitating the box and block test.

3.3 Data Collection

The data collection process began with a clinical assessment to determine upper
extremity functionality and confirm the eligibility of participants. Once participants
were deemed eligible, we proceeded to set up electrodes and reflective markers.
Following this, participants were instructed to perform a range of exercises for data
acquisition.
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In this section, we detail each step of the data collection process, from clinical
evaluation to data gathering.

3.3.1 Clinical Assessment

To establish participant eligibility for the study, a clinician conducted several clinical
evaluations. All tests were conducted by a single trained healthcare professional to
maintain consistency and ensure result validity.

Fugl-Meyer Assessment (FMA)

The Fugl-Meyer Assessment (FMA) stands as a prominent stroke-specific index to
evaluate performance-based impairments [30]. It’s tailored to gauge motor function,
balance, sensation, joint discomfort, and proprioception in post-stroke individuals.
The FMA is structured into two main components: assessments for both upper
and lower extremities. For the purpose of our experimental study, we focused
exclusively on the upper extremity (UE) section.

In terms of scoring, the FMA adopts an ordinal approach. Items can earn a
maximum of 3 points: a score of zero for non-completion, one for partial completion,
and two for successful completion. Notably, reflex activity uses a simpler scale,
with scores of either 0 or 2 indicating the lack or presence of reflex, respectively.

Upon concluding the FMA-UE evaluation, the scores from each item were
summed. As mentioned earlier, participants were deemed eligible if their cumulative
score ranged between 21 and 60.

Modified Ashworth Scale (MAS)

The Modified Ashworth Scale (MAS) is a diagnostic instrument employed to gauge
muscle spasticity, primarily in individuals impacted by central nervous system
conditions like stroke, traumatic brain injury, or multiple sclerosis [31]. This scale
quantifies the resistance felt when passively extending a muscle group and grades
it on a spectrum from 0 to 4.

Individuals exhibiting severe spasticity, specifically those with a MAS score of 3
or higher, were not included in the study.
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Box and Block Test

The Box and Block Test is an efficient assessment tool frequently employed to
measure unilateral gross manual dexterity [32]. It consists of a box partitioned
into two sections. One section is filled with blocks, and participants are asked to
transfer as many blocks as possible, one by one, from one section to the other,
within a 60-second window. The test is executed for each hand separately.

During the test, participants sit facing the box. The hand being evaluated is
positioned beside the box, while the other rests in the participant’s lap. On cue,
the participant moves blocks over the divider, one at a time. The final count of
blocks successfully moved within the allocated time determines that hand’s score.

One of the primary advantages of the Box and Block Test is its straightforward-
ness and quick execution. It’s versatile, and suitable for a wide age range and
diverse impairment levels, including those recovering from strokes or other manual
dexterity-impacting conditions. This test is especially valuable for monitoring
enhancements in manual dexterity, whether over time or following therapeutic
treatments.

The outcome of this test isn’t a determining factor for including or excluding
the participant from the study. However, it’s conducted to improve the evaluation
of upper limb functionality, particularly in the affected arm.

Grip strength Measurement

A dynamometer is commonly employed to measure grip strength, providing a
quantitative insight into the isometric strength of hand and forearm muscles [33].
This assessment is particularly valuable when gauging functional recovery levels
and the efficacy of therapeutic interventions for stroke patients. During the test,
the patient, holding a dynamometer, sits comfortably with the arm positioned
at a 90-degree angle at the elbow and the wrist neutrally aligned. The handle is
adjusted to fit their hand size. On cue, the patient exerts maximum force on the
dynamometer, avoiding other body movements. The resultant force, recorded in
kilograms, is typically taken across three attempts to derive an average score. Both
hands are assessed, allowing for a comparison between the affected and non-affected
sides, clarifying the degree of impairment and recovery.

As the Box and Block Test, the result of this test doesn’t dictate participant
inclusion or exclusion.
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3.3.2 Vicon Calibration

Before every data acquisition, we calibrated the motion capture system. Firstly,
we made sure all blinds were drawn and eliminated any reflective materials from
the area Vicon would capture, ensuring no interference with the infrared cameras.
Subsequently, we initiated the Vicon calibration, which involved three steps.

First, by using a wand equipped with strategically placed LEDs emitting infrared
light, we calibrated the cameras, allowing for precise 3D coordinate reconstruction of
reflective markers within our acquisition volume, thereby minimizing reconstruction
errors. The next phase involved setting the volume’s origin. Here, we needed to
remove the cover of the first force plate and meticulously align the wand to its
bottom-left corner. This action helped us define the XYZ coordinate reference
system, which was centered with this force plate corner and with the 3 axes
specifically aligned to it. This step was of paramount importance for ensuring
consistency across all data collection sessions. The third step consisted of correcting
the floor’s offset by randomly positioning 10 reflective markers within the acquisition
volume. These steps, carried out with high precision, ensured the lab was correctly
set for reliable data collection.

3.3.3 Electrode and markers placement

Once the clinical assessment was finalized and Vicon was calibrated, we proceeded
with the arrangement of the reflective markers and sEMG electrodes.

Markers were positioned based on the anatomical reference points outlined in
section 3.2.1, securing them firmly with double-sided tape. Of the 15 reflective
markers used, 9 were strategically placed on the subject’s forearm, arm, chest, and
trunk. Meanwhile, 3 were allocated to the table, and the last three were attached
to the pen used during the exercises.

For capturing sEMG data, we positioned 16 electrodes on particular muscles of
the forearm, arm, chest, and trunk, following the specifications in section 3.2.2. To
ensure consistent readings and prevent displacement, each electrode was securely
affixed with additional tape.

In the subsequent figures, we can observe the culmination of this process, with
both the reflective markers and the sEMG electrodes distinctly displayed.
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Figure 3.9: Setup of the electrodes without (Left) and with extra-tape (Right)

3.3.4 Execution of the exercises

Once the participant’s setup was finalized, we proceeded to initiate data collection.
As the exercises were conducted, participants comfortably seated themselves at the
table, ensuring they were centrally aligned and at an optimal distance from the
task materials.

Static Calibration

First, a static calibration was necessary to simplify labeling in Vicon Nexus. The
subjects were instructed to stand still for 5 seconds, making certain that all reflective
markers were unobstructed and easily detected by the infrared cameras.
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MVC Procedure

Before embarking on the series of motor tasks, every participant was subjected to a
Maximum Voluntary Contraction (MVC) evaluation. A single therapist conducted
this assessment for all subjects, guaranteeing consistent measurement. During this
phase, participants, while seated, adopted particular arm positions as guided by the
therapist. Subsequently, they exercised a maximum voluntary contraction for each
designated muscle. Each MVC measurement was sustained for 2 seconds against
the resistance applied by the therapist. To prevent potential muscle fatigue, a
compulsory 30-second rest period was instituted between each MVC measurement.

Exercises

Each participant was instructed to perform a set of motor tasks, initially with the
affected arm, while seated comfortably. Participants executed each task at their
own pace, with rest intervals interspersed to stave off muscle fatigue.

1. Geometrical shapes drawing: participants were instructed to trace a succession
of geometric patterns using the specifically-designed pen. These drawings were
illustrated on a mat positioned on the table and came in 4 or 5 different sizes.
Each figure was retraced five times in a fluid motion without stopping. The
drawing of geometrical shapes included:

• Circles: 4 dimensions

• Ellipses: 5 dimensions

• Spirals: 4 dimensions

• Flowers: 4 dimensions

2. Reaching: for the execution of this exercise we utilized the wooden support
inclined of 25°, onto which the sticker highlighting the 10 reaching targets was
affixed. This support was aligned with the body’s central axis and matched
the number 4 on the ruler printed on the mat, indicating the starting position.
From here, participants performed 40 reaches towards designated markers and
then reverted, following distinct sequences for both limbs. Each target was
accessed four times. The tables below present the sequence of targets that the
participants were instructed to reach in the specified order.

35



Experimental setup

2 5 8 10 9 3 4 6 7 1
5 2 4 7 6 9 3 1 10 8
8 5 3 6 7 10 2 9 1 4
1 8 7 4 2 10 9 5 6 3

Table 3.1: Reaching targets - Affected side

2 4 5 1 7 9 10 8 3 6
1 3 4 10 6 8 9 7 2 5
7 2 5 3 1 4 9 6 8 10
3 6 7 4 1 10 8 2 9 5

Table 3.2: Reaching targets - Unaffected side

3. 3D Random movements: participants positioned themselves at a distance
where the table didn’t impair their movements. They were then instructed to
"sketch in the air" with the pen in their hand for 15 seconds. This exercise
was repeated three times, with a rest of 30 seconds between one repetition
and the other.

4. Linear movements with defined target (“Ruler” task): utilizing the mat with
the printed ruler, participants began from the center (number 4) and moved
the pen along the ruler’s edge following the provided vocal commands. They
performed 32 reaching movements while supervised by two staff members: one
giving directives, and another verifying the target’s accuracy. Each target was
accessed 4 times (except for number 4, which represented the starting position
between one repetition and the other), following prescribed sequences for both
limbs:

2 6 4 5 7 3 1 4
1 4 7 3 6 2 5 4
2 4 6 3 7 5 1 4
3 5 1 4 6 2 7 4

Table 3.3: Ruler reaching targets - Affected side
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3 5 2 1 4 6 7 4
7 4 6 2 5 3 1 4
3 2 7 5 1 3 6 4
2 6 3 1 4 7 5 4

Table 3.4: Ruler reaching targets - Unaffected side

5. Linear movements without defined target (“Random Ruler” task): with this
exercise, participants were asked to consistently move the pen along the edge
of the mat with the printed ruler, altering direction based on audio prompts
played through speakers. These audio directions, automated by software,
necessitated participants to shift their direction upon each new cue. A sum of
30 directional shifts were recorded.

