
POLYTECHNIC UNIVERSITY OF
TURIN

Master’s Degree in Mechanical Engineering

Master’s Degree Thesis

Agile Drone Path Planning Based on
Reinforcement Learning Algorithms

Supervisors

Prof. Giorgio GUGLIERI

Francesco MARINO

Candidate

Afshin ZEINADDINI MEYMAND

October 2023





Summary

Over the last decade, autonomous drone systems have significantly increased in
various industries such as surveying, search and rescue, and last-mile delivery. These
systems rely on various algorithms for trajectory planning, which are designed to
navigate in different environments. However, most of the algorithms developed for
trajectory planning are dedicated to static environments, where all objects other
than the autonomous vehicle remain fixed during the system’s operation.

One of the significant challenges that arise when working with autonomous
drone systems is the dynamic nature of the environment. When the environment
is not entirely static, and other objects such as the goal object are moving, it
requires the implementation of different algorithms for various tasks such as object
detection, state estimation, and trajectory planning. These algorithms must be
able to accurately detect and track the moving objects, estimate their state, and
plan a trajectory that avoids collisions while still reaching the goal object. This is
a complex task that requires advanced techniques and algorithms.

Several solutions are available for state estimation of moving objects in dynamic
environments, one of which is using Visual-Inertial Odometry (VIO) cameras. VIO
cameras are specialized cameras that are specifically designed for state estimation
tasks by providing precise and accurate 3D tracking data. They work by using
multiple cameras to capture images of markers placed on the object of interest.
These markers are small, highly reflective, and typically placed in a known pattern
on the object. The VIO system uses advanced algorithms and image processing
techniques to track the markers in the camera images, even in challenging conditions
such as low light or fast motion. The system compares the images captured by each
camera and calculates the distance between the markers by using the principle of
triangulation, thus providing a precise and accurate 3D position and orientation of
the object. Additionally, VIO cameras also use an Inertial Measurement Unit (IMU)
which is a device that measures linear and angular accelerations, and magnetic
fields. The IMU sensor works in conjunction with the cameras to provide additional
information about the object’s movement. The IMU sensor measures the angular
velocity and the linear acceleration of the object, and then the data is fused with
the visual data obtained from the cameras to improve the estimate of the object’s

ii



state. Overall, the use of VIO cameras in autonomous drone systems provides a
robust and efficient solution for state estimation of moving objects in dynamic
environments, as it is able to track the object’s position and orientation in real-time,
even under challenging conditions.

The use of Visual Odometry sensors for state estimation in model predictive
control for trajectory planning of autonomous drones in dynamic environments can
be challenging, as two main problems need to be addressed. These problems are:

• Handling the continuous action spaces: The action space for controlling the
drone’s trajectory is continuous and high-dimensional, making it challenging
to find the optimal policy using traditional techniques.

• Dealing with uncertainty and non-stationary environments: The environment
in which the drone operates is dynamic and uncertain, making it challenging
to predict the system’s future state and plan a trajectory that avoids collisions
by VIO systems.

One solution to these problems is to use Kalman Filters for state estimation,
by assuming that computer vision algorithms can extract the position of the
gate centers without knowing anything about the dynamic model of the gates.
Kalman Filters are a powerful tool for state estimation in dynamic systems, as
they can handle non-linear systems and estimate the state of the system even in
the presence of uncertainty and noise. It is widely used in various fields such as
control systems, navigation, and robotics. Once the position of the gate centers is
estimated using Kalman Filters, the trajectory of the drone for passing through
that center can be derived. This trajectory can then be fed to different Advanced
Actor-Critic Reinforcement Learning Algorithms such as Deep Deterministic Policy
Gradient(DDPG), Soft-Actor Critic (SAC), and Proximal Policy Optimization
(PPO) to derive the best policy. These algorithms are well-suited for trajectory
planning tasks in dynamic environments as they can handle continuous action
spaces, uncertainty, and non-stationary environments. RL algorithms are used
to learn the optimal policy for an agent to make decisions based on the system’s
state. RL algorithms use a trial-and-error approach to learn the optimal policy by
exploring different actions and receiving feedback in the form of rewards. When
Kalman filtering and RL algorithms are combined, the Kalman filter can provide
accurate and precise state estimates, while the RL algorithm can learn the optimal
policy for the agent to make decisions based on these estimates. Combining these
two techniques can lead to improved performance in tasks such as trajectory
planning, control, and decision-making. One of the key challenges in RL is defining
the reward function, which can be different for each task and environment. The
mixed Kalman Filter and RL algorithms address this challenge by defining the
reward function based on the distance of the drone’s current position with respect
to the predicted position of the center of the gate.

iii



The built model of the KFRL algorithm is a continuous state-action environment,
which means that the state of the system and the actions taken by the agent are
continuous variables. In this model, the agent can take any action in a continuous
range of values, rather than only a discrete set of actions. This allows for more
flexibility and precision in controlling the drone’s trajectory.

iv



Acknowledgements

I would like to thank my advisor, Francesco Marino, for his consistent feedback
sessions, guidance, and patience. I also extend my gratitude to Prof. Giorgio
Guglieri for allowing me to pursue my passion and conduct research in Path
Planning and Reinforcement Learning.

I’d like to express my appreciation to my friends, Ahmad Moori, Mohammad
Andayesh, and Masoud Arabbeiki, for their practical and emotional support. Lastly,
I want to express deep appreciation for my parents and brothers for believing in
me, which kept my motivation high throughout my master’s degree journey.

Afshin

v





Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Deep Reinforcement Learning and Kalman Filtering Algorithms 5
2.1 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Introduction to Deep Reinforcement Learning . . . . . . . . 5
2.1.2 Value-Based Deep Reinforcement Learning Algorithms . . . 11
2.1.3 Policy-Based Deep Reinforcement Learning Algorithms . . . 15

2.2 Introduction to Kalman Filtering Algorithms . . . . . . . . . . . . . 24
2.2.1 Standard Kalman Filter (SKF) . . . . . . . . . . . . . . . . 24
2.2.2 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . 27
2.2.3 Single-Instruction Multi-data Kalman Filter . . . . . . . . . 30

3 Simulation Environment and Experimental Setup 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Two Dimensional Drone Environment . . . . . . . . . . . . . . . . . 33

3.2.1 State Representation . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Three Dimensional Drone Environment . . . . . . . . . . . . . . . . 36
3.3.1 State Representation . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



4 A Kalman Filter Reinforcement Learning Approach for Path Plan-
ning 40
4.1 Kalman Filter for State Estimation . . . . . . . . . . . . . . . . . . 40
4.2 Reinforcement Learning Algorithms with Kalman Filter Integration

2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Deep Deterministic Policy Gradient . . . . . . . . . . . . . . 41
4.2.2 Dueling Double DQN . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Prioritized Experience Replay . . . . . . . . . . . . . . . . . 44
4.2.4 Proximal Policy Optimization . . . . . . . . . . . . . . . . . 46

4.3 Reinforcement Learning Algorithms with Kalman Filter Integration,
3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Deep Deterministic Policy Gradient . . . . . . . . . . . . . . 48
4.3.2 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Proximal Policy Optimization . . . . . . . . . . . . . . . . . 53

5 Results 60
5.1 Experiment Results and Analysis . . . . . . . . . . . . . . . . . . . 60

5.1.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 Effects of Gate Movement Speed . . . . . . . . . . . . . . . 63

6 Conclusions and Future Work 65

Bibliography 69

viii



List of Tables

5.1 Summary of the results obtained with the fixed starting point (FSP)
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Summary of the results obtained with the random starting point
(RSP) environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



List of Figures

1.1 Policy Search Model Predictive Control proposed by Perception
Group at University of Zurich [21] . . . . . . . . . . . . . . . . . . . 3

2.1 Batch Gradient Decent, Mini Batch Gradient Decent, Stochastic
Gradient Decent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Gradient Decent Vs Gradient Decent with Momentum . . . . . . . . 10
2.3 Definition of Bias on Probability Distribution Function . . . . . . . 26
2.4 Nonlinear system and the meaning of first order linearization . . . . 28
2.5 Kalman Filtering Block Diagram . . . . . . . . . . . . . . . . . . . 32

3.1 Sample of different Starting Points (Orange points) and path of
gates at different time steps . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Sample of different Starting Points (Orange points) and path of
gates at different time steps . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Sample of Movement of the Drone in 3D environment at different
training episode in Fixed Starting Points . . . . . . . . . . . . . . . 38

3.4 Sample of different Starting Points (Orange points) and path of
gates at different time steps . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Episode Scores and Trajectories of DDPG Algorithm with Fixed
and Random Starting Points . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Episode Scores and Trajectories of D3QN Algorithm with Fixed and
Random Starting Points . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Episode Scores and Trajectories of PER Algorithm with Fixed and
Random Starting Points . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Episode Scores and Trajectories of PPO Algorithm with Fixed and
Random Starting Points . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Episode Scores and Trajectories of PER Algorithm with Fixed Start-
ing Points, and Fixed Vs. Dynamic Gates . . . . . . . . . . . . . . 52

4.6 Trajectory obtained with the algorithm DDPG in a dynamic envi-
ronment for increasing episodes . . . . . . . . . . . . . . . . . . . . 53

x



4.7 Episode Scores and Trajectories of SAC Algorithm with Fixed Start-
ing Points, and Fixed Vs. Dynamic Gates . . . . . . . . . . . . . . 55

4.8 Trajectory obtained with the algorithm SAC in a dynamic environ-
ment for increasing episodes . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Episode Scores and Trajectories of PPO Algorithm with Fixed Start-
ing Points, and Fixed Vs. Dynamic Gates . . . . . . . . . . . . . . 58

4.10 Trajectory obtained with the algorithm PPO in a dynamic environ-
ment for increasing episodes . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Trajectory Planning of DDPG Algorithm with Random Starting Point 63
5.2 Trajectory Planning of DDPG Algorithm with Random Starting Point 64
5.3 Trajectory Planning of DDPG Algorithm with Random Starting Point 64

6.1 Trajectory obtained with the algorithm PPO in a dynamic environ-
ment for increasing episodes . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Summary of the Performances for different algorithms metrics . . . 68

xi





Acronyms

RL
Reinforcement Learning

DRL
Deep Reinforcement Learning

DQN
Deep Q-Network

DDQN
Double Deep Q-Network

D3QN
Duelling Double Deep Q-Network

PER
Prioritized Experience Replay Buffer

DDPG
Deep Deterministic Policy Gradient

TD3
Twin Delayed Deep Deterministic Policy Gradient

SAC
Soft Actor Critic

PPO
Proximal Policy Optimization

xiii



SIMD
Single Instruction Multi Data

VIO
Visual-Inertial Odometry

xiv



Chapter 1

Introduction

1.1 Introduction

Interest in autonomous vehicles covering aerial, terrestrial, and underwater areas
has dramatically increased due to their prospective ability to transform many
industries. The development of reliable path-planning methods is crucial for task
optimization and the enhancement of the versatility and efficiency of these vehicles.
Autonomous drones show substantial potential, able to conduct intricate tasks
across a wide array of environments. However, the constantly changing nature of
these environments introduces distinct obstacles, making path planning for drones
an intriguing field of study. Autonomous drones are utilized in various duties,
from surveillance and delivery services to search and rescue missions. To carry out
these tasks effectively, they require path planning optimization considering the
immediate environment and the inherent dynamism of real-world settings. Several
path planning methodologies have been investigated, such as minimum snap path
planning [1, 2] and minimum time path planning [3, 4]. Despite their efficiency, these
strategies are predominantly designed for static environments. Conversely, drones
often operate in dynamic environments where objects and conditions can shift
unpredictably. As a result, path planning for dynamic environments is inherently
more intricate and demanding. To enable effective path planning and navigation,
estimating the status of dynamic objects is made even more challenging by the
cluttered nature of these environments. Existing research has started addressing
these challenges. Path planning and state estimation are central to the operations
of autonomous drones. Path planning involves determining the optimal route a
drone should take to accomplish its task, which can greatly differ depending on
the task and environment specifics. A common method involves defining specific
waypoints the drone must reach and then determining the most efficient route.
State estimation complements path planning by supplying vital information about

1



Introduction

the current and future states of the environment. This information facilitates
informed decisions about the drone’s path. State estimation techniques can be
employed to identify significant features in the environment, such as the center of
goal objects. Predicting the future location of these objects, especially in dynamic
environments, continues to be a field-wide challenge. In this study, we put forth a
novel methodology to tackle the challenges of state estimation and path planning
in dynamic environments. Our strategy harnesses the capabilities of Kalman filter
algorithms for estimating and forecasting the states of dynamic objects in the
environment. More specifically, we use these algorithms to estimate and forecast
the positions of waypoints, which are defined as the centers of gates in our context.
The Kalman filter facilitates estimation of the current state of these waypoints,
and their future states over a variable time horizon, contingent on the drone’s
distance from each gate. To complement state estimation, we also suggest the
employment of advanced actor-critic reinforcement learning (RL) algorithms for
optimal path planning. We implement three RL algorithms in a continuous action-
state environment to discern the optimal path through the predicted waypoints.
The path’s optimality is defined based on a reward function provided to the RL
algorithms. The combination of state estimation and path planning techniques
is intended to significantly enhance the performance of autonomous drones in
dynamic environments. In this paper, our primary objective is to explore the
effectiveness of a combined approach that uses the Kalman filter to predict future
positions of gates over changing time horizons and different Reinforcement Learning
(RL) algorithms for optimal path planning in dynamic environments. We aim to
assess and compare the performance of three specific RL algorithms under varying
environmental conditions, with a particular emphasis on dynamic settings.

1.2 Related Work
The landscape of available training environments includes several three-dimensional
reinforcement learning simulation environments, such as Gym [5] and AirSim [6],
each with their challenges. For instance, despite AirSim’s realistic and detailed
nature, it demands a high-performance system due to its computational intensity.
On the other hand, Gym, which is less computationally intensive, lacks environments
specifically dedicated to drone path planning, with some environments supporting
only discrete action spaces. Our research aims to surmount these hurdles by
formulating a customized continuous action-state environment using the Python
Pygame library. This tailor-made environment reduces the computational demand
compared to AirSim and is also precisely suited to our specific task. We have
integrated a field-of-view feature commonly absent in Pygame environments but
vital for authentic drone perception to enhance its realism. Various studies have

2



Introduction

explored autonomous drone path planning, utilizing the Potential Field Method
(PFM), Rapidly exploring Random Tree (RRT), and the Voronoi diagram (VD).
Each of these techniques presents its limitations. For example, the Potential Field
Method is susceptible to local minima, causing a deadlock where the drone gets
trapped in a position surrounded by obstacles [7, 8]. RRT, although efficient in
navigating high-dimensional spaces, may need help finding the optimal path, and its
performance can be compromised in densely cluttered environments [9, 10]. Voronoi
Diagrams, while ensuring a safe distance from obstacles, do not necessarily yield the
shortest or most efficient path, and their generation can be computationally intense,
particularly in complex or dynamic environments [11, 12]. There has also been
considerable effort in applying reinforcement learning to path planning [13, 14, 15,
16, 17]. The Song Et al. study didn’t test the algorithm’s performance in dynamic
environments. It depended on Vicon cameras for gate state prediction, which may
not be universally applicable in real-world contexts [15]. Another study applied
three reinforcement learning algorithms in a static environment [13]. Some other
researchers have conducted various studies on Model Predictive Control algorithms
to address challenges in the field of path planning. [18, 19, 20].

