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Abstract

The next generation of nuclear fusion devices aims to achieve and sustain signifi-
cantly improved plasma performance compared to existing tokamaks. This requires
reliable quantification of plasma properties, power, and particle exhaust during
the design phase and diagnosis during operations. Moreover, unprecedented levels
of neutron irradiation are expected in pilot plants, which pose operational and
servicing challenges. In this context, synthetic diagnostics are valuable tools for the
fusion community. They support the interpretation of experimental data, which is
inherently challenging, and enable careful diagnostic design and integrated analyses
for capturing essential plasma features. The D-α camera, for example, can infer
properties of the neutral deuterium distribution in the chamber, making it useful
for diagnosing the edge plasma, particularly in detached divertor regimes.

This work, conducted in collaboration with Tokamak Energy Ltd, utilizes the 3D
Monte-Carlo inverse ray-tracing software CHERAB to simulate the 2D perspective
of a synthetic D-α camera within the ST40 tokamak. The primary objective is
to extract valuable neutral parameters from these simulations. To accomplish
this, the D-α emission source is created using simplified analytical models for
both the core and edge plasma. These models involve numerous free parameters,
necessitating their optimization to accurately match experimental results. Due
to the inherent characteristics of the Monte-Carlo code, the optimization process
necessitates the utilization of a derivative and gradient-free method. Specifically,
Bayesian optimization process is employed for this purpose. In the two plasma shots
examined, a notable level of qualitative agreement has been observed, although
achieving precise quantitative agreement poses a significant challenge due to the
inherent three-dimensional nature of the ST40 neutral emission originating from
the wall.
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Chapter 1

Introduction

1.1 Nuclear Fusion

Over the last few decades, the world has deal with mounting environmental concerns,
necessitating a radical shift away from fossil fuels and towards sustainable energy
alternatives. In this context, nuclear fusion emerges as one of the most promising
technologies for achieving a continuous and sustainable energy source. Specifically,
when integrated into a well-balanced energy mix, it has the potential to meet the
’base load’ requirement, which denotes the minimum power supply essential for
the grid. This capability is challenging for renewable energy sources due to their
intermittent nature.
Nuclear fusion is the atomic process through which lighter atomic nuclei merge
to form heavier ones. To initiate a fusion reaction, nuclei must be brought into
extremely close proximity at minuscule distances, on the order of 10−15 meters. At
this microscopic scale, the strong nuclear force overcomes electrostatic repulsion,
enabling the fusion reaction to occur. Achieving such tiny inter-atomic distances
necessitates providing the nuclei with very high kinetic energy, which in turn
demands elevating the temperature substantially. Consequently, it’s imperative
to heat the light nuclei to exceedingly high temperatures. The energy needed to
initiate fusion and the necessary temperature depend on the specific elements under
consideration, particularly on its cross section σ. The latter quantifies the efficiency
of the fusion reaction as function of the center-of-mass energy of the two reacting
particles, measured in energy units. This concept is visually illustrated in Figure
1.1.
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Introduction

Figure 1.1: Cross section σ of the different reactions specified in equation 1.1.
Notice that with "Total D-D" is indicated the sum of the cross section for both the
D-D reactions. [1].

D + T He3 + n + 17.6 MeV
D + D T + p + 4.03 MeV
D + D He3 + n + 3.27 MeV
D + He3 He4 + p + 18.3 MeV
He3 + He3 He4 + 2p + 12.9 MeV
p + B11 3He4 + 8.7 MeV

(1.1)

As can be notice, the most feasible reaction is the one between deuterium and
tritium.
As previously mentioned, in order to make fusion reaction occur, it is necessary to
raise the temperature of the deuterium and tritium mixture to a very high level,
on the order of 100 million kelvin. At these temperatures, the gas mixture exists
in a plasma state, where electrons are stripped from the nucleus due to intense
thermal excitation. This creates an ionized gas, where nuclei and electrons are
free to move. To ensure that the fusion reaction yields more energy than what is
required to initiate it, it is necessary to respect the Lawson (or ignition) criterion,
as expressed in the equation 1.2.

n · τE · T ≥ 3 · 1021 KeV s/m3 (1.2)
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Introduction

where n is the density of the plasma density, T is its temperature and τE repre-
sent the energy confinement time.
Over the years, various methods for confining the plasma while simultaneously meet-
ing the ignition criterion have been studied. The confinement methods primarily
investigated are:

• Inertial confinement. A tiny sphere (approximately 2.5 mm in diameter)
containing the mixture of deuterium and tritium is bombarded with a laser
beams, compressing the mixture in a controlled implosion.

• Magnetic confinement. This is the most commonly used method and the
one explored in this work. This type of confinement exploits the plasma’s
sensitivity to magnetic fields. In fact, the ions that make up the plasma
are electrically charged and experience a Lorentz force when subjected to a
magnetic field. Therefore, coils are used to generate high magnetic fields to
confine the plasma.

Regarding the method of magnetic confinement, several types of reactors have
been developed. The most widespread and utilized ones are the tokamaks and
stellarators (Figure 1.2a and 1.2), devices with toroidal geometry. In these reactor
types, to achieve a balance between the plasma’s pressure forces and the magnetic
forces, it is necessary to have a rotation of the magnetic toroidal field. The
fundamental and structural difference between the two reactor types lies in the
method used to generate this rotation of the toroidal magnetic field. In the case
of tokamaks, a poloidal magnetic field is generated by a toroidal plasma current,
while in the case of stellarators, the toroidal axis is physically rotated.

(a) (b)

Figure 1.2: Schematic representation of a tokamak (left)[2] and a stellarator
(right)[3].

Due to the more complex toroidal geometry required to control the plasma,
stellarators have so far been less successful than tokamaks.
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Introduction

1.2 The tokamak
The term "Tokamak" is an acronym derived from TOroidal’naha KAmera s MAg-
nitnymi Katushkami, which translates to "toroidal chamber with magnetic coils".
This innovative device made its debut in Russia in the early 1950s and was officially
introduced to the world during the International Conferences on the peaceful use of
atomic energy held in Geneva. The tokamak consists of various distinct regions and
apparatus, each of which can be further subdivided based on its specific function.
An illustration of the ITER tokamak, the upcoming nuclear fusion reactor presently
in the construction phase in Cadarache (France), is displayed in Figure 1.3. The
diagram is followed by a comprehensive list and discussion of its diverse components
is presented below.

