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Summary

The Banff classification is a comprehensive system that strives to standardize the
pathological evaluation of kidney transplant. This process is particularly time-
consuming and energy-intensive for pathologists, as each sample from the biopsies
must be analyzed in detail. The aim of this project is to automate this process.
In this work we first focus on the detection of tubules, vessels and nuclei. A color
invariant classification of these structure was then performed.
A new database, composed by nineteen WSI images collected by the University
Hospital Center (CHU) of Nice, was used. From the original data base, we selected
and labeled a total of fifty-six 1024 x 1024 patches, nine per patient. Using
the selected data we were able to obtain a train set, a validation set and a test
set sufficiently representative of the entire population under analysis. Two new
pipelines for the segmentation of blood vessel and tubule lumens, and nuclei are
proposed. To classify the structures, supervised machine learning-based methods
were utilized, implementing three classifiers: K-Nearest Neighbors (KNN), Random
Forest (RF), and Support Vector Machine (SVM). The novelty of our work lies in
the method used to perform feature selection and feature extraction. To replicate
the visual classification process carried out by a human, although using conventional
and automated techniques, we worked in accordance with two expert pathologist
to extract the optimal set of features. We obtain an accuracy of 91.03% and a
balanced accuracy of 91.08% on the test set using the SVM classifier. Furthermore,
to test the robustness of the method we applied the best performing model on
a smaller data set representing the worst case. These images were selected by a
skilled pathologist. To validate the no color dependency we also applied the best
model on some TRI-stained images. In both cases we get acceptable performance.
Although embryonic, this thesis work lays the foundations for the automation of
the Banff classification providing an essential tool for increasing the number of
diagnoses.
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Chapter 1

Introduction

1.1 The Banff classification

Nowadays, the amount of end-stage renal disease is constantly increasing. Renal
transplantation represents an effective therapeutic route for people suffering from
this particular disease [1]. However, a significant challenge associated with this
medical intervention lies in the manifestation of allograft dysfunction. Various
factors, including rejection, infection and drug toxicity, can contribute to the occur-
rence of allograft dysfunction. Statistically, this complication occurs in 50%-60%
of cases following kidney transplantation [2].
The Banff classification aims to provide a guide for therapeutic approaches and
to outline an objective endpoint for clinical trials on allograft rejection. The first
Banff meeting took place in the modest town of Banff, Alberta, Canada, in August
1991.With the participation of 12 nephropathologists and transplant clinicians.The
objectives were to guide therapy and to establish an objective endpoint for clinical
trials [3]. After this first meeting, these meetings became biannual, leading to a
continuous refinement of the standards used for classification [1].
The Banff process systematically identified and delineated lesions within the allo-
graft parenchyma through a comprehensive and semi-quantitative approach. More
specifically is possible to identify four steps: definitions of various components or
lesions; diagnostic lesions; Semi-quantitative scoring of the lesions; Additional diag-
nostic features and categories [4]. It is essential to adhere to the criteria established
during the Banff conferences in 1991 and 1997. Currently, it is a minimum of 10
glomeruli with at least two arteries, which fulfil the criteria for numerical coding,
whereas, the presence of at least seven glomeruli with one artery is considered
marginal [5]. It is also necessary to have at least seven slides of the same biopsy,
of which three stained with haematoxylin and eosin (H&E), three stained with
periodic acid-Schiff (PAS) and one stained with trichrome (TRI) [4].
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Definition of various component of lesion

The pathological manifestations of rejection occur in four components of the
kidney: glomerules, tubules, interstitium and vessels. Independently or jointly. The
histological interpretation of allografts must also take into account factors related
to the recipient and the donor. For instance, advanced glomerulosclerosis and
tubulo-interstitial fibrosis may be present in the kidneys of elderly donors, and those
of brain-dead donors may show ischaemic changes. Occasionally, donor-transmitted
diseases may be evident in time-lapse or early biopsies. In addition, drug toxicity
and infections may occur at any time after transplantation [4].

Diagnoses of the lesions

Depending on the component involved, different types of lesion may occur.Below
is a list of the pathologies involved in the Banff classification, with the respective
index used for representation in brackets.

Speaking about the glomeruli:

• Glomerulitis (g): index of micro-vascular inflammation (MVI), and indicator
of antibody activity and interaction with the tissue, particularly in cases of
antibody-mediated rejection (AMR). The glomerulitis accouses when there
is a complete or partial occlusion of one or more glomerular capillary by
leukocyte infiltration and endothelial cell enlargement [6]. It is essential to
note that glomerulitis can also occur in the context of recurrent or de novo
glomerulonephritis. However, it is possible to exclude these two eventualities
by application of immunotoxins and electron microscopic (EM) examination
[7].

• Mesangial matrix increase (mm): indicator of moderate mesangial matrix
expansion assesses the proportion of glomeruli that exhibit moderate mesangial
matrix expansion compared to all non-sclerosed glomeruli. This occurs due to
a matrix expansion in the mesangial inter-space greater than the equivalent
width of 2 mesangial cells on average in at least 2 glomerular lobules [5].At
present, this Banff lesion score is not used to determine a diagnostic category
and remains purely descriptive in nature.[7]

• Transplant glomerulopathy (cg): lesion indicative of antibody-mediated
chronic rejection (ABMR). It is characterised by doubling or multi-layering of
the glomerular basement membrane (GBM). Similar features can be found in
other conditions such as thrombotic micro-angiopathy (TMA) and membra-
noproliferative glomerulonephritis associated with hepatitis C viral infection.
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However, it is possible to distinguish cases of transplant glomerulopathy by
the presence of IgM and C3 immunoglobulins [4].

With regard to tubules:

• Tubulitis (t): index that assesses the extent of inflammation within the
cortical tubule epithelium. Tubulitis is defined as the presence of mononuclear
cells in the basolateral aspect of the renal tubule epithelium. When tubules
are dissected longitudinally, the score is calculated by evaluating the average
number of epithelial cells per tubular cross-section [7].

• Tubular atrophy (ct): it assesses the degree of cortical tubule atrophy, a
phenomenon closely linked to interstitial fibrosis. This is determined by the
presence of tubules with a thickened basement membrane or a reduction in
tubular diameter of more than 50% [7].

Of great relevance is also the interstitium:

• Interstitial Inflammation (i): index of interstitial inflammation, assesses
its extent in unhealed areas of the cortex, acting as a marker indicative of T-
cell-mediated acute rejection (TCMR). To assess the i-index it is necessary to
exclude fibrotic regions, the immediately sub-capsular cortex and the adventitia
around the large veins and lymphatics. If more than 5%-10% eosinophils,
neutrophils or plasma cells are present, an asterisk is added to this index [7][5].

• Interstitial Fibrosis (ci): indicator of the degree of cortical fibrosis.This
pathology only affects the cortex composed of fibrous tissue [7].

• Total Inflammation (ti): it assesses the overall extent of cortical inflam-
mation. In cases where at least mild interstitial fibrosis and tubular atrophy
(IFTA) is present, this score is considered a better predictor than the Banff
lesion score i for adverse graft outcomes [7][8].

• Inflammation in Area of IFTA (i-IFTA): it estimates the extent of
inflammation in the scarred cortex. It is used for the diagnosis of TCMR
grade IA or IB in combination with Banff lesion score ti [7][9].

Finally there are the vessels:

• Intimal Arteritis(v): it rates the existence and degree of inflammation
within the arterial intima. Intima arteritis is specifically defined by the
presence of inflammatory cells, predominantly lymphocytes and monocytes,
in the sub-endothelial space of one or more arteries [6].This characteristic is
observed in both TCMR and AMR [7].
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• Peritubular Capillaritis (ptc): it assesses the degree of inflammation of
the peritubular capillaries (PTC). PTC includes microvascular inflammation
as a feature of antibody-mediated active rejection or chronic active AMR. It
may also be observed in cases of TCMR or borderline rejection. The score is
determined by observing the severity of the most affected peritubular capillary
[7].

• Vascular Fibrous Intimal Thickening (cv): measures the degree of
thickening of the intima of the most affected artery and not the average of all
arteries [5]. It is important to note that this score does not distinguish between
mild arterial intimal fibrosis and leukocyte-containing fibrosis, although the
presence of the latter is more indicative of chronic rejection. Chronic rejection
includes AMR and TCMR [7][9].

• Arteriolar Hyalinosis (ah):it assesses the extent of arteriolar hyalinosis.
Arteriolar hyalinosis is defined as a PAS-positive hyaline arteriolar thickening.
An asterisk is added to the index in the case of arteriolitis [5]. It is important
to notice that it is not currently used to determine a diagnostic category and
remains purely descriptive [7].

• Hyaline Arteriolar Thickening (aah): Alternative index to quantify
arteriolar hyalinosis introduced by the poor reproducibility of Banff score
index ah [10]. It focuses on circumferential or non circumferential hyalinosis
by considering the number of arterioles involved. Similar to the Banff lesion
score ah, aah is not currently used to establish a diagnostic category and
remains purely descriptive [7].

• C4d: Assesses the extent of staining for C4d. C4d is a score determined by
the percentage of peritubular capillaries and vas recta that exhibit a linear and
circumferential staining pattern. The evaluation is performed by immunofluo-
rescence (IF) on frozen sections of fresh tissue or immunohistochemistry (IHC)
on formalin-fixed, paraffin-embedded tissue [7].

Semi quantitative scoring of the lesion

The Banff scoring system has three grades: mild (1), moderate (2), and severe
(3). Table 1.1 reports the percentage of component (between glomeruli, tubules,
vessels and interstitium) involved in the pathology. There are some exception like
for Transplant glomerulopathy (cg) in which is evaluated the amount of double
contours of the GBM in peripheral capillaries, using light microscopy (LM) or EM
[7]. For the Tubulitis (t) is considered the number of mono-nuclear cells in Foci
across section. Is possible to define a t3 condition also for the presence of more
than two areas of tubular basement membrane destruction accompanied by i2/i3
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inflammation and t2 elsewhere [7]. For Intimal Arteritis (v) is evaluated the severity
of the pathology in at least one arteria cross section [7]. For Peritubular Capillari-
tis (ptc) the number of leukocytes in most severely involved PTC is considered
[7].For the Vascular Fibrous Intimal Thickening (cv) is considered the percentage
of fibrointimal thickening in the luminal area [7]. For Arteriolar Hyalinosis (ah) the
severity of the PAS-positive hyaline thickening in at least 1 arteriole is evaluated
[7]. Considering Hyaline Arteriolar Thickening (aah), is adopted the following
grading: aah0 = No typical lesions of calcineurin inhibitor-related arteriolopathy;
aah1 = replacement of degenerated smooth muscle cells by hyaline deposits in only 1
arteriole, without circumferential involvement; aah2 = Replacement of degenerated
smooth muscle cells by hyaline deposits in more than 1 arteriole, without circum-
ferential involvement; and aah3 = replacement of degenerated smooth muscle cells
by hyaline deposits with circumferential involvement, independent of the number
of arterioles involved [7]. Finally for C4d is taked the percentage of PTC and
medullary vasa recta [7][9][11].

Pathology intex grades
Glomerulitis g g0= no glomerulitis

g1 = less than 25%
g2 = between 26% and 75%

g3 = more than 75%
Mesangial mm mm0 = No more than mild mesangial

matrix increase mm1 = less than 25%
(for non mm2 = between 26% and 50%

sclerotic glomeruli) g3 = more than 50%
Transplant cg0 = no GBM observed

glomerulopathy cg cg1a = incomplete in at least 3 capillaries
cg1b = between 1% and 25%
cg2 = between 26% and 50%

cg3 = more than 55%
Tubulitis t t0 = No mononuclear cells

t1 = 1-4
t2 = 5-10

t3 = more than 10%
Interstitial i i0 = less than 10%

Inflammation i1 = between 10% and 25%
(in not scarred i2 = between 26% and 55%

cortical parenchyma) i3 = more than 50%
Interstitial ci ci0 = less than 5%

Fibrosis ci1 = between 6% and 25%
(in cortical area) ci2 = between 26% and 50%
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ci3 = more than 50%
i-IFTA i-IFTA i-IFTA0 = less than 10%

(in scarred i-IFTA1 = between 10 % and 25%
cortical parenchyma) i-IFTA2 = between 26% and 50%

i-IFTA3 = more than 50%
Total ti ti0 = no or trivial inflammation

Inflammation ti1 = between 10% and 25%
(in cortical ti2 = between 26% and 50%

parenchyma) ti3 = more than 50%
Intimal v v0 = no arteritis

Arteritisa v1 = mild
in cortical v2 = Severe

parenchyma v3 = Trans-mural arteritis and/or
arterial fibrinoid change

Peritubular ptc ptc0 = less than 3
Capillaritis ptc1 = between 3 and 4

ptc2 = between 5 and 10
ptc3 = more than 10

Vascular Fibrous cv cv0 = no chronic vascular changes
Intimal Thickening cv1 = less than 25%

cv2 = between 26% and 50%
cv3 = more than 50%

Arteriolar ah ah0 = no (PAS)-positive
Hyalinosis ah1 = Mild

ah2 = Moderate
ah3 = Severe

C4d C4d C4d0 = 0%
C4d1 = between 0% and 10%
C4d2 = between 10% and 50%

C4d3 = more than 50%

Table 1.1: Banff’s semi quantitative scoring of the lesion [7][9][11].

