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“It must be splendid to command millions of people in great national ventures, to lead a hun-
dred thousand to victory in battle. But it seems to me greater still to discover fundamental
truths in a very modest room with very modest means - truths that will still be foundations
of human knowledge when the memory of these battles is painstakingly preserved only in the
archives of the historian.”
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Vertical displacements and MHD marginal stability in fusion tokamak plasmas

by Gabriele TADDEI

This vertical stability analysis is carried out on a tokamak plasma for nuclear fusion,
where plasma is confined through magnetic flux surfaces that are analytically de-
scribed as constant u surfaces. The first magnetic surface where plasma is contained
is the elliptical surface u = ub, which is then surrounded by a vacuum region, where
a magnetic separatrix, u = uX, is present. This latter is a magnetic flux surface with
two magnetic X-points produced by additional external currents (divertor tokamak
configuration), that also cause a vertical elongation of the confined plasma. Every-
thing is then confined inside a toroidal containment chamber, that in our case study
will be assumed to stand sufficiently far away from the plasma’s boundary, so that
it does not interfere with plasma stability.
Work [paper citation] analyzed vertical stability for the elongated confined plasma
with an ideal-MHD model, where perturbations are guided by a current sheet form-
ing on the plasma’s boundary and grow with very fast time-scales. An unstable be-
havior for plasma localized inside the first magnetic surface, u = ub, is found, where
perturbation grows in time as eγt, γ as the growth rate. When plasma is instead ex-
tended up to the magnetic separatrix, the effect of the current sheet at the plasma’s
boundary changes from destabilizing to stabilizing. This transition in plasma’s sta-
bility leads us to search a flux surface u = umarg, where marginal stability occurs.
The solution to our problem is carried out through the ideal-MHD energy principle.
The stability problem is reduced to the solution of an eigenvalue problem, where γ2

is the eigenvalue to be found and its sign determines whether our system is stable
or not. Since γ2 is a real number, consequently a positive value determines an unsta-
ble behavior of the system, whereas if negative, γ becomes purely imaginary with
null real part, therefore producing stability with an oscillatory behavior in time. The
problem of finding the marginal stability surface is thus reduced to search the flux
surface u = umarg for which γ2 is zero.
The normal mode formulation, that has been used for the problem, can be used to
define the correlation between the eigenvalue γ2 and the perturbed potential en-
ergy δW, as γ2 = δW(ψ̃∗, ψ̃)/K(ψ̃∗, ψ̃), where ψ̃ is the perturbed flux solution and
also the eigenfunction of our eigenvalue problem. K(ψ̃∗, ψ̃) is instead the perturbed
kinetic energy. Deriving the evolution of the perturbed potential energy δW as func-
tion of uc, starting from u = ub up to u = uX, allow us to locate the marginal
stability surface, u = umarg. Unfortunately, this formulation brings to the resolution
of a ill-conditioned system, causing the obtained results to have a level of accuracy
decreasing with |u| = |uc|; making it necessary to deal with extrapolation methods
in the last part of this work in order to obtain the all δW(uc) curve to find the marginal
stability flux surface.
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Chapter 1

Introduction

One of the most important challenges of today is to achieve more energy as possi-
ble from renewable resources. Nuclear fusion is one of the candidates that could be
the solution to suppress our need of green energy in the near future. Even though
fusion of atoms’ nuclei takes place around 1038 times per second inside the Sun and
in other billions of stars in the universe, achieving this mechanism is very difficult.
The high temperature/energies needed to fuse atoms and the confinement needed
to maintain the process running and plasma confined inside a specific region are
only two of the many problems present int today geometries that have been devel-
oped to achieve nuclear fusion inside earth’s laboratories. Plasma for nuclear fusion
normally consists of hydrogen nuclei and electrons in various isotopic combination.
For generic plasma different models, spanning from classical particles description
to statistical description as for fluids, are used to describe it. We are going here to
adopt the hydromagnetic model, called ideal-MHD model, where MHD stands for
Magneto-Hydro-Dynamic and ideal because resistivity is assumed to be infinite.
In this thesis the aspect related to stability will be taken under the lens. Plasma sta-
bility is very important in nuclear fusion, as not controlled instabilities could bring
to disruption events, with the end of the fusion process and the damaging of ex-
ternal materials. One of the most successful configurations where plasma is mag-
netically confined is the tokamak geometry, where the combination of toroidal and
poloidal fields gives life to a magnetic torus capable, inside which plasma is con-
tained. An important variation of this structure is the one where divertor plates are
adopted. These latter increase plasma confinement efficiency and its performances,
as it allows heat and fluxes exhausted by the plasma to be located inside a particular
region, as shown in figure 1.1.

FIGURE 1.1: Divertor tokamak section 1

1Figure from JET website
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The external divertor plates also elongate plasma by pulling it from up and
down. This elongation is directly connected to the instability problem. In fact, the
resulting equilibrium of the system is intrinsically unstable against vertical displace-
ments of the plasma column. In order to suppress this vertical instability, all shaped
tokamaks require a feedback stabilization system. In case of slow-time growing in-
stabilities this stabilization system is represented in essence by feedback currents
flowing in external coils that are capable of pushing back the plasma. In case of fast-
time growing perturbations, this active stabilization would take to long to stabilize
the plasma column, thus is essential to provide a fast stabilization mechanism. This
latter is achieved by placing a conducting wall near plasma boundary, where eddy
currents are generated leading to passive stabilization of the vertical instability. An
other important passive mechanism is the one that will be the main subject of our
analysis and it is related to current sheets forming on plasma’s boundary, and able
to stabilize in some conditions the perturbed plasma column.
This thesis is a continuation of the work done in [paper], extending the analysis per-
formed in two extremal scenarios to intermediate cases. The important result of the
mentioned paper is the derivation of the growth rate γ, illustrated later on, that is a
parameter to understand if the perturbed plasma will be result to be stable or not,
and how fast the oscillations regarding the stability/instability of the system will
be. More details about this problem will be given later on, for the moment this first
chapter will be devoted to introduce plasma, in particular why and how is used for
nuclear fusion.

1.1 Tokamak geometry

A lot of magnetic geometries have been proposed during the last century in order to
overcome different problems raising up in nuclear fusion. Here below is reported a
list 2, to understand the variety of ideas behind nuclear fusion.

Belt pinch Reversed field pinch
Cusp Screw pinch
Elmo bumpy torus Spherical tokamak
Field reversed configuration Spheromak
Force-free pinch Stellarator
Heliac Stuffed caulked cusp
High β stellarator Tandem mirror
Levitated dipole Theta pinch
Mirror Tokamak
Octopole Tormac
Perhapsatron Z-pinch
Plasma focus Z-pinch – hard-core

Of this long list two concepts have risen to the top, largely because of superior
overall plasma physics performance. These are the tokamak and the stellarator. Fo-
cusing on the first one, a general overview of its internal structure is proposed in
Figure 1.2. This is the original limiter configuration, in 1980s, of JET, Joint European
Torus. This machine could confine a plasma within a vacuum chamber having a
volume of about 102 m3. The major radius of the JET toroidal chamber is R0 ≈ 3 m,
the horizontal minor radius is a ≈ 1m and the vertical radius (the major semi-axis of
the nearly elliptical cross-section) is b ≈ 1.8 m . Its cross-section has a characteristic
D-shape. Typical JET operations involved a toroidal magnetic field of up to 4 T and

2List from [4]
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a plasma current of up to 5 MA (actually, the highest current achieved at JET was 7
MA, which is still today the world record current produced in a tokamak).
Plasma is contained inside the D-shaped vacuum chamber in order to maintain the
hydrogen plasma extremely pure, thus minimizing energy losses due to atomic re-
combination radiation. The typical density of the plasma in a tokamak is of the order
of 1019 particles per cubic meters, which is about 10−6 times the number of particles
in a cubic meter of ordinary air. Also the pre-plasma introduction vacuum con-
ditions must be extreme. In order to reach such extreme conditions in such a large
volume, the chamber is sealed to perfection and very powerful vacuum pumps must
be used.

FIGURE 1.2: JET (Joint European Torus) in 1980 3

4 Plasma is confined inside magnetic flux surface, where the magnetic field is ob-
tained from two different contributions, one toroidal and one poloidal. The toroidal
magnetic field is obtained with toroidal field coils, which wind around the vacuum
chamber from the outside in a solenoidal fashion, figure 1.3. The poloidal field is
produced by a toroidal current carried by the plasma, which in turn is induced by
transformer action, with the plasma itself playing the role of the secondary trans-
former circuit. The primary transformer current is flowing in inner poloidal field
coils through the geometrical axis of the toroidal vacuum chamber, see figure 1.4.

4Figure from Wikipedia JET page
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FIGURE 1.3: Toroidal field produced by external solenoidal coils 5

FIGURE 1.4: Poloidal field produced by current carried by the plasma
6

Finally, outer poloidal field coils, indicated in green in figure 1.5, are necessary
for plasma position and shaping, while in light blue is the resultant helical magnetic
field.

FIGURE 1.5: Tokamak magnetic field7

5Figure from professor Porcelli’s notes
6Figure from professor Porcelli’s notes
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We have illustrated how a tokamak is built and how plasma is confined inside
the vacuum chamber, the other important aspect is obviously the one regarding the
temperature in order to achieve fusion, in particular which sources provide heat in
order to arrive at proper working conditions. One form of plasma heating present
in all tokamaks is Ohmic heating due to the plasma current and the finite electrical
resistivity of the plasma. Indeed, a hot plasma is an excellent conductor, with a resis-
tivity comparable with that of copper. However, in contrast with ordinary metallic
conductors, as the plasma temperature is increased, plasma resistivity goes down as
η ∝ T−3/2. Hence, in large size tokamaks such as JET, ohmic heating alone cannot
bring the plasma temperature to the values that are required in a thermonuclear re-
actor, i.e., 10 − 20 keV. The maximum temperature that can be achieved at JET by
means of Ohmic heating alone is about 3 keV. Two main types of plasma heating
employed at JET and in most tokamaks are (see figure 1.6):

• Neutral Beam Injection (NBI): beam of high-energy neutrals (normally hydro-
gen atoms in various isotopic forms), with kinetic energies typically in the
range of 100 keV per neutral atom and beam powers of the order of tens of
MW, is injected into the plasma. Once inside, the beam particles become ion-
ized and transfer their kinetic energy to the plasma via Coulomb collisions.

• Radio-frequency heating: involves the injection into the plasma of high power
electromagnetic waves. These waves have special frequencies values that match
characteristic frequencies of the charged particle motion, such as the ion or the
electron cyclotron frequency, or of characteristic plasma waves. In this way, a
resonant interaction between the injected e.m. waves and the plasma occurs,
which allows for the absorption of the e.m. wave energy by the plasma.

FIGURE 1.6: NBI and radio-frequency heating 8

The last part we have to mention about tokamak’s geometry is related to pre-
vent the plasma-wall interaction. In the first generation tokamaks, the problem was
dealt with by the introduction of a limiter, i.e., a material surface within the toka-
mak vessel that defines the edge of the plasma and thus avoids contact between the
plasma and the inner wall of the vacuum chamber. However, as more and more
powerful tokamaks were built, limiters could not prevent heat and particle fluxes
exhausted by the plasma to reach the inner wall. The introduction of divertor con-
figurations, that we have mentioned in the beginning of this chapter (see figure 1.1),
somewhat ameliorated the problem and the resulting effect on plasma-facing com-
ponents, making it tolerable in present-day tokamak facilities.

7Figure from professor Porcelli’s notes
8Figure from JET website
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1.2 General definition

We start here by giving the definition for a generic plasma, followed by the analysis
of some important parameters.

A plasma is a ionized gas, electrically quasi-neutral and dominated by
collective phenomena.

To properly understand the given definition, a simple thought experiment will
be illustrated.
Considering a fixed charged particle inside the plasma, free particles will be at-
tracted up to a distance r where the electrostatic force starts to vanish. The accumu-
lation of particles around our charge will produce a shielding effect, thus reducing
the distance at which a free particle can feel the force produced by the fixed charge.
This distance is called Debye length, λD, and is what is needed to define the concept
of quasi-neutrality on a length scale.

λD =

√
T

4πne2 (1.1)

For a fusion tokamak plasma, where T ∼ 10 keV and n ∼ 1014 cm−3 (consult List of
symbols for unit of measures) λD ∼ 7 · 10−3 cm .
An other important parameter is the plasma frequency, or the characteristic inverse
time of charge separation. This is the frequency of harmonic electrons’ motion pro-
duced by electric fields, that are generated by the violation of charge neutrality be-
low Debye length scales. The characteristic time is define as

τP =

√
me

4πne2

In tokamak plasma, ne ∼ 1014 cm−3 and ωp ∼ 5.6 · 1011 s−1. As just said quasi-
neutrality does not imply the absence of electric fields, but their divergence is almost
zero

∇ · E = 4πe(ni − ne) ≈ 0

That implies that the plasma current must be divergence-free

∇ · ∇× B = 0 =
4π

c
∇ · J +

1
c
∇ · E

Because ∇ · J = 0, charges cannot accumulate in the plasma. Considering also the
charge continuity equation

∂ρ

∂t
+∇ · J = 0

with ρ ≈ 0 at time t0, the divergence-free condition ensures quasi-neutrality at all
times.
After these important quantities have been analyzed, is now clear that the conditions
for quasi-neutrality can be respected if the characteristic length L is much larger
than the Debye length, L ≫ λD, and if the plasma exists for a time τ larger then the
characteristic time scale, τ ≫ τP. This concept makes sense if the number of particles
inside a Debye sphere is large, 4π

3 λ3
Dn, and the inverse of such number (except for

the factor 4/3π) is called the plasma parameter:

g = (nλ3
D)

−1 (1.2)
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The condition g ≪ 1 is often taken as the definition criterion for a plasma. If this
condition is satisfied the inter-particle collision is weak, so a collective behavior can
dominate over individual particle behavior. With these conclusions we have now a
more clear understanding of what is plasma, more specifically of its definition. From
now on, we will focus on illustrating the magneto-hydro-dynamic model, which will
be the one used to describe a magnetically confined plasma in a divertor tokamak
configuration.
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Chapter 2

Ideal-MHD model

2.1 Ideal-MHD for nuclear fusion

As previously stated, we will make use of the magnetohydrodynamics (MHD), a
fluid model that describes the macroscopic equilibrium and stability properties of a
plasma. There are different version of the MHD model, the one that we are going to
use is the ideal-MHD model which assumes that the plasma can be represented by
a single fluid with infinite electrical conductivity and zero ion gyro radius.
MHD equilibrium and stability are necessary requirements for a fusion reactor. If
an equilibrium exists but is MHD unstable the result is almost always very undesir-
able. There can be a violent termination of the plasma known as a major disruption.
If no disruption occurs, the result is likely to be a greatly enhanced thermal transport
which is highly detrimental to fusion power balance. In order to avoid MHD insta-
bilities it is necessary to limit the regimes of operation so that the plasma pressure
and current are below critical values. However, these limiting values must still be
high enough to meet the needs of producing fusion power. In fact it is fair to say that
the main goal of ideal MHD is the discovery of stable, magnetically confined plasma
configurations that have sufficiently high plasma pressure and current to satisfy the
requirements of favorable power balance in a fusion reactor.

2.1.1 Description of the model

The ideal-MHD model provides a single-fluid description of long-wavelength, low-
frequency, macroscopic plasma behavior. The equations for this model are derived
from the four Maxwell’s equations and from equations deriving from a more fun-
damental kinetic model, which describes the behavior of the electron and ion dis-
tribution functions, from there some assumptions are made, based on the particular
operating conditions, in order to close the system and obtain the final solutions.
One important aspect regarding the assumptions made for this model is related to
the fact that plasma is collision dominated. Considering a thermonuclear plasma,
it can be shown that the collision frequency for electron-electron collisions is νcoll ∼
0.5 · 104 and the mean free path is λm f p ∼ 8 km. That means the assumption of high
collision dominance is never satisfied for a nuclear plasma. Even tough one of the
main assumption of the ideal-MHD is never satisfied, this is model still describes
plasma behavior surprisingly good. This is not "good luck", and the physical ex-
planation as to deal with the fact that those parts of the MHD model that are not
valid because of violation of the collision dominated assumption, are not directly in-
volved in many if not most phenomena of interest, thus making the model correctly
working for real conditions.
Ones the system is closed with the correct assumptions, the final equations describ-
ing the ideal-MHD model are:
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Mass
∂ρ

∂t
+∇ · (ρv) = 0

Momentum ρ
dv
dt

= J × B −∇p

Energy
d
dt

(
p

ργ

)
= 0

Ohm’s law E + v × B = 0

Maxwell ∇× E = −∂B
∂t

∇× B = µ0J
∇ · B = 0

(2.1)

In these equations, the electromagnetic variables are the electric field E, the mag-
netic field B, and the current density J. The fluid variables are the mass density ρ,
the fluid velocity v, and the pressure p. Also, γ = 5/3 is the ratio of specific heats
and dx/dt = ∂/∂t + v · ∇ is the convective derivative.
Observe that in ideal MHD the electromagnetic behavior is governed by the low-
frequency, pre-Maxwell equations. The MHD fluid equations describe the time evo-
lution of mass, momentum, and energy.
The mass equation implies that the total number of plasma particles is conserved;
phenomena such as ionization, recombination, charge exchange, and unfortunately
fuel depletion by fusion reactions, are negligible to a high order of accuracy on the
MHD time scale.