Figure 1.3: Schematic view of the ITER tokamak. [4].

• Vacuum vessel (VV). The vacuum vessel, constructed as a hermetically
sealed, torus-shaped steel container, functions as the primary containment
shield for the fusion reaction. Its dimensions directly impact the volume of
the fusion plasma, consequently influencing the potential power output. To
facilitate access for heating systems, diagnostics, and remote maintenance
equipment, a specific set of ports are strategically distributed across the surface
of the VV.
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• Magnets. As mentioned, in a tokamak the magnets produce the magnetic
field that confines the plasma and prevents it from contacting the walls. There
are basically four type of magnets subsystems:

– Central Solenoid (CS). It acts as a transformer, where a time-varying
voltage is applied, creating a varying current in the plasma. In turn, the
plasma generates a poloidal magnetic field according to Ampere’s law.
This field is responsible for maintaining plasma equilibrium and partially
contributes to its heating.

– Poloidal Field Coil (PC). Situated at various heights in the toroidal
plane, are ring-shaped and primarily responsible for controlling the posi-
tioning and contouring of the plasma through the generation of a vertical
component of the magnetic field.

– Toloidal Field Coil (TC). The D-shaped magnets are positioned in the
poloidal plane enclosing the plasma, producing the toroidal component of
the magnetic field when electric current passes through them.

– Internal Coils. They produce a field necessary to enhance the stability
of the plasma and control it in case of disruptions, an abrupt loss of
confinement.

• Cryostat. A massive stainless steel container that envelops the VV and the
superconducting magnets. Within it, a high-vacuum environment is maintened
by specific cryopumps, essential for plasma stability and for the functionality
of the magnets. Additionally, it offers both radiation shielding and structural
support for in-vessel components.

• Heating system. To initiate the fusion reaction within the VV, the injected
gas must reach temperatures approaching 100 million Kelvin. While the ohmic
heating from the plasma current is insufficient for this purpose, additional
external heating methods are employed. These include neutral beam injection,
where high-speed neutral hydrogen atoms transfer energy to the plasma as
they decelerate, and high-frequency electromagnetic wave sources that induce
oscillating currents in the plasma. The long-term objective is to achieve
a self-sustaining burning plasma, therefore eliminating the dependence on
external heating.

• Divertor. This represents a crucial element for exhausting the heat coming
from the plasma. While neutrons are not affected by the magnetic field,
charged particles remain confined within the plasma. The power deposited
by these particles must be disposed of. Through the utilization of an extra
toroidal coil, the charged particles are directed downwards to the lower section

5
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of the VV, where they interact with the divertor walls. As a result, the divertor
necessitates exceptional durability and efficient cooling measures.

• Blanket. A metal mantle that separates the plasma from the superconducting
magnets. Indeed, the walls that directly interface with the plasma are referred
to as the First Wall. Besides thermally isolating the plasma from the rest of
the reactor, it serves the function of slowing down and shielding the neutrons
resulting from the fusion process. Additionally, to generate electrical energy, it
is necessary to extract thermal energy from the neutron slowing down, as they
are the only particles capable of escaping the produced magnetic fields. This
process would always be the responsibility of the blanket, given its shielding
function. Finally, the last task assigned to this component would be tritium
generation.

• Diagnostics. These instruments are essential for obtaining the measurements
required to regulate plasma performance and to gain a deeper insight into
plasma physics.

1.3 Spherical tokamak and ST40
A spherical tokamak (ST) is a variation of the tokamak fusion device characterized
by an extremely low aspect ratio denoted as R/a, with R and a representing,
respectivly,the major radius and the minor radius of the plasma. Typically, STs
exhibit an aspect ratio that is below 1.8, as illustrated in Figure 1.4, which provides
a visual contrast between the ST configuration and the conventional one. The
concept of ST was originally developed at the UKAEA Culham, notably through
the operation of the Small Tight Aspect Ratio Tokamak (START) experiment,
which ran from 1991 to 1998.

Figure 1.4: Comparison of the aspect ratios of a conventional tokamak and a
spherical tokamak[5].

STs offer several advantages, which are:
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• Operation at high βt. A key indicator of a tokamak’s performance is the
parameter β, defined as the ratio of plasma pressure p to magnetic pressure.
it can be experssed by:

β = p

B2/2µ0
(1.3)

where B is the magnetic field and µ is the magnetic permeability of the
vacuum. In particular, βt is obtained considering only the toroidal magnetic
field, usually denoted with BΦ. Physically, βt
represents the amount of plasma pressure that can be sustained by the magnetic
field, so a higher value indicates higher fusion power. Therefore, βt significantly
influences the cost of electricity generated by fusion power, as the production
of the toroidal magnetic field is a costly process. Therefore, a higher βt value
signifies a more efficient and economical tokamak design.

• Enhanced stability. STs devices exhibit naturally high elongation κ of the
plasma. The latter quantifies how different is the shape of the plasma from a
perfect circular one. The parameter κ is directly proportional to the safety
factor q. This quantifies the extent of twisting in the field lines. It represents
the average number of toroidal revolutions a field line needs to undergo to
complete one poloidal revolution. A higher q indicates a smoother twist in
the field line. Moreover, this enhances the MHD (magnetohydrodynamics)
stability of the plasma.

• Lower halo currents during disruptions. Halo currents occur during
plasma disruptions and channel large amounts of electrical current from the
plasma to the vessel walls. The associated intense heat and particle fluxes can
lead to erosion and damage of the materials comprising the vessel walls and
other plasma-facing components. Recent evidence suggests that halo currents
in STs might be comparatively smaller than those observed in conventional
tokamaks. Furthermore, these currents appear to exhibit a more uniform
distribution[6].

