
 

 

 

 

 

Master of science program 

In Engineering and Management 

A.a. 2022/2023 

 graduation session 2023 

 

Master of science program: 

Reinforcement learning applications in manufacturing. 

 

 

Advisor:                                                                                Candidate: 

Giulia Bruno                                                                           Sonia Belli 

 

 

 

 

  



1. Summary  

 
1. Summary ..........................................................................................................................................................2 

2. Abstract ............................................................................................................................................................4 

3. Introduction .....................................................................................................................................................4 

4. Machine Learning Introduction .......................................................................................................................5 

4.1. Supervised learning ..................................................................................................................................5 

4.2. Unsupervised learning ..............................................................................................................................8 

4.3. Reinforcement learning ............................................................................................................................9 

5. Basics of Reinforcement Learning ................................................................................................................ 10 

6. Paper Selection ............................................................................................................................................. 11 

6.1. Selected Papers ..................................................................................................................................... 13 

7. Applications in manufacturing ..................................................................................................................... 35 

7.1.1. Applications of Reinforcement Learning in Industrial Robotics for motion planning ....................... 36 

7.1.2. Pioneering Contributions to the State of the Art: ............................................................................. 38 

7.1.3. Advantages of Reinforcement Learning in Robotics for motion planning: ....................................... 38 

7.1.4. Areas for improvement and future directions: ................................................................................. 39 

7.2. Applications of Reinforcement Learning in Scheduling ......................................................................... 40 

7.2.1. Pioneering Contributions to the State of the Art: ......................................................................... 62 

7.2.2. Advantages of Reinforcement Learning in Scheduling: ................................................................. 62 

7.2.3. Areas for improvement and future directions: ............................................................................. 62 

7.3. Application of Reinforcement Learning for Process control ................................................................. 63 

7.3.1. Pioneering Contributions to the State of the Art: ......................................................................... 70 

7.3.2. Advantages of Reinforcement Learning in Process Control: ......................................................... 70 

7.3.3. Areas for improvement and future directions: ............................................................................. 70 

7.4. Applications of Reinforcement Learning in Autonomous Manufacturing ............................................ 71 

7.4.1. Pioneering Contributions to the State of the Art: ......................................................................... 74 

7.4.2. Advantages of Reinforcement Learning in autonomous manufacturing: ..................................... 75 

7.4.3. Areas for improvement and future directions: ............................................................................. 75 

7.5. Applications of Reinforcement Learning for Maintenance Strategies and Quality ............................... 76 

7.5.1. Pioneering Contributions to the State of the Art: ......................................................................... 83 

7.5.2. Advantages of Reinforcement Learning for Maintenance Strategies and Quality: ....................... 83 

7.5.3. Areas for improvement and future directions: ............................................................................. 84 



7.6. Applications of Reinforcement Learning in Real-Time Demand Response for Sustainable 

Manufacturing ................................................................................................................................................... 85 

7.6.1. Pioneering Contributions on the State of the Art: ........................................................................ 86 

7.6.2. Advantages of RL in Sustainable Manufacturing: .......................................................................... 86 

7.6.3. Areas for improvement and future directions: ............................................................................. 87 

8. RL algorithms’ classification: ........................................................................................................................ 88 

8.1. Use case algorithm development analysis ............................................................................................ 93 

9. Simplified algorithm development ............................................................................................................ 104 

10. Conclusion ............................................................................................................................................... 109 

11. Acknowledgements ................................................................................................................................ 111 

12. References ............................................................................................................................................... 113 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



 

2. Abstract  

 
In the landscape of modern manufacturing, Reinforcement Learning (RL) stands out as a promising 
frontier, offering transformative solutions to different challenges. This thesis embarks on a 
comprehensive exploration of RL applications in manufacturing, seeking to unravel the potential of 
this machine learning paradigm in optimizing diverse processes. Manufacturing, with its multifaceted 
operations, demands intelligent approaches for efficient decision-making, resource allocation, and 
system performance. The aim of this research is to bridge the theoretical understanding of RL with 
practical implementations, providing nuanced insights into how RL can revolutionize manufacturing 
practices. 
 
This study's primary objective is to conduct an extensive examination of RL applications across various 
facets of manufacturing. A rigorous literature review sets the stage for practical experiments, aiming 
to evaluate RL's efficacy in addressing contemporary challenges within manufacturing environments. 
By delving into real-world applications, this research aspires to not only contribute theoretical 
knowledge but also to provide actionable insights for practitioners and decision-makers in the 
manufacturing domain. 

 

3. Introduction  

Manufacturing processes are undergoing significant change because of the fourth industrial 
revolution, or "Industry 4.0”. Additionally, there have been significant changes in how people and 
machines interact in the industrial sector, leading to the idea of "Industry 5.0”. The conventional 
approaches to manufacturing are undergoing significant transformations due to the digitization of 
enterprises and production facilities. This transformation is characterized by the integration of 
machines through embedded systems and the Internet of Things (IoT), the emergence of collaborative 
robots (cobots), the utilization of individual workstations, and the implementation of matrix 
production. There is a growing need for personalized and customized products in the market. In 
response, there is a surge in the number of orders coupled with a decrease in batch sizes, reaching 
the extent of fully decentralized 'batch size one' production. The demand for a high degree of 
diversity in production is inevitable due to the rise of Mass Customization. This approach to 
manufacturing requires processes that are highly adaptable and flexible. 

Machine Learning (ML) plays a crucial role in making production more intelligent, providing the 
necessary capabilities for increased flexibility and adaptability. These advancements in machine 
learning are driving the era of smart manufacturing, often referred to as Industry 4.0. Consequently, 
machine learning is gaining growing importance in the manufacturing sector, alongside digital 
solutions and sophisticated technologies like the Industrial Internet of Things (IIoT), additive 
manufacturing, digital twins, advanced robotics, cloud computing, and augmented/virtual reality.ML 
is an Artificial Intelligence (AI) area that covers algorithms that learn directly from their input data. 



The goal of using ML in manufacturing is to accomplish production optimization at four separate 
levels: product, process, machine, and system. As a result, the use cases for applying ML may be 
further classified by these distinct levels, as illustrated in Figure 1, of the ML typical use. 

 

 

 

 

 

 

 

 

 

 

 

4. Machine Learning Introduction  
 
Recently, a paradigm change, in a variety of global businesses, from technology to health care, has 
been brought about by artificial intelligence (AI). A vast number of industrial and academic brains are 
being ignited by the once obscure subject. The capacity of AI to "self-learn" in combination with the 
quick development of computer technology and the decreasing cost of data storage has propelled AI 
to the forefront of algorithms for many applications, including computer vision and natural language 
processing. By 2030, AI is expected to contribute over $15 trillion USD to the global economy and 
increase GDP by 26%, according to PwC (2019). Overall, AI is a vast area with several objectives. 
Currently, the most influential topic in AI is machine learning (ML). ML can be described as the 
scientific field that studies and develops algorithms and statistical models to give machines the 
explicit ability to learn tasks without being programmed to do so (Russel and Norvig, 2009). The ML 
field can be further decomposed into supervised learning, unsupervised learning, semi-supervised 
learning, and reinforcement learning [57]. 

4.1. Supervised learning 

Supervised learning is a task-oriented method, involving the process of a machine learning a function 

that transforms an input into an output based on examples of input-output pairs. This learning 

approach requires labeled training data, consisting of a set of training examples. Supervised learning 

 

Figure 1. RL levels in manufacturing applications [57] 



is employed when specific objectives need to be achieved from a defined set of inputs.In particular, 

supervised learning methods strive to learn an approximation function, denoted as f, capable of 

mapping inputs x to outputs y with the guidance of annotations such as (𝑥1,𝑦1),(𝑥2,𝑦2),…,(𝑥𝑁,𝑦𝑁). In 

this process, the algorithm analyses a labelled dataset and generates an inferred function that can be 

applied to unseen samples. 

It's essential to highlight that supervised learning relies on labelled datasets, making it imperative to 

have a significant amount of data and incurring high labelling costs. This learning method is commonly 

utilized for addressing two primary problems: regression and classification. The distinction lies in the 

data type of the output variables, where regression predicts continuous numeric values (𝑦∈ℝ), while 

classification predicts categorical values (𝑦∈{0,1}).In terms of principles, supervised learning methods 

can be further categorized into four groups: tree-based methods, probabilistic-based methods, 

kernel-based methods, and neural network-based methods [8]. 

- Tree-based approaches: involve dividing the feature space into distinct areas, ensuring that data 

points within each region share a similar class or value. This process results in the creation of a tree-

like structure with if-then rules, which can be employed to determine the target class or value. Unlike 

some black-box models used in other supervised methods, tree-based approaches offer enhanced 

comprehensibility and higher model interpretability. The key advantage of tree-based approaches lies 

in their ability to provide clear insights into the decision-making process, making them more 

interpretable compared to other complex models. This characteristic is particularly valuable in 

scenarios where understanding the reasoning behind predictions is crucial. In the realm of 

manufacturing, especially at the product and machine level, tree-based approaches find applications 

in identifying influencing factors leading to quality defects or machine failures. By leveraging their 

interpretability, these approaches enable effective problem diagnosis and contribute to a deeper 

understanding of the factors influencing outcomes in the manufacturing process. In addition, the 

identified important factors can help in further predicting target values such as product quality events 

of interest before they happen, such as machine breakdown [8]. 

 

 

Figure 2.  The principle of a decision tree [8]. 



 

- Probabilistic-based methods: such as Bayesian Optimization (BO) and Hidden Markov Models 

(HMM), offer a different approach to modeling by providing probabilities for each class as the output. 

These models are adept at handling and explaining the inherent uncertainties present in data, 

allowing for the construction of hierarchically complex models. Bayesian networks, a type of 

probabilistic model, excel in capturing dependencies among different variables. This capability is 

particularly advantageous in manufacturing applications, where the detection or prediction of events 

like quality issues, machine failure, or dynamic process modelling involves understanding intricate 

relationships between variables. Markov chains, another probabilistic model type, describe sequences 

of possible events, where the probability of each event depends solely on the state achieved in the 

preceding event. This sequential modelling approach is valuable in scenarios where the evolution of a 

system depends on its recent history, making it suitable for applications requiring the prediction of 

sequential events in manufacturing processes. Markov chains can be utilized in manufacturing to 

model and analyse the behaviour of systems such as production lines or supply chains. In addition, the 

capability of predicting future states with Markov chains enables applications predicting joint 

maintenance in production systems and optimizing production scheduling [8]. 

 

- Kernel-based methods: as illustrated in Figure 4, leverage a designated kernel function to transform 

input data into a high-dimensional implicit feature space. Instead of explicitly calculating the targeted 

coordinates, these methods typically compute the inner product between pairs of data points within 

the feature space. It's worth noting that kernel-based methods may face efficiency challenges, 

especially when dealing with large-scale input data. Despite this, they exhibit promising capabilities in 

classification and regression tasks, making them valuable for manufacturing applications like defect 

detection, quality prediction, and wear prediction in machinery. 

Supervised learning encompasses various types of kernel-based methods, including Support Vector 

Machines (SVM) and Kernel–Fisher Discriminant Analysis (KFD). These approaches contribute to 

enhancing the understanding and prediction of complex relationships within manufacturing 

processes. 

 

Figure 3.  The principle of kernel-based methods. Using a kernel, the linearly inseparable input data are transformed to another feature 
space in which they become linearly separable. [8] 



- Neural-network-based methods: Taking inspiration from biological neurons and their intercellular 

communication, neural network-based methods leverage artificial neurons. A typical neural network, 

including Artificial Neural Networks (ANNs), comprises an input layer, hidden layer, and output layer, 

as depicted in Figure 4. Various types of ANNs, such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and Deep Belief Networks (DBNs), play pivotal roles in extracting 

meaningful features from different types of data.CNNs, renowned for their adept feature extraction 

from matrix-like data, find widespread application in image processing. In the manufacturing domain, 

CNNs excel in tasks like image-based quality control and process monitoring. Moreover, by 

transforming sensor-generated time series data into 2D images, CNNs can contribute to detecting and 

diagnosing machine failures.RNNs, tailored for processing sequential input data such as time series or 

sequential images, are well-suited for analyzing sensor data or live machine images in manufacturing 

applications. They enable real-time performance predictions, including forecasting the remaining 

useful life of machinery, predicting process behavior, or forecasting production indicators crucial for 

real-time production scheduling. 

 

Figure 4. The scheme of an ANN, which normally consists of an input layer, hidden layer and output layer. [8]. 

 

4.2. Unsupervised learning 

Unsupervised learning is a data-driven approach that explores unlabelled datasets, allowing 

algorithms to learn from the data without predefined outputs or target variables. This methodology is 

often applied for generative feature extraction, identifying relevant trends and structures, grouping 

results, and experimental purposes. The primary objective of unsupervised learning is to uncover 

hidden and meaningful patterns within unlabelled data. It encompasses three fundamental types of 

unsupervised tasks: Dimension Reduction, Clustering, and Association Rules. Unsupervised learning 

holds significant potential in various manufacturing applications. Clustering algorithms, for instance, 

can effectively identify outliers in manufacturing data. Moreover, in scenarios involving high-

dimensional data, such as manufacturing cost estimation, quality improvement strategies, production 

process optimization, and customer data analysis, unsupervised learning methods prove valuable. 

Dealing with the complexity and high dimensionality of data often requires the assistance of 



dimensional reduction support algorithms. Finally, when conducting root cause analysis in large-scale 

process executions, especially in complex data center services, association rule-based learning 

becomes instrumental in identifying correlations between variables within a dataset. 

 
- Semi-supervised learning: it combines aspects of both supervised and unsupervised approaches, 
utilizing both labelled and unlabelled data. This approach falls between learning "without supervision" 
and learning "with supervision." Semi-supervised learning is particularly valuable in real-world 
scenarios where unlabelled data is abundant, but labelled data is scarce. The primary goal of a semi-
supervised learning model is to generate predictions that outperform those made solely with the 
available labelled data. This approach finds applications in various fields, including text categorization, 
machine translation, and fraud detection. Semi-supervised learning methods can be broadly 
categorized into two groups: data augmentation-based methods and semi-supervised mechanism-
based methods. 
 
- Data augmentation: by leveraging data augmentation, labelled datasets can be expanded and 
enriched by incorporating model predictions from newly acquired unlabelled data, particularly those 
with high confidence as pseudo-labels [8]. Data augmentation procedures are straightforward, and 
there's no requirement for meticulous loss design. Consequently, data augmentation-based strategies 
for augmenting labelled datasets hold potential utility for non-experts in manufacturing, especially in 
scenarios where large volumes of unlabelled data are readily available. 

 
- Semi-supervised mechanisms: In contrast, semi-supervised mechanism-based methods concentrate 
on the process of utilizing both labelled and unlabelled data. Here, both labelled and unlabelled data 
can serve as inputs to the model, and their losses are computed in distinct manners. Examples of 
applications in manufacturing include quality monitoring based on images, process fault detection, 
and anomaly detection in machinery.  
 

4.3. Reinforcement learning 

It is also known as an environment-driven technique, is a form of machine learning algorithm that 
enables software agents and machines to automatically assess the ideal behaviour in a specific 
context or environment to increase its efficiency. The goal of this incentive-based or penalty-based 
learning approach is to use the knowledge gained from environmental activists to take steps that will 
either maximise the benefit or minimise the risk. However, it is not recommended to use it for 
resolving simple or elementary issues. It is a strong tool for training AI models that can help increase 
automation or optimize the operational efficiency of complex systems like robotics, autonomous 
driving tasks, manufacturing, and supply chain logistics. 

As a result, depending on the nature of the data stated earlier and the desired result, various machine 
learning techniques can play a key role in the development of effective models in a variety of 
application areas. 



5. Basics of Reinforcement Learning 

The learner or decision-maker is known as the agent in RL literature, and the setting in which the 
agent exists and interacts is known as the environment. The agent can interact with the environment 
by taking certain actions, but such activities have no impact on the dynamics or laws of the 
environment. In RL literature, the environment's current state is referred to as the state, and RL 
agents take actions based on the state and reward signals. To teach RL, both rewards and sanctions 
are used. 

Iterative learning is the foundation of reinforcement learning algorithms. Trial and error, as well as 
the interaction of an agent with its environment, are the foundations of learning. A Markov Decision 
Process (MDP) is used to model this interaction. This concept reduces the interaction to three signals:  

● State s: the environment's current situation. 
● Action a: agent's operation or decision based on the state and its experience. 
● Reward r: represented by the environment's numerical feedback. It teaches the agent and let 

it know whether its action was successful or not. 
 

 

Figure 5. Structure of Markov Decision Process. [13] 

The agent's goal is to maximize cumulative reward over time, which requires mastering the job. This is 
mirrored in the agent's policy, which specifies which course of action is preferable in each stage. As 
the agent interacts with the environment and acquires experience, this policy is updated and 
enhanced.  

Reinforcement learning (RL) has always possessed a remarkable capacity for sequential decision-
making. The past ten years have seen a rapid increase in high-performance computing power and the 
development of deep learning (DL) techniques. As a result, algorithms combining RL with deep neural 
networks, or DRL, have not only improved environment perception but also allowed RL algorithms to 
perform better, adapt, and make decisions more quickly. DRL has received a lot of attention recently 
from the industry field in addition to being widely used in games, banking, network communication 
systems and robot control. 
As the manufacturing paradigm shifts toward mass personalisation manufacturing systems need to 
respond to orders with a shorter lead-time and higher quality, which necessitates the production 
process being more flexible and adaptable.  



Due to its self-learning skills to make precise and quick judgements in dynamic and complicated 
scenarios, DRL offers significant potential in these circumstances. 

Unlike other supervised learning applications (such as computer vision or natural language processing, 
etc.), DRL uses trial-and-error techniques to self-optimize by interacting with the environment 
without using any manually labelled data. DRL's self-learning capabilities and labelled data features 
greatly reduce the need for human intervention and make it simple to adopt and implement. 
Meanwhile, DRL's capacity for quick judgment and extrapolation from prior knowledge in the face of 
challenging circumstances are demonstrated by DeepMind's AlphaGo series application. Researchers 
are now aware of the benefit in engineering disciplines including autonomous driving, the internet of 
things, and robot systems, and in-depth reviews are provided. 

Despite the DRL applications in smart manufacturing expanding rapidly, there isn't yet enough 
research to fully explain the state of the field and highlight unresolved problems. Therefore, a state-
of-the-art review of manufacturing DRL’s applications which analyse current trends, crucial challenges 
and limitations must be carried out. 

6. Paper Selection 

The fundamental steps of the literature evaluation process for DRL applications in smart 
manufacturing applications are described in this paragraph. One well-known academic database, 
Scopus, was mostly used for the literature search as it includes many peer-reviewed, interdisciplinary 
research publications, indeed many studies on DRL could be found. 

The terms "manufacturing”, “production", "reinforcement learning" were used as keywords and the 
period covered by the review was 2013–2023, and only English-language literature was considered. 
"Reinforcement learning" was used as the keyword to search for relevant literature, even though 
another focal algorithm type in the review is DRL, because during the early stages of DRL, researchers 
did not properly distinguish between the names DRL and RL. 2013 was chosen as the starting year of 
reviews as it was the year when the representative DRL study, received a lot of attention. 

Therefore, the main research question was formulated to start the paper selection: What are the 
main (deep) reinforcement learning applications in manufacturing processes? Then, this question was 
translated in a search through this engine. The search was carried out using the keywords listed above 
and logic operators that delimited the search field. 

The search was performed with the following query:  

⮚ TITLE-ABS-KEY ( (“manufacturing " OR " production " ) AND " reinforcement learning " ) AND 
PUBYEAR > 2012 AND PUBYEAR < 2024 AND PUBYEAR > 2012 AND PUBYEAR < 2024 AND ( 
LIMIT-TO ( LANGUAGE , "English" ) )  

 
From the previous query, a total of 2051 documents were returned. For a high-quality review, the 
scope was narrowed down considering only papers that have as ‘Subject area: Engineering’. The result 
of this added filter was a total of 1260 documents. To obtain a manageable number of papers to 



review, without losing consistency in the research, the ‘Search within’ section of Scopus was changed 
to ‘Article title’. The following query finally was carried out: 
 

TITLE ( (“manufacturing " OR " production " ) AND " reinforcement learning " ) AND PUBYEAR > 
2012 AND PUBYEAR < 2024 AND PUBYEAR > 2012 AND PUBYEAR < 2024 AND ( LIMIT-TO ( 
LANGUAGE , "English" ) ) AND ( LIMIT-TO ( SUBJAREA , "ENGI" ) ) 
 

The query returned a total of 190 papers and the ‘Analyze’ function of the research tool was used to 
classify the documents by year, author, type and country as shown below. 

 

 

Figure 6. Research documents' classification 

To restrict the scope of the research a little bit more I’ve filtered out work that did not fit the 
objective domain or that resulted out of scope based on title, abstract or article browsing. 
The selected documents are listed in table 1. 
 
 
 
 
 
 
 
 



 
 
 

6.1.  Selected Papers  

TITLE AREA SUB-AREA TOPIC METHOD 
USED 

DATASET 

User-guided motion 
planning with 
reinforcement learning 
for human-robot 
collaboration in smart 
manufacturing [79] 

Motion 
Planning  

The goal is to develop a 
scalable and adaptive 
motion planning 
method to 
automatically generate 
motion plans for new 
robotic manipulation 
tasks without manually 
reprogramming robots 

development of a 
scalable and adaptive 
motion planning 
method to 
automatically generate 
motion plans for new 
robotic manipulation 
tasks without manually 
reprogramming robots 

Q-learning 
algorithm  

private 
simulated 
and real 
data 

Spatiotemporal path 
tracking via deep 
reinforcement learning 
of robot for 
manufacturing internal 
logistics [17] 

Motion 
Planning  

To improve the logistics 
ability of robots in real 
industrial scenarios, the 
paper proposes a 
spatiotemporal path 
tracking control system 
(multi-scenario and 
multi-stage training) 
based on RL 

definition of a logistics 
system based on cloth-
roll handling robot 
(CHR) and its DRL path 
tracking system in 
weaving workshop 

 Dynamic 
Observing 
Markov 
Decision 
Process 
(DOMDP) 
algorithm 

private 
real and 
simulated 
data 

Simulation and deep 
reinforcement learning 
for adaptive dispatching 
in semiconductor 
manufacturing systems 
[72] 

Scheduling RL application for 
dispatching and 
resources allocation 

DQN-based dispatching 
and resources 
allocation approach for 
a semiconductor 
manufacturing system 

Deep-Q-
Network 
(DQN) 

private 
simulated 
data 

Sequence generation for 
multi-task scheduling in 
cloud manufacturing 
with deep 
reinforcement learning 
[66] 

Scheduling cloud manufacturing 
scheduling (CMfg-Sch) 
problem 

development of a DQN- 
and Double DQN-based 
multi-task scheduling 
algorithms and 
application of them on 
a case study for the 
production and 
assembly of a 
crankshaft flywheel set 

DQN- and 
Double 
DQN-
based 
multi-task 
scheduling 
algorithms
. 

private 
simulated 
data 

Scheduling of 
decentralized robot 
services in cloud 

Scheduling Robotics and 
Computer-Integrated 

development of DQN- 
and DDQN-based 
scheduling algorithms 

DQN- and 
DDQN-
based 

private 
simulated 
data 



manufacturing with 
deep reinforcement 
learning [49] 

Manufacturing 
scheduling problem  

to manage and 
schedule decentralized 
robot services in cloud 
manufacturing to 
achieve on-demand 
provisioning 

scheduling 
algorithms 

Reinforcement learning-
based dynamic 
production-logistics-
integrated tasks 
allocation in smart 
factories [41] 

Scheduling production-logistics-
integrated tasks 
allocation problem 

Deployment and 
simulation of a RL 
algorithm to allocate 
production and logistics 
tasks in SFs co-
ordinately and 
autonomously. 

Q-learning 
algorithm  

private 
simulated 
data 

Reinforcement learning 
for process control with 
application in 
semiconductor 
manufacturing [45] 

Process 
control  

Process control 
problem 

Development and 
simulation of RL-based 
controllers (with or 
without domain 
knowledge) in linear 
and nonlinear 
simulation cases 

RL-based 
controller 
with 
approxima
te models 
and RL-
based 
controller 
with Policy 
Gradient 
Search 
(PGS)  

private 
simulated 
data 

Reinforcement Learning 
Enabled Autonomous 
Manufacturing Using 
Transfer Learning and 
Probabilistic Reward 
Modelling [50] 

Autonomous 
Manufacturing  

Autonomous 
Manufacturing 
problems in complex 
geometries industry 

implementation of a RL 
algorithm in high 
variable cost 
environments such as 
autonomous 
manufacturing systems 
that can learn the 
manufacturing process 
parameters to 
autonomously fabricate 
a complex geometry 
artifact with desired 
performance 
characteristics 

off-policy 
random 
sample Q-
learning 

private 
simulated 
data 

Reinforcement learning 
based trustworthy 
recommendation model 
for digital twin-driven 
decision-support in 

Scheduling Production and logistics 
task allocation problem 

development of an 
innovative digital twin 
decision support 
framework that 
integrates 
recommendation 

Q-learning 
algorithm  

private 
simulated 
and real 
data 



manufacturing systems 
[67] 

systems with the RL 
algorithm 

Reinforcement learning 
and optimization-based 
path planning for thin-
walled structures in wire 
arc additive 
manufacturing [65] 

Autonomous 
Manufacturing  

path planning and 
process optimization in 
AM 

development of a path 
planning framework 
named RLPlanner to 
enable a fully 
automatic deposition 
path planning for thin-
walled structures in 
wire arc additive 
manufacturing 

Proximal 
Policy 
Optimizati
on (PPO) 

private 
simulated 
data 

Post-prognostics 
demand management, 
production, spare parts, 
and maintenance 
planning for a single-
machine system using 
Reinforcement Learning 
[88] 

Maintenance 
Strategies and 
Quality  

Maintenance problem 
to improve Production 
Planning and Control 
(PPC) 

a data-driven post-
prognostics RL model 
was developed that 
improves and 
automates Production 
Planning and Control 
decision-making 

Deep Q-
Learning 
(DQL), a 
Proximal 
Policy 
Optimisati
on (PPO) 
and an 
Advantage 
Actor 
Critic 
(A2C) 
algorithm. 

private 
simulated 
data 

Multi-objective 
reinforcement learning-
based framework for 
solving selective 
maintenance problems 
in reconfigurable cyber-
physical manufacturing 
systems [4] 

Maintenance 
Strategies and 
Quality  

selective maintenance 
problems 

development and 
simulation of a robust 
model for a selective 
maintenance problem 
with imperfect repairs 
in the reconfigurable 
cyber-physical systems 
(RCPMS) context 

Deep Q 
Network 
(DQN), 
multi-
objective 
reinforce
ment 
learning 
(MORL) 

private 
simulated 
data 

Multi-agent deep 
reinforcement learning 
for task offloading in 
group distributed 
manufacturing systems 
[91] 

Scheduling task offloading in group 
distributed 
manufacturing systems 

a MaDRLAM with 
attention mechanism is 
proposed to solve the 
task offloading problem 
in distributed 
manufacturing systems 

Multi-
agent 
deep 
reinforce
ment 
learning 
(MaDRLA
M) 

private 
simulated 
data 

Logistics-involved task 
scheduling in cloud 
manufacturing with 
offline DRL[ 84] 

Scheduling cloud manufacturing 
scheduling problems 
(CMfg-SPs) 

definition of an offline 
DRL scheduling 
algorithm to address 
CMfg-SPs 

Markov 
decision 
process 
(MDP) 

private 
simulated 
data 



Joint optimization of 
maintenance and 
quality inspection for 
manufacturing networks 
based on deep 
reinforcement learning 
[93] 

Maintenance 
Strategies and 
Quality  

the MDP-based 
optimization model, 
the proposed Deep 
Deterministic Policy 
Gradient (DDPG) 
algorithm realizes the 
optimal reliability-
quality joint control in 
manufacturing 
networks. 

joint optimization 
problem of preventive 
maintenance and work-
in-process quality 
inspection for 
manufacturing 
networks with 
reliability-quality 
interactions. 

Deep 
Determini
stic Policy 
Gradient 
(DDPG) 
algorithm 

private 
simulated 
data 

Inverse Reinforcement 
Learning Framework for 
Transferring Task 
Sequencing Policies 
from Humans to Robots 
in Manufacturing 
Applications [58] 

Scheduling task sequencing for 
robots in complex 
manufacturing 
processes. 

development and 
implementation of a 
learning task 
sequencing policy 
based on inverse 
reinforcement learning 
(IRL) 

Performan
ce-based 
Preferenc
e Learner 
and Effort-
based 
Preferenc
e Learner 

private 
real and 
simulated 
data 

Graph neural networks-
based scheduler for 
production planning 
problems using 
reinforcement learning 
[21] 

Scheduling job shop scheduling 
problems (JSSP) 

designation of a novel 
framework named 
GraSP-RL, GRAph 
neural network-based 
Scheduler for 
Production planning 
problems using RL 

Proximal 
Policy 
Optimizati
on (PPO) 

private 
simulated 
data 

Explainable multi-agent 
deep reinforcement 
learning for real-time 
demand response 
towards sustainable 
manufacturing [94] 

Sustainable 
Manufacturing 

energy management 
and demand response 
for sustainable 
industrial development. 

use of RL to control a 
section of an 
automotive assembly 
line using one year of 
DR (demand response) 
electricity price data to 
validate its 
performance 

decompos
ed multi-
agent 
deep Q-
network 
(DMADQN
) 

private 
simulated 
data 

Dynamic scheduling for 
semiconductor 
manufacturing systems 
with uncertainties using 
convolutional neural 
networks and 
reinforcement learning 
[48] 

Scheduling Production scheduling 
problem of 
semiconductor 
manufacturing systems 
(SMSs) 

The paper studied the 
dynamic release 
control and production 
scheduling problem of 
SMSs while considering 
uncertainties from the 
internal and external 
environment. 
The proposed a CNN-
A3C-based approach is 
evaluated is on the 
semiconductor 

convolutio
nal neural 
network 
(CNN)- 
and 
asynchron
ous 
advanced 
actor critic 
(A3C)-
based 
method 

private 
simulated 
data 



smart manufacturing 
demonstration unit 
system that the 
research group 
established according 
to the benchmark 
Minifab. 

called 
CNN-A3C 

Dynamic production 
scheduling towards self-
organizing mass 
personalization: A multi-
agent duelling deep 
reinforcement learning 
approach [69] 

Scheduling production scheduling deployment of a 
dynamic scheduling 
system 

Multi-
Agent 
Duelling 
DQN 

private 
simulated 
data 

Dynamic Maintenance 
for a Large Scale 
Identical Parallel 
Manufacturing Systems 
Using Reinforcement 
Learning [52] 

Maintenance 
Strategies and 
Quality  

maintenance decision 
making for cost 
minimization 

(RL) approach for 
dynamic maintenance 
model for multi-
component parallel 
system subject to 
stochastic degradation 
and random failures 

Q-learning 
algorithm  

private 
simulated 
data 

Distributed Real-Time 
Scheduling in Cloud 
Manufacturing by Deep 
Reinforcement Learning 
[37] 

Scheduling distributed real-time 
scheduling problem of 
processing services 
with logistics 
constraints in CM 

Implementation of a 
D3QN with cloud edge 
collaboration for 
distributed real-time 
scheduling of 
processing and logistics 
services and its 
validated in dynamic 
job shop scheduling 
problems 

distribute
d duelling 
deep Q 
network 
(D3QN) 
with 
cloud–
edge 
collaborati
on 

private 
simulated 
data 

Design and 
Implementation of 
Simulation-Based 
Scheduling System with 
Reinforcement Learning 
for Re-Entrant 
Production Lines [28] 

Scheduling manufacturing 
scheduling problem 

Design and 
Implementation of a 
Simulation-Based 
Scheduling 
System with RL and its 
evaluation on a 
hypothetical re-entrant 
production line. 

double 
deep Q-
network 
(DDQN) 
algorithm 

private 
simulated 
data 

Demand Response 
Optimization of Cement 
Manufacturing Industry 
Based on Reinforcement 
Learning Algorithm [89] 

Sustainable 
Manufacturing 

industrial demand 
response 

Modelling and analysis 
of a complete industrial 
demand response 
scheduling framework 
based on Markov 

Network-
Based 
Proximal 
Policy 
Optimizati
on (PPO) 

private 
simulated 
data 



decision process in the 
cement industry.  

