
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enhancing Malware Detection in
Executable Files using LSTM and

BiLSTM-based Deep Learning Models
with Word Embedding

Supervisors

Prof. Stefano DI CARLO

Prof. Ramon CANAL

Candidate

Andreu GIRONES

November 2023

Summary

In the realm of cybersecurity, the detection of malware in executable files represents
a pressing challenge. Conventional signature-based methods often struggle to keep
pace with evolving threats, necessitating innovative solutions. This research inves-
tigates the application of advanced machine learning techniques, specifically Long
Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) architectures,
augmented by word embedding methodologies, for robust malware detection.

The research initiates with a systematic investigation of fundamental machine
learning principles and rigorous data processing methodologies, forming a robust
foundation for subsequent phases. Leveraging this acquired knowledge, the study
embarks on the creation and refinement of a specialized deep learning model intri-
cately designed for the accurate detection of concealed malware within executable
files.

Every aspect of model construction receives meticulous attention, encompassing
data collection, preprocessing, rigorous experimentation, and the fine-tuning of
hyperparameters through hyperparameter optimization (HPO).

The HPO process systematically explores and refines various model configu-
rations. The results of this optimization process unveil the most effective model
configurations, with thorough analysis of performance metrics. The evaluation of
the final model provides a comprehensive assessment of its capabilities in malware
detection.

In summary, this research presents an adaptive and robust deep learning model
for malware detection, strengthened by LSTM and BiLSTM architectures and
enriched by word embedding techniques. It offers a comprehensive account of
the research process, encompassing data collection, preprocessing, hyperparameter
optimization, and model evaluation. This work contributes valuable insights to the
dynamic field of cybersecurity and underscores the potential of machine learning in
fortifying the security of digital systems.

ii

Acknowledgements

I am profoundly grateful to the individuals and institutions whose support and
guidance have been instrumental in the completion of this thesis during the second
year of my double degree program.

First and foremost, I extend my deepest appreciation to Professor Ramon Canal,
who played a pivotal role as my initial supervisor during the first year. His guidance
and introduction led me to Stefano Di Carlo, whose expertise and mentorship
became invaluable as my supervisor during my second year at Politecnico di Torino.
I am indebted to Stefano for welcoming me into the dynamic research environment
of LAB 6 at the DAUIN Department of Control and Computer Engineering, where
I conducted my thesis work.

I extend my heartfelt appreciation to Professor Ramon Canal for his exceptional
and unwavering supervision throughout the entirety of my thesis. His continuous
support and readiness to assist whenever I needed guidance were invaluable. I am
particularly grateful to Professor Canal for not only guiding me through my thesis
but also for providing me with the invaluable opportunity to contribute to the
Vitamin-V project. Additionally, I appreciate Professor Canal for introducing me
to outstanding professionals who not only demonstrated expertise but also provided
invaluable insights and encouragement. I also extend my thanks to Stefano Di
Carlo for his excellent supervision and warm welcome to LAB 6 at the DAUIN
Department of Control and Computer Engineering, where I had the pleasure of
connecting with remarkable people.

I extend my gratitude to the colleagues at LAB 6 for their warm welcome,
camaraderie, and assistance throughout my time there. Their collaborative spirit
significantly enriched my research experience.

Special thanks are due to Juanjo Costa, Eva Rodriguez, and Beatriz Otero,
professors of the Department of Computer Architecture at UPC, for their guidance
and support at various stages of my thesis. Their expertise has been invaluable in
shaping the direction of my research.

I would also like to express my appreciation to the individuals at the SERT
cluster at UPC who provided assistance during the execution of my project on their
hardware. Their expertise and resources were crucial to the success of my research.

iii

I extend my heartfelt thanks to my family and friends for their unwavering
support and encouragement throughout my academic journey. Your belief in me
has been a constant source of motivation.

Finally, I acknowledge the financial support received from the EU Horizon
programme under grant GA.101093062 (Vitamin-V project). This funding played
a crucial role in facilitating the completion of this thesis.

In conclusion, I am deeply thankful to all those who have contributed to
this academic endeavor, and I am grateful for the collaborative and supportive
environment that has shaped my research experience.

Gironés de la Fuente, Andreu

iv

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 3
1.4 Thesis Outline . 3

2 Literature Review 5
2.1 Introduction . 6

2.1.1 Taxonomy of Malware Analysis 6
2.1.2 Trends in Malware Detection 8

3 Background 10
3.1 Artificial Intelligence . 10
3.2 Machine Learning . 10
3.3 Neural Networks . 11

3.3.1 Neuron . 12
3.4 Fully Connected Layer . 13
3.5 Loss Function . 14
3.6 Stochastic Gradient Descent . 15

3.6.1 Adam Optimization Algorithm 16
3.7 Backpropagation . 17

3.7.1 Forward Pass . 17
3.7.2 Backward Pass . 18

3.8 Recurrent Neural Networks . 18
3.9 Vanishing and Exploding Gradient Problem in RNNs 20

vi

3.10 Long Short-Term Memory . 21
3.10.1 LSTM Cell . 21
3.10.2 Working of an LSTM Cell 21
3.10.3 Addressing the Gradient Problem 22

3.11 Bidirectional Long Short-Term Memory 23
3.11.1 Information Fusion . 24

3.12 Word Embedding . 25
3.12.1 Word2Vec . 26

3.13 Training Process . 27
3.13.1 Data Split . 27
3.13.2 Epochs . 27
3.13.3 Batch Size . 27
3.13.4 Learning Rate . 28
3.13.5 Optimization Algorithm . 28
3.13.6 Validation Split . 28

3.14 Model Evaluation Metrics . 28
3.14.1 Confusion Matrix . 28
3.14.2 Accuracy . 29
3.14.3 Precision . 29
3.14.4 Recall . 30
3.14.5 F1-Score . 30
3.14.6 Receiver Operating Characteristic (ROC) Curve 30
3.14.7 Area Under the ROC Curve 31

3.15 Hyperparameter Optimization . 31
3.15.1 Fidelity Level in Hyperparameter Optimization 32
3.15.2 Successive Halving . 32
3.15.3 Hyperband . 33

3.16 Instruction Set Architecture . 34
3.16.1 x86-64 (AMD64) ISA . 34

3.17 ELF Format . 35

4 Proposed Model 37
4.1 Model Architecture . 37

4.1.1 Word Embedding Layer . 37
4.1.2 Deep Learning Model . 37
4.1.3 Model Overview . 39

5 Methodology 41
5.1 Data collection . 41

5.1.1 Benign files collection . 41
5.1.2 Malicious file collection . 43

vii

5.1.3 Malicious Binaries Filtering by Architecture 44
5.2 Disassembly of AMD64 ELF Files 45

5.2.1 Process Overview . 45
5.3 Data Splitting . 49
5.4 Model Training . 49

5.4.1 Data Preparation: Tokenization and Indexing 49
5.4.2 Word Embedding . 50
5.4.3 Feature Extraction . 51
5.4.4 Feature Embedding . 51
5.4.5 Training the Deep Learning Model 52

5.5 Execution and Testing of the Model 53
5.5.1 Feature Extraction . 53
5.5.2 Feature Embedding . 54
5.5.3 Evaluating and Executing th Deep Learning Model 54

5.6 Hyperparameter Optimization . 55
5.6.1 Search Space . 55
5.6.2 Hyperparameter Optimization Setup 57

5.7 Experimental Setup and Infrastructure 58
5.7.1 Hardware Configuration . 58
5.7.2 Software Configuration . 59
5.7.3 Cluster Configuration . 60

6 Results 61
6.1 Hyperparameter Optimization Results 61

6.1.1 Hyperparameter Importance Analysis 61
6.1.2 Objective Function Analysis 61
6.1.3 Validation Accuracy Progression 64
6.1.4 Time Analysis . 65

6.2 Second Hyperparameter Optimization 65
6.2.1 Hyperparameter Importance Analysis 66
6.2.2 Objective Function Analysis 67
6.2.3 Validation Accuracy Progression 68
6.2.4 Time Analysis . 70

6.3 Selected Model Evaluation . 70

7 Conclusion 74

A Functions 76
A.1 Sigmoid . 76
A.2 Hyperbolic Tangent . 76

Bibliography 78

viii

List of Tables

3.1 Confusion Matrix for Binary Classification 29

5.1 Errors encountered when collecting benign files. 42
5.2 Collected x86-64 files. 44
5.3 Dataset split overview. 49
5.4 HPO search space . 56

6.1 Selected Hyperparameters After HPO 72
6.2 Model Evaluation Metrics . 72

ix

List of Figures

3.1 Taxonomy of Artificial Intelligence showing LSTM’s placement . . . 11
3.2 Neuron overview . 12
3.3 Illustration of a fully connected network architecture with 4 inputs,

1 hidden layer containing 5 neurons, and 1 output. 15
3.4 RNN overview . 19
3.5 Unrolled representation of an RNN for two consecutive time steps . 20
3.6 Architecture of an LSTM cell. 21
3.7 Architecture of a Bidirectional LSTM network. 24
3.8 Overview of the ELF File Format 36

4.1 Overview of the Proposed Model Architecture 40

5.1 ISA histogram for the VirusShare files. 43
5.2 Disassembly Process using objdump 46
5.3 Histogram of the 20 most frequent machine instructions among the

benign files. 48
5.4 Histogram of the 20 most frequent machine instructions among the

malicious files . 48

6.1 Relative Importance of Hyperparameters 62
6.2 Validation Accuracy Values for Hyperparameters 63
6.3 Validation Accuracy and Best Validation Accuracy Progression Dur-

ing Hyperparameter Optimization 64
6.4 Time Taken for Each Trial During Hyperparameter Optimization . 66
6.5 Relative Importance of Hyperparameters in the Second HPO 67
6.6 Validation Accuracy Values for Hyperparameters in the Second HPO 68
6.7 Validation Accuracy and Best Validation Accuracy Progression Dur-

ing Hyperparameter Optimization in the Second HPO 69
6.8 Time Taken for Each Trial During Hyperparameter Optimization in

the Second HPO . 71
6.9 Accuracy and Loss during Training and Validation 72

x

6.10 Receiver Operating Characteristic (ROC) Curve 73

A.1 Plot of the Sigmoid Function . 77
A.2 Plot of the Hyperbolic Tangent Function 77

xi

Acronyms

ELF
Executable and Linkable Format

AMD
Advanced Micro Devices

LSTM
Long Short-Term Memory

AI
Artificial Intelligence

ML
Machine Learning

RNN
Recurrent Neural Network

CNN
Convolutional Neural Networks

SGD
Stochastic Gradient Descent

ADAM
Adaptive Moment Estimation

BPTT
Backpropagation Through Time

xiii

BiLSTM
Bidirectional Long Short-Term Memory

BRNN
Bidirectional Recurrent Neural Network

ROC
Receiver Operating Characteristic

AUC
Area Under the Curve

NLP
Natural Language Processing

CBOW
Continuous Bag of Word

SG
Skip-gram

ISA
Instruction Set Architecture

HP
Hyperparameter

HPO
Hyperparameter Optimization

HPC
Hyperparameter Configuration

MF
Multifidelity

SH
Successive Halving

HB
Hyperband

xiv

Chapter 1

Introduction

1.1 Motivation and Background

In the landscape of modern cybersecurity, the detection of malware has emerged as
a critical pursuit to safeguard digital systems. Traditional signature-based methods
face challenges in identifying evolving threats, prompting a shift towards innovative
solutions. Among these, machine learning stands out as a promising approach,
offering the potential to recognize nuanced patterns indicative of malicious activity.

Machine learning has indeed proven to be a valuable asset for enhancing malware
detection capabilities. By harnessing the power of algorithms and data-driven
insights, machine learning models have demonstrated their ability to discern subtle
patterns, anomalies, and behaviors indicative of malicious activity. This trans-
formative approach shifts the focus from predefined rules to adaptive learning,
enabling security systems to evolve with the changing threat landscape.

This thesis delves into the realm of malware detection using machine learning
models, with a specific focus on Long Short-Term Memory (LSTM) and Bidi-
rectional LSTM (BiLSTM) architectures. LSTMs are a type of recurrent neural
network known for their ability to capture temporal dependencies in sequential
data. The bidirectional variant extends this capability by incorporating information
from both past and future time steps, making it particularly well-suited for tasks
like sequence classification and anomaly detection.

The motivation behind this research lies in the urgent need to develop robust
and accurate malware detection systems. While machine learning holds immense
potential, its application to cybersecurity presents unique challenges. The dynamic
nature of malware, coupled with the vast diversity of attack vectors, necessitates
the collection of comprehensive and representative datasets. Furthermore, effective
feature extraction and preprocessing techniques are essential to enable machine
learning models to discern relevant patterns from the raw data.

1

Introduction

By incorporating LSTM and BiLSTM models, we strive to tackle these chal-
lenges. Our approach involves enhancing these recurrent neural networks with
word embedding techniques to create an effective system for detecting malware
within executable files. Through an exhaustive process of experimentation, hyper-
parameter optimization, and thorough performance evaluation, we aim to reveal
the true potential of these models in accurately classifying and identifying malicious
software. The outcomes of this research hold promise in strengthening our defense
mechanisms against cyber threats and advancing the development of resilient and
adaptive security systems.