• Potentially high bootstrap fraction. The bootstrap current arises due to
a plasma’s pressure gradient, resulting in particle density fluctuations. These
density gradients create an electric field, that guides the current. Remarkably,
the bootstrap current’s orientation yields a magnetic field that reinforces
plasma confinementand enhance its stability. A greater proportion of bootstrap
current reduces the necessity for costly non-inductive methods to drive current
(such as neutral beam injection or radio frequency heating), thereby facilitating
stable operational conditions and costs.

On the other hand, the STs present some disadvantages, in particular regarding
the starp-up phase. This problems arise from the limited space dedicated to the

7



Introduction

central solenoid. In this sense, research are focusing on non-inductive techniques,
such as merging and compression[7] to start the plasma operation. Moreover, the
engineering complexity involved in the construction and operation of ST can be
significant. Achieving the necessary magnetic confinement and stability for sustained
fusion reactions can require intricate design solutions, complex manufacturing
processes, and advanced engineering techniques. This complexity can lead to
increased construction costs and technical challenges.

There are more than twenty ST devices operating worldwide; stands out among
these ST40, the privately funded, high-field spherical tokamak, owned and operated
by Tokamak Energy Ltd. A schematic view of the tokamak is pictured in Figure
2.1, while the physical characteristics are listed in Table 1.1.

Figure 1.5: Cross-section view of ST40[8].

Minor radius 0.2 m
Major radius 0.4 − 0.5 m
Aspect ratio 1.6 − 1.9

Plasma current 0.4 − 0.8 MA
Toroidal magnetic field 1.5 − 2.2 T

Table 1.1: Main parameters of the ST40 tokamak [9].
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The plasma is heated by two neutral beams injected tangentially in the same
direction, delivering 0.9 MW at 55 MV and 0.7 MW at 24 MV when working with
deuterium. For plasma start-up is used a merging compression technique, initiated
by two high-voltage in-vessel poloidal field coils. This method enables direct access
to high plasma currents without relying too much on the central solenoid. In fact,
only a smaller central solenoid, providing approximately 200 mVs of inductive flux,
is used to further boost the plasma current and maintain a flat-top current for
up to 200 ms. For what regards the diagnostic system, ST40 is equipped with a
complete set of magnetic field and flux sensors that allow the real-time control
and post-pulse magnetic reconstruction. The electron density is measured using
two sub-millimeters, both positioned at the midplane but one directed towards the
radial direction and one in the tangential one. For the monitoring of impurities
and Bremsstrahlung radiation, a full set of spectometers and line-filtered diodes is
employed. Furthermore, three cameras look inside the plasma chamber: an infrared
camera, a high-resolution fast visible and D-α camera; the latter is further treated
in Section 2.1.

1.4 Purpose and structure of this thesis
The scope of this thesis, carried out in collaboration with Tokamak Energy Ltd,
is to retrieve the neutral density distribution in the plasma chamber from the
data extracted from the D-α camera. For this purpose, the CHERAB code was
used[10]. An analitical neutral distribution was initially guessed, based on physical
considerations as specified in [11] and further investigated in 2.2, which rely on
numerous free parameters. These latter must be optimized to actually match the
experimetal results. To find the best values, Bayesian optimization procedure was
used.

In the next chapter, the physical and numerical background is explained, with
particular focus on the Bayesian optimizator theory. Than, the results of the
optimizator are presented for two different plasma shots.

9



Chapter 2

Theorethical background

2.1 The D-α camera

According to the Bohr atomic model, the energy of an electron in an atom orbit
assumes discrete values, called energy levels. As an electron transitions from a
higher energy level to a lower one, it emits a photon with energy equivalent to the
difference in energy between the two levels. Therefore, the photon emitted must
assume discrete values of energy, which fixed the frequency (or the wavelength) of
the light emitted. The sum of all the possible transition for an electron in a atom
is called spectrum. The term D − α emission refers to a specific spectral line in
the deuterium atom’s emission spectrum. In particular, this spectral line results
from the transition of an electron from the third energy level (n = 3) to the second
one (n = 2). The energy of the emitted photon is 1.9 eV, which corresponds to a
wavelength of 656.28 nm, thus can be observed as red light.

It is important to clarify that this emission pertains only neutral deuterium
atoms. In a tokamak, due to the high temperature, plasma is created where
electrons and nuclei are separated. Nevertheless, also neutral atoms are present
due to plasma neutralization at the wall[12]. When an ions strike to the wall, it
tends to stick to it long enough to recombine with an electron that is present on
the surface. Consequently, the resulting neutral atom are weakly bounded to the
surface and is emitted back in the plasma chamber. This process takes also the
name of plasma recycling.

The neutrals emitted from the wall are in the ground state, that is the lowest
energy state that its electrons can occupy. Neutrals can be excited mainly due
to elastic collision with the plasma particles (ions and electrons) and with other
neutrals. Another source of neutrals is the plasma recombination: ions recombine
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Figure 2.1: Schematic visualization of the plasma recycling process at the wall of
a tokamak.[12].

with an electron close to them:

D+ + e− → D (2.1)

The D-α camera is a device able to capture the photons emitted from the
electron transition from n = 3 to n = 2. In this thesis, two images coming from
two different plasma shots are analysed. In Figure 2.2 it is shown the the D-α
camera view for shot 9229 at 65 ms, while in Figure 2.3 the results from the shot
10041 at time 17 ms.

Figure 2.2: D-α camera view for shot 9229 at 65 ms.

11
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Figure 2.3: D-α camera view for shot 10041 at 17 ms.

Both plasma shots, produced in the same experimental campaign, reveal similar
features:

• Limited scenario. The plasma is limited to the center column and the
emission is concentrated in the proximity of the 8 discrete limiters.

• Up-down asymmetry. The emission is concentrated in the lower part of
the limiter. This is due to the asymmetry in the magnetic coil setup. This is
really a key aspect if we want a perfect match with the simulation results.

• Divertor emission. The emission not only comes from the limiters, but also
from the passive plates positioned at the top and at the bottom of the central
column.