Cloud–edge 
collaboration task 
scheduling in cloud 
manufacturing: An 
attention-based deep 
reinforcement learning 
approach [9] 

Scheduling cloud manufacturing 
scheduling (CMfg-Sch) 
problems 

application of 
attention-based DRL 
framework to solve the 
CMfg task scheduling 
problem of cloud–edge 
collaboration 

AV-MPO, 
SAC, PPO, 
V-MPO, 
and 
Duelling 
DQN 

private 
simulated 
data 

Application of a 
Reinforcement Learning-
based Automated Order 
Release in Production 
[73] 

Scheduling Order release in the job 
shop scheduling 
problem (JSP) 

Elaboration on the 
usage of reinforcement 
learning algorithms for 
automated order 
release in a practice-
based application 

DQN 
algorithm 

private 
simulated 
data 

An improved deep 
reinforcement learning-
based scheduling 
approach for dynamic 
task scheduling in cloud 
manufacturing [83] 

Scheduling Dynamic task 
scheduling problem in 
cloud manufacturing 
(CMfg) 

This paper proposes an 
improved DRL-based 
scheduling algorithm 
for the DTSP-CMfg in 
the automotive sector 

proximal 
policy 
optimizati
on (PPO) 

private 
simulated 
data 

A reinforcement 
learning/ad-hoc 
planning and scheduling 
mechanism for flexible 
and sustainable 
manufacturing systems 
[63] 

Sustainable 
Manufacturing 

Process scheduling in 
the manufacturing 
industry  

Optimization of failure-
prone machines 
integrated in a multi-
stage production line, 
processing one type of 
products using RL  

model-
free 
average 
reward 
algorithms 

private 
simulated 
data 

A reinforcement 
learning approach for 
process parameter 
optimization in AM [14] 

Process 
control  

process parameter 
optimization in AM 

process parameter 
optimization for melt 
pool depth of a AM 
system i.e., powder-fed 
L-DED. 

model-
free, off-
policy Q-
Learning 

private 
simulated 
data 

A Reinforcement 
Learning Algorithm for 
Optimal Dynamic 
Policies of Joint 
Condition-based 
Maintenance and 
Condition-based 
Production [19] 

Maintenance 
Strategies and 
Quality  

joint condition-based 
maintenance and 
production  

development of joint 
optimal maintenance 
and production policy 
based on MDP for a 
specific type of 
production system that 
allows for adjustable 
production rates  

Markov 
decision 
process 
(MDP) 

private 
simulated 
data 

A multi-objective 
reinforcement learning 
approach for 
resequencing scheduling 

Scheduling  resequencing 
scheduling problem  

Investigation of a multi-
objective resequencing 
scheduling problem in 
the automotive 

MORL-
based 
Multi-
Objective-

private 
simulated 
data 



problems in automotive 
manufacturing systems 
[42] 

manufacturing systems 
(operational 
requirements on the 
colour-batching of the 
paint shop and 
sequential 
requirement) 

Deep-Q-
Network 
(MODQN) 

Distributed Real-Time 
Scheduling in Cloud 
Manufacturing by Deep 
Reinforcement Learning 
[37] 

Scheduling  production-
maintenance joint 
scheduling task of a 
production system 

development and 
simulation (using 
Digital twin) of a DQN 
algorithm for job 
scheduling and 
production equipment 
maintenance  

Deep Q 
Network 
(DQN) 

private 
simulated 
data 

Design and 
Implementation of 
Simulation-Based 
Scheduling System with 
Reinforcement Learning 
for Re-Entrant Production 
Lines [28] 

  

Scheduling Production Planning 
and control (PPC)  

To improve the 
dynamic 
responsiveness and 
production efficiency of 
manufacturing 
workshop to 
personalized orders, a 
multiagent 
manufacturing system 
with the ability of 
online scheduling and 
scheduling strategy 
optimization is 
constructed and 
implemented using a 
digital workshop.  

proximal 
policy 
optimizati
on (PPO) 
algorithm 
and deep 
Q network 
(DQN) 

private 
simulated 
data 

Reinforcement learning-
based defect mitigation 
for quality assurance of 
additive manufacturing 
[11] 

Maintenance 
Strategies and 
Quality  

quality assurance in 
additive manufacturing 
(AM) 

development and 
simulation of online 
learning-based method 
(CGL) to deal with the 
new defects during 
printing in AM. The 
proposed method 
addresses the 
challenge of 
limited samples in AM 
process by transferring 
offline and online prior 
knowledge into the 
current AM process. 

Continual 
G-learning 

private 
simulated 
data 



Solving task scheduling 
problems in cloud 
manufacturing via 
attention mechanism 
and deep reinforcement 
learning [86] 

Scheduling  task scheduling 
problems in CMfg 

proposition of an end-
to-end scheduling 
algorithm to address 
the CMfg-SP through 
the attention 
mechanism and DRL to 
maximize the quality of 
service (QoS) 

Markov 
decision 
process 
(MDP) in 
particular 
the 
REINFORC
E 
algorithm  

private 
simulated 
data 

Hybrid feedback and 
reinforcement learning-
based control of 
machine cycle time for a 
multi-stage production 
system [43] 

Process 
control  

scheduling and control 
of machines’ 
operations (to increase 
system's efficiency) 

development of a 
control method for 
multi-stage production 
systems to dynamically 
change the individual 
machines’ cycle time to 
improve overall system 
efficiency. 

Standard 
and 
Extended 
advantage 
actor critic 
(A2C)  

private 
simulated 
data 

Dynamic scheduling of 
tasks in cloud 
manufacturing with 
multi-agent 
reinforcement learning 
[85] 

Scheduling cloud manufacturing 
scheduling (CMfg-Sch) 
problems 

development of a 
MAGCIS algorithm to 
solve the GSCMfg 
scheduling problem. 
Simulation of the 
algorithm in the 
processing of aircraft 
structural parts and 
performance 
comparisons with other 
RL algorithms 

multi-
agent 
graph 
convolutio
n 
integrated 
scheduler 
(MAGCIS) 

private 
simulated 
data 

Reinforcement Learning 
Enabled Self-Homing of 
Industrial Robotic 
Manipulators in 
Manufacturing [31] 

Motion 
Planning  

self-homing (HPos) 
problems in industrial 
manufacturing robots  

development and 
simulation of a SAC 
algorithm in brazing 
and assembly 
applications for aircraft 
engines to solve the 
home position problem 
of industrial robotic 
manipulators  

Soft Actor-
Critic 
(SAC) 

private 
simulated 
data 

Using real-time 
manufacturing data to 
schedule a smart factory 
via reinforcement 
learning [18] 

Scheduling real time scheduling 
problem in smart 
factory 

To realize the data-
driven manufacturing, 
this paper proposes the 
cyber-physical 
architecture for smart 
factory, and uses CNP 
to design the MAS-

double Q-
learning 

private 
simulated 
data 



based dynamic 
scheduling mechanism 

Multi-Agent 
Reinforcement Learning 
for Real-Time Dynamic 
Production Scheduling in 
a Robot Assembly Cell 
[12] 

Scheduling dynamic flexible job 
shop scheduling (FJSP) 
in a robot assembly cell 

Multi-Agent 
Reinforcement 
Learning solution based 
on Double DQN for a 
dynamic FJSP setting in 
a robot assembly cell. 

Double 
DQN-
based 
algorithm 

private 
simulated 
data 

Graph neural network 
and multi-agent 
reinforcement learning 
for machine-process-
system integrated 
control to optimize 
production yield [25] 

Process 
control  

optimization of the 
production yield 

Development and 
evaluation of a general 
framework for 
integrated control 
based on GNN and 
MARL 

Multi-
Agent 
Reinforce
ment 
Learning 
(MARL) 

private 
simulated 
data 

Deep multi-agent 
reinforcement learning 
for multi-level 
preventive maintenance 
in manufacturing 
systems [75] 

Maintence 
Strategies and 
Quality  

Multi-level preventive 
manufacturing (PM) 
scheduling 

Implementation of a 
MARL algorithm to 
obtain PM decision 
making process policies 
in serial production 
lines 

Multi-
Agent 
Reinforce
ment 
Learning 
(MARL) 

private 
simulated 
data 

Deep reinforcement 
learning based 
scheduling within 
production plan in 
semiconductor 
fabrication [40] 

Scheduling Production planning 
and scheduling  

A DRL based scheduling 
method is proposed to 
fulfil the production 
plan for semiconductor 
fabrication 

Deep Q 
Network 
(DQN) 

private 
simulated 
data 

Dynamic Control of a 
Fiber Manufacturing 
Process Using Deep 
Reinforcement Learning 
[32] 

Process 
control  

Fiber drawing system  introduction of a 
compact fiber drawing 
system and 
development of a  DRL-
based strategy for 
diameter tracking  

model-
free deep 
reinforce
ment 
learning 
(DRL) 

private 
simulated 
data 

Reinforcement learning 
for online optimization 
of job-shop scheduling 
in a smart 
manufacturing factory 
[100] 

Scheduling  job-shop scheduling 
problem (JSSP) in 
dynamic systems  

This paper presents a 
smart scheduler for 
online scheduling low-
volume-high-mix orders 
in a smart 
manufacturing factory 

Deep Q 
Network 
(DQN) 
with 
composite 
rewards 

private 
simulated 
data 

Reinforcement learning 
approach to scheduling 
of precast concrete 
production [33] 

Scheduling scheduling problems of 
precast concrete PC) 
production 

This study proposed a 
DQN approach to solve 
the PC scheduling 
problem of minimizing 
total tardiness. 

Deep Q 
Network 
(DQN) 
with PC 
productio
n 

private 
simulated 
data 



scheduling 
simulator 
(PC-DQN). 

Task Allocation in 
Human–Machine 
Manufacturing Systems 
Using Deep 
Reinforcement Learning 
[30] 

Scheduling Task allocation 
(dynamic scheduling) 
problem in human–
machine manufacturing 
systems 

To improve task 
allocation in human-
machine manufacturing 
system a NN-RL 
algorithm, which 
considers fatigue 
accumulation and task 
competence level of 
human operators, 
while achieving faster 
mean flowtime 
compared to classical 
dispatching rules is 
proposed 

Neural 
network 
(NN)-
based 
supervised 
learning 

private 
simulated 
data 

Optimisation of 
manufacturing process 
parameters for variable 
component geometries 
using reinforcement 
learning [103] 

Autonomous 
Manufacturing  

optimal manufacturing 
parameters problem  

RL based approach for 
estimation of optimal 
manufacturing 
parameters for variable 
component 
geometries. The 
presented approach 
trains a function P 
which takes the 
component geometry 
as input and directly 
estimates optimal 
process parameters 
(output).  

RL  private 
simulated 
data 

Explainable Deep 
Reinforcement Learning 
For Production Control 
of job shop 
manufacturing system 
[36] 

Process 
control  

production planning 
and control (PPC) 
problem 

a multi-Agent system 
(MAS) based on DRL is 
developed to realize 
short reaction time and 
high decision quality in 
a manufacturing user-
centric systems  

Multi 
Agent 
Reinforce
ment 
Learning 
(MARL) 
algorithm  

private 
simulated 
data 



A Dynamic Chemical 
Production Scheduling 
Method based on 
Reinforcement Learning 
[95] 

Scheduling  Dynamic chemical 
production scheduling 
problem 

The paper adopts an 
algorithm based on the 
PPO to add short-term 
state inventory to 
improve the state 
function, so that the 
policy network can 
achieve more accurate 
scheduling according to 
the urgency of orders 
and enhance the 
stability of the 
algorithm. 

Proximal 
Policy 
Optimizati
on (PPO) 
algorithm 
based on 
the 
Advantage 
Actor-
Critic 
(A2C) 
framewor
k 

private 
simulated 
data 

Reinforcement learning 
and digital twin-based 
real-time scheduling 
method in intelligent 
manufacturing systems 
[96] 

Scheduling  Optimization efficiency 
and decision-making 
responsiveness 
problem in intelligent 
manufacturing 

Development of a RL 
and digital twin-based 
real-time scheduling 
method of Automated 
guided vehicle (AGVs), 
called twins learning, to 
satisfy multiple 
objectives 
simultaneously  

deep Q-
Learning 
network 
algorithm 

private 
simulated 
data 

Discovery of customized 
dispatching rule for 
single-machine 
production scheduling 
using deep 
reinforcement learning 
[10] 

Scheduling  production scheduling- 
dispatching rule 
problem  

Using parameters 
obtained readily within 
the digital twin setting, 
this paper investigates 
the application of deep 
reinforcement learning 
to select customized 
dispatching rules 
formed by weighted 
combinations of 
production parameters 
on a single machine 
production scheduling 
problem. 

deep Q-
Learning 
Markov 
decision 
process 
(MDP) 
algorithm 

private 
simulated 
data 

A Novel Reinforcement 
Learning-based 
Unsupervised Fault 
Detection for Industrial 
Manufacturing Systems 
[1] 

Maintenance 
Strategies and 
Quality  

fault detection (FD) 
systems problem 

Development of a RL 
algorithm (DDQN with 
prioritized experience 
replay) to optimize 
fault detection system. 
The paper also 
validates the 
effectiveness of the 

double 
deep-Q 
network 
(DDQN) 
with 
prioritized 
experienc

private 
simulated 
data 



proposed algorithm on 
real steel plant data 

e replay 
(PER) 

An Adaptive 
Reinforcement Learning-
Based Scheduling 
Approach with 
Combination Rules for 
Mixed-Line Job Shop 
Production [102] 

Scheduling  Flexible job shop 
scheduling problem 
(FJSP). 

This paper presents an 
adaptive scheduling 
method for mixed-line 
job shop scheduling 
with combined 
processing constraints. 
It is also validated with 
experiments in a smart 
manufacturing setting 
(mixed-line job shop of 
missile structural parts 
in Shanghai). 

RL 
algorithm 
using a 
LinUCB-
based 
scheduling 
method 

private 
simulated 
data 

Collaborative Clustering 
Parallel Reinforcement 
Learning for Edge-Cloud 
Digital Twins 
Manufacturing System 
[16] 

Autonomous 
Manufacturing  

job shop scheduling 
(JSS) problem in an 
Edge-Cloud Digital 
Twins Manufacturing 
System 

Construction of a novel 
edge-cloud 
collaborative 
architecture to support 
the DT-based job shop 
scheduling (JSS) 
application and 
optimize the running 
position of DT-based 
applications to 
minimize the total 
delay according to the 
application attributes 
and cloud-edge 
resources status. 

collaborati
ve 
clustering 
parallel Q-
learning 
(CCPQL) 
and 
prediction
-based 
CCPQL 
algorithm 

private 
simulated 
data 

Deep Reinforcement 
Learning-Based Job Shop 
Scheduling of Smart 
Manufacturing [101] 

Scheduling Job-Shop Scheduling 
Problem (JSSP) in Smart 
Manufacturing  

The paper proposes a 
problem formulation 
for JSSP as a sequential 
decision-making 
problem, designs the 
model to represent the 
scheduling policy based 
on Graph Isomorphism 
Network, then it 
introduces the training 
algorithm as the actor-
critic network 
algorithm. 

Deep 
Reinforce
ment 
Learning 
with an 
Actor-
Critic 
algorithm 
(DRLAC). 

private 
simulated 
data 

Reinforcement Learning 
based on Stochastic 
Dynamic Programming 

Maintenance 
Strategies and 
Quality  

maintenance actions 
planning 

In this paper, a 
stochastic dynamic 
programming model is 

Q-learning 
algorithm 
with a 

private 
simulated 
data 



for Condition-based 
Maintenance of 
Deteriorating 
Production Processes 
[20] 

developed for 
maintenance planning 
on a deteriorating 
multistate production 
system 

partial 
observabl
e Markov 
decision 
process 
(POMDP) 

Reconfigurable 
manufacturing system 
scheduling: a deep 
reinforcement learning 
approach [78] 

Scheduling  scheduling problem of 
Reconfigurable 
Manufacturing Systems 
(RMS) on multiple 
products 

Development of a 
DDQN-based 
scheduling policy 
training approach in 
Reconfigurable 
Manufacturing Systems 
(RMS) 

Double 
DQN-
based 
algorithm 
with 
Prioritised 
Experienc
e Replay 
(PER) 

private 
simulated 
data 

Predictive Maintenance 
Decision Making Based 
on Reinforcement 
Learning in Multistage 
Production Systems [51] 

Maintenance 
Strategies and 
Quality  

Predictive maintenance 
problem in multistage 
production systems 

A reinforcement 
learning approach is 
proposed to optimize 
the production and 
maintenance cost. 

RL  private 
simulated 
data 

A flexible manufacturing 
assembly system with 
deep reinforcement 
learning [44] 

Motion 
Planning  

improving the flexibility 
of the assembly 
process 

To improve the 
flexibility of assembly 
lines, the article 
proposes a deep 
reinforcement learning 
and digital twin-based 
approach which focus 
on motion planning, 
precision, and safety of 
the manufacturing 
system 

Deep 
Determini
stic Policy 
Gradient 
(DDPG) 
based 
assembly 
algorithm 

private 
simulated 
and real 
data 

Multi-objective 
optimization of the 
textile manufacturing 
process using deep-Q-
network based multi-
agent reinforcement 
learning [22] 

Process 
control  

textile process 
optimization problem 
in a multi-agent system 

Development of a DQN 
based MARL system to 
solve optimization 
problems and its 
validation in the textile 
ozonation process and 
enzyme washing 
process 

self-
adaptive 
DQN 
(Deep-Q-
Network) -
based 
multi-
agent 
reinforce
ment 
learning 
(MARL) 

private 
simulated 
data 



Modular production 
control using deep 
reinforcement learning: 
proximal policy 
optimization [54] 

Process 
control  

Modular production 
control problem in the 
automotive industry 

Modular production 
systems are a new field 
in the automotive 
industry and the article 
proposes a Proximal 
Policy Optimization DRL 
algorithm to address 
modular production 
control 

Proximal 
Policy 
Optimizati
on (PPO) 
DRL 
method 

private 
simulated 
data 

A fuzzy hierarchical 
reinforcement learning 
based scheduling 
method for 
semiconductor wafer 
manufacturing systems 
[82] 

Scheduling Production scheduling 
in semiconductor wafer 
manufacturing system 
(SWFS) problem 

This paper proposed a 
fuzzy hierarchical 
reinforcement learning 
(FHRL) approach to 
control cycle time (CT) 
in the scheduling of a 
SWFS, which is a typical 
complex large-scale 
manufacturing system. 

fuzzy 
hierarchic
al 
reinforce
ment 
learning 
(FHRL) 

private 
simulated 
data 

Towards Self-X cognitive 
manufacturing network: 
An industrial knowledge 
graph-based multi-agent 
reinforcement learning 
approach [99] 

Autonomous 
Manufacturing  

Self-X (e.g. self-
configure, self-
optimize, and self-
adjust/adaptive/healin
g) cognitive 
manufacturing network 
efficient management 
problem 

This research 
introduces an IKG-
based MARL approach 
for automatic 
manufacturing task 
fulfilment with self-
configuration and self-
optimization 
capabilities, towards 
the proposed Self-X 
cognitive 
manufacturing 
network. 

industrial 
knowledg
e graph 
(IKG)-
based 
multi-
agent 
reinforce
ment 
learning 
(MARL) 

private 
simulated 
data 

Joint optimization of 
preventive maintenance 
and production 
scheduling for multi-
state production 
systems based on 
reinforcement learning 
[92] 

Maintenance 
Strategies and 
Quality  

Preventive 
maintenance and 
production scheduling 
problems 

The paper investigates 
the integrated 
optimization of 
preventive 
maintenance and 
production scheduling 
for multi-state single-
machine production 
systems with the 
deterioration effect, 
therefore a novel HR 
learning algorithm was 
presented to tackle 

heuristic 
reinforce
ment (HR) 
learning 
algorithm 

private 
simulated 
data 



MDP model based on 
R-learning. 

Reinforcement Learning 
for Statistical Process 
Control in 
Manufacturing [80] 

Process 
control  

manufacturing 
optimization (cost 
reduction while 
considering the rate of 
good products)  

The paper introduced 
the concept and the 
solution to place 
Reinforcement 
Learning (RL) into 
Statistical Process 
Control (SPC) in 
manufacturing. The 
formulated 
manufacturing goal was 
to minimize the 
production unit cost 
while keeping the ratio 
of good products on a 
high level and it was 
developed and 
validated using a TD 
learning algorithm. 

Temporal 
Difference 
(TD) 
learning 
algoritm  

private 
simulated 
and real 
data 

Dynamic matching with 
deep reinforcement 
learning for a two-sided 
Manufacturing-as-a-
Service (MaaS) 
marketplace [61] 

Scheduling  Dynamic matching with 
deep reinforcement 
learning for a two-sided 
Manufacturing-as-a-
Service (MaaS) 
marketplace 

real-time decision 
making for suppliers 
participating in a 
manufacturing-as-a-
service (MaaS) 
marketplace 

Deep-Q-
Network 
(DQN) 

private 
simulated 
data 

Fault-Tolerant Control of 
Programmable Logic 
Controller- Based 
Production Systems 
With Deep 
Reinforcement Learning 
[104] 

Autonomous 
Manufacturing  

system availability in 
logic controller based 
automated production 
system 

The authors explicitly 
focused on automated 
production system 
(aPS). To overcome the 
challenges of an 
exploding action space 
and a missing global 
coordinate system for 
the tracking of 
workpieces, a 
hierarchical MAS with a 
separate coordinate 
predictor per agent was 
suggested and 
validated. 

hierarchic
al multi-
agent 
deep 
reinforce
ment 
learning 
approach 

private 
simulated 
data 

Digital Twin and 
Reinforcement Learning-
Based Resilient 
Production Control for 

Process 
control  

efficient personalized 
production 

To improve the cyber-
physical production 
systems (CPPS) for 
enhancing the process 

Q-learning 
algorithm  

private 
simulated 
data 



Micro Smart Factory 
[64] 

and systematic 
efficiency of micro 
smart factory (MSF), 
the DT and RL-based 
resilient production 
control methods are 
proposed in this paper.  

Designing an adaptive 
production control 
system using 
reinforcement [35] 

Scheduling adaptive order 
dispatching optimizing 

This paper addresses 
the design of RL to 
create an adaptive 
production control 
system by the real-
world example of order 
dispatching in a 
complex job shop. 

RL-
algorithm 
with fixed 
state 
informatio
n 

private 
simulated 
and real 
data 

Deep Reinforcement 
Learning-based 
maintenance decision-
making for a steel 
production line [81] 

Maintenance 
Strategies and 
Quality  

maintenance 
optimization 

This work proposes a 
DRL policy for a scrap-
based steel production 
line where 
maintenance decisions 
are taken in real-time 
by the monitoring 
condition of the 
production line aiming 
to minimize the long-
run maintenance cost 
per unit of time. 

Double 
Deep Q 
Network 
(DDQN) 

private 
simulated 
data 

Control of Shared 
Production Buffers: A 
Reinforcement Learning 
Approach [56] 

Scheduling  buffer control problem This paper proposes Q-
learning algorithm for 
buffer control problem 
for stochastic flow lines 
with shared production 
buffers. 

Q-learning 
algorithm 

private 
simulated 
data 

Demonstrating 
Reinforcement Learning 
for Maintenance 
Scheduling in a 
Production Environment 
[27] 

Maintenance 
Strategies and 
Quality  

maintenance 
scheduling problem 

 In this paper the 
usability of RL, notably 
Q-learning, for finding 
an optimal strategy to 
schedule maintenance 
capacity in a realistic 
production 
environment has been 
demonstrated. 

Q-learning 
algorithm 

private 
simulated 
data 

A reinforcement 
learning model for 
material handling task 

Scheduling material handling 
problem  

This study analyzes the 
application of RL for 
material handling tasks 

Q-learning 
algorithm 

private 
simulated 
data 



assignment and route 
planning in dynamic 
production logistics 
environment [29] 

in Smart Production 
Logistics (SPL) in the 
automotive industry. In 
particular, this study 
addressed the routing 
of Automated Guided 
Vehicles (AGVs) for 
material handling 
including dynamic 
aspects. 

Integrated Planning and 
Scheduling for 
Customized Production 
using Digital Twins and 
Reinforcement Learning 
[55] 

Scheduling  planning and 
scheduling problem for 
dynamic/customised 
production  

In this paper, it is 
presented a digital twin 
based self-learning 
process planning 
approach using Deep-
Q-Network that can 
identify optimized 
process plans and 
workflows for the 
simultaneous 
production of 
personalized products. 

Deep-Q-
Network 
(DQN) 

private 
simulated 
data 

Modelling Production 
Scheduling Problems as 
Reinforcement Learning 
Environments based on 
Discrete-Event 
Simulation and OpenAI 
Gym [39] 

Scheduling  Production scheduling 
problem  

The paper presented a 
method that guides the 
modelling of 
production scheduling 
problems as RL 
environments. It 
involves the application 
of Discrete Event 
Simulation (DES) and 
the OpenAI Gym 
interface. 

Discrete 
Event 
Simulation 
(DES)  
based 
algorithm 

private 
simulated 
data 

A Deep Reinforcement 
Learning approach for 
the throughput control 
of a FlowShop 
production system [53] 

Process 
control  

throughput control of a 
Flow-Shop production 
system problem 

To achieve a 
throughput target, a 
Deep Q-Network (DQN) 
is developed and used 
to define the constant 
WIP quantity in the 
system. 

Deep-Q-
Network 
(DQN) 

private 
simulated 
data 

Simultaneous 
Production and AGV 
Scheduling using Multi-
Agent Deep 

Scheduling  Flexible Job Shop 
Scheduling Problem 
(FJSSP), including the 
coordination of the 

In this paper, a concept 
for simultaneous 
machine job scheduling 
with transport planning 
in a flexible job shop 

Multi 
Agent 
Reinforce
ment 
Learning 

private 
simulated 
data 



Reinforcement Learning 
[68] 

Automated Guided 
Vehicles (AGVs) 

using a Multi Agent 
Reinforcement 
Learning (MARL) 
algorithm was 
presented. 

(MARL) 
algorithm  

Reinforcement Learning 
Based Production 
Control of Semi-
automated 
Manufacturing Systems 
[60] 

Process 
control  

production control 
problem  

In this work, Digital 
Twin (DT) and RL are 
combined to derive a 
production control 
logic in a semi-
automated production 
system based on the 
chaku-chaku principle.  

proximal 
policy 
optimizati
on 
algorithm 
(PPO) 

private 
simulated 
and real 
data 

A digital twin to train 
deep reinforcement 
learning agent for smart 
manufacturing plants: 
Environment, interfaces 
and intelligence [90] 

Scheduling  adaptive manufacturing 
strategies problem  

In this work, a novel 
approach is proposed 
to utilize digital twin 
simulation and 
communication 
technologies to create 
virtual counterparts of 
robot manufacturing 
systems, on which the 
intelligent scheduler 
based on Deep 
Reinforcement 
Learning can be safely 
trained to optimize 
smart manufacturing 
task. 

Deep-Q-
Network 
(DQN) and 
Double 
Deep Q 
Learning 
(DDQN) 

private 
simulated 
and real 
data 

A Deep Reinforcement 
Learning Based 
Scheduling Policy for 
Reconfigurable 
Manufacturing Systems 
[77] 

Scheduling  scheduling policy for 
Reconfigurable 
manufacturing systems 
(RMS) 

This paper mainly 
focuses on optimising 
RMS scheduling using 
Deep Q Learning (DQL) 
by reducing 
reconfiguring actions 
and while minimising 
the makespan. 

Discrete-
event 
simulation 
(DES) 
based 
Deep-Q-
Network 
(DQN) and 
Double 
Deep Q 
Network 
(DDQN)alg
orithm 

private 
simulated 
data 

Reinforcement Learning 
With Composite 
Rewards for Production 

Scheduling  real time production 
scheduling problem 

This paper presents an 
AI scheduler for online 
and dynamic 

Q-learning 
algorithm  

private 
simulated 
data 



Scheduling in a Smart 
Factory [76] 

scheduling of 
manufacturing jobs in a 
smart factory. The RL 
method equips the 
proposed system with 
self-organizing and self-
learning capabilities 
under uncertainty 

Two-time scale 
reinforcement learning 
and applications to 
production planning [97] 

Scheduling  optimal control 
problems of dynamic 
systems 

This paper is focused 
on two-time-scale RL. A 
production planning 
system is used 
throughout as an 
example to 
demonstrate ideas and 
preliminary results and 
Monte Carlo 
simulations are used as 
‘data’ provider for 
training and validation.  

two-time-
scale RL. 

private 
simulated 
data 

Deep reinforcement 
learning based 
preventive maintenance 
policy for serial 
production lines [24] 

Maintenance 
Strategies and 
Quality  

preventive 
maintenance (PM) 
problem 

The PM decision 
making in a serial 
production line is a 
complex problem due 
to its exploding state 
space and complicated 
interactions among 
machines. The problem 
is proposed to be 
solved using a DRL 
approach in this paper. 

Double 
Deep Q 
Network 
(DDQN) 

private 
simulated 
data 

Multi-agent system and 
reinforcement learning 
approach for distributed 
intelligence in a flexible 
smart manufacturing 
system [34] 

Scheduling  production planning 
and job scheduling 
problem in smart 
manufacturing  

In this paper, it is 
presented a smart 
manufacturing system 
using a multiagent 
system and RL, which is 
characterized by 
machines with 
intelligent agents to 
enable a system to 
have autonomy of 
decision making, 
sociability to interact 
with other systems, 
and intelligence to 

Deep Q 
Network 
(DQN) 

private 
simulated 
data 



learn dynamically 
changing 
environments. 

Reinforcement learning 
for combined 
production-maintenance 
and quality control of a 
manufacturing system 
with deterioration 
failures [62] 

Maintence 
Strategies and 
Quality  

optimal joint 
production, 
maintenance, and 
product quality control 
policies 

This research paper 
examined a stochastic 
system that is 
experiencing frequent 
degrading failures and 
addressed the problem 
of finding optimal joint 
control policies in 
respect to an objective 
function that 
maximizes the total 
profit of the described 
system. 

Q-learning 
algorithm  

private 
simulated 
data 

A Reinforcement 
Learning Approach to 
Robust Scheduling of 
Semiconductor 
Manufacturing Facilities 
[26] 

Scheduling scheduling problem in 
semiconductors' 
industry  

In this article, it is 
presented a scheduling 
method for minimizing 
the make span of 
semiconductor 
manufacturing systems 
through the Q-learning 
based on a neural 
network (NN). 

Q-learning 
algorithm  

private 
simulated 
data 

Reinforcement learning 
for facilitating human-
robot-interaction in 
manufacturing [59] 

Autonomous 
Manufacturing  

optimization of human-
robot-interaction in 
manufacturing 

The work presented is 
intended to illustrate 
the applicability of 
reinforcement learning 
to the problem of 
robotic control within 
manufacturing,specifica
lly in cases where there 
is significant variation 
introduced by human 
operators. 