2.2 Conservation relations

The results obtained up to now must satisfy the basic conservation laws (locally or
globally). A canonical local conservation form is given by

∂()

∂t
+∇ · () = 0 (2.2)

Once the mass, momentum, and energy equations can be written in this form, it is
then straightforward to derive the global conservation relations. We will first start
from the MHD mass equation

∂ρ

∂t
+∇ · (ρv) = 0,

which is already written in the canonical form of a conservation law. So we can
easily state that mass is locally conserved.

2.2.1 Momentum conservation

Starting from momentum equation in 2.1.1, and using the tensor identity ∇ · (AC) =
(∇ · A)C + (A · ∇)C, after some calculations we can finally write the momentum
conservation law as follow:

∂ρv
∂t

+∇ · T = 0 (2.3)



2.2. Conservation relations 11

where the first term in the l.h.s of the equation represents the variation in the mo-
mentum within a volume element. This variation generated by the net flux of mo-
mentum, ∇ · T, through the boundaries of the volume element.
The term T contains

T = ρvv +

(
p +

B2

2µ0

)
I − 1

µ0
BB

where, ρvv is represents the Reynolds stress and is not important in studies of
plasma stability, where the equilibrium flows are assumed to be small or zero. The
remain contribution includes the effect of the plasma pressure and magnetic field. If
we consider a orthogonal coordinates system, where one coordinate is aligned with
along B, these contributions can be rewritten as

TB =

p⊥ 0 0
0 p⊥ 0
0 0 p∥

 (2.4)

where

p⊥ = p +
B2

2µ0
(2.5)

p∥ = p − B2

2µ0
(2.6)

These two contributions represent the total pressures perpendicular and parallel
to the magnetic field, respectively. In equations 2.5, the contribution coming from
particles pressure acts isotropically perpendicular and parallel to the field. On the
contrary, the pressure coming from the magnetic field produces a tension along the
magnetic field lines (negative contribution −B2/2µ0), while produces pressure per-
pendicular to the field line (positive contribution B2/2µ0). This anysotropic behav-
ior is essential in understanding the equilibrium and the stability properties of the
magnetic geometry of fusion interest.

2.2.2 Conservation of energy

Passing from MHD’s model equations 2.1.1 to the energy conservation equation re-
quires several steps, that we will not show here for the sake of simplicity. The final
result is written in the canonical form as

∂w
∂t

+∇ · s = 0 (2.7)

where

w =
1
2

ρv2 +
p

γ − 1
+

B2

2µ0
(2.8)

s =

(
1
2

ρv2 +
p

γ − 1

)
v + pv +

1
µ0

E × B (2.9)

Here w is the total energy, composed by the kinetic, internal and magnetic ener-
gies. The quantity s is comprised of the net flux of kinetic plus internal energy, the
mechanical work done on the plasma through compression, and the flux of electro-
magnetic energy as given by the Poynting vector.
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FIGURE 2.1: Magnetic flux passing through a surface Sp with normal
vector n 1

2.2.3 Global conservation

With the results just obtained, has been shown that ideal-MHD equations can be
written in a local conservation form, in which each term has a simple physical ex-
planation. It is also possible to integrate the equations in order to obtain a global
conservation form over an appropriate volume. The global conservation laws for
the ideal-MHD model are exact and are valid for general, non-linear, multidimen-
sional, time-dependent situations. The specific forms of the global laws, as well as
the choice of the appropriate integration volume, depend on the boundary condi-
tions to be applied. Particular attention must be paid when dealing with systems
comprehensive of external coils, because energy is no more conserved as it can be
provided or extracted from the system. Anyway, also in this case it is still possible
to derive a relatively simple energy balance relation for the system.

2.3 "Frozen-in" law

One last important law valid for the ideal-MHD fluid model concern the magnetic
flux, and deals with is conservation. This one is of fundamental importance, in par-
ticular for the equilibrium and stability analysis, because is one of main parts that
differ the ideal-MHD from other MHD models. The result that we are now go-
ing to derive, which is a consequence of the perfect conductivity Ohm’s law, is that
the magnetic flux contained within an arbitrary open surface area moving with the
plasma does not change; that is, the flux is “frozen” into the plasma. We start
by defining the magnetic flux ψ passing through an open area Sp in the plasma, as
shown in figure 2.1, as

ψ =
∫

Sp

B · n dS (2.10)

Assuming that this plasma surface is moving with velocity v, as it moves the change
in the flux passing through this area is given by

dψ

dt
=

∫
Sp

∂B
∂t

· n dS −
∮

v × B · dl

1Figure from [4]
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where dl is the arc length along the perimeter of the surface. Substituting for
∂B/∂t from Faraday’s law and then converting the surface integral into a line inte-
gral by applying Stokes’ theorem yields

dψ

dt
= −

∮
(E + v × B) · dl

Clearly, if the plasma obeys the ideal-MHD Ohm’s law then

dψ

dt
= 0 (2.11)

Since the derivation of equation 2.11 applies to any arbitrary surface area, it imme-
diately follows that by setting Sp equal to the entire cross section of the plasma, the
total flux contained within an ideal-MHD plasma is conserved.
The conservation of flux relation has very important implications about the struc-
ture of the magnetic field. This follows because any allowable physical velocity v
of the plasma requires that neighboring fluid elements remain adjacent to one an-
other; fluid elements are not allowed to tear or break into separate pieces. Since the
magnetic lines move with the plasma, the field line topology must thus be preserved
during any physically allowable MHD motion. This is a very strict requirement on
the structure of the magnetic fields.
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Chapter 3

Ideal-MHD equilibrium and
stability

3.1 Equilibrium in a one-dimensional configuration

Before analyzing the stability of our model is necessary to define the equilibrium
configuration, in particular for a tokamak plasma. We refer here as an equilibrium
state for a plasma the condition in which dvvv/dt = 0 is satisfied, that is much stronger
than only saying ∂vvv/∂t = 0, i.e. the fluid is not only stationary (not depending on
time) but also static (vvv = 0). The ideal-MHD equations 2.1.1, can thus be rewritten
as

JJJ × BBB = ∇p (3.1)
∇× BBB = µ0JJJ (3.2)
∇ · BBB = 0 (3.3)

Equilibrium is achieved by balancing the magnetic force JJJ × BBB with the pressure
gradient force ∇p. The study of the force balance is referred to as magnetostatics.
Taking the scalar multiplication of equation 3.1 with BBB· and with JJJ· brings to

BBB · ∇p = 0 (3.4)
JJJ · ∇p = 0 (3.5)

From the first relation of 3.4 we can conclude that for a well-confined equilibrium
and an axisymmetric configuration, the pressure is maximum near the center of the
poloidal cross section and is not varying around the toroidal direction. For such pro-
files the contours of constant pressure are nested toroidal surfaces (see figure 3.1).
These surfaces, with p = constant, are usually referred to as magnetic flux surfaces
or simply just flux surfaces. A similar conclusion can be obtained for the second rela-
tion, which implies that the current lines also lie on the surfaces of constant pressure;
making the important point that the current flows between and not across flux sur-
faces. Even though BBB and JJJ lie on constant p contours they are usually not parallel
or perpendicular. Even though magnetic confinement equilibria of fusion interest
are intrinsically toroidal, it is possible to develop a physical intuition about the na-
ture of these equilibria by considering at first one-dimensional configurations with
cylindrical symmetry, i.e. such that p and B depend only on the radial coordinate.
The actual toroidal configuration, in the limit of very large aspect ratio, R0/a → ∞,
realized in the case of low-β tokamak machines,can be analyzed with a simplified
model composed of a cylinder of length L, with periodic boundary conditions at its

1Figure from [4]
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FIGURE 3.1: Toroidal flux surface showing magnetic lines and current
lines lying on the surface. 1

bases.
Here β is the normalized plasma pressure and is a global plasma parameter whose
value is critical for a fusion reactor. It is expressed as:

β =
plasma pressure

magnetic pressure
(3.6)

3.1.1 MHD safety factor

This quantity is typically used to describe 2D axisymmetric configurations such as
the tokamak, and is a qualitative indicator of stability. High q are better and obvi-
ously preferable, while low q express a worst behavior of stability. It is expressed
as:

q =
2π

l
(3.7)

where l is the rotational transform. We have previously introduced how the shape
of the magnetic field lines for a tokamak. It is important to consider that magnetic
field line trajectories must be distinguished in three classes: rational, ergodic, and
stochastic. In the first one lines exactly closed on themselves after a finite number
of toroidal circuits; in the second they do not close, but instead wrap around indef-
initely covering the entire constant pressure contour. Lastly, the field line wanders
around and actually fills a volume, creating a region of stochasticity.
If the rotational transform is a rational fraction of 2π, then the line of the magnetic
field is closed, while if it is not, the line is ergodic. The rotational transform plays an
important role in both equilibrium and stability, and is defined as

l = lim
N→∞

1
N

N

∑
1

∆θn (3.8)

where ∆θ is the difference in the angle produced by a complete revolution of a mag-
netic field line. So, The rotational transform is the average value of the angle ∆θ after
an infinite number of transits
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FIGURE 3.2: θ-pinch axial magnetic field profile, with given p(r) 2

3.1.2 θ-pinch configuration

The simplified model of the cylinder can be analyzed with two different configu-
rations. The first one is the θ-pinch, which represents the one-dimensional analog
of the toroidal configuration with purely toroidal field. Here the magnetic field,
BBB = Bz(r)ezezez, is directed along the cylinder axis and is applied externally. The mag-
netic field also induces a large diamagnetic current in the θ direction, JJJ = Jθ(r)eθeθeθ ,
from this the origin of the θ-pinch name.
The curvature vector

kkk = nnn/R (3.9)

is equal to zero, since the field lines are straight. In this case equation 3.1 reduces to

d
dr

(
p +

B2
z

8π

)
= 0 (3.10)

where d/dr is the derivative w.r.t. the radial direction. The solution to the previous
equation is

p +
B2

z
8π

= constant =
B2

0
8π

(3.11)

where B0 is the applied magnetic field. Equation 3.11 indicates that at any local
value of r the sum of the local particle pressure plus local magnetic pressure is a
constant, equal to the externally applied magnetic pressure. Thus, in a θ-pinch, the
magnetic tension force is zero and the gradient of the magnetic pressure provides
radial confinement. Because the solution contains one free, unspecified function,
one must specify the plasma pressure or the axial magnetic field to obtain the other.
For example a profile for p(r), consistent with the experimental observations, can be
chosen and then the axial magnetic field that is necessary for radial force balance is
derived accordingly to equation 3.11.

2Figure from [4]
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FIGURE 3.3: Equilibrium profiles for a Z-pinch: Bennett pinch solu-
tion. Pressure, axial current density and poloidal magnetic field 3

3.1.3 Z-pinch configuration

In this case, the magnetic field is chosen to be purely poloidal, given by

BBB = Bθ(r)eθeθeθ (3.12)

and produced by an axial current, Jz(r), carried by the plasma itself. With this con-
sideration, equation 3.1becomes

d
dr

(
p +

B2
θ

8π

)
+

B2
θ

4π
= 0 (3.13)

A standard solution to the previous equation is the so called Bennet pinch:

Bθ(r) =
2I0r

r2 + r2
0

(3.14)

p(r) =
I2
0

π

r2
0

(r2 + r2
0)

2
(3.15)

where r0 is the characteristic radial scale distance of the plasma and I0 is the total
plasma current. The axial current density is

Jz(r) =
1
2

I0 p(r)

so I0 and p(r) have the same radial profile. As in the previous case, also the Z-
pinch equilibrium problem contains a free function. For instance, one can specify
the pressure profile p(r) and derive the corresponding Bθ(r) and Jz(r) profiles that
satisfy radial force balance.

3Figure from [4]
4Figure from [4]
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FIGURE 3.4: Comparison between the force terms related to plasma
pressure, magnetic pressure and magnetic tension 4

3.1.4 General screw pinch

The so-called general screw pinch is a cylindrical confinement configuration that
combines the features of the θ-pinch and the Z-pinch. The magnetic field for a gen-
eral screw pinch is thus written as

BBB(r) = Bz(r)ezezez + Bθ(r)eθeθeθ (3.16)

If we assume that the axial magnetic field component is stronger than the poloidal
component, and more precisely that

Bθ

Bz
∼ a

R0
=

1
A

(3.17)

then the general screw pinch can mimic a straight tokamak, that is, a toroidal plasma
configuration in the limit of large aspect ratio. Here R0 is the major radius of the
torus, and a is the minor radius, while the aspect ratio is R0/a. There are, however,
well known limits,related to the ideal-MHD stability of the plasma, which must be
satisfied for the straight tokamak to be physically plausible. The first is a limit on
the total axial current that the plasma can carry, known as Kruskal-Shafranov limit:

q(a) =
aBz

R0Bθ
> 1 (3.18)

where both the magnetic field values are evaluated at r = a. The second is a limit on
the maximum plasma beta, the so-called Troyon limit:

β < βT = 0.028
I

aBz
(3.19)

where the plasma current I is expressed in Mega-Ampere, the minor radius a in me-
ters and the magnetic field in Tesla.
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Respecting the previous limitations, the force balance relation for the straight toka-
mak is

d
dr

(
p +

B2
z + B2

θ

8π

)
+

B2
θ

4π
= 0 (3.20)

In this case equation 3.20 contains two unkowns, that must be defined in order to
obtain the last one. For instance, one can specify the plasma pressure and the axial
magnetic field, and obtain the poloidal magnetic field and hence the axial current
density profile consequently.

3.2 Equilibrium in a two-dimensional configuration

The previous section treated the equilibrium of a one dimensional configuration,
where the general screw pinch is able to represent the low-β straight tokamak case.
A more general case is to solve the equilibrium problem in a two-dimensional ax-
isymmetric toroidal geometry. This case will not be explained here, because it will
be not the case of our interest.

3.3 Ideal-MHD Stability

Since ideal-MHD model is used, so no dissipation from resistivity is present, we
will refer as a stability condition the state in which the perturbed system oscillates
around the equilibrium position, with the oscillations not growing in time. This
equilibrium state can also be represented through a marginal stability or neutral sta-
bility, it represents the stability boundary between stability and instability.
With this definition in mind we can start by analyze stability for an infinite homo-
geneous plasma immersed in a unidirectional magnetic field (taken along the z di-
rection). This is obviously a very simple case, and its stability actually corresponds
to a determination of the basic waves that can propagate in an MHD plasma and,
as such, forms a basic foundation upon which one can develop intuition that can be
applied to more realistic magnetic geometries.

3.3.1 Linearized MHD equations

Starting from the system of solutions for the equilibrium condition, which is:

BBB = B0ezezez

p = p0

ρ = ρ0

JJJ = 0
vvv = 0
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where B0, p0, and ρ0 are constants. We will then introduce a first order perturbation
for all the solutions, indicated with the subscript 1, as

vvv = ṽ̃ṽv1

p = p0 + p̃1

BBB = BBB0 + B̃̃B̃B1

JJJ = JJJ0 + J̃̃J̃J1

All quantities are linearized about this background state, with

Q(rrr, t) = Q0(rrr) + Q̃1(rrr, t) (3.21)

Here Q0(rrr) is representative of the equilibrium, Q̃1(rrr, t) is instead the first order
perturbation, with Q̃1/Q0 ≪ 1.
When substituting into the MHD equations it is convenient to express all perturbed
quantities in terms of a vector ξ̃̃ξ̃ξ(rrr, t), defined by

vvv1 =
∂ξ̃̃ξ̃ξ

∂t
(3.22)

The vector ξ̃̃ξ̃ξ represents the displacement of the plasma away from its equilibrium
position. Expressing all the perturbed quantities in terms of this displacement vector
we end obtain

ρ0
∂2ξ̃̃ξ̃ξ

∂t2 = FFF(ξ̃̃ξ̃ξ) (3.23)

where FFF(ξ̃̃ξ̃ξ) is a linear differential operator, called the force operator, acting on ξ̃̃ξ̃ξ. It
is given by

FFF(ξ̃̃ξ̃ξ) = JJJ0 × B̃̃B̃B1 + J̃̃J̃J1 × BBB0 −∇ p̃1 (3.24)

Since the coefficients of FFF are are constant in time and space (homogeneous equilib-
rium), we can look for solutions of the type

ξ̃̃ξ̃ξ1 = ξξξ1e−i(ωt−kkk·rrr) (3.25)

with kkk = k⊥eyeyey + k∥ezezez, where ⊥ and ∥ refer to perpendicular and parallel components
to the equilibrium field, respectively.
From the linearized equations of motion is possible to compute the eigenvalue ω.
The final system of equations can be written as MMM · ξ̃̃ξ̃ξ = 0, where

MMM =

ω2 − k2
∥V2

A 0 0
0 ω2 − k2

⊥(V
2
S + V2

A)− k∥V2
A −k⊥k∥V2

S
0 −k⊥k∥V2

S ω2 − k2
∥V2

S


Setting the determinant equal to zero, we end up with

ω2 = k2
∥V2

A (3.26)

ω2 =
1
2

k2(V2
A + V2

S )

[
1 ± (1 − α2)1/2

]
(3.27)
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FIGURE 3.5: Shear Alfvén wave, producing a restoring elastic force
on the magnetic field 5

where VA = (B0/µ0ρ0)2 is the Alfvén velocity and VS = (γp0/ρ0)2 is the adiabatic
sound speed. Also

α = 4
k2
∥

k2
V2

S V2
A

(V2
S + V2

A)
2

The obtained results are called dispersion relations, as they relate the the wave
frequency to the wave number k.
Three different solutions are present in 3.26 and since 0 ≤ α ≤ 1, each corresponds
to a purely oscillatory solution, i.e. Im(ω) = 0. Thus, we have demonstrated that an
homogeneous plasma immersed in a straight magnetic field configuration is expo-
nentially stable. This is not surprising since the system is in thermodynamic equi-
librium and there are no sources of free energy available to drive instabilities.
Always considering 3.26, we are now going to analyze three different cases, each of
which will corresponds to a type of perturbation propagating inside the plasma.