Furthermore, there is ongoing research on dynamic environments aimed at
predicting the desired dynamic goal to navigate towards it. However, the challenge
lies in the fact that the implemented approach requires Visual-Inertial Odometry
(VIO) cameras for state estimation of the dynamic gates and predicting their future
positions. [21].

Figure 1.1: Policy Search Model Predictive Control proposed by Perception
Group at University of Zurich [21]

Our research strives to bridge these gaps by leveraging Kalman Filters for
state estimation and prediction [22]. We aim to design a reinforcement learning
environment that meets specific needs, such as supporting a continuous action state

3



Introduction

environment, providing specific state elements, and defining the agent’s reward
function based on the Kalman filter prediction. Additionally, we incorporate the
field of view of real cameras as boundary conditions for the environment to enhance
the realism and practicality of our approach.

1.3 Methodology
We employed a comprehensive methodology with a 3D simulation environment to
address the issues related to dynamic environments as well as continuous action
space environments. This environment was used to emulate the dynamic conditions
that drones may encounter in real-world scenarios. Firstly, some algorithms are
implemented to evaluate the results in discrete action space environments, and
in the next step the environments and actions considered to be a continuous one.
This 3D simulation allowed us to explore all possible outcomes under various
scenarios and conditions, thereby providing a robust and extensive platform for the
training and testing of our autonomous drone systems. These conditions include
the different assumptions for initial position of the drone and gates, velocity and
acceleration of the gates, as well as the field of view of the drone. Our methodology
also involved the use and comparison of different reinforcement learning (RL)
algorithms: Deep Deterministic Policy Gradient (DDPG), Dueling Double DQN,
Proximal Policy Optimization (PPO), and Prioritized Experience Replay algorithms
for discrete action state environments as well as Deep Deterministic Policy Gradient,
Soft-Actor Critic (SAC), and Proximal Policy Optimization for continuous action
state environments. These algorithms were trained to focus on Path planning and
state estimation, two critical factors for successful drone operation in dynamic
environments. The algorithms were evaluated on the same scenarios within the
3D simulation to ensure a fair comparison. The performance of each algorithm
was then analyzed and compared, with particular attention paid to their respective
ability to navigate successfully in the dynamic simulated scenarios with continuous
action state environments. Moreover, the Kalman Filter, a well-known technique
for state estimation, was integrated with the RL techniques. The goal was to
enhance the drones’ decision-making process and path planning. Combining these
two techniques, we aimed to create an autonomous drone system that could adapt
and respond effectively to non-static environments.

4



Chapter 2

Deep Reinforcement
Learning and Kalman
Filtering Algorithms

2.1 Deep Reinforcement Learning
2.1.1 Introduction to Deep Reinforcement Learning
The difference between deep learning and reinforcement learning is that deep
learning is learning from a training set and then applying that learning to a new
data set, while reinforcement learning is dynamic learning by adjusting actions based
on feedback to maximize a reward. Reinforcement learning is dynamic learning
with a trial-and-error method to maximize the outcome, while deep reinforcement
learning is learning from existing knowledge and applying it to a new data set.

Feedback in Reinforcement Learning

Deep Reinforcement Learning is a complex sequential decision-making problem
under uncertainty. The kinds of feedback in DRL are as follows:

• Sequential: The opposite of sequential feedback is one-shot feedback. Deci-
sions don’t have long-term consequences in problems that deal with one-shot
feedback, such as supervised learning. One of the main challenges of sequential
feedback is that your agents can receive delayed information, like in a chess
game. Delayed feedback makes it tricky to interpret the source of the feedback.

• Evaluative: The crux of evaluative feedback is that the goodness of the
feedback is only relative because the environment is uncertain. While not

5



Deep Reinforcement Learning and Kalman Filtering Algorithms

having access to the model of the environment, we must explore to gather new
information or improve on our current information. Eventually, the exploration-
exploitation trade-off arises. The opposite of evaluative feedback is supervised
feedback. In a classification problem, your model receives supervision; during
learning, your model is given the correct labels for each of the samples provided.

• Sampled: in Deep Reinforcement Learning, agents need to generalize using the
gathered feedback and make intelligent decisions based on that generalization.
The opposite of sampled feedback is exhaustive feedback. To exhaustively
sample environments means agents have access to all possible samples.

Function Approximation in Reinforcement Learning

Motivations for the use of function approximation to solve reinforcement learning
problems

• High Dimensionality of State and Action Space: The main drawback
of tabular reinforcement learning is that using a table to represent value
functions is no longer practical in complex problems. Environments can have
high-dimensional state spaces, meaning that the number of variables that
comprise a single state is vast.

• Continuous State and Action Space: Environments can additionally have
continuous variables, meaning that a variable can take on an infinite number
of values. To clarify, state and action spaces can be high dimensional with
discrete variables, they can be low dimensional with continuous variables, and
so on.

Advantages when using function approximation Function approximation can
make our algorithms more efficient and more complex relationships can be discovered
with a non-linear function approximator, such as a neural network.

Value Functions

Using neural networks to approximate value functions can be done in many ways.
There are many different value functions we could approximate, as:

• The state-value function v(s): It helps you know how much expected total
discounted reward you can obtain from state s and using policy π thereafter.
But, to determine which action to take with a V-function, you also need the
MDP of the environment so that you can do a one-step look-ahead and take
into account all possible next states after selecting each action.

6



Deep Reinforcement Learning and Kalman Filtering Algorithms

• The action-value function q(s, a): If we had the values of state-action pairs, we
could differentiate the actions that would lead us to either gain information,
in the case of an exploratory action, or maximize the expected return, in the
case of a greedy action. Therefore, it can be used in control problems.

• The action-advantage function a(s, a): it helps us differentiate between values
of different actions and lets us easily see how much better than average an
action is.

Neural Network Architecture

We can have two different Neural Network Architecture, and the choice depends on
the complexity of the state, action and environment in which the agent is training.

• State-action-in-value-out architecture: This architecture is designed to take
both the state and action as inputs and output a value, which usually repre-
sents the expected reward or the quality of the action given the state. It’s
ideal for situations where the relationship between state-action pairs and the
corresponding value is crucial to be explicitly modeled.

• State-in-values-out architecture: Suited for scenarios where the action space
is vast or continuous, this architecture processes the state as its input and
returns a value for each potential action or a distribution over continuous
actions. This design proves invaluable in environments where evaluating every
individual state-action pair would be computationally impractical due to the
massive number of possible actions.

Objective Function for Optimization

Li(θi) = Es,a[(q∗(s, a)−Q(s, a; θi))2] (2.1)

The equation 2.1 reports an ideal objective in value-based deep reinforcement
learning would be to minimize the loss with respect to the optimal action-value
function q∗. We want to have an estimate of q∗, Q, that tracks exactly that optimal
function. If we had access to the optimal action-value function, we’d use that,
but if we had access to sampling the optimal action-value function, we could then
minimize the loss between the approximate and optimal action-value functions.
Furthermore, the optimal action-value function would be as follows:

q∗(s, a) = max
π

Eπ[Gt|St = s, At = a],∀s ∈ S,∀a ∈ A(s) (2.2)

Based on the above function, an optimal action-value function is a policy that
gives the maximum expected return for each action in each state. Since we do not

7



Deep Reinforcement Learning and Kalman Filtering Algorithms

have the optimal policy, we can not sample the optimal Q-values, and as a result,
we do not have the optimal action-value function q∗. Instead, we must alternate
between evaluating a policy (by sampling actions from it), and improving it (using
an exploration strategy, such as epsilon-greedy)

Targets for Policy Evaluation

We can use different targets to estimate the action-value function of a policy π.

• Monte Carlo targets (MC): Use all rewards found in a trajectory from a start
state to the terminal state.

• Temporal Difference targets (TD): Use the value of the next state as an
estimate of all rewards to go.

• N-step targets: N − step is like TD, but instead of bootstrapping after one
step, you use n steps.

• lambda targets: Lambda target mixes in an exponentially decaying fashion all
n− step targets into one.

Learning Strategy

• On-Policy: if we were to use the on-policy target, the target would approximate
the behavioral policy; the policy-generating behavior and the policy being
learned would be the same.

• Off-Policy: In off-policy target we always approximate the greedy policy, even
if the policy-generating behavior isn’t totally greedy.

Notice that both on-policy and off-policy targets estimate an action-value function.
The Q-learning target as an off-policy TD target In practice, an online
Q-learning target would look something like the following:

yQ−learning
i = Rt+1 + γ max

a
Q(St+1, a; θi) (2.3)

The bottom line is we use the experienced reward and the next state to form the
target. We can plug in a more general form of this Q-learning target as in the
following:

Li(θi) = Es,a,r,s′ [(r + γ max
a

Q(s′
, a

′ ; θi)−Q(s, a; θi))2] (2.4)

But it’s basically the same. We’re using the expectation of experience tuples to
minimize the loss. When differentiating through this equation, you must notice

8



Deep Reinforcement Learning and Kalman Filtering Algorithms

the gradient doesn’t involve the target. The gradient must only go through the
predicted value.

∇θi
Li(θi) = Es,a,r,s′ [(r + γ max

a
Q(s′

, a
′ ; θi)−Q(s, a; θi))∇θi

Q(s, a; θi)] (2.5)

Optimization Method

Gradient descent is a stable optimization method given a couple of assumptions:
data must be independent and identically distributed (IID), and targets must be
stationary. In reinforcement learning, however, we cannot ensure any of these
assumptions hold, so choosing a robust optimization method to minimize the loss
function can often make the difference between convergence and divergence. Some
optimization methods are introduced in the following:

• Gradient Decent
Based on the dataset which is given for the optimization, the gradient descent
algorithm can be defined as follows:

– Batch Gradient Decent: The batch gradient descent algorithm takes the
entire dataset at once, calculates the gradient of the given dataset, and
steps toward this gradient a little bit at a time. Then, it repeats this cycle
until convergence. When you have a considerable dataset with millions
of samples, batch gradient descent is too slow to be practical. Moreover,
we don’t even have a dataset in reinforcement learning in advance, so
batch gradient descent isn’t a practical method for our purpose either.
Batch gradient descent goes smoothly toward the target because it uses
the entire dataset at once, so a lower variance is expected.

– Mini Batch Gradient Decent: In mini-batch gradient descent, we use only
a fraction of the data at a time. We process a mini-batch of samples
to find its loss, then backpropagate to compute the gradient of this loss,
and then adjust the weights of the network to make the network better
at predicting the values of that mini-batch. With mini-batch gradient
descent, you can control the size of the mini-batches, which allows the
processing of large datasets. In mini-batch gradient descent we use a
uniformly sampled mini-batch. This results in noisier updates, but also
faster processing of the data.

– Stochastic Gradient Decent [23, 24]: At the other extreme, you can set
the mini-batch size to a single sample per step. In this case, you’re using
an algorithm called stochastic gradient descent. With stochastic gradient
descent, in every iteration we step through only one sample. This makes
it a noisy algorithm. It wouldn’t be surprising to see several steps taking
us further away from the target, and later back toward the target.

9



Deep Reinforcement Learning and Kalman Filtering Algorithms

Figure 2.1: Batch Gradient Decent, Mini Batch Gradient Decent, Stochastic
Gradient Decent

• Gradient Decent with Momentum
An improved gradient descent algorithm is called gradient descent with mo-
mentum, or momentum for short [25]. This method is a mini-batch gradient
descent algorithm that updates the network’s weights in the direction of the
moving average of the gradients, instead of the gradient itself.

Figure 2.2: Gradient Decent Vs Gradient Decent with Momentum

• Root Mean Square Propagation (RMSprop)
Root mean square propagation (RMSprop) is an alternative to using mo-
mentum. RMSprop and momentum do the same thing of dampening the
oscillations and moving more directly toward the goal, but they do so differ-
ently. While momentum takes steps in the direction of the moving average of
the gradients, RMSprop takes the safer bet of scaling the gradient in propor-
tion to a moving average of the magnitude of gradients. It reduces oscillations
by merely scaling the gradient in proportion to the square root of the moving

10



Deep Reinforcement Learning and Kalman Filtering Algorithms

average of the square of the gradients or, more simply put, in proportion to
the average magnitude of recent gradients.

• Adaptive Moment Estimation (Adam) [26]
Adam is a combination of RMSprop and momentum. The Adam method steps
in the direction of the velocity of the gradients, as in momentum. But, it scales
updates in proportion to the moving average of the magnitude of the gradients,
as in RMSprop. These properties make Adam as an optimization method a
bit more aggressive than RMSprop, yet not as aggressive as momentum.

2.1.2 Value-Based Deep Reinforcement Learning Algorithms

This section will introduce some value-based algorithms based on their improve-
ments.

Deep Q-Network

Deep Q-Network (DQN) is an algorithm for training a deep neural network to play
a game or control a system through reinforcement learning. It was introduced
by Google DeepMind in a 2015 paper titled "Human-level control through deep
reinforcement learning" [27, 28].
The DQN algorithm combines Q-learning, a standard reinforcement learning al-
gorithm, with a deep neural network as a function approximator. Q-learning is a
model-free algorithm that allows an agent to learn the optimal action to take in
a given state by updating an estimate of the maximum expected future reward
for each action. The neural network is used to approximate the Q-function, which
gives the expected future reward for each action in a given state.
The DQN algorithm uses experience replay, where the agent stores a history of its
experiences in a buffer and samples from this buffer to update the network weights
[29]. This helps to decorrelate the experiences and stabilize the learning process.
Experience replay consists of a data structure, often referred to as a replay buffer
or a replay memory, that holds experience samples for several steps, allowing the
sampling of mini-batches from a broad set of past experiences. Having a replay
buffer allows the agent two critical things. First, the training process can use a
more diverse mini-batch for performing updates. Second, the agent no longer has to
fit the model to the same small mini-batch for multiple iterations. The algorithm
also uses a target network, which is a copy of the primary network that is used
to compute the target Q-values for the primary network’s updates. This helps
to reduce the variance in the updates and improve the stability of the learning
process.

11



Deep Reinforcement Learning and Kalman Filtering Algorithms

∇θi
Li(θi) = E(s,a,r,s′ )∼u(D)

5
(r + γ max

a
Q(s′

, a
′ ; θ−)

−Q(s, a; θi))∇θi
Q(s, a; θi)]

(2.6)

A target network is a previous instance of the neural network that we freeze for
a number of steps. The gradient update now has time to catch up to the target,
which is much more stable when frozen. This adds stability to the updates. we’re
now obtaining the experiences we use for training by sampling uniformly at random
the replay buffer D, instead of using the online experiences.
It’s important to note that in practice, we don’t have two “networks,” but instead,
we have two instances of the neural network weights. We use the same model
architecture and frequently update the weights of the target network to match
the weights of the online network, which is the network we optimize at every step.
Using target networks prevents the training process from spiraling around because
we’re fixing the targets for multiple time steps, thus allowing the online network
weights to move consistently toward the targets before an update changes the
optimization problem and a new one is set. By using target networks, we stabilize
training, but we also slow down learning because you’re no longer training on
up-to-date values.
Another way you can lessen the non-stationarity issue, to some degree, is to use
larger networks. More powerful networks make subtle differences between states
more likely to be detected. Larger networks reduce the aliasing of state-action
pairs; the more powerful the network, the lower the aliasing; the lower the aliasing,
the less apparent correlation between consecutive samples. And all of this can
make target values and current estimates look more independent of each other.
But, a more powerful neural network takes longer to train. It needs not only more
data (interaction time) but also more compute (processing time). Using a target
network is a more robust approach to mitigating the non-stationary problem

Double DQN

Q-learning tends to overestimate action-value functions. Our DQN agent is no
different; we’re using the same off-policy TD target, after all, with that max
operator. The crux of the problem is simple: We’re taking the max of estimated
values. Estimated values are often off-center, some higher than the true values,
some lower, but the bottom line is that they’re off. The problem is that we’re
always taking the max of these values, so we have a preference for higher values,
even if they aren’t correct. Our algorithms show a positive bias, and performance
suffers.