1.2 Problem Statement
The rapid proliferation of malware poses a significant challenge to the security of
digital systems. Malicious software is becoming increasingly sophisticated, employ-
ing evasive techniques to evade detection by traditional cybersecurity measures.
Signature-based approaches, which rely on known patterns and attributes of mal-
ware, struggle to keep pace with the evolving tactics of cybercriminals. This
dynamic landscape underscores the need for advanced and adaptable detection
methods.

At the core of this research lies the central challenge: the development of robust
and precise malware detection mechanisms through the utilization of machine
learning models. Specifically, this inquiry delves into the application of LSTM and
BiLSTM architectures, advanced neural networks designed to handle sequential
data.

This pursuit entails an exploration of multifaceted dimensions. A foundational
aspect involves the comprehensive grasp of fundamental machine learning concepts.
This encompasses the inner workings of LSTM cells, the mathematics behind
backpropagation, and the intricacies of hyperparameter optimization—a cornerstone
upon which meaningful model construction is built.

Practical challenges in data acquisition also come into focus. Compiling datasets
for machine learning purposes introduces complexities. The process of gathering
a representative collection for training and testing is vital, yet the attainment of
a diverse and legally sound dataset, particularly malicious samples, presents a
significant hurdle.

In addition, the life cycle of a malware detection model mirrors the evolving
threat landscape it aims to counter. The challenge is to facilitate model evolu-
tion—updating it to adapt to new attack vectors while preserving its acquired
knowledge, all within the constraints of available resources.

Technical intricacies pertinent to the training of neural networks also come to
the forefront. The resource-intensive nature of deep learning necessitates adept

2

Introduction

memory management. Effectively training LSTM and BiLSTM models requires a
balanced orchestration of computational resources to optimize performance while
adhering to memory limitations.

In summary, this thesis embarks on a comprehensive exploration of machine
learning-powered malware detection models. With an in-depth understanding of
machine learning concepts as a foundational bedrock, this research navigates the
intricacies of data collection, model adaptation, and technical training challenges.
The overarching aim is to contribute to the realm of adaptive cybersecurity, where
emerging threats are met with sophisticated and responsive defenses.

1.3 Research Objectives
The primary objective of this project is to develop an effective deep learning model
for the identification of malware executable files. To achieve this overarching goal,
the research is structured into the following specific objectives:

1. Comprehensive Understanding of Machine Learning and Data Pro-
cessing: Acquire a profound understanding of machine learning techniques
and data processing methods as the foundational knowledge for subsequent
research stages.

2. Development of an Effective Malware Detection Model: Create a deep
learning model designed specifically for the detection of malware in executable
files, including data collection, preprocessing, and model development.

3. Hyperparameter Optimization: Fine-tune the deep learning model’s
hyperparameters to enhance its performance through systematic exploration
and adjustment of various model configurations.

4. Model Evaluation: Rigorously evaluate the final deep learning model’s
ability to accurately identify malware executable files using key performance
metrics.

These research objectives collectively contribute to the development of a robust
and accurate deep learning solution for malware detection. The subsequent chapters
of this thesis detail the methodology, results, and conclusions derived from pursuing
these objectives.

1.4 Thesis Outline
This thesis is structured to provide a comprehensive exploration of the develop-
ment and optimization of a deep learning model for the identification of malware

3

Introduction

executable files. The following chapters outline the research journey, from the
foundation laid in the literature review to the final evaluation of the proposed
model:

1. Introduction: Introduces the research context, outlines the objectives, and
provides an overview of the thesis structure.

2. Literature Review: Offers a concise yet comprehensive review of state-of-
the-art techniques in malware detection. It presents an analysis of existing
methodologies and serves as a foundation for the proposed model.

3. Background: Delves into the fundamental concepts and principles essential
for understanding the proposed model. It provides in-depth explanations of
machine learning, data processing, and other key components.

4. Proposed Model: Outlines the architecture and design of the proposed deep
learning model specifically tailored for malware detection. Details of model
structure, layers, and components are discussed.

5. Methodology: Presents the step-by-step methodology employed in the re-
search. It covers data collection, data preprocessing, model training, execution,
and evaluation. The chapter also elaborates on the hyperparameter optimiza-
tion process.

6. Results: Provides a detailed analysis of the results obtained throughout the
research. This includes the outcomes of hyperparameter optimization (HPO)
as well as the final evaluation of the chosen model.

7. Conclusion: Summarizes the key findings of the research, discusses their
implications, and offers recommendations for future work in the field of malware
detection using deep learning models.

4

Chapter 2

Literature Review

In this chapter, we delve into the vast landscape of malware detection, exploring its
fundamental concepts, approaches, and the evolving trends in the field. Malware,
malicious software designed to compromise computer systems and data, poses
significant threats to cybersecurity. As cybercriminals constantly innovate and
adapt their techniques, the development of effective malware detection methods
becomes paramount.

We commence by providing an overview of malware detection and its significance
in safeguarding digital environments. We highlight the challenges posed by the
ever-evolving nature of malware, which calls for dynamic and adaptable detection
techniques. The chapter then delves into the foundational taxonomy of malware
analysis, categorizing methods into static analysis, dynamic analysis, and hybrid
analysis. These categories lay the groundwork for comprehending the various
strategies employed in the detection of malware.

Moving forward, we explore the historical landscape of malware detection
approaches. We examine primitive methods that were the precursors of more
advanced techniques. Subsequently, we delve into conventional machine learning-
based methods that utilize features extracted from malware samples to build
detection models. We discuss the limitations of these approaches, particularly in
coping with the intricacies of modern malware.

In the era of deep learning, we witness a paradigm shift in malware detection.
Deep learning techniques, such as neural networks, convolutional neural networks
(CNNs), and recurrent neural networks (RNNs), have revolutionized the field by
autonomously learning complex patterns from raw data. We emphasize the role of
these techniques in enhancing detection capabilities, even in the face of obfuscation
and polymorphism.

Throughout this chapter, we navigate the ever-evolving landscape of malware
detection, where researchers continuously strive to keep pace with emerging cyber
threats. Our exploration will underscore the importance of a comprehensive and

5

Literature Review

adaptive approach to malware detection, incorporating both historical knowledge
and cutting-edge methodologies.

2.1 Introduction
In the contemporary landscape of information technology, cybersecurity has become
an increasingly critical concern. The rapid expansion of digital technologies has led
to a proliferation of cyber threats [1], with malicious actors employing sophisticated
techniques to compromise systems, steal sensitive data, and disrupt operations.
Among the various cybersecurity challenges, the detection of malicious software, or
malware, poses a significant threat to the integrity and security of digital systems.

Malware encompasses a broad range of malicious software designed to infiltrate,
exploit, or compromise computer systems, networks, and applications. Traditional
approaches to malware detection have often relied on signature-based methods that
identify known patterns of malicious code. However, these methods are limited
in their ability to detect new and evolving malware variants, as cyber attackers
continuously evolve their tactics to evade detection.

In response to the dynamic nature of modern cyber threats, deep learning has
emerged as a promising approach for enhancing malware detection. Deep learning
leverages artificial neural networks with multiple layers to automatically learn
intricate patterns and representations from large volumes of data. By harnessing
the power of deep learning, cybersecurity researchers and practitioners aim to
develop more robust and adaptive malware detection systems capable of identifying
both known and previously unseen threats.

This literature review explores the application of deep learning techniques to the
realm of cybersecurity, with a specific focus on the detection of malicious software.
By surveying the existing literature, this review aims to provide a comprehensive
overview of the state-of-the-art in deep learning-based malware detection. The
review will examine various methodologies that have been utilized to improve the
accuracy and efficiency of malware detection systems.

The upcoming sections provide a comprehensive taxonomy for malware analysis
and discuss various approaches employed in malware detection. The intention
behind these sections is to equip the reader with a thorough understanding of the
current state-of-the-art in this domain.

2.1.1 Taxonomy of Malware Analysis
Malware analysis is a fundamental practice in cybersecurity aimed at understanding
and categorizing malicious software. It involves various techniques to dissect and
comprehend the behavior, functionality, and potential threats posed by malware.

6

Literature Review

The taxonomy of malware analysis is broadly categorized into three main approaches:
Static Analysis, Dynamic Analysis, and Hybrid Analysis.

Static Analysis

Static analysis focuses on examining malware without executing it. It involves
analyzing the binary or source code of malware to identify patterns, characteristics,
and potential malicious activities. This approach includes techniques such as disas-
sembly, decompilation, and code inspection. Static analysis helps in identifying
common malware indicators, extracting signatures, and detecting code vulnerabili-
ties. However, it may not provide insights into the runtime behavior and evasion
techniques employed by more sophisticated malware.

The work presented in this thesis primarily falls within the domain of Static
Analysis, where the focus is on analyzing malware without its execution. This
includes the examination of executable file’s binary code, utilizing techniques such
as disassembly, decompilation, and code inspection. The objective is to identify
patterns and characteristics indicative of malware, enhancing our ability to detect
and categorize malicious software.

Dynamic Analysis

Dynamic analysis involves executing malware within a controlled environment to
observe its behavior during runtime. This approach captures interactions between
the malware and its environment, monitoring system calls, network traffic, and
file activities. Dynamic analysis enables the detection of hidden actions, evasion
techniques, and malware’s response to various inputs. It is particularly useful for
understanding malware’s execution flow, identifying communication channels, and
detecting malicious payloads. However, dynamic analysis might not be effective
against highly evasive malware that can detect and evade analysis environments.

Hybrid Analysis

Hybrid analysis combines both static and dynamic analysis techniques to enhance
the accuracy and effectiveness of malware analysis. By leveraging the strengths of
both approaches, hybrid analysis aims to overcome the limitations of individual
methods. It can provide a comprehensive view of malware’s behavior, including
its static attributes and dynamic execution characteristics. Hybrid analysis is
particularly beneficial for detecting polymorphic and obfuscated malware, as well
as capturing both static and runtime indicators of compromise.

In the realm of cybersecurity, selecting the appropriate malware analysis tech-
nique depends on the nature of the malware, the goals of the analysis, and the

7

Literature Review

available resources. Each approach contributes to a holistic understanding of
malware, enabling security professionals to develop effective countermeasures and
mitigate potential threats.

2.1.2 Trends in Malware Detection
The field of malware detection has evolved over the years, driven by advancements
in technology and the evolving threat landscape. This subsection presents an
overview of the trends in malware detection, highlighting different approaches
employed to detect and mitigate the risks posed by malicious software.

Statistical Analysis

In the early stages of cybersecurity, malware detection predominantly relied on
primitive methods such as signature-based detection and pattern matching [2, 3, 4,
5, 6]. Signature-based detection involves comparing files or code segments against a
database of known malware signatures. While effective against well-known malware,
this approach struggled with polymorphic and metamorphic malware that can
evade static signatures through minor modifications. Additionally, simple pattern
matching had limitations in detecting emerging threats with novel code patterns.

Machine Learning

As malware became more sophisticated, conventional machine learning methods
started playing a crucial role in malware detection. These methods involve training
models on labeled datasets, allowing them to learn patterns and characteristics of
both benign and malicious software. Feature engineering, which involves selecting
relevant attributes from the data, is a key component of this approach. Conventional
machine learning techniques include K-means [7], decision trees [8], support vector
machines [9, 10], and random forests [11]. While effective, these methods can
struggle with the ever-changing nature of malware and require continuous updates
to stay relevant.

Deep Learning

The emergence of deep learning has brought a paradigm shift to malware detection.
Deep learning techniques, such as neural networks and convolutional neural networks
(CNNs), can automatically learn complex features from raw data, reducing the need
for manual feature engineering [12]. This approach excels at capturing intricate
patterns, even in the presence of obfuscation and polymorphism. Recurrent neural
networks (RNNs) are utilized to capture sequential dependencies in malware
behavior. Hybrid architectures, combining CNNs and RNNs, further enhance

8

Literature Review

detection capabilities [13]. Deep learning models, such as LSTM networks and
Transformer-based architectures, have demonstrated promising results in accurately
detecting known and unknown malware.

LSTM networks have proven to be effective in capturing long-range dependencies
in sequential data, making them suitable for modeling the dynamic behavior of
malware [14, 15]. Transformer-based architectures, with their attention mechanisms,
excel at processing and understanding intricate relationships within malware code
[16, 17]. These deep learning models are capable of learning complex behaviors
exhibited by malware and adapting to evolving attack strategies.

The trends in malware detection reflect an ongoing effort to stay ahead of
evolving cyber threats. As attackers continuously develop new evasion techniques,
the combination of advanced machine learning algorithms and deep learning models
equips cybersecurity professionals with powerful tools to combat the ever-growing
variety of malware.

9

Chapter 3

Background

In the pursuit of effective malware detection using machine learning, it is essential
to establish a comprehensive understanding of the foundational concepts, evaluation
techniques, and the application of deep learning methods. This literature review
section provides an in-depth exploration of these crucial aspects.

3.1 Artificial Intelligence

The quest for machines that can emulate human intelligence dates back to the
inception of computing. Artificial Intelligence (AI) is the interdisciplinary domain
that aims to create systems capable of reasoning, learning, and performing tasks
that typically require human intelligence. The history of AI is marked by significant
milestones, from the Dartmouth Workshop in 1956 [18] that birthed the term
‘artificial intelligence’ to the modern era of neural networks and deep learning.

In Figure 3.1, a taxonomy of Artificial Intelligence is depicted. Each segment
of this taxonomy will be briefly described in the subsequent sections, elucidating
their significance in the landscape of machine learning and malware detection.