Additional diagnostic features and diagnostic categories

The most recent Banff classification has six categories.Rejection categories are
Category 2, Category 3, and Category 4 [4][7]:

1. Normal biopsy or non-specific changes: to fall into this category, all other
categories must be excluded [7].Cases in which the graft has no inflammatory
cells or features of acute tubular injury (ATI) and acute tubular necrosis fall
into this category [1].
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2. Antibody-mediated changes: The diagnosis of active and chronic antibody-
mediated rejection (ABMR). Morphological, immunohistological and serolog-
ical tests are reviewed to prove the veracity of this category [4]. While the
morphological features, indices of active and chronic lesions, are unique. Active
lesions can coexist in chronic active ABMR.In contrast, immunohistological
and serological indicators are the same for active and chronic ABMR [7].It is
possible to divide this class into two sub-classes referring to acute and chronic
TCMR cases. Specifications regarding the indices are given in Table 1.2.

morphologic immunologic serologic
Acute ABMR g≥0 or ptc≥0 lienar C4d in PTCs DSAs

v≥0 g+ptc ≥2
or

acute TMA
or

acute tubular injury
Cronic Active ABMR cg if no TMA≥0 lienar C4d in PTCs DSAs

or g+ptc ≥2
arterial intimal fibrosis

Chronic ABMR cg ≥0 if no TMA priopr diagnosis of DSAs
severe PTC acute or chronic active

ABMR

Table 1.2: Banff scores for antibody-mediated changes [4].

3. Suspicious for acute T cell-mediated rejection: This category specifically
concerns the tubulo-interstitial type of rejection. The true clinical significance
of this lesion remains a matter of debate and is highly dependent on factors such
as the organ donor, time since transplantation, and the indication and timing
of kidney allograft biopsies [1][12][13]. One always falls into this category if
one has mild (i1) to severe (i3) interstitial disease and mild tubulitis (t1), or
vice versa, and in the presence of the absence of arteritis (v0) [1].

4. T cell-mediated rejection : the diagnosis of acute and chronic T-cell-
mediated rejection is mainly based on the presence of active inflammation in
the tubules, interstitium, and non-atrophic vessels [4].Again, a distinction can
be made between chronic and acute cases. The sub-classes and their indices
are given in Table 1.3.
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Acute TCMR Banff score
Type 1A t2i2 or t2i3
Type 1B t3i2 or t3i3
Type 2A v1
Type 2B v2
Type 3 v3

Chronic active TCMR Banff score
Grade 1A t2,t1≥2 and i-IFTA≥2
Grade 1B t3,t1≥2 and i-IFTA≥2
Grade 2 cv1,cv2 or cv3

Table 1.3: Banff scores chronic and acute TCMR [4][7].

5. Interstitial fibrosis and tubular atrophy: The IFTA is caused by two
conditions: the interstitial fibrosis and the tubular atrophy.Interstitial fibrosis is
characterized by excessive accumulation of connective tissue in the interstitium,
while tubular atrophy manifests as a reduction in size and functions of the renal
tubules.These conditions are often associated with persistent inflammatory
processes or repeated renal damage over time. Table 1.4 shows the relative
Banff scores.

IFTA severity Banff score
mild ci1 or ct1

moderate ci2 or ct2
severe ci3 or ct3

Table 1.4: Banff scores for IFTA [7].

6. Non-rejection conditions/diseases: often, transplant non-rejection is asso-
ciated with different types of pathology.Therefore, the necessity of introducing
this new class into the Banff classification arose. Was so introduce this sixth
Banff category as a separate sheet [3]. It is indeed essential to fully understand
the conditions of non rejection for precise diagnostic delineation and tailored
therapeutic interventions, especially in the context of transplant dysfunction
in the post-transplant environment [4].
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1.2 The AI role
In the clinical context, the analysis of the Banff classification is characterised by
considerable complexity. A significant workload is required to obtain essential
indices for this classification.Moreover, the presence of numerous qualitative factors
often introduces considerable variability both within and between practitioners.
To reduce computing costs and improve the accuracy and the objectivity of classifi-
cations, Artificial Intelligence (AI)-based tools are a great instrument.The use of
such approaches could not only reduce the time needed to obtain a diagnosis, but
also improve its consistency and reliability.
Several studies have attempted to replicate some of the steps of Banff classification
through AI-based approaches.

One of the most complete work was done by [14]. A convolutional neural network
(CNN) for the histological analysis of renal tissue stained with PAS was devel-
oped and validated.A CNN is a specific type of deep learning neural network that
is particularly suited for image analysis and computer vision [14][15][16]. The
CNN was initially designed to identify five classes (sclerotic glomeruli, proximal
tubules, distal tubules, atrophied tubules and interstitium) in biopsies of healthy
and pathological kidney tissue [14]. Subsequently, a comparison between the CNN
quantification and the elements of the Banff grading system, manually assessed by
several renal pathologists, was performed [14].
A U-Net architecture was used for segmentation [17]. The network was trained
for 100 epochs, with 300 iterations per epoch and batches of 6 patches. Spatial
augmentation (rotation, flipping, elastic deformation, zoom) and colour augmen-
tation (brightness, contrast, saturation, hue shift, Gaussian noise, Gaussian blur)
techniques were applied [14][18].Adam was used as the learning rate optimisation
algorithm and categorical cross entropy as the loss function [14][19]. Specifically,
five U-Net were used. The probability per pixel for all five networks was averaged
and only the class with the highest probability obtained was considered [14].Finally,
post-processing steps were implemented .Image 1.1 represents the obtained confu-
sion matrix. Subsequently, quantitative and morphometric data were extracted for
each class. The sum of the objects labelled as glomeruli and sclerotic glomeruli
constituted the glomeruli count. To evaluate the percentage of interstitium area,
the number of pixels labelled as interstitium was divided by the total number of
segmented pixels [14].Finally, the percentage of atrophied tubules was determined
by dividing the number of objects labelled as atrophied tubules by the sum of
objects labelled as one of the four tubule classes. For the glomerular count, the
Intraclass Correlation Coefficients (ICC) between the pathologists and the CNN
was calculated [14]. The ci, ti, ct and IFTA classification scores assigned by expert
pathologists were then compared with the results obtained via CNN. To do so,
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Figure 1.1: Confusion matrix form the segmentation performed by [14]

Spearman’s correlation coefficient and coefficient of determination (R2) were calcu-
lated [14]. Tables 1.5 and 1.6 show respectively the ICCs for glomerular counting by
three pathologists (P1–P3) and the CNN, and the Spearman correlation coefficients
for quantification by the CNN and the average visual scores of multiple pathologists
for relevant Banff components [14].

pathologist ICCs
P1 0.94
P2 0.96
P3 0.93

Table 1.5: ICCs for glomeruli [14]

intertubular area ci ti IFTA ct
interstitium 0.81 0.55 0.71 0.33 /

atrophied tubular area / 0.62 / 0.58 0.58

Table 1.6: Spearman correlation coefficients. The ’/’ mean that the parameter
were not evaluated [14]

[15] proposed a different approach. CNNs for automatic classification of kidney
allograft biopsies were developed.Specifically, two sequential CNNs were trained
to distinguish between normal (Banff category 1) and disease (all other Banff
categories) [15]. The first CNN makes this initial distinction while the second aims
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to distinguish rejection (Banff categories 2-4) from other diseases, including Banff
category 5. Several CNN architectures were tested, including ResNet18, ResNet50,
ResNet101, ShuffleNet and Inceptionv3 [15].The Inceptionv3 architecture was cho-
sen.Figure 1.2 reports the AUROCs coming from the application of the two CNNs
on an external data set [15]. The first serial CNN achieved AUROCs of 0·83 for
the normal class and 0·83 for the disease class.The second serial CNN generalised
less well with AUROCs of 0·61 for the other diseases class and 0·61 for the
rejection class [15].

Figure 1.2: Performances obtained by [15].

Instead of proposing an automated method to perform the Banff classification, [20]
attempted to create a decision aid system. The aim was to distinguish normal and
abnormal renal tubules by developing a U-Net- based segmentation model.Initially,
the segmentation of two classes was implemented: glomeruli, normal tubules, ab-
normal tubules, arteries and interstitium. The ability of the model to distinguish
between normal and abnormal tubules was tested.To evaluate the performance of
this first stage, Dice coefficients (DC) were calculated [20].The highest DCs were
obtained for the interstitium and glomeruli, indicating a strong segmentation per-
formance. Normal and abnormal tubules showed intermediate DCs, while arteries
showed lower DCs [20].
In the next step, the number of classes was extended to eight (glomeruli, proximal
tubules, distal tubules, atrophied tubules, tubulitis, degenerated tubules, arteries
and interstitium) with the aim of assessing the ability to detect various types of
abnormal tubules [20]. The evaluation of segmentation performance was again
conducted using Dice coefficients (DCs). The highest DCs were observed for the
interstitium and glomeruli, as well as for the five classes involved in semantic seg-
mentation [20]. Proximal tubules, distal tubules, atrophied tubules and degenerated
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tubules had intermediate DCs, while arteries and tubulites had lower DCs [20].
The final step is to evaluate the actual usefulness of the obtained segmentations.
To do this, the concordance ratio between two nephrologists experienced in renal
pathology was examined, with and without the aid of U-Net segmented images [20].
The first evaluation was conducted without the aid of automatic segmentations
(U-Net- group), while the second evaluation included their use (U-Net+ group) [20].
ICCs values were calculated to assess the agreement ratio for continuous variables,
and Cohen’s κ for categorical variables [20].The values of these two coefficients are
shown in the Table 1.7.

U-Net- group U-Net+ group
k ICC k ICC

glomerular count - 0,97 - 0.95
t score 0,92 - 0,90 -
ct score 0,+1 - 0,95 -
ci score 0,91 - 0,82 -

% tubulitis - 0,14 - 0,52
% tubular atrophy - 0,28 - 0,76

% degenerative tubules - 0,18 -0,17
%interstitial space - 0,59 - 0,81

Table 1.7: Agreement ratios between renal pathologists with and without U-Net-
segmented images [20]

A completely different approach was adopted by [21].A computerised decision
support system was developed to translate all Banff classification rules and po-
tential diagnostic scenarios into a computer algorithm. This algorithm is capable
of automatically diagnosing kidney allograft biopsies [22][21]. It is important to
notice that the developed system is not an AI system, but a sophisticated ’if-then’
algorithm [22]. The algorithm was subsequently tested by reclassifying both adult
and paediatric kidney biopsies.In the adult kidney transplant population, the Banff
automation system demonstrated a significant impact by reclassifying 29.75%of
antibody-mediated rejection cases and 54.29% of T-cell-mediated rejection cases
into alternative diagnostic categories. In contrast, 7.32% of biopsies initially diag-
nosed as non-rejection by pathologists were reclassified as rejection cases by the
Banff automation system [22][21]. In addition, 7.30% of adults initially diagnosed
as non-rejection were reclassified into various types of rejection diagnoses using the
Banff automation system [22][21].
In the pediatric population, the reclassification rates into other diagnostic cate-
gories were 30.77% for antibody-mediated rejection and 30.77% for T-cell-mediated
rejection [22][21].
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1.3 Thesis scope
The fundamentals to fully understand Banff classification from a medical point
of view were presented.Analysing the clinical problem, the magnitude and com-
plexity of developing an algorithm capable of performing the Banff classification
automatically becomes clear. This type of classification presents significant intra-
and inter-operator variability. At the diagnosis stage, it is not enough to identify
the various renal tissues and related pathology, but it is also crucial to determine
the degree of these pathology and to establish the relationships between them.
Examination of images obtained from biopsies reveals a wide range of renal tissues
and components showing abnormal behaviour. While a human operator is able to
select only the relevant elements for analysis, excluding what could be considered
as non-relevant abnormalities, replicating this process with a non-human operator
is complex.
A further obstacle is the limited availability of studies focusing on the Banff classi-
fication. Most of the proposed methods focus on a single pathology included in the
classification, facilitating the work of pathologists but not fully implementing the
classification itself.Furthermore, many approaches make use of supervised Deep
Learning (DL) systems. The absence of a ground truth for all collected data
prevents such designs from being exploited to improve performance. In order
to address these challenges, the implementation of an algorithm that emulates
the decision-making process of a human operator is proposed. This requires the
identification and discrimination of all components present in a renal histopathology
image, followed by the association of the relevant pathologies through analytical
rules defined in collaboration with experienced pathologists.

