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Abstract 

With the development of Additive Manufacturing, it has become possible to 

create components with complex geometries, such as lattice or reticular 

structures. Thanks to their high specific energy absorption combined with low 

mass, these structures have proven to be very interesting in terms of mechanical 

properties. 

The aim of this thesis is to create a numerical model that allows estimating the 

mechanical behavior of 3D printed components with lattice structures using a 

multiscale approach. Micro Computer Technology analyses performed on 

AlSi10Mg lattice specimens revealed the presence of internal porosity within 

the lattice structure.  

To account for these internal defects, a multiscale approach was adopted, 

allowing for faster and more precise simulations at the microscopic level with 

three-dimensional elements incorporating defects, using Abaqus CAE for Finite 

Element Analysis. Equivalent mechanical properties were obtained and 

extended to the macroscopic level of the component. LS-Dyna software was 

then used to perform simulations directly on the lattice specimen, associating 

the mechanical characteristics obtained at the microscale with each 1D element 

of the mesh.  

The Stress-Strain curves obtained at the microscale, by randomly introducing 

defects into the structure, resulted in a variability of mechanical response in the 

lattice specimen. Subsequently, the lattice specimen underwent a quasi-static 

compression test, yielding a force-displacement response.  

The family of numerical curves generated from the multiscale Finite Element 

Analysis allowed for the creation of a band that contained the experimental 

curve, thus accurately simulating the mechanical behavior of the lattice 

structure and validating the numerical model. 
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1  Introduction  

 

1.1 Lattice structure 

 

Additive Manufacturing technologies, increasingly evolving in recent years, 

enable the creation of intricate geometries and complex shapes that are not 

reproducible using traditional mechanical processing techniques. An advanced 

example of what is achievable is lattice or reticular structures, which are 

obtained by repeating a basic cell of varying geometry until it completely fills a 

portion of the component (Figure 1.1 [1]).  

In particular, selective laser melting (SLM) has enabled the development of 

lattice structures with unique properties. By controlling various parameters, 

lattice structures allow the realization of unique mechanical, electrical, thermal, 

and acoustic properties and have received significant research attention. 
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Figure 1.1. Example of lattice structures produced with AM technologies [1] 

 

Lattice structures are a type of cellular material that is characterized by the 

regular repetitive structure of their unit cells. While the unit cells of lattice 

structures can be analyzed like space frames using classical mechanics, a lattice 

structure should be considered as a material with its own mechanical 

properties, allowing for a direct comparison between the properties of a lattice 

structure and those of its parent structure. 

Lattice structures can generally be categorised based on their mechanical 

response as being either bending-dominated or stretch-dominated. Bending-
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dominated structures experience bending moments within their structure and 

so are compliant, whereas stretch-dominated structures experience axial loads, 

meaning they are stiffer and stronger than bending-dominated structures.  

Characterized by their porous nature and composed of a network of repetitive 

geometric structures, these structures can take on various cell topology such as 

cubic cells, hexagonal patterns, or more complex structures. The choice of 

configuration depends on the specific application needs and the functional 

requirements of the final object.  

A lattice structure’s cell topology defines whether it will be bending or stretch-

dominated. 

The lattice specimens analyzed in this thesis exhibit an octet cell type structure 

(the third in Figure 1.2), belonging to the "stretch-dominated" category, which 

provides the best compromise between absorbed energy and total mass [2].  

As shown in Figure 1.2, the basic 'octlet' unit cell comprising the lattice 

specimens includes beams oriented at 0° and 45°, while there are no beams 

oriented vertically. This cell will be uniformly repeated throughout the lattice 

specimen. 
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Figure 1.2. Examples of unit cell configurations for lattice structures. The octlet cell is the 

second from the bottom [3] 

 

The utilization of lattice structures in additive manufacturing offers several 

advantages. Firstly, these structures are lightweight due to their high porosity: 

this allows for a significant reduction in the overall weight of the object, which 

can be advantageous in sectors like aerospace and automotive where weight is 

a critical factor. 

Furthermore, lattice structures exhibit high strength and impact energy 

absorption capacity despite their lightweight nature. The distribution of forces 

through the lattice framework enables excellent mechanical strength, ensuring 

the ability to withstand significant loads. 

Finally, lattice structures also offer a wide design freedom. Additive 

Manufacturing enables the creation of complex shapes, allowing for the 

fabrication of lattice components optimized for specific requirements.  

However, designing lattice structures requires specialized expertise to ensure 

structural integrity and production process efficiency. Additionally, the 

presence of internal and surface defects that occur as a result of the Active 
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Manufacturing process can complicate post-printing processing, such as surface 

finishing or coatings application. 

Despite these challenges, the potential offered by this type of component allows 

for pushing the boundaries of performance and design possibilities in the realm 

of 3D printing. 

 

1.2 Multiscale method 

 

Finite Element Analysis (FEA) used to study the structural behavior of 

mechanical components can, however, lead to large-scale models with high 

computational costs when analyzing complex structures such as the lattice 

structures under examination. The use of a multiscale approach in FEA analysis 

allows for a simpler solution to this problem. This method involves integrating 

different resolution scales into a single analysis, enabling greater computational 

efficiency without compromising the accuracy of the results. 

The multiscale method divides the complex model into various regions or levels 

of detail, each of which is analyzed with an appropriate resolution. The 

information obtained from each level of detail is then combined to provide a 

global solution [4].  

It is possible to link different analysis scales, as many heterogeneous 

mechanical components are difficult to analyze directly with finite element 

computational techniques. Therefore, a localized analysis step is performed, 

introducing the concept of the 'Representative Volume Element' (RVE). Once 

the representative micro volume with the same properties as the starting 

component is identified and defined, localized boundary conditions (μBCs) 

compatible with the multiscale method are applied.  
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By obtaining mechanical properties at the microscopic or local level, these can 

then be transferred to the global model using homogenization techniques, 

allowing for an accurate representation of the overall behavior of the 

component.  

Figure 1.3 depicts the functional diagram of the multiscale design approach 

method. [5]. 

 

 

Figure 1.3. Multiscale approach: homogenization and localization techniques [5] 

 

The use of the multiscale method in FEA for complex components offers several 

advantages. Firstly, it substantially reduces computational complexity, enabling 

the analysis of components that would otherwise demand impractical 

computation times. Additionally, it provides an accurate representation of the 

component's behavior at various scales, allowing for a more comprehensive 

assessment of structural performance. 
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2 Thesis objective 

 

As previously mentioned, the aim of this thesis is to simulate the mechanical 

behavior of lattice structure components produced through Additive 

Manufacturing.  

In particular, the aim is to study the behavior of the lattice structure under 

quasi-static compressive load and numerically estimate its response in terms of 

Force - Displacement. 

In the subsequent chapters, the methods adopted for conducting multiscale 

Finite Element Analysis (FEA) on lattice specimens will be explained. This will 

involve creating mechanical strength curves, which are then extrapolated to the 

macro-scale of the specimen using homogenization techniques. 

A crucial aspect of the research is focused on characterizing internal defects 

within the material. Scans performed on lattice specimens revealed the presence 

of internal porosity within the beams of the structure, thereby reducing the 

effective material volume. 

The multiscale approach has enabled the consideration of defects on a local 

scale, which are then extended to the macroscopic scale of the specimen. This 

approach accounts for the defectiveness on both local and larger scales, 

ensuring a comprehensive understanding of the material's behavior. 

Once the stress-strain behavior has been simulated for each microscale element, 

including defects, a force-displacement response was obtained for the lattice 

specimen (macroscale) and compared with the actual response. The variability 

introduced by the defects will then allow to create a band bounded by two 

lower and upper curves that encompass the experimental response.  
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The final step involved establishing the numerical design curve corresponding 

to a defect-free material model. This curve will be used for future Finite 

Element Analysis (FEA) without the need to repeat the study with defects. 
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3 Experimental analysis  

 

3.1 Material characteristics 

 

The lattice structure specimens under examination were produced using 

Additive Manufacturing through the Selective Laser Melting (SLM) technique, 

Using aluminum alloy AlSi10Mg powder.  

The SLM (Selective Laser Melting) process is an Additive Manufacturing (AM) 

technology used for selectively melting metal powders to create parts. This is 

achieved by employing a high-power concentrated laser beam on a bed of metal 

powders. 

The aluminum alloy AlSi10Mg, used in the powder bed, exhibits the 

mechanical properties listed in table 3.1. 

 

AlSi10Mg 

Density 2,9 g/cm3 

Elastic Modulus 69000 MPa 

Poisson ratio 0,33 

 

Table 3.1 Mechanical properties of the Alluminium alloy AlSi10Mg 

Tensile tests conducted on AlSi10Mg specimens produced using SLM 

techniques have generated results in terms of the Stress-Strain curve, following 

a tensile test, as shown in Figure 3.1. 
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Figure 3.1. Experimental engineering stress-strain curve of the AlSi10Mg lattice specimen 

 

 

3.2 Experimental tests 

 

For the purpose of comparison with experimental data obtained on pure 

material, compression and nano-indentation tests were conducted in the 

laboratory on specimens created using the SLM technique.   

Since the production process is the same for creating the final lattice structure, 

these analyses are used to assess the influence of the manufacturing process on 

the mechanical properties of the Additive Manufacturing component. 
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3.2.1 Specimens geometry 

 

To perform the compression tests, two specimens made of AlSi10Mg As Built 

were prepared by cutting from a rectangular 4 mm thick cross-section bar, 

produced via SLM (Selective Laser Melting).   

The specimens have dimensions of 100 x 8 x 4 mm and were fabricated by 

cutting from the bar using water jet cutting.   

Once designed in CAD, the specimens were saved in .dxf format so that the 

files could also be read by the software connected to the waterjet cutting 

machine in use. 

Nano-indentation tests, on the other hand, necessary for determining Vickers 

hardness and elastic modulus values, were conducted directly on the lattice 

structure with the octlet-type cell, as previously introduced. 

3.2.2 Compression test 

Since the lattice structure is subjected to a compressive load, the material's 

behavior was determined through a compression test.   

Compression tests were conducted on the two specimens, and a free inflection 

length was calculated at which to clamp the two ends of the beam to avoid 

buckling phenomena.  

In the compression test, the specimen is gripped at both ends, creating a 

clamped-guided (CG) configuration as shown in Figure 3.2. This results in a 

maximum free span for avoiding buckling, which is Leff = 0.5 L0 where L0 = 100 

mm.  