3.2 Machine Learning

While Artificial Intelligence encompasses the broader concept of creating intelligent
systems, Machine Learning (ML) constitutes a vital subset within AI. ML focuses
on the development of algorithms and models that enable computers to learn
patterns and make predictions based on data without explicit programming.

10

Background

Figure 3.1: Taxonomy of Artificial Intelligence showing LSTM’s placement

3.3 Neural Networks

The development of AI has been profoundly shaped by the complexities of the
human brain. The human brain’s remarkable capacity to process information,
adapt to novel scenarios, and acquire knowledge from experiences has captivated
researchers for decades. This profound intrigue has driven the investigation of
brain-inspired principles within the domain of AI, culminating in the emergence of
Neural Networks.

Neural Networks draw inspiration from the structure and functioning of biological
neurons in the brain. These networks consist of interconnected nodes, or “neurons”,
that process and transmit information through weighted connections. The collective
behavior of these interconnected neurons enables the network to learn patterns,
recognize features, and make predictions from data.

In the context of machine learning, Neural Networks have demonstrated re-
markable capabilities in tasks ranging from image recognition to natural language
processing. Convolutional Neural Networks (CNNs) excel at image analysis, while
Recurrent Neural Networks (RNNs) and variants like Long Short-Term Memory
(LSTM) networks are particularly effective for sequential data analysis.

11

Background

3.3.1 Neuron
At the heart of neural networks lies the concept of neurons, inspired by their
biological counterparts in the human brain. Neurons serve as information processing
units within the network, contributing to the network’s ability to learn patterns
from data.

The concept of artificial neurons can be traced back to the mid-20th century.
Warren McCulloch and Walter Pitts proposed a simplified model of a neuron in
their seminal paper "A Logical Calculus of Ideas Immanent in Nervous Activity"
[19], published in 1943. In their work, they introduced a model of a neuron that
could take binary inputs, apply weights to those inputs, sum them up, and produce
an output based on a threshold. This groundbreaking paper laid the foundation
for the concept of artificial neural networks.

Further development of the artificial neuron concept was carried out by Frank
Rosenblatt, who introduced the perceptron in 1957 [20]. The perceptron was a
single-layer neural network designed to recognize and classify patterns. Although
perceptrons had limitations in solving certain types of problems, Rosenblatt’s work
marked a significant step forward in the field of neural networks.

The concept of artificial neurons, initially proposed by McCulloch, Pitts, and
later developed by Rosenblatt, has paved the way for the complex neural network
architectures that we see today, including multi-layer perceptrons, convolutional
neural networks, recurrent neural networks, and more. These architectures have
demonstrated remarkable capabilities in tasks ranging from image recognition to
natural language processing and reinforcement learning.

x1

x2

x3

Neuron

b

f y

w1

w2

w3

Figure 3.2: Neuron overview

A neuron comprises several key components, see Fig. 3.2:

• Input data: Neurons receive input data from other neurons or external sources.
These inputs are multiplied by corresponding weights, which represent the
strength of the connections.

12

Background

• Weights: Each input is associated with a weight, representing the significance
of that input in influencing the neuron’s output. These weights are adjusted
during training to learn meaningful patterns.

• Summation Function: The weighted inputs, including the bias terms, are
summed together, incorporating both positive and negative influences.

• Activation Function: The summed value undergoes an activation function
that introduces non-linearity to the neuron’s output. Common activation
functions include sigmoid, ReLU (Rectified Linear Unit), and tanh (Hyperbolic
Tangent).

• Output: The output of the activation function represents the neuron’s final
response. This output is then forwarded to other neurons in subsequent layers.
The output is calculated through the following formula:

y = f

A
nØ

i=1
(xi · wi) + b

B

where n refers to the number of inputs, xi signifies the value of the i-th input,
wi indicates the weight associated with the i-th input, b denotes the bias term,
and f represents the activation function applied element-wise to the weighted
sum.
This computation is often presented in a vectorized format:

y = f (w · x + b)

where y is the output vector, w is the weight vector, x is the input vector,
and b is the bias. This compact form simplifies calculations and is widely used
in the implementation of neural networks.

3.4 Fully Connected Layer
A fully connected layer, or also referred as a dense layer, represents a fundamental
component of various artificial neural networks, including feed-forward neural net-
works and deep learning architectures. Within a fully connected layer, each neuron
establishes connections with every neuron in the preceding layer. This arrangement
results in a dense matrix of interconnections between neurons, facilitating the
learning of intricate relationships from the input data.

Mathematically, in a fully connected layer, the output of each neuron is computed,
as described above, by taking a weighted sum of the outputs from the previous
layer, adding the bias, and applying an activation function. The weights and biases

13

Background

associated with each connection are the learnable parameters of the layer, and they
determine the strength and bias of each connection.

A fully connected layer can be represented as follows:

y = f (W · x + b)

where:

• W is the weight matrix that encodes the connection strengths between neurons,

• x represents the input to the network or the output of the preceding layer,

• b is the bias vector that accounts for the bias of each neuron.

• f is the activation function.

Fully connected layers are versatile and can capture complex patterns in data, but
they can also lead to a large number of parameters in deep networks. Regularization
techniques and architectural design choices are often used to mitigate overfitting
and enhance the generalization ability of fully connected networks.

Fully connected layers are frequently used in conjunction with other layers, such
as activation functions, pooling layers, and output layers, to build diverse neural
network architectures capable of tackling various tasks, including classification,
regression, and more complex tasks like image recognition and natural language
processing.

3.5 Loss Function
The loss function, denoted as L in a neural network context, is a mathematical
measure that quantifies the discrepancy between the predicted output of the
network and the actual target values. Its purpose is to guide the learning process by
providing a measure of how well or poorly the network is performing with respect
to the training data.

In the context of training a neural network, the loss function computes a single
scalar value that represents the error or cost associated with the current predictions
made by the network. The goal during training is to minimize this loss function,
as a lower value indicates that the network’s predictions are closer to the desired
targets.

Different types of neural network architectures and tasks may require different
loss functions. Common loss functions include mean squared error (MSE) for
regression problems and categorical cross-entropy for classification problems. The
choice of the loss function depends on the specific problem being solved and the
nature of the target values.

14

Background

Input1

Input2

Input3

Input4

Hidden1

Hidden2

Hidden3

Hidden4

Hidden5

Output

Figure 3.3: Illustration of a fully connected network architecture with 4 inputs, 1
hidden layer containing 5 neurons, and 1 output.

3.6 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is a fundamental optimization algorithm used
to train machine learning models, including neural networks. It’s a variant of the
traditional gradient descent algorithm designed to efficiently handle large datasets
by processing data in small batches.

In SGD, rather than computing the gradient of the loss function over the entire
dataset, the gradient is estimated using a single data point or a mini-batch of data
at a time. This introduces randomness into the optimization process, as each batch
provides a noisy estimate of the true gradient.

The main idea behind SGD is to iteratively update the model’s parameters in
the direction that reduces the loss function. For example, in a neural network,
parameters include the weights and biases. The update formula for a parameter θ
(which could represent a weight or bias) is given by:

θ ← θ − η · ∇θL

where:

15

Background

• η is the learning rate, which determines the step size of the updates.

• ∇θL is the gradient of the loss with respect to the parameter θ.

Key concepts and benefits of SGD include:

• Efficiency: SGD processes a small subset of the data at each iteration, making
it computationally efficient and suitable for large datasets.

• Generalization: The noise introduced by mini-batch sampling can help
prevent overfitting by adding regularization.

• Escape from Local Minima: The noise in the gradient estimates can
sometimes help the optimization process escape from local minima.

However, SGD also has challenges, such as sensitivity to learning rate and
convergence to suboptimal solutions. To address these challenges, various techniques
have been proposed, including learning rate schedules, momentum, and adaptive
learning rate algorithms like Adam.

In practice, the choice of learning rate, batch size, and optimization algorithm
plays a crucial role in determining the convergence and performance of neural
networks during training.

3.6.1 Adam Optimization Algorithm
Adam (short for Adaptive Moment Estimation) [21] is an optimization algorithm
that combines the advantages of both stochastic gradient descent (SGD) and mo-
mentum. It’s designed to provide adaptive learning rates for individual parameters,
making it well-suited for a wide range of machine learning tasks, including training
neural networks.

The key idea behind Adam is to adaptively adjust the learning rates based on
the historical gradients and squared gradients of the parameters. This helps the
algorithm automatically adjust the learning rates for different parameters, allowing
it to converge faster and handle various types of data and loss landscapes.

The update formula for parameter θ using Adam is given by:

θt+1 = θt −
η√

v̂t + ϵ
· m̂t

where:

• η is the learning rate.

• m̂t is the first moment estimate (similar to the momentum term in other
algorithms).

16

Background

• v̂t is the second moment estimate.

• ϵ is a small constant to prevent division by zero.

The first moment estimate m̂t and the second moment estimate v̂t are computed
as exponentially decaying moving averages of past gradients and squared gradients,
respectively:

m̂t = β1 · m̂t−1 + (1− β1) · ∇t

v̂t = β2 · v̂t−1 + (1− β2) · (∇t)2

where ∇t is the gradient of the loss with respect to parameter θ.
The hyperparameters β1 and β2 control the decay rates of the moving averages.

Adam also introduces a bias correction step to mitigate the initialization bias of
the moving averages.

Adam offers the benefits of efficient optimization, automatic adaptation of
learning rates, and robustness to different loss landscapes.

3.7 Backpropagation
The backpropagation algorithm, has its origins in the work of several researchers in
the 1970s and 1980s. Paul Werbos (1974) introduced the concept of backpropagation
as a method for adjusting network weights and formulated it as an optimization
problem [22]. David Rumelhart, Geoffrey Hinton, and Ronald Williams (1986)
further developed the algorithm and demonstrated its effectiveness for training
multi-layer neural networks [23].

Backpropagation is a pivotal algorithm for training neural networks by optimizing
their parameters to minimize a chosen loss function. It is an acronym for backward
propagation of errors, enabling iterative learning from data.

The backpropagation process consists of two main phases: the forward pass and
the backward pass.

3.7.1 Forward Pass

During the forward pass, input data is propagated through the network, layer by
layer. Activations are computed using learned weights and biases. The output of
each layer becomes the input for the next layer, resulting in predictions or output
values.

17

Background

3.7.2 Backward Pass
The backward pass is where the crucial gradient computations occur. It calculates
gradients of the loss function with respect to network parameters. These gradients
quantify the sensitivity of the loss to changes in each parameter. The chain rule
from calculus is employed to efficiently compute these gradients.

Gradients are computed layer by layer, initiated from the output layer and
propagated backward towards the input layer. The chain rule permits the decom-
position of the gradient of the loss with respect to the output into a product of
gradients at each layer.

Mathematically, consider a simple neural network layer (see Fig. 3.3) with
activation function f , weight matrix W, biases b, and input vector x. The
equations for the forward and backward passes are as follows:

Forward Pass:
z = Wx + b

y = f(z)

Backward Pass:
∇zL = ∇yL · f ′(z)

∇WL = ∇zL · xT

∇bL = ∇zL

Here, L represents the loss function, and f ′ signifies the derivative of the
activation function.

3.8 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type of artificial neural network archi-
tecture designed to handle sequential data and capture temporal dependencies
within it. Unlike feedforward neural networks, which process input data in a fixed
and isolated manner, RNNs maintain an internal state that evolves as new input
is processed. This enables RNNs to effectively model sequences, making them
well-suited for tasks such as natural language processing, speech recognition, and
time series analysis.

The key feature of RNNs is their ability to maintain memory of previous time
steps, allowing them to capture and utilize information from earlier parts of a
sequence. This is achieved by introducing recurrent connections that create a loop
within the network, enabling information to be passed from one step to the next.

Mathematically, an RNN can be represented as follows:

ht = f (Whxxt + Whhht−1 + bh)

18

Background

y = Wyhht + by

where:

• xt is the input at time step t,

• ht is the hidden state at time step t,

• Whx is the weight matrix associated with the input values,

• Whh is the weight matrix associated with the previous hidden state values,

• Woh is the weight matrix associated with the output values,

• bh and by are bias vectors,

• f is the activation function.

The output at each time step can be used for prediction, classification, or further
processing. Additionally, the hidden state ht acts as a memory that stores relevant
information from previous time steps.

x h

bh

y

by

Whx Wyh

Whh

Figure 3.4: RNN overview

The architecture of an RNN can be visualized as shown in Figure 3.4. This
figure depicts the sequential nature of RNNs, where the hidden state is shared
across time steps, allowing the network to maintain memory of past inputs.

For a more detailed view of the temporal relationships within an RNN, an
unrolled representation can be used, as seen in Figure 3.5.

The unrolled RNN diagram in Figure 3.5 illustrates the internal connections
between time steps, providing a clearer depiction of how the network processes
sequential data and maintains hidden states across multiple steps. This unrolled
view helps in understanding the flow of information within the network over time.

19

Background

xt−1

xt

ht−1

ht

bh

bh

y

by

Whx

Whx

Wyh

Whh

Figure 3.5: Unrolled representation of an RNN for two consecutive time steps

RNNs suffer from the vanishing gradient problem, where gradients become
very small during backpropagation through time, leading to difficulties in learning
long-range dependencies. To address this, more advanced RNN variants have
been developed, such as Long Short-Term Memory (LSTM) networks and Gated
Recurrent Units (GRUs), which incorporate mechanisms to better capture long-term
dependencies while mitigating the vanishing gradient problem.