After completing these tasks with the affected arm, the entire setup (electrodes
and markers) was transferred to the opposite arm, and participants mirrored the
tasks using the unaffected limb.
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Chapter 4

Methods

As detailed in Section 3.3, our data collection approach involves acquiring two
distinct types of data:

• kinematic data: using the Vicon system we can capture the trajectories of the
15 reflective markers employed in this study.

• sEMG data: with the Cometa Wave system, we obtain insights into muscle
activity across 16 muscles.

While these datasets can be processed separately, their combined analysis
affords a more in-depth look into the relationship between muscle synergies and
movement elements. It is noteworthy that, for the sole purpose of extracting
movement elements, sEMG signals do not yield any supplementary information.
However, when extracting muscle synergies, it may become necessary to segment
the EMG time series into repetitions. This procedure is reserved exclusively for
cyclic movements and specific exercise types (e.g., Circle, Ellipse, Spiral, etc.).
Detailed information regarding the segmentation into repetitions is explained in
Section 4.2.6. For non-cyclic movements, instead, the extraction of movement
elements and muscle synergies remains separate.

Our processing pipeline has been developed in MATLAB ®2022b and can be
summarized in 2 main steps: first, the extraction of movement elements using
kinematic data; second, the extraction of muscle synergies from EMG signals.
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4.1 Extracting kinematic and sEMG data

4.1.1 Processing in Vicon Nexus 2.15

To effectively analyze kinematic data and extract meaningful movement elements,
the first objective is to accurately capture the trajectories of the 15 reflective
makers employed in the data collection. The tool at the base of this process is the
Vicon Nexus 2.15 software. Through its advanced functionalities, we ensure each
trajectory is processed with precision and integrity.

After the recording of all the trials, during their processing on Nexus, it’s first
essential to reconstruct the trajectories using the Trajectory Reconstruction tool.
This function refines the raw marker trajectories, filling in minor gaps where the
system might have momentarily lost sight of a marker. Following this, the Auto
Label tool is employed, which assigns specific names to these trajectories based on
pre-established templates defined in the static calibration. While this automatic
labeling is crucial, it is not always perfect; occasionally, markers might need manual
intervention for proper identification.

Once labeling is settled, addressing data gaps becomes essential. Gaps can
originate from various causes such as marker occlusion or detachment. For brief
interruptions, linear or spline interpolation is preferred, and they use the trajectory
data immediately before and after the gap to estimate the missing values. For
more complex or longer gaps, especially in repetitive or predictable movements,
the pattern-fill method can be beneficial. However, longer gaps might sometimes
demand intricate manual editing, a method that must be employed with caution
and precision.

Following gap resolution, the data often contains inherent noise, requiring
filtering for smoothing the trajectories. This filter typically operates with a cut-
off frequency ranging between 6 and 12 Hz, contingent on the motion’s specifics.
Further details on this filter are provided in Section 4.2.2.

Lastly, the integrity of the processed data is ensured through a data quality
check. A visual inspection of the 3D trajectories is performed to identify and rectify
any anomalies.

In the following figure, we can see an example of the user interface of Vicon
Nexus 2.15 during the processing of the acquired data:

The processing in Vicon Nexus 2.15 concludes with the export of all acquired data,
which includes both the trajectories and the synchronized surface electromyographic
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Figure 4.1: Labeling on Vicon

signals, into a C3D file.

4.1.2 Reading c3d files

The C3D file format is a binary standard widely used in the biomechanics and
motion capture sectors. It contains both 3D positional data, represented by x, y, and
z coordinates of the marker’s trajectories, and analog data, like electromyographic
(EMG) readings. This dual-data nature makes the C3D file format particularly
invaluable for software like Vicon Nexus, which can combine movement trajectories
and analog signals into one file. In addition to this core data, C3D files can also
carry metadata detailing aspects such as marker names and measurement units.

For reading and processing biomechanical data contained in the C3D files, we
employed the Biomechanical ToolKit (BTK). Specifically, we used the following
functions with the purpose of extracting and saving the kinematic and EMG data
in a .mat file, which simplifies subsequent operations in MATLAB:

• Reading the acquisition (btkReadAcquisition) to read the C3D file. This
function returns the handle H of a biomechanical acquisition stored in the
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C3D file; this handle is returned as a double and can be only used with the
BTK functions.

• Extract the marker’s trajectories (btkGetMarkers). This function returns a
structure of markers in which each field name corresponds to a marker’s label.

• Extract the analog signals (btkGetAnalogs). This function returns a structure
containing all the analog signals (e.g., force plates, EMG signals, etc.).

• Obtain the frequency of the point’s data acquisition (btkGetPointFrequency).
This function returns the acquisition frequency used for the point’s data – set
to 120 Hz.

• Obtain the frequency of the analog channels (btkGetAnalogFrequency). This
function returns the acquisition frequency used for the analog (EMG) channels
– set to 1800 Hz.

Finally, the output obtained from these functions was saved in a .mat file. This
procedure was iteratively repeated for all the recordings of each subject.

4.2 Movement elements

For over a century, researchers have attempted to identify the principles underlying
the generation of complex upper-limb movements in humans [12, 13]. Recently,
Miranda et al [21] investigated the possibility that a broad category of upper-limb
movements can be looked upon as a combination of one-dimensional point-to-point
movements.

The hand motion during the execution of one-dimensional point-to-point move-
ments is marked by motor primitives with a bell-shaped velocity profile [17]. Other
studies [18, 19, 20] have explored whether motor primitives that exhibit a similar
shape mark also complex upper-limb movements. They have pursued their research
by examining the magnitude of the velocity vector of the hand trajectory. However,
this method has not successfully detected motor primitives characterized by a bell-
shaped velocity profile as the fundamental components responsible for generating
complex upper-limb movements.

A novel strategy was proposed by Miranda et al [21], who separately analyzed
the velocity vector along the medio-lateral, antero-posterior, and vertical directions.
They achieved this by defining a Cartesian coordinate system aligned with the
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anatomical planes. This method effectively identified a range of complex upper-
limb movements that could be represented as combinations of motor primitives
characterized by a bell-shaped velocity profile. More specifically, they tracked the
movement of the subjects using a camera-based motion capture system (Vicon,
Oxford UK), and for each component (x, y, and z) they identified the points of
zero-crossing of the velocity time series and consequently identified these segments
as movement elements. This term was previously introduced by Brooks et al. [34]
and Hofsten et al. [18], who referred to these segments of the velocity vector as
‘movement elements’, even if these were derived by analyzing the magnitude of the
velocity vector.

In the following paragraphs is provided a more detailed description regarding
the extraction of movement elements.

4.2.1 Determining pen tip position

As detailed in Section 3.2.1, 16 reflective markers were used for tracking the
movements of the upper limb and trunk of the subjects while performing the
exercises. All the exercises required the manipulation of the fat-grip pen along one,
two, or three dimensions. To accurately estimate the position of the pen’s tip, we
designed a 3D-printed support structure that was then glued to the upper portion
of the pen. This plastic support (illustrated in Figure 3.7) featured a circular ring
within which the pen was housed, along with three vertical supports designed to
hold three reflective markers securely.
This support was carefully designed to ensure that the three markers occupied a
plane perpendicular to the pen’s axis and maintained an equidistant distance from
it, forming an equilateral triangle. This configuration enabled us to estimate the
position of the pen’s tip with a reasonable error.

Thanks to this design, we can determine the center of the equilateral triangle, and
thus the position of the pen’s axis within this plane, by averaging the coordinates
of the three markers. This is achieved by leveraging the property that these
markers are equidistant from the pen’s axis. Furthermore, we can determine the
orientation of the pen’s axis through the vectorial product calculated between
two vectors originating from one marker and extending to the other two markers.
With this operation, instead, we leverage the property that the designated plane is
perpendicular to the pen’s axis.

Following this procedure, we can identify the direction in which the pen’s tip
is located. Ultimately, we can determine the tip’s position by imposing a fixed
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distance of 12.8 cm between the plane defined by the three markers and the tip
itself. This distance was accurately measured using Vicon, with an additional
marker placed on the pen’s tip. We calculated this value by evaluating the distance
between the center of the triangle formed by the top markers and this third marker.

Figure 4.2: A: Pen hold in the hand; B: Model of the pen

On the left of Figure 4.2, we can observe the fat-grip pen and the 3D-printed
support with the 3 reflective markers that enable the estimation of the position
of the pen’ tip. On the right, instead, we can see the model of the pen that was
created in MATLAB.

This model was then validated with Vicon by comparing the actual and the
estimated position of the pen’s tip. As before, the actual position of the tip was
obtained by placing an additional marker directly on the tip of the pen. This
comparison yielded a Root Mean Square Error (RMSE) of 2.12 mm along each
direction.

It is noteworthy that the additional reflective marker placed on the pen’s tip
was exclusively used during the testing procedures, as it could not be securely held
in place during the execution of any exercise. Consequently, all tests and validation
procedures were carefully executed without any contact or perturbation to this
marker from the designated position. Furthermore, this additional marker, if used
during the execution of the exercises, is often obscured from the Vicon cameras for
extended durations, making the reconstruction of its trajectory nearly impossible.
This problem is emphasized by the tendency of post-stroke patients to hold the
pen with a full-hand grasp (due to the spasticity of distal muscles), obscuring the
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marker from the infrared cameras, rather than employing a natural finger grasp
that is instead adopted on the unaffected side. Another problem can derive from
the perturbation of this marker’s position, if touched, which can determine artifacts
and in particular some spikes in the trajectory and consequently in the velocity
time series. In light of these considerations, we made the choice to estimate the
position of the pen’s tip by utilizing the three markers placed on the 3D-printed
support, rather than using a single marker placed directly on the tip.