For safety reasons, a free deflection length of 15 mm was still considered. 



 12 

The test was carried out at the DIMEAS laboratory of the Polytechnic 

University of Turin, and the machine used for the test is an Instron 8801, as 

shown in Figure 3.3. 

 

Figure 3.2 Clamped-guided (CG) configuration of the specimen during the compression test 
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Figure 3.3 The machine used for the compression test: Instron 8801 

 

Due to the inability to install strain gauges within the specimen due to limited 

space, two arbitrary points were monitored using an optical microscope. By 

acquiring their position before and after the test, it was possible to determine 

through the Digital Image Correlation (DIC) technique (Figure 3.4). 
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Figure 3.4 Image of the specimen in the machine acquired by the optical microscope 

 

Unfortunately, the specimen still experienced buckling: this is due to the fact 

that AM techniques generally produce a geometry that is not perfectly flat and 

may have some surface defects. The test was therefore interrupted as soon as 

this phenomenon appeared.   

Figure 3.5 shows the specimen subjected to the compression test, where it can 

be observed that the structure has indeed undergone buckling. 

 

 

Figure 3.5 Image of the specimen undergoing a compression test, with the occurrence of 

buckling 
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The Force-Displacement data obtained from the compression test were then 

used to determine the Stress-Strain curve for comparison with the reference 

curve previously obtained from an AlSi10Mg alloy produced through Selective 

Laser Melting (Figure 3.1). In Figure 3.6, the comparison is shown: the blue 

curve obtained from the new compression test was prematurely interrupted 

due to the specimen undergoing buckling. However, this phenomenon 

occurred in the plastic deformation range, beyond the yield point, so the result 

is still acceptable for the purpose of comparison.   

Although there is a slight variability at the yield point, the curve obtained from 

the new compression test tends to approximate the red curve again, before the 

test interruption due to buckling.   

Consequently, it can still be concluded that from the new compression tests 

performed, the specimens produced using SLM exhibit behavior that 

approximates the actual behavior of the AlSi10Mg alloy produced through 

Additive Manufacturing. 
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Figure 3.6 Comparison of stress-strain curves between the reference AlSi10Mg alloy (red curve) 

and that obtained from the quasi-static compression test on a new AlSi10Mg specimen (blue 

curve) 

 

 

3.2.3 Nano – indentation test 

The nanoindentation tests are microhardness tests conducted to determine the 

elastic modulus and Vickers hardness values for the AlSi10Mg alloy produced 

using AM.  

During the nanoindentation, a very hard tip is pressed into the sample, and the 

variation of load versus the penetration depth is recorded: in this way, it is 

possible to determine the hardness of the material. 

The tests were performed directly on the lattice structure beams using a 

diamond indenter. Indentations were made at the 45° oriented beams and at 



 17 

some nodes of the structure.  

An important aspect is the depth of indentation in the tests: in the study Review 

of Nanoindentation Size Effect: Experiments and Atomistic Simulation [6], the 

influence of dimensional effects on resulting hardness was analyzed. In 

particular, the nanoindentation tests conducted demonstrate what was stated in 

the study: the depth of indentation experimentally influences hardness and the 

elastic modulus. Therefore, tests were conducted by increasing the depth of 

indentation until achieving a convergence of hardness and the elastic modulus. 

In order to determine the elastic modulus, a convergence study was conducted 

due to the high variability in values obtained depending on the test locations. In 

Figure 3.7, the elastic modulus values obtained at various indentation depths 

are reported. 

There is a noticeable convergence to a value of approximately 53 GPa for 

measurements conducted on the 45° oriented beams and 45° oriented nodes. 

Therefore, this value was considered as the elastic modulus for the lattice, 

adopted in the subsequent design phase. 
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Figure 3.7 Elastic modulus values as a function of penetration depth, for various measurements 

 

 

 

3.3 Internal defects 

 

In Figure 3.8, the lattice specimen under examination is shown, which was 

created using Additive Manufacturing techniques starting from AlSi10Mg 

powders: the typical compact beam-shaped structure is observed.   
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Figure 3.8 Lattice structure specimen made of AlSi10Mg aluminum alloy undergoing 

compression testing 

 

Scanning electron microscopy (FESEM) images (Figure 3.9) of one of the lattice 

cell faces reveal the presence of high surface roughness, which is typical of 

additive manufacturing parts. However, the effect of surface roughness on 

mechanical behavior will not be considered in this study. The diameters of the 

structure's beams are also not exactly constant, with some variations related to 

the manufacturing process. In the initial approximation for the subsequent 

creation of the finite element model, a nominal diameter 𝑑𝑏𝑒𝑎𝑚 = 1,31 𝑚𝑚 was 

specified.  
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Figure 3.9 Images of the specimen surface captured by the scanning electron microscope 

 

Micro-computed tomography scans were also conducted on the specimen, 

revealing the presence of internal defects (structural porosity) that decrease the 

effective material volume and, consequently, mechanical strength.  

By performing Micro-CT scans at various points within the structure, the 

porosities highlighted by the scans within the structure exhibit a geometry that 

can be approximated as a sphere.  

In Figure 3.10, the three-dimensional reconstruction of the specimen based on 

the grayscale after a Micro-CT scan has been presented. 
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Figure 3.10 Three-dimensional reconstruction of a specimen based on the grayscale 

 

Furthermore, in Figure 3.11, the view on the xy plane of a scan is shown, 

highlighting the presence of a defect at a node of the structure. 

 

Figure 3.11 View on the XY plane of a scan, with a focus on an internal spherical defect at the 

intersection of two structural beams 
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The data for all possible internal defects, characterized by different sphere 

diameters, were collected and reported in an Excel document.  

For each defect size, analyzing how many times it repeats within the porous 

structure resulted in the determination of a distribution for each defect class. 

Two different defect distributions have been determined for the specimens with 

cell sizes of 20 x 20 x 20 mm and 30 x 30 x 30 mm, as shown in Figure 3.12 and 

Figure 3.13.  

These are expressed in terms of probability as a function of the equivalent 

spherical defect size. It can be observed that for the 20 x 20 mm cell, defects tend 

to cluster at lower nominal values of equivalent defect diameter. 

 

 

Figure 3.12 Probability distribution of the defects in the 20 x 20 x 20 mm specimen for each size 
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Figure 3.13. Probability distribution of the defects in the 30 x 30 x 30 mm specimen for each 

size 

 

This defect distribution has been discretized into defect classes and utilized in 

the multiscale analyses on the component. 

Previous research on these specimens simulated mechanical behavior without 

employing a multiscale approach. It involved dividing the lattice specimen 

using 1D beam elements. The presence of defects was simplified by performing 

localized reductions in the beam diameter (notches) distributed randomly 

across the various beams of the structure. 

However, the analysis conducted in this study approached the problem 

differently, using a multiscale approach with 3D elements at the local level 

(microscale) and considering defects as spherical voids within the local three-

dimensional domain. 

The previous distributions were discretized into probability intervals, resulting 

in a series of defect classes, reported in Table 3.2. Defects with diameters greater 
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than 0.532 mm were neglected due to their low probability of occurrence in the 

structure. 

 

 30x30 mm Cell  20x20 mm Cell 

ID Defect diameter [mm] Probability ID Defect diameter [mm] Probability 

1 0.038 0.0137 1 0.048 0.0745 

2 0.052 0.0142 2 0.052 0.0497 

3 0.065 0.0453 3 0.057 0.115 

4 0.091 0.0477 4 0.061 0.0631 

5 0.104 0.069 5 0.066 0.177 

6 0.117 0.056 6 0.07 0.0967 

7 0.13 0.065 7 0.075 0..605 

8 0.143 0.067 8 0.078 0.0565 

9 0.156 0.056 9 0.0833 0.0322 

10 0.169 0.093 10 0.088 0.0221 

11 0.182 0.084 11 0.092 0.0208 

12 0.195 0.072 12 0.096 0.0199 

13 0.208 0.069 13 0.1 0.0204 

14 0.221 0.037 14 0.105 0.0256 

15 0.234 0.039 15 0.109 0.0239 

16 0.247 0.026 16 0.114 0.0239 

17 0.26 0.018 17 0.118 0.0288 

18 0.27 0.018 18 0.123 0.0196 

19 0.286 0.012 19 0.127 0.013 

20 0.299 0.01 20 0.132 0.0131 

21 0.312 0.009 21 0.136 0.0086 
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22 0.325 0.006 22 0.14 0.00737 

23 0.338 0.007 23 0.145 0.00531 

24 0.351 0.005 24 0.149 0.00403 

25 0.363 0.0045 25 0.154 0.00326 

26 0.376 0.004 26 0.158 0.00286 

27 0.389 0.003 27 0.162 0.00197 

28 0.402 0.0024 28 0.167 0.00186 

29 0.415 0.00277 29 0.171 0.00137 

30 0.428 0.00191 30 0.175 0.00125 

31 0.441 0.00204 31 0.18 0.00112 

32 0.454 0.00139 32 0.184 0.00097 

33 0.467 0.00123 33 0.189 0.00068 

34 0.48 0.00118 34 0.193 0.0006 

35 0.493 0.00092 35 0.197 0.00044 

36 0.506 0.00102 36 0.206 0.00028 

37 0.519 0.00073 37 0.223 0.00024 

38 0.532 0.00071 38 0.237 0.00012 

 

Table 3.2 Discretization of the distribution into defect classes for the two cell types 

 

Once all this information about the experimental specimen was obtained, it was 

possible to use it as input for creating the numerical model using a multiscale 

approach to the problem. 
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4 Representation of the model using a 

multiscale method 

 

According to the application of a previously introduced multiscale method for 

the numerical resolution of the problem, it is necessary to divide the problem 

into a micro and macro scale. The problem was indeed addressed by starting 

with an analysis at the microscale: to do this, the representative local structure 

model was defined.  

An RVE (Representative Volume Element) is a fundamental portion of the 

initial model that exhibits the same mechanical properties as the base structure 

on a macroscale. 

Two types of elements have been selected to create the RVE: 

1. Cubic Representative Volume Element: Initially, a three-dimensional 

cubic element representing the material was defined as the starting point 

at the local scale. 

2. Cylindrical representative element beams of the structure. 

 

FEA simulations to determine the Stress-Strain behavior were performed using 

Abaqus CAE software. Initially, it was necessary to define the elastic and plastic 

properties of the material as input.   