3.9 Vanishing and Exploding Gradient Problem
in RNNs

RNNs are powerful models for processing sequential data. However, they suffer
from the vanishing and exploding gradient problem during training. This issue
arises from the nature of backpropagation through time (BPTT) [24], the algorithm
used to compute gradients in RNNs.

When backpropagating gradients through multiple time steps, the gradients can
either become extremely small (vanishing gradient) or extremely large (exploding
gradient). This occurs because the gradients are multiplied across multiple layers
in the network, which can cause them to either diminish or explode exponentially.

The vanishing gradient problem leads to slow convergence and difficulty in
capturing long-range dependencies in sequences. On the other hand, the exploding
gradient problem can cause training instability and make it challenging to find
suitable model parameters.

20

Background

3.10 Long Short-Term Memory
Long Short-Term Memory (LSTM) [25] networks are a specialized type of recurrent
neural networks designed to address the limitations of standard RNNs, particularly
for capturing long-range dependencies in sequences.

3.10.1 LSTM Cell
At the core of an LSTM network is the LSTM cell, see Fig. 3.6. The LSTM cell
possesses a unique architecture that enables it to remember information over long
sequences and selectively retain or discard information through gating mechanisms.
Each LSTM cell consists of various components, including input gates, forget gates,
memory cells, and output gates.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell State

ht−1

Hidden State

xtInput

ct

Cell State Updated

ht

Hidden State Updated

ht

Hidden State Updated

Figure 3.6: Architecture of an LSTM cell.

3.10.2 Working of an LSTM Cell
An LSTM cell’s operation involves a delicate interplay of its components. The input
gate controls which information should be updated, the forget gate determines
what information to discard, and the output gate regulates the information to be
outputted. The activation functions used within the LSTM cell are provided in
Annex A.

Forget Gate (f): The forget gate decides what information from the previous
cell state (ct−1) should be discarded. It is controlled by the sigmoid activation

21

Background

function and is calculated as:

ft = σ(Wxfxt + Whfht−1 + bf)

Potential Cell State Update (c̃): The cell state update captures the new
information to be stored in the cell state. It is determined by the tanh activation
function and is given by:

c̃t = tanh(Wxcxt + Whcht−1 + bc)

Input Gate (i): The input gate determines how much of the new information
(c̃) should be added to the cell state (c). It is controlled by the sigmoid activation
function and is given by:

it = σ(Wxixt + Whiht−1 + bi)

Cell State (c) Update: The cell state (ct) is updated using the input gate
(it), forget gate (ft), and the potential cell state update (c̃t):

ct = ft ⊙ ct−1 + it ⊙ c̃t

Output Gate (o): The output gate controls how much of the cell state should
contribute to the hidden state. It is determined by the sigmoid activation function
and is calculated as:

ot = σ(Wxoxt + Whoht−1 + bo)

Hidden State (h) Update: The hidden state (ht) is updated using the output
gate (ot) and the cell state (ct):

ht = ot ⊙ tanh(ct)

3.10.3 Addressing the Gradient Problem
Long Short-Term Memory networks stand out in their ability to effectively mitigate
the vanishing and exploding gradient problem, which is a challenge faced by
regular Recurrent Neural Networks. The challenge arises from the fact that during
the training process, gradients can become extremely small or large as they are
propagated backward through the network. This leads to issues such as slow or
unstable learning, hindering the network’s ability to capture long-term dependencies
in sequences.

Traditional RNNs suffer from the vanishing gradient problem, where gradients
associated with early time steps can become exceedingly small as they are multiplied
by the same weights in each time step. This diminishes the impact of early inputs

22

Background

on later stages of learning, making it challenging for the network to capture long-
range relationships. On the other hand, the exploding gradient problem results in
gradients becoming significantly larger as they are multiplied by the same weights,
leading to unstable and divergent training.

LSTMs introduce gating mechanisms that address these problems effectively.
Each LSTM cell contains gating units that regulate the flow of information. These
gating units, including the input, forget, and output gates, enable the LSTM to
selectively remember or forget information over multiple time steps. Importantly,
these gates control the flow of gradients during backpropagation.

The forget gate allows the LSTM to discard irrelevant information from the cell
state, preventing it from being overwhelmed by irrelevant data that can contribute
to the exploding gradient problem. The input gate then enables the LSTM to
selectively update the cell state with new information. These gating mechanisms
provide a level of control over the gradient flow that is not present in regular RNNs.

By addressing the gradient problem, LSTMs enhance the stability and effec-
tiveness of training. They facilitate the flow of relevant gradients, ensuring that
updates to the model’s parameters are appropriate and well-scaled. This results
in more efficient learning and improved gradient flow through time. Overall, the
gating mechanisms in LSTMs play a crucial role in allowing the network to learn
and capture dependencies in sequences, making them a superior choice for tasks
involving long sequential data compared to regular RNNs.

LSTMs have revolutionized sequence modeling by addressing the limitations of
traditional RNNs. Their ability to handle long sequences, coupled with memory cells
and gating mechanisms, enables them to capture both short-term and long-term
dependencies effectively.

3.11 Bidirectional Long Short-Term Memory
Bidirectional Long Short-Term Memory (BiLSTM) [26] networks are an extension
of the traditional LSTM architecture, designed to capture not only past but also
future information in sequences. Standard LSTMs process sequences in a left-to-
right manner, which may limit their ability to capture patterns that depend on
both earlier and later context. BiLSTMs address this limitation by incorporating
two separate LSTM layers, one processing the sequence in a forward direction and
the other in a backward direction.

The concept of Bidirectional Recurrent Neural Networks (BRNN) lays the
foundation for BiLSTMs. Introduced by Schuster and Paliwal in 1997 [27], BRNNs
process sequences bidirectionally, capturing context from both earlier and later
time steps. This bidirectional processing allows the network to capture complex
dependencies in sequential data more effectively than traditional RNNs.

23

Background

The architecture of a BiLSTM network Fig. 3.7 comprises two LSTM layers: one
that processes the input sequence in a forward direction (from the beginning to the
end) and the other that processes the sequence in a backward direction (from the
end to the beginning). The outputs of these two LSTM layers are often combined
through concatenation or other methods to create a holistic representation of the
input sequence. This combined representation retains information from both past
and future time steps, enabling the network to make more informed predictions
and capture intricate patterns.

By processing sequences in both directions, BiLSTMs can effectively capture
dependencies that span across time steps. This feature is particularly advantageous
in scenarios such as natural language processing, where understanding the context
of words and phrases in both directions is crucial for accurate understanding and
generation of text.

The bidirectional processing in BiLSTMs has proven valuable in various appli-
cations, including speech recognition, sentiment analysis, and machine translation.
These networks excel in scenarios where contextual information plays a significant
role in achieving accurate and meaningful predictions.

Outputs . . . yt−1 yt yt+1 . . .

Backward
Layer

←−−
ht−1

←−
ht

←−−
ht+1

Forward
Layer

−−→
ht−1

−→
ht

−−→
ht+1

Inputs . . . xt−1 xt xt+1 . . .

Figure 3.7: Architecture of a Bidirectional LSTM network.

3.11.1 Information Fusion
The key idea behind a BiLSTM is that the hidden states of both the forward
and backward LSTMs at a given time step are concatenated. This combined

24

Background

representation captures the contextual information from both directions. The
output at each time step is typically obtained by combining the outputs of the
forward and backward LSTMs, which can be as simple as concatenating them or
applying a weighted sum.

Mathematically, let −→ht represent the hidden state of the forward LSTM and ←−ht

represent the hidden state of the backward LSTM at time step t. The combined
hidden state at time step t is given by←→ht = [−→ht ,

←−
ht], where [,] denotes concatenation.

In summary, BiLSTM networks leverage the bidirectional processing capability
of BRNNs and the memory-enhancing properties of LSTMs to capture dependencies
in sequences from both past and future directions. This dual-context processing
makes BiLSTMs a powerful tool for tackling complex sequence modeling tasks
across various domains.

3.12 Word Embedding
Natural language is rich in meaning and context, making it a complex and intricate
medium for communication. In the realm of natural language processing (NLP),
accurately representing words in a manner that captures their semantic relationships
and contextual nuances is a fundamental challenge. Traditional approaches, which
treat words as discrete symbols, often struggle to capture the inherent complexities
and similarities among words. This limitation spurred the development of word
embeddings, a transformative technique that bridges the gap between the symbolic
nature of words and their underlying semantic structures.

The effectiveness of word embeddings can be attributed to a foundational
linguistic principle that asserts the similarity of words is reflected in their contextual
usage. This concept finds its roots in the maxim "you shall know a word by the
company it keeps," attributed to British linguist J.R. Firt [28]. Alongside his
American counterpart Zellig Harris, Firth is often recognized for pioneering the
concept of "distributional semantics." This idea underscores the notion that words
with comparable meanings often appear in similar contexts. The development of
word embeddings was heavily influenced by this linguistic theory, as it provided
a framework to capture semantic relationships between words in a quantitative
and meaningful manner. Through this innovative approach, words are no longer
treated as isolated entities but rather as dynamic components intricately connected
to the linguistic environment in which they occur. This principle has been a driving
force behind the creation of word embedding techniques that enhance the ability of
machine learning models to decipher and represent the intricate nuances of human
language.

Word embeddings are distributed representations of words in a continuous vector
space. Unlike traditional symbolic representations, where words are represented

25

Background

as isolated tokens, word embeddings encode semantic information by positioning
words in a high-dimensional space. The key idea behind word embeddings is to
map words that share similar contexts and meanings to nearby points in this
vector space. This representation captures the inherent semantic relationships
between words, enabling machines to process and understand natural language
more effectively.

The foundation of word embeddings lies in the distributional hypothesis, which
posits that words that appear in similar contexts tend to have similar meanings.
Leveraging large text corpora, word embedding models learn to capture these
contextual relationships and encode them as dense vectors. Through this process,
words with similar meanings become closer in the vector space, while words with
dissimilar meanings are separated by larger distances.

The advent of word embeddings has revolutionized various NLP tasks, includ-
ing text classification [29], sentiment analysis [30], machine translation [31], and
information retrieval [32]. The ability to represent words in a continuous space
has enabled models to generalize better across languages, contexts, and domains,
leading to substantial improvements in performance.

This section serves as an introduction to the word embedding technique employed
in this project, namely Word2Vec [33]. We will delve into the details of Word2Vec,
encompassing its two fundamental approaches: Continuous Bag of Words (CBOW)
and Skip-gram (SG). Through a comprehensive exploration of these approaches, we
aim to provide a clear understanding of how Word2Vec generates word embeddings
by capturing semantic relationships and contextual associations within a given
corpus. By focusing on these specific methods, we aim to shed light on the intricate
processes that enable Word2Vec to transform words into high-dimensional vectors
capable of encapsulating the semantic essence of language.

3.12.1 Word2Vec
Word2Vec, proposed by Tomas Mikolov and his team at Google in 2013 [34],
revolutionized the field of natural language processing by introducing an efficient
and scalable method to learn distributed word representations from large text
corpora. This technique leverages the insight that words with similar meanings
often appear in similar contexts. The fundamental principle of Word2Vec is rooted
in the idea of "distributional semantics," which posits that the meaning of a word
can be inferred from its distributional patterns within a corpus.

Word2Vec offers two primary approaches i.e. CBOW and SG. In the CBOW
approach, the model predicts the target word based on its surrounding context
words, treating the context words as input features. Conversely, in the SG approach,
the model predicts the context words given a central target word. Both approaches
employ a neural network architecture that learns to optimize word embeddings

26

Background

that capture semantic relationships among words.
By transforming words into numerical vectors that reflect their semantic essence,

Word2Vec enables downstream machine learning models to operate more effectively
on textual data. Overall, Word2Vec’s elegant and data-driven approach to learning
word embeddings has significantly advanced the field of natural language under-
standing and remains a cornerstone in modern deep learning techniques for text
analysis.

3.13 Training Process
The training process of a neural network involves iteratively updating its parameters
to minimize the chosen loss function. This process aims to improve the model’s
ability to make accurate predictions on unseen data. Several key components play
a role in the training process, and their interactions are essential for achieving a
well-trained neural network. The following sections delve into these components,
providing a comprehensive understanding of each element and its impact on the
model’s performance.

3.13.1 Data Split

Before training, the dataset is typically split into three subsets: training, validation,
and test sets. The training set is used to update the model’s parameters, while the
validation set helps monitor the model’s performance during training. The test set
is used to evaluate the final performance of the trained model on unseen data.

3.13.2 Epochs

An epoch refers to a single pass through the entire training dataset. During each
epoch, the model’s parameters are adjusted based on the training data to reduce the
loss. Multiple epochs are performed to iteratively refine the model’s performance.

3.13.3 Batch Size

Training on the entire dataset at once may require a substantial amount of memory
and computation. Instead, training is often performed in batches. The batch size
defines the number of data samples processed together before updating the model’s
parameters. This approach introduces stochasticity into the training process and
can lead to faster convergence.

27

Background

3.13.4 Learning Rate
The learning rate determines the step size taken in the direction that reduces the
loss function. It is a hyperparameter that controls the magnitude of parameter
updates during each iteration. A higher learning rate may lead to faster convergence,
but it can also result in overshooting the optimal parameter values. Conversely, a
lower learning rate may lead to slower convergence.

3.13.5 Optimization Algorithm
Gradient-based optimization algorithms, such as Stochastic Gradient Descent (SGD)
and its variants (e.g., Adam, RMSProp), are used to update the model’s parameters.
These algorithms leverage the gradients of the loss function with respect to the
parameters to adjust them in the direction that reduces the loss.