2.2 Numerical modelling

2.2.1 The CHERAB code
CHERAB[10] is the Python library used for forward modelling diagnostics based
on spectroscopic plasma emission. It is constructed over the Raysect library[13],
a ray-tracing engine for geometrical optics applications. A ray tracer is an algo-
rithm designed to simulate the propagation of light, treating it as a bundle of
rays moving through a scene. The scene is made by 3D-modelled solid objects
and media which can both absorbe, diffuse, reflect or refract the light. In this
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work, the objects are limited to perfectly absorbing surfaces or isotropic radiation
sources. Moreover, the assumption of optimical thin medium is made for the
plasma[14]. The rays travel in straight lines until they encounter objects in the
scene. When interacting with materials, a contribution on emission is either added
or subtracted from the rays depending on the properties of the materials. The
process of ray tracing can be bidirectional, running in both forward and reverse
directions. In forward ray tracing, light is traced from sources through material
interactions to the observing surface, while reverse ray tracing works in the opposite
direction. The latter is generally less computationally expensive and it is the one
that Raysect normally use. Therefore, given an observing surface, the origins of the
rays straight lines are uniformly distributed all over it. Instead, the directions are
sampled through various methods; the most used ones are cosine-like distribution
across a hemisphere and uniform distribution within a cone. Than the algoritm
tests each ray for intersection with the object in the scene. Finally, relying on
a Monte-Carlo integration the samples are integrated in space all over the rays
to give the final output, which depends by the source specified (see Subsection 2.2.2).

The architecture of the CHERAB code is presented in Figure 2.4. As can be
seen, CHERAB utilizes a Raysect engine as its foundation, which defines core
ray-tracing functionalities and mesh handling. In the Core API Module are specified
all core functionality such as: how plasmas are defined, properties computed from
them, types of atomic data for spectroscopic calculations and the range of plasma
emissions that can be computed. Finally, in the user packages layer are present
libraries organized as scripts for particular study.

Figure 2.4: Onion shells CHERAB structure.
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2.2.2 Simulation setup
In this section is presented the simulation setup used for the reproduction of the
D-α camera. The framework is basically identical to the one presented in [11], of
which this work represents an extension. However, it is crucial to investigate deeply
the configuration in order to understand the role of the optimization procedure.
First of all, it is necessary to have a D-α radiation emission source. To construct
it, analitical model of plasma profiles of density and temperature, together with
neutral density is used as input to compute the fractional abundance of deuterium
with the electron in the third energy level using the Amjuel database[15]. For the
plasma, the assumption of identical ions and electron temperature Te = Ti = T
and density ne = ni = n is made. All the profiles are built using the normalised
poloidal flux coordinate ψN , calculated as :

ψN = ψ − ψ0

ψsep − ψ0
(2.2)

where ψ is the magnetic flux in the given location, ψ0 and ψsep are ,respectivily, the
magnetic flux at the magnetic axis and at the LCMS. The magnetic equilibrium
is reconstructed using EFIT[16]. A Gaussian shape centred on the magnetic axis
(ψN = 0) is assumed for both temperature Te and density ne core plasma profiles.

ncoree = nψN =0
e · exp(−ψ2

N/2σ2
n) 0 ≥ ψN ≤ 1 (2.3)

T coree = TψN =0
e · exp(−ψ2

N/2σ2
T ) 0 ≥ ψN ≤ 1 (2.4)

For the shot 9229, the density nψN =0
e and temperature TψN =0

e at the magnetic axis
are fixed from the experimental data. Instead, for the shot 10041 these data where
not available. The σ parameters in the Gaussian expressions are calculated as:

σn =
è
2 ln(nψN =0

e /nψN =1
e )

é−1/2
ψN > 1 (2.5)

σT =
è
2 ln(TψN =0

e /TψN =1
e )

é−1/2
ψN > 1 (2.6)

The value of plasma density nψN =1
e and temperature TψN =1

e at the LCMS are fixed
to reasonable values obtained from [12]. For the edge plasma, exponential decay
in the radial direction is assumed for both the profiles. Moreover, the plasma is
assumed to be isothermal in the poloidal direction, while the density follow the
2-point model[12]. The function F (θ) is used to make the density doubles when
moving from the outer mid-plane to the wall.

nedgee (ψN , θ) = max
è
nψN =∞
e ;nψN =1

e · exp(−(ψN − 1)/λψN
n ) · F (θ)

é
(2.7)

T edgee (ψN) = max
è
TψN =∞
e ;TψN =1

e · exp(−(ψN − 1)/λψN
T )

é
(2.8)
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For the parameters λψN
n and λψN

T are assumed values in order to reproduce the
estimation present in [12]. Instead, the value of nψN =∞

e and TψN =∞
e are fixed

respectivily to 10−14 m−3 and 0.1 eV. One and two dimensional plots of the
resulting plasma density and temperature are presented in the following figures.

Figure 2.5: One dimensional profiles of the plasma density (blue) and temperature
(purple).

For what regards the neutral density, no distinction has been made between
molecules and atoms. The profile is given by the superposition of two distinct
contribution:

• A background (BG) profile which monotonically increase with the magnetic
flux coordinate, described by the equation:

nBGg (ψN) = nψN =0
g + (nψN →∞

g − nψN =0
g ) · [1 + exp(−(ψN − 1)/µg)]−1 (2.9)

where the parameter µg quantify the sharpeness of the transition between the
edge and the core. A one dimensional profile is showed in Figure 2.8.

• To simulate the limiter recycling process, two Gaussian are added to the
background density. The latters are positioned at the strike points (Rs and
Zs are the radial and axial position) , retrieved in a qualitative way. Each of
these is described by the equation:

nRg (ψN) = nRg,0 · exp(−(R −Rs)2/2σg,R) · exp(−(Z − Zs)2/2σg,Z) (2.10)
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Figure 2.6: Two dimentional distribution of the plasma density in logaritmic
scale.

Figure 2.7: Two dimentional distribution of the plasma temperature.

The parameters σg,R and σg,Z are chosen according to the ionization mean
free path, that is larger in the axial direction respect to the radial one.

The resulting neutral density is illustrated in Figure 2.9.
Moreover, to allow a complete comparison with the experimental data, a neutral
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Figure 2.8: One dimensional reproduction of the background neutral density.