12



Deep Reinforcement Learning and Kalman Filtering Algorithms

∇θi
Li(θi) = E(s,a,r,s′ )∼u(D)[(r + γQ(s′

, arg max
a′

Q(s′
, a

′ ; θ−); θ−)

−Q(s, a; θi))∇θi
Q(s, a; θi)]

(2.7)

Double Deep Q-Network (Double DQN) is an extension of the Deep Q-Network
(DQN) algorithm for training deep neural networks to play games or control systems
through reinforcement learning. It was introduced by Google DeepMind in a 2015
paper titled "Deep Reinforcement Learning with Double Q-learning" [30].
In the DQN algorithm, the Q-values for each action in a given state are approximated
using a deep neural network. The Q-values are updated using the Bellman equation,
which is a recursive relationship that describes the relationship between the expected
future reward for an action and the immediate reward and the expected future
reward for the next action. In the Bellman equation, the expected future reward
for the next action is typically computed using the same neural network that is
used to approximate the Q-values.
However, this can lead to an overestimation of the expected future reward, which
can cause the Q-values to be biased and the learning process to be unstable. The
Double DQN algorithm addresses this issue by using two separate neural networks
to approximate the Q-values and to compute the expected future reward for the
next action. The primary network is used to select the action, and the target
network is used to compute the expected future reward. This helps to reduce
the overestimation of the expected future reward and improve the stability of the
learning process.
Like the DQN algorithm, the Double DQN algorithm also uses experience replay
and a target network to stabilize the learning process. It has been successfully
applied to a variety of tasks and has been shown to improve the performance of
the DQN algorithm in some cases.

Dueling DDQN

Dueling Double Deep Q-Network (Dueling Double DQN) is an extension of the
Double Deep Q-Network (Double DQN) algorithm for training deep neural networks
to play games or control systems through reinforcement learning. It was introduced
by Google DeepMind in a 2016 paper titled "Dueling Network Architectures for
Deep Reinforcement Learning". [31].
Like the Double DQN algorithm, the Dueling Double DQN algorithm uses two
neural networks: a primary network and a target network. The primary network is
used to approximate the Q-values for each action in a given state and to select the
action to take. The target network is used to compute the expected future reward
for the next action.
The Dueling Double DQN algorithm introduces a new architecture for the primary

13



Deep Reinforcement Learning and Kalman Filtering Algorithms

network that separates the network into two streams: one for the state value
function and one for the action advantage function. The state value function gives
the expected return for a given state, and the action advantage function gives the
advantage of taking a particular action over the average of all actions in a given
state. The Q-values are then computed as the sum of the state value function and
the action advantage function for each action.
This architecture has several benefits. First, it allows the network to learn the
relative importance of the state value function and the action advantage function
separately, which can improve the learning process. Second, it allows the network
to learn the optimal action to take in a given state without having to learn the
Q-values for all actions in that state, which can reduce the complexity of the
learning process. Finally, it allows the network to generalize better to new states
and actions, which can improve the performance of the algorithm.
Like the Double DQN algorithm, the Dueling Double DQN algorithm also uses
experience replay and a target network to stabilize the learning process. It has
been successfully applied to various tasks and has been shown to improve the
performance of the Double DQN algorithm in some cases.

Q(s, a; θ, α, β) = [V (s; θ, β)] + [A(s, a; θ, α)] (2.8)

The Q-function is parameterized by theta, alpha, and beta. Theta represents
the weights of the shared layers, alpha the weights of the action-advantage function
stream, and beta the weights of the state-value function stream.

Q(s, a; θ, α, β) = [V (s; θ, β)] +
[A(s, a; θ, α)]− 1

|A|
Ø
a′

A(s, a
′ ; θ, a)

 (2.9)

But because we cannot uniquely recover the Q from V and A , we use the above
equation in practice. This removes one degree of freedom from the Q-function. The
action-advantage and state-value functions lose their true meaning by doing this.
But in practice, they’re off-centered by a constant and are now more stable when
optimizing.

Prioritized Experience Replay Buffer (PER)

Prioritized Experience Replay (PER) is a technique for improving the efficiency
of the experience replay process in reinforcement learning. It was introduced by
Google DeepMind in a 2016 paper titled "Prioritized Experience Replay" [32].
In reinforcement learning, experience replay is a technique where the agent stores
a history of its experiences in a buffer and samples from this buffer to update

14



Deep Reinforcement Learning and Kalman Filtering Algorithms

the network weights. This helps to decorrelate the experiences and stabilize the
learning process. However, traditional experience replay uniformly samples from
the buffer, which can be inefficient because it may sample trivial or unimportant
experiences more frequently than important or rare experiences.
To address this issue, the PER algorithm introduces a priority value for each
experience in the buffer. The priority value reflects the importance of the experience,
with higher values indicating more important experiences. The algorithm then
samples from the buffer using a distribution that is proportional to the priority
values, which allows it to sample more important experiences more frequently.
The priority values are updated using the temporal difference error, which measures
the difference between the expected and actual return for an action. Experiences
with larger temporal difference errors are assigned higher priority values because
they are more likely to be important for learning.
The PER algorithm has been shown to improve the efficiency of the learning process
by allowing the agent to learn more from important experiences and to learn more
quickly. It has been used in combination with a variety of reinforcement learning
algorithms, including Deep Q-Networks (DQN) and Double Deep Q-Networks
(Double DQN).

|δi| = | r + γQ
3

s
′
, arg max

a′
Q(s′

, a
′ ; θi, αi, βi

4
; θ−, α−, β−

ü ûú ý
Duelling DDQN target

−Q(s, a; θi, αi, βi)

ü ûú ý
Duelling DDQN error

|

ü ûú ý
Absolute Duelling DDQN error

(2.10)

2.1.3 Policy-Based Deep Reinforcement Learning Algo-
rithms

Pure policy-gradient methods constitute a class of reinforcement learning algorithms
that focus on directly optimizing stochastic policies, eschewing the use of value
functions. Unlike other methods such as Q-learning or Actor-Critic, which leverage
value functions as a means of estimating the expected cumulative reward from a
given state or state-action pair, these methods directly optimize the policy to guide
the agent’s interactions with the environment. Stochastic policies, central to pure
policy-gradient methods, define a probability distribution over actions for each
state, promoting exploration in the action space and enabling the agent to discover
superior actions over time. As a result, pure policy-gradient methods offer a direct
and efficient approach to learning optimal strategies for agents interacting with
complex environments, bypassing the need for intermediate value estimations [33].

15



Deep Reinforcement Learning and Kalman Filtering Algorithms

While accurately determining the values of states in reinforcement learning
can be a complex task, employing a rough approximation can prove beneficial for
reducing the variance of the policy-gradient objective. By leveraging approximate
state values, one can effectively mitigate the fluctuations in the policy-gradient
estimates, thereby enhancing the stability and convergence of the learning process.
Although pure policy-gradient methods typically focus on direct policy optimization
without utilizing value functions, incorporating approximate state values can help
strike a balance between exploration and exploitation in the action space, ultimately
leading to more efficient and robust policy learning in challenging environments.

Incorporating a value function as a baseline or for calculating advantages can
significantly reduce the variance of the targets utilized in policy-gradient updates,
ultimately facilitating more efficient and stable learning. By employing a value
function, the algorithm can differentiate between the intrinsic value of a state
and the advantage of taking specific actions, which allows for more precise policy
updates. Consequently, this reduction in variance often translates to accelerated
learning, as the agent can converge more rapidly to an optimal policy. Thus,
while pure policy-gradient methods focus on direct policy optimization, integrating
value functions in the learning process can enhance the overall performance and
robustness of the reinforcement learning algorithm.

In addressing continuous environments, researchers often investigate methods
that learn deterministic policies [34], which are characterized by their consistency
in returning the same action, deemed optimal, when presented with an identical
state. Deterministic policies offer a distinct advantage in continuous environments,
as they facilitate more efficient exploration of the action space and provide a clear
action selection mechanism. By focusing on the optimal action for each state,
these methods aim to learn a concise and effective policy that guides the agent’s
interactions with the environment, enabling it to navigate complex and continuous
scenarios with improved performance and reliability.

Deep Deterministic Policy Gradient (DDPG)

In this section, the focus is on the Deep Deterministic Policy Gradient (DDPG)
algorithm, an approach that can be viewed as an extension of DQN for continuous
action spaces. DDPG incorporates key techniques found in DQN, such as using
a replay buffer for off-policy training of an action-value function and employing
target networks for training stabilization. However, DDPG goes beyond DQN by
training an approximate deterministic policy that represents the optimal action. As
a result, DDPG is classified as a deterministic policy-gradient method specifically
designed for continuous action spaces, offering an efficient and robust solution for
tackling complex environments that demand continuous decision-making [35].

DDPG can be visualized as an algorithm with a similar architecture to DQN,

16



Deep Reinforcement Learning and Kalman Filtering Algorithms

sharing some key aspects in the training process. Both DDPG and DQN involve
the agent collecting experiences online and storing them in a replay buffer. During
each step, the agent retrieves a mini-batch from the buffer, typically sampled
uniformly at random, and uses it to calculate a bootstrapped Temporal Difference
(TD) target and train a Q-function.

However, there are notable differences between DQN and DDPG. While DQN
determines the greedy action using an argmax operation on the target Q-function,
DDPG employs a target deterministic policy function trained to approximate the
greedy action. This means that, in DDPG, the best action in the next state is
directly approximated using a policy function, rather than relying on the argmax
of the Q-function as in DQN.

The use of a deterministic policy function in DDPG has several advantages:

• It bypasses the need for an argmax operation, which can be computationally
expensive in continuous action spaces.

• The policy function provides a more direct approximation of the optimal
action, potentially leading to faster convergence.

• The deterministic policy function can help reduce the exploration-exploitation
trade-off, as it directly targets the optimal action for each state.

This approach can be advantageous in continuous action spaces, as it eliminates
the need for argmax calculations and offers more direct action approximations,
potentially leading to improved learning efficiency and performance.

The DDPG value function objective is as follows:

Li(θi) = E(sKF ,a,r,s
′
KF )∼u(D)

è1
r + γQ

1
s

′

KF , µ(s′

KF ; ϕ
′); θ−

2
−Q (sKF , a; θi))2

é (2.11)

It means that in DDPG, similar to DQN, a mini-batch is sampled from the replay
buffer during the training process. However, DDPG deviates from DQN by learning
a deterministic policy, denoted as mu, instead of relying on the argmax operation
over the Q-function. The policy mu is trained to approximate the deterministic
greedy action for the given state, thereby streamlining the action selection process
and improving the efficiency of learning in continuous action spaces.

To implement DDPG effectively, the introduction of a policy network is necessary.
The goal of this network is to provide the optimal action for a given state, and
it must be differentiable with respect to the action. This requirement makes it
essential for the action to be continuous, ensuring efficient gradient-based learning.
The optimization objective is straightforward, as it involves using the expected
Q-value derived from the policy network, mu. The agent’s task is to identify

17



Deep Reinforcement Learning and Kalman Filtering Algorithms

the action that maximizes this value. It is important to note that, in practice,
optimization techniques usually focus on minimizing the negative of this objective,
as most optimization algorithms are designed for minimization problems.

Therefore, the DDPG’s deterministic policy objective:

Ji(ϕi) = E(sKF )∼u(D) [Q(sKF , µ(sKF ; ϕ); θ)] (2.12)

In our case, target networks are not used, and instead, the online networks
are employed for both the policy (action selection) and the value function (action
evaluation). This approach simplifies the architecture and training process. More-
over, since a mini-batch of states is sampled for training the value function, these
same states can be efficiently utilized for training the policy network as well. This
simultaneous use of state samples for both networks ensures consistency in learning
and promotes computational efficiency during the training process.

In DDPG, deterministic greedy policies are trained with the goal of taking in a
state and returning the optimal action for that state. However, in an untrained
policy, the actions generated might not be accurate, even though they are determin-
istic. As previously discussed, agents need to strike a balance between exploiting
existing knowledge and exploring new possibilities. Due to the deterministic nature
of the DDPG agent’s policy, on-policy exploration is not feasible, as it would result
in the agent being "stubborn" and consistently selecting the same actions.

To address this issue, DDPG employs off-policy exploration, injecting Gaussian
noise into the actions selected by the policy. This allows the agent to explore
new actions and learn from different experiences, which may be crucial for the
agent’s overall performance. Consequently, in DDPG, the agent explores by adding
external noise to the actions, utilizing off-policy exploration strategies to efficiently
learn and adapt to its environment.

Twin-Delayed Deep Deterministic Policy Gradient Algorithm (TD3)

This algorithm is introduced by Scott Fujimoto et al. in 2018 [36]. There are some
differences between TD3 and DDPG algorithms which can be considered as the
improvements to the DDPG algorithm. These differences are as follows:

• It has double learning technique as DDQN instead of just one learning network:

In TD3, a particular kind of Q-function with two separate networks is used
which leads to two different estimations of the state-action pairs.

Ji(θa
i ) = E(sKF ,a,r,s

′
KF )∼u(D)

è
(TWINtarget −Q(s, a; θa

i ))2
é

(2.13)

18



Deep Reinforcement Learning and Kalman Filtering Algorithms

Ji(θb
i ) = E(sKF ,a,r,s

′
KF )∼u(D)

è
(TWINtarget −Q(s, a; θb

i ))2
é

(2.14)

The twin network loss would be the some of Mean Square Errors of each
networks.

TWINtarget = r + γ min
n

Q
1
s

′

KF , µ(s′
, ϕ−); θn,−

2
(2.15)

And the target is calculated as the minimum between the two networks. Also,
consider the target network is used for both the policy and value networks

• It adds noise to both the action passed to the environment and to the target
actions which leads to more robustness to approximation error:

To improve the exploration through the environment, a Gaussian noise is
injected to actions used for the environment as well as to the actions used
to calculate the targets. By this technique, the network would be more
generalized over similar actions.

clamp(x, l, h) = max(min(x, h), l)

This is the definition of the clamp function which clips a value x between a
low l and a high h.
So, we have:

a
′,smooth = clamp(µ(s′

, ϕ−) + clamp(ϵ, ϵ− l, ϵ− h), a− l, a− h) (2.16)

The clipped Gaussian noise ϵ is introduced and added to the action to smooth
that. Firstly, the ϵ is sampled and then clamped to be between a preset min
and max for ϵ. Then, the clipped Gaussian noise is added to the action and the
action is clamped to be between the min and max allowable action according
to the specific environment. The smoothed action is used to calculate the
TD3target as follows:

TD3target = r + γ min
n

Q(s′
, a

′,smooth; θn,−) (2.17)

19



Deep Reinforcement Learning and Kalman Filtering Algorithms

• It delays updates to the policy and target networks which leads the online
Q-function updates more frequently:

This delay is advantageous when the online Q-function undergoes abrupt
changes early in the training. By pausing the policy’s updates for several
value function updates, it enables the value function to stabilize and produce
more accurate values before influencing the policy. The suggested delay for
the policy and target networks is every other update to the online Q-function.
The other thing that you may notice in the policy updates is that we must
use one of the networks of the online value model for getting the estimated
Q-value for the action coming from the policy. In TD3, we use one of the two
networks, but the same network every time.