3.13.6 Validation Split
To monitor the model’s performance during training and prevent overfitting, the
validation set is used. The validation set is not used for training but is used to
evaluate the model’s performance on data it has not seen before. After each epoch,
the model’s performance on the validation set is measured. By evaluating the
model’s generalization ability on this separate dataset, we can determine whether
the model is learning relevant patterns or memorizing the training data, aiding in
the selection of the most optimal model.

In summary, the training process involves finding the right parameters to achieve
optimal model performance while avoiding overfitting.

3.14 Model Evaluation Metrics
Evaluation metrics serve as indispensable tools for assessing the effectiveness of a
machine learning model. They offer valuable insights into the model’s proficiency
in handling the provided dataset. The choice of specific metrics can vary based on
the unique characteristics of the problem at hand.

3.14.1 Confusion Matrix
A confusion matrix is a tabular representation that shows the classification results
of a model on a dataset. It provides insight into the true positive, true negative,
false positive, and false negative predictions, allowing a deeper understanding of
the model’s performance.

28

Background

actual
value

Prediction outcome

p n total

p′
True
Positive

False
Negative P′

n′
False
Positive

True
Negative N′

total P N

Table 3.1: Confusion Matrix for Binary Classification

3.14.2 Accuracy
Accuracy is a widely used metric for evaluating the overall performance of a classi-
fication model. It measures the proportion of correctly predicted instances out of
the total number of instances in the dataset. The accuracy metric provides insights
into the model’s proficiency in correctly classifying data points. Mathematically,
accuracy can be represented as:

Accuracy = Number of Correct Predictions
Total Number of Instances

Alternatively, accuracy can also be computed in terms of True Positive and True
Negative as follows:

Accuracy = True Positives + True Negatives
Total Number of Instances

3.14.3 Precision
Precision serves as a foundational evaluation metric to gauge the accuracy of
positive predictions made by a classification model. It quantifies the ratio of
true positive predictions to the total positive predictions generated by the model.
Mathematically, precision is formulated as:

Precision = True Positives
True Positives + False Positives

29

Background

A high precision value indicates that the model makes fewer false positive errors
and possesses an enhanced capability to accurately identify positive instances.
However, a higher precision may lead to a decreased ability to capture all true
positive instances, possibly resulting in false negatives.

3.14.4 Recall
Recall, also referred to as sensitivity or the true positive rate, directs its focus on
the model’s competence in capturing all actual positive instances present within
the dataset. It is calculated by assessing the ratio of true positive predictions to
the total number of actual positive instances. Mathematically, recall is defined as:

Recall = True Positives
True Positives + False Negatives

A higher recall value implies the model’s effectiveness in identifying positive
instances; however, it may potentially lead to an increase in false positive errors,
thereby affecting precision. Balancing the trade-off between precision and recall is
imperative for achieving an optimal classification performance.

3.14.5 F1-Score
The F1-score, a comprehensive evaluation metric, takes into account both precision
and recall, offering a balanced assessment of a classification model’s effectiveness. It
is calculated as the harmonic mean of precision and recall, thus striking a balance
between the two metrics. The F1-score is mathematically expressed by the formula:

F1-Score = 2× Precision× Recall
Precision + Recall

The F1-score aims to achieve a compromise between precision and recall, ensuring
the model performs well on both positive and negative instances. This metric
proves particularly valuable when dealing with imbalanced class distributions,
necessitating a balanced evaluation measure to gauge overall performance.

3.14.6 Receiver Operating Characteristic (ROC) Curve
The Receiver Operating Characteristic (ROC) curve is a graphical representation
that showcases the trade-off between the true positive rate (recall) and the false
positive rate (1-specificity) at various threshold values. The ROC curve provides
valuable insights into a model’s ability to discriminate between positive and negative
instances, across a spectrum of threshold settings.

30

Background

In an ROC curve, the x-axis represents the false positive rate (FPR), also known
as the probability of a false alarm or Type I error, while the y-axis represents the
true positive rate (TPR), also referred to as recall or sensitivity. Each point on the
ROC curve corresponds to a specific threshold setting, indicating the compromise
between correctly identifying positive instances and incorrectly labeling negative
instances.

The ROC curve’s shape can help identify the model’s performance. A curve
that is closer to the upper-left corner indicates superior classification performance,
as it implies a higher true positive rate while keeping the false positive rate low.
Conversely, a diagonal line from the bottom-left to the top-right would represent a
random guessing classifier.

3.14.7 Area Under the ROC Curve
The Area Under the ROC Curve (AUC-ROC) is a numerical measure of the ROC
curve’s performance. It quantifies the ability of a model to distinguish between
positive and negative instances. An AUC-ROC value of 0.5 indicates random
performance, while a value of 1.0 suggests perfect discrimination between the
classes.

3.15 Hyperparameter Optimization
Hyperparameter optimization (HPO) is a fundamental process in machine learning
model development, aimed at finding the optimal configuration of hyperparameters
(HP) that results in the best model performance. HP are parameters of the model
that are not learned during training but are set before the training process begins.
These settings influence the learning process and can significantly impact a model’s
effectiveness.

The goal of HPO is to systematically search through different combinations of
HP values to identify the configuration that leads to the highest performance on
a specific task or dataset. This process is crucial as it can significantly affect a
model’s ability to generalize and make accurate predictions.

Common HP include learning rates, batch sizes, the number of layers in a neural
network, dropout rates, and the choice of optimization algorithms, among others.
The optimal values of these HP can vary depending on the dataset and the specific
machine learning task.

HPO is typically performed using specialized libraries and tools that automate
the search process, such as grid search, random search, or Bayesian optimization.
These methods aim to efficiently explore the HP space and find the best combination.

For a detailed and comprehensive understanding of HPO techniques, refer to
Bischl et al. [35], where the concept and various strategies are thoroughly explained.

31

Background

3.15.1 Fidelity Level in Hyperparameter Optimization
The concept of fidelity level, denoted as λfid, represents a crucial parameter
within the realm of HPO. It serves as a pivotal determinant in the allocation of
computational resources to individual evaluations.

Typically, λfid is chosen to exhibit a linear relationship with the computational
costs incurred during an evaluation. This linear correlation implies that the sum of
all λfid values across evaluations provides an estimation of the total computational
cost for an entire optimization run. Higher values of λfid are associated with
evaluations that more closely approximate the true objective but at the expense
of increased computational resources. Conversely, lower λfid values lead to more
cost-efficient but potentially less accurate evaluations.

In practice, this introduces a delicate balance between the explorative nature of
optimization and the fidelity of individual evaluations. One common approach is
to initially allocate the computational budget to less expensive Hyperparameter
Configurations (HPCs) with lower λfid values to explore a broader search space.
Subsequently, the focus shifts towards more promising HPCs with higher λfid

values.
This strategic allocation of computational resources based on λfid underscores

the trade-off between the breadth of exploration and the depth of evaluation within
the context of HPO.

3.15.2 Successive Halving
Successive Halving (SH) [36] is a pivotal technique within the field of HPO that plays
a fundamental role in the foundation of the Hyperband optimization method. SH
operates under the premise of a predetermined fidelity-budget B, which represents
the cumulative sum of λfid values across all evaluations.

The SH methodology commences by considering a fixed number of candidate
HPCs, denoted as λ(i), initially marked as p[0]. It then proceeds to iteratively narrow
down this candidate pool to identify the single most promising configuration through
a series of evaluation stages denoted as t. This iterative process is driven by an
incrementally increasing fidelity schedule.

The scheduling of fidelity increments within SH is often regulated by the ηHB

control multiplier, a critical component of the Hyperband algorithm. Typically,
ηHB is set to a value greater than 1, commonly 2 or 3. After each batch evaluation
t involving the current population of size p[t], the selection process focuses on the
top-performing 1

ηHB
fraction of configurations. The fidelity for subsequent candidate

evaluations is then adjusted to ηHB × λfid, reflecting the heightened fidelity. As a
result, configurations displaying promise receive increased fidelity allocations, while
less promising ones are pruned early in the optimization process.

32

Background

To ensure efficient fidelity budget allocation, the starting fidelity λ
[0]
fid and the

number of stages s + 1 are calculated in a manner that approximately distributes
B/(s + 1) fidelity units across each batch evaluation within the SH procedure.
This strategic allocation strategy guarantees that, cumulatively, no more than the
specified fidelity budget B is expended during the entirety of SH:

sØ
t=0

ê
p[0]η−t

HB

ë
λ

[0]
fidηt

HB ≤ B

It’s worth noting that the effectiveness of SH hinges on a judicious selection
of both the initial number of candidate configurations and the resulting fidelity
schedule. When operating within a fixed fidelity-budget framework for HPO,
practitioners must make a strategic decision between pursuing either a larger
number of configurations with lower fidelity, or a smaller set of configurations but
with higher fidelity. This choice carries significant implications for the optimization
process and its outcomes.

3.15.3 Hyperband
Hyperband (HB), introduced by Li et al. in 2018 [37], represents a highly efficient
approach to HPO. It can best be conceptualized as the iterative application of
SH. Hyperband orchestrates multiple SH executions, referred to as brackets, each
initiated with different numbers of starting configurations denoted as p[0]

s .
To initialize a bracket, Hyperband requires two key parameters: ηHB and the

upper limit of fidelity, λupp
fid , with the constraint λupp

fid > ηHB.
The process of constructing a fidelity budget B for each bracket begins by

identifying the most exploratory bracket. This bracket sets the foundation for
determining the fidelity budgets for the remaining brackets. Here, the number of
batch evaluations smax + 1 is chosen such that:

smax + 1 =
ê
logηHB

(λupp
fid)

ë
+ 1

λ
[0]
fid = λupp

fid η−smax
HB ∈ (η−1

HB, ηHB)

λ
[smax]
fid = λupp

fid

These fidelity values are collected in the vector:

r = (λupp
fid η−smax

HB , λupp
fid η−smax+1

HB , λupp
fid η−smax+2

HB , . . . , λupp
fid) ∈ Rsmax+1

.

33

Background

The objective is to ensure roughly equal total fidelity expenditure and the
reduction of candidates to one winning HPC in each batch evaluation. Consequently,
the fidelity budget of each bracket is determined as B = (smax + 1)λupp

fid .
For every s ∈ {0, . . . , smax}, a bracket is defined by establishing the starting

fidelity λ
[0]
fid ≥ λlow

fid for the bracket r(1+smax−s). This results in a total of smax + 1
brackets, with an overall fidelity budget expended by HB amounting to (smax +1)B.
Consequently, each bracket s comprises s + 1 batch evaluations, and the initial
population size p[0]

s is determined as the maximum value that satisfies the SH
equation.

In summary, Hyperband optimizes the process of Hyperparameter Optimization
by orchestrating multiple Successive Halving executions across brackets, each
starting with a different number of configurations. This approach efficiently explores
the hyperparameter search space, making it a powerful tool in the field of machine
learning model development.

3.16 Instruction Set Architecture
In the realm of computer architecture, the term Instruction Set Architecture (ISA)
defines the interface between hardware and software in a computer system. It acts
as a bridge, specifying how instructions are encoded, executed, and interacted with
by software programs. The ISA outlines a processor’s set of instructions, including
their formats, operations, and addressing modes.

For our project, which involves analyzing executables to generate feature vec-
tors, a solid grasp of ISA is essential. The ISA defines the universe of possible
instructions within these files, significantly influencing our approach to feature
extraction. In our case, we evaluate x86-64 ELF files, where the x86-64 ISA serves
as the reference. All instructions within these files, along with their encoding and
execution, adhere to the x86-64 ISA.

3.16.1 x86-64 (AMD64) ISA
The x86-64 ISA, also known as x64, x86_64, AMD64, and Intel 64, is a 64-bit
extension of the original x86 ISA. Initially developed by AMD (Advanced Micro
Devices) and later adopted by Intel under the names "Intel 64" or "IA-32e".

The x86-64 ISA significantly expands processor capabilities by introducing
64-bit general-purpose registers and extended memory addressing. It maintains
compatibility with legacy 32-bit x86 code, allowing seamless coexistence of 32-bit
and 64-bit software on the same system.

The widespread adoption of the x86-64 ISA in the computing industry was

34

Background

a compelling factor in our choice to analyze ELF files of this particular ISA.
It ensures that our research remains relevant and applicable in contemporary
computing environments.

For reference to the instructions found in the x86-64 ELF files within our
dataset, we turn to Section 2.5 of the AMD64 manual [38]. This manual serves as
an invaluable resource, providing a comprehensive guide to the instruction set, a
cornerstone of our project’s analysis.

3.17 ELF Format

The ELF (Executable and Linkable Format) is a common file format used for
executables, object code, shared libraries, and more. It provides a standardized
way to organize and represent various components of a binary program, see Fig.
3.8.

The ELF format consists of several key components, including:

• ELF Header: The ELF header contains basic information about the file,
such as its type, architecture, and entry point.

• Program Header Table: The program header table describes the various
segments of the file, such as code, data, and stack. Each entry in the table
specifies the type of the segment, its offset in the file, its virtual memory
address, and other attributes.

• Segments: ELF files typically include segments for both code and data. The
code segment contains the actual machine instructions to be executed, while
the data segment holds initialized and uninitialized data used by the program.

• Section Header Table: Similar to the program header table, this table
provides information about sections, including their sizes and file offsets.