4.2.2 Low-pass filtering

From the kinematic data acquired with the Vicon system, we were able to determine
the trajectories (comprising x, y, and z components) of all the reflective markers
used. These data are commonly affected by high-frequency noise [35]. Therefore,
one of the preliminary steps involves low-pass filtering of the raw trajectories. We
used a 7th-order type-1 Chebyshev filter with a cut-off frequency of 10 Hz. This
cut-off frequency was also adopted by Miranda et al. [21]. We validated this choice
by analyzing the power spectral density of a stationary marker (affixed to the table)
and another marker that was attached to the hand of the subject. We observed
that the predominant noise occurred at frequencies greater than 12-15 Hz.

The frequency response of the chosen filter is illustrated in Figure 4.3:

Figure 4.3: Frequency response of the filter

Considering the trajectories of the reflective markers attached to the 3D-printed
support, another potential source of noise is the friction generated between the
surface of the table and the tip of the pen. To mitigate the friction, we removed the
actual tip of the pen and replaced it with a 3D-printed half-sphere (with a diameter
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of 2 mm). This modification allowed subjects to trace the drawings with reduced
friction and without marking the mat on the table. Prior to every data acquisition
session, we inspected the condition of the 3D-printed tip, and if it showed signs
of wear, we replaced it. The effect of friction has not been further investigated,
considering that, if we had lowered the cut-off frequency of the low-pass filter
to frequencies close to 5-6 Hz, the resultant velocity profiles would have been
excessively smoothed, potentially losing all the intrinsic differences between the
velocity profiles of the affected side and the unaffected one, which could lead to a
distortion of reality.

In Figure 4.4, one example of the effect of the filter on the trajectory of the
marker placed on the hand is reported.

Figure 4.4: Blue: raw velocity profile along x; Red: filtered velocity

After the trajectories underwent low-pass filtering, we derived the velocity
profiles by computing the first derivative of the vectors representing the marker
positions over time. Since the differentiation can amplify the noise, we again applied
a low-pass filter to the velocity vectors using the previously described filter.

4.2.3 Extracting movement elements

To extract movement elements, the initial step involved identifying the zero-crossings
of the velocity along the x and y axes. Specifically, this implied identifying instances
where the velocity did not precisely hit zero but fell below a defined threshold,
which was set to 1 cm/s.

Given the signal-to-noise ratio inherent in the reflective marker trajectory time
series, we adopted task-specific criteria to exclude movement elements that couldn’t
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be reliably detected. These criteria, already adopted by Miranda et al. [21], were
established based on Vicon’s minimal resolutions and the unique characteristics of
the selected tasks. In particular, one segment was considered a movement element
only if 3 conditions were respected at the same time:

• the absolute displacement was greater than 5 mm.

• the duration was greater than 100 ms.

• the velocity was greater than 1 cm/s.

The following figure displays the velocity profile (depicted in blue) alongside the
extracted movement elements (marked in red) for Subject 15 during the exercise
Circle04:

Figure 4.5: Velocity profile and extracted movement elements for SSUE15 -
The blue curve represents the actual velocity along the y-axis during the exercise
Circle04, while the highlighted red segments indicate the extracted movement
elements.

In summary, after determining the zero-crossings of the velocity vectors, we
evaluated the total displacement, duration, and velocity for each segment. Only
segments that met our established criteria were taken into account. It is important
to mention that this procedure was carried out independently for each component
of the velocity time series (x, y, and z).

4.2.4 Hoff model

The next step after the extraction of the movement elements is the determination
of the corresponding Hoff model.
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In the execution of motor tasks such as drawing geometric shapes, the real-time
velocity of curvilinear movements is proportional to the trajectory’s curvature radius
[14]. The instantaneous velocity v(t) is proportional to the radius of the curvature
r(t) and a constant kv that depends on some characteristics of the movement such
as the movement dimension [36]:

v(t) = kv · r(t)1/3

In this field, researchers refer to this equation as the “one-third power law”.

Moreover, the movement trajectory can be described according to the angle
(θ) between the trajectory’s tangent and any axis of a chosen Cartesian reference
system. It follows that the angular speed depends on the movement’s curvature
[15]:

dθ

dt
= kθ · C(t)2/3

Where kθ is similar to kv. Other research stated that these equations can apply
to a vast range of curved movements, and alternate versions have been suggested
for more intricate movements. Movements that align with the one-third power
law also satisfy the minimum-jerk principle proposed by Flash and Hogan [36]:
this principle suggests that human arm movements are optimized to be as smooth
as possible, minimizing rapid changes in acceleration (the term jerk refers to the
rate of change of acceleration). This principle suggests that the central nervous
system plans trajectories to reduce jerk, making movements non-oscillatory and
fluid. Nevertheless, many studies in this field neglect the cost of time, which plays
a key role in the control of movements as suggested by other researchers [37, 38].

While studying two-dimensional arm reaching movements, Hoff [16] introduced
a model that accounts for the cost of time and that is also consistent with the
minimum-jerk principle. This model is based on the following cost of function:

I = tf + K ·
Ú tf

0
(v2

x + v2
y) dt

Where tf represents the movement’s duration, K is a constant, and vx and vy

denote the components of the jerk time series along the x and y axes, respectively.

Given constant boundary conditions, Hoff expressed the movement’s duration
tf in function of the associated displacement D through the equation:

tf = (60 · D)1/3 · K
2/3
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4.2 – Movement elements

And further demonstrated that one-dimensional point-to-point movements are
also marked by a bell-shaped velocity profile obeying the following equation:

v(t) = D ·
A

30 · t4

t5
f

− 60 · t3

t4
f

+ 30 · t2

t3
f

B

It’s fundamental to note that Hoff’s theoretical model primarily focuses on two-
dimensional arm reaching movements. In our study, we aim to investigate whether
a wide range of upper limb movements (such as drawing geometric shapes, 3D
random movements, etc.) can be considered as a combination of one-dimensional
point-to-point actions obeying this last equation. To achieve this goal, we calculated
for each segment (extracted as detailed in Section X.1.4) the Hoff’s theoretical
velocity profile by giving as input its duration (D), time axis (t), and duration (tf ).
It is noteworthy that this procedure was carried out independently for each single
segment and for each component of the displacement D (x, y, and z), according to
the innovative approach proposed by Miranda et al [21].

Figure 4.6: Actual velocity profile along the x-axis (blue) and the Hoff model of
the extracted movement elements (red)

4.2.5 Similarity with the Hoff model

After the determination of the Hoff model of each movement element, we proceeded
with assessing their similarity. For this purpose, we needed to pick a similarity
metric that accounts for differences in terms of shape. This is crucial because the
key distinction between the velocity profile of a healthy individual’s movement
element and that of a post-stroke patient’s affected side lies in their smoothness.
Specifically, the former exhibits a smooth, bell-shaped curve with a single peak,
while the latter has more pronounced local peaks. Given these observations, we
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opted for the Pearson Correlation Coefficient to measure the similarity between
each movement element and its respective Hoff model.

Specifically, the Pearson Correlation Coefficient measures the linear relationship
between two sets of data (in this case, the two time series), with values ranging
between -1 and 1. A value close to 1 implies a strong positive correlation, while a
value close to -1 indicates a strong negative correlation, and values near 0 suggest
a weak or no linear relationship. This measure was also used by Miranda et al [21]
in their study.

4.2.6 Segmenting into repetitions

Segmenting each recording into individual repetitions is extremely important for
analyzing the consistency of movements across repetitions. This is only feasible for
cyclic movements, like in the drawing exercises. By examining the trajectory of
the pen’s tip, we can identify the onset time instants of each repetition. This is
achieved by calculating the Euclidean distance between the pen’s tip time series
and the drawing’s starting point, followed by identifying the local minimums of
this distance. For this purpose, we employed the MATLAB function findpeaks to
mark the onset of each repetition. Rather than finding the position of the local
minimums, we looked for local maximums in the absolute value of this distance,
only considering peaks higher than 20% of the overall maximum. Additionally, we
ensured a minimum distance between each peak equal to 15% of the recording’s
total length. These criteria, established through trial and error, provided a reliable
means to determine each repetition’s onset.

An underlying assumption in this process is our knowledge of the drawing’s
starting point coordinates, which match the trajectory’s coordinates at the trial’s
beginning. Participants were instructed to place the pen tip at a clearly marked
starting point – this step was consistently verified before starting the recording.

For the Circle, Ellipse, and Flower exercises, the conclusion of one repetition
corresponds to the subsequent onset. However, with the Spiral exercise, these time
instants differ. Hence, we also had to identify the conclusion of each repetition for
this exercise. This was achieved using the same procedure, with the distinction
that the last movement element’s endpoint was recognized as the drawing’s final
position.

An example of this segmentation into repetitions is provided below:

50



4.2 – Movement elements

Figure 4.7: Segmentation into repetitions

4.2.7 Determining the normative trajectory

For each drawing, we had the capability to reconstruct what we term the “normative
trajectory”, which refers to the prescribed path that participants were instructed to
trace with the pen provided. This allowed us to evaluate the accuracy with which
each subject adhered to the correct path, and consequently do a more in-depth
analysis in this regard. Since the drawings were only printed on the mats, they’re
not visible in the 3D reconstructions obtained from Nexus, which instead enable us
to track the trajectories of the reflective markers.

To reconstruct the normative trajectory, we begin with the assumption that
participants positioned the pen’s tip at the drawing’s start point at each trial’s
onset. Then, by knowing the dimensions and specific features of each drawing we
were able to recreate the normative trajectory.

Considering, for instance, the largest circle with a diameter of 27.5 cm, we
know that the starting point is on its circumference and, specifically, the diameter
that intersects this point runs parallel to the y-axis of the global reference system.
Consequently, the circle’s center can be estimated by subtracting the radius (R)
from the y-coordinate of the starting position:Cx = xstart

Cy = ystart − R

When calculating the y-coordinate of the circle’s center, it’s important to note
that the same geometric shape (e.g., Circle04) can be drawn in either a clockwise
direction for the right arm or counterclockwise for the left arm. As a result, the
starting point will be either to the left or the right of the circle’s center, depending
on the arm used. In our example, we consider the circle with the largest diameter

51



Methods

drawn with the left arm, so the starting point is to the right of the center. Therefore,
we subtract the radius from the y-coordinate of the starting position to determine
the center’s location. However, if we were considering the same drawing but
executed with the right arm, we would add the radius instead of subtracting it.