Soft Actor-Critic Algorithm (SAC)

Off-policy refers to the learning approach in which the algorithm leverages ex-
periences generated by a behavior policy that is distinct from the policy being
optimized. In the context of DDPG and TD3, this is achieved by employing a replay
buffer. A replay buffer is a memory structure that stores experiences (comprising
state, action, reward, and next state) gathered from multiple previous policies.
The replay buffer enables the algorithms to learn from a diverse set of experiences,
which can lead to more stable and efficient learning [37].

To facilitate exploration, both DDPG and TD3 incorporate off-policy exploration
strategies. In particular, they use Gaussian noise injection. Gaussian noise is a
type of random noise that follows a Gaussian distribution. By adding this noise to
the action vectors that interact with the environment, the algorithms encourage
the exploration of various states and actions. This strategy helps the agent to
discover novel and potentially better solutions, as opposed to merely exploiting the
current knowledge.

In summary, DDPG and TD3 are off-policy reinforcement learning algorithms
that train deterministic policies. They make use of a replay buffer to store and
learn from diverse experiences generated by different behavior policies. To promote
exploration, they apply Gaussian noise injection to the action vectors that are sent
to the environment. These techniques contribute to the effectiveness and stability
of the learning process.

The on-policy agents utilize stochastic policies, which inherently incorporate a
degree of randomness. This randomness plays a crucial role in exploration, as it
allows the agents to discover new possibilities and experiences.

In order to further encourage the element of randomness within these stochastic
policies, an additional component called the entropy term is introduced into the
loss function. By incorporating this entropy term, we can ensure that the agents

20



Deep Reinforcement Learning and Kalman Filtering Algorithms

maintain a healthy balance between exploration and exploitation, which is essential
for effective learning and decision-making. This approach helps prevent the agents
from becoming overly focused on a single strategy or getting stuck in a local
optimum, thus promoting more diverse and well-rounded learning experiences.

In this section, we delve into an algorithm known as the Soft Actor-Critic (SAC),
which uniquely combines elements from two distinct paradigms. The SAC algorithm
shares similarities with off-policy methods like DDPG (Deep Deterministic Policy
Gradient) and TD3 (Twin Delayed Deep Deterministic policy gradient), as it
operates in an off-policy manner. However, unlike these algorithms that utilize
deterministic policies, SAC employs a stochastic policy.

By integrating the best of both worlds, the Soft Actor-Critic algorithm is able
to reap the benefits of off-policy learning, such as efficient and stable updates
from a replay buffer, while also harnessing the exploration advantages provided
by stochastic policies. This fusion results in an algorithm that can achieve robust
and effective learning, while maintaining a strong ability to explore and adapt to a
wide range of environments and situations.

Incorporating entropy into the Bellman equations is a key aspect of the Soft
Actor-Critic algorithm. This unique feature involves integrating the entropy of the
stochastic policy directly into the value function, which the agent aims to maximize.
The simultaneous maximization of both expected total reward and expected total
entropy inherently promotes diverse behaviors while ensuring the agent continues
to maximize the expected return.

By factoring in the entropy, the SAC algorithm encourages the agent to explore
a wide range of possible actions and strategies, rather than simply focusing on a
narrow set of options. This approach fosters greater adaptability and learning, as
the agent is exposed to a broader spectrum of experiences and can fine-tune its
decision-making process accordingly. As a result, the agent’s ability to effectively
navigate complex and dynamic environments is significantly enhanced, ultimately
leading to more robust and reliable performance.

In SAC, we define the action-value function as follows:

qπ(sKF , a) = Er,s
′
KF ∼P (sKF ,a),a′ ∼π(s′

KF )

è
r + γ

1
qπ(s′

KF , a
′)

+αH
1
π(.|s′

KF )
22é (2.18)

The expectation is over the reward, next state, and next action. We’re going to
add up the reward and the discounted value of the next state-action pair. However,
we add the entropy of the policy at the next state. Alpha tunes the importance we
give to the entropy term.

SAC target = r + γ
5
min

n
Q(s′

KF , â
′ ; θn,−)− αlogπ(â′ |s′

KF ; ϕ)
6

(2.19)

21



Deep Reinforcement Learning and Kalman Filtering Algorithms

Jπ(ϕ) = EsKF ∼u(D),â∼π

5
min

n
Q (sKF , â; θn)− αlogπ(â|sKF ; ϕ)

6
(2.20)

J(α) = EsKF ∼u(D),â∼π [α (H + logπ(â|sKF ; ϕ))] (2.21)

Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) [38] algorithm represents a notable
advancement in the field of reinforcement learning, specifically targeting on-policy
methods. PPO’s major contribution is the introduction of a surrogate objective
function, which is a fundamental departure from traditional on-policy approaches
such as the Advantage Actor-Critic (A2C). The surrogate objective function en-
ables the algorithm to take multiple gradient steps using the same mini-batch of
experiences, whereas other on-policy methods like A2C necessitate the immediate
disposal of experience samples after a single optimization step [39].

The core concept behind PPO’s surrogate objective function is that it allows
for multiple policy updates using the same set of experiences. This is achieved by
comparing the new policy to the old policy using a likelihood ratio, where the ratio
represents the probability of taking an action under the new policy divided by the
probability of taking that action under the old policy. The objective function aims
to maximize the expected return while keeping the policy updates within a certain
trust region, meaning the new policy should not deviate significantly from the old
policy.

PPO’s clipped objective function plays a crucial role in controlling the magnitude
of policy updates. The clipping mechanism prevents the policy from undergoing
drastic changes after each optimization step, thereby ensuring that updates are
conservative and controlled. This approach has two major benefits.

First, it addresses the problem of performance collapse, a prevalent issue in
on-policy policy gradient methods. Performance collapse occurs when the policy
updates are too aggressive, causing the algorithm to lose the progress made in
previous iterations. By constraining policy updates, PPO’s clipped objective
function reduces the risk of performance collapse, resulting in a more stable learning
process.

Second, the conservative optimization approach allows for the reuse of mini-
batches of experiences in multiple optimization steps. This is a significant advantage
over other on-policy methods, as it leads to improved sample efficiency. The ability
to reuse experiences means that the algorithm can extract more information from
each sample, reducing the overall number of samples required for effective learning.

In conclusion, the Proximal Policy Optimization algorithm presents a significant
improvement over traditional on-policy methods in reinforcement learning. Its

22



Deep Reinforcement Learning and Kalman Filtering Algorithms

innovative surrogate objective function allows for multiple gradient steps using
the same mini-batch of experiences, and the clipped objective function ensures
conservative policy updates. These features contribute to mitigating performance
collapse and enhancing sample efficiency, making PPO a powerful and reliable
choice for many reinforcement learning problems.

Proximal Policy Optimization (PPO) can be thought of as an enhancement to
the Advantage Actor-Critic (A2C) algorithm. It is crucial to understand that PPO
should not be confused with being an improvement to Soft Actor-Critic (SAC).
While PPO shares similarities with other reinforcement learning algorithms such
as Deep Deterministic Policy Gradient (DDPG), Twin Delayed Deep Deterministic
(TD3), and SAC, it has a different lineage and purpose.

PPO and A2C both utilize the actor-critic architecture, where an actor is
responsible for making decisions based on the current policy, and a critic estimates
the value function to help update the policy. The key distinction between PPO and
A2C lies in the way PPO handles policy updates, allowing for multiple gradient
steps using the same mini-batch of experiences, resulting in improved sample
efficiency and stability.

On the other hand, TD3 and SAC are both offshoots of DDPG, an algorithm that
combines ideas from deep learning and reinforcement learning to handle continuous
control problems. TD3 is a direct improvement over DDPG, addressing issues such
as overestimation bias and instability. SAC, although developed concurrently with
TD3, shares several features with it. The second version of the SAC paper even
incorporated some of the ideas from TD3. However, it is important to note that
SAC is not a direct improvement to TD3; rather, it is a distinct algorithm with a
focus on maximizing the entropy of the policy, enabling better exploration.

In summary, Proximal Policy Optimization is an enhancement of the Advantage
Actor-Critic algorithm, sharing the same actor-critic architecture and building upon
the A2C framework. While PPO shares certain similarities with other reinforcement
learning algorithms such as DDPG, TD3, and SAC, it is crucial to recognize that
PPO is specifically an improvement to A2C, and not to the other algorithms.

J
1
ϕ, ϕ−

2
= E(sKF ,a,AGAE)∼u(D(ϕ−))

I
min

C
π(a|sKF ; ϕ)

π(a|sKF ; ϕ−)AGAE,

clamp

A
π(a|sKF ; ϕ)

π(a|sKF ; ϕ−) , 1− ϵ, 1 + ϵ

B
AGAE

DJ (2.22)

L
1
ϕ, ϕ−

2
= E(sKF ,a,G,V )∼u(D(θ−)) {max [G− V (sKF ; θ),

G− (V + clamp (V (sKF ; θ)− V,−δ, δ))]}
(2.23)

23



Deep Reinforcement Learning and Kalman Filtering Algorithms

2.2 Introduction to Kalman Filtering Algorithms
A Kalman Filter is able to update and estimate of an evolving state. The goal
of the Kalman Filter is to take a probabilistic estimate of an state and update
it in real time using two steps, prediction and correction. In the following some
extended of Kalman Filter algorithm are introduced in details.

2.2.1 Standard Kalman Filter (SKF)
Introduction

The Kalman Filter requires the following motion and measurement models:

• Motion Model:

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (2.24)

in which uk−1 is an external signal that affects the evolution of our system
state (e.g. the acceleration in three dimensions to change the speed of a
drone).

• Linear Measurement Model:

yk = Hkxk + vk (2.25)

and the following noise properties are considered for this model:

• Measurement noise:
vk ∼ N(0, Rk)

• Process or motion noise:
wk ∼ N(0, Qk))

which governs how certain we are that our linear dynamic system is actually
correct and how uncertain we are about the effects of our control inputs.

The Kalman Filter is a recursive least square estimator that also includes a
motion model. The following steps should be taken to find the estimates of the
state we are focusing on:

• Prediction:

x̌k = Fk−1xk−1 + Gk−1uk−1 (2.26)

P̌k = Fk−1P̂k−1F
T
k−1 + Qk−1 (2.27)

24



Deep Reinforcement Learning and Kalman Filtering Algorithms

• Update the Optimal Gain:

Kk = P̌kHT
k (HkP̌kHT

k + Rk)−1 (2.28)

• Correction:

x̂k = x̌k + Kk(yk −Hkx̌k) (2.29)

P̌k = (1−KkHk)P̌k (2.30)

in which,

• yk −Hkx̌k is the innovation matrix

• P̌k is the corrected state covariance matrix

• x̌k is the prediction given motion model at time k

• x̂k is the corrected prediction give measurement at time k

A smaller state covariance means we are more certain about the drone’s position
after we incorporate the position measurement and the measurement noise variance
is quite small.

Bias in State Estimation

We say an estimator or a filter is unbiased if it produces an average error of zero at
a particular time step k over many trials. So, we drive our system like a drone for
k time steps and record the following data to get the estimation errors and repeat
this process.

• Process and Motion:

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1

• Measurement:
yk = Hkxk + vk

where in 2.3, the Pk is the true position of the drone in 3D environment and
E[P̂k] is the mean of the estimated position values. To compute the bias for the
Kalman Filter we have the error dynamics as:

25



Deep Reinforcement Learning and Kalman Filtering Algorithms

Figure 2.3: Definition of Bias on Probability Distribution Function

• Predicted State Error:
ěk = x̌k − xk

• Corrected Estimate Error:
ê = x̂k − xk

By using the Kalman Filter equations, we can derive:

• Predicted State Error:
ěk = Fk−1ěk−1 − wk

• Corrected Estimate Error:

ê = (1−KkHk)ěk + Kkvk

The expectation values of these errors is equal to zero.For this to be true, we
need to ensure that our initial state estimate is unbiased and our noise is white,
uncorrelated, and zero mean. So, for the Kalman Filter for all k steps:

• Expectation of the Predicted State Error:

E[ěk] = E[Fk−1ěk−1 − wk] = Fk−1E[ěk−1]− E[wk] = 0

• Expectation of the Corrected Estimate Error:

E[ê] = E[(1−KkHk)ěk + Kkvk] = (1−KkHk)E[ěk] + KkE[vk] = 0

This does not mean that the error on a give trial will be zero, but that with
enough trials, our expected error is zero.

26



Deep Reinforcement Learning and Kalman Filtering Algorithms

Consistency in State Estimation

By consistency we mean that for all time steps k, the filter covariance P̂k matches
the expected value of the square of our error. Therefore, a filter is consistent if for
all k we have:

E[ê2
k] = E[(P̂k − Pk)2] = P̂k (2.31)

The empirical variance of our estimate should match the variance reported by
the filter. This means that our filter is neither overconfident, nor underconfident in
the estimate it has produced. A filter that is over confident, and hence inconsistent,
will report a covariance that is optimistic. Therefore, the filter will essentially place
too much emphasis on its own estimate will be less sensitive to future measurement
updates which may provide critical information. So long as our initial estimate is
consistent and we have white zero mean noise, then all estimates will be consistent.

E[ê0ê
T
0 ] = P̌0, E[v] = 0

E[w] = 0, White noise

J
⇒ E[ěkěT

k ] = P̌k, E[êkêT
k ] = P̂k (2.32)

We have shown that given our linear formulation, and zero mean white noise,
the Kalman Filter is unbiased. We can also say that the filter is consistent if:

E[êk] = 0

E[êkêT
k ] = P̂k

In general, if we have white, uncorrelated zero mean noise, the Kalman Filter is
the best(Lowest Variance) unbiased estimator that uses only a linear combination of
measurements. Therefore, the Kalman Filter is the best linear unbiased estimator.

2.2.2 Extended Kalman Filter (EKF)
Introduction

The Extended Kalman Filter uses the first-order linearization to turn a nonlinear
problem into a linear one. This algorithm talks about the role of the Jacobian
matrices and how to compute them. Actually, Linear systems do not exist in reality.
So, there is a question about how we can adapt the Kalman Filter algorithm to
nonlinear discrete-time systems?

We have:

xk = fk−1(xk−1, uk−1, wk−1) (2.33)

27



Deep Reinforcement Learning and Kalman Filtering Algorithms

yk = hk(xk, vk) (2.34)

in which the xk is the dynamic of the system and yk is the measurement model.

Figure 2.4: Nonlinear system and the meaning of first order linearization

To linearize a nonlinear system, firstly a point should be chosen like point a,
and the approximation of the nonlinear function by a tangent line at that point
should be derived. So, the EKF can be defined as the Linearized Kalman Filter.

Suppose a nonlinear f(x) function is given. Mathematically, the linear approxi-
mation is computed using a first-order Ttaylor expansion as:

f(x) ≈ f(a) + ∂f(x)
∂x

----
x=a

(x− a) + 1
2!

∂2f(x)
∂x2

----
x=a

(x− a)2 + 1
3!

∂3f(x)
∂x3

----
x=a

(x− a)3 + . . .

(2.35)
and the first-order Taylor expansion would be as:

f(x) ≈ f(a) + ∂f(x)
∂x

----
x=a

(x− a)

Algorithm

The procedure to derive the equations of EKF is going to be explained in details in
the following.