35

Background

ELF Header

Program Header Table

Code Segment

Data Segment

Section Header Table

Figure 3.8: Overview of the ELF File Format

The code segment (also known as the text section) within the ELF file is of
particular interest in our thesis. This segment contains the assembly instructions
that define the behavior of each sample in our dataset. Analyzing the code segment
allows us to gain insights into the underlying functionality and potential behavior
of the programs represented by the ELF files.

36

Chapter 4

Proposed Model

4.1 Model Architecture

The proposed malware detection model consists of two primary components: a
Word Embedding layer and a Deep Learning model. The architecture is designed
to effectively capture the semantic information within the executable files and learn
complex patterns for malware detection. This section provides an overview of the
model’s structure.

4.1.1 Word Embedding Layer

At the core of the model lies the Word Embedding layer, which plays a pivotal
role in transforming raw executable files into a format suitable for deep learning.
This layer utilizes Word2Vec, a popular word embedding technique, to convert
sequences of binary instructions into continuous-valued vectors. Each instruction
within an executable file is mapped to a unique vector representation. The Word
Embedding layer enhances the model’s ability to discern meaningful features from
the raw data.

4.1.2 Deep Learning Model

The Deep Learning model comprises several LSTM or BiLSTM layers, followed
by a softmax dense layer. Two aspects of the architecture are considered as
hyperparameters: the type of layers (LSTM or BiLSTM) and the number of layers.
Its optimal value is determined through a thorough hyperparameter optimization
process, as depicted in section 5.6.

37

Proposed Model

LSTM and BiLSTM Layers

LSTM layers are employed to capture sequential dependencies within the embedded
feature vector. These layers maintain memory over time, allowing the model to
understand the context and relationships between different features.

BiLSTM layers enhance the model’s ability to capture both past and future
information from the input sequences. By processing the data in both forward
and backward directions, the model gains a comprehensive understanding of the
contextual relationships.

The stacking of LSTM or BiLSTM layers allows the model to learn hierarchical
features and patterns, for accurate malware detection.

Softmax Dense Layer

The model is designed as a binary classifier, classifying executable files into two
categories i.e. malicious or benign. To accomplish this, the final layer is a single-
node softmax dense layer. This layer computes the probability that a given program
is malicious. The output is a single scalar value p ∈ [0, 1], where values closer to 1
indicate a higher probability of being a malicious program, and values closer to 0
indicate a higher probability of being benign.

Loss Function: Binary Cross-Entropy

For the proposed deep learning model, we employ the binary cross-entropy loss
function. Binary cross-entropy is a common choice for binary classification tasks,
such as the one at hand. This loss function quantifies the dissimilarity between the
predicted binary outputs and the actual target labels, encouraging the model to
make accurate binary predictions. The formula for binary cross-entropy is given
by:

L(y, p) = − 1
N

NØ
i=1

[yi log(pi) + (1− yi) log(1− pi)]

Here, N represents the number of samples, yi denotes the true binary label for
the i-th sample, and pi is the predicted probability that the i-th sample belongs to
the positive class. Minimizing this loss function during training guides the model
to make accurate binary predictions.

Adam

To optimize our deep learning model during training, we employ the Adam op-
timization algorithm. Adam stands for "Adaptive Moment Estimation" and is
a widely used optimization technique for training neural networks. It combines

38

Proposed Model

elements of both the momentum and RMSprop optimization algorithms, making it
well-suited for a variety of deep learning tasks.

Adam adapts the learning rates for each parameter individually based on their
past gradients and squared gradients. This adaptability allows it to converge faster
and handle a wide range of learning rates, making it a robust choice for optimizing
our model. The algorithm is known for its effectiveness in accelerating convergence
and improving overall training efficiency.

4.1.3 Model Overview
Fig. 4.1 is an overview of the proposed model architecture.

The depicted architecture highlights the flow of information through the Word
Embedding and Deep Learning components, demonstrating how the model processes
and analyzes the input data.

The number of LSTM or BiLSTM layers and other hyperparameters are de-
termined through rigorous hyperparameter optimization to ensure the model’s
optimal performance in malware detection. This approach allows for a flexible and
adaptable architecture that can effectively capture the complexities of malware
behavior.

In the subsequent sections, we will delve deeper into the feature extraction,
training process, hyperparameter optimization, and model evaluation to provide
a comprehensive understanding of the proposed model’s capabilities and perfor-
mance.

39

Proposed Model

Dataset

Word2Vec

LSTM/BiLSTM
Layers

Dense
Layer

DL Model

Feature
Extraction

Embedded
Feature
Vector

Malware probability

Figure 4.1: Overview of the Proposed Model Architecture

40

Chapter 5

Methodology

This chapter outlines the comprehensive methodology employed in this study to
address the core objectives and tasks. It encompasses the entire research workflow,
spanning from data collection to model evaluation. The process commences with
data collection, where we gather the necessary dataset for analysis. Subsequently, we
delve into data preprocessing techniques to prepare the dataset for model training.
A crucial aspect of this research involves the disassembly of AMD64 ELF files, which
is explained in detail. To facilitate model evaluation, we discuss the data splitting
methodology to ensure the robustness of our models. The core of our research
revolves around model development, encompassing the training, execution, and
testing phases. Finally, the implemented hyperparameter optimization technique is
discussed. This chapter provides an in-depth overview of the steps undertaken to
achieve our research objectives.

5.1 Data collection
The data collection is done differently for the benign and malicious files. In the
following sections, it could be found how we obtained the files for the experiment.

5.1.1 Benign files collection
This section outlines the methodology employed to obtain the benign files for
the dataset. Our approach aimed to create a representative dataset and utilized
information from the Debian Popularity Contest [39].

This study aimed to collect information on Debian machines that volunteered to
participate in the project. The project website contains various types of information,
including several ordered lists. One such list details the most commonly installed
packages. To compile our dataset, we utilized this list to download packages in

41

Methodology

descending order of frequency and extract the available binaries. The number of
downloaded files was contingent upon the number of previously collected malicious
files, with the ultimate goal of creating a balanced dataset comprised of an equal
number of benign and malicious binaries.

For each package in the list, we performed the following actions:

1. Installed the package using a specified method.

2. Identified the location of the binary using a specific technique.

3. Add the binary to the dataset.

4. Finally, removed the package using a designated process.

Given that the experiment was conducted on a 2020 M1 MacBookAir, an arm64
virtual machine was chosen to facilitate virtualization.

During the experiment, we faced several errors while processing the 3066 consid-
ered packages. Out of these, we were able to download 728 packages successfully
and extract their binaries. However, we encountered difficulties in locating binaries
for 2338 packages due to various reasons. The primary issue we encountered
was that the package could not be located by apt, which occurred 1567 times.
Additionally, an apt error message stating E: Can’t select candidate version
from package was encountered for 346 packages, which can occur due to unmet
dependencies for the chosen package to install or upgrade. In such cases, apt may
not be able to determine a suitable candidate version because it can’t find a version
that satisfies all dependencies. Moreover, we were able to download some packages
successfully, but binaries were not found for 347 packages.

We provide the detailed error messages and their respective occurrences in the
following table:

Error Message Occurrences
Extraction Successful 728

Unable to locate package 1567
Binaries not found 347

Can’t select candidate version from package 346
Couldn’t find any package by 66

Download is performed unsandboxed as root as file 6
Handler silently failed 6

Table 5.1: Errors encountered when collecting benign files.

From the 728 extracted packages, we decided to include only 2742 binaries to
maintain the dataset’s entropy. This decision was made due to the number of

42

Methodology

malicious files we were able to collect.

5.1.2 Malicious file collection
The experiment utilized malicious files obtained from VirusShare [40]. These files,
mainly in the ELF format, covered three different years (2014, 2019, and 2020)
and were collected for analysis. To understand the architecture of each executable,
the tool called objdump was used. However, a small portion of these files posed
problems as the tool couldn’t determine their architecture. Among the 56757 files
downloaded, 1151 files, approximately 2% of the dataset, were affected by this issue.
To ensure the analysis’s reliability, these problematic files were excluded, leaving
only the unaffected files for further investigation. The remaining files contained
executables for a range of architectures.

To select an appropriate architecture for the model, a comprehensive analysis
of the malicious files by their architecture was conducted. In Figure 5.1, you can
observe a visualization of the different architectures present in the collected dataset.
This analysis played a pivotal role in guiding the choice of an architecture that
could effectively handle the diverse range of malicious programs encountered during
the experiment.

Figure 5.1: ISA histogram for the VirusShare files.

43

Methodology

We curated a dataset of malicious X86-64 ELF files, as we believe this architecture
is commonly used, making our work of potential interest to a wider audience. The
table 5.2 presents statistics of the dataset for a better understanding.

Year Total files x86-64 files Probability of x86-64 file
2014 2579 31 0.01
2019 9802 569 0.06
2020 43225 1912 0.04

Total 55606 2512 0.05

Table 5.2: Collected x86-64 files.

The majority of files in the dataset are from 2020, whereas the number of 2014
files is negligible.

Additionally, it is important to note that there is a possibility that objdump
recognizes the architecture of a file but is unable to disassemble it. This was
observed in four files, leaving the total number of collected files at 2512. This
number is a bottleneck for our dataset, as it is generally easier to obtain benign
files than malicious ones. Nevertheless, we believe that our dataset is sufficiently
comprehensive to conduct the experiment.

5.1.3 Malicious Binaries Filtering by Architecture

In addressing the diverse architecture landscape of malicious binaries within our
dataset, a meticulous process of filtering by architecture was implemented. Given
the heterogeneous nature of the malicious files, containing binaries of various
architectures, a specialized chain of Bash scripts was devised for this purpose.

• main.sh: Serving as the orchestrator of the filtering process, this script
initializes essential variables and orchestrates the execution of subsequent
scripts. It begins by locating non-hidden binary files in the specified path
and proceeds to invoke check_architecture.sh for each of them. After
the completion of check_architecture.sh for all binaries, the script calls
pick_binaries.sh.

• check_architecture.sh: This script employs objdump to determine the
architecture of each binary and assess whether the binary can be successfully
disassembled. The results are systematically logged into a file, including the
binary’s name and its architecture if identified.

44

Methodology

• pick_binaries.sh: Leveraging the log file generated by check_architecture.sh,
this script discerns which binaries align with the desired architecture. Sub-
sequently, it copies the identified binaries into a specified path, effectively
creating a dataset exclusively comprising binaries of the desired architecture.

Upon executing this chain of scripts, the malicious binaries were successfully
filtered based on the chosen architecture. The resulting dataset consisted of a total
of 5254 files, maintaining a balanced distribution between benign and malicious
files. All files in the refined dataset adhered to the x86-64 architecture, ensuring
uniformity for subsequent analysis and model training.

5.2 Disassembly of AMD64 ELF Files
Malware analysis often requires a low-level examination of binary executables.
We adopt the process of disassembly to convert AMD64 ELF (Executable and
Linkable Format) files into human-readable assembly instructions. This facilitates
a deeper understanding of the code’s logic, aiding in the identification of potentially
malicious behaviors.

Disassembly involves translating machine code into assembly instructions, result-
ing in a textual representation of the program’s operations. This step enables the
inspection of control flow, function calls, and data manipulation within the binary.
By disassembling AMD64 ELF files, we gain insights into the code’s functionality,
which is essential for subsequent analysis and detection techniques.

We leverage the objdump tool, a widely-used utility in the field of reverse
engineering, to perform this task.

5.2.1 Process Overview
Figure 5.2 provides an overview of the disassembly process. Here’s a step-by-step
breakdown:

1. Input: The process begins with an AMD64 ELF file, which is the target
of analysis. This file could be a potentially malicious binary that requires
thorough examination.

2. objdump Invocation: We execute the objdump tool with appropriate command-
line options on the target ELF file. The tool dissects the binary into its
constituent sections, headers, and instructions.

3. Disassembly Output: objdump generates a disassembly output that provides
a human-readable representation of the binary’s assembly instructions. Each
instruction is accompanied by its hexadecimal opcode, memory addresses, and
corresponding assembly code, see the example in 5.1.

45

Methodology

Input: AMD64
ELF File

objdump Invocation

Disassembly Output

Pruned Instructions

Text
Processing

Potentially
Malicious

Binary

objdump
Tool

Figure 5.2: Disassembly Process using objdump

4. Text Processing and Pruning: Following the generation of the disassembly
output, the text undergoes a series of processing steps. The sed tool, along
with pattern matching techniques, is applied to precisely extract the instruction
names from the disassembly output. The extracted instruction names are
compiled into a structured CSV file, where each row corresponds to a distinct
instructions sequence in the dataset. The columns in this file include:

• File: The name of the executable file.

• Function: The name of the function in which the instructions were found.
If a function name is not identified, it is denoted as ".text."

• Sequence: A sequence of instructions separated by blanks, representing
the processed disassembled code.

• Label: A binary indicator (1 or 0) specifying whether the file is malicious
or benign, respectively.

• Length: An integer indicating the length of the instruction sequence.

46

Methodology

This CSV file serves as a comprehensive resource for subsequent analysis
and data preparation tasks. Notably, the initial division based on function
names is rendered obsolete for the project. When the CSV is read in further
steps, all rows belonging to the same file are grouped together, considering the
entire file as a single unit. This modification was implemented to streamline
the data representation, as an alternative approach involving function-wise
separation was found to be unnecessary and is not further described in the
thesis. Example 5.2 showcases a snippet of the generated CSV file, providing
insights into the formatted data structure.