The renal histopathological image shows several elements that can be grouped
into five main categories: tubules, blood vessels, epithelial cells (nuclei), glomeruli
and interstitial tissue.The aim is to recognise four of these elements and deduce
the fifth by exclusion. Given the availability of a method for identifying and
classifying glomeruli, the focus has been on the segmentation and distinction of
tubules, blood vessels and nuclei. It is then possible to identify interstitial tissue by
exclusion.Specifically, the aim of this project is to provide a tool for the identification
of tubules, blood vessels and epithelial cells.
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Chapter 2

Materials and methods

2.1 The data sets
To compute the BANFF classification, histopathological images are required. These
images are used to analyze pathological tissue alterations with histological cuts.
Specifically, within the scope of the BANFF classification, we consider biopsies of
the kidney.
A total of 18 Whole Slide Images (WSIs) were utilized, provided by the Central
Laboratory of Pathological Anatomy (LCAP) at the University Hospital Center
(CHU) in Nice. WSIs are multi-scale high-resolution digital images obtained from
slides that can be examined through optical microscopes.Individual sections were
obtained through biopsies involving 9 individuals affected by various pathologies,
including: humoral rejection, interstitial fibrosis and grade 1 tubular atrophy with
vascular lesions, arteriolar lesions, isolated fibrotic and vascular intimal lesions,
interstitial fibrosis and chronic active redox, tubulo-interstitial lesions, chronic
lesions with vascular lesions, rare lesions of acute tubular necrosis.Pathological
tissue was sampled using the microtome Leica RM2245, providing sections of 3-5
µm.Subsequently, each sample was processed through specific staining techniques,
such as Periodic Acid-Schiff (PAS) or trichrome staining (TRI). Finally, each slide
was scanned and digitized using the Leica Aperio AT2 scanner.
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2.1.1 Data collection

To collect the data, I personally visited the CHU, where I had the opportunity
to know the reality of LCAP and meet all the pathology personnel working in
the laboratory. Given my lack of prior knowledge in the field of histopathology,
my initial priority was to acquire the basic knowledge for the correct analysis of
samples from both a medical and technical point of view.
For this purpose, the laboratory is equipped with a multi-head microscope, an opti-
cal microscope with a tubular structure that connects to multiple body tubes.This
device is typically used in an educational contexts, enabling several individuals to
simultaneously observe the same slide. One user operates the microscope, moving
within the section, while all others observe. A brief introduction to the use of this
device was provided.

Subsequently, a detailed analysis of various pathological sections was conducted.
After a brief explanation of the methods used to obtain the samples, the main
features of five structures were examined: blood vessels, tubules, glomeruli, nuclei,
and interstitial tissue. This step was crucial to conduct an initial visual classifi-
cation and facilitate the identification of the key features necessary for the future
implementation of the classifier. Following this, the focus shifted to understanding
how these features may vary to recognise a specific pathology and its degree of
advancement.
At this point, the samples for the actual analysis were selected.The laboratory
holds a database containing all the slides analyzed, with their respective medical
reports. To identify the optimal subjects, each report was meticulously examined
to create a database that would be as representative as possible of the average
population of samples reaching the laboratory. From this research, 19 samples were
chosen, 9 subjected stained with PAS staining and 9 with TRI ones.

To fully understand why two separate staining methods are used, it is essential
to have a clear understanding of the glass preparation process. Starting with
the tissue sample obtained by biopsy, multiple sections are extracted at various
depths. In particular, the laboratory uses the microtome Leica RM2245, which is
capable of producing sections with a thickness of 3-5mum. These sections allow a
three-dimensional view of the organisation of the components within the biopsy
sample.
Subsequently, depending on the specific attributes to be highlighted, each section
is subjected to a staining process involving an interaction between the sample and
various substances that modify tissue coloration. In particular, the PAS and TRI
staining methods are introduced. PAS staining highlights the presence of glycogen
and gives a magenta hue to the tissue, facilitating the identification of the basement
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membrane surrounding the renal tubules and allowing better differentiation from
the vessels. TRI staining, on the other hand, uses three dyes to turn collagen-rich
tissues blue and erythrocytes and muscle tissue red. This second staining method
therefore allows fibrotic tissue to be clearly observed.

Finally, the selected slides were examined using the microscope under the guidance
of an experienced pathologist to validate the quality of the samples and exclude the
presence of artefacts. Often, during staining and slide preparation, may occur areas
with excessive dye concentration or other artefacts resulting from overexposure of
the specimen. Other times, the slide may contain a minimum of tissue adequate for
medical analysis, but inadequate for the extraction of an adequate set of images.
Once the selection was validated, the individual slides were scanned with the Leica
Aperio AT2, which can provide high-resolution digital representations.These images
are referred to as Whole Slide Images (WSI) and have an average size of 129368 x
59379 pixels in .SVS format.Image 2.1 represents the used microtome,a multi-head
microscope and the used scanner.

(a) (b) (c)
Figure 2.1: Microtome (a), multi-head microscope (b), and scanner (c) used by
the laboratory.
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2.1.2 Data preparation
The available database consists of 19 whole slide images (WSI) in .SVS format.This
format is commonly used for medical and histological images. In addition to
providing high resolution, this file extension allows the data to be managed and
analysed in a similar way to a microscopy tool. The .SVS data are defined as
multilevel, i.e.they allow the image to be viewed at various resolutions or zoom
levels. Using specific visualisation tools, it is possible to view the image at different
zoom levels without loss of detail or sharpness.

Furthermore, .SVS files can include metadata such as the location of a particular
portion of the image, the type of scanner used or even patient data. Therefore,
they are an essential tool in medicine for data storage and diagnostic purposes. In
particular, all images were processed using the highest resolution level, with an
average size of 129368 x 59379 pixels. Napari was chosen for visualisation. Each
image faithfully represents the entire composition of the tissue sample, showing
different sections of the same biopsy sample taken a few mum apart, separated by
a white background.
Due to the high number of pixels and the presence of a white background, it was
necessary to divide the image into patches and remove portions that represent
exclusively or predominantly the background. The selection criteria refer to three
parameters:

• m: Maximum value between the standard deviations evaluated for each
channel of the RGB image. This parameter allows the removal of patches with
uniformly the same color throughout the entire image ( fig.2.2a).

• k: Fraction of pixels in the image with average values for each channel above
a certain threshold. In particular, the threshold is set at 220. This makes it
possible to remove areas with a certain percentage of very light pixels and
thus a certain percentage of background.( fig.2.2b).

• z: The average of the minimum values for each channel in the RGB image. Z
allows the control of the image’s brightness ( fig.2.2c).

Subsequently, limit values were set for each of the three parameters, specifically m
< 4.5, k > 0.6, and z > 240. If at least one of these conditions is respected, the
image is not selected. Initially, square patches of the typical medical imaging size,
i.e. 512 x 512 pixels, were extracted.However, considering the project’s goal and the
visual analysis of the individual patches, it was decided to double the size to obtain
patches of 1024 pixels per side.This final size represents a good compromise, as it
does not result excessive computational expensive, and at the same time preserves
most of the structures in the image. Figure 2.3 represents the reconstruction of a
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(a) (b) (c)
Figure 2.2: Example of not selected patches during the first data selection step

1024 x 1024 patch using four 512 x 512 patches and the corresponding 1024 x 1024
image. Some biological structures are divided across the smaller patches which may
adversely affect their identification and classification. Implementing an alternative
patch splitting strategy may be a more effective way to maintain the integrity of
these structures in the image.

Figure 2.3: Reconstruction of a 1024 x 1024 patch using 512 x 512 patches and
the corresponding 1024 x 1024 patch.

2.1.3 Data selection
The morphology of the kidney reminds one of a bean.The outermost layer is
known as the renal capsule, adjacent to which is the cortical layer, followed by the
medullary layer. In the context of the BANFF classification, the layer involved is
the cortical layer, which makes the ability to distinguish and isolate the various
layers that make up the kidney crucial.
During a biopsy procedure, the pathologist extracts a portion of kidney tissue
transcutaneously using a needle, collecting both cortical and medullary tissue.
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Because of the shape of the kidney, the exact sequence of these tissues within the
specimen cannot be predicted. Often the section contains a portion of medullary
tissue enclosed between two layers of cortical tissue.However, in some cases, there is
a clear separation between the cortical and medullary layers.Figure 2.4 shows two
different ways to extract kidney’s tissue portions trow biopsy. A simple method

Figure 2.4: Biopsy
procedure

to rule out the presence of cortical tissue is the presence of glomeruli, as these
structures are found exclusively in the medullary region. Figure 2.5 shows a biopsy
specimen in which the succession of cortical tissue and medullary tissue containing
glomeruli can be observed. Using this information, samples belonging to corti-
cal tissue could be excluded. A second selection was performed by selection the
appropriate staining, particularly for the final proposed approach. For the SAM
approach, it was possible to use all available data, since SAM is not affected by the
type of staining.On the other hand, for the final approach, both segmentation and
classification methods involve the use of thresholds and the extraction of features
that are highly dependent on the staining type. Therefore, it was necessary to
proceed using a single stain type. The model previously implemented by within
the project was trained on PAS-stained images; thus, the decision was made to
focus solely on PAS staining for this segmentation, at least initially, abandoning
TRI staining.

In addition, during the implementation of the supervised machine learning models,
it was necessary to manually annotate the images. As a result, a data set reduction
was implemented to obtain a smaller data set that was representative of the
population under analysis.
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Figure 2.5: Biopsy sample

2.2 SAM approach
A first task was to evaluate the deep learning approach to segment our images using
the recent network SAM (Segment Anything Model). SAM is an unsupervised deep
learning segmentation model developed and released by Facebook. It allows the
segmentation of every object within an image without the need for any additional
training [23].

The initial idea was to use this model which provides a multi-scale segmentation of
the image. Subsequently, the analysis of these masks would be used to implement
an algorithm for the classification of nuclei, blood vessels, tubules and interstitial
tissues.

2.2.1 Segment Anything Model
The "Segment Anything Model" is a segmentation model that drives data annotation
and enables zero-shot approach, it refers to the model’s ability to perform optimally
even when faced with data different from those used during the training phase
[23]. The "Segment Anything Model" is a segmentation model that facilitates data
annotation and enables the zero-shot approach. This approach refers to the model’s
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ability to optimally perfrom even in the presence of data different from those used
during the training phase [23]. SAM constitutes, together with the promptable
segmentation task, one of the main components of the Segmentation Anything
(SA) project [23]. Another great strength of this project is the used data base. It is
named SA-1B and includes more than 1 billion masks.Comparing the numerosity
of this data base with any other data base used for segmentation, it turns out to
be 400 times more numerous [24][25][26][27].

Promptable segmentation task

Task definition is inspired by natural language processing (NLP), in which model
pre-straining is based on prediction of the next token. Through the given prompts,
the model becomes capable of handling a number of downstream tasks [23]. In
this context, a prompt can consist of any information that guides the model in
segmenting an image (foreground and background points, rough bounding box,
written text, etc.)[23]. Figure 2.6a better explain how a promptable segmentation
works. The model uses the image and the user prompt to find the mask of the
required element of the image.

A fundamental aspect within the context of the SA project is the ability to generate
a valid mask even when the provided instructions are ambiguous. In other words,
if the prompt refers to more than one object within the image, the model must be
able to produce a suitable mask for at least one of these objects. This approach can
be seen as a kind of iterative segmentation. However, unlike traditional iterative
segmentation, which requires a minimum number of commands to obtain a valid
mask, here the goal is to provide a valid mask based on any type of instruction[23].
In the figure 2.6b, it is possible to notice that starting from the same prompt (green
point), which might refer to multiple elements within the image, the task aims to
provide a mask for, at least, one of these elements.

To improve the model’s generalization some novel tasks were incorporated: edge
detection [23][28]; super pixelization [23][29]; object proposal generation [23][30];
foreground segmentation [23][31]; semantic segmentation [23][32]; instance segmen-
tation [23][27]; panoptic segmentation [23][33]; and more. This approach might
seem to be a form of multi-task classification. Whereas, however, in multi-task
classification the model is only able to satisfy tasks on which it has been trained,
in this case the model is able to adapt to novel tasks.So, it is a form of task
generalization [34].
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(a) (b)
Figure 2.6: How the promptable segmentation and the resolution of ambiguity
work[23].

The model

The Segment anything (SAM) model consists of three elements: an image encoder
that computes an embedding of images, a prompt encoder that embeds prompts,
and a lightweight mask decoder that combines the two sources of information and
predicts segmentations[23].

• Image encoder: a pre-trained MAE [23][35] Vision Transformer (ViT)[23][36]
is used. The output of the encoder is an image that is 16 times smaller than
the original. Specifically, images with a resolution of 1024x1024 were chosen,
which are scaled by the encoder to 64x64. To reduce the number of channels, a
convolution layer with a 1x1 kernel and 256 channels is introduced, followed by
another convolution layer with a 3x3 kernel and the same number of channels
[23][37]. Each of these is followed by a layer for channel normalization [38].
Both the convolutional layer are followed by a normalisation layer [23][38].

• Prompt encoder: the type of prompt encoding depends on the type of given
prompt. The goal is to transform them into a vector of the same size as the
number of channels, which in this case is an embedded vector of 256 elements
citekirillov2023segment.

• Lightweight mask decoder:the aim of the decoding process is to generate a
mask by combining the results of the image decoder and the prompt decoder.
Firstly, the most relevant prompts are selected through a self and cross
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attention process. Each selected item is individually processed through a
multi-layer perceptron (MLP). The MLP’s output is then combined with the
decoded image through a second cross-attention step. Next, the size of the
embedded image is increased by a factor of 4 using two levels of transposed
convolutional layers and is again associated with the encoded prompts. The
result of this association is processed by a small three-layer MLP, which
produces a vector with dimensions corresponding to the number of channels in
the enlarged image. Element-wise product between the scaled and encapsulated
image and the output of the MLP [23].