3.3.2 The shear Alfvén wave

Considering the first branch of the dispersion relation, ω2
a = ω2 = k∥V2

A, is known
as the shear Alfvén wave and is independent of k⊥ even when k2

⊥ ≫ k2
∥. This wave

is purely transversal, thus causing the magnetic field to bend, as shown in figure 3.5.
It is polarized such that the perturbed magnetic field and velocity are aligned and
perpendicular to both BBB0 and k. Furthermore, the relation ∇ · ξ̃̃ξ̃ξ = 0 holds, this mode
is then incompressible and produces no density or pressure fluctuations. Plasma is
carried with the magnetic perturbation by EEE × BBB0/B2.
The shear Alfvén wave describes a basic oscillation between perpendicular plasma
kinetic energy and perpendicular magnetic energy; that is, a balance between inertial
effects and the magnetic tension due to field line bending.

3.3.3 The fast magnetosonic wave

The second branch of the dispersion relation corresponding to the + sign in the
second equation of 3.26 describes the fast magnetosonic wave, ω2

f . From a calcula-
tion we can find the relation ω2

f ≥ ω2
a . This is a wave in which both the magnetic

field and plasma are compressed so that ∇ · ξ̃̃ξ̃ξ ̸= 0 (see figure 3.6). In the limit
β ∼ V2

S /V2
A ≪ 1, the fast magnetosonic wave reduces to the compressional alfvén

wave
ω2

f ≈ (k2
⊥ + k2

∥)V
2
A (3.28)

5Figure reproduced by this thesis author, taken from professor Porcelli’s notes
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FIGURE 3.6: Fast Magneto-Acoustic wave producing plasma and
magnetic field compression 6

FIGURE 3.7: Acoustic wave, responsible for plasma compression 7

This compressional Alfvén wave describes a basic oscillation between perpendicular
plasma kinetic energy and parallel plus perpendicular magnetic energy. In other
words, there is a balance between inertial effects and compression plus tension of
the field lines.

3.3.4 The slow magnetosonic wave

The third branch of the dispersion relation corresponds to the slow magnetosonic
wave, ω2

s . This wave always satisfies ω2
s ≤ ω2

a . As in the fast magnetosonic branch
the wave is polarized so that both the plasma pressure and the magnetic field are
compressed, so also in this case ∇ · ξ̃̃ξ̃ξ ̸= 0. However, for the slow magneto sonic
wave it is the plasma rather than magnetic field that is primarily compressed, in
fact, in the low-β limit, β ∼ V2

S /V2
A ≪ 1, the slow magnetosonic wave reduces to a

sound wave,
ω2

s ≈ k2
∥V2

S (3.29)

In this limit the mode is nearly longitudinal, see Figure 3.7, hence the sound wave
describes a basic oscillation between parallel plasma kinetic energy and plasma in-
ternal energy; that is, between inertial effects and plasma compression.

6Figure reproduced by this thesis author, taken from professor Porcelli’s notes
7Figure reproduced by this thesis author, taken from professor Porcelli’s notes
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3.4 Force operator FFF(ξξξ) and normal mode formulation

A more efficient way to investigate linear stability is to reformulate equation 3.23 as
a normal mode problem. We can express the perturbed quantity Q̃ as

Q̃1 = Q1(rrr)e−iωt

Upon substituting these relations into the momentum equation, one finds

−ω2ρ0ξξξ = FFF(ξξξ) (3.30)

where the force operator is now expressed as

FFF(ξξξ) =
1
µ0

(∇× BBB0)× BBB1 +
1
µ0

(∇× BBB1)× BBB0 +∇(ξξξ · ∇p0 + γp0∇ · ξξξ) (3.31)

where BBB1 = ∇× (ξξξ × BBB0). Equation 3.30 represents the normal mode formulation
of the linearized MHD stability problem for general three-dimensional equilibria. In
this approach only appropriate boundary conditions on ¸ are required. It then can
be solved as an eigenvalue problem for the eigenvalue ω2.
Equation 3.30 is a linear differential equation, whose coefficients depend on the equi-
librium quantities p0(ψ), BBB0(ψ, θ), but not on time t neither on the toroidal angle ϕ.
Thus, we can search solutions of the type

ξξξ(rrr, t) = ∑
q

∑
n

aqbbξξξqn(ψ, θ)e−i(ωqt−nϕ)

where each n and q components are decoupled. The linearized equation of motion
reduces to a partial differential equation for ψ and θ for each ξξξqn component, written
as

−ρ0ω2
qξξξqn = FFF(ξξξ) (3.32)

The differential operator 3.24 has some important properties, that are:

• self-adjoint: The operator FFF is equal to its adjoint, i.e. its coonjugate tranpose.
To demonstrate this property it is necessary to show that for any two arbitrary
vectors ξξξ(rrr) and ηηη(rrr) both satisfying the same well posed boundary conditions,
the following relation holds:∫

ηηη · FFF(ξξξ) drrr =
∫

ξξξ · FFF(ηηη) drrr

This is the definition of self-adjointness – switching ξξξ(r) and ηηη(r) leaves the
integrals unchanged. Here ξξξ(r) and ηηη(r) are known also as "trial functions",
because they do not in general satisfy the actual eigenvalues equation.

• Eigenvalues ω2
q are real

• Eigenfunctions ξξξqn form a complete orthogonal set

3.5 Stability of the "Straight Tokamak"

The straight tokamak model provides a simple but surprisingly reliable description
of the basic MHD instabilities that can arise in a large aspect ratio, circular cross sec-
tion, low-pressure tokamak. To put the analysis in perspective one should keep in
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mind that, in general, experimental tokamak performance seriously degrades when
either the current or pressure becomes too large. The straight tokamak is surpris-
ingly accurate in describing the effects of large current. It is not very reliable with
respect to pressure-driven limitations because the effects of toroidicity tend to dom-
inate and are obviously not included in the straight tokamak model. The specific
tokamak operational limits can be sumarized here as:

• Sawtooth oscillations - internal m = 1 mode

• Current-driven disruptions - external low m modes

• Density-driven disruptions - external low m modes

• Resistive wall modes - external low m modes

• Edge Localized Modes (ELMs) - external high m modes

Here m is the poloidal number and we will refer to n as the toroidal number.
It is worth emphasizing that each of the above phenomena are macroscopic in nature
and readily observed experimentally. Even though each of these requires non-linear
equations and more complicated models to be studied, at the initiation each one of
these phenomena is driven by an ideal-MHD instability. In the next chapter a brief
description of ELMs will be given, motivated by the fact that there are promising
evidences that vertical displacements (the main topic of this thesis) could be the
cause of ELMs origins in divertor Tokamak plasma.

3.6 Variational formulation and Energy Principle

We have previously introduce the normal mode formulation, that is a very important
method in order to simplify differential equations and to seek out solutions through
separation of variables. Furthermore, it is also the starting point to introduce the
variational formulation, which is an alternate but entirely equivalent integral repre-
sentation of the linearized MHD partial differential equations.
Considering equation 3.30

−γ2ρξξξ = FFF(ξξξ)

one can form the dot product with ξξξ∗ (complex conjugate of ξξξ) and then integrate
over the plasma volume. This yields

γ2 =
δW(ξξξ∗, ξξξ)

K(ξξξ∗, ξξξ)
(3.33)

where

δW(ξξξ∗, ξξξ) = −1
2

∫
ξξξ∗ · FFF(ξξξ) drrr (3.34)

K(ξξξ∗, ξξξ) =
1
2

∫
ρ|ξ|2 drrr (3.35)

Here, the unimportant numerical factor of "1/2" has been added to both terms so that
γ2K is proportional to the kinetic energy of the plasma ρvvv2

1/2. The variational prin-
ciple states that any allowable trial function ξξξ(rrr) that produces an extremum (i.e.,
maximum, minimum, or saddle point) in the value of γ2 is an actual eigenfunction
of the ideal MHD normal mode equations with eigenvalue γ2 = δW(ξξξ∗, ξξξ)/K(ξξξ∗, ξξξ).
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Also, δW(ξξξ∗, ξξξ) represents the change in potential energy associated with the pertur-
bation and is equal to the work done against the force FFF(ξξξ) in displacing the plasma
by an amount ξξξ.
After this first step we can now introduce the energy principle, a very simple, intu-
itive and powerful tool to understand whether a given MHD configuration is stable
or not. The statement that will be illustrated in the following is valid both for a
plasma bounded by a perfectly conducting wall and for a plasma surrounded by a
vacuum region, separating it by the conducting wall. In the latter case the principle
is better known as "The extended energy principle". The physical basis for the Energy
Principle is the fact that energy is exactly conserved in the ideal MHD model. As
a consequence the particular extremum corresponding to the most negative eigen-
value of γ2 actually represents the absolute minimum in potential energy δW. The
energy principle states

An equilibrium is stable if and only if

δW(ξξξ∗, ξξξ) ≥ 0 (3.36)

for all allowable trial displacements (i.e., ξξξ bounded in energy and satis-
fying appropriate boundary conditions) 8.

That means we can analyze the sign of δW to understand if our ideal MHD configu-
ration is stable or unstable, without considering the actual value of the growth rate
γ2 and so without analyzing the full variational integral or normal-mode equations.
The more general expression of δW is usually written in two different ways, the first
one is an explicit form while the second is the intuitive form. Here will be reported
only the intuitive form, as we will have to deal with a reduced version due to sim-
plifications introduced by the low-β tokamak limit. The intuitive form of δW is

δW =
∫

f luid
d3x

[
Γp|∇ · ξξξ|2 + B2

4π

∣∣∇ · ξξξ⊥ + 2ξξξ⊥ · xxx
∣∣2 (3.37)

−2(ξξξ∗⊥ · ∇p)(ξξξ⊥ · kkk)−
J∥
c
(ξξξ∗⊥ × eee∥) ·QQQ⊥

]
(3.38)

where QQQ⊥ is the perpendicular component of QQQ = ∇× (ξξξ × BBB). The first three
terms are all positive and so always stabilizing terms. The last two (with the minus
sign) are possible sources of instabilities, where the first term is the pressure gradi-
ent/curvature driven term and the second one represents instead the source driven
by the parallel current J∥.

8Quote from "Ideal MHD", Jeffrey P. Freidberg
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Chapter 4

Ideal-MHD vertical displacements

4.1 Vertical Displacements and ELMs

ELMs phenomena typically occur during H-mode operation of a tokamak, which is
a regime characterized by improved energy confinement. Even though this type of
confinement is an advantage, an H-mode tokamak also has substantial pressure and
current edge gradients, which can drive high m MHD instabilities, known as “edge
localized modes” or “ELMs” for short. Experimentally, ELMS appear as short, pe-
riodic, bursts of particles and energy that are ejected from the plasma. On the posi-
tive side each ELM ejects impurities in addition to plasma particles. Preventing the
build-up of impurities improves performance in present experiments and is crucial
in reactor plasmas where they can dilute the basic D-T fuel. On the negative side the
loss of plasma from too many ELMs reduces the time-averaged particle density and
temperature, thereby degrading the overall high confinement properties of H-mode
operation. Thus, ELMs are responsible for the degradation of plasma confinement
and are often associated with the termination of high performance discharges.
This modes are important features of a divertor Tokamak configuration, see figure
1.1, which is adopted in order to improve the confinement and to reduce the effects
of plasma-wall interactions. On the other side, divertor geometry produces an elon-
gation on the plasma section, which is prone to an instability. This latter can be
initiated by a plasma axisymmetric mode, with toroidal mode number n = 0, lead-
ing to vertical displacement events (VDEs) where the entire plasma shifts vertically
until it touches the vacuum chamber. Uncontrolled VDEs must be avoided as they
lead to disruption events, with the termination of the fusion process.
In [8] is argued that axisymmetric perturbations that are resonant at the X point(s) of
a magnetic divertor separatrix may play a role in the understanding of Edge Local-
ized Modes in tokamak experiments. In this chapter will be illustrated the analytic
theory of resonant axisymmetric X-point modes, starting from more simple scenar-
ios. After the introduction of an heuristic model to understand the stability mech-
anism, the first case where plasma will be confined inside an elliptical flux surface,
which is located inside the separatrix and surrounded by vacuum, will be presented.
Afterwards, plasma’s boundary will be extended up to the last closed magnetic flux
surface, i.e. the magnetic separatrix, and the main results obtain in [12] will be ex-
plained. Based on these results from these two first scenarios, the analysis will be
further extended to intermediate cases, where the plasma’s boundary will be located
between the two previously illustrated surfaces.
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FIGURE 4.1: Hyperbolic structure of X-point

4.2 X-Points topology and current sheets

The divertor configuration that will be used here, is composed by nested magnetic
flux surfaces that are bounded by a separatrix, magnetically confining plasma inside.
The last closed magnetic surface is called magnetic separatrix, and contains two X-
points. These are points on the magnetic field lines where the poloidal component
of the magnetic field vanishes, Bp = 0, and the magnetic confinement is purely
toroidal. Near the X-points the the field structure is hyperbolic in nature, as shown
in figure 4.1. X-points plays an essential role in plasma stability and one of the first
work to analyze this aspect is [Paper citation]. We are in particular concerned about
vertical displacements, i.e. axysimmetric perturbations with toroidal mode number
n = 0. This perturbation is resonant at the X-points, in the sense that, regardless of
its poloidal modulation, is constant along the toroidal field line going through the
X-point. This resonant condition is analytically expressed as

BBBeq · ∇χ = 0 (4.1)

, where χ is a generic axysimmetric perturbation and BBBeq the equilibrium magnetic
field. This is trivially fulfilled at the X-points as the only component that is still
present is the toroidal one, which is always perpendicular to any such axysimmetric
perturbation’s gradient ∇χ.
The resonant nature of these type of perturbations allows for a non-rigid displace-
ment which peaks in the X-point region, while plasma’s centroid is instead not sig-
nificantly displaced. We here means by non-rigid a displacement characterized by
a deformation that can be expressed through a combination of different poloidal
numbers m. This non-rigid displacement could thus be the cause of the Edge Local-
ized Modes. At the separatrix, perturbations grow on the Alfvén time-scale, which
is indeed a very fast rate and way shorter than the time response of external feed-
back stabilization systems. Furthermore, it has been observed experimentally that at
plasma’s boundary a current sheet always form, and its presence influence the sta-
bility of the perturbed system. We will see that current sheets forming on plasma’s
edge will affect plasma’s behavior in different ways, depending on the scenario.