Deep Q 
Network 
(DDQN) 

private 
simulated 
data 

Intelligent scheduling of 
discrete automated 
production line via deep 
reinforcement learning 
[74] 

Scheduling scheduling problem in 
single product discrete 
automated production 
line 

This paper proposes a 
deep RL-based online 
scheduling method for 
discrete automated 
production line. A 
Discrete Event 
Simulation (DES) 
environment is built to 
provide an intelligent 

Discrete-
event 
simulation 
(DES) 
based RL 
algorithm 

private 
simulated 
data 



and efficient 
environment for RL 
model, reaching 
a competitive 
performance of online 
intelligent scheduling 
policy 

Reinforcement learning 
for an intelligent and 
autonomous production 
control of complex 
job-shops under time 
constraints [5] 

Scheduling order dispatching in a 
complex environment 
including time 
constraints 

In this paper a Q-
learning algorithm is 
applied in combination 
with a process-based 
discrete-event 
simulation to train a 
self-learning, 
intelligent, and 
autonomous agent for 
the decision problem of 
order dispatching in a 
complex job shop with 
strict time constraints. 

Deep Q 
Network 
(DQN) 

private 
simulated 
data 

Model-free Adaptive 
Optimal Control of 
Episodic Fixed-horizon 
Manufacturing 
Processes Using 
Reinforcement Learning 
[15] 

Process 
control  

adaptive optimal 
control of episodic 
fixed-horizon 
manufacturing 
processes with varying 
process conditions 
problem 

A Q-learning-based 
method for adaptive 
optimal control of 
partially observable 
episodic fixed-horizon 
manufacturing 
processes is developed 
and studied. The 
resulting algorithm is 
instantiated and 
evaluated by applying it 
to a simulated 
stochastic optimal 
control problem in 
metal sheet deep 
drawing. 

fixed 
horizon 
manufactu
ring 
processes 
(FHMP)-Q-
Control 
algorithm 

private 
simulated 
data 

A Model-Based 
Reinforcement Learning 
and Correction 
Framework for Process 
Control of Robotic Wire 
Arc Additive 
Manufacturing [2] 

Process 
control  

process study and 
control of Multi-Layer 
Multi-Bead (MLMB) 
deposition in Robotic 
Wire Arc Additive 
Manufacturing 
(WAAM) 

This paper presents an 
integrated model-
based RL-correction 
framework for in-situ 
MLMB process learning 
of robotic WAAM, as 
well as the preliminary 
experimental study of 
the learning framework 

model-
based 
parallel 
reinforce
ment 
learning 

private 
simulated 
and real 
data 



on a physical robotic 
WAAM system 
performing printing 
tasks for two different 
materials. 

Petri-net-based dynamic 
scheduling of flexible 
manufacturing system 
via deep reinforcement 
learning with graph 
convolutional network 
[23] 

Scheduling dynamic scheduling 
problem of flexible 
manufacturing systems 
(FMSs) 

To solve the dynamic 
scheduling problem of 
an FMSs involving 
shared resources, route 
flexibility, and 
stochastic arrivals of 
raw products, this 
paper proposed a novel 
Petri-net-based 
dynamic scheduling 
approach via DQN with 
graph convolutional 
network (GCN). 

Deep Q 
Network 
(DQN) 

private 
simulated 
data 

Logistics-involved QoS-
aware service 
composition in cloud 
manufacturing with 
deep reinforcement 
learning [46] 

Scheduling Cloud manufacturing 
service composition 
(CMfg-SC) problem. 

A DRL algorithm, 
named PD-DQN, which 
combines the basic 
DQN algorithm, the 
dueling architecture, 
and the prioritized 
replay mechanism was 
used for CMfg-SC 

A dueling 
Deep Q-
Network 
(DQN) 
with 
prioritized 
replay 
named 
PD-DQN 

private 
simulated 
data 

Deep Reinforcement 
Learning for 
Semiconductor 
Production Scheduling 
[7] 

Scheduling Semiconductor 
production scheduling 
problem  

In this paper DRL is 
applied to production 
scheduling in 
semiconductor 
complex job shops 
utilizing cooperative 
Deep Q Network (DQN) 
agents. The DQN 
agents, which use deep 
neural networks for 
decision making, are 
trained in a RL 
environment with user-
defined flexible 
objectives to optimize 
production scheduling. 

Deep Q 
Network 
(DQN) 

private 
simulated 
data 



Optimization of global 
production scheduling 
with deep 
reinforcement learning 
[87] 

Scheduling production scheduling 
problem  

In an RL environment 
cooperative DQN 
agents, which utilize 
deep neural networks, 
are trained with user-
defined objectives to 
optimize scheduling.. 

Deep Q 
Network 
(DQN) 

private 
simulated 
data 

Reinforcement Learning-
Based and Parametric 
Production-
Maintenance Control 
Policies for a 
Deteriorating 
Manufacturing System 
[3] 

Maintence 
Strategies and 
Quality  

joint 
production/maintenanc
e control policies 
problem  

In this paper the 
problem of integrated 
production/maintenanc
e control for a 
deteriorating, 
stochastic 
production/inventory 
system was 
investigated. A novel 
approach, based on RL, 
for deriving optimal or 
near-optimal policies 
was proposed 

Q-learning 
algorithm  

private 
simulated 
data 

Optimized Adaptive 
Scheduling of a 
Manufacturing Process 
System with Multi-Skill 
Workforce and Multiple 
Machine Types: An 
Ontology-Based, Multi-
Agent Reinforcement 
Learning Approach [70] 

Scheduling optimized 
manufacturing 
scheduling problem  

 This research develops 
a multi-agent 
reinforcement learning 
approach for the 
optimal scheduling of a 
manufacturing system 
of multi-stage 
processes for multiple 
types of products with 
various machines and a 
multi-skilled workforce. 

Multi-
agent 
approxima
te Q-
learning 

private 
simulated 
data 

 

Table 1. Selected papers 

 

7. Applications in manufacturing 
 

To better understand the manufacturing applications of RL an analysis considering the different area 
of implementation of the different algorithms used in the papers in table 1 must be conducted. 

I’ve then decided to structure the documents’ review considering the listed area of application: 
1. Robotics for motion planning  



2. Scheduling 
3. Process Control 
4. Autonomous Manufacturing  
5. Maintenance Strategies and Quality 
6. Sustainable Manufacturing 
 

7.1.1. Applications of Reinforcement Learning in Industrial Robotics for motion planning  

• User-guided motion planning with reinforcement learning for human-robot collaboration in 

smart manufacturing [79] 

The paper introduces a user-guided motion planning algorithm coupled with reinforcement learning 

(RL) to empower robots to autonomously generate motion plans for new tasks by learning from a 

small number of kinesthetic human demonstrations. To achieve adaptive motion planning in the face 

of task changes or new requirements, a movement library is created. The features embedded in the 

library are then mapped to specific task segments based on the trained motion planning policy using 

Q-learning. A new task can be learned as a combination of features in the library or, if the library is 

insufficient, further human demonstrations may be required. The trained motion planning policy's 

performance is evaluated in an assembly and loading/unloading scenario for three new tasks: a 

transferring task (where the end-effector transfers a cup of water while avoiding an obstacle), a 

filling-and-pouring task, and an assembling task. Each of these tasks is successfully executed 20 times 

in the trials. 

• Spatiotemporal path tracking via deep reinforcement learning of robot for manufacturing 

internal logistics [17] 

A method for controlling the time-space path tracking of robots in weaving scenes, facilitating 

intelligent logistics and storage, is introduced. The primary contributions are outlined as follows: The 

proposal of a hybrid Deep Reinforcement Learning (DRL) framework for path tracking is a key aspect. 

This framework integrates scene feature models, addressing the challenge of prolonged training 

phases in DRL, more suitable for simulated environments or adversarial games than real scenarios. 

The integration of scene features into partially observable Markov decision models is emphasized, 

particularly through the introduction of a Dynamic Observing Markov Decision Process (DOMDP). An 

empirical optimization method, centered around observation difference ranking, is introduced to 

enhance stability in convergence results, considering data heterogeneity and external influences. For 

assessing performance, PyBullet is employed as the physical engine for scenario simulation, and 

TensorFlow is utilized to implement the network architecture. The proposed learning framework, 

dynamic observation deterministic strategy gradient (DODPG), is specifically designed and evaluated 

against other algorithms, namely twin-delayed deep deterministic policy gradient (TD3) and Deep 

Deterministic Policy Gradient (DDPG). Across all simulated scenarios, the DOMDP algorithm 

consistently achieves optimal results, surpassing the performance of DDPG and TD3. Notably, DODPG 

demonstrates effective control, maintaining the average instantaneous tracking distance error of the 

robot generally within 0.005 m. 



• Reinforcement Learning Enabled Self-Homing of Industrial Robotic Manipulators in 

Manufacturing [31] 

This paper presents a non-vision, model-free, off-policy reinforcement learning-based approach, 

specifically Soft Actor-Critic (SAC), designed for enabling self-homing capability in industrial robotic 

cells. The primary focus is on the homing task, where a robotic arm returns to its initial/home position 

from any location in a robotic cell without collisions, robot singularities, and within joint limits. The 

proposed approach eliminates the need for manual programming of robot manipulators. The 

approach is characterized by being model-free and utilizing off-policy reinforcement learning. It 

adopts a parallel agent setting, where multiple agents learn simultaneously to enhance exploration 

and learning. Training is conducted in a simulation environment generated by the mechanical design 

of an actual robotic cell. The agents are assumed to sense the unknown robotic cell environment, 

which is pre-encoded in the state definition. The paper investigates the impact of curriculum on the 

agent's learning, comparing two curriculum choices with a non-curriculum baseline. The training 

setting involves a parallel-agent, multi-process training approach to improve exploration in the state 

space, with experiences shared among agents via shared memory. Trained models are subsequently 

deployed in real robotic manufacturing cells for brazing and assembly applications in aircraft engines. 

The success rate of the Deep Reinforcement Learning (DRL) approach is reported as 98%, surpassing 

joint motion (57%), linear motion (29%), and human-generated (8%) methods in homing the robot to 

the home position. This research highlights the effectiveness of using reinforcement learning, 

particularly SAC, for automating the homing task in industrial robotic cells, with successful real-world 

deployment and performance evaluations.  

• A flexible manufacturing assembly system with deep reinforcement learning [44] 

This article introduces a comprehensive solution encompassing the automated planning of assembly motions 
and a monitoring system for production lines. In the planning phase, a digital twin model of the assembly line is 
constructed, followed by the training of a deep reinforcement learning agent to carry out the assembly of 
workpieces. In the production phase, the digital twin model is utilized to monitor the assembly lines and 
predict potential failures.To validate the effectiveness of the proposed system, a peg-in-hole assembly 
experiment was conducted, resulting in an impressive 90% success rate for a single assembly attempt. Notably, 
no collisions occurred in the real-world scenario throughout the entire experiment. This highlights the 
robustness and reliability of the proposed solution in achieving successful and collision-free assembly 
processes. 



 

Figure 7. Overall training procedure of reinforcement learning agent and Digital twin model of the peg-in-hole assembly workspace [44] 

 

7.1.2. Pioneering Contributions to the State of the Art: 

These pioneering articles have marked substantial contributions to the realm of Reinforcement 

Learning (RL) in the context of robotics motion planning applications. Their novel methodologies 

showcase advancements in addressing challenges related to complex and dynamic environments, 

high-dimensional state spaces, sparse rewards, and non-linear and non-convex optimization problems 

within the field of robotics. Importantly, these proposed methods have been validated through 

rigorous experimentation on actual robot platforms, affirming their practical efficacy and real-world 

applicability. 

7.1.3. Advantages of Reinforcement Learning in Robotics for motion planning: 

Reinforcement Learning (RL) algorithms have emerged as a powerful tool in enabling robots to learn 
from their environment and make informed decisions based on received feedback. Particularly in the 
domain of robotics, RL has been increasingly applied to motion planning, a crucial aspect involving the 
determination of a sequence of actions for a robot to navigate from one location to another. In 
comparison to conventional motion planning methods, RL offers several distinct advantages. 
 
Primarily, RL algorithms exhibit a remarkable capacity to handle complex and dynamic environments. 
Unlike traditional motion planning approaches that rely on predetermined rules and assumptions 
about the environment, RL algorithms demonstrate adaptability to environments characterized by 
complexity and frequent changes. This adaptability stems from their ability to learn from the 
environment, allowing robots to navigate effectively in dynamic settings. Another noteworthy 
advantage of RL algorithms is their proficiency in managing high-dimensional state spaces. Traditional 
motion planning methods may encounter challenges in coping with state spaces characterized by an 
extensive range of possible states. RL algorithms, however, overcome this hurdle through the 
utilization of function approximators, such as neural networks, enabling them to navigate efficiently 



within high-dimensional state spaces. Sparse rewards pose a common challenge in motion planning 
applications, where robots may not receive feedback for every action taken. RL algorithms stand out 
in handling sparse rewards, leveraging techniques such as Q-learning and policy gradients to learn 
effectively from limited feedback. This adaptability ensures that robots can make informed decisions 
even in scenarios with sparse reward signals, a feat that traditional methods may find challenging. 
 
Furthermore, RL algorithms exhibit prowess in addressing non-linear and non-convex optimization 
problems, prevalent in motion planning applications. Traditional methods often struggle with such 
complexities, but RL algorithms, particularly those employing deep reinforcement learning 
techniques, showcase an ability to navigate non-linear and non-convex optimization challenges 
effectively. 

7.1.4. Areas for improvement and future directions: 

Considering the papers that focused on the application of RL in Robotics for motion planning the 
principal areas for improvement are: 
 

• improvements in RL-based motion planning algorithms should focus on effectively learning 
from a wide range of human demonstrations. 

• addressing challenges in dynamically sequencing tasks in response to real-time changes in 
manufacturing environments enhances the efficiency and adaptability of robots in complex 
processes. 

• enhancements in RL algorithms for self-homing should focus on addressing challenges related 
to accuracy and robustness. 

• Improving the adaptability of scheduling decisions to dynamic changes in the assembly 
environment, ensuring efficient utilization of robotic resources. 

• addressing challenges related to real-time adaptability, safety, and responsiveness enhances 
the quality of collaboration between humans and robots in manufacturing settings. 

• optimizing the control of robotic deposition processes, ensuring high-quality and precise 
manufacturing outcomes. 

 
Reinforcement learning (RL) has demonstrated significant potential in addressing robotics’ motion 
planning in manufacturing. Nevertheless, several challenges and constraints must be overcome to 
advance future applications. The forthcoming directions are:  
 
1. Efficient Learning from Limited Demonstrations: RL algorithms typically demand substantial training 
data for optimal performance, a process that can be resource intensive. Future research should strive 
to devise RL algorithms capable of efficient learning from fewer demonstrations, reducing the time 
and cost associated with training. The research ‘User-guided motion planning with reinforcement 
learning for human-robot collaboration in smart manufacturing [79]’ which proposes a RL method to 
enable robots to automatically generate their motion plans for new tasks by learning from a few 
kinaesthetic human demonstrations. This approach, grounded in human demonstrations, attains 
scheduling decisions near optimality with minimized training data. 
 



2. Robustness to Environmental Variations: RL algorithms may exhibit sensitivity to environmental 
changes, resulting in suboptimal performance. To counteract this challenge, forthcoming research 
should concentrate on enhancing the robustness of RL algorithms to environmental variations, 
encompassing factors such as changes in lighting, temperature, or humidity. The work 
‘Spatiotemporal path tracking via deep reinforcement learning of robot for manufacturing internal 
logistics [17] can be a starting point as the proposed method can learn the optimal control policy from 
raw sensor data and achieve high-precision path tracking in complex environments. 
 
3. Adaptive Learning for Dynamic Environments: Manufacturing environments are inherently 
dynamic, featuring fluctuations in production schedules, equipment configurations, and personnel 
assignments. Future research endeavours should aim to formulate RL algorithms equipped to adapt 
to these dynamic conditions, facilitating real-time learning for more efficient and effective scheduling. 
 
4. Integration with Complementary Technologies: RL algorithms possess the potential for integration 
with various technologies, including computer vision, natural language processing, and machine 
learning. Exploring these integrations and developing novel applications that leverage the strengths of 
multiple technologies should be a focal point for future research in enhancing RL applications in 
robotics. ‘A flexible manufacturing assembly system with deep reinforcement learning [44]’ proposes 
a digital twin enhanced assembly method with deep reinforcement learning. The proposed method 
can be a starting point as it can enable the robot to learn the optimal assembly policy from raw sensor 
data and achieve high-precision assembly in a flexible manufacturing environment. 

7.2. Applications of Reinforcement Learning in Scheduling 

• Simulation and deep reinforcement learning for adaptive dispatching in semiconductor 

manufacturing systems [72] 

A dispatching and resource allocation approach for a semiconductor manufacturing system is 

developed, leveraging a Deep Q-Network (DQN). The system is modeled and simulated using a data-

driven agent-based Discrete Event Simulation (DES) in Arena simulation. This simulation environment 

serves as the training ground for the DQN agents, responsible for dispatching products and allocating 

equipment during the simulation execution. Each agent oversees a single station with one or more 

equipment units. When a dispatching action is required, the simulation furnishes the agents with the 

current state of the system. The agent, based on this state, selects an appropriate action, which is 

then implemented by the system. The agent receives a reward corresponding to the performance of 

the station and the overall system. The DQN approach is contrasted with the currently employed 

heuristics-based dispatching, specifically the First-In-First-Out (FIFO) approach. Through the 

simulation, DQN agents learn to enhance the performance of stations and the entire system, 

demonstrating the ability to collaborate, especially in challenging scenarios such as timers' processes. 

Results indicate an improvement in system performance with DQN agents, manifesting as a general 

increase in throughput, reduction in the total non-value-added time percentage, and decreased 

instances of timer exceeding and resulting waste. 

• Sequence generation for multi-task scheduling in cloud manufacturing with deep 

reinforcement learning [66] 



The paper addresses the challenge of multi-task scheduling in cloud manufacturing and introduces a 

corresponding approach based on Deep Reinforcement Learning (DRL), incorporating sequence 

generation techniques. Initially, two sequence generation algorithms are proposed, tasked with 

generating scheduling sequences for multiple composite tasks by ranking tasks and subtasks. 

Subsequently, two scheduling approaches, leveraging Deep Q-Network (DQN) and Double DQN, are 

introduced in conjunction with the sequence generation techniques. The performance of these 

algorithms is evaluated against seven baseline approaches, including random, round-robin, earliest, 

sensible, minimum execution time (min-t), minimum machining cost (min-c), and maximum reliability 

(max-r) scheduling algorithms. The evaluation metrics encompass makespan, total cost, and average 

reliability. Results indicate the superiority of the DQN-based approach over all baseline methods, with 

Double DQN demonstrating significant advantages over DQN. 

• Scheduling of decentralized robot services in cloud manufacturing with deep reinforcement 

learning [49] 

The paper addresses the optimization of robot services in cloud manufacturing through the 

introduction of a novel scheduling model based on Deep Reinforcement Learning (DRL), incorporating 

both Deep Q-Network (DQN) and Double DQN. The model considers the quality and performance of 

both robot and logistics services, aiming to maximize service quality while minimizing service cost. 

Comparative evaluations were conducted with DQN, Double DQN, and three benchmark scheduling 

approaches: random scheduling, round-robin scheduling, and earliest scheduling. Using Python-based 

simulation programs, the results indicate that the DDQN-based scheduling approach outperforms all 

other methods across various indices. Furthermore, a multiple linear regression analysis was 

employed to assess the influencing degrees of different indicators, revealing that logistics service 

reliability and execution times are the most influential factors on overall service quality.  

• Reinforcement learning-based dynamic production-logistics-integrated tasks allocation in 

smart factories [41] 

The paper focuses on harnessing the intelligence of smart connected resources to autonomously 

allocate production and logistics tasks in smart factories (SFs). The system is conceptualized as an 

autonomous decision-making manufacturing system with Industrial Internet of Things (IIoT) support, 

aiming to coordinate and synchronize the allocation of manufacturing tasks through resource bidding 

in SFs. A dynamic production-logistics-integrated tasks allocation model is proposed, considering the 

orders makespan and resource utilization as the objective function. Both production and logistics 

resources autonomously communicate and interact to bid for dynamic production-logistics integrated 

operations. The study employs a reinforcement learning (RL) algorithm, specifically the Q-learning 

algorithm, to make operational decisions for each job step based on in-situ data during the 

manufacturing process. A demonstrative case illustrates that the RL-based model outperforms 

centralized scheduling systems, particularly in handling production-logistics-integrated tasks 

allocation problems in SFs characterized by dynamic and small-batch individualized orders. 

• Reinforcement learning based trustworthy recommendation model for digital twin-driven 

decision-support in manufacturing systems [67] 



This paper introduces an innovative digital twin decision support framework that integrates recommendation 
systems with reinforcement learning (RL) algorithms, trust and similarity measures. The aim is to enhance the 
accuracy and reliability of recommendations, leading to improved efficiency, reduced downtime, and increased 
production output for optimized manufacturing processes. The SimQL model, comprising a trust model, a Q-
learning-based RL algorithm, and similarity measures, is formally specified to address common challenges 
associated with recommendation systems. These challenges include user trust, decision-making time, cold-
start, and data sparsity issues. The proposed model is experimentally validated in a manufacturing case study 
involving a battery pack assembly line. Comparative analysis with state-of-the-art recommendation models 

demonstrates the effectiveness of the SimQL model, showcasing superior accuracy. 
 

• Multi-agent deep reinforcement learning for task offloading in group distributed 

manufacturing systems [91] 

To address challenges in the task offloading process in cloud manufacturing, a mixed-integer 

programming model has been developed to reduce task calculation latency. The problem is divided 

into two sub-problems: 1) Defining priorities for tasks in near real-time. 2) Determining if the task 

should be offloaded to the cloud. A multi-agent deep reinforcement learning framework with an 

attention mechanism (MaDRLAM) is proposed to tackle these sub-problems. The MaDRLAM 

framework involves two agents, each handling one sub-problem. Each agent is composed of an 

encoder and a decoder, based on the Transformer structure with added Pointer networks to address 

the proposed decision problem.The novel aspect of the MaDRLAM framework lies in its attention 

mechanism and Transformer structure. Additionally, an improved multi-actor and single-critic strategy 

based on the REINFORCE algorithm is designed to train the proposed MaDRLAM. Computational 

experiments are conducted on instances with varying numbers of tasks, different task data sizes, and 

diverse cloud computing capacities. The results demonstrate that the proposed framework efficiently 

finds solutions with a GAP value of less than 1% within 1 second for each instance. The framework 

proves competitive in both solution accuracy and solution time when compared with other offloading 

strategies. 

• Logistics-involved task scheduling in cloud manufacturing with offline DRL [84] 
 

This paper introduces an offline DRL scheduling algorithm designed for addressing CMfg-SPs. Unlike 
many existing DRL-based methods that train models online, the proposed method conducts offline 
training using historical data. This departure from online training mitigates the risks associated with 
using potentially unstable DRL models for generating scheduling schemes and enhances the utilization 
of historical data and large deep learning models. The research represents an early exploration of 
applying offline DRL and DT architecture to solve CMfg-SPs, aiming to retain the benefits of online DRL 
while minimizing the risk of online trial-and-error. The approach's applicability extends beyond CMfg-
SPs to other scheduling problems. Experimental results, using a case study of the automobile 
structure part scheduling problem, affirm the effectiveness of the proposed method, with sensitivity 
analysis offering insights for adjusting hyperparameters. 
 

• Inverse Reinforcement Learning Framework for Transferring Task Sequencing Policies from 
Humans to Robots in Manufacturing Applications [58] 

 



To address the growing demand for skilled individuals in complex production processes, 
manufacturers are increasingly turning to the deployment of robots. This study introduces an inverse 
reinforcement learning approach to solve the challenge of task sequencing for robots engaged in 
intricate manufacturing processes. The success of the manufacturing process heavily depends on the 
sequence in which subtasks are executed. Therefore, the focus of this work is on modeling the 
expert's policy for sequencing subtasks to attain desirable outcomes in the process. The robots are 
trained using expert demonstrations, which are collected in a dataset and utilized to construct the 
sequence policy. By learning weights that prioritize the expert's sequence, the method successfully 
achieves the lowest cost for all demonstration tools in both real-world and synthetic data scenarios. 
 

• Graph neural networks-based scheduler for production planning problems using 
reinforcement learning [21] 

 
This paper introduces a novel framework called GraSP-RL, which stands for GRAph neural network-
based Scheduler for Production planning problems using Reinforcement Learning. The framework 
represents job shop scheduling problems (JSSP) as a graph and trains the RL agent using features 
extracted through a graph neural network (GNN). By leveraging the GNN, the features are extracted 
in the non-Euclidean space, providing a comprehensive encoding of the current production state in 
the Euclidean space. The custom message-passing algorithm applied to the GNN plays a crucial role. 
The node features encoded by the GNN are utilized by the RL agent to make decisions, such as 
selecting the next job. The scheduling problem is treated as a decentralized optimization problem, 
where the learning agent is assigned to individual production units, and the agent learns 
asynchronously from the experience collected on all other production units. GraSP-RL is applied to a 
complex injection molding production environment with 30 jobs and 4 machines, aiming to minimize 
the makespan of the production plan. The results show that GraSP-RL outperforms first-in-first-out 
(FIFO), tabu search (TS), and genetic algorithm (GA) for the task of planning 30 jobs in JSSP. The 
generalization capability of the trained agent is also tested on two different problem classes: Open 
shop system (OSS) and Reactive JSSP (RJSSP). In these modified problem classes, GraSP-RL produces 
results better than FIFO and comparable results to TS and GA without further training, providing 
schedules instantly. 
 

• Dynamic scheduling for semiconductor manufacturing systems with uncertainties using 
convolutional neural networks and reinforcement learning [48] 

 
The semiconductor manufacturing systems (SMSs) face increasing complexity and challenges in 
dynamic scheduling due to internal uncertainties and external demand fluctuations. This paper 
addresses the integrated release control and production scheduling problems in SMSs with uncertain 
processing times and urgent orders. The proposed solution is a Convolutional Neural Network and 
Asynchronous Advanced Actor-Critic-based method (CNN-A3C), which consists of a training phase and 
a deployment phase.In the training phase, actor–critic networks are trained to predict the evaluation 
of scheduling decisions and output the optimal scheduling decision. In the deployment phase, the 
most appropriate release control and scheduling decisions are periodically generated based on the 
current production status. The authors improve key aspects of the deep reinforcement learning (DRL) 
algorithm, including the state space, action space, reward function, and network structure. Four 
mechanisms are designed: a slide-window-based two-dimensional state perception mechanism, an 



adaptive reward function considering multiple objectives and adjusting to dynamic events, a 
continuous action space based on composite dispatching rules (CDR) and release strategies, and 
actor–critic networks based on convolutional neural networks (CNNs).To validate the proposed 
dynamic scheduling method, it is implemented on a simplified SMS, and simulation experiments 
demonstrate its superiority over the unimproved A3C-based method and common dispatching rules, 
especially in the face of new uncertain scenarios. 
 

• Dynamic production scheduling towards self-organizing mass personalization: A multi-agent 
dueling deep reinforcement learning approach [69] 

 
This paper introduces a reinforcement learning-based approach for dynamic job shop scheduling 
problems, employing a static-training-dynamic-execution strategy. The scheduling policies are learned 
from static scheduling instances using a multiagent dueling deep reinforcement learning approach. 
The proposed approach includes new representations for observation, action, reward, and 
cooperation mechanisms between agents. The learned scheduling policies are then applied to a 
dynamic scheduling system where stochastic processing times and unplanned machine breakdowns 
can occur randomly. The approach is extensively evaluated through simulation experiments, 
demonstrating its superiority over heuristic rules (FIFO, SPT, LPT, SNQ, and LNQ) in terms of makespan 
and handling breakdowns under two dynamic manufacturing settings. 
 

• Design and Implementation of Simulation-Based Scheduling System with Reinforcement 
Learning for Re-Entrant Production Lines [28] 
 

In this study, a re-entrant production line was simulated as a manufacturing environment, and an 
adaptive scheduling system was developed to enhance operational performance using deep 
reinforcement learning (DRL). The study involved creating a software architecture to integrate DRL 
with the simulation, defining the states, actions, and rewards of the RL agent, and designing a 
discrete-event simulation control module to collect data and evaluate the trained policy 
network.Experiments were conducted on a hypothetical re-entrant production line, divided into three 
cases. Case A compared makespan results with single priority-based dispatching rules, Case B 
investigated the impact of part sequences, and Case C analyzed flexibility effects. The proposed 
system showed significant improvements, with the average makespan being 15%, 29%, and 9% 
smaller than those from FCFS, FOPR, and MOPR rules, respectively. 
 

• Cloud–edge collaboration task scheduling in cloud manufacturing: An attention-based deep 
reinforcement learning approach [9] 
 

This study addresses cloud–edge collaboration manufacturing task scheduling in Cloud Manufacturing 
(CMfg) to maximize customer satisfaction and balance production. The proposed approach, named 
Attention-based Value-function Maximum a posteriori Policy Optimization (AV-MPO), deals with the 
dynamics and complexity of state information in this context.The Cloud–Edge Collaboration 
Manufacturing Task Scheduling (CETS) problem is formulated as a partially observable Markov 
decision process. AV-MPO, employing on-policy maximum a posteriori policy optimization with a 
gated transformer-XL (GTrXL), is introduced. The algorithm's effectiveness, training stability, 
generalizability, scalability, and robustness are evaluated. Comparative analysis is conducted against 



rule-based algorithms and state-of-the-art DRL algorithms, including proximal policy optimization 
(PPO), soft actor-critic (SAC), and dueling deep Q network (Dueling DQN).Experimental results 
demonstrate that AV-MPO effectively addresses the CETS problem, showing maximum improvements 
of 12.6% for overall scheduling benefit, 13.9% for service rate, and optimal load balance rate in most 
cases. The algorithm's robustness is validated in unpredictable scenarios, such as device unavailability 
and service provider outage. 
 

• Application of a Reinforcement Learning-based Automated Order Release in Production [73] 
 

This paper describes the application of a reinforcement learning (RL) algorithm, specifically a Deep Q-
Network (DQN), to optimize order release procedures in real-world production scenarios. The focus is 
on achieving a higher practical orientation, addressing realistic problem sizes, customer orientation, 
and the development of a control application for performance evaluation.The main objective is to 
optimize adherence to delivery dates using a DQN algorithm. The study applies this approach to two 
problem instances: the first with 10 machines and 76 orders, and the second with 10 machines and 
259 orders. The results indicate an adherence to delivery dates of 84.21% for the smaller dataset and 
91.89% for the larger dataset. Additionally, a larger problem size with 28 machines and 474 orders is 
explored, highlighting the challenges of direct scaling without adjusting the problem formulation for 
justifiable training times. 
 

• An improved deep reinforcement learning-based scheduling approach fordynamic task 
scheduling in cloud manufacturing [83] 

 
"This paper introduces an improved approach for dynamic task scheduling in Cloud Manufacturing 
(CMfg) using Deep Reinforcement Learning (DRL). The proposed approach addresses issues related to 
inadequate fine-tuning ability and low training efficiency observed in existing DRL-based scheduling 
methods. The key contributions include: 
1. Identification of causes behind the shortcomings in existing DRL-based scheduling methods. 
2. Introduction of a novel approach to address these issues by updating the scheduling policy while 
considering the distribution distance between the pre-training dataset and the in-training policy. 
3. Use of uncertainty weights in the loss function to avoid overestimation of the reward function. 
4. Extension of the output mask to the updating procedures. 
Numerical experiments on thirty actual scheduling instances demonstrate that the proposed 
approach outperforms other DRL-based methods (PPO, DRQN, DDQN, A3C, AC, and BC) in terms of 
solution quality and generalization, with improvements of up to 32.8% and 28.6%, respectively. 
Additionally, the method effectively fine-tunes a pre-trained scheduling policy, leading to an average 
reward increase of up to 23.8%. 
 