As seen in the previous chapter, the lattice structure specimen exhibits a 

reduced elastic modulus compared to the nominal value of 53 GPa, which is 

typical for an AlSi10Mg aluminum alloy. Consequently, the original stress-

strain curve in Figure 3.1 was modified to accommodate the reduced elastic 
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modulus from 69 GPa to 53 GPa.   

A new yield strain has been calculated at the same stress level, after which an 

offset of the curve was performed to determine the new stress-strain points in 

the plastic deformation range.  

Although the reduction is not particularly significant, the decrease in the slope 

of the elastic region results in an increase in plastic deformation at failure 

(Figure 4.1). 

 

 

Figure 4.1 Comparison between the nominal curve of AlSi10Mg and the curve of AlSi10Mg 

manufactured through Additive Manufacturing (AM) for lattice structure. The new elastic 

modulus determined from nanoindentation tests is 53000 MPa 

The new plastic region was discretized into 15 points and incorporated as a 

reference plastic property in Abaqus. 
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Plastic Strain Stress [Mpa] 

0 207.1989 

0.000602 225.0659 

0.001184 237.0891 

0.001782 246.0445 

0.002608 256.8235 

0.004945 273.9836 

0.007263 287.1251 

0.010564 306.1181 

0.012796 318.3537 

0.018513 344.3244 

0.023584 358.9237 

0.030506 376.5842 

0.039538 392.616 

0.056436 409.362 

0.066353 411.7897 

0.097022 415.1682 

 

Table 4.1 Pairs of values extrapolated from the stress-strain curve of the AlSi10Mg specimen 

 

For both the cubic RVE and the cylindrical beam cases, a Python script was 

created to automatically generate the model in Abaqus, inserting the 

appropriate boundary and loading conditions, and launching the FEA analysis. 

Internal defects within the element were treated as spherical cavities within the 

cube. The script allows for the generation of one or more internal spherical 

defects, divided by defect class. 



 29 

A crucial aspect was how to consider the presence of defects within the element 

to conduct FEA simulations subsequently. The choice of considering all defect 

classes randomly inserted within the element until a certain volume fraction 

(the ratio of the volume subtracted by the defects to the volume of the model) is 

reached is actually incorrect. 

The volume fraction cannot be uniquely determined for all defect classes 

because, for small-sized RVEs, the VF results in less defect filling. Furthermore, 

this approach does not properly account for the presence of large defects in 

small RVEs, as such a defect would immediately exceed the volume fraction 

and not be considered in the automatic generation of defects. 

The better choice is to perform simulations separately for each defect class. In 

other words, one spherical defect of different sizes should be inserted into the 

element one at a time. Subsequently, the material response curves at the local 

scale can be used as equivalent properties on the specimen. 
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4.1 Multiscale analysis with cubic RVE 

 

4.1.1 Model geometry 

 

Initially, a cubic-shaped RVE was considered, inside which spherical cavities 

were created. As can be seen from Figutre 4.2, the spherical defect is generated 

with the center sphere coordinates (x, y, z) randomly positioned within the 

element. 

Any generation that results in an intersection with a face or edge of the cube 

leads to the creation of a cavity representing the complementary portions of the 

sphere on opposite faces. This situation, besides being possible in a real case, is 

necessary when periodic boundary conditions are applied to the RVE. 

These boundary conditions are the most commonly used in a multiscale 

approach and will be explained in more detail in the following paragraph. 

 

 

Figure 4.2 RVE model with internal spherical defect created in Abaqus CAE 
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4.1.2 Boundary conditions 

 

An important aspect of multiscale simulations is the boundary conditions, 

which also play a crucial role in computational homogenization. 

The choice of boundary conditions influences the result of homogenization, 

including the constitutive response at the macro-scale, the size of the RVE, and 

the type (and extent) of localized failure that occurs at the micro-scale. 

As detailed in the report BEMs for Multiscale Materials Modelling [5], it has been 

demonstrated how the most accurate approximations for mechanical properties 

at the RVE level can be achieved when periodic boundary conditions are 

adopted, rather than uniform traction or linear displacement boundary 

conditions. 

In the context of FEA analysis with the multiscale method, periodic boundary 

conditions are applied on opposite edges of the analysis domain to account for 

the periodic repetition. Thus, it's necessary for geometric continuity to be 

ensured between opposite faces of the RVE. After generating the mesh, the 

nodes on two opposite faces within the cube must be equal in number. 

Between each pair of nodes across the two faces, equations are defined in terms 

of displacement. The constraint on this displacement is imposed by defining a 

set of 3 dummy nodes, called dummy nodes, at the origin of the coordinate 

system. 

As explained in the study Applying Periodic Boundary Conditions in Finite Element 

Analysis [7], multiple points may be constrained by a general linear combination 

of nodal variables (such as displacements at different nodes). The summation of 

the product of a coefficient and the corresponding nodal variable is equal to a 
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fixed displacement �̂� applied to the dummy node. Specifically, we define a 

general linear homogeneous equation: 

  

                                              𝐴1𝑢𝑖
𝑃 + 𝐴2𝑢𝑗

𝑄 + ⋯ + 𝐴𝑁𝑢𝑘
𝑅 = �̂�                                   (4.1) 

 

Where R is node, k is degree of freedom, i.e. 1, 2, or 3 which represent x, y, z 

directions, 𝐴𝑁 is a constant coefficient that define the relative motion of nodes.  

In the case of a cubic RVE, the general equations for multi-node periodic 

systems are modified to take on the form for each coordinated direction: 

                                                      𝑢1
𝑙𝑒𝑓𝑡

− 𝑢1
𝑟𝑖𝑔ℎ𝑡

= �̂�𝑥                                               (4.2) 

                                                      𝑢2
𝑙𝑒𝑓𝑡

− 𝑢2
𝑟𝑖𝑔ℎ𝑡

= �̂�𝑦                                               (4.3) 

                                                      𝑢3
𝑙𝑒𝑓𝑡

− 𝑢3
𝑟𝑖𝑔ℎ𝑡

= �̂�𝑧                                               (4.4) 

Where �̂�𝑥 , �̂�𝑦 , �̂�𝑧 are the displacements set on the 3 dummy nodes of the 

element.  

After the creation of the RVE element, the solid mesh of TETRA elements is 

automatically generated through a Python script. The element size changes 

based on the RVE's dimensions, but in general, it's defined to be 1/10 of the 

cube's side length (Figure 4.3). 
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Figure 4.3 RVE model with 3D Tetra mesh 

 

At last, an input file named "job.inp" containing information about the number 

of nodes and elements in the structure is automatically generated. This file is 

imported into MATLAB, where, through an implemented function, an 

additional import file is created containing data for applying periodic boundary 

conditions (PBC). The function counts nodes on each face and establishes pairs 

of nearest nodes between opposite faces, generating periodicity equations 

between the two nodes and the corresponding dummy node. 

This process results in a "PBC.inp" file, which is added to the same working 

directory as the ongoing simulation. By running a second Python script in 

Abaqus, a new import to the model from the "job.inp" file is performed, using 

an INCLUDE statement for the "PBC.inp" file.  

This sequence creates a new RVE model with the added periodic boundary 

conditions. In Figure 4.4, yellow circles represent all nodes on the involved 

faces in the periodic boundary condition equations.   

Three highlighted red circles are representing three nodes that constitute one of 

the equations for periodic boundary conditions (4.2). The central node serves as 
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the dummy node to which the prescribed displacement is applied, while the 

two outer circles represent the two nodes on opposite faces connected by the 

displacement equation. 

 

Figure 4.4 Periodic boundary conditions on the RVE and focus on the nodes of a single equation 

 

 

4.1.3 Definition of the displacement and constraint 

 

Subsequently, the script automatically defines the displacements for the RVE. 

By imposing displacements on the dummy nodes in the three coordinate 

directions, it is possible to simulate normal tensile or compressive stresses. 

Additionally, by combining pairs of displacements between two dummy nodes, 

resulting shear stresses can also be obtained. 

To prevent rigid body motions, in the RVE simulations, a constraint is defined 

on one of the structure's nodes. In this case, a vertex node of the element was 

chosen. 
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The Python generation script creates a step containing the displacement �̂�𝑥, 

which is imposed on the element (Figure 4.5). 

The aim is to study the behavior of lattice material under compression. To 

achieve this, a step corresponding to compression along the x-axis of the RVE 

(σxx) was analyzed, setting a known displacement �̂�𝑥. 

 

 

Figure 4.5 Imposition of a fixed constraint on a vertex and displacement at the dummy node 

 

Finite element simulations are conducted by imposing a displacement and 

simulating the mechanical behavior under compression until reaching the 

specified strain value. 

A displacement of 0.104 mm was chosen for the RVE, imposed on the dummy 

nodes. This value corresponds to the ultimate strain of the real material, 

obtained from the experimental curve (Figure 4.6). 
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Figure 4.6. Parametrization of the displacement at the dummy node 

 

It was chosen to adopt a subdivision of 35 equally spaced intervals for the Field 

Output frames of the simulation. This choice was made to adequately represent 

both the elastic and plastic fields with a sufficient number of points. In cases 

where frames are calculated automatically, the solver tended not to execute 

calculations during the initial phase for stresses below the yield limit. As a 

result, there were no insights into the elastic zone, which is necessary for a 

potential assessment of convergence to the real elastic modulus value of 53000 

MPa, involving a sensitivity study. 

 

4.1.4 FE simulations on the RVE 

 

Once all the parameters for the RVE are defined, the script automatically allows 

to create a Job in Abaqus and execute the FEA simulation on the RVE element. 
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Since only one displacement 𝑢𝑥 hat is imposed at the dummy-x node for the 

study at hand, it results in deformation along the x-axis of the RVE. Through 

this analysis, it is possible to visualize the stress σ11 and strain ε11 behavior for a 

compression loading along the x-axis. 

Given that the size of the RVE at the local scale is arbitrary, two possible 

approaches were evaluated: 

1. Considering a fixed RVE size equal to the diameter of the beam that 

constitutes the specimen (1,31 mm). 

2. Calculating the individual sides of the RVE while taking into account the 

probability of defects appearing in the model. This approach calculates a 

volume of defects for each defect class within the specimen and 

determines the RVE size, which will vary for each defect class. In this 

latter case, the volume fraction of each defect is used to change the size 

of the RVE based on the volume fraction of each defect class. 