4.3 Heuristic model

In this section we present the heuristic model, derived in [12], in order to understand
the instability mechanism, driven by current sheet forming on plasma’s boundary.
An important result will also be posed under our attention, related to the current

1Figure from "Analytic theory of ideal-MHD vertical displacements in tokamak plasmas", A. Yol-
barsop, F. Porcelli, W. Liu, R. Fitzpatrick
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FIGURE 4.2: Schematic of the heuristic model for vertical instability 1

profile, that will be essential for the following sections.
In figure 4.2(a) are shown three wires, with current flowing on the z direction, out-
side of the sheet and perpendicular to the reader. The central wire, with current IP,
represents the plasma current and is in equilibrium at y = 0, while the other two
external wires IExt are used to create the magnetic field for a divertor configuration.
The external wires are fixed in space, while the plasma wire is free to move along
the y direction. This configuration mimics the straight tokamak configuration, with
the (important) exception that here no current are allowed to flow on the plasma’s
boundary.
The equation of motion for the plasma wire is (in c.g.s. units):

µÿ =
4IP IExt

c2
y

l2 − y2 (4.2)

where µ is the linear mass density, c is the speed of light, and an over-dot signifies
the time derivative. We neglect self and mutual induction currents. Thus, IP and
IExt remain constant as the plasma wire is displaced. For small y ≪ l, the solution
of equation 4.2 is:

y = y0eγH t (4.3)

where y0 is an initial displacement, and

γH =
1
l

√
4IP IExt

µc2 (4.4)

is an inertial growth rate.
At this stage, no particular relation exists between the currents IP and IExt and the
distance l. However, if instead of a plasma wire we consider a diffused plasma
column with a uniform current density extending, on the Oxy cross-section, up to an
elliptical magnetic surface with minor semi-axis a and major semi-axis b contained
within the magnetic separatrix, called convenient elliptical surface,the growth rate
of the vertical displacement becomes:

γH =

(
b − a
a + b

)1/2( 1
a2 + b2

)1/2 2IP

(µc2)1/2 (4.5)

Therefore, the relevant growth rate depends only on the plasma current IP and
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on the parameters a and b but does not depend on the distance l, nor on the value of
the external currents. This is an important concept in order to set the current profile
in the realistic model of the next section.
Introducing the ellipticity parameter:

e0 =
b2 − a2

b2 + a2 (4.6)

If we assume e0 to be small, the growth rate is expressed as

γH =
e1/2

0 VA

a
(4.7)

where VA = Bp(a)/(4πρm)1/2 is the Alfvén velocity based on the poloidal mag-
netic field, with ρm the volume mass density. The inverse of γH for a hydrogen
plasma is γ−1

H ≈ 1µs. This is indeed a very fast growth time, of the order of the
characteristic Alfvén time.
This instability behavior, together with γH value, agree with those obtained by the
more detailed normal mode analysis of the next section. This result is no longer valid
when plasma boundary will be extended up to the separatrix, where current sheets
through X-points will be triggered, influencing the behavior of the plasma stability.
One final consideration can be made if we place a perfectly conducting wall near
plasma’s boundary. In this way, when the plasma current is displaced from its equi-
librium position, image currents are induced at the wall, as shown in figure 4.2(b).
The sign of these currents is such that the corresponding forces oppose the motion
of the plasma wire, thus producing a stabilizing effect on plasma, that will result in
a oscillatory motion with a characteristic frequency:

ωH = ±
√

D − 1γH

where D is a dimensionless proportionality constant, depending on the wall geom-
etry and being D ≫ 1 for a stable plasma.

4.4 Realistic models

Carrying with use the important result related to the current profile independence
for the plasma growth rate, it is possible to set up a more realistic model starting
from its equilibrium conditions. We will first describe the model’s parameters and
how the the equilibrium equations describing the system will be linearized with the
introduction of a first order perturbation. Then the first scenario, where plasma is
confined inside an elliptical flux surface, will be described and then the results from
the second one will be illustrated, in order to set up the ground for the next chapters.

4.4.1 Plasma equilibrium

The model that will be adopted is the standard reduced ideal MHD model, where
reduction is based on the low-β tokamak ordering, remembering that β = (plasma
pressure)/(magnetic pressure).
We will now identify two important quantities, through which plasma is described:
the magnetic flux function, denoted as ψ and the stream function, written as ϕ. The
magnetic field is composed by the usual union of a toroidal component, Bzeeez, created
by currents flowing in external coils, and a poloidal component, written as BBBp =
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eeez ×∇ψ, thus the overall magnetic field is:

BBB = eeez ×∇ψ + Bzeeez (4.8)

, while the plasma flow is
vvv = eeez ×∇ϕ (4.9)

We assume that all the quantities are independent of the z coordinate and the toroidal
magnetic field is nearly constant.
Space and time are here normalized as r̂ = r/r0, where

r0 = [2a2b2/(a2 + b2)]1/2 (4.10)

is an equilibrium scale length and t̂ = t/τA, where τA = (4πρm)1/2/B′
p is the

relevant Alfvén time and B′
p the radial derivative of the poloidal magnetic field

at the magneitc axis. The dimensionless fields are normalized as ψ̂ = ψ/(B′
pr2

0),
ϕ̂ = ϕ(τA/r2

0); the normalized plasma density is ρ̂ = ρm/ρm0, with ρm0 the density
on the magnetic axis. In order to simplify the notation over-hats are dropped in the
following.
Referring to [10], the reduced ideal-MHD equations are written as

∂ψ

∂t
+ [ϕ, ψ] = 0 (4.11)

∂

∂t
∇ · (ρ∇ϕ) +

1
2
[ρ, (ϕ)2] + U[ϕ, ρ] + [ϕ, U] = [ψ, JJJ] (4.12)

where the bracket notation defines [χ, η] = eeez · ∇χ × ∇η, with χ and η two
generic scalar fields. The other parameters are: ρ is non-constant mass density,
JJJ = ∇2ψ is the normalized current density and U = ∇2ϕ is the normalized flow
vorticity.
Based on definition given in the previous chapter, at equilibrium fields are time in-
dependent and plasma flows are absent, thus equations 4.11 and 4.12 are reduced
as

[ψeq, JJJeq] = 0 (4.13)

The general solution of 4.13 satisfies:

JJJ = JJJeq(ψeq) = ∇2ψeq (4.14)

One of the important results of the heuristic model, is that vertical instability does
not depend on details of the equilibrium current density profile, JJJeq, but on the finite
ellipticity, e0, and on the total current carried by plasma, IIIP. Therefor is better to
choose a flat equilibrium current density profile, such that all the plasma current is
uniformly distributed within a region delimited by the convenient elliptical surface.
This surface, corresponding to µ = µb, is a special surface since it is the only elliptical
surface that is also a flux surface; in fact, constant flux surfaces are not represented
by confocal ellipses, exception made for µ = µb.
The equilibrium current can be defined as JJJeq = 2H(µb − µ), where H is the Heavi-
side unit step function (see Appendix A). The area of this region is S = πab, hence
IIIP = πabJJJeq. Because the equilibrium current is a function of ψ and satisfies equa-
tion 4.14, we can also take JJJeq = 2H(ψb − ψeq), where ψb is the value of the equi-
librium flux at the convenient elliptical surface, µ = µb. Analytic work is better
performed by using elliptical coordinates. The usual Cartesian coordinates can then
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be expressed as

x = A sinh(µ) cos(θ); y = A cosh(µ) sin(θ), (4.15)

with A =
√

b2 − a2; a and b correspond to the two semi-axis of the convenient ellip-
tical surface, µ = µb, and are expressed as a = A sinh(µb), b = A cosh(µb).
For µ < µb, the solution of ∇2ψ−

eq = 2 that satisfies the regularity condition at the
magnetic axis, and that reduces to a constant at the flux surface µ = µb, in Cartesian
coordinates is given by:

ψ−
eq(x, y) =

1
2

(
x2

2
+

y2

2

)
(4.16)

(This conditions and solutions of this equilibrium are derived in [paper citation].
Here, and in the following, we take the subscript "−" to indicate the representation
of scalar fields in the region inside the convenient elliptical surface. In this region,
the equilibrium magnetic flux surfaces are nested ellipses with constant elongation,
k = b/a. As we stated above, confocal ellipses with µ = const are not flux surfaces,
except for the special one corresponding to µ = µb.
For µ > µb, the solution of the vacuum equation ∇ψ+

eq = 0, subject to the boundary
conditions that the equilibrium magnetic flux ψeq(µ, θ) and its normal derivative
∂ψeq/∂n = nnn · ∇ψeq be continuous across the surface µ = µb, is best obtained in
elliptical coordinates:

ψ+
eq =

1
2
+ α2{µ − µb +

1
2

e0 sinh[2(µ − µb)] cos(2θ)}, (4.17)

with α2 = ab/r2
0 = (1 − e2

0)
−1/2. The subscript "+" indicates the representation of

scalar fields in the region outside the convenient elliptical surface. The special flux
surface defined by ψeq = ψX = µbα2 is the magnetic separatrix, with X-points located
at µ = µX = 2µb, θ = θX = (±π/2).

4.4.2 Linearization

We want now to normalize the equations of our model, in order to properly conduct
an analysis when the plasma is weakly perturbed. This is done by introducing a
small perturbation in the flux function and in the stream function equilibrium quan-
tities trough a first order term. Any perturbation of plasma can be stable or unstable,
as described in the previous chapter.
The general solution can be expressed throw an equilibrium term and an exponential
one, as

ψ(µ, θ, t) = ψeq(µ, θ) + ψ̃(µ, θ)eγt (4.18)

ϕ(µ, θ, t) = ϕ̃(µ, θ)eγt (4.19)

, where the ψ̃ and ϕ̃ represent perturbed functions.
Using first order perturbed quantities 4.18 inside equation 4.11 and 4.12, we obtain
the linearized model

γψ̃ + [ϕ̃, ψeq] = 0 (4.20)

γ∇ · (ρeq∇ϕ̃) = [ψ̃, JJJeq] + [ψeq, J̃̃J̃J] (4.21)
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FIGURE 4.3: Equilibrium magnetic structure for the limiter tokamak
scenario

4.4.3 Limiter tokamak scenario

In this section we present the results produced by the stability analysis in the sce-
nario where the plasma boundary is extended up to the convenient elliptical region,
µ = µb. In figure 4.3 it is shown a section of the plasma, where Ω indicates the region
within which plasma is confined and V the vacuum region surrounding plasma.

To find a solution we first simplify equation 4.21, by assuming that the vorticity
∇2ϕ̃ vanishes. Furthermore, we are now considering Ω region without its boundary,
that means we have no variation of the equilibrium current due to the assumption
of a flat current distribution, leading to [ψ̃, JJJeq] being zero. The perturbed flux now
satisfies

[ψeq, J̃̃J̃J] = 0, (4.22)

where two possibilities now arise. The first one is that J̃̃J̃J = J̃̃J̃J(ψeq), while the other
one is that J̃̃J̃J = 0. To avoid additional calculations the second case is considered.
Making use of elliptical coordinates the final expression is now written as

∇2ψ̃− = h−2(∂2
µ + ∂2

θ)ψ̃
− = 0 (4.23)

where h = |∇µ| = |∇θ| is the metric element to pass from Cartesian to elliptical
coordinates. We have also make use here, and in the following, of the short-hand
notation ∂µ = ∂

∂µ .
From [6] it is known that the general solution for 4.23 can be written as a summation,
over odd numbers of product of exponential functions of mµ and sinusoidal func-
tions of mθ. In this same paper has also been demonstrated that the most dangerous
mode is the one corresponding to m = 1, that is odd in θ and even in µ. Our solution
will be then

ψ̃− = ψ1A cosh(µ) sin(θ) = ψ1y, (4.24)
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where ψ1 is a constant amplitude. Using equation 4.20 in Cartesian coordinates

γψ̃ +
y
b2 ∂xϕ̃ − x

a2 ∂yϕ̃ = 0 (4.25)

Using solution 4.27 we find

ϕ̃− = γξA cosh(µ) sin(θ) = γξx, (4.26)

where we have introduced the constant displacement amplitude ξ, and ψ1 = ξ/b2.
Since ∇2ψ̃ = 0 the initial assumption of vanishing vorticity is satisfied. Solution 4.24
can be rewritten as

ψ̃−(µ, θ) = − ξ

b
cosh(µ)
cosh(µb)

sin(θ) (4.27)

Furthermore, the perturbed solution 4.26 correspond to a rigid shift in the vertical
direction, as the one observed in the previous chapter with the heuristic model. It
has been widely demonstrated and observed experimentally, that a current sheet
always form at plasma’s boundary. At the elliptical boundary, µ = µb, the per-
turbed solutions for the magnetic flux must respect the continuity condition, in fact
ψ̃+(µb, θ) = ψ̃−(µb, θ) = −ξ/b sin(θ), see next section for ψ̃+(µ, θ) solution. The
same is not true for their derivative, this discontinuity gives rise to the current sheet
at the elliptical boundary, expressed as

J̃̃J̃J(µ, θ) = j̃b(θ)δ(µ − µb) = h−2 (∂µψ̃+ − ∂θψ̃−)
µb

δ(µ − µb), (4.28)

where δ(x) is the Dirac delta function (Appendix B). Considering the metric ele-
ment as h2(µ, θ) = A2(cosh(2µ) + cos(2θ))/2, the term j̃b(θ) is then expressed as

j̃b(θ) =
2(a + b)

b2(a2 + b2)

ξ sin(θ)
1 + e0 cos(2θ)

(4.29)

Considering now the equation of motion 4.21 we can see how all of the three terms
contain the delta function δ(µ − µb), so it is possible to integrate over a narrow layer
of infinitesimal width at the elliptical boundary. Multiplying by h2 and integrating
we have

lim
δµ→0

∫ µb+δµ

µb−δµ
h2γ∇ · (ρ∇ϕ̃) dµ =

lim
δµ→0

{∫ µb+δµ

µb−δµ
h2[ψ̃, JJJeq] dµ +

∫ µb+δµ

µb−δµ
h2[ψeq, J̃JJeq] dµ

}
(4.30)

The l.h.s of 4.30 is solved as

lim
δµ→0

∫ µb+δµ

µb−δµ
h2γ∇ · (ρ∇ϕ̃) dµ = (4.31)

= γ lim
δµ→0

∫ µb+δµ

µb−δµ
{∂µ(ρ∂µϕ̃) + ∂θ(ρ∂θ ϕ̃)} dµ = (4.32)

= −γρ(∂µϕ̃)µ−
b

(4.33)
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The first integral on the r.h.s is instead

lim
δµ→0

∫ µb+δµ

µb−δµ
h2[ψ̃, JJJeq] dµ = (4.34)

= lim
δµ→0

∫ µb+δµ

µb−δµ
h2∇ · (Jeqezezez ×∇ψ̃) dµ = Jeq(∂θψ̃−

µb
) (4.35)

While the last one is

lim
δµ→0

∫ µb+δµ

µb−δµ
h2[ψeq, J̃̃J̃J] dµ = (4.36)

= lim
δµ→0

∫ µb+δµ

µb−δµ
h2∇ · ( J̃̃J̃Jezezez ×∇ψeq) dµ = (4.37)

=
d
dθ

[
j̃b(θ)(∂µψeq)µb

]
(4.38)

In all these integrals the bracket term has been transformed as

[χ, η] = eeez · ∇χ ×∇η

= ∇ · [(eeez ×∇χ)∇η]
(4.39)

Balancing the three terms

−γ
∂ϕ̃

∂µ

∣∣∣∣
µb

= JJJeq
∂ψ̃−

∂θ

∣∣∣∣
µb

+
d
dθ

[
j̃b(θ)

∂ψeq

∂µ

∣∣∣∣
µb

]
(4.40)

Computing each of these three terms leads to a proportionality factor of cos(θ) on
both sides of the equality. Substituting then the expressions for ϕ̃ and ψ̃ the disper-
sion relation is obtained, written as

γ2 = (1 − e0)
(
1 + e0 −

√
1 − e2

0

)
τ−2

A (4.41)

with the ellipticity parameter 0 ≤ e0 ≤ 1. In the limit of small ellipticity, the growth
rate reduces to γ ≈ e1/2

0 τ−1
A , in full agreement with the heuristic case of the previous

chapter, and for any arbitrary value of e0 the plasma results in an unstable behavior.