28



Deep Reinforcement Learning and Kalman Filtering Algorithms

• Linearize Motion Model:
For the EKF, the operating point is chosen as the most recent state estimated
point with known input and zero noise. Therefore, we have linearized motion
model for EKF as follows:

xk = fk−1(xk−1, uk−1, wk−1) ≈ fk−1(x̂k−1, uk−1, 0)

+ ∂fk−1

∂xk−1

----
(x̂k−1,uk−1,0)

(xk−1 − x̂k−1)

+ ∂fk−1

∂wk−1

----
(x̂k−1,uk−1,0)

wk−1

(2.36)

the two last terms are named as:

Fk−1 = ∂fk−1

∂xk−1

----
(x̂k−1,uk−1,0)

Lk−1 = ∂fk−1

∂wk−1

----
(x̂k−1,uk−1,0)

• Linearize Measurement Model:
the linearized measurement model will be as the following:

yk = hk(xk, vk) ≈ hk(x̌k,0)

+ ∂hk

∂xk

----
(x̌k,0)

(xk − x̌k) + ∂hk

∂vk

----
(x̌k,0)

vk

(2.37)

and the two last terms are named as:

Hk = ∂hk

∂xk

----
(x̌k,0)

Mk = ∂hk

∂vk

----
(x̌k,0)

• Computing the Jacobian Matrices:
Now, we have linear system in state-space and the Fk−1, Lk−1, Hk, Mk are
called the Jacobian matrices of the system. A Jacobian matrix is the matrix
of all first-order partial derivatives of a vector-valued function.

∂f

∂x
= [ ∂f

∂x1
· · · ∂f

∂xn

] =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn... ... . . . ...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn

 (2.38)

29



Deep Reinforcement Learning and Kalman Filtering Algorithms

Consider each column of the Jacobian matrix contains the derivatives of the
function outputs with respect to a given input. Intuitively, the Jacobian
matrix tells us how fast each output of the function is changing along each
input dimensions.

• Write the final equations:
With the linearized models and Jacobians, we can now use the Kalman Filter
equations which derived as:

xk = fk−1(xk−1, uk−1, 0) + Fk−1(xk−1 − x̂k−1) + Lk−1wk−1

yk = hk(x̌k,0) + Hk(xk − x̌k) + Mkvk

– Prediction:

x̌k = fk−1(x̂k−1, uk−1, 0) (2.39)

P̌k = Fk−1P̂k−1F
T
k−1 + Lk−1Qk−1L

T
k−1 (2.40)

– Optimal Gain:

Kk = P̌kHT
k (HkP̌kHT

k + MkRkMT
k )−1 (2.41)

– Correction:

x̂k = x̌k −Kk(yk − hk(x̌k,0)) (2.42)

P̂k = (1−KkHk)P̌k (2.43)

in which:
x̌k is the prediction given motion model at time k
x̂k is the corrected prediction give measurement at time k

Consider the motion model is linearized about the previous state estimate and
the measurement model is linearized about the predicted state.

2.2.3 Single-Instruction Multi-data Kalman Filter
The Kalman filter is a mathematical algorithm that provides an efficient compu-
tational solution to estimate the state of a process in a way that minimizes the
mean of the squared error. It is used in a wide range of engineering [40] and data
analysis applications to filter out noise and provide accurate data about the state
of a system over time.

30



Deep Reinforcement Learning and Kalman Filtering Algorithms

The Kalman filter becomes even more powerful when integrated with the SIMD
concept. The SIMD (Single Instruction, Multiple Data) Kalman filter leverages
the power of modern processors to perform multiple operations simultaneously.
By packing several data items into one register and operating on all of them
simultaneously, the SIMD Kalman filter significantly increases the data processing
speed. This approach is particularly beneficial in scenarios where operations can
be naturally parallelized, such as in high-energy physics experiments where large
volumes of data need to be processed quickly. Using the SIMD Kalman filter, these
operations can be performed much faster, leading to more efficient data processing
and analysis.

The SIMD (Single Instruction, Multiple Data) Kalman filter works by leveraging
the power of modern processors to perform multiple operations simultaneously. The
SIMD Kalman filter can process multiple data streams against a single instruction
stream, particularly beneficial in scenarios where operations can be naturally paral-
lelized. This makes it especially useful in high-energy physics experiments, where
large volumes of data need to be processed quickly. The SIMD (Single Instruction,
Multiple Data) Kalman filter operates in several steps to leverage the power of
modern processors for efficient data processing. Initialization: The algorithm
begins with an initial approximation of the system’s state. This approximation is
represented as a vector, and its covariance matrix is set to a large positive number,
indicating a high level of uncertainty. Prediction: The algorithm predicts the state
of the system at the next time step. This prediction is based on the current state
and the system’s dynamics, represented by the prediction matrix. The prediction
step produces an estimated state vector and its associated covariance matrix, which
represents the uncertainty of the prediction. Process Noise: This step accounts
for the probabilistic deviations in the system’s state due to process noise. The
estimated state vector and its covariance matrix are updated to reflect this noise.
Filtration: The state vector is updated with the new measurement to get the
optimal estimate of the system’s state and its covariance matrix. The Kalman
gain matrix, which determines how much weight to give to the new measurement
based on its uncertainty, is calculated and applied. The total deviation of the
obtained estimation from the measurements is also calculated. The filter’s complete
mathematical formulations are reported in [41].

In the context of this paper, the SIMD form of the Kalman filter has been used
to filter the information about the position of the gates. This did allow us to obtain,
after a small number of observations, an accurate estimate of the gate’s movement.
The downstream algorithm later used this information to estimate the position of
the gate at a given moment in time.

In the study discussed in this paper, the SIMD version of the Kalman filter has
been employed to filter the data related to the position of the gates. This application
enabled us to acquire a precise estimate of the gate’s motion after a limited number

31



Deep Reinforcement Learning and Kalman Filtering Algorithms

Figure 2.5: Kalman Filtering Block Diagram

of observations. The downstream algorithm subsequently utilized this information
to approximate the gate’s position at a specific time point. In the prediction step of
the Kalman filter, an estimate of the new position of the gate is made based on the
previous state. This step incorporates the state transition model and the control
input, if any, to predict the current state of the gate. This prediction forms the
prior estimate for the state of the system. The observations from the environment
then come into play during the update step. These observations are used to adjust
the prediction based on what was measured, which can be particularly beneficial
when there is uncertainty or noise in the system. In this case, the measurements
pertain to the gate’s movement. The difference between the prediction from the
prior state and the observation from the environment, also known as the innovation
or residual, is then used to update the state estimate. This updated estimate
is a weighted average of the prior estimate and the current measurement, with
more weight given to estimates with more certainty. Through several iterations,
the above process yields an accurate estimate of the gate’s movement, effectively
tracking the gate’s position over time. This ability to use observations to predict
and correct the position estimate makes the Kalman filter an excellent tool for
dealing with the dynamics of moving objects like the gate in our study.

32



Chapter 3

Simulation Environment and
Experimental Setup

3.1 Introduction

3.2 Two Dimensional Drone Environment
In the design of this environment, a specific object-oriented programming paradigm
was utilized to model the relationships and interactions between various elements
in the system. The primary focus was to create a modular and scalable architecture
that would allow for easy modification and extension.

To achieve this, a class hierarchy was established, allowing for the separation
of concerns and encapsulation of data. The classes were structured in such a way
that common functionality and properties were inherited from a base class, and
specialized behavior was implemented in derived classes. This structure facilitated
code reusability and maintainability.

Additionally, to store and manage the data associated with each object, appro-
priate attributes were defined within the classes. These attributes allowed for the
proper representation of the object’s state and properties while maintaining data
integrity and minimizing redundancy. Access to these attributes was controlled
through carefully designed methods, ensuring that external entities could only
interact with the object’s data in a safe and consistent manner.

To enable seamless communication and collaboration between objects, well-
defined interfaces, and methods were employed. This approach allowed for the
efficient exchange of data and execution of tasks, promoting a high degree of
cohesion and reducing coupling between objects. This modular design facilitated
the ease of testing and debugging the software, ensuring that each component
functioned correctly and efficiently within the larger system.

33



Simulation Environment and Experimental Setup

Overall, the careful design and implementation of classes, attributes, and meth-
ods within the software contributed to a robust and efficient solution that met the
project’s requirements and provided a solid foundation for future development and
improvement.

The environment is a 2D drone game where the drone navigates through two
gates. The environment is created as a class called DroneGateGame, which
initializes various attributes like the drone’s position, gate positions, field of view
(fov), and dimensions of the environment (w and h). There are eight scenarios in
which the drone and gates have different behaviors.

• Fixed starting point of drone and static gates with discrete state-action space

• Random starting point of drone and static gates with discrete state-action
space

Figure 3.1: Sample of different Starting Points (Orange points) and path of gates
at different time steps

3.2.1 State Representation
The state of the drone is represented by its relative position and velocity with
respect to the center of each gate in the environment plan. The state space in the
cases of having static gates is two-dimensional (x, y), and in the cases of having
dynamic gates is three-dimensional (x, y, ẏ) in which the relative velocity of the
gate with respect to the drone along y direction is included.

34



Simulation Environment and Experimental Setup

Figure 3.2: Sample of different Starting Points (Orange points) and path of gates
at different time steps

3.2.2 Action Space
The action space in the environment with discrete state-action space consists of four
possible actions: moving up, down, left, or right. The actions are defined by the
integer values 0, 1, 2, and 3, representing right, left, down, and up, respectively.
While in the case of continuous action-state space, the action space consists of
one action which is the angle by which the drone should move alongside by a unit
magnitude.

3.2.3 Reward Function
The reward function is designed to encourage the drone to move closer to the gates.
It takes into account the magnitude of the distance between the drone and the
center of the gate before and after taking a step. If the drone gets closer to the
gate center, the reward will be positive; otherwise, it will be negative. Furthermore,
if the drone hits the boundaries, which include both the environment’s boundaries
and locations where the gate centers are out of the camera’s field of view, the

35



Simulation Environment and Experimental Setup

reward will be a significantly negative value at that step.

3.3 Three Dimensional Drone Environment
The environment is a 3D drone game where the drone navigates through two gates.
The environment is created as a class called DroneGateGame, which initializes
various attributes like the drone’s position, gate positions, field of view (fov), and
dimensions of the environment (w and h). There are eight scenarios in which the
drone and gates have different behaviors.

• Fixed starting point of drone and static gates with continuous state-action
space

• Fixed starting point of drone and dynamic gates with continuous state-action
space

• Random starting point of drone and static gates with continuous state-action
space

• Random starting point of drone and dynamic gates with continuous state-
action space

3.3.1 State Representation
In a three-dimensional environment, the investigation is focused on continuous
action states. Similar to two-dimensional environments, various behaviors are taken
into account for gates and different initial conditions.

In the case of static gates, the state is represented as (x, y, z), where x, y, and z
denote the relative positions of the drone concerning the gate in the respective x, y,
and z directions. This representation provides sufficient information for navigating
the drone in a 3D environment with fixed gate locations.

However, when considering an environment with dynamic gates, the state
representation must be expanded to include additional information about the
relative velocities in the y and z directions. In this case, the state is represented as
(x, y, z, ẏ, ż). The additional components, ẏ and ż, account for the relative velocity
in the y and z directions, respectively, enabling the drone to react to moving gates
more effectively.

By considering both static and dynamic gates in a three-dimensional environment,
the analysis becomes more comprehensive and adaptable to different scenarios.
This approach allows for a more robust understanding of drone navigation and
control, which can be beneficial for applications such as drone racing, search and
rescue missions, and environmental monitoring, where the ability to maneuver
through complex environments is crucial.

36



Simulation Environment and Experimental Setup

3.3.2 Action Space
The action space for both static and dynamic gates encompasses the magnitude
of movement in the x, y, and z directions. Each of these values falls within the
range of [−1, 1], representing the displacement in each respective direction. By
normalizing the sum of all the movements, the magnitude of the total displacement
at each step is equal to one unit.

In this action space, the drone can move in any direction within the three-
dimensional environment by combining the appropriate magnitudes for each axis.
This flexible approach allows the drone to navigate and adapt to various scenarios,
whether it involves static or dynamic gates. By using a normalized range for the
magnitudes, the system ensures consistency and comparability across different
movement directions and environments.

This action space representation is well-suited for applications in drone navigation
and control, as it enables the system to respond effectively to a wide range of
situations. The normalization of the movement magnitudes ensures a consistent and
comparable scale for evaluating the drone’s performance across different scenarios.

3.3.3 Reward Function
The reward function is designed to encourage the drone to move closer to the center
of the gate at each time step. The reward is calculated based on the amount of
displacement at each step multiplied by the sign of the displacement. In other
words, the relative position concerning the center of the gate before and after taking
a step is considered. A higher positive reward is granted when the drone moves
closer to the center of the gate, while a more significant negative reward is given
when the drone moves further away from the center. Moreover, if the drone hits
the boundaries, which include both the environment’s boundaries and locations
where the gate centers are out of the camera’s field of view, the reward will be a
substantially negative value at that step. The formula for the reward function is as
follows:

Reward(t) =


−30 if Collision to Boundaries
+30 if Reach Latest Gate Center
drel

t−1(st−1, at−1)− drel
t (st, at) Otherwise

in which,

• Reward(t) represents the reward at time t.

• drel
t (s, a) is the relative distance at time t given the state s and action a.

37



Simulation Environment and Experimental Setup

• st and at are the state and action at time t, respectively.

• st−1 and at−1 are the state and action at the previous time step, t− 1.

By utilizing this reward function, the drone’s navigation system is encouraged
to optimize its path toward the center of the gate, thereby improving its overall
performance in various environments. This reward structure is particularly useful
in applications such as drone racing, search and rescue missions, and environmental
monitoring, where precise navigation and control are essential.

Figure 3.3: Sample of Movement of the Drone in 3D environment at different
training episode in Fixed Starting Points

38



Simulation Environment and Experimental Setup

Figure 3.4: Sample of different Starting Points (Orange points) and path of gates
at different time steps

39



Chapter 4

A Kalman Filter
Reinforcement Learning
Approach for Path Planning

4.1 Kalman Filter for State Estimation

The Kalman Filter Algorithm employed in this environment is the Standard Kalman
Filter, which assumes the problem to be not overly nonlinear. As we are dealing
with a simple inverted pendulum, and the characteristics of the pendulum change
at each episode, the system can be considered relatively simple. The advantage of
using a standard Kalman filter lies in its ability to provide a good trade-off between
the accuracy of estimations and the complexity of the model from a computational
perspective.

The Kalman Filter consists of two steps: prediction and update. The input
for the prediction step is the time at which the drone is expected to reach the
center of the gate. This time can be approximated using the average step time and
the distance to the center of the gate. The average step time is dependent on the
computational load of the algorithm as well as the processing power of the system.
In other words, the average step time represents the average duration it takes for
the agent to make a step. By considering these two parameters, the time to reach
the gate center can be determined, and the outputs of the prediction step, which
include the relative positions and relative velocities of the gate with respect to the
drone along the x, y, and z directions, can be calculated.

Moreover, the inputs of the update step are the relative positions of the gate
with respect to the drone (x, y, z), and the outputs are the estimations of the gate’s
future position concerning the drone at the time calculated in the previous step.

40



A Kalman Filter Reinforcement Learning Approach for Path Planning

It is important to note that the states of the drone for Reinforcement Learning
algorithms are precisely the outputs of the update step at each time step.

By incorporating the Standard Kalman Filter into the drone’s navigation system,
it can more accurately estimate its position and velocity relative to the gate, leading
to improved performance in various environments.