The volume of the ideal specimen is known to be 𝑉𝑖𝑑𝑒𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 = 8750 𝑚𝑚3, 

while the volume of the real specimen, obtained from scans, is 𝑉𝑟𝑒𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 =

6500 𝑚𝑚3. Therefore, the total volume of defects in the specimen is 𝑉𝑡𝑜𝑡 𝑑𝑖𝑓𝑒𝑐𝑡𝑠 =

2250 𝑚𝑚3. 

The volume occupied by defects belonging to a given class 𝑉𝑡𝑜𝑡,𝑐𝑙𝑎𝑠𝑠 is calculated 

as follows: 

                                                  𝑉𝑡𝑜𝑡,𝑐𝑙𝑎𝑠𝑠 = 𝑝𝑐𝑙𝑎𝑠𝑠 ∙ 𝑉𝑡𝑜𝑡 𝑑𝑒𝑓𝑒𝑐𝑡𝑠                                   (5.1) 

Dove  𝑝𝑐𝑙𝑎𝑠𝑠  represents the probability of each defect class.  

So, the volume fraction of each defect class 𝑣𝑜𝑙 𝑓𝑟𝑎𝑐𝑐𝑙𝑎𝑠𝑠 will be:    

                                                 𝑣𝑜𝑙 𝑓𝑟𝑎𝑐𝑐𝑙𝑎𝑠𝑠 =
𝑉𝑡𝑜𝑡,𝑐𝑙𝑎𝑠𝑠

𝑉𝑖𝑑𝑒𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
                                     (5.2) 
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Also, the volume of each individual defect 𝑉𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑒𝑓𝑒𝑐𝑡 is known and calculable 

as the volume of a sphere:  

                                                 𝑉𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑒𝑓𝑒𝑐𝑡 =
4

3
𝜋 ∙ 𝑑𝑑𝑒𝑓𝑒𝑐𝑡

3                                        (5.3) 

 

It becomes possible to determine the RVE's volume 𝑉𝑅𝑉𝐸,𝑐𝑙𝑎𝑠𝑠 for each defect 

class, and consequently its side length 𝑙𝑅𝑉𝐸,𝑐𝑙𝑎𝑠𝑠.   

This approach assumes that we maintain the volume fraction of each defect 

class both at the macroscopic level of the specimen and at the microscopic level 

of the RVE. This ensures the calculation of equivalent properties. 

                               𝑉𝑅𝑉𝐸,𝑐𝑙𝑎𝑠𝑠 =
𝑉𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑒𝑓𝑒𝑐𝑡

𝑣𝑜𝑙 𝑓𝑟𝑎𝑐𝑐𝑙𝑎𝑠𝑠
→  𝑙𝑅𝑉𝐸,𝑐𝑙𝑎𝑠𝑠 = √𝑉𝑅𝑉𝐸,𝑐𝑙𝑎𝑠𝑠

3                    (5.4) 

 

In Table 4.2, the results obtained using this method are presented, where the 

respective side length to assign to the RVE can be observed for various defect 

classes. 

 

dCLASSE 

[mm] 

Defect volume 

(sphere) [mm3] 

Probability VCLASS  in 

specimen 

[mm3] 

Vol_frac 

classe  

VRVE 

[mm3] 

Side RVE 

[mm] 

0.038 2.87309E-05 0.0137 30.825 0.0035229 0.0082 0.2013 

0.052 7.36222E-05 0.0142 31.95 0.0036514 0.0202 0.2722 

0.065 0.000143793 0.0453 101.925 0.0116486 0.0123 0.2311 

0.091 0.000394569 0.0477 107.325 0.0122657 0.0322 0.3180 

0.104 0.000588977 0.069 155.25 0.0177429 0.0332 0.3214 

0.117 0.000838603 0.056 126 0.0144000 0.0582 0.3876 
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0.13 0.001150347 0.065 146.25 0.0167143 0.0688 0.4098 

0.143 0.001531111 0.067 150.75 0.0172286 0.0889 0.4463 

0.156 0.001987799 0.056 126 0.0144000 0.1380 0.5168 

0.169 0.002527311 0.093 209.25 0.0239143 0.1057 0.4728 

0.182 0.003156551 0.084 189 0.0216000 0.1461 0.5267 

0.195 0.003882419 0.072 162 0.0185143 0.2097 0.5941 

0.208 0.004711819 0.069 155.25 0.0177429 0.2656 0.6428 

0.221 0.005651652 0.037 83.25 0.0095143 0.5940 0.8406 

0.234 0.006708821 0.039 87.75 0.0100286 0.6690 0.8746 

0.247 0.007890227 0.026 58.5 0.0066857 1.1802 1.0568 

0.26 0.009202772 0.018 40.5 0.0046286 1.9883 1.2574 

0.27 0.010305995 0.018 40.5 0.0046286 2.2266 1.3058 

0.286 0.01224889 0.012 27 0.0030857 3.9695 1.5834 

0.299 0.013996266 0.01 22.5 0.0025714 5.4430 1.7591 

0.312 0.01590239 0.009 20.25 0.0023143 6.8714 1.9011 

0.325 0.017974164 0.006 13.5 0.0015429 11.6499 2.2669 

0.338 0.02021849 0.007 15.75 0.0018000 11.2325 2.2395 

0.351 0.02264227 0.005 11.25 0.0012857 17.6107 2.6017 

0.363 0.025044854 0.0045 10.125 0.0011571 21.6437 2.7868 

0.376 0.027833137 0.004 9 0.0010286 27.0600 3.0022 

0.389 0.03082105 0.003 6.75 0.0007714 39.9532 3.4186 

0.402 0.034015494 0.0024 5.4 0.0006171 55.1177 3.8057 

0.415 0.037423372 0.00277 6.2325 0.0007123 52.5398 3.7454 

0.428 0.041051585 0.00191 4.2975 0.0004911 83.5838 4.3723 

0.441 0.044907036 0.00204 4.59 0.0005246 85.6071 4.4073 

0.454 0.048996627 0.00139 3.1275 0.0003574 137.0809 5.1562 

0.467 0.053327259 0.00123 2.7675 0.0003163 168.6047 5.5245 
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0.48 0.057905836 0.00118 2.655 0.0003034 190.8384 5.7573 

0.493 0.062739258 0.00092 2.07 0.0002366 265.2022 6.4248 

0.506 0.067834429 0.00102 2.295 0.0002623 258.6280 6.3713 

0.519 0.07319825 0.00073 1.6425 0.0001877 389.9450 7.3058 

0.532 0.078837623 0.00071 1.5975 0.0001826 431.8180 7.5585 

 

Table 4.2 Defect classes with their respective volume fraction and variable RVE side length 

 

 

The FE analyses were performed on a number of RVEs equal to the number of 

defect classes shown in Table 4.2.   

Depending on the loading conditions, what matters to know is the axial 

deformation (E11) and axial stress (S11), both oriented along the x axis. 

As an example, it is reported the analysis of the case corresponding to the defect 

class with ddefect = 0.169 mm, which is the one that has the highest probability of 

occurring in the structure and therefore a higher volume fraction. In this 

approach, this is the most critical class, as it has the smallest lRVE/ddefect ratio.  

In Figure 4.7, the contour plot on the Representative Volume Element (RVE) is 

shown with results in terms of strain E11 along the x axis. 
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Figure 4.7. Finite Element Analysis (FEA) results: deformation induced on the RVE 

 

What needs to be determined in order to establish the Stress-Strain curves of the 

RVE are the stress and strain values for each simulation output frame. For this 

purpose, a Python function named 'Data_extraction_odb' was created. Once 

executed within Abaqus CAE, it reads the output .odb file of the FEA 

simulation. For the specified stress and strain component, it calculates the 

integral average over all elements. Since the elements are 3D Tetrahedral, the FE 

model evaluates stress characteristics at integration points of each element, 

which often coincide with individual nodes. An average stress and strain value 

is calculated for each mesh element, and then an integral average is taken over 

all elements to obtain a unique value for the entire RVE. 

Given that there is compression along the x-axis, the directional stress and 

strain values S11 and E11 are the ones that need to be collected. The function 

also calculates the elastic modulus E for each output frame, useful for analyzing 

the convergence of the method in the elastic field. 
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Not all parts of the model will fail at the same time, but some more stressed 

elements will reach the value of ultimate strain sooner. In generating the 

response curves, this additional variability has been taken into account by 

counting the elements that exceed the real ultimate strain value at each 

response frame. The writing of the text file containing stress-strain point pairs 

stops at the frame where at least 10% of the mesh elements locally exceed the 

ultimate strain value. 

The choice was made to consider a certain number of elements relative to the 

total (in this case, 10%) rather than stopping when the first element exceeds that 

value. This is because based on the geometry of the cubic RVE and the presence 

of internal cavities, it was seen that Abaqus can generate distorted elements that 

develop stress concentrations and excessively high strain values. 

In this case, as evident in Figure 4.8, focusing on two Tetrahedral elements, 

there are high compression and tensile stress values developing at the 

connecting node. These high values distort the contour plot of the model. This 

is a mesh error and should not be considered in the result analysis. 

 

 

Figure 4.8. Stress concentration between two elements due to mesh errors 
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By setting upper and lower labels for the visualization scale a more detailed 

view of stress distribution can be seen (Figure 4.9). 

 

Figure 4.9. Stress distribution after setting a minimum and maximum value in the contour plot 

 

4.1.5 Analysis of the results 

 

Once all the finite element simulations for the defect classes constituting the 

defect distribution were performed, the .odb output files were analyzed to 

extract the stress values S11 and strain values E11 on the RVE.  

The Python function reads the odb file of the model and generates the following 

text file containing the averaged stress and strain values over the RVE, the 

elastic modulus E, as well as the volume of the RVE as the sum of the volumes 

of individual mesh elements.   

In Figure 4.10 is an excerpt from the file for the first 8 simulation frames, 

displaying the total volume of the RVE. 
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Figure 4.10. Stress and strain data, elastic modulus value obtained from the ODB file 

In each frame, a counter keeps track of the number of elements that have 

exceeded the imposed strain (equal to the material's ultimate strain) and 

displays this count on the screen. The Figure 4.11 shows an excerpt of the 

counting process. In this case, 1912 represents 10% of the total elements in the 

model. 

 

 

Figure 4.11. Count of elements at failure in the model 

 

The data obtained from the FEA simulations for each defect class are compiled 

into an Excel spreadsheet used as a data collection base. A Matlab script was 

then created to generate stress-strain plots based on the data from each class. 