Finally, we can evaluate the x and y coordinates of the normative trajectory
with the following equations: x = Cx + R · cos θ

y = Cy + R · sin θ

The angle time series θ represents, for each point, the angle with respect to
the reference system centered in the circle’s center. Assuming a constant velocity
throughout every repetition, the angle time series θ increases linearly from 0 to 2π
in relation to the center. This supposition is made considering that the drawing
should ideally be executed at a uniform speed. To avoid penalizing subjects who
moved more slowly or quickly during each repetition, we matched the length of the
vector θ to the duration of the repetition.

In Figure 4.8, we can observe the actual and the normative trajectory for the
Circle04 and Flower04 exercises, respectively for Subjects 13 and 15:

Figure 4.8: Normative trajectory - Comparison between the unaffected and
Affected side for SSUE13 during the exercise Circle04 (left), and SSUE15 during
the exercise Flower04 (right).

Subsequently, we can derive the velocity profile associated with the normative
trajectory by making its first derivative. It’s crucial to note that this method
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computes the velocity profile separately for each repetition, leading to an observation
that shorter repetitions have higher maximum velocity, and vice versa. Also, the
assumption of a constant velocity module doesn’t necessarily mean the x and y
components of the velocity remain unchanged. In fact, while the actual velocity
profile and the normative trajectory’s velocity profile are similarly shaped, the
former exhibits more pronounced peaks, whereas the latter maintains a smoother
outline with a single peak.

To account for changes in acceleration, we applied the Hoff model to the
velocity profile derived from the normative trajectory, hereinafter referred to as
the “normative velocity profile”. This approach enabled us to generate bell-shaped
velocity profiles, which more accurately mirrored the actual velocity profiles during
instances of acceleration variation. By doing so, while assessing the similarity
between the two profiles, we ensured that the initial and final repetitions were not
penalized, considering that acceleration naturally varies as the movement initiates
from a resting position and returns to rest in the concluding repetition.

Figure 4.9 illustrates an example of the normative velocity profile of Subject 13
in the y-direction while performing the exercise Circle04.

Figure 4.9: Actual velocity profile (in blue) and normative velocity profile (in
yellow) for SSUE13 during the exercise Circle04.

This methodology is consistently applied across every drawing but with different
equations for each geometric figure. For circles of varying sizes, we adjusted the
radius value according to the drawing’s size.

For the remaining geometric shapes, we utilized the equations detailed in Table
4.1 to guide our methodology.
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X Component Y Component

Ellipse x = Cx + xaxis

2 · cos (θ) y = Cy + yaxis

2 · sin (θ)

Flower x = Cx + xaxis

2 · cos (θ) y = Cy + yaxis

2 · sin (θ)

Spiral x = a · eb·θ · cos (θ) y = a · eb·θ · sin (θ)

Table 4.1: Equations for the determination of the normative trajectory

The parameters xaxis, yaxis, a, and b are detailed in Appendix A. The angle
time series θ, instead, is calculated according to the direction of the movement,
specifically, if it’s clockwise or counterclockwise (see details in the supplementary
materials).

4.3 Muscle synergies

Muscle synergies are derived from surface electromyographic signals (sEMG). Before
inputting the data into the non-negative matrix factorization (NMF) algorithm, it’s
essential to pre-process this data. This pre-processing aims to attenuate background
noise, extract the non-negative components, and thereby achieve more accurate
and reliable results. Moreover, for cyclic exercises, we exploited findings from the
kinematic data processing, specifically the time instants that segment the exercises
into repetitions.

As described in Section 3.2.2, we acquire signals from 16 muscles of the upper
limb and trunk. The acquisition was made using the Cometa Wave system, which
was connected to the Vicon via plugin software. Consequently, in the processing
and exportation of the kinematic data on Vicon Nexus 2.15, we also exported the
sEMG signals into one single C3D file.
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4.3.1 Filtering sEMG signals

Surface electromyographic (sEMG) signals are always influenced by various noise
sources. Biological factors like adjacent muscle activity and heart electrical ac-
tivity can represent a possible noise source. Motion artifacts, caused by skin
or electrode movement can distort readings, especially during dynamic actions.
Equipment-related issues, such as poor electrode contact, inherent electronic noise,
and analog-to-digital conversion errors, introduce inaccuracies in the acquisition.
External disturbances include, instead, power line interference and nearby elec-
tronic disruptions. Temperature variations affect skin impedance and electrode
conductance, and the skin’s natural conditions, like sweat or oil, can also impact
the readings.

For these reasons, awareness of these factors and proper mitigation strategies
are required. We used a 6th order type-1 Chebyshev filter with cut frequencies of
[35, 350] Hz. The frequency response of this filter is represented in the following
figure:

Figure 4.10: Frequency response of the filter

Specifically, the cut-off frequency of the high-pass filter was set to 35 Hz through
trial and error, ensuring an effective attenuation of the crosstalk caused by the
heart’s electrical activity, which was a prominent interference for the electrodes
placed on the chest. The cut-off frequency of the low-pass filter, instead, was set to
500 Hz to preserve the frequency components of the sEMG signals and attenuate
the high-frequency noise.
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4.3.2 Segmenting into repetitions and concatenation

Following signal filtering, our initial step involved segmenting the electromyographic
signals into distinct repetitions. This segmentation was reserved for cyclic move-
ments, as we can identify repetitions only for these types of movements. Attempting
segmentation based on the raw sEMG signal would not only be challenging but
also markedly less precise. For this reason, we employed the time indexes derived
from the kinematic data, a feasible strategy given the intricate nature of the raw
signals.

However, due to the discrepancy in sampling frequencies between the kinematic
data and the sEMG signals, a conversion is imperative. We first translate the time
indices into specific time instances by dividing them by the kinematic sampling fre-
quency. Subsequently, these time instances are converted back into indices pertinent
to the sEMG signals by multiplying them by the analog sampling frequency:

idx_repemg = idx_repkin · fsemg

fskin

Once the sEMG signals are segmented into repetitions, we proceeded with
concatenating these segments to form an m x n matrix, where m represents the
number of channels, which in our case is equal to 16, and n stands for the number
of samples. This matrix formation is crucial for ensuring a structured format.

4.3.3 Rectifying the signals

The Non-Negative Matrix Factorization algorithm requires input components that
are non-negative. Hence, it is essential to incorporate a full-wave rectifier into the
processing pipeline before inputting the signals. In MATLAB, this rectification
is achieved using the abs function, ensuring the signals contain only positive
components.

4.3.4 Extracting the envelope

For extracting the envelopes, we used a 7th order Butterworth low-pass filter with
a cut-off frequency of 10 Hz. The frequency response of this filter is represented in
the following figure:
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Figure 4.11: Frequency response of the filter

With this filter, we obtain smoother signals that better emphasize the activation
intervals of the muscles. An example showing the effect of this filter in extracting
the envelope is illustrated below:

Figure 4.12: Top: Filtered signal; Bottom: Rectified signal (blue) and envelope
(red)

4.3.5 Downsampling

As previously mentioned, the analog channels have a sampling frequency of 1800
Hz. Following the extraction of the envelope, we lowered the sampling frequency
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to 120 Hz to decrease the computational time during the execution of the NNMF.
Additionally, as the envelopes (extracted by low-pass filtering the rectified signals)
have a smoother profile compared to the raw signals, a reduced sampling frequency
permits a reduction in the number of samples without notably altering the signal’s
shape.

To downsample the sEMG signals, we used the MATLAB function resample.

4.3.6 Normalizing the amplitude for the MVC

After extracting the envelopes, we normalized their amplitude relative to the
Maximum Voluntary Contraction (MVC). Specifically, in the trials where subjects
were instructed to perform an MVC for each targeted muscle, we replicated the
preceding steps (excluding the segmentation of the sEMG signals into repetitions)
to determine the maximum amplitude of the corresponding envelope for each
muscle, denoting this as the peak activation.

Consequently, each muscle’s envelope was normalized by the amplitude of its
peak activation. Through this process, we established a 100% activation benchmark
for each muscle, producing a time series in the execution of each task that displayed
the activation percentage over time.

4.3.7 Non-Negative Matrix Factorization

The Non-negative Matrix Factorization (NNMF, often simply referred to as NMF)
plays a key role in the extraction of muscle synergies. This algorithm is a matrix
factorization technique in which a non-negative matrix is decomposed into two
lower-rank non-negative matrices. Unlike other matrix factorization methods like
Principal Component Analysis (PCA) or Singular Value Decomposition (SVD),
the NMF enforces the constraint that all elements in the matrices must be non-
negative, making its components more interpretable in many contexts. In our study,
the NMF was employed as a data-driven technique for extracting coordinated
muscle activation patterns, commonly termed muscle synergies, from the matrices
containing the sEMG envelope of 16 distinct muscles. As described above, each
matrix M (m x n) contained distinct channels on the rows (m) and specific time
points on the columns (n). Through the NMF, the matrix M is decomposed into
two matrices:

• The Synergy Matrix W (of size: m x k): this matrix represents the contribution
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(weight) of each muscle to a particular synergy; each column of W describes a
muscle synergy.

• The Activation Coefficient Matrix H (of size: k x n): this matrix determines
how each synergy is activated over time; each row in H corresponds to the
temporal activation pattern of a synergy.

Where k is lower than the number of muscles m and represents the number of
synergies. Consequently, the matrix M can be approximated as:

M ≈ W · H

With this factorization, the matrix M is described as the product of W and H
while ensuring all elements remain non-negative.