• A multi-objective reinforcement learning approach for resequencing scheduling problems in 
automotive manufacturing systems [42] 
 

This study addressed a multi-objective resequencing scheduling problem in automotive 
manufacturing systems, considering operational requirements in the paint shop and sequential 
requirements in the assembly shop. Resequencing cars based on color-oriented batches aimed to 
reduce color change costs and operational costs in paint shops, while assembly shops required timely 



completion to ensure high sequence adherence. The study investigated two conflicting objectives - 
color change costs and sequence tardiness - in a single-machine flowshop scheduling environment. A 
multi-objective deep Q-network algorithm was developed to determine the Pareto frontier. Reward 
shaping, 2D-folded-normal distribution for sampling preferences, and other techniques were 
employed to enhance algorithm performance. Experimental results demonstrated that the proposed 
approach outperformed meta-heuristic and envelope Q-learning algorithms in terms of solving time, 
performance, convergence of the neural network, and diversity of the Pareto frontier, making it 
suitable for improving scheduling efficiency and reducing operational costs in automotive paint shops. 
 
 

• Distributed Real-Time Scheduling in Cloud Manufacturing by Deep Reinforcement Learning 
[37] 

 
This study addresses the distributed real-time scheduling (DRTS) of multiple services to meet dynamic 
and customized orders in cloud manufacturing (CM). The proposed DRTS framework incorporates 
cloud–edge collaboration, deploying distributed actors in the edge layer and a centralized learner in 
the cloud layer to enhance performance and responsiveness. The DRTS problem is formulated as a 
semi-Markov decision process, considering both processing services sequencing and logistics services 
assignment simultaneously. A distributed dueling deep Q network (D3QN) is developed with cloud–
edge collaboration to optimize the weighted tardiness of jobs.Experimental results showcase the 
effectiveness of the proposed D3QN, demonstrating lower weighted tardiness and shorter flow-time 
compared to state-of-the-art algorithms. In particular, when compared with three baseline algorithms 
– GA, HGP, and DQN – the average improvement rates are substantial, with percentages of 35.59%, 
28.70%, and 17.33%, respectively, for the former, and 5.29%, 2.66%, and 0.39% for the latter. 
 

• Dynamic job shop scheduling based on deep reinforcement learning for multi-agent 
manufacturing systems [98] 

 
This paper addresses the challenges posed by personalized orders in the production paradigm by 
proposing a multiagent manufacturing system based on deep reinforcement learning (DRL). The 
system integrates self-organization mechanisms and self-learning strategies to enhance dynamic 
responsiveness and self-adjustment capabilities within the workshop. The manufacturing equipment 
in the workshop is modeled as equipment agents with support from edge computing nodes. An 
improved contract network protocol (CNP) guides cooperation and competition among multiple 
agents, facilitating efficient completion of personalized orders.The decision-making module, named AI 
scheduler, is established using a multi-layer perceptron within the equipment agent. AI scheduler, 
informed by perceived workshop state information, generates optimal production strategies for task 
allocation. Periodic training and updates of AI scheduler occur through the proximal policy 
optimization (PPO) algorithm, enhancing decision-making performance based on collected sample 
trajectories of the scheduling process.In the experimental validation within a multiagent 
manufacturing system testbed, dynamic events such as stochastic job insertions and unpredictable 
machine failures are considered. Results demonstrate that the proposed method effectively 
generates scheduling solutions meeting various performance metrics and autonomously handles 
resource or task disturbances in dynamic events. Comparative analysis against SPT+FIFO, GP-based, 
and DQN-based methods indicates that the PPO-based method achieves superior solutions in terms 



of workload balance, order profit, and evaluation value, particularly under order insertion and 
machine failure scenarios. 
 

• Solving task scheduling problems in cloud manufacturing via attention mechanism and deep 
reinforcement learning [86] 

 
This study introduces an end-to-end scheduling algorithm designed to address task scheduling 
challenges in computer-integrated manufacturing (CMfg). The proposed algorithm utilizes the multi-
head attention mechanism to capture intercorrelations within the enterprise–enterprise and 
enterprise–task relationships and is trained using Deep Reinforcement Learning (DRL). Notably, the 
proposed algorithm demonstrates remarkably low response times compared to heuristic algorithms, 
providing scheduling solutions within seconds.Unlike other DRL algorithms, the proposed approach 
exhibits improved scheduling performance and adopts a more accessible modeling method. It 
achieves stability in training without the necessity for a step-based reward function, relying solely on 
the objective function. The incorporation of multi-head attention and DRL into scheduling problems 
represents an exploratory effort, yielding positive outcomes.Experimental results, conducted on a 
case involving the processing of automobile structure parts in CMfg, indicate that the proposed 
algorithm exhibits competitive scheduling performance and runtime compared to eight DRL 
algorithms, two heuristic algorithms, and two priority dispatching rules. Furthermore, the proposal 
demonstrates superior generalizability and scalability when compared to the other eight DRL 
algorithms, specifically SAC, PPO, DDQN, DQN, DQN with fixed Q-targets, Dueling DDQN, A3C, and 
A2C. 
 

• Dynamic scheduling of tasks in cloud manufacturing with multi-agent reinforcement learning 
[85] 
 

This paper introduces a novel scheduling algorithm, MAGCIS (Multi-Agent Graph Convolution 
Integrated Scheduler), designed to address dynamic scheduling challenges in the group service cloud 
manufacturing (GSCMfg) environment. The algorithm is formulated and trained using multiagent 
reinforcement learning.MAGCIS incorporates graph convolution to encode the graph-structure 
features of tasks, and a recurrent neural network is employed to record the processing trajectories of 
each task. The algorithm is trained with a mixing network under a centralized training decentralized 
execution architecture. The action space and reward function are independently designed.In a case 
study focused on aircraft structural part processing, MAGCIS demonstrated superior performance and 
generalizability compared to six other multi-agent reinforcement learning algorithms (QMIX, VDN, 
QTRAN_alt, QTRAN_base, REINFORCE, and Central_Vin). The paper suggests that MAGCIS has the 
potential to be applied to scheduling environments similar to GSCMfg, providing detailed insights into 
its training and execution processes. 
 

• Using real-time manufacturing data to schedule a smart factory via reinforcement learning 
[18] 

 
Utilizing real-time manufacturing data, this paper aims to design a dynamic scheduling method for the 
efficient production of a smart factory. The proposed approach integrates a Multi-Agent System 
(MAS)-based dynamic scheduling mechanism with a double Q-Learning algorithm. The dynamic 



scheduling mechanism begins with the design of the problem formulation module and scheduling 
point module. Subsequently, a genetic programming (GP) method is employed to generate sixteen 
high-quality rules, forming the scheduling rule library. Additionally, a state clustering module is 
introduced, utilizing autoencoder, self-organizing mapping neural network, and k-means clustering 
algorithm to efficiently cluster production attribute vectors. In the decision-making process, an 
improved Q-learning algorithm is applied to train the GP rule selector. This empowers the decision-
making agent to select the appropriate GP rule based on the production state at each scheduling 
point. Experimental results demonstrate the feasibility and superiority of the proposed method in 
real-time scheduling. The approach exhibits effectiveness in handling disturbance events within the 
manufacturing process, showcasing its potential for optimizing smart factory production objectives. 
 

• Multi-Agent Reinforcement Learning for Real-Time Dynamic Production Scheduling in a Robot 
Assembly Cell [12] 

 
A Multi-Agent Reinforcement Learning (MARL) system is introduced for the dynamic scheduling of 
assembly jobs in a robot assembly cell. The approach employs a Double Deep Q-Network (DQN) 
algorithm and introduces a generalized observation, action, and reward design tailored for the 
dynamic flexible job shop scheduling (FJSP) context.During a centralized training phase, each agent 
(robot) within the assembly cell makes decentralized scheduling decisions based on local 
observations. The proposed solution consistently achieves shorter makespans, enhancing the overall 
efficiency of the robot assembly cell. The algorithm's validation is demonstrated through a conveyor 
case study, with the MARL system design being broadly applicable to commonly studied FJSP 
scenarios. The study also explores the impact of varying observation sizes for each agent on 
optimization performance. 
 

• Deep reinforcement learning based scheduling within production plan in semiconductor 
fabrication [40] 

 
This study employs deep reinforcement learning (RL) to address scheduling processes within a 
production plan. The Deep Q-network (DQN) algorithm is utilized, and novel state, action, and reward 
definitions are introduced to optimize the scheduling policy. The performance of the proposed deep 
RL method is compared with other dispatching rules, demonstrating its superiority across diverse 
cases. Particularly, the study focuses on a semiconductor fabrication model, where the DQN algorithm 
is compared to Setup-based, PBB, and Plan-based rules. The proposed method achieves an 
approximately 19% to 21% improvement in average throughput compared to the dispatching rules. 
Furthermore, the average lead-time of the proposed method decreases by approximately 39% to 63% 
in comparison to the dispatching rules. 
 

• Reinforcement learning for online optimization of job-shop scheduling in a smart 
manufacturing factory [100] 

 
This paper introduces a smart scheduler designed to manage real-time jobs and unexpected events 
within smart manufacturing factories. The smart scheduler employs composite reward functions to 
enhance decision-making capabilities and learning efficiency. Utilizing deep reinforcement learning 
(RL), the scheduler autonomously learns to schedule manufacturing resources in real-time, 



dynamically improving its decision-making abilities. The proposed scheduling model is evaluated 
through experiments on a smart factory testbed. Results demonstrate that the smart scheduler, 
optimized with composite reward functions, achieves efficient learning and scheduling performances, 
effectively handling unexpected events such as urgent or simultaneous orders and machine failures. 
In comparison to common online or offline scheduling methods, RL-based scheduling with composite 
rewards (RL-C) outperforms Genetic Algorithm (GA), Shortest Processing Time First (SPTF), and First 
Come First Serve (FCFS) methods. FCFS, relying on specific rules, lacks the ability to enhance decision-
making during scheduling processes. RL-based methods, specifically RL-B and RL-C, initially focus on 
minimizing order waiting times in real time. RL-C converges faster than RL-B, requiring 37.0% fewer 
training episodes. Thus, the proposed RL-C scheduling method demonstrates superior learning 
performances compared to traditional rule-based and basic RL scheduling methods. 
 

• Reinforcement learning approach to scheduling of precast concrete production [33] 
 
This study introduces a precast concrete (PC) production scheduling model based on a reinforcement 
learning approach, offering the flexibility to address various problem conditions with rapid 
computation and real-time efficacy. Experimental results reveal that the proposed model consistently 
outperforms other methods, demonstrating a 4–12% improvement in total tardiness with an average 
winning rate of 77.0%. The model holds the potential to enhance the success of off-site construction 
projects by ensuring stable progress in PC construction. Q-learning, along with dispatching rules like 
EDD, CR, SPT, and FIFO, was applied in the same case to highlight the effectiveness of the proposed 
model. The results indicate that the proposed model achieves the best total tardiness value of 20.5 by 
selecting dispatching rules based on shop conditions. EDD follows as the second-best method (31.0), 
with Q-learning ranking third (37.6). CR and SPT exhibit lower performance, while FIFO performs the 
least effectively in the practical case. 
 

• Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement 
Learning [30] 
 

Despite the increasing prevalence of automation in manufacturing systems, human operators remain 
essential for various activities. This work introduces a framework for task allocation in human–
machine manufacturing systems, employing a reinforcement learning (RL)-based method. The agent is 
trained iteratively in an RL framework using task allocation data, and recurrent layers are used to 
assess and enhance unobservable states of human operators. The agent allocates tasks based on the 
expected cumulative discounted reward in each episode, considering factors such as fatigue 
accumulation and task competence level of human operators. The proposed approach, utilizing deep 
learning (DL) as a framework and RL for performance updates, outperforms classical dispatching rules 
in terms of mean flowtime. In comparison to shortest processing time (SPT) and first-in-first-out 
(FIFO) rules, the proposed method yields a shorter mean flowtime with less variation. Specifically, for 
1500 episodes, the proposed method demonstrates a mean and standard deviation of mean flowtime 
(m = 25.97, s = 16.44), outperforming the SPT rule (m = 39.98, s = 29.19) and FIFO rule (m = 39.84, s = 
24.47). This outcome suggests improved performance in terms of flowtime, attributed to workload 
balance among operators and task assignment based on appropriate competence levels.  
 

• A Dynamic Chemical Production Scheduling Method based on Reinforcement Learning [95] 



 
This paper addresses the challenge of dynamic chemical production scheduling, where processing 
strategies need to adapt to changing order demands. Traditional methods struggle with the 
uncertainty of task objectives in this context. The paper introduces proximal policy optimization 
algorithms, a type of reinforcement learning method, to tackle this issue. An improved state function, 
considering the difference between short-term and long-term orders, is proposed. This enhancement 
effectively resolves the dynamic chemical production scheduling problem with uncertainty. 
Experimental results on the dynamic chemical production scheduling model, compared with the 
policy gradient algorithm, demonstrate that the proposed method achieves higher rewards in 
scheduling, faster convergence, and less performance fluctuation. Specifically, the mean profit and 
mean variance in the Policy Gradient case are 181.3481 and 686.4350, respectively, while in the PPO 
case, they are 203.5996 and 45.0526, respectively. These results indicate that the methods presented 
in this paper can consistently handle the complexity and uncertainty of chemical production 
scheduling. 
 

• Reinforcement learning and digital twin-based real-time scheduling method in intelligent 
manufacturing systems [96] 

 
 This work introduced a novel approach to real-time scheduling, named "twins learning," which 
integrates reinforcement learning and digital twin technology. This innovative method aims to 
address diverse objectives concurrently. Initially, a virtual twin is created to simulate the interaction 
among multiple resources, encompassing physical aspects, behaviors, and rules essential for decision-
making. Subsequently, the real-time scheduling challenges are formulated as a Markov Decision 
Process, and dedicated reinforcement learning algorithms are crafted to acquire improved scheduling 

Figure 8: TL Framework [96] 

 

Figure 9: Application of TL in real production logistics system [96] 



policies. The outcomes of a case study demonstrate the exceptional adaptability and learning 
capabilities of the proposed method in the realm of intelligent manufacturing.  Leveraging the Markov 
Decision Process (MDP) framework for both the task assignment problem and the AGV (Automated 
Guided Vehicle) avoidance problem, they have developed specialized agents for task assignment and 
avoidance. These agents are designed to achieve optimal task assignment and conflict-free routing. 
The assignment agent is dedicated to optimizing the allocation of tasks, while the avoidance agent 
focuses on ensuring AGV paths are free from conflicts. This integrated approach harnesses the power 
of MDP to enhance efficiency and streamline operations in the context of task assignment and AGV 
routing. 
 

• Discovery of customized dispatching rule for single-machine production scheduling using deep 
reinforcement learning [10] 
 

"In this research, they applied deep reinforcement learning to the optimization of dispatching rules 
tailored to specific production states in the context of a single-machine production scheduling 
problem. To formulate these customized dispatching rules, the authors leveraged parameters 
inherent to the production system (Processing time 𝑝𝑘, Batch size of the machine 𝑏. Due date 𝐷𝑘 and 
Quantity 𝑞𝑘). Each rule was crafted by multiplying individual parameters with random weights, 
incorporating arithmetic operators, and determining whether the largest or smallest numerical value 
linked to the production order should be chosen. Recognizing the impracticality of storing Q values 
using a traditional Q-table due to complexity, a deep Q network was employed to calculate Q-values 
based on four key attributes representing the production state. These attributes include the number 
of queuing production orders, mean and standard deviation of slack time for all queuing production 
orders, and the batch size of the machine. 
The primary production objective, measured in terms of total tardiness, guided the evaluation. 
Preliminary results indicated the effectiveness of the customized dispatching rules selected through 
deep reinforcement learning across a majority of the test cases. Moreover, the approach 
outperformed traditional scheduling algorithms such as FIFO, EDD, and SPT, showcasing its potential 
for enhanced production scheduling outcomes. Three widely recognized dispatching rules - FIFO, SPT, 
and EDD - were also employed in the production process. Notably, there were instances where SPT 
exhibited superior performance in minimizing total tardiness (three instances). The current study, 
conducted over 500 training episodes, anticipates that augmenting the number of training episodes 
could further enhance production performance, specifically in terms of minimizing total tardiness, by 
dynamically assigning customized dispatching rules. Upon comparing the results of these established 
dispatching rules with those of the dynamically assigned customized dispatching rules, preliminary 
findings indicate that in 46 out of 50 instances (92% of all tested cases), the dynamic assignment of 
customized dispatching rules led to better performance in total tardiness minimization. This 
underscores the potential effectiveness and adaptability of dynamically assigning dispatching rules 
based on the evolving production state. 
 

• Deep Reinforcement Learning-Based Job Shop Scheduling of Smart Manufacturing [101] 
 
To address the evolving challenges of scheduling operations on machines, this paper introduces a 
novel approach, employing Deep Reinforcement Learning with an Actor-Critic algorithm (DRLAC). The 
Job-Shop Scheduling Problem (JSSP) is formulated as a Markov Decision Process (MDP). The state of a 



JSSP is represented using Graph Isomorphism Networks (GIN) to extract node features during 
scheduling. The optimal scheduling policy is derived by guiding these included node features to the 
best next action in the schedule. The training algorithm of the Actor-Critic (AC) network, based on 
reinforcement learning, is adopted to achieve the optimal scheduling policy. To demonstrate the 
effectiveness of the proposed model, a case study is presented illustrating a conflict between two job 
schedules. Furthermore, the proposed model is applied to a benchmark dataset, and the results are 
compared with traditional scheduling methods and trending approaches. Numerical results indicate 
that the proposed model exhibits adaptability in real-time production scheduling. The average 
percentage deviation (APD) of our model achieves values between 0.009 and 0.21 when compared 
with heuristic methods, and values between 0.014 and 0.18 when compared with other trending 
approaches (GA DRL MARL DDPG DRLAC APD-DRLAC). These findings suggest the efficacy of the 
proposed model in optimizing scheduling operations. 
 

• An Adaptive Reinforcement Learning-Based Scheduling Approach with Combination Rules for 
Mixed-Line Job Shop Production [102] 

 
This paper introduces an adaptive real-time scheduling method tailored for the mixed-line job shop 
scheduling problem, incorporating combined processing constraints. The innovation lies in the 
introduction of a virtual operation, effectively simplifying and transforming the challenge posed by 
combined processing constraints into a classical flexible job shop scheduling problem. To address the 
dynamic coexistence of trial-production and batch production scenarios, a disturbance processing 
mechanism is established. Recognizing the significant impact of emergency trial-production orders on 
batch production plans, the k-nearest neighbor method is employed to identify historical operations 
most similar to trial-production components. To overcome the limitations of traditional single 
dispatching rule strategies, the scheduling decision-making process is divided into the machine 
selection stage and buffer job sequencing stage. A scheduling decision model is established based on 
contextual bands (CBs) within reinforcement learning, employing rough continuous trial and error 
learning. This enables each scheduler to dynamically select optimal machine selection rules and buffer 
job sequencing rules based on the real-time state of the scheduling environment, significantly 
enhancing adaptability and performance. The proposed methodology is evaluated and validated 
through experiments conducted in a smart manufacturing setting, the mixed-line job shop of missile 
structural parts in Shanghai. Results demonstrate that the proposed algorithm achieves a 5% and 2% 
performance improvement in completion time compared with epsilon greedy and Q-learning 
algorithms, respectively. Furthermore, the proposed method exhibits more than a 10% improvement 
even compared to the best rule (SPT + FIFO) among the nine single dispatching rules in this simulation 
experiment (SQ+FIFO, SQ+SJF, SQ+LIFO, LQE+FIFO, LQE+SJF, LQE+LIFO, SPT+FIFO, SPT+SJF, SPT+LIFO). 
When compared with epsilon greedy and Q-learning algorithms, the proposed algorithm 
demonstrates a 7% and 5% performance improvement in terms of completion time. 
 

• A fuzzy hierarchical reinforcement learning based scheduling method for semiconductor wafer 
manufacturing systems [82] 
 

This paper introduces a Fuzzy Hierarchical Reinforcement Learning (FHRL) approach for scheduling in 
a Semiconductor Wafer Fabrication System (SWFS). The primary objective is to control the cycle time 
(CT) of each wafer lot, enhancing on-time delivery by adjusting the priority of each lot. The proposed 



FHRL approach addresses challenges arising from layer correlation and wafer correlation of CT due to 
re-entrant process constraints. The hierarchical model incorporates a recurrent reinforcement 
learning (RL) unit in each layer to control the corresponding sub-CT of each integrated circuit layer. 
Within each RL unit, a fuzzy reward calculator is designed to mitigate the impact of uncertainty in 
expected finishing times resulting from the rematching of a lot to a delivery batch. The results 
demonstrate the efficacy of the FHRL approach, with the mean deviation (MD) between actual and 
expected completion times of wafer lots under its scheduling being only about 30% of the compared 
methods across the entire SWFS(Ada_Rule, GEP,FHRL, FIFO, SPT, and EDD).This suggests the 
superiority of the proposed FHRL approach in achieving more accurate and reliable scheduling 
outcomes in semiconductor wafer fabrication. 
 

• Dynamic matching with deep reinforcement learning for a two-sided Manufacturing-as-a-
Service (MaaS) marketplace [61] 

 
This paper addresses the challenge of near-real-time decision-making for suppliers within a 
manufacturing-as-a-service (MaaS) marketplace. Traditional myopic decision-making methods, like a 
first-come, first-serve approach, may result in suboptimal revenue generation in this dynamic and 
stochastic environment. The problem is formulated as a Markov Decision Process (MDP) and tackled 
using deep reinforcement learning (DRL). The empirical simulations conducted in the study compare 
the performance of DRL with four baselines (TQ, Random, GH, and RHA). In the simulated 
environment, orders arrive sequentially on the platform, and in each period, the platform takes 
actions to accept orders until it selects an invalid order or the action "wait." The simulator updates 
the environment based on the accepted orders and moves to the next period. Waiting orders remain 
in the queue until a period before their due date. Results indicate that DRL, specifically the Deep Q-
Network (DQN), outperforms the baselines considerably. DQN demonstrates a higher order 
acceptance rate, attributed to its ability to learn, and maximize revenue over time. It efficiently 
manages capacity, choosing smaller orders with higher revenue per hour and reserving capacity for 
potentially better orders in the future. The baseline TQ performs slightly better than RHA but 
significantly worse than DQN, primarily due to the limited environmental information captured in its 
state definition. In conclusion, this early work showcases a learning approach for near-real-time 
decision-making in a MaaS marketplace, highlighting the effectiveness of DRL, particularly the DQN 
model, in optimizing order acceptance and revenue generation for suppliers. 
 

• Reconfigurable manufacturing system scheduling: a deep reinforcement learning approach 
[78] 

 
This paper addresses the challenges and opportunities posed by Reconfigurable Manufacturing 
Systems (RMS) in efficiently scheduling multiple products. A novel approach is presented, utilizing a 
dynamic control policy established by a group of deep reinforcement learning agents. These 
collaborative agents, equipped with a shared value decomposition network, work towards minimizing 
the make-span by guiding automated guided vehicles to transport modules of machines, raw 
materials, and finished products within the RMS.To evaluate the effectiveness of this framework, two 
numerical case studies are implemented. Both case studies involve a fully automated RMS tasked with 
producing three different products. The results from these case studies indicate that the proposed 
training framework is applicable and efficient, especially for medium and small-scale RMS scheduling 



problems, as long as a substantial number of training iterations are conducted before the algorithm 
starts to perform effectively. 
 

• Designing an adaptive production control system using reinforcement [35] 
 

In the pursuit of operational excellence within the competitive landscape of manufacturing 
companies, traditional production control methods are proving insufficient. To address this, the paper 
introduces a methodology for the design of an adaptive production control system utilizing 
reinforcement learning. The application of reinforcement learning in production control offers an 
alternative approach, especially with the increasing digitization of manufacturing processes. The 
methodology addresses key challenges in the application of reinforcement learning methods: 
Designing State Information - the information provided to the RL agent as the state greatly influences 
its learned performance and Modeling the Reward Signal - the formulation of the reward signal is 
crucial as it represents the optimization objective. The paper thoroughly explores and applies these 
principles to two real-world production scenarios from the semiconductor industry. The analysis 
reveals the adaptability of RL agents to different objectives and application scenarios. Even "simple" 
RL agents with a constant reward function outperform random heuristics. Specific RL agents can 
surpass existing rule-based benchmark heuristics (RANDOM, FIFO, and VALID). Additionally, an 
enhanced state representation improves performance when related to the objectives. The design of 
the reward signal allows for easier optimization of multiple objectives. Lastly, specific configurations 
of RL agents exhibit high performance across different production scenarios. In conclusion, the study 
demonstrates that reinforcement learning can be successfully applied to achieve adaptive control 
strategies in manufacturing, showcasing its flexibility and superior performance compared to 
traditional methods in certain scenarios. 
 

• Control of Shared Production Buffers: A Reinforcement Learning Approach [56] 
 

This study addresses a buffer control problem inherent in stochastic flow lines featuring shared 
production buffers. Buffer control involves the implementation of decision rules governing the 
movement of items between buffers and machines, particularly during the release or completion 
times of parts across different production stages. The authors present a conceptual model for this 
problem, focusing on a fundamental scenario with a central buffer. They elucidate how this model can 
be extended to encompass various system configurations, ultimately addressing a tactical buffer 
allocation problem. If the flow line exhibits characteristics of a Markovian production system, the 
authors formulate the problem as a continuous-time Markov decision problem, seeking an optimal 
stationary policy. To facilitate the solution, they employ a uniformization approach from the 
literature, enabling the discretization of the Markov decision problem in time and making it amenable 
to standard algorithms. The paper proposes a straightforward implementation of Q-learning, a 
reinforcement learning technique, which converges to an optimal stationary policy. The effectiveness 
of this approach is validated through a numerical experiment involving a small-scale toy problem. 
 

• A reinforcement learning model for material handling task assignment and route planning in 
dynamic production logistics environment [29] 

 



This study aimed to assess the application of Reinforcement Learning (RL) in material handling tasks 
within a Shared Production Line (SPL) context in manufacturing companies. Specifically, the focus was 
on the routing of Automated Guided Vehicles (AGVs) for material handling, taking dynamic aspects 
into account. The study introduced an architecture that integrates RL into SPL, defining key elements 
of RL such as environment, value, state, reward, and policy. The managerial implications of the 
findings suggest a departure from traditional fixed-route policies for material handling. Instead, 
applying RL in SPL can lead to dynamic and real-time assignment, sensing, and response to individual 
needs in material handling, potentially reducing makes pan, distance, and energy consumption while 
enhancing the overall responsiveness of SPL, thereby contributing to increased manufacturing 
competitiveness. The model presented in this study is based on the Q-learning algorithm. The main 
goal of Q-learning is to formulate and establish a policy (denoted as "p") for guiding the Automated 
Guided Vehicle (AGV) effectively along the optimal path. Through extensive exploration of numerous 
possibilities for material transfer, the AGV, functioning as an agent, is expected to learn and adopt a 
well-defined deterministic policy that outlines the appropriate course of action in any given situation. 
Initially, the approach involved the implementation of a completely random policy. However, as the 
model underwent learning from thousands of potential navigation scenarios, it gradually refined and 
improved its performance. 
 

• Integrated Planning and Scheduling for Customized Production using Digital Twins and 
Reinforcement Learning [55] 

 
To tackle the challenge of customized production, the paper introduces a self-learning process 
planning approach based on a digital twin, utilizing Deep-Q-Network. This method is designed to 
identify optimized process plans and workflows for the concurrent production of personalized 
products. The authors conducted an evaluation of the approach using a virtual aluminum cold milling 
factory from the SMS Group within the BaSys 4 project context. The objective of the evaluation was to 
demonstrate that the proposed approach is effective in managing a large problem space. The 
approach to integrated planning and scheduling introduces a broader problem space, necessitating 
the utilization of advanced reinforcement learning techniques, such as the Deep Q-Network (DQN), to 
discover nearly optimal solutions within a feasible timeframe. The methodology is crafted for 
seamless integration into a production system based on a Service-Oriented Architecture (SOA). Within 
this framework, Production Decision Tables (PDTs) and Resource Decision Tables (RDTs) serve as 
representations of assets during the production phase, actively collecting authentic production data. 
In the event of unforeseen disruptions requiring rescheduling, PDTs and RDTs transform into virtual 
products and resources, actively engaging in the integrated planning and scheduling processes. This 
dynamic involvement allows the approach to access real-time data from the operational factory, 
facilitating decision-making grounded in authentic production conditions. 
 

• Modeling Production Scheduling Problems as Reinforcement Learning Environments based on 
Discrete-Event Simulation and OpenAI Gym [39] 
 

In this study, a methodology was introduced to guide the modeling of production scheduling 
problems as Reinforcement Learning (RL) environments. The approach involved the integration of 
Discrete Event Simulation (DES) and the OpenAI Gym interface. DES was employed for modeling the 
underlying processes and dynamics inherent in any scheduling problem, while the OpenAI Gym 



interface ensured a standardized development process, facilitating the deployment of pre-
implemented RL algorithms. This method enabled the deployment of algorithms and agents for two 
distinct scheduling problems: the allocation of jobs to resources and the sequencing of jobs for a 
resource. Additionally, the proposed step method provided flexibility, allowing for the training of a 
single agent for one of the two problems or multiple agents simultaneously for both problems. 
 

• Simultaneous Production and AGV Scheduling using Multi-Agent Deep Reinforcement Learning 
[68] 
 

The growing utilization of automated guided vehicles (AGVs) introduces additional flexibility and 
complexity to overall production systems, leading to the emergence of the Flexible Job Shop 
Scheduling Problem (FJSSP). This problem, involving the coordination of AGVs, is NP-hard and 
challenging to optimize. To address this, a Reinforcement Learning Multi-Agent (MARL) system is 
proposed, where job scheduling, and vehicle planning are collaboratively managed. The concept is 
outlined and implemented in a prototype. Experiments were carried out in a Unity-based simulation 
environment with 4 production cells and 2 AGVs, solving randomly generated production planning 
problems comprising 13 jobs of types 1-3. The theoretical minimum production time, including final 
transport to the outgoing warehouse, is 554 time units. As a reference, Shortest-Job-Next (SJN) and 
Earliest Due Date (EDD) heuristics are employed for the machines in the multi-agent system. The RL-
based agent system outperforms the heuristics, achieving up to a 100-time unit improvement. While 
the results surpass the minimum of 554 time units for all processes, constraints such as transport 
capacity limits and physical location pose challenges, highlighting the importance of effective 
coordination between machines and logistics. 
 

• A digital twin to train deep reinforcement learning agent for smart manufacturing plants: 
Environment, interfaces and intelligence [90] 
 

In this study utilizes digital twin simulation and communication technologies to construct virtual 
counterparts of robot manufacturing systems. These virtual environments serve as the foundation for 
training an intelligent scheduler based on Deep Reinforcement Learning (DRL) in a safe and controlled 
manner. Unlike previous attempts at integrating Reinforcement Learning into work cell scheduling, 
the proposed system-level digital twinning extends to complex manufacturing systems, leveraging 
deep neural networks to address challenges related to large state and action spaces.The 
implementation involves the creation of high-fidelity Virtual Commissioning platforms using Siemens 
Tecnomatix Process Simulate. These platforms simulate and synchronize system components with live 
signals, employing advanced tools for event-based simulation, collision detection, robot reachability 
testing, and robot configurations through reverse kinematics. The offline programming process 
enables the direct transfer of generated robot programs to physical robot systems without 
intermediate translations. After constructing the virtual environment, system communications are 
implemented on both virtual and physical pathways. "Software-in-the-loop" and "Hardware-in-the-
loop" testing methods are discussed, serving as the baseline for virtual commissioning control loops. 
The intelligent scheduler's communication pathway with the virtual cell is established, facilitating 
repetitive offline training cycles and enabling Industrial Internet of Things (IIoT) for remote human 
intervention through customized OPC clients. The Manufacturing Intelligence algorithm, framed by 
Deep Reinforcement Learning, is trained on the constructed digital twin. Both natural Deep Q-



Learning and its enhanced version, incorporating Prioritized Experience Replay and Double Q 
Network, are implemented to improve data efficiency. The outcome is a robust dynamic scheduler, 
trained as Deep Reinforcement Networks, capable of being fed by live signals from either the physical 
cell or its digital twin. These networks are designed to be reusable and transferable for other specific 
learning tasks. The integration of the proposed Digital Engine that supports scheduling in an industrial 
virtual commissioning platform significantly enhances the capabilities of data analytics by interfacing 
with industrial simulation and automation software. This data-driven manufacturing intelligence is 
poised for deployment in specific industrial applications, exemplifying a use case for Smart 
Manufacturing implementation. 
 