As a result, families of curves are obtained for the two examined cases (fixed 

RVE with side equal to the beam's diameter and variable RVE based on the 
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volume fraction of each defect class). These curves shift downwards 

progressively compared to the experimental curve as the defect influences the 

mechanical strength. 

Different analysis approaches yield different results. For each approach, the 

obtained curves for defect classes are shown. Concerning the initial 

convergence of the method in the elastic range, it is observed that it is 

respected. Even with variations in the RVE size, it does not affect the 

mechanical behavior in the elastic range. 

In fact, by focusing on the elastic range (up to the maximum yield stress), it can 

be noticed that the elastic modulus achieved at the first simulation frame, 

representing the yield point, deviates slightly from the actual value (Figure 

4.12). 

 

 

Figure 4.12. Convergence of the elastic modulus for FEA simulations 
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Case with fixed RVE 

The simulations conducted on fixed-side RVEs with a diameter equal to the 

beam's diameter (1.31 mm) led to material responses in terms of stress-strain 

curves, as shown in Figure 4.13. Only specific defect classes were analyzed to 

establish an initial range. What can be observed is that for larger defects within 

the material (defect class diameter greater than approximately 0.3-0.4 mm), 

there is a variability in the curves compared to the experimental ones. 

For smaller defects, however, the influence of the defect is very minimal, 

meaning that the defect diameter is too small to impact the RVE size. In reality, 

this approach does not account for the probability of defect classes occurring 

within the section: defect classes with diameters smaller than 0.3 mm have the 

highest likelihood, so the volume fraction of defects must be taken into 

consideration. 
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Figure 4.13. Trend of curves with internal defects for fixed-side RVEs with a side length of 1.31 

mm. The green curve represents the experimental data of the specimen  

 

Case with variable RVE 

In the previously analyzed case, the volume fraction of each defect class, which 

is linked to the probability of occurrence in the specimen, was not considered. 

By following the approach described earlier, with RVEs varying based on the 

volume fraction occupied by each defect class, new stress-strain curves were 

obtained. 

In Figure 4.14 the results obtained by considering the failure of the RVEs when 

at least 10% of the mesh elements exceed the specified ultimate strain value are 

reported. Globally, the curves stop before reaching the failure strain indicated 

by the experimental curve. 
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Figure 4.14. Stress-strain curve variabile RVE: reduction of the ultimate strain for each curve 

when at least 10% of the elements reach failure  

 

Following this approach, however, larger defects, which according to the 

distribution from Micro-CT scans (shown in Figure 3.13 and Figure 3.14) have a 

lower probability of occurring in the sample, will also result in a larger volume 

fraction and therefore larger RVE dimensions, reducing the influence of the 

defect. The beams have a diameter of 1.31 mm, and considering larger RVEs for 

estimating mechanical properties would diminish the effect of larger defects. 

As a result, it was ultimately decided to set an upper limit of 1.31 mm for the 

RVE dimensions to accurately account for the potential impact of larger defects 
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within the beam. Although less likely, the presence of larger defects was indeed 

demonstrated by the Micro-CT scans of the sample. 

The new distribution for defect classes is presented in Table 4.3, considering the 

volume fraction occupied by defects and imposing an upper limit on the 

resulting RVE dimensions, determined by the 1.31 mm diameter of the beams. 

Using this limit on the size of the Representative Volume Element (RVE), new 

stress-strain curves have been determined, as shown in Figure 4.15. 

dclass [mm] Voldefect (sphere) 

[mm3] 

Probability Voldefect 

class[mm3] 

Vol-fraction 

defect class 

VolRVE 

[mm3] 

Side RVE 

[mm] 

0.038 2.87309E-05 0.0137 30.825 0.0035229 0.0082 0.2013 

0.052 7.36222E-05 0.0142 31.95 0.0036514 0.0202 0.2722 

0.065 0.000143793 0.0453 101.925 0.0116486 0.0123 0.2311 

0.091 0.000394569 0.0477 107.325 0.0122657 0.0322 0.3180 

0.104 0.000588977 0.069 155.25 0.0177429 0.0332 0.3214 

0.117 0.000838603 0.056 126 0.0144000 0.0582 0.3876 

0.13 0.001150347 0.065 146.25 0.0167143 0.0688 0.4098 

0.143 0.001531111 0.067 150.75 0.0172286 0.0889 0.4463 

0.156 0.001987799 0.056 126 0.0144000 0.1380 0.5168 

0.169 0.002527311 0.093 209.25 0.0239143 0.1057 0.4728 

0.182 0.003156551 0.084 189 0.0216000 0.1461 0.5267 

0.195 0.003882419 0.072 162 0.0185143 0.2097 0.5941 

0.208 0.004711819 0.069 155.25 0.0177429 0.2656 0.6428 

0.221 0.005651652 0.037 83.25 0.0095143 0.5940 0.8406 

0.234 0.006708821 0.039 87.75 0.0100286 0.6690 0.8746 

0.247 0.007890227 0.026 58.5 0.0066857 1.1802 1.0568 

0.26 0.009202772 0.018 40.5 0.0046286 1.9883 1.2574 

0.27 0.010305995 0.018 40.5 0.0046286 2.2266 1.3058 

0.286 0.01224889 0.012 27 0.00545 3.9695 1.3100 

0.299 0.013996266 0.01 22.5 0.00623 5.4430 1.3100 

0.312 0.01590239 0.009 20.25 0.00707 6.8714 1.3100 

0.325 0.017974164 0.006 13.5 0.008 11.6499 1.3100 

0.338 0.02021849 0.007 15.75 0.00899 11.2325 1.3100 
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0.351 0.02264227 0.005 11.25 0.01007 17.6107 1.3100 

0.363 0.025044854 0.0045 10.125 0.01114 21.6437 1.3100 

0.376 0.027833137 0.004 9 0.01238 27.0600 1.3100 

0.389 0.03082105 0.003 6.75 0.01371 39.9532 1.3100 

0.402 0.034015494 0.0024 5.4 0.01513 55.1177 1.3100 

0.415 0.037423372 0.00277 6.2325 0.01665 52.5398 1.3100 

0.428 0.041051585 0.00191 4.2975 0.01826 83.5838 1.3100 

0.441 0.044907036 0.00204 4.59 0.01998 85.6071 1.3100 

0.454 0.048996627 0.00139 3.1275 0.02179 137.0809 1.3100 

0.467 0.053327259 0.00123 2.7675 0.02372 168.6047 1.3100 

0.48 0.057905836 0.00118 2.655 0.02576 190.8384 1.3100 

0.493 0.062739258 0.00092 2.07 0.02791 265.2022 1.3100 

0.506 0.067834429 0.00102 2.295 0.03017 258.6280 1.3100 

0.519 0.07319825 0.00073 1.6425 0.03256 389.9450 1.3100 

0.532 0.078837623 0.00071 1.5975 0.03507 431.8180 1.3100 

 

Table 4.3 Defect classes with the imposition of a maximum limit on the RVE side equal to the 

beam diameter 
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Figure 4.15. Stress-strain curve variabile RVE: new family of curves obtained with the updated 

class distribution  

 

While an improvement has been achieved, the variability among the class 

curves is not so pronounced. Furthermore, having a cubic Representative 

Volume Element (RVE) of the same size as the structural beams can lead to an 

underestimation of the defect's influence, as there is more material than in the 

real case. As a result, the curves deviate less from the nominal value. 

To address these issues, a cylindrical-shaped RVE representing a portion of the 

structural beam was concurrently analyzed. 
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4.2 Multiscale analysis with cylindrical RVE 

 

As previously mentioned, the use of a cubic Representative Volume Element 

(RVE) at the micro-scale presents some challenges in this case. For the larger 

defect classes, the size of the RVE becomes comparable to that of the lattice 

structure's beams. Consequently, the assumptions of multi-scale analysis with 

periodic boundary conditions break down, and the square cross-section of the 

RVE is no longer comparable to the circular cross-section of the structural rods. 

Therefore, it is advisable to consider a second type of local-scale elements: 3D 

models of circular-section beams (cylindrical RVE). 

 

4.2.1 Model geometry 

 

The geometric model consists of a cylinder with a diameter of 1.31 mm (the 

actual diameter of the structural beam) and a height of 1 mm (corresponding to 

the mesh size at which the lattice structure of the sample will be discretized). 

Within this cylinder, spherical defects have been randomly placed, 

corresponding to the defect classes analyzed earlier (Figure 4.16). 

 

Figure 4.16 3D beam model with an internal spherical cavity created in Abaqus CAE 
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4.2.2 Boundary conditions 

 

The loading and boundary conditions imposed on the element ensure 

compression of the model without restricting translations on the two faces, 

allowing them to expand freely during compression. 

On one face of the cylinder, a symmetry constraint has been applied with 

respect to the axis of the cylinder. Unlike a fixed constraint, a symmetry 

constraint allows translation along the plane's axes while blocking rotations. 

On the opposite face, a compressive displacement is applied. To achieve this, it 

was found that the best way to transmit the load to the face is by creating a 

rigid interaction between a master node, called the reference point, and all the 

nodes on the face. The reference point has been set to undergo a displacement 

of u1 = 0.1 mm in compression along the x-axis while all other translations and 

rotations are constrained (Figure 4.17). 

 

 

Figure 4.17 Creating rigid interaction with the face nodes and defining displacement boundary 

conditions 
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4.2.3 FE simulations  

 

As in the previous case with the cubic RVE, finite element method (FEA) 

simulations were performed for each of the 38 defect classes discretized by the 

probability distribution of defects.   

In Figure 4.18 and Figure 4.19, the contour plots on the cylindrical 

Representative Volume Element (RVE) are presented with results in terms of 

strain and stress, respectively. 

 

Figure 4.18 Deformed configuration of the beam with a contour plot of strain E11 
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Figure 4.19 Deformed configuration of the beam with a contour plot of stress S11 

 

Analyzing the deformation of the model, it is observed that the first elements to 

reach failure are those near the spherical void of the defect, as shown in Figure 

4.20. 

Also, it was determined that the shape of the beam is such that it does not 

produce distorted elements. Therefore, in this case, it was useful to analyze the 

threshold parameter for elements reaching failure relative to the total mesh 

elements. A sensitivity study was conducted, examining the variation of the 

maximum failure load as a function of the threshold value for elements 

reaching failure, while keeping the model of the beam with an internal defect 

fixed. 