4.2 Reinforcement Learning Algorithms with Kalman
Filter Integration 2D

In this section, different Reinforcement Learning algorithms are trained to evaluate
and compare the performance of each algorithms for two different scenarios. The
first scenario includes all the initial conditions to be known more specifically the
starting point of the drone, whereas in the second scenario, the initial starting
point of the drone is selected randomly at each episode. So, the second scenario
will consist of more challenges and it will be more generalized rather than the first
one.

4.2.1 Deep Deterministic Policy Gradient
Training and Hyperparameters

In all the following Training and Hyperparameters sections, most of the parameters
are considered to be constant to have a better comparison among the nature of the
algorithms by themselves. As you will see, the gamma coefficient which is the
discount factor that adjusts the rewards importance over time in all the algorithms
is considered to be 0.99. Also, the nS factor for the environments including static
and dynamic gates is 2 and 3, respectively. And nA factors in 2D discrete action
state environments is 4 which are the movement directions that are Up, Down,
Right, and Left.

Moreover, the complexity of the networks are determined by hidden_dims fac-
tors and because of that relative advanced neural network, the policy_optimizer_lr
and value_optimizer_lr factors are investigated to be small values. The point
should be noticed here is that policy_optimizer_lr factor considered lower than
value_optimizer_lr value to have less intervention of the disturbances and noises
to the policy network.

Performance Evaluation

Because of the simplicity of the 2D environments as well as the discret action state
environments, the training episodes to get the highest reward at each episode is
not too much.

41



A Kalman Filter Reinforcement Learning Approach for Path Planning

Listing 4.1: Parameter Settings for DDPG Algorithm in 2D Environment
1 gamma: 0 .99
2 policy_model_fn = lambda nS , bounds : FCDP(nS , bounds , hidden_dims

=(256 , 256) )
3 policy_max_grad_norm = f l o a t ( ’ i n f ’ )
4 pol icy_opt imizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
5 po l i cy_opt imize r_l r = 0.00003
6 value_model_fn = lambda nS , nA: FCQV(nS , nA, hidden_dims =(256 ,

256) )
7 value_max_grad_norm = f l o a t ( ’ i n f ’ )
8 value_optimizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
9 value_opt imizer_lr = 0.0003

10 t ra in ing_st rategy_fn = lambda bounds : NormalNoiseStrategy ( bounds ,
exp lo ra t i on_no i s e_rat i o =0.1)

11 rep lay_buf fer_fn = lambda : ReplayBuffer ( max_size =100000 ,
batch_size =512)

12 n_warmup_batches = 1
13 update_target_every_steps = 1
14 tau = 0.001

As shown in the Episode score graph and in the plotted trajectories, the agent
learns faster to reach the center of the gates in the first scenario which is the fixed
starting point. That is the reason why the trajectories for most of the episodes in
the case of having static gates are similar to each other. But, as the randomness to
the environment increases, the learning would be more challenging, the trajectories
would be different, and more episodes is needed learn the desired policy.

4.2.2 Dueling Double DQN
Training and Hyperparameters

In this algorithm, the nS and nA parameters considered same as the previous
algorithm (DDPG), but the network is more complicated by increasing the neurons
at each hidden layer. Also the lr parameter is considered to be changed based on
an Exponential rate which leads to have more stable learning in most of the cases.

Performance Evaluation

As you can see, this algorithm is not too much dependent on the environment
variables and the required episodes to learn the policy for the agent in two scenarios
are almost the same. But as you can see, on the up right plot corresponding to

42



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.1: Episode Scores and Trajectories of DDPG Algorithm with Fixed and
Random Starting Points

Listing 4.2: Parameter Settings for D3QN Algorithm in 2D Environment
1 gamma: 0 .995
2 value_model_fn = lambda nS , nA: FCDuelingQ (nS , nA, hidden_dims

=(512 ,512) )
3 value_optimizer_fn = lambda net , l r : optim . RMSprop( net . parameters

( ) , l r=l r )
4 value_opt imizer_lr = lambda : LR_ExpStrategy ( i n i t _ l r= 0 .0005 ,

min_lr =0.0002 , decay_steps =100000)
5 max_gradient_norm = f l o a t ( ’ i n f ’ )
6 t ra in ing_st rategy_fn = lambda : EGreedyExpStrategy ( i n i t _ e p s i l o n

=1.0 ,
7 min_epsi lon =0.05 , decay_steps =100000)
8 rep lay_buf fer_fn = lambda : ReplayBuffer ( max_size =80000 , batch_size

=512)
9 n_warmup_batches = 1

10 update_target_every_steps = 1
11 tau = 0.01

Episode Score for Random Starting Point, the reward is oscillating in range of
[450,550] which caused by the length of the path the agent should take. This fact

43



A Kalman Filter Reinforcement Learning Approach for Path Planning

is admitted by its lower trajectory that shows the path is taken almost perfectly in
different episodes.

Figure 4.2: Episode Scores and Trajectories of D3QN Algorithm with Fixed and
Random Starting Points

4.2.3 Prioritized Experience Replay
Training and Hyperparameters

As the previous algorithms, most of the parameters are the same as those ones.
in PrioritizedReplayBuffer, the rank_based hyperparameter is considered to
be False. If it is set to True, it mean the priority order is based on the following
equation:

pi = 1
rank(i)

Otherwise, if that hyperparameter is set to False, the prioritization would be
proportional which is the absolute TD error plus a small constant epsilon to avoid
zero priorities as the following equations:

pi = |δi + ϵ|

44



A Kalman Filter Reinforcement Learning Approach for Path Planning

. Moreover, the alpha coefficient is used in the following formula to get the
probabilities from priorities:

pi = pα
iq

k pα
k

. Finally, the beta hyperparameter is implemented in the following equation to get
the importance=sampling weights using the probabilities.

wi = (NP (i))−β

in the above equation, the importance-sampling based is calculated by multiplying
each probability by the number of samples in the replay buffer and then powered
by −β. and then the weights are scaled down to have the largest weight be equal
to one.

wi = wi

maxj(wi)

Listing 4.3: Parameter Settings for PER Algorithm in 2D Environment
1 gamma: 0 .99
2 value_model_fn = lambda nS , nA: FCQ(nS , nA, hidden_dims =(512 , 512)

)
3 value_optimizer_fn = lambda net , l r : optim . RMSprop( net . parameters

( ) , l r=l r )
4 value_opt imizer_lr = lambda : LR_ExpStrategy ( i n i t _ l r= 0 .0005 ,

min_lr =0.0002 , decay_steps =100000)
5 max_gradient_norm = f l o a t ( ’ i n f ’ )
6 t ra in ing_st rategy_fn = lambda : EGreedyExpStrategy ( i n i t _ e p s i l o n

=1.0 ,
7 min_epsi lon =0.1 ,
8 decay_steps =150000)
9 rep lay_buf fer_fn = lambda : P r i o r i t i z e d R e p l a y B u f f e r (

10 max_samples=80000 , batch_size =6000 , rank_based=False ,
11 alpha =0.6 , beta0 =0.1 , beta_rate =0.99997)
12 n_warmup_batches = 1
13 update_target_every_steps = 1
14 tau = 0.01

Performance Evaluation

As is evident from Figure 4.3, the algorithm successfully reaches the desired results
in the Fixed Starting Point case. However, in the case of having a Random
Starting Point, it exhibits instability. It appears that this algorithm has the poorest
performance among the mentioned algorithms in 2D discrete action environments.

45



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.3: Episode Scores and Trajectories of PER Algorithm with Fixed and
Random Starting Points

4.2.4 Proximal Policy Optimization

Training and Hyperparameters

In the following, the hyperparameters of the PPO algorithm are defined. As it is
evident, the PPO algorithm has more hyperparameters than the other discussed
algorithms. This leads to the PPO algorithm being more of a hyperparameter
tuning problem.

Two hyperparameters policy_stopping_kl and value_stopping_mse are the
conditions which determine the policy and value optimization networks to be done or
ignored. Also, the policy_optimization_epochs and value_optimization_epochs
are the hyperparameters which determine for how many time the policy and value
networks being optimized. Moreover the sd, g, t, me, and mes hyperparametrs are
the state dimension, gamma factor, tau factor, maximum episodes, and maximum
steps at each epiode, respectively. And finally, the policy_sample_ratio and
value_sample_ratio are the ones determine the size of the batch whcih are going
to be used for policy and value functions at each policy_optimization_epochs and
value_optimization_epochs, respectively.

46



A Kalman Filter Reinforcement Learning Approach for Path Planning

Listing 4.4: Parameter Settings for PPO Algorithm in 2D Environment
1 gamma: 0 .99
2 policy_model_fn = lambda nS , nA: FCCA(nS , nA, hidden_dims =(256 ,

256) )
3 policy_model_max_grad_norm = f l o a t ( ’ i n f ’ )
4 pol icy_opt imizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
5 po l i cy_opt imize r_l r = 0.0003
6 pol icy_opt imizat ion_epochs = 80
7 pol icy_sample_rat io = 0 .8
8 pol i cy_cl ip_range = 0 .1
9 pol icy_stopping_kl = 0 .02

10 value_model_fn = lambda nS : FCV(nS , hidden_dims =(256 , 256) )
11 value_model_max_grad_norm = f l o a t ( ’ i n f ’ )
12 value_optimizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
13 value_opt imizer_lr = 0.0005
14 value_optimizat ion_epochs = 80
15 value_sample_ratio = 0 .8
16 value_cl ip_range = f l o a t ( ’ i n f ’ )
17 value_stopping_mse = 25
18 ep isode_buf fer_fn = lambda sd , g , t , me , mes : EpisodeBuf fer ( sd , g ,

t , me , mes )
19 max_buffer_episodes = 16
20 max_buffer_episode_steps = 1000
21 entropy_loss_weight = 0.01
22 tau = 0.01

Performance Evaluation

As is evident in the Episode Reward plots and the corresponding trajectories, the
algorithm reaches the desired reward in Fixed Starting Points scenarios. However, it
takes more time and more episodes to reach an optimal policy in Random Starting
Point scenarios. It should also be considered that through hyperparameter tuning,
it might achieve better performance under the same conditions.

4.3 Reinforcement Learning Algorithms with Kalman
Filter Integration, 3D

In this section, three well-known Reinforcement Learning (RL) algorithms are
investigated and analyzed in the context of the environment discussed in the
previous section. Each algorithm is examined in detail, focusing on its suitability
and performance within the specified environment, taking into account the unique

47



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.4: Episode Scores and Trajectories of PPO Algorithm with Fixed and
Random Starting Points

characteristics and challenges presented by the drone navigation task.

4.3.1 Deep Deterministic Policy Gradient
Algorithm Integration

It is a deterministic policy algorithm and so it uses off-policy exploration strategy.
For example, the Gaussian noise is added to the action-selection process that
enhances the exploratory of deterministic policies.

Training and Hyperparameters

In the following Training parameters, the FCQV and FCDP are the Q-function
network and policy network, respectively. The output of FCQV network is just a
single value that represents the value of the state-action pair. Also consider the
activation function of the last layer of the FCDP network is considered as tanh to
have an action between [−1,1]. In the training of the agent with this algorithm
NormalNoiseStrategy function is considered to add noise to the action which leads
to increase the exploration of the agent in the environment. Then the action is
clipped to be in the desired action range and finally, the noise ratio is changed

48



A Kalman Filter Reinforcement Learning Approach for Path Planning

Algorithm 1 Deep Deterministic Policy Gradient (DDPG)
1: Initialize actor network π and critic network Q with random weights θπ, θQ

2: Initialize target networks π′ and Q′ with weights θπ′ ← θπ, θQ′ ← θQ

3: Initialize replay buffer R
4: for episode = 1, M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, T do
8: Select action at = π(st|θπ) + Nt according to the current policy and

exploration noise
9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Set yi = ri + γQ′(si+1, π′(si+1|θπ′)|θQ′)
13: Update critic by minimizing the loss: L = 1

N

q
i(yi −Q(si, ai|θQ))2

14: Update the actor policy using the sampled policy gradient:

∇θπJ ≈ 1
N

Ø
i

∇aQ(s, a|θQ)|s=si,a=π(si)∇θππ(s|θπ)|si

15: Update the target networks:

θQ′ ← τθQ + (1− τ)θQ′

θπ′ ← τθπ + (1− τ)θπ′

16: end for
17: end for

49



A Kalman Filter Reinforcement Learning Approach for Path Planning

based on the designed schedule inside the function. This schedule can be constant,
linear, or exponential.

Listing 4.5: Parameter Settings for DDPG Algorithm in 3D Environment
1 gamma: 0 .99
2 policy_model_fn = lambda nS , bounds : FCDP(nS , bounds , hidden_dims

=(128 , 128) )
3 policy_max_grad_norm = f l o a t ( ’ i n f ’ )
4 pol icy_opt imizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
5 po l i cy_opt imize r_l r = 0.0003
6 value_model_fn = lambda nS , nA: FCQV(nS , nA, hidden_dims =(128 ,

128) )
7 value_max_grad_norm = f l o a t ( ’ i n f ’ )
8 value_optimizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
9 value_opt imizer_lr = 0.0005

10 t ra in ing_st rategy_fn = lambda bounds : NormalNoiseStrategy ( bounds ,
exp lo ra t i on_no i s e_rat i o =0.1)

11 rep lay_buf fer_fn = lambda : ReplayBuffer ( max_size =1000000 ,
batch_size =256)

12 n_warmup_batches = 5
13 update_target_every_steps = 1
14 tau = 0.001

Performance Evaluation

As shown in Figure 4.5, the algorithm is not as stable and consistent as the other
two algorithms (SAC and PPO) for a 3D continuous action state environment. It
can be observed that as the randomness of the environment increases, the stability
and consistency of the algorithm also increase, and the agent can eventually reach
the desired policy after several iterations.

4.3.2 Soft Actor-Critic

Algorithm Integration

This algorithm is known as entropy-maximization algorithm that includes maxi-
mizing a mixed objective of the value function and policy entropy which leads to
getting the most reward with the most diverse policy. It is an off-policy algorithm
in which the agent can reuse the experiences to enhance the policies.

50



A Kalman Filter Reinforcement Learning Approach for Path Planning

Algorithm 2 Soft Actor-Critic (SAC)
1: Initialize actor network π, critics Q1 and Q2 with random weights θπ, θQ1, θQ2

2: Initialize target critic networks Q′
1 and Q′

2 with weights θQ1′ ← θQ1, θQ2′ ← θQ2

3: Initialize temperature α and target entropy H̄
4: Initialize replay buffer R
5: for episode = 1, M do
6: Receive initial observation state s1
7: for t = 1, T do
8: Select action at ∼ π(st|θπ)
9: Execute action at and observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
12: Compute target yi = ri + γ minj∈{1,2} Q′

j(si+1, π′(si+1|θπ′)) −
α log π(ai+1|si+1)

13: Update critics by minimizing the loss:

LQ1 = 1
N

Ø
i

(yi −Q1(si, ai|θQ1))2

LQ2 = 1
N

Ø
i

(yi −Q2(si, ai|θQ2))2

14: Update actor policy by maximizing:

Jπ = Es∼D,a∼π[Q1(s, a)− α log π(a|s)]

15: Adjust temperature α to maintain entropy near target:

α← α− lrα(H̄ − Ea∼π[− log π(a|s)])

16: Update the target critics:

θQ1′ ← τθQ1 + (1− τ)θQ1′

θQ2′ ← τθQ2 + (1− τ)θQ2′

17: end for
18: end for

51



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.5: Episode Scores and Trajectories of PER Algorithm with Fixed Starting
Points, and Fixed Vs. Dynamic Gates

Training and Hyperparameters

In SAC algorithm, the FCGP is used as a Fully Connected Gaussian Policy
network. Because of the nature of the algorithm, the hidden layers in this network
are connected to two separate networks to which represent the mean of actions and
logarithmic standard deviation. And also consider in the Optimization function,
two separate networks are used to get the minimum Q-Value between these models.