• A Deep Reinforcement Learning Based Scheduling Policy for Reconfigurable Manufacturing 
Systems [77] 

 
"To minimize reconfiguration actions in a generic Reconfigurable Manufacturing System (RMS), this 
paper employs a deep reinforcement learning agent in conjunction with a built-in discrete event 
simulation model. The agent, focused on completing assigned order lists while minimizing 
reconfiguration actions, exhibits superior performance compared to the conventional first-in-first-out 
dispatching rule after self-learning. The use of Deep Q-Network (DQN) scheduling agents 
demonstrates a significant potential advantage in this context. The study reveals that DQN agents 
outperform the traditional dispatch rule (first-in-first-out) even with a limited number of simulations 
turns. Training results indicate that various DQN agents can quickly converge to an above-average 
level. Dueling Double DQN (DDDQN) agents, known for their advanced stability, exhibit improved 
stability as suggested by their inventor. However, it is noted that, despite the enhanced converging 
capability and stability of DDDQN compared to basic DQN, there are instances where an agent may 
deviate significantly from optimal performance, emphasizing the need for ongoing optimization of 
agent stability using advanced techniques like priority replay memory and bagging strategy. 
The observation that all agents converge in several episodes suggests that the oversimplified nature 
of the RMS in the simulation may not fully unveil the potential of the agents. The model's simplicity, 
with only the initial configuration of every Reconfigurable Machine Tool (RMT) introducing 
randomness, indicates that future models should consider more realistic factors. These factors may 
include fluctuated delivery times, random breakdowns of RMTs, a limited number of modules, 
material resources, products with multiple manufacturing processes, and dynamic order lists with task 
insertions. Addressing these complexities will contribute to a more comprehensive and representative 
simulation model. 
 

• Reinforcement Learning With Composite Rewards for Production Scheduling in a Smart 
Factory [76] 

 
This paper introduces an AI scheduler designed for online and dynamic scheduling of manufacturing 
jobs within a smart factory. The reinforcement learning (RL) method incorporated into the system 
imparts self-organizing and self-learning capabilities, particularly under uncertain conditions. A novel 
composite reward function is formulated to enable the AI scheduler for multi-objective learning and 
optimization of production schedules, considering rewards for time savings (RD), energy profits (RP), 
machine utilization (RU), and workload distribution (RV). The proposed AI scheduler relies on a 
manufacturing value network to estimate state-action values using high-dimensional sensor data from 



manufacturing components. It then learns real-time policies based on the states of available machines 
and pending jobs. The intelligence of AI schedulers is enhanced through streamed data feeds, training 
experiences, and online learning, demonstrating potential for generalizing to new work orders. The 
method is capable of handling simultaneously created work orders and uncertainties, such as machine 
failures. The composite reward function effectively addresses urgent work orders while maintaining a 
balance between efficiency and profits. The methodology is evaluated in a smart manufacturing 
setting, demonstrating improved multi-objective performance metrics and effective coping with 
unexpected events like urgent work orders and machine failures. Simulation results comparing make 
spans for different scheduling methods (i.e., optimum, AI, RL, and CNP) under normal conditions and 
machine failures show the AI scheduler's comparable performance with optimal solutions, with only a 
minor time delay in case of machine failures. 
 

• Two-time scale reinforcement learning andapplications to production planning [97] 
 
This paper centers around the application of a two-time-scale reinforcement learning (RL) approach, 
utilizing a production planning system as an illustrative example to showcase its concepts and initial 
outcomes. Monte Carlo simulations serve as the data source for training and validation purposes. The 
primary objective is to highlight the effectiveness of the two-time-scale method in reducing 
dimensionality, thereby addressing system complexity. The results presented in this paper 
demonstrate favorable approximations, particularly when the underlying process exhibits both weak 
and strong interactions. A production planning problem with failure-prone machines is used 
throughout this study to illustrate the main ideas, key steps and results. 
 

• Multi-agent system and reinforcement learning approach for distributed intelligence in a 
flexible smart manufacturing system [34] 
 

"In this study, a smart manufacturing system was introduced, featuring machines equipped with 
intelligent agents possessing autonomy in decision-making, sociability for interaction, and the ability 
to dynamically learn from changing environments using Multi-Agent Systems (MAS) and 
Reinforcement Learning (RL). The unique aspects of this study compared to existing ones in the field 
include: 
i) Application of autonomous distributed decision-making of machines to a scheduling problem. 
ii) Implementation of a method to assess the importance of jobs by dynamically learning in changing 
environments. 
iii) Inclusion of functions enabling machines to voluntarily drop themselves in job negotiations for the 
overall system's benefit. 
iv) Implementation of a mechanism where a specific machine requests other machines to drop out 
during job negotiations. 
v) Integration of learning, adaptation, and decision-making in response to dynamically changing 
environments by applying RL to the functions mentioned in iii) and iv). 
The significance of the proposed system, as indicated by experimental results, includes the observed 
effectiveness of evaluating job importance, especially in sequence-dependent setup time 
environments. Additionally, performance comparisons with dispatching rules (SPT, EDD, LPT, and LIS) 
and a benchmarking distributed MAS algorithm show that the proposed Smart Manufacturing System 
(SMS) is effective in scheduling for a personalized production system. 



 

• A Reinforcement Learning Approach to Robust Scheduling of Semiconductor Manufacturing 
Facilities [26] 

 
This article addresses a scheduling problem in the die attach and wire bonding stages of a 
semiconductor packaging line, considering variabilities in production requirements, available 
machines, and initial setup status. The study proposes a novel scheduling method using 
reinforcement learning to enhance robustness and achieve performance improvements. To test the 
robustness, neural networks trained on small-scale problems are applied to solve large-scale 
scheduling problems. Results demonstrate that the proposed method outperforms existing 
approaches (GA, SSU, SPTSSU, MOR, MWR, and SPT) with a short computation time. Moreover, the 
trained neural network performs well on unseen real-world scale problems, suggesting the method's 
viability for actual semiconductor packaging lines. 
 

• Intelligent scheduling of discrete automated production line via deep reinforcement learning 
[74] 

 
This paper introduces a deep reinforcement learning (RL)-based online scheduling method for 
discrete automated production lines. The paper establishes a discrete event simulation (DES) 
environment to provide an intelligent and efficient setting for the RL model, achieving competitive 
performance in online intelligent scheduling policies. The proposed method includes a state modeling 
approach for discrete automated production line processing, simplifying state complexity and 
enhancing the precision of the simulation environment. The intelligent scheduling based on deep RL 
combines DES and iterative learning of RL. The agent is provided with ample opportunities to 
continually choose transferring actions by introducing null events after transferring. The algorithm 
effectively handles conflicts between driving simulation time and the occurrence of the next event, 
considering the real time consumed by transferring. The intelligent scheduling based on deep RL 
demonstrates the ability to learn efficient policies in various production lines adaptively and exhibits 
robustness to processing time randomness. In scenarios where processing time follows a log-normal 
distribution, the agent learns to schedule effectively in different randomness levels by adjusting 
variances. Experiments conducted on linear, parallel, and re-entrant discrete automated production 
lines validate that the scheduling policies have comparable performance to heuristic scheduling. Deep 
RL strikes a balance between efficiency and stability in linear and re-entrant scenarios, although it 
may perform less optimally than heuristics in parallel scenarios. Additionally, a comparison between 
deep RL and FIFO in stochastic scenarios indicates that deep RL exhibits sufficient robustness to 
random processing time. 
 

• Reinforcement learning for an intelligent and autonomous production control of complex 
job‑shops under time constraints [5] 

 
Reinforcement learning (RL) presents promising opportunities for addressing the increasing 
complexity in managing modern production systems. The authors of this study employ a Q-learning 
algorithm in conjunction with a process-based discrete-event simulation to train a self-learning, 
intelligent, and autonomous agent for the order dispatching decision problem in a complex job shop 
environment with strict time constraints. This work is the first to combine RL in production control 



with strict time constraints, and the simulation accurately represents the characteristics of complex 
job shops commonly found in semiconductor manufacturing. The study addresses a real-world use 
case from a wafer fab, and the developed and implemented framework is evaluated against 
benchmark heuristics. The results indicate that RL can be successfully applied to manage order 
dispatching in a complex environment with time constraints. The RL agent, equipped with a gain 
function that rewards the selection of the least critical order concerning time constraints, 
outperforms heuristic rules that strictly follow the selection of the most critical lot first. Consequently, 
this research demonstrates that a self-learning agent can effectively manage time constraints, with 
the RL agent performing better than the traditional benchmark, a time-constraint heuristic that 
combines due date deviations and a classical first-in-first-out approach. 
 

• Petri-net-based dynamic scheduling of flexible manufacturing system via deep reinforcement 
learning with graph convolutional network [23] 

 
To address the dynamic scheduling challenges in Flexible Manufacturing Systems (FMSs), which 
involve shared resources, route flexibility, and stochastic arrivals of raw products, this paper presents 
a novel Petri-net-based dynamic scheduling approach utilizing Deep Q-Networks (DQN) with Graph 
Convolutional Networks (GCN).The timed Stochastic Sequential Process Resource (S3PR) is employed 
to model an FMS, capturing operation sequential order, resource utilization constraints, and 
processing time. Subsequently, a Petri-Net-based Convolutional (PNC) layer is designed, incorporating 
two graph convolution sub-layers. These sub-layers facilitate feature propagation from places to 
transitions and transitions to places, respectively. The PNC layer offers the advantage of having 
trainable parameters related solely to the number of filter channels, overcoming the parameter 
explosion problem associated with building deep neural networks. Finally, a masked DQN, integrated 
with the PNC network, is utilized to address the timed S3PR dynamic scheduling problem defined by 
the Markov Decision Process (MDP). Three experiments were conducted to validate the efficacy of 
the proposed method. The first experiment demonstrated that the simple PNC network effectively 
handles timed S3PR states with improved stability compared to a Multi-Layer Perceptron (MLP). The 
second experiment illustrated that the proposed masked DQN with the PNC network achieves 
comparable dynamic scheduling performance with significantly faster online computation compared 
to heuristic search methods (D2WS and FCFS+). Moreover, the scheduling performance, learning 
convergence, and robustness of the proposed method were found to be superior to MLP-based 
methods. In the third experiment, the adaptability of the proposed method to environmental changes 
surpassed that of heuristic methods. 
 

• Logistics-involved QoS-aware service composition in cloud manufacturing with deep 
reinforcement learning [46] 

 
In this work, they introduce a novel Quality of Service (QoS)-aware service composition model for 
cloud manufacturing, leveraging Deep Reinforcement Learning (DRL) with a specific focus on 
integrating logistical considerations. The approach involves the development of a DRL-based service 
composition model tailored for cloud manufacturing, explicitly addressing logistical challenges. The 
core of the model involves the formulation of the service composition process as a Markov Decision 
Process, a mathematical framework suitable for decision-making scenarios. To enhance the model's 
ability to navigate logistical complexities, they crafted a reward function that incorporates logistical 



considerations. The DRL algorithm employed in the study, denoted as PD-DQN, amalgamates key 
components such as the foundational DQN algorithm, the dueling architecture, and the prioritized 
replay mechanism. This algorithm is specifically tailored for Cloud Manufacturing Service Composition 
(CMfg-SC). A comprehensive series of experiments were meticulously executed to assess various 
facets of the proposed approach, including its effectiveness, efficiency, robustness, adaptability, and 
scalability in addressing challenges inherent in CMfg-SC. The outcomes of these experiments reveal 
that, in direct comparison with conventional DQN and Q-Learning algorithms, our proposed PD-DQN 
algorithm consistently exhibits superior performance. Experiments were conducted by taking 
production of automotive engine parts such as valve, EGR passage, clutch housing, and oil pan from as 
an application scenario, in which representative subtasks can be valve, passage, crankcase, gear 
housing, and oil pan, etc. Different simulations considered several tasks from 10 to 40 subtasks and 
there are 30 candidate services for each subtask. In all scenarios PD-DQN demonstrated a better 
convergence and higher rewards compared to DQN, and Q-Learning. This signifies its potential to 
serve as a more effective solution in the realm of QoS-aware service composition for cloud 
manufacturing. 
 

• Deep Reinforcement Learning for Semiconductor Production Scheduling [7] 
 

In this research contribution, Reinforcement Learning (RL) employing a Deep Q-Network (DQN) agent 
was effectively implemented for the domain of production scheduling. The innovative system 
demonstrated the capability to autonomously generate globally optimal scheduling solutions, 
eliminating the need for human intervention or any predefined expert knowledge. Notably, the 
system exhibited a remarkable adaptability, with the capacity to undergo training and adaptation 
within a matter of hours. The inherent flexibility of the system enables it to dynamically adjust to 
predefined objectives. Specifically, in the examined case, there was a noteworthy reduction in the 
share of delayed lots. For instance, in the Technology Classe (TC 1), the percentage of delayed lots 
decreased from 17% to an impressive 1.3%. Simulations were conducted considering a semiconductor 
wafer processing. This outcome highlights the system's proficiency in optimizing scheduling objectives 
and addressing challenges in the production scheduling domain. 
 

• Optimization of global production scheduling with deep reinforcement learning [87] 
 
This paper reports an application of Reinforcement Learning (RL) using the Deep Q-Network (DQN) 
agent for the domain of production scheduling. The system showcased an autonomous capability to 
generate scheduling solutions that align with expert benchmarks, all achieved without human 
intervention or the need for prior expert knowledge. Although the developed algorithm did not 
surpass existing heuristics, it demonstrated the remarkable achievement of reaching expert-level 
performance within a mere two days of training. The system exhibited a keen ability to identify non-
optimal rules or implementation errors, exemplified by the detection of issues like the introduction of 
30% random actions at work center 2. The transparent nature of the system, characterized by a direct 
connection between the solution and global optimization targets, adds to its appeal. Additionally, the 
system's quick training and exchange capabilities, accomplished within a matter of hours, further 
contribute to its effectiveness in the field of production scheduling. 
 



• Optimized Adaptive Scheduling of a Manufacturing Process System with Multi-Skill Workforce 
and Multiple Machine Types: An Ontology-Based, Multi-Agent Reinforcement Learning 
Approach [70] 

 
In this paper, the authors introduce an ontology that describes a manufacturing system with multiple 
stages, machines, and products, all managed by a workforce with diverse skills. They employ a multi-
agent system to simulate scheduling and human resource agents, each striving to achieve their 
respective objectives. The agents collaborate through depth-limited search algorithms. This 
framework not only simulates real working processes but also takes a systematically cooperative, 
data-driven approach to adaptively reach scheduling decisions. The results demonstrate a progressive 
increase in rewards and robust convergence, considering factors such as workers' salaries and the 
number of options for staff assignments. 

7.2.1. Pioneering Contributions to the State of the Art: 

The articles conduct an extensive literature review focusing on the applications of Reinforcement 

Learning (RL) in the domain of machine scheduling problems. They critically analyse key aspects of RL 

as applied to machine scheduling, highlighting commonly addressed problem types, objectives, and 

constraints. Additionally, the reviews identifies both shortcomings and promising areas within the 

existing literature. RL has found application in diverse scheduling challenges within the manufacturing 

sector, encompassing areas like semiconductor manufacturing systems, cloud manufacturing, 

reconfigurable manufacturing, robots’ applications, and smart factories. 

7.2.2. Advantages of Reinforcement Learning in Scheduling: 

Reinforcement Learning (RL) boasts several advantages that set it apart from other machine learning 
methods. Notably, RL excels in addressing intricate scheduling problems featuring multiple objectives 
and constraints. Its ability to learn from experience and adapt to dynamic environments renders it 
particularly suitable for scenarios involving dynamic scheduling challenges. Additionally, RL stands out 
in optimizing scheduling decisions by considering the long-term repercussions of each decision. This 
stands in contrast to traditional scheduling methods, which may struggle with complex problems and 
adapting to changing environments. 

7.2.3. Areas for improvement and future directions: 

 
Considering the papers that focus on the application of RL in cloud manufacturing the principal areas 
for improvement are: 
 

• enhancements in adaptability to dynamic production demands, changing task priorities, 
scalability, real-time responsiveness, machine breakdowns and resources’ dependency. 

• designing proper reward functions, selecting proper neural networks, and defining action and 
state space in a reasonable way. 

• ensure more efficient management of the data sparsity problem. 

• better encoding of jobs 

• application of customised RL dispatching rules to different machines 



 
Reinforcement learning (RL) has demonstrated significant potential in addressing scheduling 
challenges within the manufacturing sector. Nevertheless, several obstacles and constraints must be 
overcome to advance the application of RL in manufacturing scheduling. The forthcoming directions 
for RL applications in manufacturing scheduling consider the following aspects: 
 
1. Management of High-Dimensional State and Action Spaces: The curse of dimensionality poses a 
challenge for RL algorithms when confronted with high-dimensional state and action spaces. To 
overcome this challenge, prospective research should concentrate on devising more efficient RL 
algorithms proficient in handling such complex spaces. An illustration of this can be found in the study 
‘Graph neural networks-based scheduler for production planning problems using reinforcement 
learning [21] ‘where the authors introduced a scheduler for production planning issues utilizing graph 
neural networks and reinforcement learning. This approach adeptly manages high-dimensional state 
and action spaces, yielding scheduling decisions near optimality. 
 
2. Reduction in Training Data Requirements: RL algorithms often demand substantial training data and 
training simulations to attain optimal performance, a demand that may prove impractical in certain 
manufacturing contexts. To counteract this limitation, future research endeavours should aim to 
formulate RL algorithms capable of achieving optimal performance with reduced training data and 
simulations. An example of this lies in the study, ‘Inverse Reinforcement Learning Framework for 
Transferring Task Sequencing Policies from Humans to Robots in Manufacturing Applications [58]’, 
enabling the transfer of task sequencing policies from humans to robots in manufacturing. This 
approach, grounded in human demonstrations, attains scheduling decisions near optimality with 
minimized training data. 
 
3. Management of Uncertainty and Stochasticity: RL algorithms may encounter challenges in handling 
uncertainty and stochasticity inherent in scheduling environments. To address this issue, future 
research should focus on developing RL algorithms equipped to navigate uncertainty and 
stochasticity. A case in point is the paper ‘Reinforcement learning-based dynamic production-logistics-
integrated tasks allocation in smart factories [41]’ proposing a reinforcement learning-based dynamic 
production-logistics-integrated task allocation system in smart factories. This approach effectively 
manages uncertainties and stochastic elements in scheduling environments, resulting in near-optimal 
scheduling decisions. 
 
4. Integration of RL with Other Optimization Techniques: Combining RL with other optimization 
techniques stands as a viable strategy to enhance scheduling decisions. An instance of this integration 
is evident in ‘A multi-objective reinforcement learning approach for resequencing scheduling 
problems in automotive manufacturing systems [42]’. This approach successfully integrates RL with 
multi-objective optimization techniques, yielding scheduling decisions approaching optimality. 

7.3. Application of Reinforcement Learning for Process control 

 

• Reinforcement learning for process control with application in semiconductor manufacturing 
[45] 



 
The paper addresses the critical issue of process control in semiconductor manufacturing, aiming to 
minimize process variation by obtaining optimal control actions based on historical offline data and 
real-time system output. In contrast to traditional control methods that rely on linear process models, 
the work introduces RL-based controllers, which are more versatile and not confined to specific 
process models. The proposed RL-based controllers are developed with consideration of domain 
knowledge availability for approximating process models. Two RL-based control algorithms are 
presented, and their theoretical properties are discussed based on widely accepted linear process 
models. Simulations in two scenarios demonstrate that RL-based controllers are not only superior or 
at least comparable to traditional controllers, such as the GHR controller, in linear cases, but also 
exhibit promising potential for handling more complex, non-linear scenarios. 
 

• A reinforcement learning approach for process parameter optimization in AM [14] 
 
The study addresses a process parameter optimization challenge using an on-the-fly model-free Q-
learning-based reinforcement learning (RL) approach. The optimization focuses on determining laser 
power (𝑃 ) and scan velocity (𝑣) combinations to maintain a steady-state melt pool depth (𝛿) of 1 mm 
in selective laser melting (SLM) of SS316L material. The RL framework is set up with the laser as the 
agent and the L-DED (laser-directed energy deposition) system emulated via an Eagar–Tsai function as 
the environment. The optimal 𝑃 − 𝑣 combination predicted by the algorithm is 888.9 W - 566.7 
mm/min, resulting in a melt pool depth within 50 μm of the experimental observation. Comparison 
with an experimentally derived process map shows a deviation within 50 μm. The study also analyzes 
the effects of hyperparameters, such as discretization, exploration–exploitation parameter, discount 
factor, learning rate, and number of episodes, on the Q-learning process. This methodology provides a 
versatile solution for process parameter optimization in scenarios with limited system information or 
data availability, applicable to various additive manufacturing or advanced manufacturing systems 
beyond L-DED. 
 

• Hybrid feedback and reinforcement learning-based control of machine cycle time for a multi-
stage production system [43] 

 
This paper introduces a novel control method designed for multi-stage production systems, aiming to 
dynamically adjust the cycle time of individual machines for enhanced overall system efficiency. The 
proposed method combines a distributed feedback control scheme with a Reinforcement Learning 
(RL) control scheme utilizing an extended actor-critic algorithm (A2C).The feedback control aspect 
determines whether a machine should be turned on or off based on real-time system status, while 
the RL control scheme decides how to adjust a machine's cycle time when it is in operation. The 
extended actor-critic RL algorithm incorporates a model-based path, enhancing learning performance 
compared to standard model-free RL approaches.Numerical case studies were conducted to 
demonstrate the effectiveness of the proposed method. Results indicate significant improvements in 
overall profits and energy savings compared to other methods. Specifically, the hybrid control scheme 
outperforms the standard A2C by 29.62% in terms of total cost, while the extended A2C algorithm 
improves system performance by 23.4% compared to the standard A2C. 
 



• Graph neural network and multi-agent reinforcement learning for machine-process-system 
integrated control to optimize production yield [25] 
 

This paper introduces an integrated control framework aimed at optimizing production yield by 
incorporating various levels of a manufacturing system, encompassing system, process, and machine 
levels. The manufacturing system is conceptualized as a graph, where machines represent nodes and 
material flows act as links. The graph model offers flexibility and accommodates real-time information 
across different levels by dynamically updating node features.To enhance decision-making accuracy, 
Recursive Bayesian Estimation (RBE) is employed to refine tool state observations obtained from 
sensors and machine learning models. The refined tool state estimations are integrated into the graph 
node features. Employing the graph model, Graph Neural Network (GNN) processes node features, 
generating embeddings that capture both local and global information. For integrated control, each 
machine node functions as a distributed agent in a Multi-Agent Reinforcement Learning (MARL) 
setting. The agent conditions its policy on the node embedding from GNN. State-of-the-art GNN and 
MARL algorithms, specifically Graph Attention Network (GAT) and Value Decomposition Actor Critic 
(VDAC), are implemented to train learnable parameters in the GNN-MARL networks, facilitating the 
learning of an optimal multi-agent policy. Extensive numerical experiments and analysis validate the 
effectiveness of the proposed integrated control framework. 
 

• Dynamic Control of a Fiber Manufacturing Process Using Deep Reinforcement Learning [32] 
 
This article introduces a model-free deep reinforcement learning (DRL) approach for the control of a 
fiber drawing system. The custom DRL-based control system proactively regulates fiber diameter, 
ensuring a desired, constant, or variable diameter trajectory along the fiber length. The approach 
does not rely on physical models of the system. The system was trained and tested on a compact fiber 
drawing system characterized by nonlinear delayed dynamics and stochastic behaviors. When 
subjected to a reference trajectory with random step changes, the DRL controller, after 1 hour of 
training, exhibited a root-mean-squared error (RMSE) comparable to an optimized Proportional-
Integral (PI) controller. After 3 hours of training, it achieved performance like that of a quadratic 
dynamic matrix controller (QDMC). In a step response, the PI feedback controller showed a 3.5-
second time lag, while the DRL controller exhibited less than a second of time lag. Controller 
performance tests on trajectories not used in the training process were conducted. For a sine sweep 
reference trajectory, the DRL controller maintained an RMSE under 40 μm up to a frequency of 45 
mHz, compared to 25 mHz for QDMC. 
 

• Explainable Deep Reinforcement Learning For Production Control of job shop manufacturing 
system [36] 
 

In response to the increasing complexity of material flows due to a rising number of variants and 
smaller batch sizes in manufacturing, this publication introduces an approach to enhance production 
planning and control (PPC). The focus is on creating a more functional and user-friendly PPC system by 
integrating multiagent reinforcement learning (MARL), a successful approach in ML-based production 
control, along with methods for explaining decisions made by reinforcement learning (RL) algorithms. 
MARL enables short reaction times and high decision quality. The developed MARL system is then 
combined with explainable Artificial Intelligence (XAI) methods to enhance user trust. The use case 



results demonstrate that the developed system can outperform rule-based controls commonly used 
in industry while providing explainable decisions. To assess the system's performance, two 
conventional methods, First in - First out (FIFO) and shortest set-up time next (SSTN), are used for 
comparison. In a simulation of 52 episodes, MARL exhibits an average total reward that is 22% higher 
compared to FIFO and 15% higher compared to SSTN. 
 

• Multi-objective optimization of the textile manufacturing process using deep-Q-network based 
multi-agent reinforcement learning [22] 

 
In this study, they propose a multi-agent reinforcement learning (MARL) methodology designed to 
address the escalating complexities of multi-objective optimization problems within the textile 
manufacturing process. The optimization of textile process solutions with multiple objectives is 
conceptualized as a stochastic Markov game. Multiple intelligent agents, leveraging deep Q-networks 
(DQN), are developed to attain correlated equilibrium optimal solutions for the optimization process. 
The stochastic Markov game is characterized by neither complete cooperation nor full competition. 
To navigate this balance, agents employ a utilitarian selection mechanism that maximizes the sum of 
all agents' rewards, following an increasing ε-greedy policy in each state to avoid disruption caused by 
multiple equilibria. Case study results demonstrate that the proposed MARL system can achieve 
optimal solutions for the textile ozonation process and enzyme washing process, outperforming 
traditional approaches. Notably, the agents are trained to optimize the ozonation process solution 
efficiently, achieving the desired color on treated fabrics. The relatively shorter computation time and 
higher performance of the MARL system can be attributed to the parallel operation of multiple agents 
and their ability to share experiences during the process. Conversely, metaheuristic algorithms such 
as MOPSO and NSGA-2 may struggle with smaller datasets and impractically long iteration times. 
Additionally, their effectiveness diminishes when dealing with higher-dimensional multi-objective 
optimization problems, making the proposed MARL system a promising alternative. 
 

• Modular production control using deep reinforcement learning: proximal policy optimization 
[54] 
 

This article explores the application of Deep Reinforcement Learning (DRL), specifically the Proximal 
Policy Optimization (PPO) method, to the challenge of Model Predictive Control (MPC) in the context 
of modular production systems within the automotive industry. The complexity and diversity of these 
systems make them challenging to control, and RL algorithms offer a powerful and versatile 
approach.The Proximal Policy Optimization (PPO) agent effectively coordinates the production 
system, providing a reliable solution to the Model Predictive Control (MPC) problem. The utilization of 
parallel environments and the repetitive use of collected trajectories for updating the policy 
contribute to a stable and robust learning environment for the specific example discussed. The 
intention is to demonstrate this effectiveness in addressing higher complexity problems in future 
applications. 
 

• Reinforcement Learning for Statistical Process Control in Manufacturing [80] 
 
The paper introduces the innovative concept of integrating Reinforcement Learning (RL) into 
Statistical Process Control (SPC) within the manufacturing domain. The necessary elements for 



incorporating RL into SPC, including states, actions, and rewards, were defined. The Q-Table method 
was employed for stable and predictable results, requiring quantization of time series values and 
Quality Control Charts (QCC) into stripes. The state vector was formed by recent stripes of production 
trend values and selected production actions. Manufacturing interventions to keep measured 
production values within tolerance range constituted the RL action list. The manufacturing goal was to 
minimize production unit cost while maintaining a high ratio of good products. The RL reward solution 
included the cost of applied actions and the cost of failure products. A dynamic Q-Table technique 
was introduced, allocating memory as needed, which is practical for real-world applications. Two 
additional concepts, Reusing Window (RW) and Measurement Window (MW), were introduced to 
address the cost of a measurement value and the precise evaluation requirement in the 
manufacturing SPC environment. The paper also describes novel RL extensions, such as epsilon self-
control of exploration and exploitation, and the optimization of training meta-data. Performance 
comparison involved analyzing the distribution of selected action frequencies, unit prize, and the rate 
of good products. The ratios of selected "No action" type actions were crucial KPIs. In the best setups, 
the proposed concept resulted in 10–30% fewer production intervention actions than in the 
manufacturing shopfloor, demonstrating promising applicability through industrial testing and 
validation. 
 

• Digital Twin and Reinforcement Learning-Based Resilient Production Control for Micro Smart 
Factory [64] 

 
To enhance the operational efficiency of Manufacturing Service Factories (MSF) within Cyber-Physical 
Production Systems (CPPS), this paper introduces resilient production control methods based on 
Digital Twin (DT) and Reinforcement Learning (RL). The primary objective is to facilitate the learning of 
an RL policy network, replacing the conventional dispatching rule in the post-processing station of 
MSF. The proposed method is designed with careful consideration of technical requirements, taking 
into account the restructuring nature of Manufacturing Management Systems (MMS) and the need 
for robustness in the system. The inherent complexity introduced by the Make-to-Order (MTO) 
production environment in personalized production within MSF is also addressed. The technical 
functionalities essential for CPPS in MSF play a crucial role in achieving system resilience.In the 
implementation phase, the method relies on the coordination between the DT application and the 
policy network construction module. The DT application performs tasks such as creating, 
synchronizing, and utilizing the DT to offer simulation support as part of its technical functionalities 
within CPPS. The DT simulation, generating virtual event logs, aids in the learning process of the RL 
policy network. Conversely, the policy network construction module employs the dueling network 
technique to learn and apply the RL policy network. The learning process is guided by actions, states, 
and rewards derived from virtual event logs.Moreover, the proposed method emphasizes the need 
for synchronization of dynamic information, including production progress volume, Work In Progress 
(WIP), machine status, and changes in the operational situation, within the Digital Twin The iterative 
creation process of the DT application consistently mirrors the RL policy network, while the utilization 
process of the DT application continually evaluates the RL policy network. This integrated approach 
aims to optimize the CPPS in MSF, contributing to improved efficiency and resilience in manufacturing 
operations. 
 



• A Deep Reinforcement Learning approach for the throughput control of a FlowShop 
production system [53] 

 
In this study, a novel approach based on Deep Q-Network (DQN) was proposed to control a flow shop. 
The primary objective was to address inefficiencies by controlling Work in Process (WIP) and 
maintaining a stable Throughput (TH). This method combines Reinforcement Learning (RL) and Deep 
Neural Networks (DNN) to model the state and action space in a unique way, specifically tailored for 
controlling WIP and TH in a 5-machine flow shop. The state was represented by considering job 
completion times on each machine and the deviation between the current TH on a machine and the 
TH-target for the five workstations. The action space aimed to assess the WIP amount in the system 
to control the production line's TH concerning the TH-target. The dataset was generated through 
simulations, and the results of the proposed approach showed promise, especially given the high 
variability of the experimental scenario. The study emphasized that smaller DNN structures achieved 
better performance, enabling faster training without sacrificing the generality of the learning process. 
The practical application of this methodology in Industry 4.0 involves submitting data from the 
production line to a central controller for decision-making in response to disruptions.The presented 
approach outperformed the Practical Worst Case (PWC) that was used as a benchmark to compare 
the performances of the introduced DQN. 
 