Figure 2.9: Two dimensional distribution of the deuterium neutrals in logaritmic
scale.

density source in added in the same fashion of the limiter one in the proximity of
the upper and bottom passive plates. As can be noticed, all the proposed analitical
models have user-define free parameters that must be choosen in order to represent
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correctly the experimental data, with remaining consistent with the physics. For
example, the plasma temperature at the separatrix TψN =1

e has been choosen equal
to 100 eV in [11] but it is arbitrary. A value of 150 eV or 50 eV is still physically
acceptable. Therefore, the discriminant within the possible value must be the
correct reproduction of the experimental data. This because the actual objective
of this analysis is to infer neutral parameters. In this sense, Bayesian optimization
can be a suitable tool for identify the best values and, consequently, obtaining the
best inference.

Once the neutral density, plasma density and temperature has been computed
it is possible to use the Amjuel database to obtain the fractional abundance of
deuterium with the electron in energy level n = 3, showed in Figure 2.10. Finally,
simply using the transition probability for n = 3 → n = 2, given by [17], it is possible
to obtain the two dimensional D-α source, expressed in [ph m−3s−1] and illustated
in Figure 2.11. The latter is then transformed in a three dimensional radiation
source using the piece-wise emission distribution presented in [11]. Furthermore, an
additional feature has been implement to better reproduce the experimental data.
In fact, the emission in the regions next to the limiters is not exactly null, but
decrease rapidly when moving away from them. To take into account this aspect, a
radiation source is added in the non-limiter width, proportionally to the ionization
mean free path of the neutrals calculated using Amjuel.

Finally, the source is sampled in CHERAB providing a result in [ph m−2s−1sr−2].
To allow the comparison with the experimental data, the output is firstly converted
in [ Wm−2] and than in illuminance using the conversion formula specified in [18].

2.2.3 Complete list of the parameters
A complete list of the free parameters present in analitical models is presented. For
each of them, is presented its physical meaning and the corrisponding reasonable
boundaries. These are than use as bound of the search space in the Bayesian
optimization.

• nψN =0
g . Neutral density in the core. Bounds [1013, 1015] m−3

• nψN →∞
g . Neutral density in the edge. Bounds [1014, 1016] m−3

• µg. Sharpness of the background neutral density. Bounds [10−4, 10−2]

• σg,R. Variance of the limiter Guassian in the radial direction. Bounds
[10−5, 10−3]

• σg,Z . Variance of the limiter Guassian in the axial direction. Bounds
[10−3, 10−1]
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Figure 2.10: Fractional aboundance of deuterium with electron in n = 3.

Figure 2.11: Two dimensional D-α emission source in logaritmic scale.

• nR,upperg,0 . Peak value of the upper limiter Guassian. Bounds [1017, 1019] m−3

• nR,lowerg,0 . Peak value of the lower limiter Guassian. Bounds [1013, 1015] m−3

• Rs. Radial position of the strike point at the limiter. Bounds 0.15, 0.25] m
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• Zupper
s . Axial position of the upper limiter Gaussian. Bounds [0.1, 0.3] m

• Z lower
s . Axial position of the lower limiter Gaussian. Bounds [−0.3,−0.1] m

• ndiv,upperg,0 . Peak value of the upper divertor Guassian. Bounds [1017, 1019] m−3

• ndiv,lowerg,0 . Peak value of the lower divertor Guassian. Bounds [1017, 1019] m−3

• Rdiv. Radial position of the strike point at the divertor. Bounds [0.2, 0.3] m

• Zupper
div . Axial position of the upper divertor Gaussian. Bounds [0.4, 0.5] m

• Z lower
div . Axial position of the lower divertor Gaussian. Bounds [−0.5,−0.4] m

• σdivg,R. Variance of the divertor Guassian in the radial direction. Bounds
[10−5, 10−3]

• σdivg,Z . Variance of the divertor Guassian in the axial direction. Bounds
[10−3, 10−1]

• nψN =1
e . Plasma density at the separatrix. Bounds [1018, 2 · 1019] m−3

• λψN
n . Plasma density decay length. Bounds [10−1, 5]

• TψN =1
e . Plasma temperature at the separatrix. Bounds [50, 150] eV

• λψN
T . Plasma temperature decay length. Bounds [10−2, 1]

• cupper. Geometrical correction factor for the upper limiter Gaussian to take
into account the asymmetry in the magnetic coil setup. Bounds [0, 0.122]

• clower. Geometrical correction factor for the lower limiter Gaussian to take
into account the asymmetry in the magnetic coil setup. Bounds [0, 0.122]

• csmoothing. Numerical factor to smooth the emission in accordance with the
mean free path. Bounds [10−3, 10−1]

Moreover, for the simulation of the shot 10041 two additional parameters are
inserted in the model:

• nψN =0
e . Plasma density at the center of the core. Bounds [1018, 4 · 1019] m−3

• TψN =0
e . Plasma temperature at the center of the core. Bounds [2500, 1000] eV
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2.3 Bayesian optimization

As mentioned previously, employing analytical models to characterize neutral
and plasma distribution represent a problem due to numerous free parameters
that require precise selection. To address this issue, Bayesian optimization (BO)
emerges as a possible solution[19]. It is a global optimization algorithm designed
for optimizing functions that are expensive to evaluate and must be treated as
black boxes. The simulation is expensive since require several minutes to execute,
bearing in mind that the exact duration depends by the desired statistical precision.

For the optimization, the outputs from the simulations are summarized and
combined with the experimental ones to form a target function f(x) that expresses
the difference between the numerical and the true data. f(x) is treated like a black
box since we don’t know a priori its functional properties, like concavity or linearity
that would make it easy to optimize using techniques that use this informations
to improve efficency. The input variables x are points in the n-dimensional input
parameter space listed in Table 104.

The BO algorithm is divided into two phases. Initially, the target function
is modeled as a probability distribution of potential target functions, constained
on the available data points. Subsequently, the second phase of BO involves
the formulation of an acquisition function. This function is designed to guide the
sampling process more efficiently than a random approach, guiding the optimization
process strategically. For what regards the first part of BO algorithm, the target
function is modelled Gaussian process (GP) regression; the approach is outlined in
Subsection 2.16. Subsequently, the scope of the acquisition function is described
in Subsection 2.3.2, with specific focus on improvement-based acquistion function.
A comprehensive listing of all variables utilized throughout the remainder of the
thesis is provided in Table 2.1.