4.4.4 Divertor tokamak scenario

In this section are presented the most important results for the more realistic case
where the plasma boundary is extended up to the magnetic separatrix, i.e. the last
closed magnetic surface, u = uX. A uniform density profile is assumed, dropping
to zero at the separatrix, ρeq(ψeq) = H(ψX − ψeq). While for the current the same
profile is adopted, expressed as Jeq = 2H(ψb − ψeq). Figure 4.4 shows regions ∆ and
Ω where plasma is contained (current only flowing through Ω). V-regions represent
the different vacuum zones, while u and ν will be explained in a moment.
The solutions valid in this case are:

• Rigid shift solution 4.26 valid up to the magnetic separatrix

• The perturbed flux 4.27 is still valid but only in region Ω, since in region ∆, the
flux ψeq takes a different form

2Figure from "Analytic theory of ideal-MHD vertical displacements in tokamak plasmas", A. Yol-
barsop, F. Porcelli, W. Liu, R. Fitzpatrick
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FIGURE 4.4: Equilibrium magnetic structure 2
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This latter can be expressed, inside region ∆, in elliptical coordinates as

ψ̃∆(µ, θ) =
ξ

b
sinh(µ − 2µb)

sinh(µb)
sin(θ) (4.42)

While in vacuum region as

ψ̃V(µ, θ) =
ξ

b

∞

∑
m,odd

gme−m(µ−µb) sin(mθ) (4.43)

The coefficients gm will be evaluated later on, for now we only express this last so-
lution using more convenient coordinates, in order to simplify calculations.
We here introduce flux coordinates, the ones represented in figure 4.4, defined as

u = α−2[ψ+
eq(µ, θ)− ψX] (4.44)

ν = θ − π

2
+

e0

2
cosh[2(µ − µb)] sin(2θ) (4.45)

where ψ+
eq is given by 4.17. The set of (u, ν) coordinates is harmonic and orthogonal

in regions ∆ and V±, satisfying ∇2u = 0 and ∂θu = −∂µν; but inside region Ω this
orthogonality doesn’t hold anymore. The convenient elliptical boundary, that we
remember has the special characteristic of being also a flux surface, corresponds to
(u = ub, ν), or (u = −µb + (e0/2) sinh(2µb), ν = θ − π

2 + e0
2 sin(2θ)). While the

separatrix corresponds to coordinates (u = 0, ν) and the X-points to (u = 0, ν =
{0,±π}).
With these coordinates the solution 4.43 is expressed as

ψ̃V(µ, θ) =
ξ

b

∞

∑
m,odd

{ame−mu + bmemu} cos(mν) (4.46)

where am and bm are fully determined by:

am = − emub

2m ∑
j=±1

(
b
a
+ j

)
J m−j

2
(

me0

2
) (4.47)

bm =
e−mub

2m ∑
j=±1

(
b
a
− j

)
J m−j

2
(

me0

2
) (4.48)

with Jv(x) the first order Bessel functions, see appendix C.
If we expand the vacuum solution in the different V-regions from figure 4.4, it is
possible to obtain the asymptotic relations for the perturbed flux in all of the four
zones surrounding the X-points. The perturbed current density along the separatrix,
in the vicinity of the X-points, can be determined from

J̃̃J̃J(u, ν) = |∇u|2(∂2
u + ∂2

ν)ψ̃ (4.49)

Since the current sheet vanishes everywhere except on the separatrix, 4.49 can be
expressed through the Dirac delta as

J̃̃J̃J(u, ν) = jX(ν)δ(u) (4.50)
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Expanding jX(ν) near the X-point, and then integrating again equation 4.21 over a
narrow layer around u = 0 gives the final dispersion relation

γ2 = −2
√

πa
2b

(
q +

p
2

)
(1 − e2

0)
1/2e3/2

0 ω2
A (4.51)

where ωA = τ−1
A . For the solution where q = −p/2, the n = 0 mode is neutrally

stable with γ = 0 and no current sheet develops at the magnetic separatrix. This
solution can be considered merely as a redefinition of the equilibrium, with the
current-carrying plasma shifted vertically by a distance ξ and the equilibrium cur-
rent density modified by current sheets located at the elliptical flux surface µ = µb.
Instead, for the solution q = +p/2, a current sheet develops at the separatrix and is
sufficient to neutrally stabilize the n = 0 mode, which in this case oscillates with a
real frequency:

ω = ±iγ (4.52)

Thus, we have shown that when plasma is extended up to the separatrix, the insta-
bility of the first scenario is no more present and the system becomes indeed stable,
oscillating with a finite natural frequency. This passive stabilization effect can be jus-
tified by considering the nature of the current sheets forming along the separatrix.
We will return more specifically over this balancing aspect in the next chapters.
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Chapter 5

Perturbed solutions harmonics
analysis

In the previous chapter has been shown that the stability behavior of plasma changes
from unstable, when it is constrained inside the elliptical surface u = ub, to stable,
when plasma’s boundary is instead extended up to the magnetic separatrix, u = ux.
The reason behind this change in stability is that the current sheets localized along
the last magnetic closed surface have the same effect of a passive stabilization de-
vice.
With this background, it is reasonable to conjecture the existence of a generic flux
surface, u = uc, located between ub and the separatrix ux, such that when plasma is
slightly perturbed nothing happens, and so where marginal stability occurs. Thus,
we want to find the surface, which will be called from now on marginal stability
surface or marginal stability flux surface, where the growth rate is zero, γ = 0.
The first steps to solve this problem will be illustrated in chapter 6, while here, a
more accurate analysis of the perturbed solutions in region ∆, see figure 5.1, will
be performed. In particular on the behavior of the different odd harmonics of the
perturbed flux solution, ψ̃(uc, ν), for the case where plasma’s boundary is confined
inside a generic flux surface, u = uc, located inside the two main cases of the previ-
ous chapter, i.e. ub < uc < uX.

5.1 Analysis of ∆ region

In figure 5.1 is represented region ∆, which is now located between the elliptical
surface (contour of region Ω), and region V’, that is the vacuum region between the
plasma boundary u = uc and the magnetic separatrix. We have basically made a
step back w.r.t. the previous chapter, where region ∆ was instead extended up to
the magnetic separatrix, uX. We can still use solution 4.26 up to the flux surface
uc, while 4.27 is only valid inside In region Ω. For region ∆ we can keep on using
solution 4.42.
To perform calculations more easily, flux coordinates introduced in chapter 4 will be
used. Thus the solution for the perturbed flux in region ∆, ψ̃∆ is given by:

ψ̃∆(u, ν) =
ξ

b

∞

∑
m,odd

[ame−mu + bmemu] cos(mν) (5.1)

1Figure from "Analytic theory of ideal-MHD vertical displacements in tokamak plasmas", A. Yol-
barsop, F. Porcelli, W. Liu, R. Fitzpatrick
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FIGURE 5.1: Equilibrium magnetic structure for the case where the
plasma boundary, u = uc, is located inside the separatrix 1
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Let’s know identify as λm the coefficients, functions of u = uc, as

λm(uc) = ame−muc + bmemuc (5.2)

, where uc is the generic flux surface contouring region ∆. On the plasma boundary
u = uc the perturbed flux can thus be written in the more compact form as

ψ̃∆(uc, ν) =
ξ

b

∞

∑
m,odd

λm(uc) cos(mν) (5.3)

The λm coefficients depend on the ellipticity parameter e0. This dependence can
also be expressed in terms of the convenient elliptical surface, which we recall here
to be:

ub = α−2[ψ+
eq(µb, θ)− ψX] =

α−2

2
− α−2ψX

where ψX = µbα2 and α2 = (1 − e2
0)

−1/2. The relation between the ellipticity e0 and
ub is then

ub =
(1 − e2

0)
1/2

2
− µb or ub =

tanh(2µb)

2
− µb (5.4)

We are going now to focus on the harmonics’ behavior. The perturbed solution
ψ̃∆(uc, ν) must be continuous inside region ∆, and the infinite series related to it
must converge. Thus, considering the infinite converging series:

∞

∑
m,odd

{λm(uc) cos (mν)} (5.5)

then its coefficients, in our case λms, tend to zero (λm → 0) as m → ∞. Which is
written also as

lim
m→∞

λm = 0 (5.6)

This result can also be confirmed by their asymptotic behavior. The analytic deriva-
tion has been done in [12], and we report here the final result only, that is

λm ∼ (p/m3/2)emuc (5.7)

The Fourier spectrum extended up to mmax ∼ |uc|−1, but since we don’t know pre-
cisely which is the last term of the series to vanish, is reasonable to proceed to trun-
cate the summation at a certain mmax value, and analyze if the terms of the series still
represent an important contribution inside the odd terms summation or not.
Furthermore, since the number of harmonics of the perturbation goes as ∼ 1/|uc|
the solution thus becomes divergent at the X-points. This problem should be solved
if a finite, not negligible, resistivity is instead taken into account.
Here below are shown the graphs representing in blue the Fourier coefficients from
expression 5.2, for fixed values of u = uc and e0, while in red the values obtained
from the asymptotic formula 5.7. For e0 = 0.05 we can see from 5.2, 5.5 and 5.8 that
a good order to represent the important harmonics contribution is 3/|uc|, so will be
taken as the maximum number for the series truncation in the case of e0 = 0.05.
Analyzing the series with e0 = 0.1 this number is no more sufficient to correctly
represent the approximated series, thus it is necessary to extend the series up to
mmax = 6/|uc|. For the last case, e0 = 0.2, the truncation value is mmax = 10/|uc|, as
shown in figures 5.4, 5.7 and 5.10.
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We can see how a larger value of the ellipticity e0 means a larger number of harmon-
ics needed to represent the perturbed solution for a given value of uc.

FIGURE 5.2: Lambda harmonics and its asymptotic behavior, for e0 =
0.05, uc = −1.0

FIGURE 5.3: Lambda harmonics and its asymptotic behavior, for e0 =
0.1; uc = −1.0
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FIGURE 5.4: Lambda harmonics and its asymptotic behavior, for e0 =
0.2; uc = −1.0

FIGURE 5.5: Lambda harmonics and its asymptotic behavior, for e0 =
0.05; uc = −0.1
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FIGURE 5.6: Lambda harmonics and its asymptotic behavior, for e0 =
0.1; uc = −0.1

FIGURE 5.7: Lambda harmonics and its asymptotic behavior, for e0 =
0.2; uc = −0.1
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FIGURE 5.8: Lambda harmonics and its asymptotic behavior, for e0 =
0.05; uc = −0.01

FIGURE 5.9: Lambda harmonics and its asymptotic behavior, for e0 =
0.1; uc = −0.01
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FIGURE 5.10: Lambda harmonics and its asymptotic behavior, for
e0 = 0.2; uc = −0.01

As m increases the two type of points overlap each other, thus confirming the
asymptotic behavior for λm, given by 5.7.
Following also the results presented in the previous chapter, related to the perturbed
solutions 4.26 and 4.27, it is possible to conclude that for values of |uc| ≥ 1 the behav-
ior of the perturbed stream and magnetic flux solutions are dominated by the first
harmonic only in the coordinate ν, which can thus be approximated in the elliptical
angle θ. For these values of |uc| has been analytically shown that the system ends up
being ideal-MHD unstable, when an external source of stabilization is not present.
When instead |uc| < 1 more and more Fourier harmonics become important in the
spectrum of ψ̃∆, thus changing the nature of the dispersion relation.
This concept is the fundamental one of our analysis and the motivation behind this
thesis. By increasing the number of harmonics in the Fourier spectrum the system
arrive to be ideal-MHD stable at the separatrix, uc = 0, also in the absence of a
nearby conducting wall.
In the next chapter will see how the choice of the truncation value mmax will affects
the numerical computation, in particular how this choice will result to be the base of
a problem based on compromise, between accuracy and the minimum computable
value of u = uc that can be achieved.
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Chapter 6

δW analysis of vertical stability

This chapter will be devoted to the analysis of the perturbed potential energy δW,
as a function of uc, that has been introduced in chapter 4 together with the energy
principle statement. This is the first step in the definition of the system that will be
used in the next chapter for the computational procedure to find umarg.

6.1 Energy principle for kink modes

In chapter 3 the Energy Principle has been introduced, which is a very powerful tool
in order to study stability for an ideal-MHD plasma. In the general case the principle
is stated with the use of trial functions, we are now going to use instead ψ̃ and
ϕ̃ as they are the actual solutions of the problem. Given the expression 3.37 for the
perturbed energy, we can easily state that this expression for δW is quiet complicated
in a general scenario, but is possible to simplify it in specific cases. Where are going
to use here the expression for δW obtained by G. Laval, R. Pellat and J. S. Soule in
[6], for the case of axysimmetric toroidal mode n = 0. The equation is derived by
making use of the incompressibility condition, ∇ · ξξξ = 0, and of the equilibrium
expansion of a low-β straight tokamak at the lowest order. The final expression is:

2δW =
∫

τ

[
B̃̃B̃B2 − ξ̃̃ξ̃ξ · JJJ0 × B̃̃B̃B

]
dτ (6.1)

where τ identifies the region from the origin up to the external wall. This big re-
gion can be divide into three parts as shown in figure 6.1; J is the region inside the
elliptical boundary, u = ub, D is the region between the elliptical boundary and the
generic flux surface, u = uc, and E is the vacuum region between the generic surface
and the magnetic separatrix. The energy expression is thus divided as follows:

δW = δWJ + δWD + δE

=
1
2

∫
J
[B̃̃B̃B2 − ξ̃̃ξ̃ξ · JJJ0 × B̃̃B̃B] dr3 +

1
2

∫
D

B̃̃B̃B2 dr3 +
1
2

∫
E

B̃̃B̃B2 dr3

In the last two integrals the contribution coming from the current is not present,
because of the flat profile chosen in 4. Paying attention to the notation, we use here
the subscript "−" for quantities inside region J, while for regions outside we use "+".
We also use "in", in addition to "+", to express that we are working in region D, that
lies inside the magnetic separatrix. While for the region outside of this latter, region
E, we make use of "out" to identify the quantities.
Starting from region J, we have made use of JJJ0 = Jeqezezez, also we recall that inside Ω
the relation ∇2 Jeq = 2 must hold, while the perturbed magnetic field is expressed as

B̃BB = ezezez ×∇ψ̃ (6.2)



48 Chapter 6. δW analysis of vertical stability

FIGURE 6.1: Regions inside the magnetic structure

Substituting everything inside the integral we arrive at:

δWJ =
1
2

∫
J
[B̃BB2 − ξ̃ξξ · JJJ0 × B̃BB] drrr (6.3)

= −π

2
ξ2

1
cosh(µb)

sinh(µb)
(6.4)

where ξ1 = ξ/b. In region D:

δWD =
1
2

∫
D

B̃BB2 drrr

=
1
2

∫
D
(eeez ×∇ψ̃+

in)
2 drrr

=
1
2

∫
D
∇ · (ψ̃+

in∇ψ̃+
in) drrr

using Gauss divergence theorem we have

=
1
2

∫
SD

ψ̃+
in∇ψ̃+

in · dsss

= −1
2

∫
ψb

ψ̃+
in∇ψ̃+

in · dsss +
1
2

∫
ψc

ψ̃+
in∇ψ̃+

in · dsss

where SD is the surface around the elliptical boundary region. It’s important to
notice that SD = ψb + ψc, where the last two are the flux surfaces at ub and uc.
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In regione E:

δWE =
1
2

∫
E

B̃BB2 drrr

= −1
2

∫
ψc

ψ̃+
out∇ψ̃+

out · dsss

The final expression for the perturbed energy outside the elliptical boundary is

δWD + δWE = −1
2

∫
ψb

ψ̃+
in∇ψ̃+

in · dsss +
1
2

∫
ψc

[
ψ̃+

in∇ψ̃+
in − ψ̃+

out∇ψ̃+
out

]
· dsss (6.5)

The calculation for the first integral will be done using elliptical coordinate, while
for the second one flux coordinates will be used. We start by rewriting the integral,
knowing that a general change of coordinates transforms the gradient as

∇Ψ(q1,q2,q3) = ∑
i

1
hi

qqqi
∂Ψ
∂qi

(6.6)

while a general surface integral transforms as∫
VVV dsss =

∫
V1h2h3 dq2 dq3 +

∫
V2h3h1 dq3 dq1 (6.7)

+
∫

V3h1h2 dq1 dq2

Remembering that h = hθ = hµ and that we are working in an elliptical section of
the overall torus, our first integral will be written as∫

ψb

ψ̃+
in∇ψ̃+

in · dsss = (6.8)

=
∫

ψb

(ψ̃+
in∇ψ̃+

in)1h dθ +
∫

ψb

(ψ̃+
in∇ψ̃+

in)2h dµ

=
∫

ψb

(ψ̃+
in

∂ψ̃+
in

∂µ
)

1
h

h dθ +
∫

ψb

(ψ̃+
in

∂ψ̃+
in

∂θ
)

1
h

h dµ

Considering that the second integral is automatically zero for that type of integra-
tion, we are left with only ∫

ψb

(ψ̃+
in

∂ψ̃+
in

∂µ
) dθ (6.9)

The expression for ψ̃+
in and its derivative are

ψ̃+
in =

−ξ1
cosh(2µ)
cosh(2µb)

+ e0 cos(2θ)

{
[1 + e0 cosh(2(µ − µb)) cos(2θ)]

sinh(µ)
sinh(µb)

sin(θ)

− e0 sinh(2(µ − µb))
cosh(µ)
sinh(µb)

sin(2θ) cos(θ)
}

(6.10)
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∂ψ̃+
in

∂µ
= −ξ1

2 sinh(2µ)
cosh(2µb)

( cosh(2µ)
cosh(2µb)

+ e0 cos(2θ))2

{
[1+ e0 cosh(2(µ−µb)) cos(2θ)]

sinh(µ)
sinh(µb)

sin(θ)

− e0 sinh(2(µ − µb))
cosh(µ)
sinh(µb)

cos(θ) sin(2θ)

}
− ξ1

cosh(2µ)
cosh(2µb)

+ e0 cos(2θ)

{
2e0 sinh(2(µ − µb))

sinh(µ)
sinh(µb)

sin(θ) cos(2θ)

+ [1 + e0 cosh(2(µ − µb) cos(2θ)]
cosh(µ)
sinh(µb)

sin(θ)

− 2e0 cosh(2(µ − µb))
cosh(µ)
sinh(µb)

sin(2θ) cos(θ)

− e0 sinh(2(µ − µb))
sinh(µ)
sinh(µb)

sin(2θ) cos(θ)
}

(6.11)

On the elliptical boundary µ = µb we obtain

ψ̃+
in = −ξ1 sin(θ) (6.12)