• Reinforcement Learning Based Production Control of Semi-automated Manufacturing Systems 
[60] 

 
In this study, a combination of reinforcement learning and digital twin methods is employed to devise 
a production control logic within a semi-automated production system following the chaku-chaku 
principle. The reinforcement learning method is embedded into the digital twin to autonomously 
learn an optimized production control logic for task distribution among different workers on the 
production line. By analyzing the impact of various reward shaping and hyper-parameter optimization 
strategies on the quality and stability of results, a well-configured policy-based algorithm is shown to 
efficiently manage workers and derive an optimal production control logic. The algorithm enhances 
productivity and ensures stable task assignments, facilitating a seamless transition to daily operations. 
Validation is performed in the digital twin of a real assembly line of an automotive supplier. The 
results suggest a novel approach to optimize production control by focusing on workers' routines and 
leveraging artificial intelligence with a comprehensive overview of the entire production system. The 
methodology is a collaborative effort between the wbk Institute for Production Technology at the 
Karlsruhe Institute of Technology (KIT) and the central department Connected Manufacturing of the 
Bosch Powertrain Solutions division. The implementation and testing were conducted in the 
simulation model of a real-world production system for car engine components organized in a semi-
automated assembly cell based on the Chaku-Chaku principle. The simulation demonstrates that 
while the number of produced pieces per episode is initially similar, the RL agent significantly 
improves the output, showcasing an 8% improvement in the number of produced pieces. Additionally, 
the study reveals that the number of workers on the production line does not impact the learning 
capacity of the agent, and the number of produced parts per episode continues to increase 
throughout the learning process.. 
 



• Model-free Adaptive Optimal Control of Episodic Fixed-horizon Manufacturing Processes Using 
Reinforcement Learning [15] 

 
The study demonstrates the applicability of reinforcement learning (RL)-based methods for adaptive 
optimal control in episodic fixed-horizon manufacturing processes that exhibit varying process 
conditions. An algorithm based on model-free Q-learning has been introduced, allowing adaptability 
to changing process conditions by dynamically modifying the Q-function through learning. The 
proposed algorithm is designed for a specific class of episodic fixed-horizon manufacturing processes. 
The application of this approach has been exemplified and assessed in the context of optimal control 
of the blank holder force in a deep drawing process. The primary objective of optimal control was to 
optimize internal stresses, wall thickness, and material efficiency for the resulting workpiece. The 
evaluation of the approach involved simulating deep drawing processes using Finite Element Method 
(FEM). Experimental processes were conducted in an automated virtual laboratory environment, 
introducing stochastic variations in process conditions and measurement noise.  
 

• A Model-Based Reinforcement Learning and Correction Framework for Process Control of 
Robotic Wire Arc Additive Manufacturing [2] 
 

"This paper introduces an integrated model-based reinforcement learning-correction framework for 
in-situ Machine Learning for Metal-Based Additive Manufacturing (MLMB) processes, specifically 
focusing on robotic Wire Arc Additive Manufacturing (WAAM). The study was conducted on a robotic 
WAAM system developed at Singapore University of Technology and Design (SUTD), involving 
experiments with two different metals, namely bronze (ERCuNiAl) and stainless steel (ER316LSi). The 
experimental results reveal that the print outputs obtained through the proposed learning framework 
exhibit superior surface finish and are closer to the desired near-net shape. This demonstrates the 
feasibility and effectiveness of the formulated learning architecture for in-situ process learning and 
control in the context of robotic WAAM. To further assess the applicability of the developed 
algorithm, a quantitative comparison of the layer's surface uniformity was performed. The standard 
deviation (STD) of the surface height for each printed layer was calculated from the layer's surface 
scan output. The results indicated that the standard deviation of the layer's surface height, when 
using the recommended single-bead parameters, exhibited an increasing trend as the print height 
progressed vertically for both materials, suggesting an accumulation of error. The prints implementing 
the proposed learning framework initially showed a larger surface standard deviation, attributed to 
the initial learning process where the system explores and evaluates the influence of different 
manufacturing parameters on MLMB print behavior. As the learning progresses, the system gains a 
better understanding of the manufacturing process, enabling it to select optimal parameters to 
correct previous errors and achieve the desired outcome. This results in a more bounded and lower 
standard deviation, producing a closer-to-net shape output. The encouraging outcomes of this study 
suggest the potential for cost-effective MLMB process learning, an aspect that has been relatively 
underexplored due to the high experimental overhead cost and the complexity of modeling involved. 
For more complex prints, such as the twist lock pin, the learning process demonstrates the system's 
adaptability and capability to optimize manufacturing parameters, ultimately improving the quality of 
the output. 



7.3.1. Pioneering Contributions to the State of the Art: 

These articles represent pioneering advancements in the state of the art of Reinforcement Learning 
(RL) within the domain of process control applications. They introduce innovative methodologies 
capable of effectively addressing challenges inherent in complex and dynamic environments, high-
dimensional state spaces, sparse rewards, and non-linear and non-convex optimization problems. 
Notably, the effectiveness of these proposed methods has been substantiated through 
comprehensive experiments conducted on both real-world and simulated manufacturing processes. 
These findings collectively contribute to the enhancement of RL techniques in the realm of process 
control, marking significant progress in the field. 

7.3.2. Advantages of Reinforcement Learning in Process Control: 

Process control in manufacturing stands as a pivotal element in modern manufacturing systems, striving to 

ensure optimal efficiency and product quality. Traditional process control methods heavily rely on intricate 

mathematical models, detailing the correlation between process inputs and outputs. These models often fall 

short in encapsulating the intricate dynamics of contemporary manufacturing systems. Reinforcement Learning 

(RL) emerges as a transformative alternative to traditional process control approaches, offering a multitude of 

advantages. Firstly, RL operates as a model-free methodology, eliminating the necessity for a predetermined 

mathematical model of the manufacturing process. Instead, the RL agent dynamically learns to control the 

process through direct interaction with the environment, fostering adaptability to changes in the 

manufacturing process. Secondly, RL exhibits prowess in handling complex and nonlinear manufacturing 

processes. While traditional process control methods are typically confined to linear systems, RL showcases the 

capability to manage nonlinear systems, learning to control intricate processes with multiple variables. Thirdly, 

RL introduces the capacity to optimize the manufacturing process dynamically over time. In contrast, 

traditional process control methods often adopt static approaches that struggle to adapt to changes in the 

manufacturing process. RL's adaptive nature enables continuous optimization and adjustment to changes in 

the process. Fourthly, RL excels in managing multiple objectives concurrently, a common scenario in diverse 

manufacturing processes. By learning to optimize multiple objectives simultaneously, RL showcases versatility 

in addressing the multifaceted goals of manufacturing. Lastly, RL adeptly navigates uncertainty and variability 

inherent in the manufacturing process. Given the frequent presence of variability and uncertainty, RL's 

adaptability shines as it learns to navigate and respond to changes and uncertainties in the manufacturing 

environment. These attributes collectively position RL as a potent and flexible tool in the realm of 

manufacturing process control, offering innovative solutions to the challenges posed by contemporary 

manufacturing dynamics. 

7.3.3. Areas for improvement and future directions: 

 
Considering the papers that focus on the application of RL in manufacturing process control the 
principal areas for improvement are: 
 

• practical implementation of the acquired control logic in real-world scenarios. This is 
imperative because exerting control over workers at a granularity of seconds proves to be 
infeasible in real applications. 



• enhancing the robustness of the agent becomes crucial, especially when faced with alterations 
in the production system layouts. 

• to validate its versatility, the agent needs training in various environments. 

• Integrate job routing and deviation management. 

• scaling the problem to real-world production cases (it was no feasible in all the works) 

• incorporating multiple tasks from different levels into the distributed agents to achieve 
integration in control functions., 

 
Reinforcement Learning (RL) is proving to be a promising approach in the field of manufacturing 
process control. To advance the application of RL in this domain, future research should focus on 
several crucial aspects. One key area is the development of more efficient RL algorithms tailored for 
large-scale manufacturing systems. Additionally, exploring hybrid machine learning techniques, such 
as the integration of RL with neural networks, could enhance the accuracy and efficiency of process 
control. Another significant avenue for research is the creation of RL-based control systems capable of 
handling multiple objectives simultaneously (quality, cost, energy management, etc). Many 
manufacturing processes involve diverse objectives that require optimization, and RL has shown 
promise in effectively managing this complexity. Furthermore, addressing the challenges associated 
with uncertainty and variability in manufacturing processes is essential. RL has demonstrated an 
ability to adapt to such dynamic conditions, and future research should concentrate on refining RL-
based control systems to handle these challenges seamlessly. Lastly, the translation of RL-based 
control systems from theoretical frameworks to practical implementation in real-world manufacturing 
settings poses challenges. Future research efforts should be dedicated to overcoming these 
challenges, ensuring that RL-based control systems can smoothly integrate into and benefit real-world 
manufacturing environments. 

7.4. Applications of Reinforcement Learning in Autonomous Manufacturing  

• Reinforcement Learning Enabled Autonomous Manufacturing Using Transfer Learning and 
Probabilistic Reward Modelling [50] 
 

The paper introduces a reinforcement learning (RL)-enabled autonomous manufacturing system 
(AMS) designed to autonomously fabricate complex geometry artifacts with desired performance 
characteristics. Addressing the sample inefficiency issue of traditional RL algorithms in real-world 
manufacturing decision-making, the approach leverages a first-principles-based source task for 
training, transfers effective representations from the acquired knowledge, and utilizes these 
representations to interact with the physical system and learn a probabilistic model of the target 
reward function. The method is applied to a custom physical AMS machine capable of autonomously 
manufacturing phononic crystals, demonstrating the effectiveness of the approach in modeling the 
target reward function with a small number of artifacts, as low as 25, and finding artifacts with high 
reward. This is a significant improvement over traditional methods that often require manual design 
and extensive empirical iterations on the order of hundreds. 

 

• Reinforcement learning and optimization-based path planning for thin-walled structures in 
wire arc additive manufacturing [65] 



 
In this study, a successful demonstration of planning the deposition path and determining process 
parameters for thin-walled structures was achieved. The deposition path planning utilized the 
reinforcement learning approach Proximal Policy Optimization (PPO), while an optimization technique 
was employed to determine process parameters such as welding speed and wire feed rate. The 
framework developed for this path and process parameters planning was named RLPlanner. The input 
models were parameterized in Cartesian coordinates, providing a fast and straightforward approach. 
Additionally, the input model was parameterized layer by layer based on the height of the weld bead 
in the previous layer, allowing the algorithm to operate in 2D space instead of 3D. This resulted in the 
use of AI architectures with fewer trainable parameters, enhancing memory and time efficiency. The 
reinforcement learning agent received input not for the entire parameterized layer but only for its 
surroundings, defined as the field of view, contributing to a memory and time-efficient solution. 
RLPlanner demonstrated the capability to adjust welding speed and wire feed speed between layers, 
providing adaptability to varying input 3D geometries. Furthermore, when the input model consisted 
of separate parts, they were localized and processed individually by the algorithm. Notably, the 
presented solution for path planning required no human intervention, avoided path templates, and 
was easily implementable. 
 

• Optimisation of manufacturing process parameters for variable component geometries using 
reinforcement learning [103] 

 
This study introduces a Reinforcement Learning (RL)-based approach for estimating optimal 
manufacturing parameters in the context of variable component geometries. The specific focus is on 
positioning pressure pads to optimize material draw-in during fabric forming, particularly for cuboid 
boxes. Unlike classical surrogate-based optimization (SBO), the proposed approach trains a function 
(P) that takes the component geometry as input and directly estimates optimal process parameters as 
output. The training process occurs in an FE-simulation environment. The trained network 
demonstrates the ability to provide meaningful parameter estimations even for new geometries not 
included in the training set, showcasing its capacity to extract reusable information from generic 
process samples and apply it successfully to novel, non-generic components. The approach, which 
involves reusing data rather than resampling, is considered a promising avenue for lean part and 
process development. 
 

• Collaborative Clustering Parallel Reinforcement Learning for Edge-Cloud Digital Twins 
Manufacturing System [16] 
 

In this study, a pioneering deployment and execution pattern for Digital Twins (DTs) has been 
introduced, showcasing reduced interaction delay and improved analysis delay convergence rates. 
The foundation of this advancement lies in the establishment of a collaborative DTs application 
deployment architecture that synergizes cloud and edge computing. Within this architecture, 
deterministic and uncertainty application adaptive strategies have been incorporated. To address the 
challenges posed by adaptive scenarios, they have presented distributed Closed-Loop Proportional-
Integral-Quantized-Learning (CCPQL) and prediction-based CCPQL algorithms. Simulation results 
illustrate the superior performance of the proposed algorithm in comparison to conventional 



methods (tradition QL, Sarsa, state-of-art RCMP). This promising outcome signifies potential efficiency 
enhancements in real manufacturing applications. 
 

• Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-
agent reinforcement learning approach [99] 

 
The readiness of 'Self-X' levels, such as self-configuration, self-optimization, and self-
adjust/adaptive/healing, is still in its early stages. This work aims to pave the way for these 
advancements by introducing a stepwise approach using an industrial knowledge graph (IKG)-based 
multi-agent reinforcement learning (MARL) method to achieve a Self-X cognitive manufacturing 
network. The proposed methodology involves the formulation of an IKG based on empirical 
knowledge and recognized patterns in the manufacturing process. This is achieved by leveraging 
extensive human-generated and machine-sensed multimodal data. Subsequently, a graph neural 
network-based embedding algorithm is applied, drawing upon a comprehensive understanding of the 
established IKG. This step enables semantic-based self-configurable solution searching and task 
decomposition. Furthermore, a MARL-enabled decentralized system is introduced to self-optimize the 
manufacturing process. This system works in tandem with the IKG to contribute to the realization of a 
Self-X cognitive manufacturing network. To validate the feasibility of this approach, an illustrative 
example of a multi-robot reaching task is conducted. In summary, the proposed method offers a 
structured approach to harnessing industrial knowledge graphs and MARL for achieving self-
configurable and self-optimizing capabilities in a cognitive manufacturing network. The illustrative 
example demonstrates the potential feasibility and effectiveness of the proposed approach. 
 

 
Figure 10. Core steps of the simulated example. 

• Fault-Tolerant Control of Programmable Logic Controller- Based Production Systems with 

Deep Reinforcement Learning [104] 

This article presents a proof of concept for the application of deep reinforcement learning (DRL) to 

automatically restart PLC-based automated production systems (aPS) during fault recovery. The focus 

is on aPS with multiple end-effectors actuated in one or two axes, particularly applicable to systems 



for assembly and logistics tasks. To address challenges such as an expanding action space and the 

absence of a global coordinate system for workpiece tracking, the authors propose a hierarchical 

Multi-Agent System (MAS) with a separate coordinate predictor for each agent. Each module of the 

aPS, representing an independent subunit with specific functionality, is treated as a single agent in the 

MAS. The evaluation of the concept involves simulating a laboratory demonstrator composed of 

actuators like pneumatic cylinders and conveyors, commonly found in real-world aPS. The results 

show that the DQN (Deep Q-Network) algorithm can effectively learn the control of widely used 

modules such as separators and conveyor systems. For more complex modules like cranes, DQN's 

exploration needs some support with a slightly shaped reward function. On the other hand, PPO 

(Proximal Policy Optimization) can only learn basic modules due to its limited exploration capabilities 

compared to DQN. The trained hierarchical MAS successfully enables the restart of the laboratory 

demonstrator from various states, even those not part of the standard control trajectory. The use of 

DRL for the restart of aPS is demonstrated to be feasible, and the hierarchical approach allows 

scalability to aPS with numerous modules without significantly increasing the action space of an 

individual agent. However, the size of supported modules is limited by the number of actuators and 

their complexity that can be explored. 

• Reinforcement learning for facilitating human-robot-interaction in manufacturing [59] 

This study addresses the challenge of improving the adaptability of robotic operators to variations in 

human task performance within contemporary manufacturing processes. The work introduces a 

methodology for effective system modeling and the development of a reinforcement learning agent 

capable of autonomous decision-making. This agent enhances the adaptability of robotic operators by 

allowing them to adjust their behavior based on observed information from the environment and 

human colleagues. The study contributes to theoretical knowledge on implementing learning 

methods for robotic control and leveraging these capabilities to enhance human-robot interactions. 

The evaluation, conducted in a generalized simulation model parameterized for human performance 

variation, demonstrates that the reinforcement agent effectively learns to adjust its behavior based 

on observed information and optimize task demands. 

7.4.1. Pioneering Contributions to the State of the Art: 

The listed articles represent main applications and the state of the art if RL in autonomous 

manufacturing. It is applied in different scenarios as additive manufacturing, self-adaptive 

manufacturing networks and in collaboration with digital twins and robots setting. One of the 

pioneers is the article ‘Optimisation of manufacturing process parameters for variable component 

geometries using reinforcement learning [103]’ which demonstrates how RL optimizes process 

parameters for varying component shapes. It ensures consistent quality while accommodating design 

variations. Another relevant contributor is the work ‘Reinforcement learning and optimization-based 

path planning for thin-walled structures in wire arc additive manufacturing [65]’ where RL optimizes 

path planning in additive manufacturing, leading to improved material deposition, reduced defects, 

and enhanced structural integrity. These are just a couple of examples of how RL can solve 

autonomous manufacturing challenges that enable flexibility and process control to be able to face 



new manufacturing questions that are arising from rapid transformations due to globalization, 

digitalization, and personalization. 

 

7.4.2. Advantages of Reinforcement Learning in autonomous manufacturing: 

Considering the listed papers, advantages of RL in autonomous manufacturing, which reveals its 

transformative potential, are such that the algorithm effectively manages order dispatching in time-

constrained job shops, outperforming traditional benchmarks. In the realm of additive manufacturing, 

RL optimizes path planning, leading to improved material deposition and enhanced structural 

integrity. The adaptability of RL to complex geometries and real-time adjustments proves to be a 

significant advantage and it prowess in optimizing process parameters for varying component shapes, 

ensuring consistent quality across diverse designs and efficiency in edge-cloud computing integration, 

offering scalability and fault tolerance. Additionally integrating RL with knowledge graphs enables 

self-adaptive manufacturing networks that adapt to changing environments and facilitate knowledge 

sharing. RL also enhances fault tolerance by learning robust control policies. Finally, RL proves 

beneficial in enhancing collaboration between humans and robots, adapting to dynamic 

environments, and ensuring safety. In summary, RL emerges as a versatile and powerful tool, offering 

adaptability, efficiency, and fault tolerance, making significant strides in optimizing complex 

manufacturing processes within autonomous systems. 

7.4.3. Areas for improvement and future directions: 

Considering the papers that focus on the application of RL in manufacturing PPC, the principal areas 

for improvement are: 

• enhancing collaboration between humans and robots using reinforcement learning (RL) 
necessitates the consideration of safety, interpretability, and the development of intuitive 
interfaces.  

• seamless integration of systems, the creation of user-friendly interfaces, and the 
implementation of adaptive learning approaches. 

• the algorithm should be evaluated on the physical laboratory demonstrator. 
 

The integration of reinforcement learning (RL) into autonomous manufacturing represents a 
promising era, but not without its share of challenges. From the sensitivity of RL models to 
environmental variations, as highlighted in "Reinforcement Learning Enabled Autonomous 
Manufacturing Using Transfer Learning and Probabilistic Reward Modelling [50]," to the complex 
coordination among multiple agents in manufacturing, as discussed in "Collaborative Clustering 
Parallel Reinforcement Learning for Edge-Cloud Digital Twins Manufacturing System [16]" each 
challenge presents a unique set of obstacles.  
Future directions start from developing robust RL algorithms to handle uncertainties and sensor noise 
to enhancing sample efficiency through meta-learning and imitation techniques. Emerging trends 
such as interpretable RL models, multi-agent systems, and adaptive learning mechanisms, 
emphasizing their crucial roles in steering RL towards an impactful future in shaping the autonomous 
manufacturing landscape. 



7.5. Applications of Reinforcement Learning for Maintenance Strategies and Quality 

 

• Post-prognostics demand management, production, spare parts and maintenance planning for 
a single-machine system using Reinforcement Learning [88] 
 

The study focuses on the comprehensive planning of joint spare parts sourcing, inventory 
management, production, and maintenance for a single machine across multiple periods to meet 
customer demands. The primary objective is to maximize production revenue while minimizing costs. 
A data-driven post-prognostics Reinforcement Learning (RL) model was developed to enhance and 
automate decision-making in Production Planning and Control (PPC). Unlike previous research, this RL 
model integrates maintenance decisions and extends to include PPC decisions, addressing demand 
management, spare parts sourcing, and production planning simultaneously. The RL model 
incorporates a data-driven prognostics model, utilizing a regressive random forest algorithm, to 
forecast the next health state of the production machine with exceptional performance. The 
constructed problem environment includes action and state spaces, state transitions, and reward 
signals to create a realistic and practical scenario. Three different RL algorithms (DQL, PPO, A2C) were 
developed and evaluated, with PPO demonstrating superior performance compared to other RL 
models and traditional Reliability Centered Maintenance (RM) and Preventive Maintenance (PM) 
strategies. Through sensitivity analysis, the robustness of the PPO algorithm was demonstrated under 
increased levels of noise and different cost scenarios. This study represents a significant advancement 
by integrating PPC decisions with maintenance decisions and leveraging data-driven prognostics 
within an RL framework, ultimately providing a more holistic and effective approach to decision-
making in manufacturing. 

 

• Multi-objective reinforcement learning-based framework for solving selective maintenance 
problems in reconfigurable cyber-physical manufacturing systems [4] 

 
This paper introduces a robust model for a multistate, multi-component Reconfigurable Cyber-
Physical Manufacturing System (RCPMS) that considers imperfect repairs. The model incorporates 
layout configuration selection and addresses uncertainties stemming from imperfect observations of 
components' health status. The objectives of the model are to maximize expected reliability, minimize 
variance and maintenance cost, all under time and production capacity constraints.To solve the 
resulting multi-objective and combinatorial optimization problem, the paper proposes a novel deep 
reinforcement learning framework. This framework is designed to handle the complexity of the 
problem and incorporates decision values to enhance the scalarization process. Decision values allow 
the adjustment of priorities for specific objectives after the learning process while maintaining overall 
performance. Additionally, the framework is combined with Analytical Hierarchy Process (AHP) to 
dynamically update static decision-maker priorities based on the actual learning context.The 
proposed model and Multi-Objective Reinforcement Learning (MORL) framework are extensively 
evaluated through various experiments, demonstrating their performance and robustness in 
challenging scenarios. The impact of AHP is analyzed by comparing results obtained with the MORL 
framework using static priorities. The findings emphasize the effectiveness and adaptability of the 
proposed approach in addressing complex multi-objective optimization problems in the context of 
Reconfigurable Cyber-Physical Manufacturing Systems. 



 

• Joint optimization of maintenance and quality inspection for manufacturing networks based 
on deep reinforcement learning [93] 

 
This study delves into the joint optimization of maintenance and quality inspection in manufacturing 
networks using DRL, considering interactions between machine reliability and Work-in-Progress (WIP) 
quality. The research begins by proposing mathematical models that capture the nonlinear, high-
dimensional, and dynamic nature of manufacturing network environments. These models offer a 
robust state transition representation for controlling manufacturing networks. Subsequently, an 
efficient DRL model is developed to handle the joint control of reliability and quality in manufacturing 
networks, accommodating mixed discrete-continuous states and actions simultaneously. The DRL 
model is validated through contrast training with a generic algorithm (GA), highlighting its superior 
adaptability to dynamic and diverse manufacturing scenarios compared to GA. Experimental results 
demonstrate that the proposed models effectively balance the trade-off between economic profit 
and operational risk in manufacturing networks. 

 

• Dynamic Maintenance for a Large Scale Identical Parallel Manufacturing Systems Using 
Reinforcement Learning [52] 

 
The authors have presented a reinforcement learning (RL)-based framework for maintenance 
decision-making, aiming to minimize costs. The study focuses on a parallel multi-unit system subject 
to independent random failures. Each component within the system can exist in one of three states: 
healthy, unhealthy, or failed. The researchers applied a Q-learning algorithm to derive the optimal 
maintenance policy for the system. The effectiveness of the proposed model is evaluated through a 
numerical example and sensitivity analysis. Furthermore, the proposed model is compared with two 
alternative policies. The results demonstrate significant reductions in total maintenance costs, with 
the proposed algorithm achieving the lowest total cost compared to the alternatives (39963148 vs. 
39981000 and 39992000 for the compared policies). 

 
 

• A Reinforcement Learning Algorithm for Optimal Dynamic Policies of Joint Condition-based 
Maintenance and Condition-based Production [19] 

 
This paper focuses on developing a joint optimal maintenance and production policy for a specific 
type of production system with adjustable production rates. The rate of system deterioration is 
directly linked to the production rate. The deterioration can be controlled through maintenance 
actions (maintenance policy) and adjusting the production rate (production policy). The problem is 
modeled as a Markov decision process (MDP), and a reinforcement learning algorithm, specifically Q-
learning, is employed to determine optimal actions based on the system's state. The goal is to 
minimize expected costs over a finite planning horizon. The algorithm's hyperparameters are tuned 
using a value-iteration algorithm of dynamic programming. The Q-learning algorithm performs well in 
minimizing expected costs. For instance, in state (4; ns), the optimal value function is 127, and the 
optimal action is to schedule maintenance and set the production rate to the maximum level (1). 
 



• Reinforcement learning-based defect mitigation for quality assurance of additive 
manufacturing [11] 

 
The main challenge in the additive manufacturing (AM) industry lies in ensuring quality assurance due 
to the potential time-varying processing conditions during the AM process. The emergence of new 
defects during printing, which cannot be addressed by offline analysis tools focused on existing 
defects, adds complexity to this challenge. This paper responds to this issue by introducing online 
learning-based methods to tackle new defects during printing, particularly in the context of 
fabricating a small number of customized products in AM.The proposed method is based on model-
free Reinforcement Learning (RL) and is named Continual G-learning. This approach aims to minimize 
the number of samples needed for defect mitigation in the AM process. Continual G-learning 
leverages prior knowledge from various sources to enhance its performance. Offline knowledge is 
gathered from literature, while online knowledge is acquired during the printing process. The method 
introduces a novel algorithm for learning optimal defect mitigation strategies, demonstrating superior 
performance when utilizing both knowledge sources.The effectiveness of the proposed method is 
validated through numerical and real-world case studies conducted on a fused filament fabrication 
(FFF) platform. The results highlight the efficacy of Continual G-learning in mitigating defects during 
AM, showcasing its potential for improving the quality assurance process in additive manufacturing. 
 

• Deep multi-agent reinforcement learning for multi-level preventive maintenance in 
manufacturing systems [75] 

 
To devise cost-efficient preventive maintenance (PM) policies for a serial production line featuring multiple 
levels of PM actions, this study adopts a novel multi-agent modeling approach. Each machine is modeled as a 
cooperative agent to facilitate adaptive learning. The reward function is constructed based on the evaluation of 
system-level production loss. An adaptive learning framework, utilizing the value-decomposition multi-agent 
actor–critic (MARL) algorithm, is employed to derive effective PM policies.In simulation studies, the proposed 
framework proves its efficacy by outperforming other baselines across a comprehensive set of metrics. 
Notably, centralized RL-based methods struggle to converge to stable policies. The authors conduct two 
numerical experiments to emphasize the importance of modeling PM decision-making as multi-agent 
problems, contrasting it with a DQN single-agent approach used in their prior work. In the 6-machine-5-buffer 
experiment, the DQN policy faces convergence issues, while the MARL policy achieves the best profit among all 
baselines. In the 10-machine-9-buffer experiment, the DQN method encounters implementation inefficiencies 
due to the growing size of its replay buffer and action space. In contrast, MARL does not suffer from this issue 

and consistently reports the best average profit among all policies. 
 

• A Novel Reinforcement Learning-based Unsupervised Fault Detection for Industrial 
Manufacturing Systems [1] 
 

In real-world scenarios, the lack of knowledge about relevant features reflecting actual machine 
conditions poses challenges in addressing fault diagnosis problems. Machine learning (ML) 
approaches often require customized models and ad-hoc feature extractions for each case study. 
Additionally, the early substitution of key mechanical components for preventing breakdowns 
presents difficulties in collecting sizable datasets to train fault detection (FD) systems. To overcome 
these challenges, this paper introduces a novel unsupervised FD method based on a double deep-Q 
network (DDQN) with prioritized experience replay (PER). The proposed method demonstrates the 



capability to predict non-healthy states almost one day before a fault occurrence, specifically 
between 17:34 and 19:20 on October 30th (while the performance and effectiveness evaluation was 
performed). The reliability of its performance is affirmed by available machine indices (MIs) and 
vibration indices (VIs). The DDQN-based FD method consistently classifies states before motor or 
reducer replacements as warning or alarm conditions. Comparatively, two other methods, Hidden 
Markov Model (HMM) and One-Class Support Vector Machine (OC-SVM), exhibit relatively good 
performance tailored to the case study but display stability issues. They often output different 
clusters for near-consecutive states, impacting the reliability of state classification. In contrast, the 
presented reinforcement learning (RL)-based method, utilizing DDQN, shows more stable trends and 
behavior closely aligned with the natural health status evolution of a machine. Furthermore, the 
DDQN-based FD method does not rely on ad-hoc pre-processing techniques or user-defined 
thresholds for output labels, making it adaptable to other FD domains and amenable to other RL 
algorithms. This flexibility enhances its potential applicability across various fault detection scenarios. 
 

• Reinforcement Learning based on Stochastic Dynamic Programming for Condition-based 
Maintenance of Deteriorating Production Processes [20] 

 
This paper presents the development of a stochastic dynamic programming model for maintenance 
planning in a deteriorating multistate production system. The quality of each bath/lot of items 
produced in each stage serves as a condition monitoring parameter for condition-based maintenance. 
The machine operates with m-1 operational states and a non-operational state, referred to as the 
failure state. At the beginning of each stage, four management actions are available: (1) renew the 
system; (2) implement maintenance; (3) continue production; and (4) inspect the system. The 
maintenance impact is considered imperfect, implying that after maintenance, the system is restored 
to any non-worse states with known probabilities. Since the system states change Markovianly at the 
end of each stage, and the quality of produced items depends on the system state, the system is 
modeled using a Markov decision process (MDP). Given that MDP is central to reinforcement learning, 
the paper discusses the application of the proposed stochastic dynamic programming for developing 
reinforcement learning, particularly for large-scale problems. 
 

• Predictive Maintenance Decision Making Based on Reinforcement Learning in Multistage 
Production Systems [51] 
 

While decision models for joint predictive maintenance and production in manufacturing systems are 
crucial, they remain largely unexplored. This paper proposes a novel decision model based on 
reinforcement learning, amalgamating production system modeling and approximate dynamic 
programming. The approach begins with developing a state-based model, analyzing the dynamics of a 
multistage production system with predictive maintenance. This model allows for a quantitative 
assessment of various disruptions and the impact of maintenance decisions on production. 
Subsequently, a reinforcement learning method is introduced to explore optimal maintenance 
policies that optimize both production and maintenance costs. To enhance the performance of the 
production system, machine stoppage bottlenecks are identified. An event-based indicator is 
employed for bottleneck identification using production data. Simulation case studies are conducted 
to test the proposed models, comparing them with three policies: state-based policy (SBP), time-
based policy (TBP), and greedy policy (GP). The numerical studies reveal that the proposed decision 



model outperforms these policies, demonstrating the lowest system cost. Specifically, it is 9.68%, 
39.07%, and 39.56% lower than SBP, TBP, and GP, respectively. Additionally, the research underscores 
the significance of bottleneck identification and mitigation in achieving over a 9.00% throughput 
improvement in manufacturing systems. 
 