The principle behind the NMF is to represent the data (matrix M) in a reduced
dimensionality without losing significant information. At the same time, the
primary aim of the muscle synergy analysis is to reveal the modular organization
of muscle activations. In other words, we want to determine if the nervous system
activates all muscles independently (k = 16, meaning that we wouldn’t be reducing
the dimensionality at all) or if it tends to activate groups of muscles together as
synergistic units (k < 16). For this reason, we need to run the NMF for a number
of synergies (k) from 1 (all the muscles are activated as a single synergistic unit)
to 15 (each muscle is almost activated independently).

4.3.8 Selecting the number of synergies

The selection of the number of synergies (k) was based on the Coefficient of
Determination (R2) and its increase with the number of iterations. Specifically, for
each iteration (k = 1 : 15 ) we calculated the cumulative variance explained across
the entire dataset (R2) and individual muscles (R2

ch):

R2 = 1 −
qN

ch=1(Mch − M̂ch)2qN
ch=1(Mch − M̄)2

R2
ch = 1 − (Mch − M̂ch)2

(Mch − M̄)2

Where M is the matrix containing the envelopes and M̄ its average, n is the
number of channels (equal to 16), and M̂ is the matrix that can be approximated
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as the product of W and H. This results in a time series showing the trend of the
R2 with the increase of k:

Figure 4.13: R2 against the number of synergies

As the number of synergies increases, the reduction in dimensionality becomes
less pronounced, leading to increased R2 values. The objective in determining k is
not merely to identify the number of synergies that maximize the variance explained
(i.e., the highest R2). Instead, it’s to identify a k value that sufficiently captures
the dataset’s variability reducing its dimension. To this end, we’ve established
specific criteria to guide the selection of the optimal number of synergies (k):

• Firstly, the global R2 threshold (R2) must be greater than 80%, ensuring an
adequate explanation of the total data variability.

• Secondly, the individual muscle R2 threshold (R2
ch) must be greater than

60%, ensuring that the extracted synergies adequately represent the activation
patterns of each muscle.

• Lastly, the increase in R2 must be lower than 1%, ensuring that it was no
longer significantly increasing with the number of synergies, meaning that it
achieved convergence.
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4.3.9 Matching and Sorting synergies

After determining the optimal number of synergies for both the unimpaired and
impaired limbs, it is crucial to effectively align and sort these synergies. This step
is critical for exploring the nature of the impairments in the motor synergies. To
this end, we initiated the process by computing the cosine similarity for each pair
of synergies, as described by the following equation:

CSm,n =
Whealthy,m · W ′

aff,n

||Whealthy,m|| · ||Waff,n||

Where Whealthy,m denotes the mth synergy vector of the unaffected (healthy) side,
and Waff,n represents the nth synergy vector of the impaired (aff ) side. Through
this methodology, given M unaffected synergies and N affected synergies, we
construct a matrix with dimensions M × N , capturing the relationship between
each pair of unaffected and affected synergies.

Hungarian Algorithm

Following the cosine similarity computation between each synergy pair, we aimed
to pair the unimpaired and impaired synergies optimally. For this objective, we
employed the Hungarian algorithm, also known as the Kuhn-Munkres algorithm.
This is a well-established combinatorial optimization algorithm that resolves the
assignment problem within a polynomial time frame. The assignment challenge
consists of efficiently pairing elements from two distinct sets — here, the unimpaired
and impaired motor synergies — to either minimize the total pairing cost or
maximize the overall pairing efficacy. For our research, the cost matrix is constituted
by the previously calculated Cosine Similarity Matrix (CS).

We implemented the Hungarian Algorithm in MATLAB utilizing the assign-
mentoptimal function, a component of the library developed by Markus Buehren
[39] on Functions for the rectangular assignment problem.

4.3.10 CKA Similarity

In evaluating the synergies extracted, the Centered Kernel Alignment (CKA)
emerges as a crucial tool. Indeed, CKA enables the comparison between diverse
data representations. This measure is particularly useful in the domain of machine

61



Methods

learning and neural networks, where it’s often employed to understand and compare
the representations learned by different layers of a network or by different models
altogether.

CKA operates by computing a similarity score between two sets of data. The
core idea is to map the original data into a higher-dimensional space (via a kernel
function) and then compute the alignment between the representations in this new
space. This is done by calculating the normalized dot product between the kernel
matrices of the two representations. A kernel matrix is a symmetric matrix where
each entry represents the dot product between a pair of data points.

The output range of this similarity metric is between 0 and 1. An important
feature of CKA is its aptitude for comparing datasets of different dimensions, which
is an important aspect to be considered in our analysis due to the merging or
fractionation of synergies.

The calculation of CKA similarity begins with the derivation of the kernel
matrix for each dataset (KX , KY ), a task often accomplished with the Radial Basis
Function to unveil the non-linear relationships hiding within the data. Following
this, a centering of the kernel matrices is imperative, obtaining K̃X and K̃Y . We
can then measure their similarity utilizing the following mathematical formula:

CKA(X, Y ) = ⟨K̃X , K̃Y ⟩Fñ
⟨K̃X , K̃X⟩F ⟨K̃Y , K̃Y ⟩F

Where ⟨., .⟩F denotes the Frobenius inner product.

62



Chapter 5

Results

In this chapter, we delve into the findings of our research study aimed at discerning
the relationship between movement elements and muscle synergies in stroke sur-
vivors. We broke down our main goal into three smaller aims to better understand
this link. First, we looked at the basic characteristics of movement elements (Aim
1); then, we studied the features of muscle synergies (Aim 2), and finally, with the
understanding of these two aims, we explored how movement elements and muscle
synergies relate to each other (Aim 3). These steps helped us dig deep into how
motor impairments show up in stroke survivors.

The first two aims helped us in confirming that we were on the right track and
set the stage for the exploration in Aim 3. The information from all these aims
helped us see the bigger picture of how movement and muscles work together,
especially after a stroke.

The following sections delve into the particulars of each aim, shedding light on
our findings, and delineating the implications in advancing the understanding of
motor impairments post-stroke.

5.1 Kinematic Analysis

As detailed in Section 4.2, the cornerstone of our kinematic analysis lies in the
extraction of movement elements from the velocity time series of the pen tip,
utilized by subjects throughout the execution of all exercises. Furthermore, a
crucial component of our analysis is the derivation of the normative velocity profile,
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facilitating a comparative assessment between the actual velocity profiles and a
normative one. This normative velocity profile is obtained from the normative
trajectory that subjects were intended to follow, serving as a benchmark for
evaluating performance and deviations from it.

5.1.1 Consistency of Movement Elements

The initial phase of our kinematic analysis is dedicated to examining the consistency
of movement elements. To this end, we will compare the extracted movement
elements across all subjects for one specific exercise, with the understanding that
the insights earned can be extended to the other exercises. For an efficient analysis,
it is wise to focus on the Circle exercise, given its symmetric nature, which facilitates
easier visual inspection. This exercise not only aids in understanding the disparities
between the unaffected and affected sides but also in identifying the variations
among the affected sides of subjects with differing levels of impairment.

In Figure 5.1, we present the results of the extraction of movement elements from
both sides of 3 subjects respectively with severe, moderate, and mild impairment
levels. From this figure, we can visually observe clear distinctions in the smoothness
of velocity profiles, showcasing a noticeable reduction on the affected side for all
subjects. We can also observe that this reduction in smoothness is more evident
in subjects with a moderate-severe impairment level. Moreover, we can primarily
identify two categories of movement elements: longer movement elements exhibit
a greater deviation from their respective Hoff model (bell-shaped velocity profile
marked in red), whereas shorter movement elements, typically occurring near the
velocity’s zero-crossings, have a higher similarity to the corresponding Hoff model.
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Figure 5.1: Actual velocity profile (in blue) along the y-axis and Hoff model of
the extracted movement elements (in red). Left: Unaffected side. Right: Affected
side. Exercise: Circle03.

To fully comprehend the variations on the affected side across all subjects, it is
crucial to overlay all the extracted movement elements and organize the figures
according to the FMA-UE score:
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Figure 5.2: Movement elements for the unaffected (left) and affected (right)
sides for 3 subjects with mild, moderate, and severe impairment levels. Exercise:
Circle03

From this figure, it is noteworthy to observe the increase of shorter movement
elements with the increase of impairment level (from bottom to top), indicating a
growth in hesitation and fragmentation within the movement.

In conclusion, movements on the affected side manifest increased fragmentation
and lack the fluidity and precision observable on the unaffected side. This disparity
is markedly pronounced in subjects with lower FMA-UE scores, implying that a
more severe clinical condition yields greater discrepancies between the two sides
and an augmented deviation from the ideal model.
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5.1.2 Scaling Effect

Following the evaluation of movement element consistency, we delved into investi-
gating whether movement elements scale with the size of the movement. Under
this hypothesis, we assumed that within each distinct exercise, movement elements
remain essentially the same, only scaled by the size of the drawing. To explore this,
we plotted the mean absolute velocity of the extracted movement elements against
the displacement, utilizing a log-log representation.

The following figures display the outcomes for a variety of exercises, with subjects
organized based on their FMA-UE score. The left portion of the figures depicts
the unaffected side, while the right portion illustrates the affected side.

Figure 5.3: Log-log plot of the mean absolute velocity as a function of the
displacement for 3 subjects with mild, moderate, and severe impairment levels.
Circle Exercise

Within these plots, varying colors denote different dimensions. Similar ob-
servations apply to exercises without distinct dimensions, like the Reaching or
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3DRandom exercises, revealing a scaling effect relative to the size of the movement.