To address the ambiguities, SAM was designed to generate multiple masks from a
single prompt.The model is also designed to handle the generated masks. Specif-
ically, the loss between the ground truth and each mask is computed, and only
the masks that result with the lowest value are involved in the back-propagation
process [23][39][40][41]. Finally, a confidence index is evaluated, such as Intersection
over Union (IoU), to determine which mask is the most reliable. Figure 2.7 presents
an overview of SAM.

Figure 2.7: Segment Anything Model (SAM) overview[23]

The training

The training process relies on an iterative segmentation approach.In the initial
phase, a foreground point or a bounding box containing the target element is
randomly chosen with equal probability. Both are extracted from the ground
truth mask. In the case of the bounding box, Gaussian noise is added to each
coordinate, with a standard deviation equal to 10% of the bounding box’s size, up
to a maximum of 20 pixels [23][42][43].

During each iteration, a sequence of points corresponding to the classification errors
is extracted. These, along with the resulting mask, are used as additional prompts.
Subsequently, back propagation of the outputs is implemented, involving only the
masks with a sufficiently low loss value. After 8 cycles, the number of classification
errors begins to decrease, so 8 was chosen ad the optimal number of iterations[23].
Two additional iterations are added in the case in which no additional points are
sampled, one randomly placed among the first 8 iterations and the other at the
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end. The aim of these additional iterations is to encourage the model to refine its
own mask predictions [23].

Regarding the parameters, the AdamW optimizer is used [44]. The entire process is
iterated for a total of 90,000 iterations, with periodic changes in the learning rate.
A batch size of 256 images is used, and regularization techniques are applied[23].

2.2.2 SAM’s implementation
The main strength of SAM lies in the dimensionality of the training data set.
Typically, to achieve high-quality masks using machine learning or deep learning
techniques, it is necessary to collect and manage a huge amount of data. This
process can be very time and computational consuming. However, SAM is a
pre-trained model on a wide range of data and is open-source, making it applicable
to new images with a high probability of obtaining accurate masks for objects of
interest. Consequently, the initial phase of SAM implementation involves applying
the model provided by the developers to the set of available images.

Moreover, SAM provides various types of information that enhance segmentation.
Specifically, the output of SAM consists of a list of dictionaries. Each dictionary
is associated with an element identified in the masks and includes the following
attributes:

• segmentation: array of size (W, H), matching the dimensions of the original
image, in this specific case, 1024 x 1024. These are binary images that represent
the masks of the elements of interest.

• area: integer representing the number of white pixels comprising the mask,
which is equivalent to the area of the segmented object.

• bounding box: list of four integers that describe the bounding box containing
the respective mask. Specifically, it provides the coordinates (x, y) of the
top-left corner and the width and height values of the bounding box.

• Predicted IoU: value indicating the quality of the predicted mask.

• point coords: sampled points from the input image used in predicting the
mask.

• stability score: additional measure of the quality and stability of the mask.

• crop box: square that includes the portion of the image where the mask is.
It’s provided in the same format as the bounding box.
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In figure 2.8 are showed the different outputs provided by SAM. Fig.2.8a presents
the mask of the i-th element within the image, fig.2.8b the bounding box that
precisely encloses the mask, fig.2.8c the coordinates of the i-th point sampled from
the original input image and fig.2.8d the crop box.

(a) (b) (c) (d)
Figure 2.8: SAM output

During the model’s implementation, it is also possible to define certain parameters.
Specifically:

• points_per_side: Number of points to sample on each side of the image.
The total number of sampled points will be equal to this value raised to the
power of two. Providing the coordinates of points directly allows for targeted
segmentation. The greater the number of sampled points, the more masks are
obtained, but this also increases the computational time.Default value = 32

• point_per_batch: The number of processed points per batch in which the
input image is divided. Increasing this value reduces computational time but
raises memory requirements. Default value = 64

• pred_iou_thresh: Threshold related to the Intersection over Union (IoU)
index evaluated between the masks obtained from the same sampled point
and the ground truth. Increasing this threshold results in a higher number of
correct masks. Default value = 0.88

• stability_score_threshold: Threshold applied to select masks based on
stability score.A mask is considered stable if its characteristics do not vary
over time. Lowering this parameter makes the algorithm more permissive,
potentially resulting in an increase in false positives. Default value = 0.95

• stability_score_offset:Value added to the threshold related to the stability
score.This allows even less stable masks, those with a stability score not
greater than or equal to the threshold, to be selected. It further increases the
permissiveness of the model. Default value = 1
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• box_nms_thresh: Threshold used during non-maximum suppression (NMS),
specifically for the suppression of bounding boxes. In the event that the same
mask is associated with two bounding boxes, the overlap index is calculated.
If this index is lower than the specified threshold, the bounding box with
the lower overlap index related to the mask is eliminated.A higher threshold
reduces the algorithm’s selectivity. Default value = 0.7

• crop_n_layers: Levels of convolution to apply to the feature map.Increasing
this value enhances the level of extracted features, resulting in improved
segmentation. However, excessively high values may lead to excessively long
computational times. Default value = 0

• crop_nms_thres: Threshold related to the NMS of the extracted features.It
is directly proportional to permissiveness. Default value = 0.7

• crop_overlap_ratio: Overlap fraction between the crops. This is an initial
value that decreases during implementation. Default value = 512/1500

• crop_n_points_downscale_factor: Factor used to scale down the number
of sampled points with respect to the number of crop layers and the current
layer index. Increasing this value enhances the reduction effect due to scaling.
Default value = 1

• point_grid: Allows specifying the points to sample in case targeted segmen-
tation is desired. Default value = None

• min_mask_region_area: Threshold applied to the area of the masks.If
the area of the i-th mask is lower than this threshold, the segmentation is not
considered. Default value = 0

• output_mode: Allows specifying the type of output mask. Default value
= ’binary_mask’

From empirical tests, it was chosen to modify some parameters from their de-
fault values.Specifically, points_per_side= 64, pred_iou_thresh= 0.9, stabil-
ity_score_thresh= 0.96, crop_n_layers= 1 and crop_n_point_downscale_factor=
2.

In the implementation, each list of dictionaries was saved as a NumPy (.npy) object
to allow all the above information to be used even after the model was applied.
For each patch, a directory was created to store all the masks obtained. These
masks are displayed directly on the original patch, instead of being saved as binary
images; they are represented as black objects on an RGB image.
In this initial phase both types of staining were used.Due to the absence of a GPU,
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the computational time required for processing a single patch is considerably high.
Consequently, it was chosen to apply the model to all patches of only two WSI
images, one with PAS staining and one with TRI staining.

To facilitate visualization, all masks pertaining to a specific patch were represented
within the same image. In particular, in order to improving understanding of the
information displayed,each mask was assigned a random color. In figure 2.9 are
presented both the single mask colored in black on the original image and the
representation of the all the generated masks.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2.9: Images (a),(b) e (c) represent the single generated mask on PAS-
training image. The same is for images (e),(f) e (g) which refers to TRI staining.
Image (d) e (h) show the representation of all the mask given as output.

As can be seen in figure 2.9d and 2.9e ,this initial segmentation is not optimal.
Therefore, it was decided to modify the selected values to identify a new combination
that could offer better performance. The choice was made considering computation
time and the successive application of masks. A model capable of segmenting not
only larger elements, such as tubules or glomeruli, but also smaller ones, such
as lumens or single nuclei, is needed. Although having only the tubule mask
rather than the lumen mask is useless for classification. The segmentation of each
individual element that constitutes the tubule had to be used to establish a kind
of hierarchy among the masks. In fact, by using the characteristics of the "lower
level" masks, larger ones can be classified.
The following indicators were considered to select the best combination of model
parameters: the average number of masks extracted per patch, the average number
of masks representing the innermost elements but not included in masks related
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to larger elements (as in the case where you only have the lumen mask of a
glomerulus without having the glomerulus mask), and the average number of masks
representing the larger elements but lacking smaller masks within them (as in the
case where you only have the glomeruli mask without having the masks of the
numerous lumens and nuclei within it).
After numerous trials, the best combination of values was found. It differs from the
previously described model in the following parameters: stability_score_thresh=
0.95, stability_score_offset= 1.2, box_nms_thresh= 0.8, crop_n_layer= 2,
crop_nms_thresh= 0.8 and min_mask_region_area= 50.
In figure 2.10b can be seen that the masks enclosed within the red rectangle cannot
be used for classification as they only represent the tubule and some nuclei within
its crown. On the other hand, the figure 2.10c represents the output of the system
using the last set of parameters. In this case, the green rectangle contains not only
the tubule mask but also the lumen mask. It is also evident that the number of
identified masks is significantly higher.

(a) original patch (b) first parameters set (c) second parameters set
Figure 2.10: SAM parameters fine-tuning results

2.2.3 SAM’s application
The primary purpose of this project is the classification of tubules and blood vessels
in kidney histopathological images. SAM is capable of generating masks for most of
the elements in the image but does not have the ability to perform the classification.
Therefore, it was necessary to develop an algorithm capable of using these masks
to conduct the desired classification.
The available images do not come from any existing database, so ground truth is not
available. Furthermore, as the database is very large, an unsupervised classification
approach was chosen before manually annotating each image.
Initially, the idea was to identify patterns that would allow the masks of tubules
to be distinguished from those of blood vessels. Subsequently, these patterns
would be used to define classification rules to be automatically applied. In essence,
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an attempt was made to develop an algorithm that would emulate the visual
recognition ability of a pathologist.
For this purpose, the knowledge learned during the visit to the histopathology
laboratory was very useful. In general, there are a few key features that allow
tubules to be immediately distinguished from blood vessels:

• lumen size: generally, lumens related to blood vessels are much smaller than
those related to tubules.

• crown around lumen: the blood vessels’s wall is usually very thin, so there
is no real separation between the lumen and the interstitial tissue.On the other
hand, as far as tubules are concerned, it is always possible to identify a sort of
crown surrounding the lumen and separating it from the interstitial tissue; this
crown is very evident in PAS staining but is also present and clearly visible in
TRI staining.

• presence and size of nuclei: when faced with a dubious situation, it is
necessary to observe the conformation and the amount of nuclei around the
lumen. With regard to blood vessels, these are generally present in small
quantities and are adjacent to the lumen. In tubules it is almost always possible
to observe a large quantity of nuclei within the crown, these nuclei never touch
the lumen but always remain confined within the crown.Furthermore, whereas
the nuclei relative to the tubules have an almost rounded shape, those relative
to the blood vessels are usually flatter with an elliptic shape.

We aim to classify the masks relating to tubules and vessels form the masks of
lumens, crown, and nuclei.To do this, the first idea was to create a tree structure
in which each node represents a mask.The mask associated to the i-th node is
connected to the j-th node only if it overlaps the mask associated to it. Therefore,
in such tree structure, the root is the starting image. Then connected to this
first node are the larger SAM-generated masks that will form the second level of
nodes.Further nodes and sub-levels are obtained by the masks included in the first
level masks and so on.
In this way, by identifying the level related to the lumen masks, it is possible to
perform a classification by analyzing the masks of the levels below.

Tree structure creation

The first step in the implementation involves the creation of the tree structure. To
do this, it was first necessary to name and sort the masks according to their size,
and specifically in descending order. Therefore, for each patch, a folder was created
in which all the N masks produced by the model were saved, with the mask named
’M_0’ being the largest and the mask named ’M_N-1’ the smallest.
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Starting from the smallest mask, the intersection between the i-th mask and all
other masks related to the image was evaluated. In the case in which the result of
all the intersections is zero, the i-th mask is directly linked to the root node. In
the case in which the i-th mask is subtended by other larger masks, it is assigned
to the mask that originated the maximum intersection.
This type of algorithm made it possible to create a tree structure for each patch,
specifically the library networkx was used to visualize and manage this structure.
Figure 2.11 represent the output of the algorithm. It is possible to see the second-
level masks directly connected to the main node ( fig.2.11a) and, to simplify
visualization, only some of the masks connected to the mask M_2 ( fig.2.11c).

(a) (b)

(c) (d)

Figure 2.11: Images (a) and (c) represent the output of the algorithm used to
generate the pyramid structure. Images (b) and (d) show the relative images
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Masks analysis

As mentioned above, to classify tubules and vessels it is necessary to analyze the
characteristics of three elements: the lumens, the nuclei, and the crown around
the nuclei. First, it is necessary to distinguish the different types of masks. The
identification of lumens and nuclei is based on size and color.
For the identification of lumens, background masks, which are easily mistaken for
lumens, and masks of extremely small size were excluded from the analysis. Two
thresholds were defined.The chosen threshold define the maximum and minimum
size of a mask to be considered a lumen. Specifically, all masks with a size between
21.9% and 0.12% of the total patch size were considered as potential lumen masks.
Considering the color, a third threshold was applied at an α value.α is defined as
the ratio between the average of the pixels relative to the grey scale image and
belonging to the i-th mask and the maximum value assumed by the pixels in the
entire image.