• Joint optimization of preventive maintenance and production scheduling for multi-state 
production systems based on reinforcement learning [92] 

 
In this study, the focus is on the integrated optimization of preventive maintenance and production 
scheduling for multi-state single-machine production systems with deterioration effects. The primary 
objective is to minimize the long-run expected average rewards, considering processing costs, 
maintenance costs, and completion rewards. To address this problem, the researchers establish a 
Markov Decision Process (MDP) model for the infinite-horizon expected average rewards, discussing 
the existence of an optimal stationary policy for the model. The R-learning algorithm is introduced as 
a solution to this long-run average expected reward problem. After analyzing the appropriate 
conditions for carrying out preventive maintenance under the optimal stationary policy, a novel HR-
learning algorithm is presented, building upon the R-learning approach. Numerical results indicate 
that the proposed HR-learning algorithm outperforms R-learning and GR-learning methods. The 
performance analysis also explores the impact of the number of job types and states on the expected 
average rewards. Particularly in large solution spaces, HR-learning demonstrates a considerable 
impact of the number of job types on expected average rewards compared to R-learning and GR-
learning. Computational results reveal that HR-learning algorithm stability surpasses that of R-learning 
for most cases. Additionally, the number of states has minimal impact on the algorithm's 
performance. This suggests a promising method for solving large-scale integrated optimization 
problems in practical production scenarios. However, the study notes the algorithm's sensitivity to 
state transition probabilities in certain cases. It is important to mention that the effects of different 
workpiece features on machine state deterioration are not addressed in this work. 
 

• Deep Reinforcement Learning-based maintenance decision-making for a steel production line 
[81] 
 

In this study, they propose a Deep Reinforcement Learning (DRL) policy designed for a steel 
production line that relies on scrap materials. The primary objective of the proposed policy is to make 
real-time maintenance decisions based on the monitored condition of the production line, with the 
aim of minimizing the long-term maintenance cost per unit of time. Specifically, the policy determines 
the optimal timing for performing preventive maintenance (PM) on the shredder machine, a critical 
operation affecting the entire steelmaking process. This decision is guided by factors such as the 
instantaneous productive rate of the shredder and the buffer level. To develop and fine-tune the PM 
policy, they constructed a simulation model that replicates the dynamic behavior of the production 
line. This model facilitates the training of the DRL agent through interactive sessions with the 
simulated environment. Subsequently, the performance of the PM policy is assessed through a 
comparative analysis, benchmarking it against other commonly used PM policies within the same 
context. The findings indicate that the DRL policy consistently outperforms alternative strategies, 
leading to a substantial reduction in maintenance costs (up to 67.5%). Moreover, the DRL policy 
effectively mitigates unmet demand and critical maintenance (CM) scenarios. This superior 



performance is attributed to the DRL policy's capability to make maintenance decisions in real-time, 
responding promptly to the dynamic conditions rather than relying on scheduled PM actions. The 
policy's ability to suggest optimal times for PM actions is a direct result of understanding the dynamic 
nature of the environment. In conclusion, the outcomes of this research endorse the effectiveness of 
the DRL tool for making maintenance decisions. The DRL approach demonstrates a reduction in the 
expected long-term cost rate, coupled with enhancements in system availability and reliability. The 
integration of Artificial Intelligence (AI) and Machine Learning (ML) tools into maintenance, 
production control, and management emerges as a potent strategy for bolstering industry 
competitiveness. 

 
Figure11: Policies comparison [81] 

 

• Demonstrating Reinforcement Learning for Maintenance Scheduling in a Production 

Environment [27] 

This paper demonstrates the applicability of reinforcement learning (RL), specifically Q-learning, for 

devising an optimal strategy to schedule maintenance capacity within a practical production 

environment. The RL algorithm proves capable of learning diverse maintenance strategies contingent 

on distinct optimization objectives and predefined boundary conditions influencing machine 

degradation modes and maintenance costs. To facilitate the training of the RL algorithm under various 

conditions, the paper introduces a software-based plant model designed for discrete event simulation 

in a representative production setting. The proposed plant model emulates interconnected machines 

in a multi-stage, multi-product production process characteristic of modern manufacturing. These 

machines undergo degradation modeled as a Markov chain over time, necessitating maintenance for 

system output optimization. The plant model's building blocks, functionality, and interdependencies 

are crafted to align with conditions and restrictions prevalent in contemporary production 

environments. The object-oriented architecture of the plant model allows integration with real-time 

data from physical production environments, offering flexibility and scalability when adapting to new 

production configurations. Both the proposed plant model and the RL algorithms used in the 

simulation are designed to be adaptable to specific situations, environments, and maintenance 

measures. The overarching goal of this system is to enhance maintenance planning, particularly in 

unforeseen circumstances such as unplanned startup failures or production interruptions. 

• Deep reinforcement learning based preventive maintenance policy for serial production lines 

[24] 



This study addresses the challenging decision of when and where to perform preventive maintenance 

in a serial production line with intermediate buffers. The complexity and stochastic nature of such 

production lines make this decision nontrivial. To enhance the cost efficiency of serial production 

lines, the paper proposes a deep reinforcement learning-based approach to derive a preventive 

maintenance (PM) policy. The learning process involves a novel modelling method for the serial 

production line, and a reward function is introduced based on the evaluation of system production 

loss. The Double Deep Q-Network algorithm is applied for learning the PM policy. Simulation results 

demonstrate the effectiveness of the learning algorithm, showing an increased throughput and 

reduced cost. On average, the learned policy reduces the overall maintenance cost rate by 8.77% and 

6.25% comparing to the age dependent policy and opportunistic policy respectively. Notably, the 

learned policy often involves 'group maintenance' and 'opportunistic maintenance,' concepts and 

rules that were not explicitly provided during the learning process, highlighting the effectiveness of 

the problem formulation, algorithm, and reward function proposed in the paper. 

• Reinforcement learning for combined production-maintenance and quality control of a 

manufacturing system with deterioration failures [62] 

This research paper focused on a stochastic system facing frequent degrading failures and aimed to 

determine optimal joint control policies that maximize the total profit of the system. The study 

implemented a decision-making framework where production, maintenance, and recycle control 

policies were derived through a reinforcement learning algorithm. Simulation experiments were 

conducted to evaluate the effectiveness of the approach. Results indicated that the agent effectively 

managed inventory levels by authorizing recycle and production activities. Maintenance activities 

were frequently authorized to prevent further degradation of product quality and maintain the 

functionality of the manufacturing facility. Additionally, alternative control policies were described 

and compared to the proposed approach, demonstrating that the integrated joint policy was more 

profitable than ad-hoc policies. 

• Reinforcement Learning-Based and Parametric Production-Maintenance Control Policies for a 

Deteriorating Manufacturing System [3] 

In this paper, a model for a stochastic production/inventory system subject to deterioration failures is 

developed and analysed. The system operates in an environment where customer interarrival times 

are random, allowing for backorders. The system goes through multiple deterioration stages before 

ultimately failing, with repair and maintenance activities restoring it to previous states. Both repair 

and maintenance durations are considered stochastic. The objective is to minimize the expected sum 

of two conflicting functions: the average inventory level and the average number of backorders. The 

challenge is to find an optimal trade-off between maintaining a high service level and minimizing 

inventory. To address this problem, the paper introduces a novel reinforcement learning-based 

approach for obtaining optimal or near-optimal joint production/maintenance control policies. The 

study also explores parametric production and maintenance policies commonly used in practical 

situations, including Kanban, (s, S), threshold-type condition-based maintenance, and periodic 

maintenance. Through extensive simulation experiments, the proposed reinforcement learning-based 

approach consistently outperforms parametric policies (Kanban – CBM, Kanban – PM, ((s, S) – CBM 



and (s, S) - PM).  The results of the experiments shed light on the behaviour of parametric policies and 

highlight the superior performance and structural insights derived from the reinforcement learning-

based approach.. 

7.5.1. Pioneering Contributions to the State of the Art: 

Reinforcement Learning (RL) has significantly reshaped the landscape of manufacturing maintenance 

strategies and quality control, as evidenced by a collection of ground-breaking articles. These 

contributions span a spectrum of applications, from optimizing maintenance decision-making in 

single-machine systems to addressing the complexities of joint maintenance and production 

scheduling in large-scale manufacturing networks. The versatility of RL is underscored as it navigates 

challenges in additive manufacturing defect mitigation, handles uncertainties in deteriorating 

production processes, and integrates seamlessly with preventive maintenance policies for multistage 

production systems. The articles also showcase RL's adaptability in real-world production 

environments, emphasizing its role in practical maintenance scheduling. Whether applied to steel 

production lines, serial production setups, or parametric manufacturing contexts, RL emerges as a 

promising tool for enhancing the efficiency and adaptability of maintenance and quality control 

strategies across diverse manufacturing domains. These pioneering contributions collectively propel 

RL to the forefront of research, guiding future endeavours toward more efficient and adaptive 

solutions tailored to the evolving challenges in manufacturing processes. 

7.5.2.  Advantages of Reinforcement Learning for Maintenance Strategies and Quality: 

Reinforcement Learning (RL) offers distinct advantages in the context of maintenance strategies and 

quality control within the manufacturing sector. Its primary strength lies in the ability to learn optimal 

decision-making policies without the need for an explicit system model. This is particularly beneficial 

in manufacturing, where systems are often intricate and challenging to accurately model. RL excels in 

managing stochastic and dynamic environments, characteristics commonly encountered in 

manufacturing settings. In the realm of maintenance, RL has been successfully applied to diverse 

problems, including condition-based maintenance, preventive maintenance, and the integration of 

maintenance with production scheduling. Noteworthy examples, ‘A Reinforcement Learning 

Algorithm for Optimal Dynamic Policies of Joint Condition-based Maintenance and Condition-based 

Production [19]’, include the development of a reinforcement learning algorithm for optimizing 

dynamic policies in joint condition-based maintenance and production scheduling. Another application 

involved a deep reinforcement learning-based approach for decision-making in maintenance within a 

steel production line, ‘Deep Reinforcement Learning-based maintenance decision-making for a steel 

production line [81]’. These applications demonstrated that RL contributes to enhanced maintenance 

strategies and cost reduction. Similarly, RL has proven effective in addressing quality control 

challenges in manufacturing. For instance, a reinforcement learning-based approach was proposed 

for defect mitigation in additive manufacturing quality assurance, ‘Reinforcement learning-based 

defect mitigation for quality assurance of additive manufacturing [11]’. Another study introduced a 

deep multi-agent reinforcement learning approach for multi-level preventive maintenance in 

manufacturing systems, ‘Deep multi-agent reinforcement learning for multi-level preventive 



maintenance in manufacturing systems [75]’. These initiatives showcased the capability of RL to 

enhance quality control and mitigate defects. In summary, RL stands out with its advantages over 

traditional methods in shaping maintenance strategies and ensuring quality control in manufacturing. 

Its capacity to learn optimal decision-making policies without explicit system modeling, along with its 

adaptability to stochastic and dynamic environments, positions RL as a valuable tool. The successful 

application of RL in various maintenance and quality control scenarios within manufacturing 

underscores its potential for improving performance and reducing costs. 

7.5.3.  Areas for improvement and future directions: 

 

• further attention is needed to enhance the adaptability of the algorithm to diverse cyber-physical 
manufacturing environments. 

• the need for the algorithm to handle real-time quality inspection data efficiently. 

• refining the algorithm's adaptability to varying workloads and dynamic system states. 

• further work is needed to handle complex dependencies between maintenance actions, 
production schedules and quality processes. 

• addressing issues related to real-time decision-making in distributed settings. 

• enhancing the algorithm's resilience to uncertainties and its ability to adapt to varying 
deterioration patterns. 

• improving the algorithm’s ability to dynamically adjust preventive maintenance schedules based 
on evolving production demands. 

• improvements in the algorithm's robustness to harsh production conditions (especially in steel 
production). 

• enhancements in the algorithm's adaptability to different production line setups 

• Improvements in handling diverse deterioration patterns 
 

The articles shed light on noteworthy gaps that warrant attention in future research. Firstly, an 

enhanced post-prognostics production planning and control (PPC) approach could be achieved by 

incorporating additional steps in the PPC process, such as raw materials procurement, scheduling, and 

dispatching. Secondly, addressing unknown demands and enhancing algorithm performance could be 

accomplished by integrating sales forecasts into the models. Extending models to encompass multi-

component or multi-machine systems offers potential benefits, allowing for the adjustment of 

production levels to facilitate opportunistic maintenance by grouping interventions. There is 

considerable potential in establishing connections between prognostics and Reinforcement Learning 

(RL) algorithms. Prognostics algorithms could gain insight from RL agents about upcoming actions, 

considering the load exerted on the machine. Conversely, RL agents could benefit from prognostics by 

evaluating alternative actions, such as predicting machine breakdowns at different production levels. 

Exploring whether algorithmic complexity can be reduced is an avenue for investigation, including 

possibilities like directly feeding sensor data to RL agents without a prognostics model or employing 

simpler simulation-based optimization techniques like response surface or gradient descent methods. 

Another area for improvement lies in the hierarchical decision framework, which could be enriched 

with additional criteria and indicators, especially those related to energy consumption. Given the 



growing emphasis on sustainability and energy efficiency, incorporating such considerations into 

decision-making frameworks is crucial. Future work with digital twin applications suggests the 

development of a more detailed digital twin model to serve as a realistic training environment for AI-

based research on maintenance and quality inspection. Furthermore, in the realm of joint 

optimization of Manufacturing Systems (MS), future research should explore a more comprehensive 

approach. This could involve integrating aspects beyond maintenance, such as production scheduling, 

human reliabilities, and the maintenance of soft systems. A holistic joint optimization strategy could 

address factors like operator skill training and soft system maintenance, contributing to the reduction 

of MS failures caused by human errors or soft bugs. 

7.6. Applications of Reinforcement Learning in Real-Time Demand Response for Sustainable 

Manufacturing  

• Explainable multi-agent deep reinforcement learning for real-time demand response towards 

sustainable manufacturing [94] 

This study introduces an explainable multiagent deep reinforcement learning (RL) method, named 

Decomposed Multi-Agent Deep Q-Network (DMADQN). The approach utilizes an analytical 

manufacturing system model to decompose the system-level energy management objective and 

production requirement to the agent level. By decomposing the task, the agent can create a safe 

action subset that is interpretable, aiming to fulfill the original system-level production requirement 

while learning to reduce energy costs under demand response (DR). The method is applied to control 

a section of an automotive assembly line using one year of DR electricity price data to validate its 

performance. Results indicate that the proposed DMADQN method ensures the achievement of the 

production requirement while delivering better DR energy management performance in both RL 

training and testing phases. Moreover, the proposed approach outperforms the day-ahead scheduling 

approach and achieves up to an additional 30.7% savings in energy costs under dynamic DR 

conditions. 

• Demand Response Optimization of Cement Manufacturing Industry Based on Reinforcement 

Learning Algorithm [89] 

In the context of industrial manufacturing striving to achieve carbon neutrality goals, optimizing 

energy efficiency is crucial. The study focuses on the energy-intensive cement manufacturing industry. 

It begins with a detailed modeling analysis of the main energy-consuming equipment in cement 

manufacturing based on industrial load characteristics. Subsequently, demand response scheduling 

methods for industrial settings, employing a reinforcement learning algorithm, are developed. 

Proximal Policy Optimization (PPO) is chosen as the reinforcement learning algorithm to implement 

industrial demand response. PPO is selected for its ability to mitigate the impact of large differences 

between old and new strategies during the training process on the learning process. Simulation 

experiments are conducted to verify the effectiveness and feasibility of the proposed scheme. The 

results indicate that the RL demand response scheduling scheme reduces the daily electricity cost for 

power users compared to scenarios without it. In the experiments, the daily cost with RL was 

11,961.44, whereas without RL, the daily cost was 13,409.31. 



• A reinforcement learning/ad‑hoc planning and scheduling mechanism for flexible and 

sustainable manufacturing systems [63] 

This paper introduces a reinforcement learning-based framework for optimizing the behavior of 

failure-prone machines integrated into a multi-stage production line processing a single type of 

product. The framework employs two agents at specific stages of the production process to plan 

various activities, including production and remanufacturing. Additionally, ad-hoc control policies 

related to production and maintenance are integrated to complement the reinforcement learning-

based decision-making process. The objective is to enhance waste management, minimize redundant 

activity authorizations, and improve the overall system performance. Simulation experiments were 

conducted to assess the functionality of the proposed approach, and the results indicated that the 

manufacturing/remanufacturing system's revenue stream was primarily derived from recycled and 

remanufactured products, emphasizing the success of the green manufacturing strategy implemented 

through the reinforcement learning/ad-hoc control mechanism. 

7.6.1. Pioneering Contributions on the State of the Art: 

 Let's explore the pioneering contributions related to the use of RL in sustainable manufacturing, 

considering the specified articles. "Explainable Multi-Agent Deep Reinforcement Learning for Real-

Time Demand Response Towards Sustainable Manufacturing [94]" focuses on multi-agent deep 

reinforcement learning for real-time demand response, aiming to optimize energy management and 

provide explainable policy-level contrastive explanations for multi-agent RL. This work contributes to 

sustainable practices by addressing the complex dynamics of manufacturing systems. In "Demand 

Response Optimization of Cement Manufacturing Industry Based on Reinforcement Learning 

Algorithm [89]" the study investigates energy efficiency optimization in cement manufacturing using 

reinforcement learning. The approach minimizes electricity costs while maintaining production tasks, 

showcasing the feasibility of achieving cost-effective, green, and sustainable manufacturing in cement 

plants. "A Reinforcement Learning/Ad-Hoc Planning and Scheduling Mechanism for Flexible and 

Sustainable Manufacturing Systems [63]" addresses process scheduling in manufacturing, 

emphasizing long-term sustainability by combining reinforcement learning with ad-hoc 

manufacturing/maintenance control. Simulation experiments validate improved process planning, 

inventory management, and cost-effective sustainable practices. Together, these articles significantly 

contribute to advancing the field of sustainable manufacturing, leveraging RL techniques to enhance 

energy efficiency, reduce costs, and promote environmentally conscious practices. 

7.6.2. Advantages of RL in Sustainable Manufacturing: 

Advantages of RL in the context of sustainable manufacturing, drawing insights from the specified 

papers are the following: benefits in energy efficiency by enabling real-time demand response and 

dynamically adjusting energy usage, contributing to sustainability. Multi-agent RL enhances scalability 

by allowing coordination among various manufacturing entities and efficiently adapting to changing 

demand patterns. One of the papers emphasizes the importance of explain ability through policy-level 

contrastive explanations for Multi-Agent Reinforcement Learning (MARL), aiding practitioners in 

understanding and fine-tuning RL policies. Another work showcases RL's capacity to optimize demand 



response scheduling, reducing electricity costs while maintaining production tasks. RL ensures 

efficient resource utilization, mitigating waste and environmental impact, and adapts to dynamic 

conditions, promoting long-term sustainability by responding to market fluctuations and production 

variations. The last paper highlights RL's role in enhancing manufacturing system flexibility, 

dynamically adjusting schedules to accommodate changes in demand, maintenance, and resource 

availability. Integrating RL with ad-hoc control considers economic, environmental, and social aspects, 

contributing to the triple-bottom-line sustainability—balancing profit, planet, and people. The paper 

emphasizes the need to assess the impact of disposition options on sustainability, providing a holistic 

view through RL that considers diverse factors. In summary, RL empowers sustainable manufacturing 

by optimizing energy consumption, reducing costs, and promoting environmentally conscious 

practices. 

7.6.3. Areas for improvement and future directions: 

Considering the paper that focuses on the application of RL in sustainable manufacturing, the 
principal areas for improvement are: 

• Real-time Data Handling: The need for RL algorithms to handle real-time data efficiently, particularly 
when responding to dynamic demand scenarios in sustainable manufacturing. 

• Dynamic Adaptability: Refining RL algorithms' adaptability to varying demand patterns and dynamic 
manufacturing environments for more effective real-time responses. 

• Scalability: Further work is needed to ensure the scalability of multi-agent deep RL algorithms for 
large-scale sustainable manufacturing systems. 

• Handling Complex Dependencies: Enhancing the ability of RL algorithms to handle complex 
dependencies between real-time demand response actions, production schedules, and control 
processes. 

The challenges and future directions of RL in the context of sustainable manufacturing, drawing 
insights from the specified papers, are the following. In "Explainable Multi-Agent Deep Reinforcement 
Learning for Real-Time Demand Response Towards Sustainable Manufacturing [94]" challenges 
include the black-box nature of deep RL models, hindering interpretability, coordinating multiple 
agents in manufacturing environments, and ensuring real-time adaptation to changing conditions. 
Future directions suggest hybrid approaches by combining deep RL with other techniques, integrating 
human expertise into RL systems, and leveraging transfer learning for specific manufacturing tasks. 
"Demand Response Optimization of Cement Manufacturing Industry Based on Reinforcement 
Learning Algorithm [89]d" faces challenges in handling the intricate processes and nonlinear dynamics 
of cement manufacturing, balancing energy efficiency and production targets, and generalizing RL 
models to diverse plant conditions. Future directions propose hierarchical RL architectures, domain-
specific exploration strategies, and incorporating safety constraints into RL policies. In "A 
Reinforcement Learning/Ad-Hoc Planning and Scheduling Mechanism for Flexible and Sustainable 
Manufacturing Systems [63]" challenges involve adapting to dynamic manufacturing environments, 



efficiently allocating resources while considering sustainability goals, and addressing the 
computational complexity of scaling RL approaches to large systems. Future directions advocate for 
multi-objective RL to balance conflicting objectives, decentralized RL for resource allocation and 
scheduling, and designing robust RL policies that perform well under uncertainty and disturbances. In 
summary, the future of RL in sustainable manufacturing lies in addressing challenges related to 
interpretability, coordination, real-time adaptation, and domain-specific nuances, while exploring 
hybrid approaches, transfer learning, and human-in-the-loop RL. 

 

8. RL algorithms’ classification: 

Considering all the algorithms that are used in the papers and that are listed in Table 1 it is important 
to better understand them by classifying them. In RL the agents are trained according to the 
generalized policy iteration principle. Herein two stages are distinguished, namely policy evaluation 
and policy improvement. During policy evaluation, agents select actions according to a policy 
function, and observe their returned reward. During policy improvement, the policy is adjusted based 
on the observations made. These stages are repeated until convergence (hopefully). RL algorithms 
can be classified along three discrete axes: value, policy or actor-critic methods (1), on- or off-policy 
methods (2), and model-free or model-based methods (3). 

(1) Value, Policy and Actor-Critic Methods: Value methods try to estimate future reward by 
means of a value function, which is used to estimate the “goodness” of either states or actions 
from given states. During the policy evaluation stage, actions are selected by using the value 
function to ascertain the quality of the state’s reachable from the current one. The observed 
rewards are used during the subsequent stage to improve the value function. Examples of 
such methods are State Action Reward State Action (SARSA), Q-Learning (QL), Deep Q-learning 
(DQN), and Double DQN (DDQN). QL is particularly popular with the production scheduling 
community with implementations using tables to represent the value functions that are used, 
or neural networks as function approximators. Basic off-policy value-based approaches like Q-
Learning show better sample efficiency but are often unstable when integrated with function 
approximators. Alternatively, agent policies can be used directly to select actions during the 
evaluation stage. Based on the observed rewards, the reward expectation under policy is 
estimated, its gradient with respect to is computed and the policy is updated using stochastic 
gradient ascent. Examples include RE-INFORCE used for production scheduling, they can 
naturally handle continuous state and action spaces and learn stochastic policies and are 
sample inefficient and show poor robustness. In recent years, algorithmic advances have been 
made to address the above-mentioned deficits. The development of the so-called TRPO and 
PPO algorithms led to further improvement of sample efficiency and robustness when using 
policy-based approaches [35]. 
To combine the advantages of policy-based and value-based method while minimizing their 
shortcomings, current research efforts include actor-critic methods [35]. Instead of using 
environment interaction to approximate the expected reward directly, the (state) value 
function approximator (critic), is used to inform the policy approximator (actor) of the quality 



of its action. AlphaZero (AZ) and Deep Deterministic Policy Gradient (DDPG) fall in this 
category. 
 

(2) One of On- vs Off-Policy: On policy methods (e.g. SARSA) use the same policy during 
evaluation stage that was adjusted during the improvement stage. This leads to more stable 
learning at the expense of exploration, which can lead to local optima. Conversely, in off-policy 
methods (e.g. QL, DQN, DDQN), the policy used during the evaluation stage can differ from the 
one used in the improvement stage, which leads to more exploration at the expense of 
convergence speed. 
 

(3)  Model Based vs. Model Free: RL algorithms can be furthermore split into model-free and 
model-based approaches. Model-based approaches use an environment model to plan a few 
steps into the future before deciding on an action. The involved environment model is either 
estimated by the agent itself, e.g. Imagination Augmented Agent (I2A), or simply given to it, 
e.g. AZ. Single- vs Multi-Agents: multiple agents are allowed to act within the same 
environment. These agents can be cooperative, i.e. striving to jointly maximize the expected 
reward or competitive, with each agent targeting a maximization of his reward only. For 
production scheduling multi-agent systems are often deployed. Depending on the MDP 
breakdown, agents can be associated with different setup components [71]. In constraint, 
model-free algorithms directly learn a policy or value function from the environment without 
explicitly modelling the dynamics of the environment. These algorithms learn by interacting 
with the environment, receiving feedback in the form of rewards, and adjusting their policies 
or value estimates accordingly. DQL and DDQN fall into this category, as they both belong to 
the broader family of Q-learning algorithms, which are known for being model-free. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

33 out of 98 works used DQL or DDQL which are value, off-policy and model free algorithms. They are 
applied in all the areas even though they are mostly used in scheduling problems (25 papers in 
Scheduling, 2 in Process control, 4 in Maintenance and quality, 1 in Sustainable Manufacturing and 1 
in Autonomous Manufacturing). “Scheduling of decentralized robot services in cloud manufacturing 
with deep reinforcement learning [49]” is an example of this algorithm in scheduling problems. The 
pseudo code is shown in Figure 12. 

Different from DQN, DDQN modifies the network architecture, and the Q value is divided into two 
parts: state value and action advantage, which can be described by: 

 Qπ(s, a) = Vπ(s) + Aπ(s, a)  

DDQN not only evaluates the value Qπ(s, a) of an action in a certain stable convergence results, the 
average method replaces the maximum method and can be defined by: 

 Qπ(s, a, θ, α, β) = Vπ(s; θ, α) + (Aπ(s, a; θ, β) – (1/|A|)Σa′ Aπ(s, a′ ; θ, β)) 
 where |A| is the number of a discrete action set. The advantage function is close to the mean and 
training can obtain stable convergence results [49].  

General definitions: 

• Learning Rate (l): This is a hyperparameter in the RL algorithm that determines the size of the 
steps taken during the weight updates of the Q-network. It is a crucial parameter in 
determining how quickly or slowly the Q-network adapts its weights to the training data, 
impacting the stability and speed of convergence during the training process. 

• Q-network: In RL, a Q-network is a neural network that learns to approximate the Q-values, 
which represent the expected cumulative future rewards for taking a particular action in a 
given state. 

• Weight Update: During the training of a neural network, including the Q-network, the weights 
of the network are adjusted to reduce the difference between the predicted output and the 
actual target (in the case of RL, the Q-values). This adjustment is typically done using an 
optimization algorithm like gradient descent. 

• Gradient Descent: This is an optimization algorithm used to minimize the error in the neural 
network. The learning rate controls the size of the steps taken during the descent. A larger 
learning rate means larger steps, but it can risk overshooting the minimum; a smaller learning 
rate takes smaller steps but may take longer to converge. 

Now let’s break down the steps of the DDQN algorithm shown in Figure 12. 
 

Figure 12: Pseudo-code of the DDQN-based scheduling algorithm of decentralized robot services. 



1. Initialization: 
o Learning Rate (l): This parameter controls how much the Q-network’s weights are 

updated after each iteration. It determines the step size during gradient descent. 
o Minibatch Size (b): The number of transitions sampled from the replay memory to 

update the Q-network at each step. 
o Discounted Factor (γ): A value between 0 and 1 that discounts future rewards. It 

balances immediate rewards versus long-term rewards. 
o Maximal Exploration Value (ε): The probability of selecting a random action 

(exploration) instead of the best action (exploitation). 
2. Replay Memory Initialization (D): 

o A buffer that stores past experiences (transitions) for training the Q-network. 
3. Q-Network Initialization: 

o θ, α, β: Parameters of the Q-network. 
o θ -, α-, β-: Parameters of the target network (used for stability during training). 

4. Episode Loop: 
o For each episode, the following steps are executed: 

5. Step Loop: 
o For each step within an episode (task Ok): 

▪ Reset the cloud manufacturing environment to its initial state (s = st). 
▪ With probability ε, select a random action (service) a = at. Otherwise, select at 

as the action that maximizes the Q-value based on the current Q-network 
parameters (θ, α, β). 

▪ Schedule the selected action at, observe the reward rt, and transition to the 
next state (next order Ok+1) s′ = st+1 (updating st). 

▪ Store the transition (st, at, rt, st+1) in the replay memory D. 
6. Termination Check: 

o If the episode terminates at step j + 1: 
▪ Set yj = rj (the immediate reward). 

o Otherwise: 
▪ Compute yj = rj + γ * maxa’ Q(sj+1, a’; θ , α, β) (the discounted future reward). 

7. Q-Network Update: 
o Update the Q-network parameters (θ, α, β) using the loss function: 

▪ L(θ, α, β) = 1/N * Σ[(yj - Q(s, a; θ, α, β))^2]. 
o Compute the TD-error δj = yj - Q(st, at; θ, α, β). 

8. Target Network Update: 
o Every C steps, reset the target network parameters (θ-, α-, β-) to the current Q-network 

parameters (θ, α, β). 

Let’s break down the Q-learning algorithm in simpler terms: 
 
1. Environment and Agent: 
    - Imagine a robot (the agent) exploring a new world (the environment). 
    - The robot wants to learn how to take actions (like moving left, right, or picking up objects) to 
maximize its rewards (like finding the right job or avoiding danger/collusions). 
2. Q-Values: 



    - The robot keeps track of a special value for each state-action pair. We call this value the Q-value. 
    - The Q-value represents how good it is to take a specific action in a particular state. 
    - Initially, the robot doesn't know anything, so all Q-values are random. 
3. Exploration vs. Exploitation: 
    - The robot faces a dilemma: 

o Exploration: It can try new actions to learn more about the environment. 
o Exploitation: It can choose the action with the highest known Q-value. 

    - Balancing exploration and exploitation is crucial. 
4. Learning Process: 
    - The robot explores by taking actions randomly or based on some exploration strategy (like flipping 
a coin). 
    - It observes the reward it gets for each action and the new state it ends up in. 
    - It updates its Q-values using a formula that combines the observed reward and the Q-value of the 
next state. 
5. Updating Q-Values: 
    - The robot adjusts its Q-values based on the observed rewards: 

o  If the reward was good, it increases the Q-value for that action. 
o  If the reward was bad, it decreases the Q-value. 

    - The robot also considers the best Q-value of the next state (using a discount factor) to make its 
decision. 
6. Repeat and Improve: 
    - The robot keeps exploring, taking actions, and updating Q-values. 
    - Over time, it learns which actions lead to better rewards. 
    - Eventually, it becomes smarter and chooses actions that maximize its total reward. 
7. Target Network: 
    - To stabilize learning, the robot maintains a separate "target" Q-network. 
    - Every so often, it updates the target network with the current Q-values. 
8. Goal: 
    - The robot's goal is to find the best actions for each state so that it can navigate the environment 
effectively and collect maximum rewards. 