In analyzing the scaling effect, Miranda et al. [21] demonstrated that elements
that are conformed to the following equations:

tf = (60 · D)1/3 · K2/3

v(t) = D ·
A

30 · t4

t5
f

− 60 · t3

t4
f

+ 30 · t2

t3
f

B

Also scale with movement size, adhering to a two-third power law as a function
of the displacement D:

v̄ = D2/3

601/3 · K1/6

This two-third power law (v̄ ∝ D2/3) is highlighted in all the figures with a black
line, which, in a log-log plot, manifests as a straight line.

From the depicted figures, a good agreement between the illustrated points
and the two-third power law is observable, meaning that, across all the examined
exercises, movement elements can be scaled with the size of the movement following
a two-third power law, applicable to both the unaffected and affected sides.

In conclusion, these findings support the idea that the central nervous system
orchestrates movement patterns by scaling fundamental building blocks by the size
of the movement.

Clustering of points

From the figures depicted above, an insightful observation related to the distinction
between unaffected and affected sides emerges: on the unaffected side, clusters of
points representing different drawing dimensions (delineated in diverse colors) are
distinctly separated. This outcome matches with the findings of Miranda et al [21],
whose research on healthy individuals yielded similar results. Conversely, on the
affected side, the majority of the subjects exhibit a more uniform distribution of
points, leading to increased variability along both axes.

To delve deeper into the clustering phenomena of these point groups, we can
compute the mean variability of the distinct point clusters along the x and y axes
for each subject, representing the variability in displacement and mean absolute
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velocity, respectively. Following this, we can depict the results by executing a linear
interpolation of the points, as illustrated in the following figure:

Figure 5.4: Standard deviation of the point groups related to different drawing
dimensions for all the subjects (on the left), and in function of the FMA-UE (on the
right). On the top, the variability is calculated along the x-axis (displacement of
movement elements), while on the bottom along the y-axis (mean absolute velocity
of movement elements)

From this figure we can observe that the variability among different subjects
remains relatively steady on the unaffected side, resulting in a similar clustering
pattern of point groups. However, on the affected side, there is an increase in
variability with the level of impairment, leading to a more uniform point distribution
of point groups.

5.1.3 Disruption of the kinematics

To analyze the disruption of the kinematics, we employed two distinct strategies.
Initially, we sought a possible relation with the FMA-UE score between the extracted
movement elements and the corresponding Hoff model. Subsequently, we examined
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the similarity between the actual velocity profile and the Hoff model of the velocity
profile derived from the normative trajectory.

Similarity with the Hoff model

In this initial strategy, our objective was to identify any potential disruption in
kinematics by evaluating the Pearson Correlation Coefficient between the extracted
movement elements and the corresponding Hoff model. In the subsequent figure,
the actual velocity profile along the y-axis of subject 15 during the execution of
the circle with the biggest dimension (Circle04) is represented in blue, while the
Hoff model of the extracted movement elements is illustrated in red:

Figure 5.5: Actual velocity profile (in blue) and Hoff model (in red) of the
extracted movement elements. SSUE15, y-axis, Circle04.

Upon visual inspection, it is evident that longer movement elements exhibit a
lower resemblance to their respective Hoff models compared to shorter movement
elements. This observation is applicable across all other exercises and subjects, as
illustrated for instance, in Figure 5.2.

By measuring the Pearson Correlation Coefficient between the extracted move-
ment elements and the corresponding Hoff model, we obtain:

70



5.1 – Kinematic Analysis

Figure 5.6: Pearson Correlation Coefficient between the extracted movement
elements and the corresponding Hoff model. Left: unaffected side. Right: affected
side, with results reported as a function of the FMA-UE. Data is presented as
mean ± std.

Based on the figure presented, it appears that both sides show a very high degree
of variability, indicating that there is no significant statistical difference between
them. We believe that this pronounced variability is due to the short segments that
were found in the extraction of movement elements. Indeed, the short duration of
the movement elements correlates with a higher similarity to the corresponding
Hoff model, which results in a distortion of the true deviation of the movement
elements from their Hoff model.

One could argue that, by isolating and considering only the longer movement
elements for each exercise, the outcome could exhibit lower variability, thereby
yielding better insights. However, the designation of ’short’ or ’long’ for movement
elements is contingent upon the specific dimensions of the exercise. For instance, the
reduction of the dimension of the movement leads to gradually increasing shorter
movement elements, thereby enhancing the similarity in terms of the Pearson
Correlation Coefficient. Therefore, this high variability is intrinsic to the scaling
effect. Notably, even when focusing solely on longer movement elements for each
exercise, no significant relation with the FMA-UE score, and by extension, with the
disruption of muscle synergies, could be discerned. Moreover, existing literature
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doesn’t provide evidence of movement element disruption in stroke survivors. The
Hoff model for each movement element is, indeed, constructed based on actual
characteristics of the movement element such as duration and displacement, tailoring
a bell-shaped velocity profile to fit it. Hence, no significant disruption within the
movement elements could be identified.

Similarity with the normative velocity profile

In this second strategy, we gauge the resemblance between the actual velocity profile
and the Hoff model of the velocity profile (later on referred to as the “normative
velocity profile”) derived from the normative trajectory. As detailed in section 4.2.7,
we were able to estimate the normative trajectory that the subject was guided to
follow during the execution of the drawing exercises. This methodology applies
only to drawings where the normative trajectory could be reconstructed, such as
the Circle, Ellipse, Spiral, and Flower.

The subsequent figure illustrates an example of the normative velocity profile
for the same subject, direction, and exercise previously shown in the analysis of
the disruption of movement elements (SSUE15, y-axis, Circle04):

Figure 5.7: Actual velocity profile (in blue) and Hoff model of the normative
velocity profile (in yellow) of Subject 15 during the execution of the exercise Circle04
(y-axis).

A notable characteristic of the normative velocity profile is its heightened
consistency across different subjects, facilitating a more coherent analysis when
comparing the unaffected and affected sides of all subjects. Similarly to the previous
analysis, we can measure the Pearson Correlation Coefficient between the actual
velocity profile and the normative one, confining this to the time window of each
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repetition.
In the subsequent figure, we can observe the results of this analysis:

Figure 5.8: Left: unaffected side. Right: affected side, with results depicted as a
function of the FMA-UE score. Data is presented as mean ± standard deviation.

From this Figure, it is important to notice that the similarity on the unaffected
side across all subjects remains fairly steady with lower variability. Conversely,
although the variability on the affected side is higher, a positive trend is more
discernible with the increase in the FMA-UE score.

5.2 Muscle synergies

The analysis of movement elements enhances our understanding of how kinematics
is disrupted during the execution of a variety of exercises among stroke survivors.
Meanwhile, muscle synergy analysis enhances our insight into how the Central
Nervous System (CNS) coordinates muscle activation.

In our approach, instead of deriving synergies for each subject and exercise
separately, we consolidated all exercises for each participant into a comprehensive
dataset. This strategy facilitates more reliable results during muscle synergy
extraction via Non-Negative Matrix Factorization (NNMF). The dataset’s dimension
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is, indeed, a critical factor for dimensionality reduction algorithms such as the
NNMF. Extracting synergies from a relatively limited dataset (encompassing 5
repetitions across 4-5 sizes) might undermine the algorithm’s robustness and the
consistency of the outcome. Achieving consistent results is paramount in our
study’s context, as it minimizes bias in the outcomes.

Additionally, it is noteworthy to observe that all exercises could be considered
as point-to-point movements along the x (antero-posterior) and y (medio-lateral)
directions. This similarity among the variety of exercises reinforces the hypothesis
that, despite the differences, the CNS employs a limited set of synergies. Fur-
thermore, extracting synergies from individual exercises yields a smaller, distinct
set of synergies, seemingly derived from the comprehensive dataset. Under this
hypothesis, slightly different drawings (e.g., circle and ellipse) likely engage the
same synergies. This supposition is reinforced by the notion that similar drawings
might share overlapping muscle synergies. In conclusion, the amalgamation of all
exercises into a single dataset not only resolved the aforementioned issues but also
allowed us to delve into possible relations between muscle synergies and kinematics.

5.2.1 Disruption of Muscle Synergies

Before delving into a statistical analysis of the disruption in the extracted muscle
synergies, it’s crucial to visually inspect them. To this end, we’ll examine the muscle
synergies of both unaffected and affected sides across three subjects, respectively
with mild, moderate, and severe levels of impairment.

It’s worth mentioning that since the muscle synergies were derived from a
comprehensive dataset for each subject - comprising the sEMG signals captured
during the execution of all the exercises - we’ll solely focus on analyzing the
extracted synergies in terms of weight vectors (matrix W ). This matrix represents
the contribution (or weight) of each muscle to a particular synergy; each column of
W delineates a muscle synergy, while each row denotes the contribution of each
muscle.

In the subsequent figure, we observe the extracted synergies (weight vectors) of
Subject 17 (FMA-UE score of 60), who exhibits a mild impairment.
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Figure 5.9: Comparison of Muscle Synergies in Subject SSUE17 (FMA-UE Score:
60) between the Unaffected (left) and Affected (right) sides. Green arrows indicate
high Cosine Similarity (CS ⩾ 0.9), and blue arrows denote lower CS values.

The preliminary observation concerns the number of synergies. On the unaffected
side, seven synergies were extracted, whereas on the affected side, eight synergies
were extracted. This discrepancy in synergy count is significant, as underscored by
Cheung et al. [24], who delineated three primary post-stroke scenarios: preserva-
tion, merging, and fractionation of the synergies observed on the unaffected side.
Specifically, if the number of synergies on the affected side is higher, it suggests
that fractionation of the unaffected synergies led to this increment. Conversely, if
the number of synergies on the affected side is fewer, it’s likely that some unaffected
synergies merged to form the affected synergies. These changes in synergies could
be interpreted as either pathological or compensatory synergies.