α = mean(image_gray[mask == 1])
max(image_gray)

For images with PAS staining, only masks with α greater than 0.75 have been
considered as luminescent masks, while for TRI staining α is set greater than 0.63.
As far as nuclei are concerned, only masks with a size smaller than 0.12% of the
total size and with α lower than 137 were taken into consideration.
After identifying lumens and nuclei, it was necessary to define a strategy to obtain
the masks of the crowns around lumens. SAM does not always provide masks for
all the elements in the image, so that three different cases can are possible:

• complete masks: for each element is given the mask relating to the lumen,
the mask relating to the crown, the masks of all the nuclei and finally the
mask relating to the total element given by the union of all the other masks
mentioned.

• partially complete masks: for each element, is possible to have the lumen
mask, the global mask of the element and the mask of some nuclei. In this
case, it is possible to evaluate the crown mask by subtracting the lumen mask
from the total mask.With regard to the nuclei, it is necessary to assess their
numerosity to see whether they are sufficient to carry out the classification.

• single masks: for each element there is only one mask relating either to the
lumen or to the total element. In this case it is impossible to perform the
classification as there is no information on either the crown or the nuclei.

The next step involves the described tree structure. For each i-th mask that respects
the conditions to be considered as lumen, the j-th mask to which it is directly
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linked in the tree structure is analyzed. Depending on the features of the j-th mask,
it was possible to distinguish two types of lumens.

• useful lumen: the lumen is directly connected to the mask of an element
to be classified. The j-th mask is therefore neither a lumen or part of the
background, and the lumen in question is not directly connected to the root of
the tree structure. This is again the case for a complete or partially complete
mask for which the crown mask can be derived.

• isolated lumen: the lumen is directly connected to the root of the tree or
the j-th mask is itself a lumen or part of the background. In this case, it is
impossible to deduce information about the crown surrounding the lumen
itself.

Figure 2.12 shows the classification of lumens. In green are represented the lumens
contained within other masks, and in red the isolated lumens. The nuclei masks are
also shown in black. Analyzing only the TRI-colored image, it might appear that
the isolated lumens mostly belong to the blood vessels. If, however, we consider
PAS images, it is clear that it is impossible to classify many of the tubules as there
is no information about the crown.

Regarding masks that do not refer to lumens, a further distinction has also been
made. As mentioned above, in addition to the crown and the lumens, it is also
important to analyze the number and the position of the nuclei within the crown
or adjacent to the lumens. It may happen that some lumens are not detected by
SAM. For these reasons we refer to "full" masks and "empty" masks. The former are
masks that contain other smaller masks, such as those of the lumen or nuclei; in the
tree structure they therefore represent a node from which other branches branch
off. Empty masks, on the other hand, are useless for classification purposes as it is
impossible to extract further information from them; they therefore constitute a
leaf node.
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(a) original patch (b) lumen classification

(c) original patch (d) lumen classification

Figure 2.12: Classification of lumens using SAM

2.2.4 Evaluation of SAM
Although SAM is a particularly innovative model and potentially applicable to
any type of context, it was decided to abandon this approach. In addition to
the problems previously exposed concerning the presence of isolated lumens that
cannot be used for classification, other critical aspects have emerged. One of the
main limit concerns the threshold used to exclude background masks. Often the
background occupies a portion of the image smaller than 20%. At the same time
some large elements with characteristics such as to be classified as lumens can be
found. Consequently, it is not possible to change the threshold values as this would
lead to loose the masks of such elements. This leads to many false positives in
the detection of lumens from the background. In figure 2.13 are represented in
red the lumens classified as isolated, in green the useful lumens and in black the
nuclei. In fig.2.13a, it is possible to see how the portion of the image enclosed in
the red rectangle is part of the background and is classified as a lumen due to its
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size. On the other hand, in fig.2.13b the red rectangle highlights an element useful
for classification that covers more than 20 % of the image.
Looking at the images it is also clear that the detection of nuclei and lumens is not
optimal. Since there is no ground truth available, it is not possible to determine
the percentage of missed elements. Nevertheless, form the visual analysis, it is
clear that the number of false negatives, i.e. pixels classified as background but
which actually belong to an element of interest, is very high. This second problem
mostly does not involve nuclei, which are extremely important not only for the
classification of tubules and blood vessels but also for the detection of a given
pathology.

(a)

(b)
Figure 2.13: Representation of some SAM’s criticism
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2.3 Proposed solution
Due to the reasons outlined in the preceding section, it was decided to propose
a new approach based on features detection followed by a machine learning step.
The first step involves the segmentation of nuclei and lumens. Subsequently, the
obtained masks are used to compute some geometric parameters that are used for
lumens classification. About this second step, two different strategies were tested.
The first involves the classification of the nuclei and its subsequent use to to obtain
the lumen classes. The second involves directly classifying the lumen masks using
both the features of the masks of the lumens’ and of nuclei.

2.3.1 Segmentation
The final goal of segmentation is to isolate a object or a class of objects within an
image. To do this, it is necessary to obtain a mask. A mask is a binary image with
the same dimensions as the source image,where each pixel can only assume one of
two values. Specifically, pixels belonging to the object of interest are assigned a
value of 1, while those belonging to the background are assigned a value of zero.
Segmentation thus produces an image of the same size as the source image in which
the objects of interest are represented as white objects on a black background.
There are numerous segmentation techniques, some involving artificial intelligence,
while others directly analyze image at the pixel level.
In the context of this project, the elements of interest are the lumens of the
tubules and blood vessels, and the nuclei. It was therefore necessary to divide the
segmentation problem into two sub-problems: the segmentation of the lumens and
the segmentation of the nuclei.

Lumen segmentation

Before carrying out the actual segmentation, pre-processing strategies were adopted
to improve the segmentation results. We first increase the image contrast by extend-
ing the image histogram. The lumen segmentation is then obtained by thresholding.
This method involves applying a threshold to all pixels in the image. Pixels with
a value greater than the threshold will be considered as belonging to the object,
assuming a value of 1 in the final mask. This is a very simple method, but at the
same time very effective, especially when used to segment highly contrasted which
is the case of lumens. The Otzu method was chosen to obtain the threshold. In
Othu’s method the optimal threshold is chosen from the image histogram. It is an
iterative method in which the histogram is divided into two classes using a variable
threshold, at each iteration the distance between the two classes is evaluated and
the threshold is chosen to minimize the intra-calss variance.
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To further improve the quality of the segmentation, post-processing was also carried
out. First of all, all masks exceeding the threshold chosen to exclude the back-
ground (21.9% of the image size) and very small masks (0.04% of the image size)
were eliminated.Finally, to increase masks uniformity and to eliminate some dark
pixels within the lumens, the morphological operator of closure was used. Closure
consists of the sequential application of a dilation and an erosion. Specifically, the
remove_small_holes method of the sklearn library was applied with an area of
120 pixels.Figure 2.14 shows the effects of this post processing. After labelling

(a) (b) (c)
Figure 2.14: Lumen segmentation. Image (a) represents the original patch, image
(b) the mask obtained by applying global thresholding and image (c) represents
the final mask after post-processing.

the segmented image we observed that in some cases masks with different values
coexisted within the same lumen which reflects a segmentation error that divides a
lumen into several masks. This is caused by the presence of pixels within the lumen
with similar values to those of the surrounding tissue. These pixels are recognized
as background and lead to the fragmentation of the lumen mask. Figure 2.15 shows
how a single lumen is segmented in five different masks.
To solve this problem two tools, the color deconvolution and the Bresenham algo-
rithm, were used. Specifically, it was necessary to find a method to provide the

(a) (b) (c) (d) (e)
Figure 2.15: First problems in lumen segmentation. Images (a),(b),(c),(d) and
(e) represent five distinct masks belonging to the same lumen.
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same value to masks belonging to the same lumen. On image resulting from the
difference between the red and green channels, each lumen is well separated from
the others by a layer of pixels with a much higher value than those within the
lumen itself. This behavior also occurs in cases in which also dark pixel are present
inside the lumen. It was therefore decided to apply Bresenham’s algorithm to this
image obtained by implementing the color deconvolution.
Bresenham’s algorithm provides the coordinates of the pixels joining two points
by straight line.Applying it to the centroids of each mask, it is then possible to
obtain the value of the pixels that separate them. Consequently, it is very easy to
trace the masks contained within the same lumen, since the value of all the pixels
separating the corresponding centroids will be low.

In practice, all masks whose centroids are separated by pixels with a value lower
than twice the average value of the image created by color deconvolution were
considered to belong to the same lumen. To further emphasize the contours of the
lumens, the contrast of this image was increased.
Figure 2.16 shows the application of the mask aggregation algorithm. Specifically,
fig.2.16a represents the Bresenham path (green line) between the centroids of
two masks ( red points). Fig.2.14b shows the image resulting form the difference
between the the red and the green channel of the RGB image. Fig.2.14c shows the
result of the union of the masks belonging to the same lumen exposed in 2.15.

(a) Bresenham path (b) R channel - B channel (c) joined masks
Figure 2.16: Application of the mask aggregation algorithm.

Nuclei segmentation

While the first identified strategy was successful for lumens, for nuclei two different
methods were tested. In the first method, an attempt, to replicate the pipeline
used for obtaining lumen masks, was made. Starting with pre-processing strategies,
global thresholding was once again applied. With the aim of improving the quality
of the masks, post-processing was performed. In the second case, however, a
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completely new method was used.
While the segmentation of lumens focused on the gray scale image, for nuclei,
segmentation was performed on an image derived from color deconvolution. In the
image resulting from the difference between the red and blue channels, nuclei and
the membrane surrounding tubules and blood vessels are particularly accentuated.
In this case too, contrast augmentation was permed, using true luminance.
Subsequently, global thresholding was applied to this image using Otsu’s method.
The obtained segmentation includes both nuclei and cell membrane masks. This
segmentation error can be explained by the features of the segmented image. In
fact in the image nuclei and the walls of the tubules have approximately the same
color. To solve this problem and obtain only the masks of the nuclei, a number of
post-processing strategies were applied.

The initial step involved setting all pixels identified as belonging to a lumen to zero.
It was then found that the image obtained by subtracting the green channel from
the blue channel only contained the membrane of blood vessels and tubules. It was
therefore decided to implement a second segmentation of these elements to isolate
the nuclei in the first mask. The contrast of the image was increased and global
thresholding was again applied using the Otzu’s method. Once the two masks were
obtained, all the segmented elements in the second mask were set to zero.
To further improve the quality of the segmentation, only masks larger than 0.01%
of the total image size were selected. Figure 2.17 shows the images that came out
from the color deconvolution and the respective masks.

Reviewing at the final result, it can be seen that there is a considerable number
of missing elements. Moreover, the shape of the recognized nuclei also does not
reflect their real profile. Considering the importance that the number of nuclei
and their shape have in the classification, it was decided to pursue an alternative
approach. This second approach is inspired from the marked point process modeling
which consists in fitting a collection of geometrical objects onto the image based
on a contrast term and a non-overlap constraint. In our case we define a shape
dictionary composed of ellipses of different size and orientation. We then associate
to each shape a kernel defined by a positive value within the object and a negative
value on the object contour. We compute the convolution of the image with each
kernel and consider as candidates the objects maximizing the convolutions on each
pixel if greater than a given threshold. We sort the candidates with respect to the
convolution values and select the best ones without overlap.
Figure 2.18 shows the difference between the nuclei mask obtained with the first
approach (fig.2.18b) and the second one ( fig.2.18c).
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(a) R channle - B channel (b) G channle - B channel (c) original patch

(d) (e) (f)

Figure 2.17: First nuclei segmentation strategy. Images (d) and (e) respectively
represent the result of the segmentation of image (a) and (b). Image (f) represents
the result of eliminating the contours from image (d) using image (e)

(a) (b) (c)
Figure 2.18: Final nuclei segmentation strategy. Image (b) represents the mask
resulting from the first pipeline after all post-processing actions. Image (c) instead
represents the mask obtained using the second type of algorithm.
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2.3.2 Classification
To classify lumens we first propose a two steps approach, where the nuclei are
subject first classify between tubule and vessel, and the lumen masks are classified
depending on the neighboring nuclei. As mentioned above, to distinguish a tubule
from a blood vessel, it is essential to analyze the number, position and shape of
the nuclei surrounding the lumen. The approach consists in training a ML models
to classify the nuclei.Each nuclei is then assigned to the closest lumen. Each lumen
finally takes the class from a majority vote among its associated nuclei.

Nuclei classification

The nuclei surrounding the tubules are always inserted within a crown surrounding
the lumen. They are mostly round and never come into close contact with the
lumen.On the other hand, in the case of blood vessels, the nuclei are adjacent to the
lumen and tend to have a more elongated shape.Another distinguishing parameter
is the number of nuclei. Tubules tend to be surrounded by more more nuclei than
blood vessels. Exploiting these features chosen in agreement with two experienced
pathologists, several classifiers were trained to identify each nuclei as belonging to
a tubule or a blood vessel.