Keeping the diameter of the internal spherical cavity fixed (it was considered d 

= 0.312 mm, corresponding to the ID = 21 class), several FE simulations were 

repeated on the RVE, interrupting the writing of stress-strain values from the 

odb file for different fracture element threshold values. 
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As seen in Figure 4.21, there is a significant decrease in the maximum load as 

the threshold value increases. 

 

 

Figure 4.20 First element to fail within the beam near the spherical cavity 

 

 

 

Figure 4.21 Variation of maximum stress with respect to the failure threshold of elements 
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As an example, the σ-ε curves for the defect classes, obtained by considering 

failure at the first mesh element of the model, are shown in Figure 4.22. It is 

noticeable that, at the same strain level, there is a decrease in the achieved stress 

and a greater variability between the curves compared to the case with the RVE. 

  

Furthermore, there is an additional variability associated with the position of 

the spherical defect within the model: the positions of the sphere centers are 

randomly distributed within the material, but a defect closer to the edge results 

in the first mesh element failure occurring at lower stress and strain values 

compared to a scenario with a central defect. 

These curves were subsequently used to define the material properties of each 

lattice structure element in the sample. 

 

Figure 4.22 Distribution of σ-ε curves obtained using local-scale 3D cylindrical elements  
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Comparing the results obtained using cylindrical beam-type Representative 

Volume Elements (RVEs), it can be observed that the convergence of the 

fracture load as a function of the number of elements to failure leads to more 

accurate results compared to the case with cubic RVEs. In the case of cubic 

RVEs, the presence of distorted mesh elements could lead to inaccuracies in 

determining the maximum load. The most accurate condition is indeed 

achieved by interrupting the stress-strain curve when the first mesh element 

fails, and this can only be achieved using cylindrical RVEs. 

Furthermore, cubic RVEs that reach a size equal to or greater than the beam 

diameter of the specimen do not provide a correct approximation of the 

problem at a local scale. Finally, when the strain is held constant, there is 

slightly more variability between the curves of different defect classes when 

using cylindrical RVEs. 

For these reasons, curves obtained with cylindrical RVEs will be used to define 

the MATERIAL CARD in finite element simulations of the lattice structure 

model. 
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5 FEA Modeling of the influence of defects 

 

The analyses carried out at the local scale on Representative Volume Elements 

(RVE) with defects allowed obtaining stress-strain curves dependent on each 

defect class of the distribution shown in Figure 3.13 and Figure 3.14. 

The next step involves transitioning to the global scale to associate these 

properties with the lattice structure of the specimen. 

The lattice structure consists of interconnected beams. These beams have a 

circular cross-section with a diameter of 1.31 mm.  

The specimens analyzed have a cubic structure with dimensions of either 30 x 

30 x 30 mm or 20 x 20 x 20 mm. 

Using the FEA modeling software LS-Dyna, the lattice structure has been 

discretized with a 1D beam element mesh. Each element, which represents a 

section of the original beam, is defined in a CARD by various parameters, 

including section properties such as diameter, material properties, and node 

IDs connecting each element (Figure 5.1 and Figure 5.2). 
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Figure 5.1. 3D model of the lattice specimen type 30 x 30 x 30 mm 

 

 

Figure 5.2 3D model of the lattice specimen type 20 x 20 x 20 mm 

 

A fundamental aspect for the analysis is the method of dealing with internal 

defects within the structure's beams, as evidenced by Micro-CT scans 

performed on lattice specimens. 
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For this study, a multiscale approach was chosen to account for defects while 

remaining in a 3D element framework (RVE), and then extending the results to 

the global lattice structure. What was obtained from the simulations on the RVE 

are families of stress-strain curves that vary based on the defect class (spherical 

diameter) used in the FEA simulation. The defect classes, discretized according 

to the previously described experimental distribution, amount to 38 – one for 

each spherical defect diameter. 

The goal is to associate a different material card with each element of the lattice 

structure, assigned randomly. The input consists of the point-based curve 

obtained from one of the RVE simulations with an internal defect of a specific 

class. There will be 38 material response curves to be randomly associated with 

each element through its respective material card. In this way, the presence of 

internal defects is assessed on a local scale using 3D elements, and the material 

response obtained is associated with the global lattice structure. 

Pairs of stress-strain data obtained from Abaqus simulations for each defect 

class are collected in a supporting Excel file, which is then used as a basis for 

reading by a MATLAB function that generates Keyword files containing 

material, part, and element cards. The first one generated is the "material.k" file, 

containing diverse MATERIAL CARDs for each defect class. 

In Figure 5.3, one of the 38 MATERIAL CARDs is shown, where the variables 

mid (material ID) and lcss vary incrementally, assuming the value of the defect 

class number. Another important parameter is fail, which is necessary for 

defining failure for each material card. It is analogous to the ultimate strain 

value for the curve. Therefore, for each card corresponding to a defect class, the 

corresponding ultimate strain value is inserted based on the material curve. 

This parameter can be adjusted later to achieve results that are closer to the 

experimental curve. 
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Figure 5.3. Example of a card for a material class 

 

The "material properties" card is linked to a stress-strain curve obtained from an 

RVE simulation. The MATLAB function reads the data points from the input 

Excel document containing the curves and writes the stress and strain values 

for the corresponding defect class into the "material.k" file, specifically in the 

DEFINE_CURVE section. 

In the image below, the curve obtained for the first defect class is shown. The 

value of "lcid," to which "lcss" is linked, is indeed equal to 1. 

However, the values inserted as points in the curves are not the same as those 

obtained from the RVE simulations. The former are engineering values, while in 

LS-Dyna, what is required are true stress and true strain values, related by the 

following equations: 

 

                                                            𝜎𝑇 = 𝜎 (1 + 𝜀)                                                 (5.1) 

                                                            𝜀𝑇 = ln(1 + 𝜀)                                                 (5.2)                                

The stress-strain curves for all defect classes are then recalculated to assume 

true values.  
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In Figure 5.4, an excerpt from the Excel table is shown, containing all the True 

stress - True strain curves for data points in case of the first 5 defect classes 

analyzed using 3D beam elements. 

 

Figure 5.4. Pairs of points of true stress - true strain for the first 5 defect classes (failure at the 

first element) 

 

Another parameter that has been appropriately adjusted is the offa parameter, 

which represents the elastic strain at yield expressed with a negative sign. Like 

the fail parameter, this value is not consistent across all classes but undergoes 

some variations for each curve. 

Finally, the deformation values used by the solver are exclusively the 

components of plastic deformation (plastic strain) of the material. Therefore, it 

was necessary to subtract the value of offa from the total deformation data.  

Stress Strain Stress Strain Stress Strain Stress Strain Stress Strain

151.4267 0.002857 151.421 0.002857 151.4114 0.002857 151.3842 0.002856 151.3559 0.002856

237.7552 0.005714 237.7504 0.005714 237.7425 0.005714 237.7044 0.005714 237.6365 0.005709

264.0294 0.008571 264.0264 0.008571 264.0239 0.008572 263.9916 0.008572 263.9185 0.008564

280.7144 0.011428 280.7118 0.011428 280.7111 0.011429 280.6783 0.011429 280.6049 0.011418

295.458 0.014285 295.4547 0.014285 295.4537 0.014286 295.4171 0.014286 295.3461 0.014273

310.108 0.017142 310.1041 0.017142 310.1021 0.017144 310.0604 0.017143 309.9874 0.017128

323.3641 0.019999 323.3604 0.019999 323.3592 0.020001 323.3165 0.020000 323.2383 0.019983

335.3179 0.022857 335.3134 0.022856 335.3106 0.022858 335.2617 0.022857 335.1835 0.022838

346.2483 0.025714 346.2449 0.025713 346.2452 0.025716 346.1984 0.025716 346.1064 0.025693

354.0518 0.028571 354.0488 0.02857 354.0493 0.028573 354.0017 0.028573 353.9129 0.028547

361.5366 0.031428 361.5337 0.031427 361.5353 0.031431 361.487 0.031431 361.3969 0.031402

368.4914 0.034285 368.4881 0.034284 368.4886 0.034288 368.4362 0.034288 368.3457 0.034257

375.4451 0.037142 375.44 0.037142 375.4358 0.037146 375.3666 0.037145 375.2614 0.037111

380.6888 0.039999 380.6865 0.039999 380.6902 0.040004 380.6387 0.040004 380.5408 0.039966

385.5959 0.042856 385.5933 0.042856 385.5957 0.042861 385.54 0.042861 385.441 0.042821

390.5022 0.045713 390.4983 0.045713 390.4972 0.045719 390.4296 0.045719 390.3166 0.045675

394.1994 0.04857 394.1985 0.04857 394.0587 0.048533

396.9796 0.051427 396.9791 0.051427

399.7595 0.054284

402.5392 0.057141

Class 1 Class 2 Class 3 Class 4 Class 5
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For each of the DEFINE CURVE associated with one of the MATERIAL CARD 

with the parameter lcss, it can be obtained a card as shown in Figure 5.5. The x-

axis column (a1) corresponds to the true strain values, while the y-axis (o1) 

represents the respective true stress values for the RVE class.  

 

 

Figure 5.5. Example card with curve parameters for a material class 

 

Subsequently, the MATLAB function generates a "part.k" file where the created 

material cards are uniquely associated with each part. 

In Figure 5.6, the card for the first part is depicted with a pid (part ID) of 1, 

corresponding to the first defect class. A unique "mid" (material ID) of 1 is 

associated with pid = 1. The subsequent cards increment both pid and mid in the 

same manner until reaching the last defect class. 
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What remains constant in this case is the "section ID" (secid): there is only one 

for all parts (and all elements) as the diameter of the beam remains constant at 

1.31 mm. 

 

 

Figure 5.6. Example of linking a material card to a part card for a class 

 

In the "part.k" file, a card related to the Set Part is also automatically included 

through the script. This card contains the identifiers of all parts (all 38 part IDs) 

and ensures the contact between all the beams during the analysis, as they are 

interconnected with each other (Figure 5.7). 