21



Theorethical background

x Input data point
xp Input data prediction
y Output data point
ϵ Noise of the output data point

f(x) Model function value at the input data point
f(xp) Model function value at predictive point
µ0(x) Mean function of the GP

Σ0(x, x′) Covariance function (or kernel) of the GP

Table 2.1: Variables used for explanation of the BO theory.

2.3.1 Gaussian process regression
In general, a model M can be defined as a process that produces observations
based on an initial input dataset x. The resulting output, y, may be affected by
the influence of noise. To address this variability, we decompose the output into a
deterministic target function, f(x), and the noise component ϵ.

M : y(x) = f(x) + ϵ (2.11)

The aim is to make correct inference about f(x) and ϵ. In the framework of
Bayesian inference, the prior knowledge of this quantities in incorpored in the
model trought prior probability distribution. According to the Bayes theorem, we
can evaluate the posterior probability distribution of the unknowns quantities given
the observations and the model as:

P (f, ϵ|y,M) = P (y|f, ϵ,M) P (f, ϵ|M)
P (y) (2.12)

where P (f, ϵ|y,M) is the posterior probability, P (y|f, ϵ,M) is the likehood prob-
ability, P (f, ϵ|M) is the prior probability while P (y) is a normalization coefficent
called marginal likehood. In GP regression, the prior probability distribution of
functions f(x) is described by a Gaussian process, defined as[20]:

Definition 1 A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

A GP can be seen as an infinite multivariate normal distribution, described by
a mean vector µ0(x) and a covariance function Σ0(x, x

′). Consequently, the prior
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probability distribution of f(x) can be written as:

f(x) ∼ GP (µ0(x),Σ0(x, x′)) (2.13)

In our case, the random variable is represented by the value of f(x) given
input point x. Therefore, we have something that is finite that must linked to
something that is continuos, the function f(x). This is possible thanks to the
consistency condition, which imply that the joint distribution of a finite collection of
random variables doesn’t change if infinite variables are included in the distribution.

A GP is completely described by its mean and covariance function, defined as:

µ0(x) = E[f(x)] (2.14)
Σ0(x, x′) = E[(f(x) − µ0(x))(f(x) − µ0(x)] (2.15)

The kernel is selected in order to have a positive correlation between points that
are close in the input space. This implies a belief that their function values should
be more similar compared to points that are distant from each other. In this sense,
the covariance function express how the input data are correlated. Moreover, it
is possible to use periodic covariance function to incorporate periodic behavior of
the target function f(x). Therefore, the choice of this function is really important.
Two of the most used covariance functions are the squared exponential (SE) and
the Matérn. The SE has the form:

ΣSE(x− x′) = exp(−−(x− x′)2

2l2 ) (2.16)

The parameter l is called lengthscale. As can be notice, as the distance between
inputs increases relative to the lengthscale, the covariance approachs zero. Thus,
the lengthscale express how sharp are the variations of the function compared to
the one in the input variables. In Figures 2.12 and 2.13 are shown five functions
sampled from a GP with mean equal to 0 and SE kernel (left) and the corresponding
visualization of the covariance matrix (right) . From these, we can appreciate as how
the functions show rapid variation to small difference in the input variance when
the lengthscale is small. On the other hand, for bigger lengthscale the functions
exhibit smoother behaviour.

Another really used covariance function is the Matérn. It is represented by:

ΣM(r) = 21−ν

Γ(ν)

3√
2νr
l

4ν
Kν

3√
2νr
l

4
(2.17)

where r = |x − x′| is the absolute distance between two input points, ν is called
smoothness parameter, l is the lengthscale and Kν is a modified Bessel function.
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Figure 2.12: Five random samples from a Gaussian process characterized by SE
kernels, with mean 0 and lengthscale 0.05.

Figure 2.13: Five random samples from a Gaussian process characterized by SE
kernels, with mean 0 and lengthscale 0.5.

The meaning of the lengthscale is the same of the SE kernel. On the other hand, the
smoothness parameter,as the name suggest, express the regularity of the functions.
Higher value of ν correspond to smoother curves, as can be seen from the comparison

24



Theorethical background

between Figure 2.14 and 2.15.

Figure 2.14: Five random samples from a Gaussian process characterized by
Matérn kernels, with mean 0, l = 0.5 and ν = 1

Figure 2.15: Five random samples from a Gaussian process characterized by
Matérn kernels, with mean 0, l = 0.5 and ν = 5

In literature, the lengthscale and the smoothness parameters are called hyper-
parameters since they have influence on the prior distribution rather than on the
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model itself. Nevertheless, they must be tuned by the GP in order to improve the
knowledge about f(x).

Until now, we focused on the modelling of the prior distribution of f(x). In
order to be able to calculate the posterior distribution, which is the one used to
make predictions, we have calculate also the likehood and the marginal likehood
distribution, as expressed in equation 2.12. The likelihood is the probability of
measuring the observations y, given the model M , the target function f(x) and
the noise ϵ. Recalling equation 2.11, we have that the observation depends only
the function and the noise. As discussed before, f(x) is modelled as a multivariate
normal with the GP. In the same vay, the noise ϵ can be described as multivariate
normal distribution. Consequently, the observation y is represented as a multivari-
ate normal, with mean function and covariance function equal to the sum of the
ones for f(x) and ϵ. Typically, the noise is assumed to have zero mean and the
covariance function is built to have all the observation point uncorellated.

The marginal likelihood, also known as the evidence, is obtained by integrating
(or marginalizing) the product of the prior and likelihood distributions over all
possible function values.

P (y) =
Ú
P (y|f, ϵ)P (f, ϵ)dfdϵ (2.18)

This integral is often impossible to treat, but in the context of GP, the algebraic
properties of multivariate normal distributions allow for a closed-form expression,
resulting in a computationally efficient formula. The marginal likelihood is often
used for hyperparameter optimization. By maximizing the marginal likelihood with
respect to the hyperparameters, one can find the set of hyperparameters that best
explains the observed data.