In the case of Subject 17, it’s apparent that some synergies, notably numbers 2,
4, and 7 (shown with a green arrow in the figure), have a high resemblance (cosine
similarity > 0.9), indicating a possible preservation of these unaffected synergies.
Moreover, a generally high similarity (median value of the cosine similarity between
the synergies of 0.87) between the unaffected and affected sides is observable.

As detailed in Section 4.3, we computed the CKA similarity between the two
datasets of synergies, yielding a value of 0.746 for Subject 17.
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In Figure 5.10, instead, we can see the results obtained for Subject 18, charac-
terized by a mild impairment level (FMA-UE 41).

Figure 5.10: Comparison of Muscle Synergies in Subject SSUE18 (FMA-UE
Score: 41) between the Unaffected (left) and Affected (right) sides. Green arrows
indicate high Cosine Similarity (CS ⩾ 0.9), and blue arrows denote lower CS values.

In this case, a decrease in the number of synergies from 8 to 7 is observed,
implying a merging of some unaffected synergies to constitute the affected synergies.
Additionally, it is noticeable that synergies 1, 4, and 6 (shown with a green arrow)
exhibit a cosine similarity exceeding 0.9, while the entire dataset results in a CKA
similarity of 0.613.

Finally, in Figure 5.11, the results for Subject 13, who exhibits severe impairment
with a FMA-UE score of 21, are displayed.
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Figure 5.11: Comparison of Muscle Synergies in Subject SSUE13 (FMA-UE
Score: 21) between the Unaffected (left) and Affected (right) sides. Green arrows
indicate high Cosine Similarity (CS ⩾ 0.9), and blue arrows denote lower CS values.

For Subject 13, an increase in the number of synergies from 7 on the unaffected
side to 8 on the affected side is observed, indicating fractionation. Notably, only one
synergy, specifically the 6th, showcases a cosine similarity exceeding 0.9 between
the unaffected and affected sides. Nevertheless, also the first synergy appears
visually analogous between the two sides (with a cosine similarity of 0.836), with
a pronounced activation of proximal muscles (depicted by the left bars) on the
affected side.
Moreover, a prevalent contribution from multiple muscles on the affected side is
observable, suggesting an elevated level of co-contraction of agonists and antagonists
muscles. This heightened co-contraction suggests that the subject was adopting
compensatory strategies for executing this array of exercises. In terms of CKA
similarity, Subject 13 aligns more closely with subjects characterized by a lower level
of impairment, specifically with subjects having a FMA-UE score of 40-50. A similar
observation extends to the disruption of kinematics, as Subject 13’s similarity values
in kinematics resonate more with those of subjects with higher FMA-UE scores.
This relation underscores the interconnections between the kinematics and muscle
synergies disruptions.
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CKA Similarity

Upon extracting and analyzing muscle synergies from all participants, we computed
the CKA similarity between the muscle synergies of the unaffected and affected
sides. The subsequent figure depicts the CKA similarity in relation to the FMA-UE
score, with each participant uniquely represented by a colored dot:

Figure 5.12: CKA similarity plotted against the FMA-UE score.

The figure reveals a positive trend with respect to the FMA-UE score, indicating
a decreasing similarity between the muscle synergies of the unaffected and affected
sides as the level of impairment increases.

5.3 Similarity between Kinematics and Muscle
Synergies

Upon examining the disruption of the kinematics and muscle synergies, we delved
into investigating their relationship. In Section 5.1.3, our analysis revealed no
substantial differences between the unaffected and affected sides when examining
movement elements and their Hoff model. However, when exploring the deviations
in the actual velocity profile from the normative one, a notable positive trend
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emerged on the affected side as a function of the FMA-UE score. At the same
time, a comparable trend is evident when evaluating the CKA similarity of muscle
synergies between the unaffected and affected sides.

The subsequent figure illustrates the two similarity metrics in relation to the
impairment levels, with each participant uniquely represented by a colored dot:

Figure 5.13: Left: similarity between the actual velocity profile as a function of
the FMA-UE score (Circle, Ellipse, and Flower exercises). Right: CKA similarity
between the unaffected and affected synergies as a function of the FMA-UE score.

The figure above underscores a notable relation between the disruptions in
kinematics and muscle synergies. Both subplots exhibit similar trends as a function
of the FMA-UE score, suggesting a strong relation between the two.

To reinforce our understanding, we plotted one similarity metric against the
other and computed the linear regression of the displayed data points.
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Figure 5.14: Kinematic Disruption vs. Muscle Synergy Disruption

This figure emphasizes a positive relation between the two metrics, confirmed
by a p-value < 0.01. While it’s crucial to acknowledge the limited sample size of
just 7 subjects, potentially affecting the robustness of the statistical analysis, the
linear regression of the data produces an R2 coefficient of 0.779, indicating a good
fit to a linear model despite the sample constraints.

In conclusion, despite the constrained sample size, we identified a marked relation
between the kinematic and muscle synergy disruption. This preliminary result
suggests a relationship between the Central Nervous System’s alterations in muscle
coordination and the resultant kinematics.
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Chapter 6

Discussion

6.1 Summary of the main findings

6.1.1 Movement Elements

The initial stage of our kinematic analysis focused on assessing the consistency of
movement elements. To achieve this, we examined the congruence of these elements
among participants performing a particular task (Circle04), with the understanding
that these findings could be extended to additional exercises.

Our findings uncovered a clear differentiation in the smoothness of velocity
profiles, which revealed a pronounced decrease on the compromised side in all
individuals. This fall in fluidity was distinctly more prominent in participants with
moderate to severe impairment. Furthermore, our analysis delineated two primary
movement element categories: extended elements deviated more significantly from
the estimated Hoff model, while shorter elements, often observed at points where
velocity crosses zero, displayed a closer resemblance to the corresponding Hoff
model.

It was also significant to note an escalation in the occurrence of shorter movement
elements with rising levels of impairment, suggesting an increase in hesitancy
and a more fragmented motion pattern. Significantly, while the unaffected side
consistently demonstrated two movement elements per repetition for the majority
of the subjects, there was a noticeable increase in the number of movement elements
on the affected side of individuals who have suffered a stroke.
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In summary, our analysis revealed that movement elements on the affected
side are characterized by heightened fragmentation and lack the smoothness and
preciseness seen on the unaffected side. This discrepancy is particularly evident
among those with lower Fugl-Meyer Assessment for Upper Extremity (FMA-UE)
scores, indicating that the severity of the clinical condition aggravates the differences
between the two sides and leads to a more pronounced deviation from the ideal
movement model.

Scaling effect

Our kinematic analysis was further extended to examine the scaling relationship
between movement elements and the amplitude of motion. To explore this, we
represented the mean absolute velocity of the isolated movement elements against
their respective displacements on a logarithmic scale (Figure 5.3).

We observed that the mean absolute velocity escalated as a function of the
displacement, indicating a clear scaling relationship with the movement magnitude.
Moreover, these findings align with the two-third power law (v̄ ∝ D2/3), as outlined
by Miranda et al. [21], supporting the theory that the movement elements scale
with the size of the movement. Remarkably, this consistent pattern was evident in
all evaluated exercises and was uniform across both the unaffected and affected
limbs of the participants.

The scaling of movement elements with the size of the movement supports the
idea of scale-invariant movement encoding, as previously shown by Kadmon Harpaz
et al. [40] and Overduin et al. [25]. This principle was demonstrated in both
human subjects and non-human primates, with functional magnetic resonance data
and muscle synergy observations, respectively. Our study aligns with these findings,
suggesting that the scaling of movement elements, muscle synergies, and brain
activity are interrelated, even in subjects who experienced cortical damage such
as stroke survivors. This scaling across different levels indicates a fundamental
mechanism that the motor control system employs to simplify the generation of
complex upper-limb movements, suggesting a more distributed network of movement
encoding over traditional hierarchical representations.

In conclusion, these findings support the idea that the central nervous system
orchestrates movement patterns by scaling fundamental building blocks by the
size of the movement. Additionally, our results align with the research presented
by Miranda et al. [21], who concentrated on individuals without neurological
impairments. Our study extends these insights to stroke individuals, demonstrating
comparable patterns of movement scaling on the unaffected side of individuals
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recovering from stroke.

Conversely, on the affected side of stroke patients, we found a good agreement
with the two-third power law (v̄ ∝ D2/3), with an alteration of the variability in
the clusters of point. Specifically, the majority of the subjects exhibit a more
uniform distribution of points, leading to increased variability along both axes.
This observation can be directly associated with the increase of fragmentation in
the movement, which determines an increase in the number of movement elements,
and consequently, their length across different repetitions is less consistent.

Relation with the normative velocity profile

Upon extracting and analyzing the characteristics of movement elements, we sought
a potential relationship between the Fugl-Meyer Assessment for Upper Extremity
(FMA-UE) scores and their similarity with the corresponding Hoff model projections.
Following this, we scrutinized the congruence between the actual velocity profiles
and those theoretically anticipated based on the normative trajectories (named
“normative velocity profile”).

Upon computing the Pearson Correlation Coefficient between the extracted
movement elements and their Hoff model equivalents, we observed a pronounced
variability on both the unaffected and affected sides. This suggested an absence
of significant statistical difference. We believe that this pronounced variability
emerged from the short segments that were found in the extraction of movement
elements. Specifically, the short duration of the movement elements correlated with
a higher similarity to the corresponding Hoff model, which resulted in a distortion
of the true deviation of the movement elements from their Hoff model.

Notably, the literature lacks reports of significant movement element disruption
in stroke patients. The Hoff model itself is devised from the actual movement
parameters, such as duration and displacement, sculpting a bell-shaped velocity
profile that corresponds to each movement element. Consequently, within our
analysis, we could not pinpoint significant discrepancies within the movement
elements.