∂ψ̃+
in

∂µ
=

cosh(µb)

sinh(µb)
ξ1 sin(θ) (6.13)

By substituting expressions 6.12 inside equation 6.9, the first integral now becomes

−1
2

∫
Ψb

(ψ̃+
in

∂ψ̃+
in

∂µ
) dθ =

1
2

ξ2
1

cosh(µb)

sinh(µb)

∫ 2π

0
sin(θ)2 dθ (6.14)

=
π

2
ξ2

1
cosh(µb)

sinh(µb)

Applying the same transformations, passing from Cartesian coordinates to flux
ones, for the second integral in 6.5 we end up with

1
2

∫
ψc

ψ̃∆

[
ψ̃∆

∂u
− ψ̃V′

∂u

]
· dν (6.15)

Because at the generic flux surface u = uc continuity of the solution must hold, we
have ψ̃∆ = ψ̃V′ , that is

ame−muc + bmemuc = cme−muc + dmemuc (6.16)

The derivatives are (we neglect for the moment the factor ξ/b):

∂ψ̃∆

∂u

∣∣∣∣
uc

= ∑
m,odd

m(−ame−muc + bmemuc)cos(mν) (6.17)

∂ψ̃V′

∂u

∣∣∣∣
uc

= ∑
m,odd

m(−cme−muc + dmemuc)cos(mν) (6.18)
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From equations 6.17 we obtain

∂ψ̃∆

∂u
− ∂ψ̃V′

∂u

∣∣∣∣
uc

= ∑
m,odd

2m
[
(cm − am)e−muc + (bm − dm)emuc

]
cos(mν) (6.19)

from 6.16 follows that

= ∑
m,odd

2m(bm − dm)emuc cos(mν) (6.20)

Putting everything back inside integral of 6.15

1
2

∫
ψc

∞

∑
m,odd

(ame−muc + bmemuc)

[ ∞

∑
m,odd

2m(bm − dm)emuc

]
cos(mν)2 dν (6.21)

=
∞

∑
m,odd

(ame−muc + bmemuc)

[
m(bm − dm)emuc

] ∫ 2π

0
cos(mν)2 dν

= π
∞

∑
m,odd

mλm(uc)(bm − dm)emuc

where the orthogonality of solutions ψ̃ allow us to retain only the term with the
same index, while the ones with different indices are automatically zero. We have
also make use of the expression λm(uc) = ame−muc + bmemuc from [mettere referenza].
Combining equations 6.4,6.14 and 6.21 we obtain the final expression for the per-
turbed potential energy (reintroducing the ξ/b = ξ1 factor):

δW = ξ2
1π

∞

∑
m,odd

mλm(uc)(bm − dm)emuc (6.22)

where the contributions coming from 6.4 and 6.14 cancel each other.
The next step is to determine coefficients cm and dm, to have everything that is
needed to compute δW. We proceed firstly by recovering that

Ψ̃∆(uc, ν) =
ξ

b

∞

∑
m,odd

λ(uc)cos(mν) (6.23)

Ψ̃V′(uc, ν) =
ξ

b

∞

∑
m,odd

(cme−mu + dmemu)cos(mν) (6.24)

Ψ̃V′(µ, θ) =
ξ

b

∞

∑
m,odd

gme−m(µ−µb)sin(mθ) (6.25)

where the second equation express the solution of the perturbed flux inside the vac-
uum region before the separatrix (that we now identify with the index V’). The third
equation the usual perturbed solution for plasma inside region ∆, but expressed in
elliptical coordinates.
We have three unknowns, bm, dm and gm, so we need three equations to solve them.
We can use as first the continuity condition of Ψ̃ at the generic flux surface u = uc,
stated as

Ψ̃∆ = Ψ̃V′ (6.26)

The other two equations can be found by extending the solutions all the way down
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to the elliptical surface, µ = µb, that it is also a constant u = ub surface. Therefore,
we can use the relations

Ψ̃V′(ub, ν) = Ψ̃V′(µb, θ) (6.27)

∂Ψ̃V′(u, ν)

∂u

∣∣∣∣
ub

=
∂Ψ̃V′(µ, θ)

∂u
∂µ

∂u

∣∣∣∣
µb

(6.28)

the second one has been derived using the well known chain rule, at µ = µb.
With these two new equations we can close the system, to compute each coefficient
for equations 6.23, 6.24 and 6.25.
Starting from 6.27, we can multiply both sides for cos(mνb) and integrate over dνb,
where νb = θ − π/2 + e0/2 sin(2θ). By omitting the summation sign, we get∫ 2π

0
(cne−nub + dnenub) cos(nνb) cos(mνb) dνb = (6.29)

=
∫ 2π

0
gn sin(nθ) cos(mνb) dνb

Because cosines are orthogonal the ones with different indices, m ̸= n, are automat-
ically zero, leaving contributions with the same index, cos(mνn)2, whose integral
between zero and 2π give π. Proceeding by applying integral by parts on the r.h.s,
we obtain∫ 2π

0
gn sin(nθ) cos(mνb) dνb = (6.30)

= gn

{[
sin(nθ) sin(mνb)

m

] ∣∣∣∣2π

0
− n

m

∫ 5π/2

π/2
sin(mνb) cos(nθ) dθ

}

= −gn
n
m

∫ 5π/2

π/2
sin(mνb) cos(nθ) dθ

= −gn
n
m

∫ 5π/2

π/2
cos(nθ) sin[m(θ − π

2
+

e0

2
sin(2θ))] dθ

= −1
2

gn
n
m

∫ 5π/2

π/2
sin[(m + n)θ − m

π

2
+

me0

2
sin(2θ)]

− sin[(n − m)θ + m
π

2
− me0

2
sin(2θ)] dθ

using the change of variable, θ = θ′ + π/2, we get

= −1
2

gn
n
m

∫ 2π

0
sin[(m + n)θ′ − n

π

2
− me0

2
sin(2θ′)] (6.31)

− sin[(n − m)θ′ + n
π

2
+

me0

2
sin(2θ′)] dθ′

depending on the m index, the transformations for sine can be

sin(α +
3
2

π) = − cos(α) (6.32)

sin(α +
1
2

π) = cos(α) (6.33)
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but the different sign can be incorporated inside coefficient gn, so the final expression
is

1
2

gn
n
m

∫ 2π

0
cos[(m + n)θ′ − me0

2
sin(2θ′)] (6.34)

− cos[(n − m)θ′ +
me0

2
sin(2θ′)] dθ′

These obtained are the Bessel functions of the first kind, and we can rewrite the final
result as

cme−mub + dmemub =
n
m

gn An
m (6.35)

where
An

m = ∑
j=±1

jJ m+jn
2 (

me0
2 )

(6.36)

Applying the same transformation to 6.28, brings∫ 2π

0
n(−cne−nub + dnenub) cos(nνb) cos(mνb) dνb =

=
∫ 2π

0
−ngn(1 + e0cos(2θ)) sin(nθ) cos(mνb) dνb

m(−cme−mub + dmemub)π =

= −ngn

∫ 5π/2

π/2
sin(nθ) cos[m(θ − π

2
+

e0

2
sin(2θ))] dθ

= −1
2

n
m

gn

∫ 5π/2

π/2

{
sin[(m + n)θ − m

π

2
+

me0

2
sin(2θ)]

+ sin[(n − m)θ + m
π

2
− me0

2
sin(2θ)]

}
dθ

applying the same coordinate transformation, θ = θ′ + π/2, we get

= −1
2

n
m

gn

∫ 5π/2

π/2

{
sin[(m + n)θ′ + n

π

2
− me0

2
sin(2θ′)]

+ sin[(n − m)θ′ + n
π

2
+

me0

2
sin(2θ′)]

}
dθ′

Incorporating the sing inside coefficient gn and using Bessel function definition,
we arrive at

−cme−mub + dmemub =
n
m

gnBn
m (6.37)

where
Bn

m = ∑
j=±1

J m+jn
2 (

me0
2 )

(6.38)
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Taking expressions 6.35 and 6.37, combine them to obtain

cm = gn
emub

2
n
m
(An

m − bn
m) (6.39)

dm = gn
e−mub

2
n
m
(An

m + bn
m) (6.40)

Inserting coefficients’ expressions 6.39 and 6.40, inside the continuity condition 6.26,
we obtain

2λm(uc) = e−m(uc−ub)
∞

∑
n,odd

gn
n
m
(An

m − bn
m) (6.41)

+em(uc−ub)
∞

∑
n,odd

gn
n
m
(An

m + bn
m) (6.42)

This is a linear system, with unknown vector coefficients gn, know vector bm =
2λm(uc) and matrix Λn

m with entries e−m(uc−ub) n
m (An

m − bn
m) + em(uc−ub) n

m (An
m + bn

m).
The linear system is rewritten as

Λn
mgn = bm (6.43)

Where m is the number of rows and n is the number of columns of the matrix. Since
n is actually the same index spanning the infinite series of the perturbed solutions,
but in a different reference frame due to the transformation adopted above, then also
the n index will be truncated at the same value of m, i.e. mmax. The matrix Λn

m will
then result to be squared.

6.2 Asymptotic expansion of matrix entries

Before solving the linear system 6.43, it is better to firstly analyze matrix Λn
m in order

to understand some computational problems that will arise later. We can compute
the asymptotic behavior of its entries, along rows m and columns n. We firstly define
some quantities, that will be useful for our purposes.

e0 =
b2 − a2

b2 + a2 = sech(αb) (6.44)

sech(αb) = sech(αb) + tanh(αb)sech(αb)δ + ≀(δ2) (6.45)

= e0(1 + tanh(αb)δ) + ≀(δ2) (6.46)

(1 − e2
0)

1/2 = tanh(αb) (6.47)

where αb = 2µb.
The first part of matrix Λn

m is

e−m(uc−ub)
n
m
(An

m − bn
m) = (6.48)

= e−m(uc−ub)
n
m
(J m+n

2
− J m−n

2
− J m+n

2
− J m−n

2
)

= e−m(uc−ub)
n
m
(−2J m−n

2
) (6.49)
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(we are omitting the argument me0
2 for sake of simplicity). We proceed in a similar

way as has been done in Appendix D of [12]. Let ν = (m− n)/2 and ν′ = (m+ n)/2,
and introduce α1 and α2 as:

sech(α1) = e0

(
1 +

n
2ν

)
(6.50)

sech(α2) = e0

(
1 − n

2ν′

)
(6.51)

In the limit m → ∞, let us denote the deviations of α1 and α2 from αb by δ1 and δ2
respectively, so that α1 = αb − δ1 and α2 = αb + δ2. Thus,

sech(α1) =
1

cosh(αb − δ1)
≈ e0(1 + tanh(αb)δ1) (6.52)

sech(α2) =
1

cosh(αb + δ2)
≈ e0(1 − tanh(αb)δ2) (6.53)

Comparing 6.50 - 6.53 leads to

δ1 =
n
2ν

coth(αb), δ2 =
n

2ν′
coth(αb) (6.54)

From [citare libro], formula (9.3.2), we now that the asymptotic expansion of the
Bessel function, for ν → ∞, can be expressed as

Jν(νsech(α)) ∼ eν(tanh(α)−α)√
2πν tanh(α)

(6.55)

Analyzing the argument of the exponential

(
m − n

2
)(tanh αb − αb + δ1 − e2

0δ1) + m
tanh αb

2
− m

αb

2
− muc = (6.56)

= m tanh αb − mαb − n
tanh αb − αb

2
+ (

m + n
2

)(δ1 − e2
0δ1)− muc =

= m(tanh αb − αb)− n
tanh αb − αb

2
+ n

coth αb − e2
0 coth αb

2
− muc =

= m(tanh αb − αb − muc + nµb (6.57)

Substituting 6.57 and 6.55 inside 6.49, we get that this first part goes as

∼ −
√

2n
m3/2

e−muc

π tanh αb
em(tanh αb−αb)enµb (6.58)

The second part of matrix Λn
m is expressed as

em(uc−ub)
n
m
(An

m + Bn
m) = em(uc−ub)

n
m
(2J m+n

2
) (6.59)
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The exponential part from 6.55 in this case is

(
m + n

2
)(tanh αb +−e2

0δ2 − δ2 − αb)− m
tanh αb − αb

2
− m

αb

2
+ muc = (6.60)

= n
tanh αb − αb

2
+ n

(e2
0 coth αb − coth αb

2
+ muc =

= −n
αb

2
+ muc = −nµb + muc (6.61)

The final expression for this part becomes

∼
√

2n
m3/2

e−nµb

√
π tanh αb

e−muc (6.62)

Putting back together expressions 6.58 and 6.62, we can write

Λn
m ∼ −

√
2n

m3/2
√

π tanh αb

(
em(2ub)e−muc enµb − e−nµb emuc

)
(6.63)

where the term (tanh αb − αb) = 2ub. Considering the limit as uc → 0− the final
expression becomes

Λn
m ∼

√
2ne−nµb

m3/2
√

π tanh αb
emuc m → ∞ (6.64)

To compute the asymptotic expansion for the columns, n → ∞, is relatively more
simple. We make use of the formula (9.3.1), from [Libro], which is

Jν(z) ∼
1√
2πν

(
ez
2ν

)ν

ν → ∞ (6.65)

where e is the exponential. Considering that ν = (n − m)/2 , the first part of the
matrix can be expanded as:

e−m(uc−ub)
n
m
(An

m − bn
m) = e−m(uc−ub)

n
m
(−2J m−n

2
) (6.66)

∼ e−m(uc−ub)
n
m

[
− 2(−1)

n−m
2

1√
2π (n−m)

2

(
e(me0)/2

2(n − m)/2

) n−m
2

]
(6.67)

Using Stirling formula

x! ∼
√

2πx
xx

ex (6.68)

the previous expression can be rewritten as

∼ e−m(uc−ub)
n
m

[
− 2(−1)

n−m
2

(me0

4

) n−m
2

/(
n − m

2

)
!
]

(6.69)

The second part of the matrix, for n → ∞, in the same way is rewritten as

e−m(uc−ub)
n
m
(−2J m−n

2
) ∼ em(uc−ub)

n
m

[
2
(me0

4

) m+n
2

/(
m + n

2

)
!
]

(6.70)
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Putting back together 6.69 and 6.70, we end up with

Λn
m ∼ n

m

{
e−m(uc−ub)

[
− 2(−1)

n−m
2

(me0

4

) n−m
2

/(
n − m

2

)
!
]

(6.71)

+em(uc−ub)

[
2
(me0

4

) m+n
2

/(
m + n

2

)
!
]}

n → ∞ (6.72)

Summarizing this last part, we have that matrix entries, along rows, go as

Λn
m ∼

√
2ne−nµb

m3/2
√

π tanh αb
emuc m → ∞ (6.73)

while along columns, go as

Λn
m ∼ n

m

{
e−m(uc−ub)

[
− 2(−1)

n−m
2

(me0

4

) n−m
2

/(
n − m

2

)
!
]

(6.74)

+em(uc−ub)

[
2
(me0

4

) m+n
2

/(
m + n

2

)
!
]}

n → ∞ (6.75)

This behavior can be confirmed by plotting together Λn
m entries, and the formulas

obtained now. Here below are shown for the first row and column, respectively.

FIGURE 6.2: Asymptotic behavior of Λn
m first column for m → ∞
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FIGURE 6.3: Asymptotic behavior of Λn
m first row for n → ∞

As we can clearly see, matrix entries becomes instantly very small, very close to
zero. The fact that the majority of the entries are so small produces a matrix with a
lot of columns that are "almost" linear dependent one to each other, where we have
made use of the term "almost" in a rough way that will now be clarified. The defi-
nition of linear dependence when dealing with finite precision arithmetic is slightly
different w.r.t the usual concept in infinite arithmetic precision. Thus, two columns
that have entries very close one to each other, cannot be linear dependent in infi-
nite arithmetic, because they are different, but can instead be considered as linear
dependent when working with finite arithmetic precision, because below a certain
tolerance they cannot be distinguished anymore, thus producing computational in-
accuracies. This linear dependence is a problem when dealing with matrix inversion,
as it has a lower rank w.r.t. its dimensions, leaving us to deal with the problem of
not unique and/or low accurate solutions.
To have a measure of how "bad" our matrix is performing the condition number,
of matrix Λn

m, is one of the most useful quantities. This latter can be analytically
defined as

K(Λ) = ||Λ||||Λ−1|| (6.76)

It gives an indication of the accuracy of the results from matrix inversion and the
linear equation solution. Large condition numbers indicate that a small change in
the coefficients of matrix Λ can lead to larger changes in the output b. It spans value
from one, the best case, up to infinity, that is the extreme case when the matrix is so
poorly conditioned that it is singular and so has no inverse, and the linear equation
has no unique solution.
In the table below are reported condition numbers of matrix Λn

m for different values
of e0 and u = uc, and for different truncation numbers of m = mmax.

uc e0 = 0.05 e0 = 0.1 e0 = 0.2
-1 1 1 1

-0.1 2.1991e+05 7.2293e+03 275.3813
-0.01 1.4444e+58 4.6533e+43 1.5171e+30

TABLE 6.1: Condition number for mmax = 1/|uc|
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uc e0 = 0.05 e0 = 0.1 e0 = 0.2
-1 1.9484 1.0586 1.9959

-0.1 1.5252e+16 5.9953e+11 4.2505e+07
-0.01 3.3426e+167 1.2071e+124 7.3078e+81

TABLE 6.2: Condition number for mmax = 3/|uc|

uc e0 = 0.05 e0 = 0.1 e0 = 0.2
-1 7.7690 1.0909 7.3527

-0.1 3.0567e+32 5.6221e+23 3.9755e+15
-0.01 NaN 2.0443e+236 4.9408e+150

TABLE 6.3: Condition number for mmax = 6/|uc|

As we can see, increasing mmax leads to a worst condition number because the
matrix is getting larger and larger and more linear dependent columns are added.
But on the contrary, a low number of terms will not be able to accurately represent
the series. The truncation number turned to be a problem of compromise, where we
want to choose a large m in order to correctly represent our series, but not too large
to avoid loss of accuracy from matrix inversion.