 

 

Figure 5.7. Creation of the part set containing all part cards 

 

Finally, a "element_beam.k" file is created where, with each generation, the 

value of the "pid" (part id) is modified for each "elid" (element id). The "pid" 

value is assigned a value between 1 and 38, corresponding to a material card of 
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a defect class, and the assignment is proportional to each class's probability 

level. This is accomplished through a script using MATLAB's "randsample" 

function: 

% Definition of probabilities for each value of PID 

probability = [0.0137, 0.0142, 0.0453, 0.0477, 0.069, 0.056, 0.065, 0.067, 

0.056,0.093,0.084, 0.072,0.069,0.037,0.039,0.026,0.018,0.018,0.012, 0.01, 

0.009, 

 0.006, 0.007, 0.005, 0.0045, 0.004, 0.003, 0.0024, 0.00277, 0.00191, 

0.00204, 0.00139, 0.00123, 0.00118,0.00092, 0.00102, 0.00073, 0.00071];  

 

% Generation of the PID(k) values based on the probabilities 

pid = randsample(2:(n_classi+1), total_elements, true, probability); 

 

 

Pid array, which has a length equal to the number of elements, assigns to each 

value a random but weighted class of defect number based on its probability of 

occurrence. The focus is shown in Figure 5.8 on some model elements, where 

the association of each element with a "pid" value ranging from 1 to 38 can be 

observed, following the probability of each class. 
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Figure 5.8. Extract of the 'element_beam.k' file with random association of a PID to each 

element 

 

The tests performed on the specimen in Ls-Dyna involve a quasi-static 

compression tests. These tests are conducted by applying a displacements to a 

rigid wall in contact with the specimen. The output evaluated from these tests 

consists of Force-Displacement curves. 

By conducting a series of tests by considering random material cards within the 

model, indirectly accounting for the presence and positions of defects in the 

specimen, a family of Force-Displacement curves is generated.  

The positions of the defects can significantly influence the material's response. 

For instance, the presence of a larger internal porosity might have a greater 

impact if it is situated at the edges or at the junctions between two beams, 

where stress concentrations are higher. 

Through the use of an INCLUDE statement, these new files are referenced in 

the main keyword file. By importing this file into Ls-Dyna, the structure of the 
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specimen with material cards connected to each element is obtained. In Figure 

5.9 and Figure 5.10, each element resulting from the discretization of the 

specimen's beams is color-coded to represent one of the 38 associated material 

cards. 

 

Figure 5.9. Association of a different material card to each beam segment: different colors 

correspond to different MID (30 x 30 mm cell) 

 

 

Figure 5.10. Association of a different material card to each beam segment: different colors 

correspond to different MID (20 x 20 mm cell) 
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As observed, all 38 material cards associated with each element have been 

successfully imported (Figure 5.11). 

 

Figure 5.11. Visualization of properties for a material card in LS-DYNA 

 

The specimen created in LS-Dyna must numerically simulate the quasi-static 

compression mechanical behavior experienced by the real specimen. 

To simulate the compression tests on the specimen, two parallel rigid walls 

were created in contact with the specimen. The lower wall, which remains 

fixed, is common to both types of tests and was used to replicate the support 

plane. This lower wall was defined using the card 

"RIGIDWALL_GEOMETRIC_FLAT_DISPLAY." (Figure 5.12). 
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Figure 5.12. Quasi-static case: card for the fixed upper Rigid wall 

 

For the quasi-static test, the upper rigid wall was defined using the 

"RIGIDWALL_GEOMETRIC_FLAT_MOTION_DISPLAY" card. A linear 

displacement law was imposed on this upper wall (Figure 5.13). 

 

Figure 5.13. Quasi-static case: card for the lower rigid wall with linear displacement  

 

This law was included in a separate DEFINE_CURVE compared to the ones 

used for the material cards of the elements, and it was assigned an LCID value 

of 1 (Figure 5.14). Therefore, it was decided to vary the IDs of the material cards 

for the classes from the value 2 up to 39. 



 71 

  

 

Figure 5.14. Definition of linear displacement for the lower rigid wall: Assigning an LCSS 

value of 1 

 

A series of tests is performed, and for each test, the element_beam.k file is 

progressively generated to carry out a new association between element id and 

part id. This approach allows us to determine a family of curves, one for each 

test conducted, that defines a range of variability for the material's response. 

In Figure 5.15 the specimen is shown undergoing the described quasi-static 

compression test. 

 

 

 

Figure 5.15.  3D model of the test specimen for the quasi-static compression case with the 

presence of the two RIGID WALLS, fixed and movable (30 x 30 mm cell) 
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6 Finite Element Analysis on the specimen 

 

The final stage of the process involves performing Finite Element Analysis 

(FEA) on lattice specimen models in LS-Dyna, followed by comparing the 

numerical force-displacement response with the experimental material 

response. Figure 6.1 shows the flow chart summarizing the steps taken in the 

design of the model with a multiscale approach. 

 

Figure 6.1. Representative flow chart of the steps performed for the creation of the finite element 

model with a multiscale approach 

 

The Force-Displacement curves for the 30 x 30 x 30 mm and 20 x 20 x 20 mm 

cubic cells, as shown in Figure 6.2, have been obtained experimentally. 

While the curve related to the test on the 20 x 20 mm cell was interrupted 

beyond the first force peak, the one for the 30 x 30 mm cell was allowed to 
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continue even for larger displacements. However, this portion of the curve is 

not necessary for the analysis since it depends solely on the densification stage 

occurring during compression.  

Even after reaching structural failure, the structure continues to densify in the 

remaining space, resulting in an increase of the force in the terminal area of the 

curve. At the peak force, the fracture of a primary structural beam occurs, 

followed by numerous small fractures of other beams, producing a segmented 

pattern in the curve.  

 

 

 

Figure 6.2 Experimental curves obtained from quasi-static compression tests on specimens with 

respectively 20x20 mm and 30x30 mm cells 
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Subsequently, numerical FE simulations were conducted, randomizing the 

material.k, element_beam.k, and part.k files each time, as explained in Chapter 

5. Running the FE simulations in Ls-Dyna generates d3plot files containing the 

results of the analyses. 

In Figure 6.3, for three frames of the FE simulation are reported, together with 

the contour plot depicting the axial beam stress distribution on the specimen 

with a cubic lattice structure of 30 x 30 x 30 mm. It can be observed that the 

specimen is in an overall compressive state, causing some beams to experience 

tension while others undergo compression. This ultimately leads to failure after 

a small phase of plastic deformation. 
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Figure 6.3.Compression of the test specimen in 3 successive simulation frames with reference to 

axial beam stress  

 

The maximum force value attained is depicted in the frame of the d3plot, as 

shown in the middle frame of Figure 6.2, where the maximum deformation of 

the beams is observed before reaching failure. It is possible to generate the force 

vs. time curve by loading the binout file using the DATABASE_RWFORCE 

card. This card allows the extraction and analysis of force development on the 
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mobile rigid wall as a function of time: a 𝑑𝑡 = 10−5 𝑠 was set to obtain a 

smoother curve without significantly impacting the computation. 

In Ls-Dyna, by combining the force and displacement plots of the rigid wall 

(exhibiting a linear trend) as a function of time, it was possible to obtain the 

numerical force-displacement curve represented in Figure 6.4. The trend is 

associated with a lattice model of size 20 x 20 mm. 

 

 

Figure 6.4 Force-displacement curve for a defect-free case on a 20x20 mm cell, unfiltered 

 

As it can be observed, there is still a lot of noise resulting in an oscillatory 

pattern. A cosine filter with a frequency of 108 Hz was applied to reduce these 

disturbances, resulting in the curve shown in Figure 6.5. 
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Figure 6.5 Force-displacement curve for case without defects (20x20 mm cell), with a cosine 

filter at 108 Hz 

 

By creating new associations between material cards and beam elements, a 

series of simulations on the test specimen have been carried out to obtain a set 

of force-displacement curves. Subsequently, a comparison has been made 

between these numerical curves obtained from FEA analysis and the curve 

obtained experimentally with a quasi-static compression test conducted in 

laboratory. 

In Figure 6.6, an initial comparison in terms of Force-Displacement curves 

between numerical simulation and experimental test (black curve) is shown. In 

order to assess the model's behavior, the presence of defects was not considered 

in the initial analysis. In fact, a single material card corresponding to the defect-

free reference curve was assigned to all elements. The curves were truncated at 

a displacement of 4 mm, as the subsequent portion of the curve is not pertinent 

to the study. 
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Figure 6.6 Comparison between the experimental curve and the numerical curve for a nominal 

beam diameter of d=1.31 mm. Above: on a 20 x 20 mm cell. Below: on a 30 x 30 mm cell 

 

Firstly, it is immediately evident that the model's force behavior reaches higher 

peak values compared to the experimental specimen in both cases. 

Consequently, a more detailed analysis of the problem was deemed necessary. 
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As already indicated in Figure 3.10, the diameters of the beams in the specimen 

exhibit some variability, as measured under an electron microscope. 

Additionally, the presence of internal defects within the lattice structure is 

known to contribute to the reduction of the specimen's mass. 

In the study Mechanical equivalent diameter of single struts for the stiffness prediction 

of lattice structures produced by Electron Beam Melting [8], the variability of the 

experimental beam diameter in generating the Finite Element Analysis (FEA) 

model of lattice structure was analyzed. Beams produced through Additive 

Manufacturing processes exhibit low dimensional accuracy. Therefore, in 

accordance with the study, an analysis was conducted to determine a 

representative beam diameter (d_beam) for the FE model, taking into account 

the dimensional variations introduced by the production process and internal 

defects. 

In the first step, the two specimens with cell dimensions of 20 x 20 mm and 30 x 

30 mm were weighed, yielding the following masses: 𝑚3𝑥3 = 14,58 𝑔 e 𝑚2𝑥2 =

4,87 𝑔.  

An analysis was conducted to determine the effective beam diameter to be 

considered for the model. With a nominal diameter of 1.31 mm, the mass of the 

model can be overestimated due to the presence of mass portions that do not 

actively contribute to the load.  

As a result, a minimum limit diameter for the lattice specimen model in Ls-

Dyna was established to ensure an equivalent mass to that of the actual 

specimen. This convergence study led to the following beam diameters: 𝑑3𝑥3 =

1,0485 𝑚𝑚 e 𝑑2𝑥2 = 1,017 𝑚𝑚.  

The force-displacement curves obtained by simulating the 20 x 20 mm and 30 x 

30 mm cells are illustrated in Figure 6.7. 



 80 

 

 

Figure 6.7 Numerical force-displacement comparison curves between the diameter d=1.31 mm 

and the minimum diameter achieving the same mass as the real specimen. The upper graph 

corresponds to the 20 x 20 mm cell, while the lower graph corresponds to the 30 x 30 mm cell 

 

However, it is observed that, although the stiffness approximates well in the 

elastic region, the peak force reached is significantly lower than the 
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experimental one. Additionally, the diameter of the beams must be the same for 

both specimens. Therefore, a convergence study on the beam diameter was 

conducted to achieve a value that matched the experimental peak force while 

maintaining an acceptable stiffness. 