Listing 5.1: Example Disassembled Program
1

2 zsh : f i l e format e l f 6 4 −x86−64
3

4

5 Disassembly o f s e c t i o n . t e x t :
6

7 0000000000017000 <. t ex t >:
8 17000 : 48 83 ec 08 sub $0x8 ,% rsp
9 17004 : 48 8b 05 dd a f 0b 00 mov 0xbafdd(%r i p) ,%rax

d1fe8 <__gmon_start__>
10 1700b : 48 85 c0 t e s t %rax ,%rax
11 1700 e : 74 02 j e 17012 <

__ctype_toupper_loc@plt−0x1e>
12 17010 : f f d0 c a l l ∗%rax
13 17012 : 48 83 c4 08 add $0x8 ,% rsp
14 17016 : c3 r e t

Listing 5.2: Example Pruned Instructions
1 Fi l e , Function , Sequence , Label , Length
2 /<path_of_the_fi le >/<file_name > ,. text , sub mov t e s t j e c a l l add ret

, 0 , 7

In order to provide a better understanding of the dataset, we generated his-
tograms showcasing the 20 most frequent instructions for both the benign and
malicious files.

47

Methodology

Figure 5.3: Histogram of the 20 most frequent machine instructions among the
benign files.

Figure 5.4: Histogram of the 20 most frequent machine instructions among the
malicious files

48

Methodology

5.3 Data Splitting
Before training the malware detection model, the dataset underwent a careful
data splitting process to ensure effective training, validation, and evaluation of the
model. The dataset, comprising executable files, was divided into three distinct
subsets:

• Training Set (70%): This set, the largest of the three, consisted of 70%
of the dataset. It was used to train the model, allowing it to learn from a
substantial portion of the available data.

• Validation Set (20%): To ensure the model’s robustness and to prevent
overfitting, a validation set containing 20% of the dataset was created. The
validation set was used to fine-tune hyperparameters and monitor the model’s
performance during training.

• Testing Set (10%): The testing set comprised 10% of the dataset. It
remained separate from the training process and the HPO. It was reserved
exclusively for evaluating the model’s performance. This provided an unbiased
assessment of the model’s effectiveness.

The careful splitting of the dataset into these subsets facilitated a comprehensive
evaluation of the model’s capabilities and allowed for effective training, testing,
and validation procedures.

Dataset Benign Files Malicious Files
Training 1919 1758

Validation 576 527
Test 247 227

Table 5.3: Dataset split overview.

5.4 Model Training

5.4.1 Data Preparation: Tokenization and Indexing
The foundation of training an effective malware detection model lies in the prepa-
ration of the dataset. In this section, we delve into the steps being taken to process
the raw instruction data before it is fed into the deep learning model.

49

Methodology

The training and validation datasets consist of sequences of assembly instructions,
representing the executable code of various programs. To enable the model to work
with this textual data, a series of preprocessing steps are performed.

Tokenization

First, the instructions within the training and validation datasets are tokenized.
Tokenization is the process of breaking down the text into individual units or
tokens, in this case, individual instruction names. This step is crucial to ensure
that the model can understand and work with the discrete elements of the assembly
instructions.

Indexing

Once tokenized, each unique instruction name needs to be assigned an integer
index. This indexing process generates a vocabulary denoted as V , where each
instruction name present in the training or validation datasets is included. Each
unique instruction name in the vocabulary is assigned an integer index ranging
from 1 to |V |, where |V | represents the vocabulary size.

This indexing of instruction names transforms the textual data into a numerical
format, making it amenable to processing by deep learning models. It provides
the model with a structured representation of the instructions, allowing it to learn
patterns and associations between different instructions during training.

5.4.2 Word Embedding
The next crucial step in preparing our data for effective deep learning-based malware
detection is word embedding. Word embedding is a technique that maps discrete
tokens, in our case, instruction names, into continuous vector spaces. This enables
the model to understand the semantic relationships between words or, in our
context, instructions. We employ the Gensim Word2Vec tool [41] to accomplish
this task.

Our Word2Vec model is trained using the indexed training and validation
data. It’s configured with specific hyperparameters to generate embeddings that
best capture the characteristics of our assembly instructions. In particular, we
set the dimension of the embedding vectors to 300 [14]. Each instruction will
be represented as a 300-dimensional vector. The window size is defined as 100
instructions [15]. This parameter determines how many instructions before and
after a given instruction are considered when learning its context. The Word2Vec
model is set to work as a Skip-Gram word embedding model, focusing on predicting
the surrounding instructions based on a given instruction.

50

Methodology

After the training process, the Word2Vec model yields an embedding matrix.
This matrix has dimensions |V | × 300, where |V | represents the vocabulary size.
Each row in the matrix corresponds to a unique instruction in the vocabulary,
and each column represents one of the 300 dimensions in the embedding space.
Mathematically, the embedding matrix can be expressed as:

Embedding Matrix ∈ R|V |×300

This matrix encodes the relationships and similarities between different instruc-
tions within our vocabulary. It forms the foundation upon which our deep learning
model will learn to distinguish between benign and malicious programs based on
these vector representations.

5.4.3 Feature Extraction
With our word embeddings in place, the next crucial step is feature extraction.
This process involves generating a feature vector for each of the samples in our
dataset, which will serve as input to our deep learning model.

To extract meaningful features from each sample, we begin by processing the
assembly instructions contained within it. For this purpose, we employ the Tokenizer
class provided by TensorFlow [42]. The Tokenizer class tokenizes and indexes each
instruction in the sequence. As a result, we obtain a list of tuples, where each tuple
consists of an instruction and the number of occurrences of that instruction in the
sample.

The list of tuples is then sorted in descending order of instruction frequency,
ensuring that the most frequent instructions are placed at the beginning of the
list. This sorting is performed to prioritize the most informative instructions in the
feature vector.

Furthermore, to maintain the feature vector’s manageable size and avoid excessive
computational overhead, we truncate the list if it exceeds a predetermined threshold,
such as 600 instructions. This threshold ensures that our model focuses on the
most relevant instructions while keeping the input dimensionality within reasonable
bounds.

In essence, this feature extraction process transforms the raw assembly code
of each sample into a structured representation that captures the frequency and
relevance of individual instructions, preparing it for input into our deep learning
network.

5.4.4 Feature Embedding
The next critical step in our pipeline is the embedding of the previously generated
feature vectors. These feature vectors, representing the frequency and relevance

51

Methodology

of instructions within each sample, need to be transformed into a suitable input
format for our deep learning model.

To achieve this, we leverage the word embeddings we acquired earlier through the
Word2Vec model. The process entails maintaining the original order of instructions
in the feature vector list and embedding each instruction using the pre-trained
Word2Vec embeddings. This operation effectively replaces each instruction with a
corresponding embedding vector.

As a result, we obtain a sequence of embedding vectors, where each vector
represents an instruction within the feature vector. Mathematically, this can be
envisioned as a matrix with dimensions:

Embedded Feature Vector ∈ Rf×300

where f is the lenght of the feature vector. Since we have configured our Word2Vec
model to generate embeddings of dimension 300, this matrix will have 300 columns.

In essence, this step converts our feature vectors into a more interpretable and
computationally effective format, aligning them for seamless integration into our
deep learning model.

5.4.5 Training the Deep Learning Model
The training of our deep learning model is a pivotal phase in our malware detection
pipeline, where the neural network learns to make predictions based on the input
data. This process involves several key steps:

1. Data Input via tf.data.Dataset: We begin by inputting our data using
the TensorFlow tf.data.Dataset pipeline [43]. This allows us to efficiently
feed the data into the model in batches of 64 padded samples, ensuring that
GPU memory consumption remains manageable. To enhance the randomness
of our data, we shuffle the samples before feeding them into the model.

2. Model Configuration: Before training, we configure the model with the
predefined hyperparameters. These hyperparameters, which determine the
model’s architecture and learning strategy, have been meticulously tuned for
optimal performance (for detailed hyperparameter descriptions, please refer
to the "Hyperparameter Optimization" section in this chapter).

3. Training Process: The training process commences with the model being
trained using the pairs of embedded feature vectors and their corresponding
labels from the training dataset. Here, we employ the binary cross-entropy loss
function as the optimization objective, aiming to minimize the discrepancy
between predicted and actual labels.

52

Methodology

4. Validation: To assess the model’s performance during training and prevent
overfitting, we leverage the validation dataset. After each epoch, the model is
evaluated using the validation data to gauge its ability to generalize to unseen
samples.

5. Early Stopping: Throughout the training process, we implement Early
Stopping to prevent overfitting and optimize training efficiency. This technique
continuously monitors the model’s performance on the validation dataset after
each epoch, specifically focusing on validation accuracy. If the validation
accuracy fails to improve for three consecutive epochs, the training process is
halted prematurely. Early Stopping ensures that the model does not continue
learning when it ceases to benefit from further training, ultimately leading to
a more efficient and well-generalized model.

In summary, this step involves configuring the model, inputting data efficiently,
and training the neural network with the specified hyperparameters. The validation
dataset plays a crucial role in ensuring the model’s robustness and generalization
capabilities throughout the training process.

5.5 Execution and Testing of the Model
In this section, we delve into the execution and testing of our deep learning
model. This phase is crucial as it allows us to evaluate the model’s performance on
unseen data, ultimately assessing its ability to accurately classify executables as
malicious or benign. The execution and testing process closely mirrors the training
process described earlier, but with some key distinctions that we will explore in
the subsequent sections.

Throughout this section, we will outline the steps involved in processing test
data, feature extraction, feature embedding, and the forward pass through the
deep learning model. These steps collectively provide insights into how the model
performs on real-world executables and its effectiveness in malware detection. By
drawing parallels with the training process and highlighting the differences, we aim
to provide a comprehensive understanding of the model’s execution and testing
phase.

5.5.1 Feature Extraction
During the execution phase, the feature extraction process remains consistent with
that of the training phase.

As previously described, each sample, which represents an executable program,
undergoes the same procedure. First, the program’s instructions are processed

53

Methodology

using the TensorFlow tokenizer class, resulting in a tokenized and indexed sequence.
From this tokenization, we extract a word count for each instruction, creating a
list of tuples pairing each instruction with its frequency of occurrence within the
sample.

To ensure uniformity and manageable input sizes, we follow the same procedure
as in training by ordering this list of instruction-frequency tuples from the most
frequent to the least frequent. If the list exceeds a predefined length, typically set
to 600, it is truncated to maintain consistency with the model’s input requirements.
This feature extraction process guarantees that each executable program is rep-
resented as a consistent feature vector, preserving the order and frequency of its
instructions.

5.5.2 Feature Embedding

In the execution phase, the feature embedding process closely resembles that of
the training phase. Its purpose remains to transform the feature vectors, which
represent executable programs, into input suitable for the deep learning model.

As previously established, the Gensim Word2Vec model, trained on the training
and validation data, has generated an embedding matrix that associates each
instruction in the vocabulary with a unique embedding vector. This matrix has
dimensions |V | × 300, where |V | represents the vocabulary size, and 300 signifies
the chosen embedding dimension.

During feature embedding, we use this pre-trained embedding matrix to map each
instruction in the feature vector to its corresponding embedding vector. However,
one significant difference arises during execution. If an instruction within a feature
vector was not previously encountered during the word embedding model’s training,
it is discarded. This omission ensures that the input to the model adheres to the
vocabulary learned during training and maintains consistency with the Word2Vec
embeddings.

Ultimately, this feature embedding process generates a sequence of embedding
vectors for each feature vector, representing the instructions within the executable
program. These embedded sequences serve as the model’s input for the execution
phase, facilitating the classification of the programs.

5.5.3 Evaluating and Executing th Deep Learning Model

In the execution phase of the deep learning model, the previously trained model
is utilized to generate predictions regarding whether a given sample is malicious
or benign based on its embedded feature vector. Consequently, during model
evaluation, the primary function of the model is to predict the class labels of test

54

Methodology

samples. These predictions are then compared with the true labels of the samples
to assess the model’s performance.

In the execution phase, the process commences with the embedded feature
vectors of the test samples. These feature vectors, undergo a feedforward process
through the previously trained model. During this feedforward pass, the sequences
of embedding vectors, are sequentially processed by the model’s layers, including
LSTM or BiLSTM layers, as well as the dense layer. Notably, unlike the training
phase, this execution phase does not involve the adjustment of model parameters.

At the end of this feedforward process, the model outputs a probability for each
sample. This probability reflects the model’s assessment of the likelihood that the
given sample is a malicious program. If the probability is greater than 0.5, the
model predicts the sample as malicious; otherwise, it predicts it as benign.

When evaluating the model with the test data, this predicted probability is
compared with the true label of the sample. The true label denotes whether the
sample is genuinely a benign or malicious program. Using this comparison, various
evaluation metrics are calculated to assess the model’s performance. These metrics
include accuracy, precision, recall, F1-score, and the area under the ROC curve
(AUC-ROC).

The combination of the predicted probabilities and true labels, along with
these evaluation metrics, forms the basis for evaluating the deep learning model’s
performance in identifying and classifying malicious software.

5.6 Hyperparameter Optimization

5.6.1 Search Space
Defining a well-structured search space is a pivotal step in the process of HPO.
The search space determines the range and diversity of configurations explored
during HPO, ultimately influencing the performance and efficiency of the machine
learning model. In our study, we meticulously crafted the search space, considering
parameters that significantly impact the deep learning model’s architecture and
training process.