This is a simplified explanation, but it captures the essence of how Q-learning works. The robot learns 
from experience, adjusts its Q-values, and becomes better at making decisions over time. 

This algorithm aims to learn an optimal Q-function that estimates the expected cumulative reward for 
taking a specific action in a given state. It balances exploration (trying new actions) and exploitation 
(choosing the best-known action) to improve decision-making in the cloud manufacturing 
environment. The Q-network is updated iteratively based on observed transitions and rewards. This 
algorithm involves initializing parameters and networks, interacting with the environment, storing 
experiences in the replay memory, updating the Q-network based on sampled transitions, and 
periodically updating the target network to stabilize training. The loss function is based on the 
temporal difference (TD) error, which measures the discrepancy between the predicted Q-value and 
the target Q-value. The overall goal is to train the Q-network to accurately estimate Q-values and 
improve decision-making in the cloud manufacturing environment. 

 



 

 

8.1. Use case algorithm development analysis 
Among the many selected papers, I’ve decided to describe the paper number 70 in Table 1, 

"Designing an adaptive production control system using reinforcement learning" as it is possible to 

access to the open-source repository SimRLFab (Kuhnle 2020). Infact, this repository contains the 

simulation as well as RL-agent framework for order dispatching in a complex job shop manufacturing 

system that is described in the work. 

 

Introduction:  

Highly dynamic and complex production systems, manufacturing characteristics of the semiconductor 

wafer fabrication, challenge manufacturers on optimal production control solutions that can satisfy 

rising customer requirements. The paper addresses the design of RL to create an adaptive production 

control system by the real-world example of order dispatching in a complex job shop.  

A job shop consists of several machines (processing resources) that process jobs (products, orders) 

based on a defined list or process steps. After every process, the job is dispatched and transported to 

the next processing machine. Machines are usually grouped in sub-areas by the type processing type, 

i.e. similar processing capabilities are next to each other. 

In operations management, two tasks are considered to improve operational efficiency, i.e. increase 

capacity utilization, raise system throughput, and reduce order cycle times. First, job shop scheduling 

is an optimization problem which assigns a list of jobs to machines at times. It is considered as NP-

hard due to the large number of constraints and even feasible solutions can be hard to compute in 

reasonable time. Second, order dispatching optimizes the order flow and dynamically determines the 

next processing resource. Depending on the degree of stochastic processes either scheduling or 

dispatching is enforced. In manufacturing environments with a high degree of unforeseen and 

stochastic processes, efficient dispatching approaches are required to operate the manufacturing 

system on a robust and high performance [6]. 

This framework provides an integrated simulation and reinforcement learning model to investigate 

the potential of data-driven reinforcement learning in production planning and control of complex job 

shop systems. The simulation model allows parametrization of a broad range of job shop-like 

manufacturing systems. Furthermore, performance statistics and logging of performance indicators 

are provided. Reinforcement learning is implemented to control the order dispatching and several 

dispatching heuristics provide benchmarks that are used in practice [6]. 

The objective of the work is the development of an adaptive order dispatching optimizing material 

handling routes under consideration of machine utilization and order throughput time that, at the 

same time, does not require a considerable amount of domain expertise, to allow the converge of the 

algorithm.  

To exhibit real-world production characteristics, the discrete event simulation model is parameterized 

with historical data and assumptions on stochastic probability distributions. 



Throughout the simulation, various actions are executed concerning the processing, release, and 

transportation of orders. These critical decision points are intricately tied to the dynamic nature of 

the production environment. Notably, changes in buffer levels occur when machines complete 

processing tasks or when the dispatcher concludes transportation activities. Each instance of such a 

change prompt all currently idle production resources to reevaluate and determine their subsequent 

actions based on the updated production state. This paper centrally focuses on elucidating these 

decision-making processes. 

In the context of machine operations, the criterion for selecting the next order for processing adheres 

to a First-In-First-Out (FIFO) rule. In other words, the order that has been waiting the longest in the 

entry buffer is prioritized. Conversely, the determination of which order to dispatch next is entrusted 

to a Reinforcement Learning (RL) agent. Following the resolution of decisions by each resource 

regarding their next actions, the simulation seamlessly executes these choices, perpetuating the 

ongoing production workflows. 

In establishing an adaptive production control system, a singular RL-agent assumes the pivotal role of 

determining the subsequent action for the dispatcher. Consequently, this agent emerges as the 

primary decision-maker for the dispatcher and is subsequently referred to as the RL dispatching 

agent. It's worth noting that the modeling approach remains independent of the quantity of 

dispatchers (instances) present in the system. This independence arises from the fact that the 

decision-making process remains fundamentally identical for any dispatcher, even in scenarios 

involving multiple dispatchers. Regardless of the count, the state information crucial to decision-

making and the evaluation based on the reward signal remain consistent across all instances. 

Authors chose the TRPO agent because of its robustness and to enhance the agent's ability to discern 

between valid and invalid actions, two key parameters are employed: the maximum recursion 

number and waiting time, configured at 5 and 2, respectively. These parameters play a critical role, 

particularly during the convergence of the agent. As the agent converges, the influence of these 

parameters on the production environment diminishes, given that the number of invalid actions 

becomes negligible in the converged state. Importantly, these last two parameters act as safeguards, 

preventing the agent from becoming ensnared in a loop of repeatedly choosing invalid actions. Their 

presence ensures that the agent avoids potential pitfalls and continues to make meaningful decisions 

in the dynamic production environment. 



 
Figure 13:  Default configuration parameters of the used RL dispatching [35] 

 

Performance indicators: 

 

A simulation experiment entails numerous stochastic processes, where reproducibility relies on 

controlling each random number through a seed value. Despite these measures, inherent randomness 

persists due to the "black box" behavior of the RL-agent, which remains beyond control. 

Consequently, multiple simulation runs with identical configurations are executed, with preliminary 

studies indicating that three runs per configuration yield a suitably small confidence interval for 

quantitative comparisons. Throughout each simulation run, various performance indicators are 

recorded, and upon completion of the experiment, these recordings are scrutinized for comparison 

and evaluation. The key metrics encompass the reward assigned to the agent, average machine 

utilization (U) excluding downtimes, average waiting time of orders (WT), utilization of the dispatching 

agent, throughput of the entire production system, average inventory level (I), and the Alpha value 

(α). For the purposes of this paper, it suffices to understand Alpha as a measure influenced by the 

flow factor and machine utilization. By combining various performance indicators, Alpha evaluates the 

production system's performance, with a lower Alpha signifying better performance. However, a 

comprehensive understanding of achieved performance necessitates a detailed examination of key 

figures. To achieve this, raw values of the recordings undergo processing and summarization, 

including the computation of moving averages and standard deviations for each performance 

indicator across individual simulation runs and their combination. Additionally, the agent's 

convergence time is calculated, defined as the point when the moving average of the reward signal 

varies within a specified threshold range relative to the value of the reward's moving average. Final 

performance evaluation values are derived from the convergence point onward, excluding the 

training period, and serve as the primary basis for comparing different configurations. 

 

Evaluation setup: 

 



To enhance operational performance, the agent tackles two distinct challenges encapsulated within 

the term "order dispatching": order sequencing and route planning. The significance of these 

problems varies based on the production scenario, with the dispatching agent responsible not only for 

determining its next move but also for selecting the machine to handle the order from the available 

machines in the same group. The relative importance of these challenges depends on factors like 

transport resource limitations or machine bottlenecks in the system. When the transport resource 

acts as the bottleneck, optimized route planning is crucial. Conversely, if the transport resource's 

capacity is abundant, and machines pose the bottleneck, effective order sequencing takes 

precedence. 

To investigate both scenarios, each RL-agent configuration undergoes testing in two distinct 

production scenarios, each emphasizing a specific problem. In the first scenario, the dispatching 

agent, acting as the system's transport resource, operates at a relatively slow speed (factor 0.3), and 

machine entry and exit buffers are limited (factor 0.5), spotlighting the importance of route planning. 

In contrast, the second scenario features a faster agent (factor 1.0) and larger buffers (factor 1.0), 

directing attention towards optimizing order sequencing for optimal machine utilization. 

Performance indicators for rule-based benchmark heuristics are presented in Table 5 for both 

scenarios, evaluated based on average machine utilization (U), average order waiting time (WT) in an 

arbitrary time unit (TU), average inventory level (I), and the α-factor. Generally, Scenario 1 exhibits 

lower average inventory due to the slower agent and limited buffer capacity, resulting in lower 

machine utilization. However, the waiting time is reduced as orders are processed and transported 

more swiftly. Performance insights highlight that the RANDOM heuristic performs poorly, while 

VALID, FIFO, and NJF achieve better results. FIFO excels in minimizing average waiting time, 

particularly in Scenario 2 with extended waiting times, whereas NJF efficiently utilizes the bottleneck 

transport resource in Scenario 1, resulting in higher machine utilization. 

The benchmark heuristics reveal a trade-off between machine utilization and waiting time. While NJF 

achieves higher machine utilization, it corresponds to an increase in average waiting time. On the 

contrary, applying a FIFO heuristic lower waiting time but reduces machine utilization. This trade-off 

emphasizes the rationale for using an RL-agent, aiming to leverage available information for multi-

criteria optimization and concurrently minimize conflicts arising from inherent trade-offs. 

In the process of learning an optimal order dispatching strategy, the RL-agent addresses order 

sequencing and route planning, engaging in a two-phased learning process. Initially, it learns to 

distinguish between valid and invalid actions, followed by learning the interplay between state 

information, selected actions, and rewards to optimize performance indicators. 



 

 

RL results’ evaluation: 

Authors decided to compute the algorithm performance by running different simulations to evaluate 

its capabilities and its relationship with different variables.  

They started by evaluating if the agent was able to distinction between valid and invalid actions, then 

they computed the results for RL-agents with varying state information and reward signals, aiming to 

optimize specific production performance indicators – maximize the average machine utilization and 

lower the average waiting time of orders in the production system. The next evaluation was on results 

for RL-agents with fixed state information and reward functions when varying the episode design. 

After that they computed the results for RL-agents with fixed state information and reward signal 

when varying the action mapping as well as the set of actions the agent can execute. Next, they 

evaluated the RL-agents with fixed state information and the reward functions while varying 

weighting factors of the action subsets (shown in figure 15 as agent 31 and 32 outperformed the 

benchmarks in both scenarios). Lastly, they evaluated the results for RL-agents with fixed state 

information and a multi-criteria reward functions when varying weighting factors of the multi-criteria 

reward function. 

 

 
Figure 15: Results for RL-agents with fixed state information and the reward functions and while varying weighting factors of the action 

subsets [35]. 

Figure 14: Results for different rule-based heuristic dispatching approaches in both production scenarios 



Figure 16 presents a comprehensive summary of utilization and waiting time performance indicators for all RL-

agents and benchmark heuristics through a two-dimensional scatter plot. This visualization effectively 

illustrates the potential of RL-agents in contrast to rule-based heuristics. Firstly, RL affords more detailed 

adjustments of desired performance, allowing for a broader spectrum of operation states in the production 

system. Secondly, the performance of heuristics exhibits significant variation when the scenario changes. 

Notably, the location and ranking of heuristics in the scatter plot alter with scenario shifts, emphasizing their 

lack of consideration for system bottlenecks. The highlighted RL-agents, specifically 31 and 32, demonstrate 

robustness across scenarios and consistently outperform other RL-agents and all heuristics in terms of both 

performance indicators, detailed results are shown in Table 15. 

Expanding beyond individual scenarios, Figure 17 illustrates the moving average trends of machine utilization 

(U) and average waiting time (WT) for the heuristics FIFO and NJF, along with RL-agent 17. This agent, chosen 

for its simplicity and excellent performance in both scenarios, initially operates in a system parameterized 

according to Scenario 1 before transitioning to Scenario 2 after 10 million steps. As the scenario changes, both 

heuristics and the agent converge to performance values characteristic of Scenario 2, aligning with 

expectations for static heuristics that deterministically select actions. However, RL-agent 17 achieves nearly 

identical performance values compared to separate training in Scenarios 1 and 2, with only slightly better 

waiting times when scenarios change. This observation leads to the conclusion that RL-agents exhibit 

adaptability to changing production conditions without requiring a significant training phase. The performance 

indicators of the RL-agent adjust over the same number of steps as heuristics need for their performance 

adaptation. Additionally, training the agent in Scenario 1 and subsequently transitioning to Scenario 2 has a 

negligible effect on the final performance. 

 

 

Figure 16: The scatter plot summarizes the waiting time and utilization performance of all heuristics and RL-agents presented in this 
paper. RL-Agents 31 and 32 are highlighted to show their superior performance in both scenarios [35]. 

 

 

 



 

Figure 17:  Machine utilization and average waiting time of orders when changing from Scenario 1 to Scenario 2 after 10 million 
simulation steps. Displayed are the heuristics NJF and FIFO as well as Agent 17 [35]. 

 

Comparison of time consumption when training RL-agents:  

The experiments were executed on a Linux system featuring an Intel Xeon E5-2698 v4 CPU with 20 cores 

running at 2.2 GHz, 256 GB RDIMM DDR4 system memory, and an SSD for storage. The simulation environment 

and RL-agents were implemented in Python 3.6, utilizing the simply and tensorforce packages.For agents 

rewarded with a dense reward function, the computation of one million simulation steps takes approximately 1 

hour. As the simulation duration increases, a slight decrease in computation speed is observed due to 

heightened data handling and recording efforts. Sparse agents, in contrast, demand roughly three times the 

computation time due to the increased complexity of neural network updates.In general, RL-agents converge 

faster in Scenario 2 compared to Scenario 1. Simple agents, require three to five million simulation steps in 

Scenario 1, whereas in Scenario 2, convergence is achieved after one to three million steps. Introducing 

additional state information and employing more complex reward functions results in increased time 

consumption. Complex agents, necessitate 20 to 25 million simulation steps in Scenario 1 and 10 to 13 million 

steps in Scenario 2 to reach convergence.An exception to these general patterns is agent 12, which required 45 

million simulation steps to converge. The extended convergence time for this agent can be attributed to the 

combination of state and reward. Although the agent received state information on the current waiting time of 

orders, it initially did not correlate with the reward signal Ruti. However, the agent eventually discovered a 

correlation. 

 

Algorithm description: 

Reinforcement learning is applicable to optimization problems that can be modelled as sequential decision-

making processes, i.e., Markov Decision Processes (MDP), therefore the problem must be modelled as an RL 

task by defining the agent, environment, actions, policy and rewards.  

Let’s break down the variables modelled in the studied work: 

 

 



The agent: 

 

Figure 18: Modelled agent [6] 

• "agent": "tensorforce": This specifies the choice of the reinforcement learning agent, and in this case, 

it's set to "tensorforce," indicating that the Tensorforce library will be used. 

• "update": 4: This parameter likely refers to the number of update steps or iterations during the training 

process. The agent's parameters are adjusted based on the collected experience from the 

environment. 

• "objective": "policy_gradient": This defines the objective, or the optimization method used during 

training. In this case, it's set to "policy_gradient," indicating that the training will involve optimizing the 

policy using gradient-based methods. 

• "reward_estimation": { "horizon": 2 }: This specifies a parameter related to how rewards are estimated. 

The "horizon" parameter is set to 2, which might refer to a temporal horizon for estimating rewards. In 

reinforcement learning, the temporal horizon often represents the number of time steps into the 

future for which rewards are considered. 

 

The environment: 

 

Figure 19: Modelled environment [6] 

• "environment": "gym": This line specifies the choice of the environment for the reinforcement learning 

task. In this case, it's set to "gym," indicating that the OpenAI Gym library will be used to set up the 

environment. OpenAI Gym provides a variety of environments to test and develop reinforcement 

learning algorithms. 

• "level": "production-v0": This parameter likely specifies a particular environment within the OpenAI 

Gym toolkit. The environment is labeled as "production-v0." In OpenAI Gym, environments are 

typically labeled with a version number to indicate different configurations or variations of a specific 

task. The exact meaning of "production-v0" would depend on the specific environment provided by the 

Gym library. 



• "max_episode_timesteps": 100: This parameter sets the maximum number of timesteps allowed in a 

single episode of the reinforcement learning task. An episode represents a complete interaction 

between the agent and the environment, and timesteps are individual time steps within that episode. 

Setting a maximum number of timesteps can be useful to limit the duration of an episode, especially in 

cases where the environment does not naturally terminate. 

 

Replay mechanism: 

 

{ 

    "type": "replay" 

} 

 

• "type": "replay": This line indicates the type of mechanism being used, and in this case, it's labelled as 

"replay."  

In the context of deep reinforcement learning, experience replay involves storing past experiences (tuples of 

state, action, reward, and next state) in a replay buffer. During training, random batches of experiences are 

sampled from this buffer and used to update the neural network. Experience replay helps break the temporal 

correlation in the sequence of experiences, making the training process more stable and efficient. 

The policy: 

 

Figure 20: Modelled policy [6] 

• "agent": "ppo": Indicates that the reinforcement learning algorithm being configured is Proximal Policy 

Optimization (PPO). PPO is a policy optimization algorithm commonly used for training agents in 

reinforcement learning. 



• "network": {"type": "auto", "internal_rnn": false}: Specifies the neural network architecture for the 

policy. In this case, it's set to "auto," indicating that the network type is automatically determined. The 

internal_rnn parameter is set to false, suggesting that there is no internal recurrent neural network 

(RNN) used in the policy network. 

• "batch_size": 4: Sets the size of the batches used during training to 4 samples. 

• "update_frequency": 4: Defines how often the policy should be updated. In this case, it's set to every 4 

batches. 

• "learning_rate": 0.001: Specifies the learning rate used during optimization. 

• "subsampling_fraction": 0.3: Determines the fraction of the collected data used for training. In this 

case, 30% of the collected data is subsampled for training. 

• "optimization_steps": 10: Sets the number of optimization steps to take per update. 

• "likelihood_ratio_clipping": 0.1: Introduces a constraint on the ratio of new and old policy probabilities 

to prevent large policy updates. 

• "discount": 0.9: Defines the discount factor for future rewards in the reinforcement learning problem. 

• "critic_network": {"type": "auto", "internal_rnn": false}: Specifies the neural network architecture for 

the critic (value function). Similar to the policy network, it's set to "auto" with no internal RNN. 

• "critic_optimizer": 1.0: Specifies the coefficient for the critic loss in the overall objective function. 

• "preprocessing": null: Indicates that no specific preprocessing is applied to the input data. 

• "exploration": 0.0: Sets the exploration parameter to 0.0, suggesting that there is no explicit 

exploration strategy. 

• "variable_noise": 0.0: Specifies the amount of noise to add to the policy parameters during training. 

• "l2_regularization": 0.0: Specifies the L2 regularization strength. 

• "entropy_regularization": 0.001: Introduces regularization on the entropy of the policy distribution. 

 

The RL is based on the Tensorforce library and allows the combination of a variety of popular deep 

reinforcement learning models. Further details are found in the Tensorforce documentation shown in Figure 

22. Problem-specific configurations for the order dispatching task are the following (initialize_env.py), that are 

available in [6] in the production/envs/ section: 

• State representation, i.e. which information elements are part of the state vector 

• Reward function (incl. consideration of multiple objective functions and weighted reward functions 

according to action subset type) 

• Action representation, i.e. which actions are allowed (e.g., "idling" action) and type of mapping of 

discrete action number to dispatching decisions 

• Episode definition and limit 

• RL-specific parameters such as learning rate, discount rate, neural network configuration etc. are 

defined in the Tensorforce agent configuration represented in Figure 18. 



  

 

 

Extentions not yet implemented (future work): 

• job due dates 

• Batch processing 

• Alternative maintenance strategies (predictive, etc.) 

• Alternative strategies for order sequencing and processing at machines 

• Mutliple RL-agents for several production control tasks 

 

 

 

 

Figure 22: Tensorforce library used in the work [6] 

Figure 21: Problem-specific configurations for the order dispatching task [6] 



9. Simplified algorithm development 
 

The final contribution of this work is the development of a simplified algorithm which simulates the use of RL in 

a manufacturing problem. The system is composed of 3 machines and 2 robots who works as orders’ 

dispatchers. The algorithm is used to train the robots to decide how to dispacth orders based on their due 

date, processing time and buffer level of the machines. 

50 orders are considered to run the algorithm which are generated randomically. Cumulative reward is based 

on completion time and due date. A Q-Learning algorithm is used and the specific variables are set to, 

considering the values that are moslty used: 

• learning_rate=0.1 

• discount_factor=0.9 

• exploration_prob=0.1 

 

The algorithm is run for 500 episodes and the results are plotte in a graph. 

As we can see the algorithm converge immediately, these is due to the simplicity of the case study, but it shows 

the potential and effectiveness in manufacturing problems as the simulated one. 

 

import gymnasium as gym  

import numpy as np 

import matplotlib.pyplot as plt 

 

class OrderDispatchEnvironment(gym.Env): 

    def __init__(self, num_jobs=50, num_machines=3, num_robots=2): 

        self.num_jobs = num_jobs 

        self.num_machines = num_machines 

        self.num_robots = num_robots 

        self.current_job = 0 

        self.machine_availability = np.ones(num_machines, dtype=int) 

        self.robot_availability = np.ones(num_robots, dtype=int) 

         

        self.observation_space = gym.spaces.Tuple(( 

            gym.spaces.Discrete(num_jobs),  # Current job 

            gym.spaces.MultiBinary(num_machines),  # Machines availability 

            gym.spaces.MultiBinary(num_robots)  # Robots availability 

        )) 

        self.action_space = gym.spaces.Discrete(num_machines)  # Choose a 

machine to dispatch the order 

         

    def reset(self): 

        self.current_job = 0 

        self.machine_availability = np.ones(self.num_machines, dtype=int) 

        self.robot_availability = np.ones(self.num_robots, dtype=int) 

        return self._get_state() 

     

    def step(self, action): 

        if self.current_job < self.num_jobs: 

            # Simulate the execution of the order 



            machine_selected = action 

            completion_time = 1  # Simulated completion time for the order 

            self.machine_availability[machine_selected] = 0  # Mark the machine 

as busy 

             

            # Update the state 

            self.current_job += 1 

            state = self._get_state() 

             

            # Calculate reward based on completion time and due date 

            reward = self.calculate_reward(completion_time, due_date=1)  # 

Replace '1' with the actual due date 

             

            done = (self.current_job == self.num_jobs) 

             

            return state, reward, done, {} 

        else: 

            # End of jobs 

            return self._get_state(), 0, True, {} 

     

    def calculate_reward(self, completion_time, due_date): 

        efficient_utilization_reward = 0.1 

        late_penalty = 0.5 

         

        if completion_time <= due_date: 

            reward = efficient_utilization_reward - late_penalty * (due_date - 

completion_time) 

        else: 

            reward = -late_penalty * (completion_time - due_date) 

         

        return reward 

     

    def _get_state(self): 

        return (self.current_job, self.machine_availability.copy(), 

self.robot_availability.copy()) 

 

class QLearningAgent: 

    def __init__(self, state_space, action_space, learning_rate=0.1, 

discount_factor=0.9, exploration_prob=0.1): 

        self.learning_rate = learning_rate 

        self.discount_factor = discount_factor 

        self.exploration_prob = exploration_prob 

        self.state_space = state_space 

        self.action_space = action_space 

        self.q_table = np.zeros((state_space[0].n, 2 ** state_space[1].n, 2 ** 

state_space[2].n, action_space.n)) 

 

    def choose_action(self, state): 

        if np.random.rand() < self.exploration_prob: 

            return np.random.choice(self.action_space.n) 

        else: 

            state_index = state[0] 

            combined_state = np.concatenate((state[1], state[2])) 

            return np.argmax(self.q_table[state_index, combined_state, :]) 

 



    def update_q_table(self, state, action, reward, next_state): 

        combined_state = np.concatenate((state[1], state[2])) 

        combined_next_state = np.concatenate((next_state[1], next_state[2])) 

        combined_next_state_index = int(''.join(map(str, combined_next_state)), 

2) % self.q_table.shape[1] 

 

        # Verifica delle dimensioni dell'array 

        print("Dimensioni di self.q_table:", self.q_table.shape) 

 

        # Verifica dei valori prima di accedere all'array 

        print("Valori di next_state[0] e combined_next_state:", next_state[0], 

combined_next_state) 

 

        # Converti l'array binario in un indice intero con clamp alla 

dimensione massima 

        combined_state_index = int(''.join(map(str, combined_state)), 2) % 

self.q_table.shape[1] 

        best_next_action = np.argmax(self.q_table[state[0], 

combined_state_index, :]) 

 

        try: 

            print("Before update - Q value:", self.q_table[state[0], 

combined_state_index, action]) 

 

            # Controlla le dimensioni prima di aggiornare il valore 

            if (next_state[0] % self.q_table.shape[0] < self.q_table.shape[0] 

and 

                    combined_next_state_index < self.q_table.shape[2] and 

                    best_next_action < self.q_table.shape[3]): 

                self.q_table[state[0], combined_state_index, action] += 

self.learning_rate * \ 

                    (reward + self.discount_factor * self.q_table[next_state[0] 

% self.q_table.shape[0], combined_next_state_index, best_next_action] - 

self.q_table[state[0], combined_state_index, action]) 

            else: 

                print("Warning: Indici fuori dai limiti durante 

l'aggiornamento") 

 

            print("After update - Q value:", self.q_table[state[0], 

combined_state_index, action]) 

 

        except IndexError as e: 

            print(f"Error: {e}") 

            print(f"State: {state}") 

            print(f"Action: {action}") 

            print(f"Reward: {reward}") 

            print(f"Next State: {next_state}") 

            print(f"Combined State Index: {combined_state_index}") 

            print(f"Combined Next State Index: {combined_next_state_index}") 

            print(f"Best Next Action: {best_next_action}") 

            print(f"Q-table shape: {self.q_table.shape}") 

 

            # Re-raise the exception to terminate the program 

            raise 

 



 

# Hyperparameters 

num_episodes = 500 

num_jobs = 50 

 

# Instantiate the environment and agent 

env = OrderDispatchEnvironment(num_jobs=num_jobs, num_machines=3, num_robots=2) 

agent = QLearningAgent(state_space=env.observation_space, 

action_space=env.action_space) 

 

# Lists to store results for plotting 

total_rewards = [] 

 

# Training loop 

for episode in range(num_episodes): 

    state = env.reset() 

    total_reward = 0 

    done = False 

     

    while not done: 

        action = agent.choose_action(state) 

        next_state, reward, done, _ = env.step(action) 

         

        agent.update_q_table(state, action, reward, next_state) 

         

        state = next_state 

        total_reward += reward 

     

    total_rewards.append(total_reward) 

    print(f"Episode: {episode + 1}, Total Reward: {total_reward}") 

 

# Plotting the results 

plt.plot(total_rewards) 

plt.xlabel('Episode') 

plt.ylabel('Total Reward') 

plt.title('Training Progress') 

plt.show() 

 

# Evaluate the learned policy 

test_episodes = 10 

test_rewards = [] 

 

for _ in range(test_episodes): 

    state = env.reset() 

    total_reward = 0 

    done = False 

     

    while not done: 

        action = agent.choose_action(state) 

        next_state, reward, done, _ = env.step(action) 

        state = next_state 

        total_reward += reward 

     

    test_rewards.append(total_reward) 

 



# Print average reward during testing 

average_test_reward = np.mean(test_rewards) 

print(f"Average Test Reward: {average_test_reward}") 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Representation of total reward and convergence of the developed algorithm 



10. Conclusion 
 

In conclusion, the exploration of Reinforcement Learning (RL) applications in manufacturing has not 

only revealed its transformative potential but has also highlighted practical advantages when 

compared to traditional heuristic methods and other machine learning approaches. The papers 

studied throughout this study underscore the adaptability and effectiveness of RL algorithms in 

optimizing resource utilization, enhancing decision-making, and improving overall system efficiency 

within manufacturing contexts.  

Table 2 shows the result of the reseach, in particular in which area RL is used and its percentage.As 

we can see it is mostly applied to scheduling, maintence and process control problems compared to 

autonomous and sustainable manufacturing and motion planning. Futhure work will focus on 

developing algorithms that are able to interconnect different goals to be able to optimize real 

production processes as a whole as the surge in computing power accessibility, coupled with the 

exponential growth of data from sensors and IoT devices in manufacturing systems, has created a 

fertile ground for RL applications. This aligns seamlessly with the Industry 4.0 paradigm, emphasizing 

the integration of digital technologies into manufacturing. RL's adaptability to dynamic environments 

and its capacity to continuously learn and optimize processes over time make it well-suited for the 

evolving needs of the manufacturing industry  

 

 

The state of the art in RL for manufacturing is poised to redefine how industries approach complex 

problem-solving. The integration of RL into manufacturing processes reflects a paradigm shift, as 

intelligent agents learn and adapt in real-time, contributing to agile and responsive systems. The 

advantages of RL, such as improved adaptability, reduced reliance on explicit programming, and the 

capacity to handle non-linear and dynamic relationships, position it as a compelling choice for 

addressing the intricate challenges of modern manufacturing. 

Unlike conventional heuristic methods that often rely on predetermined rules, RL offers a dynamic 

and learning-driven approach. The ability of RL agents to adapt to changing conditions and learn 

optimal strategies over time presents a distinct advantage in complex manufacturing environments. 

Area of Application Number of papers %

Autonomous Manufacturing 7 7%

Sustainable Manufacturing 3 3%

Maintence Strategies and Quality 16 16%

Motion Planning 4 4%

Process control 14 14%

Scheduling 54 55%

total 98 100%

Table 2: Thesis findings 



This adaptability is particularly evident in scenarios where the system dynamics evolve or face 

uncertainties. 

Furthermore, in contrast to some traditional machine learning methods that might require extensive 

labelled datasets, RL's ability to learn from interaction and experience proves advantageous in 

situations where data availability is a challenge. This feature becomes especially pertinent in 

manufacturing settings where acquiring labelled data for every conceivable scenario can be 

impractical. 

However, it's important to acknowledge the practical challenges in implementing RL algorithms. 

Designing and deploying RL algorithms for manufacturing processes involve intricate considerations. 

While simulations offer a controlled environment for algorithm development and testing, translating 

these algorithms into real-world applications introduces a set of challenges. Practical issues such as 

hardware constraints, sensor integration, and real-time responsiveness must be addressed for 

seamless deployment on the shop floor. 

Moreover, the complexity of RL algorithms raises challenges in algorithmic design and 

implementation. The fine-tuning of hyperparameters, ensuring convergence, and managing the 

computational demands of sophisticated RL models pose practical challenges. Balancing the need for 

a high level of accuracy with real-time responsiveness remains a delicate trade-off that practitioners 

must navigate. 

Despite these challenges, the potential benefits of RL in manufacturing are substantial. Its adaptive 

nature allows for continuous learning and optimization, offering a promising avenue for addressing 

dynamic manufacturing environments. While RL algorithms are predominantly simulated during 

development, their successful implementation in real-world scenarios heralds a new era in smart 

manufacturing. 

As we look ahead, collaborative efforts between researchers, industry professionals, and 

policymakers become crucial. The continued exploration of RL's practical challenges and iterative 

refinement of algorithms will pave the way for increased real-world adoption. Striking a balance 

between algorithmic sophistication and practical implementation will be key in realizing the full 

potential of RL in reshaping the landscape of modern manufacturing. 

Nevertheless, challenges persist, and the road ahead involves a collaborative effort between 

academia and industry. As RL technologies mature, addressing scalability, interpretability, and ethical 

considerations will be crucial. However, the practical advantages observed in this study, particularly in 

comparison to heuristics methods and other machine learning approaches, underscore RL's potential 

as a transformative force in shaping the future of manufacturing. 
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