Performance Evaluation

As shown in Figure 4.7, the algorithm outperforms DDPG. It is more stable and
consistent compared to the DDPG algorithm. However, in cases where random
starting points are employed, the shaded area is wider than that of the PPO
algorithm, which will be discussed in the next section. This indicates that, on
average, the model performs well, but in some seeds, the agent deviates significantly
from the optimal average policy.

52



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.6: Trajectory obtained with the algorithm DDPG in a dynamic environ-
ment for increasing episodes

4.3.3 Proximal Policy Optimization

Algorithm Integration

This is an on-policy algorithm despite the previous algorithms which were off-policy
algorithms. Also, this algorithm is more conservative than the previous ones
because of clipped objectives strategy it has in optimization process.

Training and Hyperparameters

In the optimization of PPO algorithm, the loss is calculated as the negative of the
minimum of the objectives.

53



A Kalman Filter Reinforcement Learning Approach for Path Planning

Algorithm 3 Proximal Policy Optimization
1: Initialize policy parameters θ, value parameters ϕ, and empty buffer B.
2: while training not over do
3: for i = 1, . . . , max_buffer_episodes do
4: Generate episode i using policy πθ and add to buffer B
5: end for
6: for k = 1, . . . , policy_optimization_epochs do
7: Sample minibatch from B
8: Calculate surrogate objective LCLIP +VF

t (θ) with respect to old policy
πθold

9: Update θ by maximizing LCLIP +VF
t (θ)

10: Calculate policy divergence KL[πθold|πθ]
11: if KL > policy_stopping_kl then
12: Break
13: end if
14: end for
15: for k = 1, . . . , value_optimization_epochs do
16: Sample minibatch from B
17: Calculate value loss LV F

t (ϕ)
18: Update ϕ by minimizing LV F

t (ϕ)
19: Calculate mean squared error (MSE) between value estimates
20: if MSE > value_stopping_mse then
21: Break
22: end if
23: end for
24: Empty buffer B
25: end while

54



A Kalman Filter Reinforcement Learning Approach for Path Planning

Listing 4.6: Parameter Settings for SAC Algorithm in 3D Environment
1 gamma: 0 .99
2 policy_model_fn = lambda nS , bounds : FCGP(nS , bounds , hidden_dims

=(128 , 128) )
3 policy_max_grad_norm = f l o a t ( ’ i n f ’ )
4 pol icy_opt imizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
5 po l i cy_opt imize r_l r = 0.0003
6 value_model_fn = lambda nS , nA: FCQSA(nS , nA, hidden_dims =(128 ,

128) )
7 value_max_grad_norm = f l o a t ( ’ i n f ’ )
8 value_optimizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
9 value_opt imizer_lr = 0.0005

10 rep lay_buf fer_fn = lambda : ReplayBuffer ( max_size =1000000 ,
batch_size =256)

11 n_warmup_batches = 5
12 update_target_every_steps = 1
13 tau = 0.001

Figure 4.7: Episode Scores and Trajectories of SAC Algorithm with Fixed Starting
Points, and Fixed Vs. Dynamic Gates

55



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.8: Trajectory obtained with the algorithm SAC in a dynamic environment
for increasing episodes

Performance Evaluation

As shown in Figure 4.9, the algorithm performs significantly better than the two
previous ones. It is more stable and consistent when fixed starting points are
studied. Additionally, in cases with random starting points, the agent eventually
reaches the desired policy, and the shaded area in the static gates is narrower than
that of the SAC algorithm. Moreover, in the case of random starting points and
dynamic gates, in the final episodes, the shaded area is narrower than the SAC
algorithm’s, indicating that in the final episodes, the agent performs close to its
optimal average policy.

56



A Kalman Filter Reinforcement Learning Approach for Path Planning

Listing 4.7: Parameter Settings for PPO Algorithm in 3D Environment
1 gamma: 0 .99
2 policy_model_fn = lambda nS , nA: FCCA(nS , nA, hidden_dims

=(128 ,128) )
3 policy_model_max_grad_norm = 0.5
4 pol icy_opt imizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
5 po l i cy_opt imize r_l r = 0.0003
6 pol icy_opt imizat ion_epochs = 10
7 pol icy_sample_rat io = 0 .9
8 pol i cy_cl ip_range = 0 .1
9 pol icy_stopping_kl = 0 .02

10 value_model_fn = lambda nS : FCV(nS , hidden_dims =(128 ,128) )
11 value_model_max_grad_norm = 0.5
12 value_optimizer_fn = lambda net , l r : optim .Adam( net . parameters ( ) ,

l r=l r )
13 value_opt imizer_lr = 0.0005
14 value_optimizat ion_epochs = 10
15 value_sample_ratio = 0 .9
16 value_cl ip_range = 0 .1
17 value_stopping_mse = 25
18 ep isode_buf fer_fn = lambda sd , g , t , me , mes , seed : EpisodeBuf fer (

sd , g , t , me , mes , seed )
19 max_buffer_episodes = 6
20 max_buffer_episode_steps = 1000
21 entropy_loss_weight = 0.015
22 tau = 0.97
23 po l i cy_lr_schedu le r_step_s ize= 30
24 policy_lr_scheduler_gamma= 0.96
25 value_lr_scheduler_step_size= 30
26 value_lr_scheduler_gamma= 0.96

57



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.9: Episode Scores and Trajectories of PPO Algorithm with Fixed Starting
Points, and Fixed Vs. Dynamic Gates

58



A Kalman Filter Reinforcement Learning Approach for Path Planning

Figure 4.10: Trajectory obtained with the algorithm PPO in a dynamic environ-
ment for increasing episodes

59



Chapter 5

Results

5.1 Experiment Results and Analysis

5.1.1 Performance Metrics
In our research, we employ three main criteria to evaluate the performance of
the reinforcement learning algorithms: cumulative score per episode, the count
of episodes in which the agent accomplished the objective, and the duration per
episode (episode elapsed). These criteria can be further divided into five metrics
defined as follows:

• Cumulative Score Per Episode: The cumulative score per episode directly
measures the agent’s performance in its assigned task. Superior scores suggest
that the agent optimizes its actions to fulfill its objective.

• Count of Episodes to Accomplish the Objective: This criterion assesses the
agent’s learning proficiency. An agent that reliably accomplishes the objective
in fewer episodes proves to be quicker in resolving the task and adapting to
the environment.

• Duration per Episode (episode elapsed): By evaluating the duration spent
on each episode, we can gauge the agent’s computational efficiency. This
becomes crucial when comparing algorithms that garner similar scores, as
computational efficiency could be the deciding factor in algorithm choice.

• Average Reward per Action: The average reward per action offers a measure of
the quality of the decisions made by the agent. An increased average reward
per action indicates that the agent is making superior decisions, leading to
higher rewards for each action. This becomes particularly noteworthy in
scenarios where the agent has a limit on the number of actions it can execute

60



Results

in an episode or when the objective is to garner the highest reward in the least
possible time or number of steps. This metric balances the speed (number
of steps) and the quality (reward) of the actions, preventing strategies that
excessively prioritize one aspect at the detriment of the other.

• Success Rate: This represents the ratio of episodes where the agent accom-
plishes its objective. A higher success rate indicates that the agent can more
reliably complete its task.

Finally, by multiplying Success Rate and Average Rewards together, you get a new
metric that can be interpreted as follows:

• High Average Reward per Action, High Success Rate: If the product is high,
it suggests that the algorithm is both proficient (it receives a high reward
per action) and successful (it frequently accomplishes its goal). This is the
optimal situation.

• Low Average Reward per Action, High Success Rate: It might imply that the
algorithm frequently accomplishes its goal but could be more proficient (it
receives a low reward per action).

• High Average Reward per Action, Low Success Rate: Conversely, a moderate
product might suggest that the algorithm is proficient (it receives a high
reward per action) but does not frequently accomplish its goal.

• Low Average Reward per Action, Low Success Rate: If the product is low, it
suggests that the algorithm needs to be proficient and successful. This would
imply that the algorithm’s performance is subpar.

These metrics offer a comprehensive perspective of the effectiveness and efficiency
of the reinforcement learning algorithms under study.

5.1.2 Results and Discussion
In reviewing the outcomes of our experiments, several key findings were discernable.
The performance of the reinforcement learning algorithms was primarily evaluated
through metrics: cumulative score per episode, the number of successful episodes,
and the episode duration. The cumulative score per episode served as a crucial
indicator of the overall efficiency of the algorithms, offering insights into the
ability of the agent to accumulate rewards over the course of an episode. The
count of successful episodes measured the agent’s reliability in achieving the
objectives. Lastly, the duration per episode or episode elapsed, allowed us to
gauge the speed of the agent’s learning process, with shorter durations reflecting
faster convergence to optimal behaviors. These criteria collectively provided a

61



Results

comprehensive understanding of the algorithms’ capabilities in various aspects of
reinforcement learning.

Table 5.1: Summary of the results obtained with the fixed starting point (FSP)
environment

Algorithm Environment Total Episodes Episodes Goal Reached Average Elapsed Time Average Reward per Step Success Rate (%)
FSP_SG_DDPG

Static
1000 432 6,768 0,778 0,432

FSP_SG_SAC 1000 990 9,223 0,709 0,990
FSP_SG_PPO 984 886 0,640 0,795 0,900

FSP_DG_DDPG
Dynamic

1000 770 10,801 0,997 0,770
FSP_DG_SAC 1000 944 20,647 0,694 0,944
FSP_DG_PPO 984 802 1,986 0,743 0,815

In 5.1 a comprehensive summary of the results attained using the three selected
algorithms is offered, all originating from a consistent starting point across all
episodes. The Soft Actor-Critic (SAC) algorithm stands out for its rapid con-
vergence to high rewards with a minimal episode count in both static (SG) and
dynamic (DG) environments. However, despite this swift convergence, the SAC
manifests some instability, even at high episode counts. On the other hand, the
Proximal Policy Optimization (PPO) algorithm demonstrates a slower convergence
rate but eventually reaches similar end-of-training rewards as SAC and exhibits
less uncertainty in resolving the environment. The slower convergence of PPO is
attributed to its inherent design that encourages more conservative policy updates.
This approach, while leading to a slower learning rate, also contributes to the algo-
rithm’s superior stability, as it avoids drastic policy changes that could potentially
disrupt the learning process and result in increased uncertainty.

Table 5.2: Summary of the results obtained with the random starting point (RSP)
environment

Algorithm Environment Total Episodes Episodes Goal Reached Average Elapsed Time Average Reward per Step Success Rate (%)
RSP_SG_DDPG

Static
1000 941 5,475 1,038 0,941

RSP_SG_SAC 1000 994 9,688 0,752 0,994
RSP_SG_PPO 984 822 0,721 0,805 0,835

RSP_DG_DDPG
Dynamic

1000 414 14,652 0,743 0,414
RSP_DG_SAC 1000 759 34,967 0,542 0,759
RSP_DG_PPO 984 726 2,327 0,746 0,738

The results of 5.2 provide a detailed overview of the outcomes achieved using the
three selected algorithms, each initiated from a random starting point defined at
the beginning of each episode. The Soft Actor-Critic (SAC) algorithm is noteworthy
due to its speedy convergence toward high rewards, requiring only a low number
of episodes in both static (SG) and dynamic (DG) settings. Conversely, the
Proximal Policy Optimization (PPO) algorithm displays a slower convergence rate
but eventually attains comparable end-of-training rewards to SAC and shows less
volatility when navigating the environment.

62



Results

5.1.3 Effects of Gate Movement Speed
In summarizing our research efforts, we scrutinized the performance of various
reinforcement learning algorithms under the diverse dynamism of our environment.
Specifically, we focused on the gate speeds’ variability effect on the reward function.
For the sake of this experiment, we parametrized the velocity, setting it to a low
limit of 0.45rad/s, which denoted the starting point, scaling up to a high end
of 0.90rad/s. Our observations exposed those algorithms, such as DDPG (Deep
Deterministic Policy Gradient) and SAC (Soft Actor-Critic), which appeared to
be considerably swayed by the varying speeds of the gates. Consequently, a broad
spectrum was evident in the range of rewards during the different trials, indicating
high variability and inconsistency in the outcomes.

Figure 5.1: Trajectory Planning of DDPG Algorithm with Random Starting
Point

63



Results

Figure 5.2: Trajectory Planning of DDPG Algorithm with Random Starting
Point

Figure 5.3: Trajectory Planning of DDPG Algorithm with Random Starting
Point

64



Chapter 6

Conclusions and Future
Work

Our research findings offer valuable insights into the performance of Deep Deter-
ministic Policy Gradient (DDPG), Soft Actor-Critic (SAC), and Proximal Policy
Optimization (PPO) algorithms in intricate environments. Dynamic environments
pose significant challenges for robotics systems, primarily due to their unpredictabil-
ity and high adaptability required for successful operation. These challenges stem
from such environments constantly changing, with the robot needing to react and
adapt in real-time to achieve its objective. In particular, DDPG’s deterministic
policy approach showed limitations in these settings. While beneficial in directly
approximating the optimal action and possibly hastening convergence, DDPG’s
exploration strategy could benefit from further refinement to enhance performance
in more complex, evolving scenarios.

On the other hand, SAC displayed rapid learning, attributed to its unique
integration of a stochastic policy and an entropy component within its objective
function. By continually seeking to balance reward maximization and action
diversification, SAC skillfully negotiates the exploration-exploitation trade-off,
fostering speedy learning in complex environments. While not the fastest to learn,
PPO demonstrated robust and steady performance after adequately approximating
the optimal policy and value functions. PPO’s stability is derived from its clipped
objective function, which regulates policy updates to avoid drastic changes that
could lead to performance volatility. We also leveraged the Kalman filter to
accurately predict the gate’s position in space, effectively managing the dynamic
nature of the moving gate. The filter uses an iterative process of prediction and
correction based on previous states and current measurements, demonstrating
its prowess in handling dynamic motion tracking. However, these findings are
based on simulations, and as we move forward, we need to consider the next

65



Conclusions and Future Work

Figure 6.1: Trajectory obtained with the algorithm PPO in a dynamic environment
for increasing episodes

steps: transitioning from simulation to hardware testing. Despite the fidelity
of our simulations, real-world scenarios can introduce unforeseen variables and
challenges that need to be accounted for in the simulation environment. Issues
such as sensor noise, mechanical failures, and real-world physics discrepancies may
arise and can significantly impact the performance of the robotics systems and
the algorithms controlling them. To bridge this ’reality gap’, future research will
focus on hardware-in-the-loop testing, where the algorithms will be integrated with
physical systems in controlled environments. These tests will provide valuable data
on how these algorithms perform under real-world conditions and how they can
be further optimized. Additionally, we anticipate refining our models to handle
environmental changes better, incorporating more advanced perception capabilities,
and increasing the robustness of the systems. We aim to enhance our robotics
systems’ practical applicability and performance in dynamic environments by
carefully iterating our designs and algorithms based on this new data.

As shown in 6.2, the DDPG is the most dependent on the environment condition,

66



Conclusions and Future Work

while the PPO is the most stable one from the average reward per step point of
view. Also, the SAC and PPO have higher success rate than the DDPG.