6.3 Residual and error analysis

After this first analysis of matrix’s entries, we can now proceed to solve the linear
system 6.43. Due to the linear dependence problem illustrated above we have to
deal with a rank deficient matrix and so with a system admitting not unique so-
lution. One way to deal with our problem is to solve the linear system using the
pseudoinverse matrix, or Moore-Penrose inverse (see D). Using this approach we
are basically searching among all the solutions the one that minimizes the square
of the norm, i.e. ||b − Λg||2. The solution of our linear system can thus be written
analytically as

gn = (Λn
m)

†bm = Λm†
n bm (6.77)

Speaking now about how this is performed practically, Matlab provides a simple
command (pinv), and compute the pseudoinverse through the singular value de-
composition of our matrix. It is also possible to increase the minimum tolerance
under which singular values of Λn

m, that are smaller than that tolerance, are consid-
ered zero. Increasing the tolerance will produce more accurate results, in particular
for very small values of u = uc, but at the same time the computed solution deviate
from the original one, so we are not going to consider it.
After the inversion of the matrix we can now compute the relative residual, ex-
pressed as

rrel =
||r||
||b|| =

||b − Λg||
||b|| , (6.78)

where r is the residual. Different plots of rrel as function of uc are shown here below,
for different e0 values.

https://it.mathworks.com/help/matlab/ref/pinv.html
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FIGURE 6.4: Residual for e0 = 0.05

FIGURE 6.5: Residual for e0 = 0.1
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FIGURE 6.6: Residual for e0 = 0.2

Here below is reported the table with the values of the residuals for different e0,
w.r.t a truncation value of mmax = 3/|uc|.

|uc| e0 = 0.05 e0 = 0.1 e0 = 0.2
0.5 1.5805e-16 6.5396e-16 5.8990e-16
0.1 3.6511e-04 8.1615e-16 6.8976e-16
0.08 8.6595e-04 8.5971e-16 7.5397e-16
0.06 1.9e-03 8.4055e-04 1.0050e-13
0.05 3.4e-03 1.4e-03 2.0680e-04
0.03 7.3e-03 4.2e-03 1.3e-03

0.009 0.02 0.014 7.7e-03

TABLE 6.4: Relative Residual

Increasing the ellipticity increases the number of points that we can use inside
our analysis, thus we can compute values of δW for smaller |uc| using a larger e0,
but we have to be careful, we have previously said that by increasing ellipticity we
have also to increase the mmax in order to avoid severe truncation errors. Using
mmax = 3/|uc| is reasonable only for e0 up to 0.1, we will see later that for larger
values of e0 keeping the same number of the maximum harmonics will produce
errors.
It is also very important to analyze the maximum error that our system is producing.
Considering g our computed solution, gex the exact solution of our system and e =
gex − g the error of our solution w.r.t the exact one, we can write

||e|| = ||gex − g||
= ||Λ−1b − g||
= ||Λ−1b − Λ−1Λg||
= ||Λ−1(b − Λg)|| = ||Λ−1r|| ≤ ||Λ−1||||r||
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The general inequality induced by the norm for a linear system is written as ||b|| ≤
||Λ||||g||. Thus, dividing ||e|| by ||g|| we end up with

||e||
||g|| ≤

||Λ||
||b|| ||Λ

−1||||r|| = K(Λ)
||r||
||b|| (6.79)

where K(Λ) = ||Λ||||Λ−1|| is the condition number of matrix Λ. From 6.79 we
can see how a small residual does not always imply a small error on our solu-
tion. Considering mmax = 3/|uc|, the table below shows the maximum relative error
erel−max = K(Λ)||r||/||b||, for different e0 and uc.

|uc| e0 = 0.05 e0 = 0.1 e0 = 0.2
0.5 2.3581e-14 1.2519e-14 1.5833e-15
0.4 4.9532e-14 8.7653e-15 1.1806e-16
0.3 7.0426e-12 2.5388e-13 8.2460e-15
0.2 5.6998e-09 1.8958e-11 9.3126e-14
0.1 5.5688e+12 4.8931e-04 2.9319e-08
0.09 1.4361e+14 4.2e-03 2.4447e-07
0.08 4.8703e+16 0.2570 2.4905e-06
0.07 2.2557e+20 6.1841e+13 1.7336e-04
0.06 1.5461e+25 3.4571e+17 6.0938

TABLE 6.5: Maximum Relative Error, mmax = 3/|uc|

We can see now that some points that have a small relative residual carry instead
a large relative error; e.g. for e0 = 0.1 at |uc| = 0.08 we have rrel ∼ 10−16 but
erel ≤ 0.2527.
The same results are shown for the other two values of mmax:

|uc| e0 = 0.05 e0 = 0.1 e0 = 0.2
0.5 8.0498e-16 1.6772e-15 2.0453e-16
0.4 3.5386e-17 2.4659e-17 6.5251e-17
0.3 1.6228e-15 1.1317e-15 1.2470e-17
0.2 4.6389e-14 1.0184e-15 2.2238e-15
0.1 9.4754e-10 3.7703e-12 8.9538e-14
0.09 9.3496e-10 4.0779e-12 2.5563e-13
0.08 1.1585e-08 4.7160e-11 7.7012e-13
0.07 1.4457e-07 2.8588e-10 2.8165e-12
0.06 1.0777e-05 2.3693e-09 2.6797e-11

TABLE 6.6: Maximum Relative Error, mmax = 1/|uc|

|uc| e0 = 0.05 e0 = 0.1 e0 = 0.2
0.5 7.6277e-12 5.2292e-13 3.7669e-15
0.4 2.0363e-10 5.6301e-12 2.5506e-14
0.3 2.4532e-07 6.2311e-10 3.6966e-12
0.2 5.4376e+09 4.0751e-05 2.2509e-09
0.1 1.3471e+29 6.0916e+19 1.8703e+10
0.09 6.8373e+32 4.6940e+22 3.4868e+12

TABLE 6.7: Maximum Relative Error, mmax = 6/|uc|
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As expected, increasing mmax will also increase the maximum relative error, and
vice versa. We now have an idea of the minimum point |uc| up to which the per-
turbed energy can be computed. Below this value the error carried by the coefficients
results to be too large to be taken in consideration.
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Chapter 7

Locating the marginal stability flux
surface

This last chapter will be devoted to show the results obtained from the numerical
computation of the δW expression. We recall here that what we want to obtain is a
curve for δW as a function of uc, for a fixed value of e0 and so of ub, the convenient
elliptical surface. The work done up to now is crucial as the problem of stability
has been reduced to determine the sign of the perturbed potential energy. Thus,
we can now build our curve starting from the elliptical surface u = ub and up to
the last closed magnetic flux surface, u = uX. In chapter 4 has been shown that in
these two case studies plasma behavior changes significantly due to the nature of the
current sheets forming along the separatrix, acting as a passive stabilization system.
Practically, we expect that the δW curve, which starts from u = ub and is extended
up to u → 0, will cross the axis in the point where marginal stability occurs, that we
have called u = umarginal , i.e. where δW = 0 and so γ2 = 0, remembering that γ is
the growth rate.
We will show in a moment that this conclusion cannot be achieved only considering
the results of our problem. As has been shown in the previous chapter, the closer
we get to the separatrix, the more harmonics will be needed in order to correctly
represent the perturbed solution ψ̃ and ϕ̃, and so larger the matrix Λn

mwill become,
thus producing bad conditioned results with large errors on the coefficients needed
to represent the δW harmonic contributions. So, calculations for δW(u = uc) can
be done up to a minimum value of uc, which is given by tables 6.6, 6.5 and 6.7,
after that point the obtained results are matched to large errors and cannot be taken
as correct points to construct the final curve. Unfortunately, will be shown later that
the minimum uc up to which calculations can be made is not smaller enough in order
to locate the marginal stability point, u = umarginal , thus the last part of the chapter
will be devoted to illustrate some curves obtained through extrapolation, using non
linear models.

7.1 δW curve

The plots shown below in figures 7.2 and 7.3, are related to the cases with e0 = 0.1
and e0 = 0.2 where the value for mmax has been taken as mmax = 6/uc. This value
of m has been used also for e0 = 0.2, as only a small error is introduced for |uc| > 1.
Thus, for the minimum value of uc we refer to table 6.7. While for e0 = 0.05, shown
in figure 7.1, the truncation value has been taken as mmax = 3/|uc|, so we will refer
to table 6.5 to take the minimum uc. In every result for the different e0s, the final
curve doesn’t arrive to cross the axis. Because of the fact that δW value at the sep-
aratrix, i.e. at u = 0 , must be positive (we recall here that the perturbed plasma
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FIGURE 7.1: δW curve for e0 = 0.05

FIGURE 7.2: δW curve for e0 = 0.1
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FIGURE 7.3: δW curve for e0 = 0.2

should have a stable behavior at uc = uX = 0), we should expect a rapid increase in
the slope of the curve in the final part. Furthermore, the fact that the curve could not
be computed for such small values of uc, is indicative of the fact that for these small
coordinates the δW expression, together with the series representing the perturbed
solutions, is very sensitive to computational errors, as the smaller contributions that
sum up in the series increase.

7.2 Fit and extrapolation

The final step is to extrapolate the last part of the curve in order to have an idea of
the position of the marginal stability surface, umarg. Due to the fact that we are deal-
ing with a physical quantity, i.e. the perturbed energy, the behavior of the system
as a function of uc must be justified. Since there are no reasons that lead us to think
that the last unknown part of the curve has a drop or some wiggling behavior, it
is reasonable to seek out a model that allows the curve to increase for u → 0. The
searched model must be obtained from the fit of the curve, on the previously evalu-
ated points.
For all the cases that will follow, the chosen model is written through the following
non linear expression:

δW(uc) = ∑
i

ai|uc|i + ln (|uc|+ h) (7.1)

where i = {0, 1
2 , 1, 2, 3, 4}, and ai, h are the coefficients computed by fitting the curve,

with h > 0. The polynomial up to grade 4 is justified by the fact that lower degrees
would not fit the curve perfectly as this model does; values of the fit evaluation
parameters will be given in the next subsections, as those in tables 7.2 and 7.6. Also,
higher values of the polynomial make the computation of the coefficients imprecise,
thus leading to large error bounds. The logarithmic term and the grade 1/2 of the
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polynomial are there in order to correctly represent the rapid increase in the slope of
the curve in the final part.
Furthermore, in chapter 4 the case where plasma is extended up to the magnetic
separatrix has been illustrated, with the final result of a stable behavior under small
perturbations. From the expression of γ2 is possible to compute the value of δW
at uc = uX = 0, as shown in Appendix E. Here below the cases for e0 = 0.05 and
e0 = 0.1 are derived, both under two different circumstances. In the first scenario the
computed value of δW(uc=0) at the separatrix is not used as a point inside the fitting
dataset, while in the second one this value is instead considered. A comparison
between the two scenarios is presented for both the e0s cases, in order to understand
if the model described by 7.1 is suitable to represent the behavior even in the case
where δW(uc=0) is unknown.
An additional case with e0 = 0.2 is then presented, but we will see that the obtained
results carry too large error bounds to make any conclusion about it.

7.2.1 Case e0 = 0.05

No additional point at the separatrix

The first case is the one related to a value of the ellipticity parameter as e0 = 0.05.
Referring to figure 7.4, the red curved overlap almost perfectly the data points, in fact
it is quite difficult to see the red curve passing for all the different blue points and
also the error bounds that are almost null. Matlab toolbox for the CurveFit allows
also to compute the prediction bounds, obtained from the calculations of coefficients
ai and h. Figure 7.5 show the residuals of the blue points from the red curve, that is
taken as the zero reference, while table 7.2 shows some important parameters that
are useful in order to understand the goodness of the fit, even if a good indication
comes from the graph analysis.
We report here a brief description of these latter parameters, which can be found in
the Matlab website: Evaluating Goodness of the Fit.

• SSE (Sum of Squares Due to the Error): it measures the total deviation of the
response values from the fit to the response values. Values near zero indicates
a small random error component.

• RSquare: it measures how well the fit is in explaining the variation of the data
points. It can take value between 0 and 1, a greater value means that the model
is taking into account a great portion of the variance.

• Adjrsquare (Degrees of Freedom Adjusted RSquare): it uses the R-square and
adjusts it based on the residual degrees of freedom. The residual degrees of
freedom is defined as the number of response values minus the number of
fitted coefficients estimated from the response values. A good fit must have a
value related to this statistic as closer to one as possible.

• RMSE (Root Mean Square Error): it estimates the standard deviation of the
random component in the data. A small value is indicative of a good fit.

From the explanation of the different statistic parameters made previously, table
7.2 shows very good result of the produced fit. Also, analyzing the extrapolated
curve, figure 7.6, is possible to locate the value of the marginal stability at around
|umarg| ≈ 0.039, while the value of the relative perturbed energy at the separatrix
is δW(uc=0)/ξ2

1 = 0.5482. Calculations from Appendix E show that the value at the
separatrix is instead δW(uc=0)/ξ2

1 = 0.280.
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FIGURE 7.4: Curve fit for e0 = 0.05

FIGURE 7.5: Residuals for e0 = 0.05
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FIGURE 7.6: Extrapolated curve for e0 = 0.05

Coefficients Value (95% confidence bounds)
a 3.367 (3.363, 3.371)
b -5.892 (-5.904, -5.88)
c 2.929 (2.917, 2.94)
d -0.7163 (-0.7221, -0.7105)
e 0.2077 (0.2052, 0.2102)
f -0.03141 (-0.0319, -0.03091)
h 0.05966 (0.05941, 0.05991)

TABLE 7.1: Model’s coefficients for e0 = 0.05

sse 4.9137e-08
rsquare 1.0000

adjrsquare 1.0000
rmse 6.5710e-06

TABLE 7.2: Curve fit evaluation parameters, e0 = 0.05
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FIGURE 7.7: Residuals with the additional point, e0 = 0.05

Coefficients Value (95% confidence bounds)
a 1.887 (1.881, 1.892)
b -2.193 (-2.198, -2.187)
c -0.3652 (-0.3675, -0.3629)
d 0.6806 (0.674, 0.6872)
e -0.3401 (-0.3449, -0.3353)
f 0.06968 (0.06841, 0.07095)
h 0.2006 (0.1995, 0.2016)

TABLE 7.3: Model’s coefficients with additional point at the separa-
trix, e0 = 0.05

Additional point at the separatrix

The graphs that follows are instead the second case scenario, i.e. produced consid-
ering inside the fitting data set the value of δW/ξ2

1 at the separatrix (maintaining the
same non linear model for the extrapolation).