The first step in the implementation of this strategy is to develop an algorithm
capable of associating each lumen with its respective contour nuclei. The simplest
way to associate a nucleus with a lumen is to assess whether that nucleus is located
in the neighbour of the lumen itself. To do this, it was sufficient to create a mask
for the hypothetical crown surrounding each lumen. To obtain the crown we apply
the morphological dilation operator using a square kernel with dimensions of 90
pixels per side to each lumen’s mask. Subsequently, the mask of the lumen itself is
subtracted from the dilated mask. To understand which lumen the i-th nuclei was
connected to, is necessary to analyse the overlap between the nuclei mask and the
mask of each obtained crown. Evaluating the pixels that these two segmentations
have in common, three scenarios can arise:

• no overlap: if the i-th nucleus is not inserted in any of the obtained crowns,
it is classified as a nucleus belonging to the interstitial tissue or within a
glomerulus. Such nuclei are excluded from the analysis as they have atypical
features that could load to misclassifications.

• Single overlap: if the product of the nuclei mask and the mask of each crown
gives a non-zero result for a single crown, the nuclei is uniquely assigned to
the lumen that gave rise to the crown.

• multiple overlap: having chosen a large kernel some nuclei overlaps with
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several crowns. In this case the nuclei are assigned to the nearest mask.
Considering the number of possible lumens and the size of the images, it
was necessary to optimize the distance evaluation. We therefore compute
dilatation of the mask of each nuclei iteratively. However, in this case, a
circular kernel is used, the radius increases by one unit at each iteration.
When the dilated nuclei mask comes into contact with the mask of one of a
lumens being analysed, it is assigned to this lumen. Figure 2.19 shows the
expansion process of a nucleus inserted into the crowns of the two masks
shown in black. The moment when the nuclei is assigned to a mask (colored
in green) is represented in 2.19d. However, it may happen that the nuclei
expansion intersects with more lumen masks at the same time. In this case
the assignment is made by evaluating the value of the pixels separating the
centroids of the nuclei and the lumen. Specifically, the pixels are selected from
the Bresenham path. The image used to extract their values is the difference
between the red channel and the blue channel. Each lumen is surrounded by
a magenta-colored membrane, this membrane is particularly highlighted by
the image obtained by the color deconvolution. As soon as the centroid of the
nucleus and the centroid of the lumen are separated by pixels belonging to
this membrane, the nucleus cannot be assigned to the lumen. It is therefore
sufficient to identify the Bresenham path that gives rise to the lowest maximum
value in order to have an unique association between nucleus and lumen.

(a) (b) (c) (d)
Figure 2.19: Nucleus expansion

Once the nuclei and the lumens to which they belong have been identified, it is
necessary to proceed with feature extraction and selection. To select features, we
followed the practice of two experienced pathologists. Specifically, were extracted
18 features for each selected nucleus:

• lumen size: single feature concerning the size of the lumen to which the
i-th nucleus is connected. Usually, lumens referring to tubules are larger than
those referring to blood vessels.

• nuclei size: single feature concerning the size of the i-th nuclei. Here again,
a larger size is found for nuclei circumscribing tubules.
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• nucleus color: the mean, median, and standard deviation of the pixel values
belonging to the i-th nuclei mask were extracted using the red channel, blue
channel, green channel, and gray scale image as the sources for extracting
values. For each image, three features were then extracted, resulting in a total
of twelve features related to the color characteristics of the nuclei. It was
noted that the nuclei of blood vessels tend to assume blue tones while those
relating to tubules of magenta.

• lumen shape: single feature regarding the eccentricity of the lumen to which
the nuclei is attached . The eccentricity is calculated as the ratio of the focal
half-distance c to the semi-major axis of the ellipse circumscribing the lumen
mask.

e = c
a (2.1)

c =
ñ

a2 − b2 (2.2)

a = major semi-axis

b = minor semi-axis

It is therefore a value between 0 and 1 that indicates how far the mask deviates
from the circular shape. Specifically, it takes on an increasingly helical shape
as e increases.

• nuclei shape: eccentricity is also extracted for the nucleus mask using the
same formula and criteria as before.This feature is chosen because blood vessels
are usually very elongated, whereas it is not uncommon to find tubules with
almost circular nuclei.

• number of nuclei: for each i-th nucleus, the number of nuclei assigned to
the same lumen is extracted. As already mentioned, tubules have a much
higher numerosity than blood vessels.

• convex Hull of the lumen: the convex hull represents the smallest convex
shape capable of enclosing a set of data points. It is therefore the simplest
curve capable of surrounding the contour of a specific mask. By evaluating the
convex hull on the mask of a lumen, information regarding the regularity of the
mask edges are obtained. Specifically, the difference between the envelope and
the mask was extracted. If the mask has regular and slightly jagged contours,
this difference will be very low. While if the lumen has protuberances or
recesses, the calculated value will increase. This feature was selected because
the lumens referred to tubules are more irregular than those of blood vessels.
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Once the features had been selected, they were collected in a feature matrix with
all the selected nuclei as rows and the corresponding features as columns. regarding
the train set, class balancing was performed in order to train the classifier to equally
recognize both elements.Therefore, the redundant elements of the most represented
class were eliminated.
Finally, to increase the robustness of the models, a random shuffle of the matrix
rows is implemented. Both the train set and the test set were then normalized
using min-max scaling.

To implement supervised classification methods, it is necessary to extract the
ground truth. To do this, the masks of all nuclei belonging to the image were man-
ually labeled. This process was carried out under the supervision of an experienced
pathologist who carried out a second validation after the labeling.

Once the ground truth and feature matrix had been obtained, it was possible to
proceed with the training of four classifiers:

• K-Nearest Neighbors algorithm (KNN): it is a non-parametric classifica-
tion method capable of classifying the elements of the data set on the basis
of the elements that are part of its neighborhood. Specifically, a similarity
measure is defined to determine the distance between each element of the data
set and all the other elements[45]. All k most similar elements are considered
part of the neighborhood.After that, the class corresponds to the class most
represented in the neighborhood. In this first step, the default values of the
function neighbors.KNeighborsClassifier from the sklearn library were used,
whereby the Euclidean distance was used as the similarity measure and fixed
k equal to 5.

• Support Vector Machine (SVM): this method of classification involves
remapping the elements involved in the classification in a space of higher
dimensions using a special function named kernel. In this pace an hyperplane
that is able to separate the points into two classes is identified.This hyperplane
is estimated to maximize the margins.The margines are the distance between
the hyperplane and the elements of the classes closest to the hyperplane itself.
To implement this classifier, the svm.SVC function of the sklearn library was
used, again using default parameters. Specifically, we have a kernel of type
rbf,the Gaussian kernel.A value of C equal to 1 where C is the parameter that
governs the bias-variance trade-off i.e.the relationship between the complexity
of the model, the accuracy of the prediction and the quality of the predictions
made on data never seen by the classifier.On the other hand, the term coef0
is set equal to 0; it is an additive term inserted into the function describing
the kernel. Finally, as regards the tolerance evaluated by the stop criterion,
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the term tol is set equal to 0.001.

• Random Forest (RF): It is a set of decision trees. A decision tree is a
classifier based on a tree structure in which each branch is associated with
a feature and a threshold, each node represents a partition of the data set
and the leaf nodes, the final nodes of this structure, give an indication of
the class to which the relevant partition belongs. Classification by means of
decision trees follows a top-down approach in which, starting from the entire
data base represented by the first node, also called the root-node, smaller and
smaller partitions are created according to the value assumed by the features
extracted until arriving at the roots of the tree. Random Forests are more
complex structures that use the classification performed by several decision
trees and then apply majority voting between the output of each tree to assign
it the final class. Again, a function of the sklearn library was used, specifically
RandomForestClassifier, which sees several default decision trees equal to 100.

• Multi-layer Perceptron (MLP): it is a particular type of neural network in
which the hidden neurons first process the data received from the input neurons
by means of a linear weighted sum and then apply a non-lien activation function.
Back-propagation was also implemented using the sklearn MLPClassifier.
Again, the default parameters listed in table 2.1 were selected.

parameters value
number hidden layers 100

activation function relu
optimizer Adam
batch size min[200,n_sample]

learngin rate costant
initial learning rate value 0.001
number of max iteration 200

Table 2.1: default values for MLPClassifier function

The four trained models were then applied to the test set.To evaluate their perfor-
mance, accuracy and balance accuracy were calculated according to the eq.2.3 and
eq.2.4.

accuracy = TP+TN
TP+TN+FP+FN (2.3)

balance accuracy = 1
2

A
TP

TP+FN + TN
TN+FP

B
(2.4)

TP = True Positive
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TN = True Negative
FP = False Positive
FN = False Negative

The last step in this first method involves the lumen classification. To do this,
the majority vote is applied, using the classes of the nuclei around each lumen.
Accuracy and balance accuracy were evaluated.
Considering the performance obtained and the computational cost required to
extract features from each nucleus, it was decided to abandon this method and
proceed with the classification of the lumens without going through the classification
of the nuclei.

Lumen classification

In this second approach we directly classify the lumen. It is visually difficult to
distinguish the tubules lumen from the blood vessels one is no real color differences,
whereas considering the shape and the size there are too many outliers to view
these features as discriminating the two classes. The area around the lumen and
the nuclei surrounding it seem more appropriate to discriminate both lumen types.

Before proceeding with feature extraction and selection, the algorithm for asso-
ciating nuclei with lumens was modified. Similar to the previous algorithm, an
initial association is established using the circular crown around the lumens. The
association remain unambiguous and immediate if the nuclei is inserted in no or
only one crown. We revised the case when the nuclei is subtended by several
crowns.It was observed that, although a circular kernel is used, dilatation tends to
alter the original shape of the nuclei. Moreover, tubules often have a particularly
thick crown that might border on the lumens of some blood vessels.Consequently,
even if the nuclei is within the crown of the corresponding lumen, it might be closer
to the lumen of another element.
For all these reasons, the allocation criterion for nuclei inserted in several crowns has
been modified. Specifically, the iterative expansion process is eliminated and only
the evaluation of the pixels value belonging to the Bresenham path and separating
the centers of mass of the i-th nuclei and the possible lumens is taken into account.

The extraction and the initial selection of features was then proceeded. Again,
the selection of features was carried out under the advice of two experienced
pathologists. This allowed an initial and substantial reduction in the number of
features extracted.For each lumen of each image in the data set, 46 features were
extracted:

• lumen size: number of pixels in the lumen mask.
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• lumen eccentricity: eccentricity of the ellipse circumscribing the lumen
mask eq.2.1.

• lumen width and height: although this information is already partly
contained in the eccentricity value, it was decided extract the width and height
of the lumen mask. To extract these two features, were not used the dimension
of the bounding box surrounding the lumen mask, but the axes of the ellipse
in which the mask is inscribed.

• Convex Hull: for the same reasons as above, the difference between the Hull
convex envelope and the lumen mask, all normalised by the size of the lumen,
is also evaluated.

• number of nuclei: the number of nuclei around the lumen.

• crown color: the mean, median and standard deviation of the pixel value
belonging to the mask of the crown around the lumen are extracted with
reference to four different images (red channel, green channel, blue channel
and grey scale image). Specifically, the crown of the nuclei is considered. To
extract the crown, the same procedure as for the assignment of the nuclei is
implemented but using a smaller kernel. Specifically a square kernel of 40
pixels per side was chosen.So, three feature per image are extracted for a total
of 12 features referring to the color of the crown. It was decided to take these
features for the presence of the crown only around the tubules.It is clearly
that it is characterized by a darker shade of magenta than the color of the
interstitial tissue. Therefore, as far as the blood vessels are concerned, without
such a crown, the mask detected will segment part of the interstitial tissue
and will therefore be characterized by a generally lighter color.

• nuclei size: number of pixels that make up the masks of the nuclei outlining
the lumen. As more than one nucleus is to be considered at a time, the mean
and standard deviation of the sizes of all nuclei assigned to the considered
lumen is evaluated. This results in a total of two features referring to the size
of the nuclei.

• nuclei shape: the eccentricity of the ellipse circumscribing the nuclei mask
is used. Again, the mean and standard deviation of the eccentricities of the
nuclei contour the i-th lumen are evaluated for a total of two features referring
to the shape of the nuclei.

• nuclei color: for each nucleus around the lumen, the mean, median and
standard deviation of the pixel value belonging to the nuclei mask and four
images (red channel, blue channel, green channel and grey scale image) are
extracted. A total of 12 features are then extracted for each nuclei surrounding
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the lumen. Again, what is inserted into the feature matrix is the mean and
standard deviation of the values that each feature takes considering all the
surrounding nuclei.This results in a total of 24 features referring to the color of
the nuclei. These features have been extracted because the nuclei referring to
blood vessels tend to be more saturated, while the color of the nuclei belonging
to the tubules is often mixed with that of the crown.

The feature matrix obtained from the feature extraction process presents 46 columns
and a number of rows equal to the number of lumens present in the entire data set.
Again, to train the classifiers to equally recognize each class, a balancing of the train
set was implemented by eliminating the additional elements of the most represented
class. To reduce bias errors, a shuffle was performed between the rows of the feature
matrices. Regarding normalisation, min-max scaling was again implemented on
all the data sets.Since these are still supervised learning methods, lumen mask
labelling was implemented under the guidance of an experienced pathologist.