Future work will involve improving the corner detection algorithms for the gates
in a simulation environment, identifying the center of the gates corresponding to
those corners, and integrating the proposed algorithm into this project, including
the gate’s center detection. As a continuation of the simulation environment, all
the algorithms will be implemented in a real environment using a drone.

67



Conclusions and Future Work

Figure 6.2: Summary of the Performances for different algorithms metrics

68



Bibliography

[1] Daniel Mellinger and Vijay R. Kumar. «Minimum snap trajectory generation
and control for quadrotors». In: 2011 IEEE International Conference on
Robotics and Automation (2011), pp. 2520–2525. url: https://api.semant
icscholar.org/CorpusID:18169351 (cit. on p. 1).

[2] Muhammad Awais Arshad, Jamal Ahmed, and Hyochoong Bang. «Quadro-
tor Path Planning and Polynomial Trajectory Generation Using Quadratic
Programming for Indoor Environments». In: Drones 7.2 (2023). issn: 2504-
446X. doi: 10.3390/drones7020122. url: https://www.mdpi.com/2504-
446X/7/2/122 (cit. on p. 1).

[3] Robert Penicka and Davide Scaramuzza. «Minimum-Time Quadrotor Way-
point Flight in Cluttered Environments». In: IEEE Robotics and Automation
Letters 7.2 (2022), pp. 5719–5726. doi: 10.1109/LRA.2022.3154013 (cit. on
p. 1).

[4] Robert Penicka, Yunlong Song, Elia Kaufmann, and Davide Scaramuzza.
«Learning Minimum-Time Flight in Cluttered Environments». In: IEEE
Robotics and Automation Letters 7.3 (2022), pp. 7209–7216. doi: 10.1109/
LRA.2022.3181755 (cit. on p. 1).

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. «OpenAI Gym». In: CoRR
abs/1606.01540 (2016). arXiv: 1606.01540. url: http://arxiv.org/abs/
1606.01540 (cit. on p. 2).

[6] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. «AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles». In:
CoRR abs/1705.05065 (2017). arXiv: 1705.05065. url: http://arxiv.org/
abs/1705.05065 (cit. on p. 2).

[7] Yoram Koren and Johann Borenstein. «Potential Field Methods and Their
Inherent Limitations for Mobile Robot Navigation». In: vol. 2. May 1991,
1398–1404 vol.2. doi: 10.1109/ROBOT.1991.131810 (cit. on p. 3).

69

https://api.semanticscholar.org/CorpusID:18169351
https://api.semanticscholar.org/CorpusID:18169351
https://doi.org/10.3390/drones7020122
https://www.mdpi.com/2504-446X/7/2/122
https://www.mdpi.com/2504-446X/7/2/122
https://doi.org/10.1109/LRA.2022.3154013
https://doi.org/10.1109/LRA.2022.3181755
https://doi.org/10.1109/LRA.2022.3181755
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
https://doi.org/10.1109/ROBOT.1991.131810


BIBLIOGRAPHY

[8] Tharindu Weerakoon, Kazuo Ishii, and Amir Ali Forough Nassiraei. «An
Artificial Potential Field Based Mobile Robot Navigation Method To Prevent
From Deadlock». In: Journal of Artificial Intelligence and Soft Computing
Research 5.3 (2015), pp. 189–203. doi: doi:10.1515/jaiscr-2015-0028.
url: https://doi.org/10.1515/jaiscr-2015-0028 (cit. on p. 3).

[9] Steven M. LaValle. «Rapidly-exploring random trees : a new tool for path
planning». In: The annual research report (1998). url: https://api.seman
ticscholar.org/CorpusID:14744621 (cit. on p. 3).

[10] Iram Noreen, Amna Khan, and Zulfiqar Habib. «Optimal Path Planning using
RRT* based Approaches: A Survey and Future Directions». In: International
Journal of Advanced Computer Science and Applications 7.11 (2016). doi:
10.14569/IJACSA.2016.071114. url: http://dx.doi.org/10.14569/
IJACSA.2016.071114 (cit. on p. 3).

[11] Priyadarshi Bhattacharya and Marina L. Gavrilova. «Roadmap-Based Path
Planning - Using the Voronoi Diagram for a Clearance-Based Shortest Path».
In: IEEE Robotics & Automation Magazine 15 (2008). url: https://api.
semanticscholar.org/CorpusID:1684741 (cit. on p. 3).

[12] Mitsuhiro Ozaki, Jagannath Aryal, and Paul Fox-Hughes. «Dynamic Wildfire
Navigation System». In: ISPRS International Journal of Geo-Information
8.4 (2019). issn: 2220-9964. doi: 10.3390/ijgi8040194. url: https://www.
mdpi.com/2220-9964/8/4/194 (cit. on p. 3).

[13] Myoung Hoon Lee and Jun Moon. Deep Reinforcement Learning-based UAV
Navigation and Control: A Soft Actor-Critic with Hindsight Experience Replay
Approach. 2021. arXiv: 2106.01016 [eess.SY] (cit. on p. 3).

[14] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. «Planning and
Decision-Making for Autonomous Vehicles». In: Annual Review of Control,
Robotics, and Autonomous Systems 1.1 (2018), pp. 187–210. doi: 10.1146/
annurev-control-060117-105157. eprint: https://doi.org/10.1146/
annurev- control- 060117- 105157. url: https://doi.org/10.1146/
annurev-control-060117-105157 (cit. on p. 3).

[15] Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza.
«Autonomous Drone Racing with Deep Reinforcement Learning». In: CoRR
abs/2103.08624 (2021). arXiv: 2103.08624. url: https://arxiv.org/abs/
2103.08624 (cit. on p. 3).

[16] Philipp Foehn, Angel Romero, and Davide Scaramuzza. «Time-Optimal
Planning for Quadrotor Waypoint Flight». In: CoRR abs/2108.04537 (2021).
arXiv: 2108.04537. url: https://arxiv.org/abs/2108.04537 (cit. on
p. 3).

70

https://doi.org/doi:10.1515/jaiscr-2015-0028
https://doi.org/10.1515/jaiscr-2015-0028
https://api.semanticscholar.org/CorpusID:14744621
https://api.semanticscholar.org/CorpusID:14744621
https://doi.org/10.14569/IJACSA.2016.071114
http://dx.doi.org/10.14569/IJACSA.2016.071114
http://dx.doi.org/10.14569/IJACSA.2016.071114
https://api.semanticscholar.org/CorpusID:1684741
https://api.semanticscholar.org/CorpusID:1684741
https://doi.org/10.3390/ijgi8040194
https://www.mdpi.com/2220-9964/8/4/194
https://www.mdpi.com/2220-9964/8/4/194
https://arxiv.org/abs/2106.01016
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://arxiv.org/abs/2103.08624
https://arxiv.org/abs/2103.08624
https://arxiv.org/abs/2103.08624
https://arxiv.org/abs/2108.04537
https://arxiv.org/abs/2108.04537


BIBLIOGRAPHY

[17] Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen
Koltun, and Davide Scaramuzza. «Deep Drone Racing: From Simulation
to Reality with Domain Randomization». In: CoRR abs/1905.09727 (2019).
arXiv: 1905.09727. url: http://arxiv.org/abs/1905.09727 (cit. on p. 3).

[18] Angel Romero, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. «Model
Predictive Contouring Control for Near-Time-Optimal Quadrotor Flight».
In: CoRR abs/2108.13205 (2021). arXiv: 2108.13205. url: https://arxiv.
org/abs/2108.13205 (cit. on p. 3).

[19] Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide
Scaramuzza, and Markus Ryll. «Real-Time Neural MPC: Deep Learning
Model Predictive Control for Quadrotors and Agile Robotic Platforms».
In: IEEE Robotics and Automation Letters 8.4 (2023), pp. 2397–2404. doi:
10.1109/LRA.2023.3246839 (cit. on p. 3).

[20] Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, and Davide Scara-
muzza. «A Comparative Study of Nonlinear MPC and Differential-Flatness-
Based Control for Quadrotor Agile Flight». In: IEEE Transactions on Robotics
38.6 (2022), pp. 3357–3373. doi: 10.1109/TRO.2022.3177279 (cit. on p. 3).

[21] Yunlong Song and Davide Scaramuzza. «Policy Search for Model Predictive
Control with Application to Agile Drone Flight». In: CoRR abs/2112.03850
(2021). arXiv: 2112.03850. url: https://arxiv.org/abs/2112.03850
(cit. on p. 3).

[22] R. E. Kalman. «A New Approach to Linear Filtering and Prediction Prob-
lems». In: Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45. issn:
0021-9223. doi: 10.1115/1.3662552. eprint: https://asmedigitalcollec
tion.asme.org/fluidsengineering/article-pdf/82/1/35/5518977/35\
_1.pdf. url: https://doi.org/10.1115/1.3662552 (cit. on p. 3).

[23] Léon Bottou. «Stochastic Gradient Learning in Neural Networks». In: 1991.
url: https://api.semanticscholar.org/CorpusID:12410481 (cit. on
p. 9).

[24] L Eon Bottou. «Online Learning and Stochastic Approximations». In: 1998.
url: https://api.semanticscholar.org/CorpusID:2101184 (cit. on
p. 9).

[25] Ning Qian. «On the momentum term in gradient descent learning algorithms».
In: Neural Networks 12.1 (1999), pp. 145–151. issn: 0893-6080. doi: https:
/ / doi . org / 10 . 1016 / S0893 - 6080(98 ) 00116 - 6. url: https : / / www .
sciencedirect.com/science/article/pii/S0893608098001166 (cit. on
p. 10).

71

https://arxiv.org/abs/1905.09727
http://arxiv.org/abs/1905.09727
https://arxiv.org/abs/2108.13205
https://arxiv.org/abs/2108.13205
https://arxiv.org/abs/2108.13205
https://doi.org/10.1109/LRA.2023.3246839
https://doi.org/10.1109/TRO.2022.3177279
https://arxiv.org/abs/2112.03850
https://arxiv.org/abs/2112.03850
https://doi.org/10.1115/1.3662552
https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/82/1/35/5518977/35\_1.pdf
https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/82/1/35/5518977/35\_1.pdf
https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/82/1/35/5518977/35\_1.pdf
https://doi.org/10.1115/1.3662552
https://api.semanticscholar.org/CorpusID:12410481
https://api.semanticscholar.org/CorpusID:2101184
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00116-6
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166


BIBLIOGRAPHY

[26] Diederik P. Kingma and Jimmy Ba. «Adam: A Method for Stochastic Op-
timization». In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.
org/abs/1412.6980 (cit. on p. 11).

[27] Playing Atari with Deep Reinforcement Learning. 2013 (cit. on p. 11).
[28] Volodymyr Mnih et al. «Human-level control through deep reinforcement

learning». In: Nature 518 (2015), pp. 529–533. url: https://api.semantic
scholar.org/CorpusID:205242740 (cit. on p. 11).

[29] Long-Ji Lin. «Self-Improving Reactive Agents Based on Reinforcement Learn-
ing, Planning and Teaching». In: Mach. Learn. 8.3–4 (May 1992), pp. 293–321.
issn: 0885-6125. doi: 10.1007/BF00992699. url: https://doi.org/10.
1007/BF00992699 (cit. on p. 11).

[30] Hado van Hasselt, Arthur Guez, and David Silver. «Deep Reinforcement
Learning with Double Q-learning». In: CoRR abs/1509.06461 (2015). arXiv:
1509.06461. url: http://arxiv.org/abs/1509.06461 (cit. on p. 13).

[31] Ziyu Wang, Nando de Freitas, and Marc Lanctot. «Dueling Network Archi-
tectures for Deep Reinforcement Learning». In: CoRR abs/1511.06581 (2015).
arXiv: 1511.06581. url: http://arxiv.org/abs/1511.06581 (cit. on
p. 13).

[32] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. «Prioritized
Experience Replay». In: (Nov. 2015) (cit. on p. 14).

[33] Ronald J. Williams. «Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning». In: Machine Learning 8 (2004),
pp. 229–256. url: https://api.semanticscholar.org/CorpusID:191156
34 (cit. on p. 15).

[34] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. «Deterministic Policy Gradient Algorithms». In:
Proceedings of the 31st International Conference on Machine Learning. Ed. by
Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning
Research 1. Bejing, China: PMLR, 22–24 Jun 2014, pp. 387–395. url: https:
//proceedings.mlr.press/v32/silver14.html (cit. on p. 16).

[35] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. «Continuous
control with deep reinforcement learning». In: 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
2016. url: http://arxiv.org/abs/1509.02971 (cit. on p. 16).

72

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
https://api.semanticscholar.org/CorpusID:19115634
https://api.semanticscholar.org/CorpusID:19115634
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
http://arxiv.org/abs/1509.02971


BIBLIOGRAPHY

[36] Scott Fujimoto, Herke van Hoof, and David Meger. «Addressing Function
Approximation Error in Actor-Critic Methods». In: CoRR abs/1802.09477
(2018). arXiv: 1802.09477. url: http://arxiv.org/abs/1802.09477
(cit. on p. 18).

[37] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. «Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor». In: CoRR abs/1801.01290 (2018). arXiv: 1801.01290.
url: http://arxiv.org/abs/1801.01290 (cit. on p. 20).

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. «Proximal Policy Optimization Algorithms». In: CoRR abs/1707.06347
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347 (cit.
on p. 22).

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. «Proximal Policy Optimization Algorithms». In: CoRR abs/1707.06347
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347 (cit.
on p. 22).

[40] Shengyong Chen. «Kalman Filter for Robot Vision: A Survey». In: IEEE
Transactions on Industrial Electronics 59 (2012), pp. 4409–4420 (cit. on p. 30).

[41] Sergey Gorbunov, Udo Kebschull, Ivan Kisel, Volker Lindenstruth, and Walter
F. J. Müller. «Fast SIMDized Kalman filter based track fit». In: Comput. Phys.
Commun. 178.5 (2008), pp. 374–383. doi: 10.1016/j.cpc.2007.10.001.
url: https://doi.org/10.1016/j.cpc.2007.10.001 (cit. on p. 31).

73

https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/j.cpc.2007.10.001
https://doi.org/10.1016/j.cpc.2007.10.001

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Introduction
	Related Work
	Methodology

	Deep Reinforcement Learning and Kalman Filtering Algorithms
	Deep Reinforcement Learning
	Introduction to Deep Reinforcement Learning
	Value-Based Deep Reinforcement Learning Algorithms
	Policy-Based Deep Reinforcement Learning Algorithms

	Introduction to Kalman Filtering Algorithms
	Standard Kalman Filter (SKF)
	Extended Kalman Filter (EKF)
	Single-Instruction Multi-data Kalman Filter


	Simulation Environment and Experimental Setup
	Introduction
	Two Dimensional Drone Environment
	State Representation
	Action Space
	Reward Function

	Three Dimensional Drone Environment
	State Representation
	Action Space
	Reward Function


	A Kalman Filter Reinforcement Learning Approach for Path Planning
	Kalman Filter for State Estimation
	Reinforcement Learning Algorithms with Kalman Filter Integration 2D
	Deep Deterministic Policy Gradient
	Dueling Double DQN
	Prioritized Experience Replay
	Proximal Policy Optimization

	Reinforcement Learning Algorithms with Kalman Filter Integration, 3D
	Deep Deterministic Policy Gradient
	Soft Actor-Critic
	Proximal Policy Optimization


	Results
	Experiment Results and Analysis
	Performance Metrics
	Results and Discussion
	Effects of Gate Movement Speed


	Conclusions and Future Work
	Bibliography