The analyses were initially performed on the cubic cell model of 20 x 20 x 20 

mm, given its lower computational cost for FE simulations. The analyses led to 

an effective beam diameter for the model equal to 𝑑𝑏𝑒𝑎𝑚 = 1,2 𝑚𝑚. Once this 

diameter was calibrated for the 20 x 20 mm cell, the model for the 30 x 30 mm 

cell with the same beam diameter was validated.  

The force-displacement response obtained from the FE simulations is shown in 

Figure 6.8. 
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Figure 6.8 Determination of the effective beam diameter d=1.2 mm and the corresponding 

Force-Displacement curve obtained (red curve). The upper graph corresponds to the 20 x 20 mm 

cell, while the lower graph corresponds to the 30 x 30 mm cell 

 

Regarding the peak force reached, the numerical model achieves values 

comparable to the experimental behavior in both specimens. Therefore, the 

calibration performed on the 20 x 20 mm cell is considered validated for the 30 x 

30 mm cell. 

However, the numerical curve (red) still does not provide a wholly acceptable 

approximation of the experimental behavior, especially concerning the load 

descent phase following the fracture of the first beams. Consequently, to 

calibrate the model correctly, it was necessary to adjust the fail parameter. This 

parameter represents the plastic strain at failure for the stress-strain curves of 

the RVEs with defects, which are included as MATERIAL CARD in the 

numerical model in Ls-Dyna. 
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In order to achieve proportional control for all defect classes, it was chosen to 

vary all fail values uniformly by using a unique multiplicative factor. This 

sensitivity study led to good approximation results using a multiplicative factor 

of 2 for both simulations on the 20 x 20 mm and 30 x 30 mm cells (Figure 6.9). 

 

 

Figure 6.9 Determination of the FAIL parameter achieving the best approximation (blue curve) 

of the experimental curve. The upper graph corresponds to the 20 x 20 mm cell, while the lower 

graph corresponds to the 30 x 30 mm cell 
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Once the calibration parameters for the numerical model were determined, the 

influence of internal defects was introduced. Seven tests were then conducted 

for both the 20 x 20 mm and 30 x 30 mm cells, varying the association of 

MATERIAL CARD to mesh elements proportionally to the defect distribution. 

This approach allowed obtaining a family of force-displacement numerical 

curves with a certain variability dictated by the defect distribution in the model. 

Figures 6.10 and 6.11 present the results obtained for the lattice specimen with 

20 x 20 mm and 30 x 30 mm cells, respectively. Compared to the case without 

defects, these new simulations show a reduction in stiffness in the elastic 

region, which better approximates the experimental case. In both cases, the 

peak force achieved slightly decreases compared to simulations without defects.

  

It can also be noted that the random insertion of defects influences only the load 

descent section with variability, while all curves maintain the same trend, and 

thus equal stiffness, in the elastic range. 
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Figure 6.10 Numerical test curves with internal defects and comparison with the experimental 

curve. Case with a 20 x 20 mm cell 

 

 

Figure 6.11 Numerical test curves with internal defects and comparison with the experimental 

curve. Case with a 30 x 30 mm cell 
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With the information obtained from these tests, the next step was to define an 

overall variability range of numerical results, useful for design purposes. To 

achieve this, a MATLAB script was developed. Given the numerical curves 

obtained from the FE analysis as input, the script calculates an average curve μ 

and the standard deviation σ for each point. 

Assuming that the numerical curves follow a Gaussian normal distribution, two 

upper and lower limit curves were determined to contain at least 95% of the 

values, according to the probability given by the Gaussian distribution: 

                                   95% = P{ μ −  1,96 σ <  X <  μ +  1,96 σ }                       (6.1) 

The calculated average curve and the band between the upper and lower limit 

curves are shown in Figure 6.12. 
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Figure 6.12 Determining the band of numerical curves and comparison with the experimental 

curve. The upper graph corresponds to the 20 x 20 mm cell, while the lower graph corresponds 

to the 30 x 30 mm cell 

Once the validity band was established, it was necessary to determine a force-

displacement curve to use as a reference during the design phase. The objective 

of this final step in the study was to obtain a general curve to be associated with 

a defect-free lattice specimen model. This curve could then be used in the FEM 
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design of lattice structures without having to incorporate actual defects into the 

model. 

For this purpose, the lower limit curve of the band was considered as the 

reference curve for the design (Figure 6.13). 

 

 

Figure 6.13 Comparison between the experimental curve and the design numerical curve. The 

upper graph corresponds to the 20 x 20 mm cell, while the lower graph corresponds to the 30 x 

30 mm cell 
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Conclusions 

 

In conclusion, this thesis work has enabled the definition of a finite element 

numerical model to simulate and predict the static compression behavior of 

lattice structures produced through Additive Manufacturing. Experimental 

tests were initially conducted on the lattice cell, along with Micro Computed 

Tomography scans that revealed the presence of internal defects due to the 

manufacturing process.  

Subsequently, data related to material properties, geometric characteristics, and 

the distribution of internal defects were used as inputs for creating the model 

using a multiscale approach. A representative volume element (RVE) at the 

local scale was defined with the same properties of the initial model, 

incorporating internal defects in the form of spherical cavities. These analyses 

led to the selection of a cylindrical RVE for assessing the optimal results in 

terms of stress-strain curves.  

The material response curves on the RVE were then defined as Material Cards 

at the macroscale, with a random association proportional to the defect 

distribution between the material cards and the beam elements of the lattice 

specimen model. 

Finite Element Analysis (FEA) simulations on the lattice structure model 

generated force-displacement curves, which were then compared with 

experimental behavior. Although a higher stiffness in the elastic range of the 

numerical model compared to the experimental one was observed, satisfactory 

approximation results were obtained, defining a validity range for the 

numerical results.  

The lower limit of the range was then considered as a design curve for potential 

defect-free specimen FE models. A limitation of the study is that the model 
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considers only the influence of internal defects in the beams, while analyzing 

the impact of surface roughness on mechanical strength could be beneficial.  

Subsequent studies could focus on a more in-depth analysis of the x, y, z 

position of the spherical cavity within the RVE. It has been observed that 

variability in both the radius and the elevation of the defect influences the 

maximum stress reached in the RVE at the time of the first mesh element 

failure. 

Further development involves exploiting the use of Machine Learning 

algorithms to ensure a faster estimation of the mechanical behavior of the lattice 

structure based on the defect distribution. Specifically, machine learning 

algorithms are a set of techniques that allow computers to learn from data and 

adapt automatically without being explicitly programmed. These algorithms 

can be trained using input data such as component geometry, process 

parameters, and material properties. They can analyze and learn patterns 

present in the data to create predictive models for mechanical behavior. 

The use of ML algorithms for simulating the mechanical behavior of 

components produced through Additive Manufacturing can lead to significant 

advantages, such as reducing development times and costs, optimizing 

performance, and rapidly exploring and evaluating various design solutions. 

Therefore, by implementing a Machine Learning algorithm appropriately 

trained with the stress-strain datasets of the already obtained RVEs, it would be 

possible to predict the mechanical behavior in the presence of new defects 

without having to perform new FE simulations. 
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Appendix 

Python function for extracting stress-strain data from Abaqus CAE odb file. 

def extract_data_from_odb(odb_path, output_file): 

    odb = openOdb(odb_path) 

 

    first_step_name = next(iter(odb.steps.keys())) 

    step = odb.steps[first_step_name] 

    with open(output_file, 'a') as file: 

        file.write( 

            "        Stress                Strain                         

Elastic Modulus                Max Element Strain \n") 

 

    outer_loop = False 

    for frame_index in range(1, len(step.frames)): 

        last_frame = step.frames[frame_index] 

        first_frame = step.frames[-1] 

 

        stress_field = last_frame.fieldOutputs['S'] 

        strain_field = last_frame.fieldOutputs['E'] 

        volume_field = last_frame.fieldOutputs['EVOL'] 

 

        stress_components = ['S11', 'S22', 'S33', 'S12', 'S23', 'S13'] 

 

        # Specify the stress component and consequently the strain 

component that you want to extract 

        component = 'S11' 

        element_data = {} 

        av_strain_vec = [] 

 

        count_label = 0 

        for element in odb.rootAssembly.instances['CUBE-1'].elements: 

            element_label = element.label 

            count_label += 1 

 

        print(count_label) 

 

        count = 0 
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        for element in odb.rootAssembly.instances['CUBE-1'].elements: 

            element_label = element.label 

 

            stress = 

stress_field.getSubset(region=element).values[0].data[stress_component

s.index(component)] 

            strain = 

strain_field.getSubset(region=element).values[0].data[stress_component

s.index(component)] 

            volume = 

volume_field.getSubset(region=element).values[0].data 

 

            average_stress = np.mean(stress) 

            average_strain = np.mean(strain) 

 

            # mark the elements that exceed the ultimate strain at 

each frame 

            if count < count_label * 0.0005: #define the threshold 

percentage of elements at failure 

                av_strain_vec.append(average_strain) 

 

                if average_strain < -0.1: 

                    count += 1 

                    print('Elements at failure %d' % count) 

                    print(element_label) 

 

            else: 

                outer_loop = True 

                break 

 

            element_data[element_label] = { 

                'Average Stress': average_stress, 

                'Average Strain': average_strain, 

                'Element Volume': volume 

            } 

 

        if outer_loop: 

            print('max reached') 
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            break 

 

        total_volume = sum([data['Element Volume'] for data in 

element_data.values()]) 

        total_stress = sum( 

            [data['Average Stress'] * data['Element Volume'] for data 

in element_data.values()]) / total_volume 

        total_strain = sum( 

            [data['Average Strain'] * data['Element Volume'] for data 

in element_data.values()]) / total_volume 

        max_strain = min(av_strain_vec) 

 

        elastic_modulus = total_stress / total_strain 

 

        with open(output_file, 'a') as file: 

            for element_label, data in element_data.items(): 

                average_stress = data['Average Stress'] 

                average_strain = data['Average Strain'] 

                volume = data['Element Volume'] 

 

            file.write("         {}         {}              {}              

{}\n".format(total_stress, total_strain, 

                                                                                         

elastic_modulus, max_strain)) 

    with open(output_file, 'a') as file: 

        file.write("Total Model Volume: {}\n".format(total_volume)) 

    odb.close() 
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