Finally, the posterior distribution in equation 2.12 can be calculated. The latter
represent our current knowledge about the target function and the noise and can
be used to predict new data point ynew. The probability of ynew given the current
observation y can be expressed as:

P (ynew|y) =
Ú
P (ynew, f, ϵ|y)dfdϵ =

Ú
P (ynew|f, ϵ)P (f, ϵ|y)dfdϵ (2.19)

In the same way , we can infer new function values fnew from the posterior predictive
distribution, calculated as:

P (fnew|y) =
Ú
P (fnew, f, |y)df =

Ú
P (fnew|f)P (f |y)df (2.20)

where P (f |y) is the posterior marginalized over the noise. Since all the input
distributions are multivariate normal, also the posterior predictive distribution will
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be of the same kind. In Figure 2.16 is shown the final results of a GP regression
for an initial samples of three points.

Figure 2.16: The posterior predictive distribution, conditioned on three data
points sampled from the function sin(x) (red dots), is illustrated in the graph. The
20 drawn samples from the distribution are represented by green dashed lines, with
the shaded region indicating two standard deviations and the blue line indicating
the distribution’s mean.

2.3.2 Acquistion function

Once we have modelled the target function using GP regression, the next step
is to find the maximum. To do that an acquisition function is computed from
the posterior predictive distribution. Afterwards, the maximum of the acquisition
function is evaluated with standard optimization procedure, which will give the next
input point to evaluate. Numerous strategies exist for definition of an acquisition
function. In any case, it should be formulated in orfer to balance two important
features:

• Explotation. Exploration involves searching for new regions of the parameter
space, where the uncertainty of the model is important.
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• Exploration. Exploitation is the process of focusing on the known regions of
the parameter space. An acquistion function that prioritize explotation select
point close to the actual maximum value.

The acquisiton function used in this work is the Expected Improvement (EI), which
is also one of the most employed [19]. It quantifies the potential improvement of
the objective function over the current best-known value at a particular point in
the parameter space. In mathematical terms, the Expected Improvement at a point
x is defined as:

EI(x) = E[max(f(xbest) − f(x),0] (2.21)

where f(xbest) is the best value found, f(x) is GP regression model prediction at
input value x. At the end, the point with the highest expected improvement is
chosen as the next evaluation point.

2.3.3 TuRBO algoritm
BO performs well in on low dimensional problems (below than 20 input variables)
and small sample budgets. However, this is not the case of the current work, since
the dimensionality of the problem is higher (at least 23 parameters must be opti-
mized). For this reason, has been used the Scalable Global Optimization via Local
Bayesian Optimization, called TuRBO[21]. Classical BO relies on the GP regression
to built an accurate global model that is, in principle, precise enough to uncover a
global optimizer. But this is really challenging in high dimensionality problem. To
address these challenges, TuRBO doesn’t perform a global optimization directly,
but this goal is achieved by maintaining several independent local models, each
involved in a separate local optimization run.

The implementation of the TuRBO algoritm was made using the Python library
BoTorch[22].
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Results

In this final chapter, the results of the BO of the CHERAB simulation are presented.
The target function chosen to minimize is the mean square error MSE. It is defined
as the sum over all the pixels of the square of the difference of illuminance between
the experimental and numerical result, divided by the total number of pixels.

MSE =
qn.ofpixels
i=1 (illuminancecherab − illuminancesperim)2

n.ofpixels
(3.1)

Therefore, if the MSE is equal to 0, the two images are identical. Regarding the
BO, an initial set of training samples is generated with a size equal to two times the
number of parameters. This is done to ensure a good estimation of the posterior
predictive distribution. The optimization procedure is considered finished when no
better input point is found in 50 iterations. For all the CHERAB simulation, the
statistical noise is taken below the 5%, in order to ensure that this doen’t affect in
a consistent way the results.

3.1 Shot 9229
In Figure 3.1 is illustrated the final result of the BO for the shot 9229, in comparison
with the experimental results.

In general, a good qualitative agreement is achieved. The imbalance between
the upper and lower limiter is manteined, with an acceptable position and values
for the limiter emission. On the other hand, the maximum illuminance recorded by
the simulation is lower than the experimental one. Moreover, the simulation result
shows an higher elongation of the emission in the axial direction. This is mainly
due to the nature of the analitical model employed, since it is difficult to correct
approximate the limiter emission with a function.
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(a)

(b)

Figure 3.1: Experimental D-α view and the BO results for shot 9229.

The extracted neutral and plasma distribution are presented in the following
figures. Instead, in Table 3.1 are listed the optimized values of the free parameters.

An interesting thing to notice is that the BO wasn’t able to optimize the region
of the passive plates. In fact, from the CHERAB simulation can be notice that
seems that no emission is coming from this regions. In reality, the emission is
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Figure 3.2: One dimensional profiles of the plasma density (blue) and temperature
(purple) extracted from the final result of BO (shot 9229).

Figure 3.3: Two dimensional distribution of the plasma density extracted from
the final result of BO (shot 9229).

present, but the BO found really smaller values for the Guassian parameters and,
as result, their contributions is not captured. This can be due to the fact that the
MSE represent an integral value, and it is possible that the overall contribution to
the minimization of the function is not so important. For what regards the plasma
distribution, the profiles are quite similar to the ones find "manually" in [11], with
the exception of the plasma density. It exhibits a sharper decrease in the core,
while in the edge the exponential decay is much slower.

In Figure 3.7 is shown the convergence of the target function. As can be
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Figure 3.4: Two dimensional distribution of the plasma temperature extracted
from the final result of BO (shot 9229).

Figure 3.5: One dimensional reproduction of the background neutral density
extracted from the final result of BO (shot 9229).

appreciated, the search space is really huge and the MSE can acquire really high
value. Nevertheless, it is not possible to reduce a priori the search space, but can be
possible to run successive BO in order to reduce the dimensionality of the problem.

Instead in Figure 3.8 is shown the convergence of two different parameters,
respecticily the radial position of the limiter Gaussian and neutral density in the
core. As can be appreciated, the parameter search is gradually reduced when the
posterior predictive distribution acquire enough information to correctly model the
target function.