Moreover, existing literature [14, 15, 21] doesn’t provide evidence of movement
element disruption in stroke survivors. The Hoff model for each movement element
is, indeed, constructed based on actual characteristics of the movement element
such as duration and displacement, tailoring a bell-shaped velocity profile to fit it.
Consequently, within our analysis, we could not pinpoint significant discrepancies
between the extracted movement elements and their Hoff model.
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Secondly, we gauged the resemblance between the actual velocity profile and the
normative velocity profile derived from the normative trajectory. This comparison
was limited to drawings where the normative trajectory could be reconstructed,
such as the Circle, Ellipse, Spiral, and Flower.

A notable characteristic of the normative velocity profile is its heightened
consistency across different subjects, facilitating a more coherent analysis when
comparing the unaffected and affected sides of all subjects. Similarly to the
previous analysis, we measured the Pearson Correlation Coefficient between the
actual velocity profile and the normative one, confining this to the time window of
each repetition. We could observe that the similarity on the unaffected side across
all subjects remained fairly steady with lower variability. Conversely, although the
variability on the affected side was higher, a positive trend was more evident with
the increase in the FMA-UE score.

6.2 Muscle Synergies

While our investigation into movement elements offered a deeper understanding
of kinematic disruptions in stroke survivors performing a range of exercises, our
analysis of muscle synergies provided, complementally, a more comprehensive view
of how the Central Nervous System (CNS) orchestrates muscle activations during
these activities.

To enhance the robustness of our analysis, we amalgamated the data from
all exercises for each participant into a singular, comprehensive dataset before
extracting muscle synergies using Non-Negative Matrix Factorization (NNMF).
The dataset’s volume is a pivotal aspect for the efficacy of dimensionality reduction
techniques such as NNMF. Extracting synergies from a relatively limited dataset
(encompassing 5 repetitions across 4-5 sizes) might undermine the algorithm’s
robustness and the consistency of the outcome, which is essential for reducing
biases in our findings.

Additionally, we observed that the exercises shared a fundamental characteristic.
In particular, they all could be described as point-to-point movements within the
antero-posterior and medio-lateral planes (respectively, the x and y directions).
This uniformity across the diverse range of exercises bolsters the hypothesis that
the CNS, despite varied demands, utilizes a finite repertoire of muscle synergies to
orchestrate such an extensive array of movements.

Our examination of the muscle synergies from both the unaffected and affected
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limbs, across subjects with varying degrees of impairment, revealed significant
disparities. In particular, variations in the number of synergies and their Cosine
Similarity were prominent.

Our findings align with existing literature. For instance, Cheung et al. [24]
delineated three primary post-stroke scenarios, including preservation, merging,
and fractionation of the synergies observed on the unaffected side. An increased
number of synergies on the affected side implies a fractionation of synergies, while a
reduced number suggests a merging. These alterations may represent pathological
changes or compensatory mechanisms.

We also detected a notable increase in muscle co-contraction on the affected
side, particularly in subjects with moderate to severe impairment, implying the
adoption of compensatory strategies during exercise performance.

In the final phase of our analysis, we computed the Centered Kernel Alignment
(CKA) similarity measure to compare muscle synergies of the unaffected and
affected limbs, correlating it with the FMA-UE score. The trend showed a decrease
in synergy similarity corresponding with increased levels of impairment. This
relation supports the findings from our kinematic analysis, emphasizing a direct
link between the disruption of muscle coordination by the CNS and the resultant
kinematic changes in exercise execution.

6.3 Kinematics vs Synergies

Upon examining the kinematics and the muscle synergies separately, our analysis
embarked on a deeper exploration of their interplay. In our kinematic analysis, we
discerned minimal discrepancies between the unaffected and affected limbs within
the realm of movement elements and their relation with their Hoff model. However,
a distinct positive relation with the Fugl-Meyer Assessment for Upper Extremity
(FMA-UE) score was evident in the deviation of actual velocity profiles from the
normative benchmark on the affected side. A similar relation was mirrored in the
Centered Kernel Alignment (CKA) similarity of muscle synergies, as we examined
the contrast between the unaffected and affected sides.

In depicting these two similarity indices in relation to the impairment severity
(Figure 5.13), a striking concordance emerged. The trends observed with respect
to the FMA-UE scores suggested a robust linkage between the kinematic behaviors
and muscle synergy patterns.
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Furthering this analysis, we represented one similarity index against the other
(Figure 5.14) and computed the linear regression of the data points. The relationship
between the indices was statistically significant, with a p-value < 0.01. Despite the
limited sample size of 7 subjects, which could temper the statistical solidity, the
linear regression produced an R2 coefficient of 0.779. This high value indicates that
the relationship between the two metrics is well-modeled linearly, even considering
the small sample size.

In conclusion, the study, though limited by the number of participants, unveiled
a pronounced interconnection between the kinematic perturbations - reflected in the
Pearson Correlation coefficient between the actual and normative velocity profiles
on the affected side - and the disruption in muscle synergies - as denoted by the
CKA similarity between unaffected and affected limbs. These insights underscore
a significant linkage between the Central Nervous System’s muscle coordination
alterations and the consequent kinematic outcomes.

6.4 Future Research

This research represents a pioneering effort to elucidate the complexities of muscle
coordination alterations and their kinematic consequences. However, the scope of
our insights is constrained by a dataset confined to a mere 7 subjects, which limits
the extrapolation of our findings. To extend the robustness and applicability of
this research, future efforts should aim to broaden the spectrum of participants,
thereby capturing a wider array of impairment levels and enhancing the study’s
representativeness. Due to the small sample size, it wasn’t indeed feasible to cate-
gorize participants according to the location of their lesions. However, investigating
this aspect could yield valuable insights in future studies.

The non-uniform distribution of Fugl-Meyer scores within our dataset also
points to the need for a more stratified approach to participant selection, ensuring
a comprehensive representation across the entire spectrum of motor impairments.
Additionally, the integration of a more varied set of metrics, beyond the Fugl-Meyer
Assessment, would allow a better understanding of muscle functioning. Moreover,
taking into account factors like dominant hand and duration since stroke onset
could provide deeper insights into the impact of stroke on kinematics and muscle
synergies.

Additionally, the scope of the kinematic analysis in this research was confined
to the trajectory of the pen’s tip, yielding significant findings but presenting a
narrowed view of compensatory motor strategies. As a result, future investigations
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should include detailed evaluations of arm and trunk movements to gain a more
comprehensive understanding of the adaptive movement strategies used by subjects.
A comprehensive analysis of compensatory behaviors during task execution can im-
prove our understanding of how they occur and help us identify the overdependence
on non-targeted muscle groups. This knowledge can aid in accurately identifying
and correcting compensatory patterns, leading to more effective rehabilitation
interventions.

Despite its constraints, this study serves as a critical foundation for furthering
our comprehension of muscle coordination challenges associated with motor impair-
ments. Future research, building upon our preliminary findings, promises to refine
rehabilitation techniques, potentially enhancing patient recovery processes. The
limitations encountered here should not be viewed merely as barriers but rather as
springboards for innovative thought and deeper exploration into the sophisticated
process of motor restoration and healing.
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Chapter 7

Conclusions

Our research study focused on understanding the link between movement compo-
nents and muscle synergies in individuals who have survived a stroke. Our primary
objective was to investigate their fundamental attributes and how they related
to each other. We tracked the movement of the pen tip used by participants as
they engaged in various exercises, including tracing geometric shapes, reaching,
targeted, and random movements. This allowed us to derive movement elements
from the velocity time series, decomposed through a Cartesian coordinate system
aligned with the anatomical planes. We then compared these velocity profiles with
the normative ones for both the affected and contralateral sides. Additionally, we
examined sEMG signals from 16 upper-limb muscles, extracting muscle synergies
using NMF. Our analysis culminated in comparing the deviations in kinematics and
muscle synergies relative to the level of impairment and exploring their interrelation.

This essay has revealed several pivotal elements and outcomes from our research,
offering novel insights into motor control and rehabilitation for stroke survivors.

A significant observation was made regarding movement elements in stroke
survivors. We noted that these elements scale proportionally to the movement’s
dimension on both the unaffected and affected sides. This discovery is crucial,
as it suggests that complex movements can be deconstructed into fundamental
components that are scaled based on the movement’s dimension, thus simplifying
the motor control process.

Furthermore, we identified a pronounced relation between the disruptions in
kinematics and muscle synergies when representing one against the other (Figure
5.14). This relation provides a clearer understanding of the interplay between
kinematics and muscle synergies in stroke-affected individuals.
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These insights might be game-changers, both in understanding motor control and
in revolutionizing rehabilitation strategies. The analysis of muscle synergies yields
crucial clinical data, essential for designing tailor-made rehabilitation protocols.
However, it’s important to note that the process of extracting and analyzing
muscle synergies is resource-intensive, time-consuming, and necessitates specialized
expertise. Our findings bridge a critical gap by demonstrating a strong link between
muscle synergies and movement patterns. This link allows clinicians to infer the
health status of the Central Nervous System and the impact of a stroke on muscle
synergies by simply observing biomechanical movement patterns. This approach
has the potential to make clinical evaluations not only more efficient but also more
accessible, marking a significant advancement in the field of neurorehabilitation.
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Appendix A

A.1 Drawings’ parameters

Diameters of the Circle drawings

Dimension Diameter
Circle01 37 mm
Circle02 71 mm
Circle03 138 mm
Circle04 275 mm

Axes of the Ellipse drawings

Dimension x_axis y_axis
Ellipse01 12 mm 21 mm
Ellipse02 22 mm 41 mm
Ellipse03 42 mm 80 mm
Ellipse04 79 mm 155 mm
Ellipse05 171 mm 339 mm
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Distance from the center for the Flower drawings

Dimension Radius
Flower01 18 mm
Flower02 35 mm
Flower03 66 mm
Flower04 106 mm

Parameters a and b for the Spiral drawings

Dimension a b

Spiral01 0.0018 0.1075
Spiral02 0.0035 0.1075
Spiral03 0.0075 0.1075
Spiral04 0125 0.1075
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