To further improve performance, it was decided to carry out a validation of the
input parameters of each classifier. The validation process involves setting a number
of parameters and a set of values they can take. The generic classifier is trained
using all possible combinations and then each trained model is validated on a set
of new images contained in the validation set. For each validation, the balance
accuracy on the validation set is evaluated. Only the set of values capable of
maximizing it, is selected.
It is then necessary to extract a validation set; feature extraction and normalization
of the feature matrix is also implemented for this new data set.
It is decided to implement only three of the four classifiers used for the classification
of the nuclei, specifically: a K-Nearest-Neighbors (KNN), a Support Vector Machine
(SVM) and a Random Forest (RF). Depending on the type of classifier, the number
of parameters involved in the validation changes. For the KNN, only the value
of k was chosen to vary. For the RF, the only parameter chosen was the number
of trees t. For the SVM, on the other hand, several values were made variables,
specifically the kernel, the degree of the polynomial kernel function (only in the
case where the chosen kernel is of type poly), the value of C, coef0 and tol. The
values chosen for each parameter are shown in table 2.2.
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classifier parameter chosen values
KNN k [3,5,7,15,25,35,45,55,65,75,85,95,105]
RF t [20,70,50,100,150,200]

SVM kernel [’poly’,’rbf’,’sigmoid’]
C [0.01,0.1,1]

degree [2,3,4,5]
coef0 [0.5,1,5,10,20,30]
tol [1e-8,1e-6,1e-5,1e-4]

Table 2.2: values assumed by the parameters of the classifiers during the validation
phase

The subsequent testing phase therefore involves only the pre-trained models chosen
during validation. For each classifier, the accuracy (eq.2.3), the balance accuracy
(eq.2.4) and the values of precision (eq.2.5) and recall (eq.2.6) were extracted for
each of the classes.

precision = TP
TP+FP (2.5)

recall = TP
TP+FN (2.6)

In the first instance, the classifiers were trained and tested to discriminate tubules
from blood vessels using all 46 extracted features. Subsequently analyzing the
performance and considering the large number of available features, a manual
feature selection was implemented. At each iteration, each model is trained using
a single feature. The performance on the train set referring to the feature is then
evaluated using balance accuracy. In this way any deterioration or improvement in
classification can be recorded. Finally, only those features that achieve a higher
balance accuracy value than the previously selected feature are selected. This
method allows to isolating the redundant features, which therefore do not entail
any type of variation in performance, and the features that instead worsen the
quality of the classification. So, for each classifier, a different set of features is
extracted and the balance accuracy trend is graphed.
Finally, we consider features that do not dependent on the pixel value of the image
to obtain a color invariant classification and thus robust to variations in the tissue
staining. To achieve this, all features related to the color of the crown and nuclei
were eliminated. To validate each decision, various graphical methods of visualizing
the features were implemented, such as box plot, histogram of the frequency of
each feature within the train set, and heat map. These tools make it possible to
distinguish the truly relevant features from those that are superfluous or redundant.
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Once the best set of features and parameter values for each classifier had been
chosen, an experienced pathologist was assigned to choose and label 7 patches
representing the worst case. In this way, it was possible to test the algorithm
robustness. As with the images of the test set, feature selection and normalisation
of the feature map were implemented.
Finally, it was decided to exploit the non-color dependency by applying the models
trained with the feature set regarding only shape and size, to 6 TRI-stained patches
and their corresponding PAS-stained images generated by a Generative Adversarial
Networks (GAN). More specifically a Pythorc implementation of a CycleGAN was
used. The CycleGAN was trained to generate PAS-stained images from TRI-stained
images. All patches extracted from the 18 available WSI images were used in the
training phase. For the parameters tuning the default parameters were mostly used.
It was therefore possible to test the true non-color dependence and to demonstrate
a potential application of the developed system.
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Chapter 3

Results

3.1 The data sets
During the visit to the Laboratoire Central d’Anatomie Pathologique (LCAP), 19
wsi images were selected, 9 with PAS staining and 9 with TRI staining.
In the subsequent division of the WSI images into 1024x1024 patches and a first data
selection, aimed to eliminate patches representing only the background and those
with compromised quality due to artifacts, a total 15876 patches were extracted.
A second data selection was then performed to label the images. Two data sets are
extracted. The first data set is used to implement the first classification method for
distinguishing lumens from the classification of nuclei. This data set comprises 19
patches, divided into a train set and a test set. Approximately 80% of the data
were assigned to the train set while the remaining 20% to the test set. This results
in a train set of 12 patches and a test set of 4. On the other hand, regarding the
data set used for the second classification method, to improve the classification
quality, its size was increased. Six patches per patient were extracted, for a total
of 54 (1024 x 1024) patches. Having to implement a training phase, a validation
phase and a test phase, it was necessary to divide the data set into three groups.
To eliminate any kind of bias each data set contains images from different patients,
specifically the train set contains images from 5 patients while the validation and
test set contains images from 2 other patients. Thus, the train set consists of 30
patches while the validation and test set consists of 12. The patients were randomly
assigned to the three data sets.
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3.2 SAM approach
Considering the computational cost, in term of time, required to process a single
image, the Segment Anything Model was applied to a reduced set of images.
Specifically, only two WSI images patches and to four patches chosen for all other
available images were used. This results in a total of 859 segmentations.
Since the ground truth of each processed patch was not available,indicators were
extracted to determine the quality of the segmentation. Specifically, the following
were considered:

• output: number of masks obtain from the SAM implementation.

• empty masks: masks representing only larger elements without smaller
masks within.

• no empty masks: masks representing larger elements and also smaller masks
within them.

• isolated lumens: lumen masks not included in larger masks.

• non isolated lumens: lumen masks included in larger masks representing
tubule, glomerulus, or blood vessel.

For each of these parameters, the maximum, minimum, and average values were
evaluated. An average percentage value, calculated across all processed patches,
was then added. This value represents the percentage that each type of mask
occupies of the total number of extracted masks.
Table 3.1 shows the results referring to the first version of the model in which only
some parameters were changed with respect to the default values. Specifically,
points_per_side= 64, pred_iou_thresh= 0.9, stability_score_thresh= 0.96,
crop_n_layers= 1 and crop_n_point_downscale_factor= 2.

MASK TIPE N°MAX % N°MIN % N°AVERAGE %
output 597 / 117 / 277 /

empty masks 21 46 0 0 5 11
no empty masks 48 72 1 11 17 33
isolated lumes 64 83 1 2 17 35

non isolated lumes 36 52 0 0 7 13

Table 3.1: Performance evaluation of the first implemented SAM
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During parameter tuning, the same performance indicators were extracted. Con-
sidering the computation time required, the best combination of values differs
from the model previously described for the values of stability_score_thresh=
0.95, stability_score_offset= 1.2, box_nms_thresh= 0.8, crop_n_layer= 2,
crop_nms_thresh= 0.8 and min_mask_region_area= 50. In table 3.2 the perfor-
mances referred to this second SAM version are showed.

MASK TIPE N°MAX % N°MIN % N°AVERAGE %
output 839 / 167 / 411 /

empty masks 15 35 0 0 3 6.1
no empty masks 66 77 3 13 24 40
isolated lumes 67 81 0 0 19 33

non isolated lumes 36 48 0 0 8 13

Table 3.2: Performance evaluation of the second implemented SAM

Analyzing the table, specifically focusing on the average values and on the per-
centages, a notable improvement in the number of masks is evident. In fact, the
number of masks obtained almost doubles. Regarding the number of isolated
lumens, despite the increased number of masks, a percentage value decreases can
be appreciate. On the other hand, there is no appreciable improvement from the
point of view of non-isolated lumens, and even with the second model, images
for which this value is zero are still present. However the performances are not
sufficient to conduct lumen segmentation and classification.

3.3 Proposed solution

3.3.1 Segmentation

Exactly as in obtaining the performance regarding segmentation by SAM, ground
truth is not available. Therefore, it is not possible to quantitatively evaluate
the performance of the two segmentation algorithms used for lumen and nuclei
segmentation. All the choices made were therefore based on visual analysis of the
masks obtained, trying to define a pipeline that could be optimal for most of the
images in the used data set.
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3.3.2 Classification
Nuclei classification

For this first approach, two data sets are available: a train set consisting of a total
of 4247 nuclei and 555 lumens and a test set with 1245 nuclei and 167 lumens.
Only nuclei connected to a tubule or blood vessel are considered during the feature
extraction process. Consequentially, the dimension of both data sets is reduced to
3769 nuclei for the train set and 1095 nuclei for the test set. The number of
masks useful for classification is further reduced for the train set as class balancing
is implemented. Specifically, the final train set includes 3242 nuclei. Subsequent
implementation of the four classifiers exhibited in 2.3.2 yielded the results exhibited
in table 3.3. Specifically, for each classifier, the accuracy (eq. 2.3) and balance
accuracy (eq. 2.4) values referring to the test set are reported. Finally, the best
performance is achieved by the MLP.

classifier accuracy[%] balance accuracy.[%]
KNN 65,2 66,9
SVM 65,8 70,3
RF 66,4 69,5

MLP 66,1 70,8

Table 3.3: Accuracy and balance accuracy values evaluated on the test set for
nuclei classification

Using these classifications, it was possible to implement lumen classification by
majority voting. This process resulted in the performance shown in table 3.4. Again
For each classifier the accuracy, balance accuracy, and percentage of unclassified
elements are reported. Lumen to which no nucleus is assigned, or lumen that have
in their surroundings a number of nuclei classified as belonging to a tubule equal
to those classified as belonging to a blood vessel, are defined as not classifiable. In
both these cases it is indeed not possible to assign a class to the lumen by majority
voting. All classifiers, except the KNN, experienced an increase in performance.

classifier accuracy[%] balance accuracy[%] not classified[%]
KNN 60,0 59,9 4,0
SVM 77,1 77,5 2,6
RF 74,3 74,3 2,0

MLP 77,1 77,3 0,6

Table 3.4: Accuracy, balance accuracy and missed values evaluated on the test
set for lumen classification
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It is also noted that majority voting reduces the gap between classifiers and
that from a performance point of view the MLP was outperformed by the SVM.
Considering, however, the missing values the MLP remains the first choice.
The presence of impossible-to-classify items remains in any case a problem that this
type of approach is not able to overcome. Although the percentage of unclassified
is low for MLP classification, if we consider applying this method to a larger data
set we have a non-negligible number of unclassified masks.Finally, the performances
are not satisfactory and it was decided to abandon this approach.

Lumen classification

To improve the performance of the classifiers, the dimensionality of the data set
was increased. Specifically in this second approach, a training set consisting of
1555 lumens, a validation set comprising 731 lumens and a test set with 624 lumens
are created. Again, during the feature extraction process, the size of each data set
was reduced due to the presence of lumens within the glomeruli. Specifically, the
feature extraction process resulted in the selection of 1296 masks for the training,
601 for the validation and 502 for the test set. The train set was finally balanced
to make the classifiers able to equally recognize each class. At the end of this
process, the number of lumens within the train set is further reduced to 1008.

The first training implemented involves using all the extracted features.
In table 3.5 are reported the parameters selected during the validation phase and
the corresponding balance accuracy value evaluated on the validation set. Table
3.6 shows the values of accuracy (eq. 2.3), balance accuracy (eq. 2.4), recall (eq.
2.6) and precision (eq. 2.5) for the three selected models and for classification
by majority voting (MV). To improve the analysis of the results, the confidence
interval was also evaluated. The value of the confidence interval is calculated by
evaluating the standard deviation of the performances between the images in the
test set.

classifier selected values balance accuracy[%]
KNN k=15 76,8
SVM kernel=’poly’ 89,9

C=1
degree=3
coef0=20
tol=1e-08

RF t=100 79,2

Table 3.5: Values of the classifiers’ parameters during the validation phase
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classifier accuracy[%] balance accuracy[%]
KNN 73,9±7,0 73,4±7,5
SVM 89,4±5,7 89,4±5,7
RF 78,9±6,0 78,6±5,8
MV 84,1±5,3 83,8±6,5

classifier tubul precision[%] tubul recall[%]
KNN 69,2±8,6 89,2±6,4
SVM 89,3±9,1 90,3±7,3
RF 75,9±9,2 86,5±10,7
MV 80,8±10,5 90,7±6,2

classifier vessel precision[%] vessel recall[%]
KNN 83,3±11,9 57,6±14,9
SVM 89,6±12,2 88,5±13,5
RF 83,1±16,9 70,8±10,7
MV 88,6±11,2 77,0±14,8

Table 3.6: Performances obtained using all extracted features

The best classification is obtained by the SVM, followed by majority voting. Al-
though the accuracy and balance accuracy values are acceptable there is a very
high standard deviation. The number of used features is also too high. For these
reasons an iterative feature selection was implemented.
The features selected for each classifier are shown in table 3.7, specifically 21
features are extracted for the KNN and SVM and 24 for the RF. Variables related
to color are expressed in the format statistic parameters_image type_mask type.
Statistical parameters include mean and standard deviation (std). As for the type
of image used instead red channel (r), green channel (g), blue channel (b) and gray
scale image (gr). Finally, as mask type the crown around the lumens and mask of
the nuclei in the inside of the lumen can be found.
Figure 3.1 shows the graphs obtained from the extracted balance accuracy from

the application of each feature individually. The three graphs have approximately
the same trend. It is also possible to observe the presence of features that are
redundant or cause performance decreasing.
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KNN SVM RF
lumen_size lumen_size lumen_size

lumen_width hight_lumen lumen_width
convex_hull number_nuclei hight_lumen

median_r_crown median_r_crown mean_r_crown
std_r_crown std_r_crown std_r_crown
std_g_crown std_g_crown mean_g_crown

median_b_crown median_b_crown std_g_crown
std_b_crown std_b_crown mean_gr_crown
std_gr_crown median_gr_crown std_gr_crown

mean_mean_r_nuclei std_gr_crown std_nuclei_size
mean_median_r_nuclei std_mean_r_nuclei std_nuclei_size
std_median_r_nuclei mean_median_r_nuclei mean_mean_r_nuclei
mean_std_r_nuclei mean_std_r_nuclei std_median_r_nuclei

mean_mean_g_nuclei std_mean_g_nuclei mean_std_r_nuclei
mean_median_g_nuclei mean_median_g_nuclei mean_mean_g_nuclei
mean_mean_b_nuclei mean_std_g_nuclei std_median_g_nuclei

mean_median_b_nuclei mean_median_b_nuclei mean_std_g_nuclei
mean_std_b_nuclei mean_std_b_nuclei mean_mean_b_nuclei

mean_mean_gr_nuclei std_mean_gr_nuclei std_median_b_nuclei
mean_median_gr_nuclei mean_median_gr_nuclei mean_std_b_nuclei

mean_std_gr_nuclei mean_std_gr_nuclei mean_mean_gr_nuclei
std_median_gr_nuclei
mean_std_gr_nuclei

Table 3.7: Feature selected by manual feature selection.