An important consideration regards the parametric study proposed in [11]. As
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Figure 3.6: Two dimensional distribution of the neutral density extracted from
the final result of BO (shot 9229).

nψN =0
g 8.3 · 1014 m−3 nψN →∞

g 3.7 · 1015 m−3

µg 2.8 · 10−3 σg,R 2.1 · 10−4

σg,Z 1.0 · 10−2 nR,upperg,0 3.2 · 1018 m−3

nR,lowerg,0 4.1 · 1018 m−3 Rs 0.17 m
Zupper
s 0.18 m Z lower

s −0.18 m

ndiv,upperg,0 8.6 · 1018 m−3 ndiv,lowerg,0 3.0 · 1018 m−3

Rdiv 0.21 m Zupper
div 0.42 m

Z lower
div −0.49 m σdivg,R 1.2 · 10−4

σdivg,Z 1.3 · 10−5 nψN =1
e 3.1 · 1018 m−3

λψN
n 3.88 TψN =1

e 112 eV

λψN
T 0.49 cupper 0.057

clower 0.121 csmoothing 0.1

Table 3.1: Final values of the free parameters after the BO for the shot 9229.

shown, not all the parameters have the same influence on the CHERAB result.
Nevertheless, the BO shows that also the parameter that have pratically no influence
on the MSE tends to converge, like the neutral density in the core. Anyway, the
results for these parameters must be treated carefully.
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(a)

(b)

Figure 3.7: Convergence of the MSE function with a zoom in the last iterations
(b) for shot 9229.
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(a)

(b)

Figure 3.8: Convergence of the radial position of the limiter Gaussian (a) and
the neutral density in the core (b) (shot 9229).
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3.2 Shot 10041
In Figure 3.9 is illustrated the final result of the BO for the shot 10041, in comparison
with the experimental results.

(a)

(b)

Figure 3.9: Experimental D-α view and the BO results for shot 10041.

The same general comment made for the shot 9229 are applicable for this case.
A good qualitative agreement is reached, an imbalance between the upper and
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lower limiter is kept. Anyway, the maximum illuminance not correspond to the
experimental one. In this case, the difference is actually more accentuated. The
same is true for the elongation of the emission in the axial direction.

The extracted neutral and plasma distribution are presented in the following
figures. Instead, in Table 3.2 are listed the optimized values of the free parameters.

Figure 3.10: One dimensional profiles of the plasma density (blue) and tempera-
ture (purple) extracted from the final result of BO (shot 10041).

Figure 3.11: Two dimensional distribution of the plasma density extracted from
the final result of BO (shot 10041).

Also in this case, the BO doesn’t optimize the region of the passive plates.
The plasma temperature and density shown the same profile of the previuos case.
The only difference is that with the magnetic configuration so compressed, the
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Figure 3.12: Two dimensional distribution of the plasma temperature extracted
from the final result of BO (shot 10041).

Figure 3.13: One dimensional reproduction of the background neutral density
extracted from the final result of BO (shot 10041).

elongation in the axial direction is emphasized.

In Figure 3.15 is shown the convergence of the target function. Respect to the
shot 9229, the convergence requirement is met much before. This can be due to
the lower experimental illuminance.

Instead in Figure 3.16 is shown the convergence of the radial position of the
limiter Gaussian and neutral density in the core. In this case, the parameters
convergence is much worst with respect to the shot 9229.
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Figure 3.14: Two dimensional distribution of the neutral density extracted from
the final result of BO (shot 10041).

nψN =0
g 4.1 · 1014 m−3 nψN →∞

g 4.4 · 1015 m−3

µg 1.5 · 10−3 σg,R 2.1 · 10−4

σg,Z 2.0 · 10−2 nR,upperg,0 6.4 · 1018 m−3

nR,lowerg,0 8.2 · 1018 m−3 Rs 0.15 m
Zupper
s 0.15 m Z lower

s −0.14 m

ndiv,upperg,0 1.1 · 1018 m−3 ndiv,lowerg,0 1.3 · 1018 m−3

Rdiv 0.23 m Zupper
div 0.46 m

Z lower
div −0.47 m σdivg,R 1.1 · 10−4

σdivg,Z 1.5 · 10−5 nψN =1
e 3.3 · 1018 m−3

λψN
n 3.63 TψN =1

e 51 eV

λψN
T 0.33 cupper 0.061

clower 0.105 csmoothing 0.045
nψN =0
e 2.5 · 1018 m−3 TψN =0

e 2333 eV

Table 3.2: Final values of the free parameters after the BO for the shot 10041.

39



Results

(a)

(b)

Figure 3.15: Convergence of the MSE function with a zoom in the last iterations
(b) for the shot 10041.
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(a)

(b)

Figure 3.16: Convergence of the radial position of the limiter Gaussian (a) and
the neutral density in the core (b) (shot 10041).
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Chapter 4

Conclusion

Synthetic diagnostics are becoming a flexible and accurate solution for analyse
experimental data in the nuclear fusion community. Of particular interest is the
D-α camera, from which it possible to infer the distribution of neutrals inside the
plasma chamber.

In this work, Bayesian optimization algoritm has been applied to the CHERAB
code in order to reproduce the experimental result of the D-α camera for two
plasma shot in the ST40 tokamak. Starting from an analitical model for the plasma
and neutral distributions, the CHERAB code is able to compute the 2D perspective
of a synthetic D-α camera. Unfortunatly, the analitical models rely on numerous
free parameters, that must be weel chosen in order to have an agreement with
the experimental data and actually infer the neutral distribution. To set these
parameters, Bayesian optimization algoritm has been used. In particular, since the
dimensionality of the problem is really high, the Scalable Global Optimization via
Local Bayesian Optimization (TuRBO) has been employed. The results obtained
for both shots reveal a remarkable qualitative agreement. Nevertheless, a good
quantitative agreement is not reached. This is due mainly to intrinsic three-
dimensionality of the ST40 emission and to the inadequacy of the analitical models
to catch these complicated features. Anyway, constructing D-α emission source
from sophisticated code, such as SOLPS-ITER, is computationally really expensive.
Therefore, the setup presented remain a valuable alternative if there is the necessity
of having a fast and meaningful analysis.
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