Here the curve crosses the axis at around |umarg| ≈ 0.047. Considering the value
obtained in previous scenario, i.e. |umarg| ≈ 0.039, the marginal stability surface is
obtained in both cases for values that are very close one to each other. The same can-
not be said for the value of the perturbed energy at the separatrix, as the two differs
of |δW/ξ2

1| = 0.2682. This discrepancy is not surprising if we consider the overall sit-
uation, i.e. we are dealing with a problem where a suitable truncation number mmax
must be chosen in order to reduce the errors, and at the same time to not produce
a too much large number of harmonic contributions. Also, the curve used for the
extrapolation is not the correct analytic representation of the δW behavior, but only
an approximated one, and must also be taken in consideration that we are missing
an important range of points inside which the curve should have a significant slope
increase.
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FIGURE 7.8: Fitted curve with additional point at the separatrix (u =
0), for e0 = 0.05

sse 4.1991e-06
rsquare 1.0000

adjrsquare 1.0000
rmse 6.0718e-05

TABLE 7.4: Curve fit evaluation parameters with additional point at
the separatrix, e0 = 0.05



7.2. Fit and extrapolation 73

FIGURE 7.9: Curve fit for e0 = 0.1

Coefficients Value (95% confidence bounds)
a 3.512 (3.508, 3.517)
b -6.522 (-6.535, -6.509)
c 3.526 (3.512, 3.54)
d -1.028 (-1.036, -1.019)
e 0.3652 (0.3607, 0.3697)
f -0.06899 (-0.0701, -0.06788)
h -0.05045 (-0.05065, -0.05024)

TABLE 7.5: Model’s coefficients , e0 = 0.1

7.2.2 Case e0 = 0.1

From table 6.7, the last suitable point that can be used for the fit is also |uc| = 0.2.
Here the axis is crossed at around |umarg| ≈ 0.022 and the value of the relative

perturbed energy at the separatrix is δW(uc=0)/ξ2
1 = 0.5256. The value computed

analytically is instead δW(uc=0)/ξ2
1 = 0.5627.

sse 3.8001e-09
rsquare 1.0000

adjrsquare 1.0000
rmse 2.1891e-06

TABLE 7.6: Curve fit evaluation parameters, e0 = 0.1
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FIGURE 7.10: Residuals for e0 = 0.1

FIGURE 7.11: Extrapolated curve for e0 = 0.1
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FIGURE 7.12: Residuals for e0 = 0.1, additional point at the separatrix

FIGURE 7.13: Fitted curve with the additional point at the separatrix
(u = 0), for e0 = 0.1
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Coefficients Value (95% confidence bounds)
a 3.533 (3.463, 3.602)
b -6.666 (-6.885, -6.447)
c 3.777 (3.54, 4.013)
d -1.292 (-1.432, -1.151)
e 0.5637 (0.4894, 0.638)
f -0.1311 (-0.1494, -0.1128)
h 0.05131 (0.04773, 0.05489)

TABLE 7.7: Model’s coefficients with additional point at the separa-
trix, e0 = 0.1

sse 1.0747e-06
rsquare 1.0000

adjrsquare 1.0000
rmse 3.6790e-05

TABLE 7.8: Curve fit evaluation parameters with additional point at
the separatrix, e0 = 0.1

Additional point at the separatrix

In this scenario, the marginal stability surface can be located around |umarg| ≈ 0.025.
Here both the values of the |umarg| and of δW(uc=0)/ξ2

1 are very close for the two
cases, while the fit evaluation parameters remain quite low. This type of non linear
model, expression 7.1, seems more suitable for the case of e0 = 0.1 w.r.t e0 = 0.05.

7.3 Case e0 = 0.2

No additional point at the separatrix

The marginal stability surface in this case is located at |umarg| ≈ 0.0085, while δW(uc=0)/ξ2
1 ≃

0.4648. For e0 = 0.2 the value analytically computed at the separatrix is instead
δW(uc=0)/ξ2

1 ≃ 1.1644; so the two values, computed and extrapolated, differ a lot
one from each other. Anyways, expression 7.1 is still a good model to represent our
data set of points.

Coefficients Value (95% confidence bounds)
a 3.685 (3.681, 3.689)
b -7.559 (-7.573, -7.545)
c 4.542 (4.525, 4.559)
d -1.663 (-1.676, -1.649)
e 0.7772 (0.7676, 0.7868)
f -0.198 (-0.2012, -0.1948)
h 0.03994 (0.03978, 0.0401)

TABLE 7.9: Model’s coefficients, e0 = 0.2
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FIGURE 7.14: Curve fit, e0 = 0.2

FIGURE 7.15: Residuals, e0 = 0.2

sse 3.8097e-11
rsquare 1.0000

adjrsquare 1.000
rmse 2.9097e-07

TABLE 7.10: Curve fit evaluation parameters, e0 = 0.2
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FIGURE 7.16: Extrapolated curve, e0 = 0.2

Coefficients Value (95% confidence bounds)
a 4.153 (-98.02, 106.3)
b -10.08 (-362.5, 342.3)
c 8.695 (-412.9, 430.3)
d -6.672 (-317.5, 304.2)
e 5.631 (-203.5, 214.8)
f -2.236 (-68.95, 64.48)
h 0.0429 (-4.341, 4.426)

TABLE 7.11: Model’s coefficients with additional point at the separa-
trix, e0 = 0.2

Additional point at the separatrix

Considering instead the additional degree of freedom at uc = 0, the final results
become a disaster. Even if a curve can be obtained, the prediction bounds are ex-
tremely wide and the same happens with the residuals, see figures 7.17 and 7.18.

7.4 Conclusions

Before making the final considerations is better to briefly recap what has been done
up to now. We have started from the problem of understanding stability of a mag-
netically confined plasma, for a divertor tokamak configuration with two X-points,
that we recall are points on the magnetic field lines where the poloidal magnetic
field component vanishes and so the final field is purely toroidal. The analysis is
carried out in the regime of the reduced ideal-MHD model and in the low-β toka-
mak ordering. The focus is on VDEs (Vertical Displacement Events), in particular
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FIGURE 7.17: Curve fit with additional point at the separatrix, e0 =
0.2

FIGURE 7.18: Residuals with additional point at the separatrix, e0 =
0.2

sse 0.0427
rsquare 0.9820

adjrsquare 0.9818
rmse 0.0097

TABLE 7.12: Curve fit evaluation parameters with additional point at
the separatrix, e0 = 0.2
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FIGURE 7.19: Extrapolated curve with additional point at the separa-
trix, e0 = 0.2

the ones with n = 0, i.e. an axisymmetric, but not necessary rigid, vertical displace-
ment, with n the toroidal mode number; also, it is possible to restrict the calculations
only to a plasma section, as all the quantities that have been defined have toroidal
symmetry. The most simple tool to describe how instability works is the heuristic
model illustrated in chapter 4, from where has been shown the important result of
the independence of the instability mechanism from the current profile, so, only the
magnitude of the current carried by the plasma is important. With this conclusion is
possible to setup the problem of describing a more realistic model in two different
scenarios, where in the first one plasma is confined inside an elliptical flux surface,
identified as u = ub, located inside the magnetic separatrix. A current sheet always
form at plasma boundary, this is analytically justified by a discontinuity in the first
derivative of the perturbed flux function but has also been observed experimentally.
The nature of this current sheet, in this first scenario, is responsible for the unstable
behavior of the vertical displacement, thus plasma’s oscillation grows exponentially
in time, on a fast scale identified by the growth rate γ. When instead the plasma’s
edge is extended up to the magnetic separatrix, identified with the flux coordinate
u = uX = 0, the vertical displacement is resonant at the X points, i.e. it is constant
along the toroidal field line passing through the X-points, regardless of its poloidal
number. The nature of the current sheets is influenced by the harmonics of the per-
turbed solutions, which become more and more important for u → 0, as has been
shown in 5. At the separatrix, currents sheets act as a passive stabilization mecha-
nism, thus changing the nature of the plasma column from unstable to stable.
Because of this change in the plasma behavior, it is reasonable to search the partic-
ular magnetic flux surface for which plasma is marginally stable, i.e. γ2 = 0. By
extending plasma up to a generic magnetic surface uc, located between the elliptical
surface and the separatrix, |ub| < |uc| < |uX|, and considering a constant density
profile that drops to zero at that specific surface, together with a constant current
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density profile which instead drop to zero at u = ub, we proceed to construct a
curve of γ2 as a function of uc. To solve this problem we make use here of the im-
portant Energy Principle and of the variational formulation. The primer tells us that
if δW ≥ 0 than the plasma will result to be stable, while if negative, an unstable
behavior will be present.
The computation of δW is not so straightforward. After the analytic expression is
derived there is the need to compute the unknown coefficients gn through the res-
olution of a linear system, that will result to be bad conditioned, i.e. the inversion
of the matrix and as a result the final solution will carry an important error due to
not unique solutions. One way to deal with this type of systems is to compute the
Moore-Penrose inverse matrix, which allow us to find the solution which gives the
lowest residual in two norm. This linear system is initially of infinite dimensions,
as we are dealing with infinite series of terms summing over odd integers, but, the
harmonics contribution goes to zero quite rapidly, thus allowing the truncation of
the series and so the resolution of a linear system with dimension (mmax + 1)/2, as
the harmonics contributions take only integer odd values of m, i.e. 1,3,5, and so on.
There is an other consideration to take into account, the more harmonics we con-
sider the more correct the series will be represented, but at the same time the linear
system will result to be even more bad conditioned. We are then facing a problem of
compromise for the right maximum value of m to choose for the series truncation.
We have seen the errors produced by the choice of this mmax, and also the results that
can be achieved.
For all the different cases and choices of mmax, we can obtain our δW curve and make
the final consideration, i.e. that the searched marginal flux surface (δW(uc=umarg) = 0)
is too close to the origin w.r.t. the last point up to which we can perform calculations.
The remaining tool that we have, in order to locate this marginal flux surface, is the
extrapolation. It is somehow not so easy to find a function which describes the last
part of a curve where an important change in behavior occurs. We have tried to de-
scribe this change of sign through a non linear model which is the combination of a
polynomial and a logarithm.

δW(uc,e0) = a0 + a1/2|uc|1/2 + a1|uc|+ a2|uc|2 + a3|uc|3 + a4|uc|4 + ln (|uc|+ h) (7.2)

This choice is based on the assumption that there are no plausible physical reasons
(known to us) which could justify a drop to more negative values or eventually some
oscillatory behavior in the δW curve for uc → 0. The grade 4 is related to the fact
that it provides the best results when analysing the fit evaluation parameters, and
at the same time is the maximum grade which can be used in order to have results
which make sense. Figure 7.19 is a perfect example of the type of disaster which can
result from a bad choice. Furthermore, we have used 7.2 for the cases with e0 = 0.05,
e0 = 0.1 and e0 = 0.2, where the truncation value for the last two has been chosen
as 6/|uc|, while for the primer mmax = 3/|uc|. This type of non linear model has re-
sulted to be suitable for all these three cases (not considering the analysis including
the additional point at the separatrix), but some other considerations must be done.
Firstly, for e0 = 0.05 an additional grade for the polynomial, i.e. up to 5, could also
be used, even if the final results are almost identical to what has been shown. We
have illustrated the case with the grade 4 because for both e0 = 0.1 and e0 = 0.2 it
is the maximum that can be taken in consideration, and since we wanted to have a
unique model to compare the three cases this non linear function is the best to do it.
A further information have been introduced for each of the listed cases, i.e. the ad-
ditional point at the separatrix, which contribution has been analytically computed
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e0 umarg
0.2 0.0085
0.1 0.015
0.05 0.039

TABLE 7.13: Marginal flux surface

in appendix E. It is important to specify that this last analysis must be considered
very carefully, here is way. The reason behind this work was to locate the marginal
flux surface, but at the same time there were some hopes to construct almost the
totality the δW curve in order also to confirm, under this different approach, the re-
sult obtained for the case of the divertor tokamak scenario in [paper citation], i.e.
the stability for a plasma which boundary is extended up to the separatrix. With all
the considerations made until now is obvious to conclude that this is not something
possible and we are forced to see things from an other prospective.
We take as correct the result of the positive δWvalue which gives us the indication of
stability, and then we proceed to compare the curve obtained with and without the
additional point at the separatrix, to at least understand if the two curves have some
similar features and where the marginal stability surface would be located. For the
first two e0 case studies this approach brings to us interesting results, in particular
for the value of umarg, showing small discrepancies between the models with and
without the additional point. For e0 = 0.2 things become more complicated. If from
one side we have a very good curve which perfectly fits our data, on the other hand,
when the additional point is introduced the final results become tragic, leaving us
with no so much information.
An other important argument is related to how the marginal surface moves with
e0. Table 7.13 that summarizes the results for different e0s, is indicative of the fact
that for larger ellipticity values the marginal flux surface umarg is localized closer to
uc = 0; which is reasonable if we think that increasing e0 means stretching more the
plasma and so allowing the instability to be more difficulty driven.

We recall here table E.1, with the relative perturbed energy for different values
of the ellipticity computed analytically:

e0 δW(uc=0)/ξ2
1

0.2 1.1644
0.1 0.5258
0.05 0.28

TABLE 7.14: Values obtained from analytical calculations

If instead we look at the values obtained from the extrapolation (not considering
obviously the additional value at the separatrix), we have:

e0 δW(uc=0)/ξ2
1

0.2 0.4648
0.1 0.5101
0.05 0.5482

TABLE 7.15: Values obtained from extrapolated curve
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We notice an important incongruence for the two different set of values of δW(uc=0)/ξ2
1.

The computed values increase with e0 increasing, while the ones obtained from the
extrapolation decrease with e0 getting larger. One possible conclusion is that the
range of points that we are missing in all the cases is quite important, so it may be
that the extrapolated curve is correctly representing the function only locally, near
the last points of the data set, while for values of uc closer to zero the results could
not be accurate at all.
We close our considerations by notice that the main problem of this analysis is the
bad conditioned linear system, responsible of producing large errors for uc → 0. Dif-
ferent solutions have been tried in order to improve matrix Λn

m conditioning, without
encouraging results; e.g. changing basis or iterative procedures to reduce the com-
putational errors. One possible way to solve this problem is to reduce the dimension
of the series. We have seen in chapter 5 that the harmonics contributions decrease
very rapidly, as ∼ p/m3/2emuc , but the series is very slow to converge. So, one pos-
sibility could be to use some multiplicative factor or an algorithm in order to speed
up the convergence. We don’t go further as nothing of this has been tried yet, and
we will only result to be speculating.
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Appendix A

Heaviside step function

The Heaviside step function is a piecewise function defined as

H(x) =

{
1 , x ≥ 0
0 , x < 0

(A.1)

and can be considered to be the integral of the Dirac delta function

H(x) =
∫ x

−∞
δ(s) ds (A.2)





87

Appendix B

Dirac delta function

The Dirac delta function, also known as the unit impulse, is a generalized function
or distribution over the real numbers, whose value is zero everywhere except at zero,
and whose integral over the entire real line is equal to one.
The Dirac delta function is the derivative of the Heaviside function

δ(x) =
d

dx
H(x) (B.1)
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Appendix C

First order Bessel function

Bessel functions are canonical solutions of Bessel’s differential equation

x2 d2y
dx2 + x

dy
dx

+ (x2 − α2)y = 0 (C.1)

where for first order Bessel functions α = 1. Their integral representation, also called
Hansen-Bessel formula, is expressed as

Jn(x) =
1
π

∫ π

0
cos [nτ − x sin (τ)] dτ (C.2)

being n a natural integer.
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Appendix D

Moore-Penrose inverse

The Moore–Penrose inverse of a matrix is the most widely known generalization
of the inverse of a matrix. The pseudoinverse of a matrix A is defined as a matrix
A†, with dimensions m × n, satisfying all of the following four criteria, known as the
Moore–Penrose conditions:

• AA† A = A

• A† AA† = A†

• (AA†)∗ = AA†

• (A† A)∗ = A† A

The pseudoinverse can be expressed through the singular value decomposition (SVD).
Any matrix can be decomposed as A = UDV∗, where U contains columns spanning
the kernel of matrix A, while V contains columns spanning the null space of A. The
diagonal positive real matrix D contains instead the singular values. The pseudoin-
verse can then be written as A† = VD−1U∗.
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Appendix E

Perturbed potential energy at the
separatrix

The calculations that will follow have been provided by Adil Yolbarsop, which I here
thank again for his time.
In order to compute the perturbed potential energy at the separatrix we can make
use of the relation

γ2 =
δW
δK

(E.1)

where γ2 is the one from 4.51, while the associated kinetic energy energy can be
expressed as

δK = ξ2ρ
∫

V
dν (E.2)

where V is the volume bounded by the magnetic separatrix. Since the area inside
the separatrix is symmetric with respect to both x and y axis, is possible to evaluate
the area in only the first quadrant and then multiply it by four,

∫
dν = 4S (with S

the area of the first quadrant.
Taking a ellipses confocal w.r.t. the separatrix, it is possible to evaluate the two areas
S1 and S2 separately and then sum them up together as S = S1 + S2. The confo-
cal ellipses parameter µ1 can be obtained by solving through Matlab the following
expression:

µ1 − 2µb +
e0

2
sinh [2(µ1 − µb)] +

e0

2
sinh (2µb) = 0 (E.3)

While the first area is computed with the formula for the area of a quarter of ellipses
S1 = πA2 cosh µ1 sinh µ1/4. For the second one the integral which gives the area
contribution is:

S2 =
A2

2

∫ 2µb

µ1

∫ θmax

0
[cosh (2µ)− cos (2θ)] dµ dθ (E.4)

, where θmax(µ) is given by

θmax =
1
2

arccos
(

µ − 2µb + e0/2 sinh (2µb)

e0/2 sinh [2(µ − µb)]

)
(E.5)

Thus, the final expression for the relative perturbed energy in dimensionless form is

δW
ξ2

1
= 2

(
a2 + b2

a2b2 e0

)2

(S1 + S2) (E.6)

Here below is shown a table with some values as function the ellipticity parameter
e0.
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e0 δW/ξ2
1

0.2 1.1644
0.1 0.5627
0.05 0.280

TABLE E.1: Relative perturbed potential energy for u = 0
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