Table 3.8 and 3.9 show, respectively, the values of the parameters that maximize
the balance accuracy on the validation set, and the performance evaluated on the
test set. From these values, feature selection resulted in a noticeable increase in
performance, achieving accuracy and balance accuracy values above 80% in the
case of the SVM.
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Figure 3.1: Graphs related to the performance obtained on the train set by
applying each feature individually.

classifier selected values balance accuracy[%]
KNN k=15 72,0
SVM kernel=’poly’ 88,8

C=0.1
degree=3
coef0=20
tol=1e-08

RF t=200 73,7

Table 3.8: Values of the classifiers’ parameters during the validation phase
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classifier accuracy[%] balance accuracy[%]
KNN 74,7±7,4 74,1±8,3
SVM 88,6±6,8 88,5±6,6
RF 81,5±7,4 81,1±7,1
MV 82,7±6,0 82,3±5,9

classifier tubul precision[%] tubul recall[%]
KNN 69,3±8,8 91,5±6,4
SVM 85,6±10,2 93,8±5,4
RF 75,9±10,4 93,8±6,8
MV 77,4±9,2 93,8±6,1

classifier vessel precision[%] vessel recall[%]
KNN 86,3±13,4 56,8±14,6
SVM 92,7±7,4 83,1±11,8
RF 91,2±10,2 68,3±12,5
MV 91,5±8,8 70,8±11,6

Table 3.9: Performances after the manual feature selection

To make the classification color invariant, all color-related features were finally
eliminated. Specifically, 10 features are selected:

• lumen_size

• width_lumen

• hight_lumen

• convex_hull: difference between Hull’s convex envelope evaluated on the
lumen mask and the lumen mask

• number_nuclei

• mean_nuclei_size: average of the size of the nuclei around the lumen

• std_nuclei_size: standard deviation of the size of nuclei around the lumen

• mean_nuclei_shape: average of the eccentricity of the nuclei around the
lumen

• std_nuclei_shape: standard deviation of the eccentricity of the nuclei
around the lumen

Tables 3.10 and 3.11 report the values selected for the input parameters of the
classifiers during the validation phase, and the performance on the test set.
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classifier selected values balance accuracy[%]
KNN k=55 74,4
SVM kernel=’poly’ 80,2

C=0.01
degree=3
coef0=10
tol=1e-08

RF t=50 64,2

Table 3.10: Values of the classifiers’ parameters during the validation phase

classifier accuracy[%] balance accuracy[%]
KNN 82,5±5,22 82,4±6,3
SVM 91,0±5,3 91,1±5,3
RF 74,3±9,8 73,6±7,0
MV 86,8±5,4 86,7±5,1

classifier tubul precision[%] tubul recall[%]
KNN 82,0±9,2 84,6±8,0
SVM 92,8±8,0 89,6±6,4
RF 67,5±13,4 96,9±3,0
MV 84,1±10,0 92,0±5,0

classifier vessel precision[%] vessel recall[%]
KNN 83,0±13,0 80,2±7,0
SVM 89,3±8,5 92,6±6,0
RF 93,8±5,6 50,2±13,0
MV 90,4±8,3 81,5±7,4

Table 3.11: Performances obtained from color invariant classification
This new feature set not only allows for a system that can classify lumens regardless
of the pixel value of the image, but leads to accuracy and balance accuracy values
higher than 90% in the case of SVM. RF, on the other hand, produces the best
results for recall associated with tubules and precision associated with blood vessels.
However, given the substantial gap between precision and recall for both classes,
RF was discarded and SVM was chosen as the best classifier.
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To test the robustness of the system, the best models were subsequently applied to
a set of images chosen by an experienced pathologist and representing the worst
case. Specifically, 7 images with a total of 554 nuclei were chosen. Table 3.12
shows the performance obtained by applying the previously trained models to this
new set of images.

classifier accuracy[%] balance accuracy[%]
KNN 69,3±10,1 71,9±6,6
SVM 66,4±9,9 73,7±6,6
RF 46,2±9,0 62,2±6,9
MV 64,4±12,6 71,9±8,5

classifier tubul precision[%] tubul recall[%]
KNN 45,2±8,0 77,4±11,5
SVM 43,3±6,6 89,0±7,2
RF 32,4±6,0 95,9±3,6
MV 41,7±7,5 87,7±8,3

classifier vessel precision[%] vessel recall[%]
KNN 89,1±4,3 66,4±15,8
SVM 93,7±4,4 58,3±16,0
RF 95,1±9,0 28,4±14,8
MV 92,7±6,0 56,1±19,8

Table 3.12: Performances obtained by applying best models to worst-case images

As expected, there is a notable deterioration in performance. In fact, the maximum
value of balance accuracy achieved is just over 70%.
However, it is important to note that the feature set that achieved the best per-
formance on the test set is still able to provide precision and recall values above 90%.

Finally, to test the non color dependence classification, TRI-stained images were
classified using the pre-trained optimal models. These images were also used within
a GAN capable of recreating the corresponding PAS-staining images. In this
last application of the model, 6 images with TRI-staining and the corresponding
images generated by the GAN are used. Considering that the segmentation process
has some color-dependent parameters, a different number of lumen useful for
segmentation are obtained. Specifically, the data set containing TRI-staining
images includes 200 lumen while the data set of generated images 211. In tables
3.13 and 3.14 the performances, obtained by applying the pre-trained models,related
to the data set of TRI-stained and PAS-stained images, respectively, are shown.
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classifier accuracy[%] balance accuracy[%]
KNN 72,5±4,3 72,9±5,4
SVM 69,5±5,2 69,9±5,4
RF 55,0±8,1 55,9±2,5
MV 67,5±5,5 68,0±5,5

classifier tubul precision[%] tubul recall[%]
KNN 65,9±5,9 90,8±7,5
SVM 63,0±9,1 89,8±9,0
RF 52,1±8,4 100,0±0,0
MV 60,9±7,0 93,9±5,7

classifier vessel precision[%] vessel recall[%]
KNN 86,2±12,8 54,9±13,1
SVM 83,6±11,7 50,0±14,4
RF 100,0±0 11,8±5,0
MV 87,8±13,3 42,2±12,2

Table 3.13: Performances obtained using images with TRI type staining
classifier accuracy[%] balance accuracy[%]

KNN 75,8±8,8 75,1±9,3
SVM 84,4±9,6 83,6±10,5
RF 78,2±12,4 77,1±12,8
MV 83,4±9,6 82,4±10,9

classifier tubul precision[%] tubul recall[%]
KNN 79,7±12,7 64,3±20,7
SVM 91,1±8,2 73,5±18,7
RF 87,1±11,3 62,2±23,2
MV 94,4±7,4 68,4±19,6

classifier vessel precision[%] vessel recall[%]
KNN 73,5±11,7 85,8±15,7
SVM 80,3±11,8 93,8±7,3
RF 73,8±14,2 92,0±6,9
MV 77,9±11,1 96,5±3,6

Table 3.14: Performance obtained using PAS-type stained images generated by a
GAN from TRI-type stained images.
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From the latter tables the trained models are indeed color invariant. Despite a
decrease in performance, accuracy and balance accuracy values exceeding 70% are
still achievable when applying the models to TRI stained images.
It’s also interesting to notice how the use of images generated through GAN
demonstrates performance comparable to that of the best model. This kind of
phenomena suggest the potential resolution of issues related to the dependency
between classification and image color.
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Chapter 4

Conclusion

The aim of this project is to identify three biological structures of the kidney:
tubules, blood vessels and epithelial cells. The aim is to use this system in combi-
nation with a previously developed algorithm for the recognition of glomeruli, in
order to select the four protagonists of the Banff analysis: tubules, blood vessels,
interstitial tissue and glomeruli. Analising the results, it is clear that the trained
models, using the selected feature set, are capable of recognising and classifying
tubules and glomeruli in the test set images with high accuracy and precision. In
particular, the best performing Machine Learning model is the Support Vector
Machine, which achieves a test set a balanced accuracy of 91%, with precision and
recall levels of no less than 89% for both classes.The model’s ability to classify
images independently of colour was also demonstrated, allowing the classifier to
be applied not only to images with different PAS staining concentrations, but
also to images with other types of staining. One of the main innovations of the
proposed method is the use of a Cycle-GAN to convert images with different types
of staining to the PAS-type staining, on which the parameters were set and on
which the model was trained. Despite the sufficient performance on TRI-type
stained samples, the images generated by the GAN show significantly superior
results. In this context, SVM is confirmed as the best classifier, with a balanced
accuracy of 83.6%, and precision of 91% and 80% for tubules and blood vessels,
respectively. Considering that the Banff classification involves the use of three
different types of staining (H&M, PAS and TRI), the combined use of Cycle-GAN
and the classification system would allow the combined use of the different staining
techniques.

In order to replicate the classification process performed by a human operator,
features were extracted and selected under the guidance of a team of external
pathologists. It was therefore possible to identify the set of variables that best
represent the differences between tubules and blood vessels, despite the fact that
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these two elements are often very similar to each other. Despite the innovative
feature extraction method, some classification errors were found. Through visual
analysis, it can be seen that the calssification errors can be attributed to excessive
dependence on the size of the mask. Often there are blood vessels with lumens
of comparable size to tubules, or vice versa. In many of these cases, the classifier
assigns the mask to the wrong class. Segmentation errors were also observed. In
many cases, the algorithm designed to aggregate masks associated with the same
lumen, although recognised as distinct, fails to joint all masks related to the same lu-
men. Consequently, the classifier sees the isolated mask as an independent element.
Even in terms of worst-case performance, there are some possible improvement.
Considering that the Banff classification is applied to images from pathological
kidneys, it is not uncommon to find patches with similar characteristics to worst
case ones. Finally, as mentioned above, retrieved tissues have elements that even a
seasoned pathologist finds challenging to categorize. Furthermore, in the case of
patients with advanced IFTA, tissue features significantly change. In these cases,
the algorithm implemented may have difficulty to recognise all structures of interest.

To address these challenges with the method devised, various strategies for im-
provement can be considered. A first solution would be to apply post-processing
systems to the individual lumen masks. Upon examining certain images, it be-
comes evident that lumens belonging to different structures are very close to each
other.This makes it very difficult to apply certain morphological operators that aim
to eliminate black pixels within the masks. Applying expansion to the entire mask,
for instance, distinct but very close lumens would form a single mask. This issue
can be effectively circumvented by applying morphological operators to individual
masks. Notably, an analysis of this parameter reveals that incorrectly classified
masks are characterized by a smaller distance compared to correctly classified
ones. Nonetheless, by eliminating the size of the lumens from the set of extracted
features, the classification performance considerably decreases. However, one po-
tential improvement could involve applying a threshold to the distance between
the individual feature to be classified and the plane utilized by the SVM classifier
to differentiate between the two classes. This strategic approach is supported by
the analysis of this parameter, which indicates that incorrectly classified masks
exhibit a smaller distance compared to correctly classified ones. In the pursuit
of improving the segmentation quality, techniques involving AI could be adopted
instead of global thresholding.
Additionally, a consideration could be given to combine the results obtained from
the segmentation of lumens and epithelial cells to improve SAM performance. One
of the main strengths of the SAM model is the possibility of providing prompts to
direct the segmentation. For instance, if the coordinates of the centroids of masks
obtained through global thresholding were supplied, SAM would be able to perform
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a more selective and precise segmentation.

Despite the many areas open to improvement, the work undertaken represents a
good starting point for the development of a method capable of conducting the
Banff classification independently.
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