To establish the boundaries of our search space, we drew inspiration from
previous works in the field [15, 14]. These works provided valuable insights into
the ranges of HPCs that have shown promise in similar tasks.

Table 5.4 summarizes the HPs included in our search space and their respective
ranges. Each HP, such as epochs, batch size, depth, bidirectional layers, number
of neurons, and dropout rate, was carefully selected to cover a wide spectrum of
potential configurations. This comprehensive search space serves as the foundation
for our HPO process, allowing us to explore a diverse array of model configurations
and identify the most effective ones.

55

Methodology

Table 5.4: HPO search space

Hyperparameter Range
Epochs 1 - 100

Batch Size 1 - 128
Depth 1 - 3

Bidirectional True, False
LSTM Dimension 1 - 320

Dropout Rate 0, 0.1, 0.2, 0.3, 0.4, 0.5

Here, we provide detailed descriptions for each hyperparameter in our search
space:

• Epochs: The number of training epochs determines how many times the
deep learning model iteratively processes the entire training dataset during
training. It influences the model’s capacity to learn patterns from the data
but can also lead to overfitting if set too high.

• Batch Size: The batch size specifies how many data samples are processed in
each forward and backward pass through the neural network during one training
epoch. It affects the computational efficiency and convergence behavior of the
model.

• Depth: The depth refers to the number of LSTM or BiLSTM layers in the
model architecture. It determines the complexity and depth of the model’s
memory and contextual understanding.

• Bidirectional: This binary hyperparameter controls whether the model is
build with LSTM or BiLSTM. Bidirectional layers consider context from both
past and future data points, but increase the complexity of the model.

• LSTM Dimension: The LSTM dimension defines the width or capacity
of the LSTM or BiLSTM layers. It impacts the model’s ability to capture
complex relationships in the data while increasing model complexity.

• Dropout Rate: Dropout is a regularization technique that helps prevent
overfitting by randomly dropping a fraction of neurons during training. The
dropout rate specifies the probability of dropping neurons during each training
iteration.

These hyperparameters collectively influence the architecture and behavior of
the deep learning model, making their optimization a critical step in achieving
optimal performance.

56

Methodology

5.6.2 Hyperparameter Optimization Setup
In the pursuit of optimizing hyperparameters for our deep learning model, we em-
ployed the Hyperband algorithm, as previously elucidated in subsection 3.15.3. This
section outlines the configuration of the Hyperband algorithm and the optimization
process we employed.

Hyperband Configuration

The Hyperband algorithm offers an efficient approach to hyperparameter opti-
mization (HPO). To set up the Hyperband algorithm, we configured two crucial
parameters: the hyperband control multiplier (ηHB) and the upper limit of fidelity
(λupp

fid). We set ηHB to 3, controlling the schedule of evaluations within Hyperband.
This choice balances exploration and exploitation during the optimization process.

The upper limit of fidelity (λupp
fid) is dynamically determined by the Optuna HPO

framework [44]. Optuna ensures that the fidelity budget is allocated efficiently,
adapting λupp

fid based on the optimization progress. This adaptability enables us to
efficiently allocate computational resources, focusing on the most promising HPCs.

Optimization Tool: Optuna

Leveraging the Optuna framework [44], the HPO process was streamlined and
automated. Optuna’s capabilities, including optimization algorithms and support
for result visualization, offered an effective and reliable solution.

Initially, we considered using Keras Tuner for HPO, but encountered challenges
when visualizing the results. Optuna’s support for result visualization offered a
more effective and reliable solution for our needs.

Objective Function

Throughout the HPO process, the objective centered on maximizing the validation
accuracy of the deep learning model. In each HPC evaluation, a model underwent
training using the training dataset and subsequent evaluation with the validation
dataset. The accuracy attained on the validation dataset guided the algorithm’s
exploration of the hyperparameter space.

Evaluation on Test Data

Upon identifying the HPC configuration yielding the highest validation accuracy,
this model underwent evaluation on previously unseen data, specifically the test
dataset. Results from this evaluation, including metrics encompassing accuracy,
precision, recall, and F1-score, await presentation in the subsequent chapter.

57

Methodology

This configuration ensured an effective and systematic exploration of HPC,
encompassing 350 trials, ultimately culminating in a well-optimized deep learning
model tailored to the task at hand.

5.7 Experimental Setup and Infrastructure
In this section, we provide an overview of the experimental setup and infrastructure
used for training and executing the proposed deep learning model. The experiments
were conducted on the cluster SERT [45] provided by the Department of Computer
Architecture at the Polytechnic University of Catalonia.

5.7.1 Hardware Configuration
The cluster is composed of multiple nodes. The primary components of the node
used in this research are detailed below:

Processor

The node is equipped with Intel Xeon Silver 4210R processors, each running at
2.40 GHz. These processors, known for their multicore architecture, contribute to
efficient parallel processing.

Memory

32 GB of RAM were allocated for the job execution. This memory allocation ensures
sufficient resources for the specific tasks carried out during the job, contributing to
smooth execution and efficient processing.

Graphics Processing Unit (GPU)

The job made use of one of the NVIDIA RTX 2080TI GPUs available on the node.
With 11 GB of GDDR6 memory and connected via PCIe, this GPU played a
pivotal role in accelerating the deep learning computations associated with the job.
The allocation of this high-performance GPU enhances the speed and efficiency of
both training and inference tasks related to the deep neural network.

Node Specifications

The specific node used for job execution features the following specifications:

• 2x Intel Xeon Silver 4210R processors at 2.40 GHz

58

Methodology

• 128 GB of RAM

• 2 x 480 GB SSDs

• 2 x 2TB NVMEs

• 2 x 10 Gigabit Ethernet network cards

• 8 NVIDIA RTX 2080TI GPUs with 11 GB GDDR6 memory each, connected
via PCIe

These robust hardware configurations collectively enable efficient parallelization
and accelerated processing for the computational demands of our research.

5.7.2 Software Configuration
The success of the experiments hinges on the careful selection and configuration of
software tools and libraries for model development, training, and evaluation. The
following tools, along with their respective versions, were integral to the project:

Programming Language

• Python [46] (version 3.8.18): Programming language providing a flexible and
powerful environment for machine learning tasks.

Machine Learning Libraries

• TensorFlow [42] (version 2.11.1): Primary library for constructing and
training the neural network model.

• Scikit-learn [47] (version 1.3.2): Utilized for various machine learning tasks,
including preprocessing, modeling, and evaluation.

• Gensim [48] (version 4.3.2): Employed for the word embedding.

• Optuna [44] (version 3.4.0): Used for hyperparameter optimization.

Machine Learning Components

• Word2Vec from Gensim: Applied for word embedding tasks.

• Various layers including Bidirectional, LSTM, Dense, Dropout from ten-
sorflow.keras.layers: Configured for building the neural network architecture.

• Tokenizer from tensorflow.keras.preprocessing.text: Used for tokenizing text
data.

59

https://www.python.org/
https://www.tensorflow.org/
https://scikit-learn.org/
https://radimrehurek.com/gensim/
https://optuna.org/
https://radimrehurek.com/gensim/models/word2vec.html
https://www.tensorflow.org/api_docs/python/tf/keras/layers
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer

Methodology

• EarlyStopping from tensorflow.keras.callbacks: Implemented for early stop-
ping during model training.

• train_test_split from sklearn.model_selection: Employed for splitting the
dataset into training and testing sets.

• Various metrics including accuracy_score, precision_score, recall_score,
f1_score, roc_curve, roc_auc_score from sklearn.metrics: Utilized for
evaluating model performance.

General-Purpose Libraries

• Pandas [49] (version 2.0.3): Used for data manipulation and analysis.

• Matplotlib [50] (version 3.7.3): Employed for data visualization and plotting.

• Joblib [51] (version 1.3.2): Used for efficient parallel computing and data
caching.

Command-Line Tools

• objdump: Used for disassembling executable files and extracting information
about the binaries.

• sed: Employed for stream editing, facilitating text transformations in the
preprocessing stage.

• awk: Used for pattern scanning and text processing.

• curl: Utilized for HTTP-based file downloads in the project.

5.7.3 Cluster Configuration
The cluster resources were managed using Slurm [52]. This system facilitated job
scheduling, resource allocation, and parallel computing across multiple machines.

By providing a detailed overview of the experimental setup and infrastructure,
we aim to ensure transparency and reproducibility of the research outcomes.

60

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://pandas.pydata.org/
https://matplotlib.org/
https://joblib.readthedocs.io/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/sed/
https://www.gnu.org/software/gawk/
https://curl.se/

Chapter 6

Results

6.1 Hyperparameter Optimization Results
Following a meticulous HPO process, we generated valuable insights into the
critical factors influencing the performance of our deep learning model tailored for
the detection of malware within executable files. Two graphical representations
shed light on these findings, providing a comprehensive understanding of the HPs’
importance and the objective function values achieved during the HPO.

6.1.1 Hyperparameter Importance Analysis
Figure 6.1 illustrates the relative importance of each HP in optimizing our model’s
performance. The analysis reveals that the choice between LSTM and BiLSTM
layers holds the highest importance, accounting for a substantial 72% of the
optimization process. Following, the dropout HP plays a moderate role with an
importance rating of 17%. Meanwhile, other HP, including the dimension of the
first layer (lstm_units_0), batch size, number of epochs, and depth, collectively
contribute to the remaining 11%. Although these HPs exhibit lower individual
importance, they collectively impact the model’s performance by fine-tuning various
aspects. This comprehensive understanding of HP importance guides our model’s
optimization process effectively.

6.1.2 Objective Function Analysis
Figure 6.2 provides a detailed insight into the objective function values, specifically
the validation accuracy, obtained during the HPO for each HP.

Batch Size: The batch size tends to be consistently below 50 during the HPO,
suggesting a preference for smaller batch sizes.

61

Results

Figure 6.1: Relative Importance of Hyperparameters

Bidirectional: The analysis indicates a clear preference for BiLSTM layers over
LSTM layers. The configurations with LSTM layers resulted in lower validation
accuracies, notice that all the trials that obtained a validation accuracy below 0.8
where build with LSTM layers.

Depth: Optimal results continue to be achieved for all three depth options
of this HP. The HPO frequently selects 3 layers, indicating its ability to achieve
slightly favorable validation accuracies with a complex model.

Epochs: The number of epochs tends to hover around 25. This behavior can be
attributed to the inclusion of Early Stopping in the training process, which prevents
overfitting. Consequently, the model typically converges within approximately 25
epochs, regardless of the initially configured number of epochs.

LSTM Dimension: The dimension of LSTM or BiLSTM layers varies across
the layers. The first layer predominantly falls within the range of 100 to 320,
suggesting the importance of capturing complex relationships in the initial layer.

62

Results

In contrast, the second layer tends to have lower dimensions, typically below 100.
Similarly, the third layer follows this trend, with dimensions typically below 200.
These observations reflect the diversity in layer dimensions, potentially enhancing
the model’s ability to capture different levels of abstraction in the data.

Figure 6.2: Validation Accuracy Values for Hyperparameters

These findings contribute valuable insights into the configuration of our deep
learning model and guide its optimization for effective malware detection.

63

Results

6.1.3 Validation Accuracy Progression

Figure 6.3 provides a visual representation of the progression of validation accuracy
throughout the HPO trials. In this plot, each trial is depicted along the x-axis,
with the corresponding validation accuracy on the y-axis.

Figure 6.3: Validation Accuracy and Best Validation Accuracy Progression During
Hyperparameter Optimization

Within the same plot, an additional representation showcases the highest vali-
dation accuracy achieved up to the corresponding trial. This secondary line offers

64

Results

valuable insights into the model’s performance evolution throughout the optimiza-
tion process, revealing whether it experienced substantial improvements or reached
a stable plateau. Notably, this line demonstrates a rapid ascent, ultimately leveling
off around the 20th trial. This suggests that a substantial reduction in the number
of trials could potentially yield nearly identical results, given the convergence of
validation accuracy observed during the early stages of optimization.

It’s noteworthy that the majority of the trials consistently achieve validation
accuracy scores above 0.95. This observation indicates that the model’s performance
approaches a high level of accuracy, leaving limited room for further significant
improvements. These results underscore the effectiveness of the HPO in fine-tuning
the model for optimal performance within the selected configuration.

6.1.4 Time Analysis

The time analysis involves an examination of the time taken for each individual
trial during the HPO. Figure 6.4 illustrates the time progression, with the x-axis
representing time and the y-axis representing the trial number. Notably, there
is a consistent duration for each trial, with minimal variations in execution time.
This pattern can be attributed to the model’s implementation with early stopping,
which ensures that trials do not extend beyond the necessary training time.

The entire hyperparameter optimization process, encompassing 350 trials, was
completed in less than 6 hours.

6.2 Second Hyperparameter Optimization
The initial HPO results have unequivocally highlighted the paramount importance
of the choice between BiLSTM and LSTM layers, with BiLSTM consistently
delivering superior performance. With this crucial insight in mind and recognizing
that further improvements may be challenging due to the already high validation
accuracy, we decided to embark on a second HPO.

In this subsequent HPO, we exclusively utilized BiLSTM layers, reducing the
search space while aiming to fine-tune the remaining HPs for optimal results. This
strategic choice is driven by the strong indications from the prior HPO that the
BiLSTM architecture holds the key to our model’s effectiveness. The search space
for the rest of the HPs remains the same, shown in table 5.4.

In the following sections, we present the results of this second HPO, comparing
them with the outcomes of the initial HPO to gain a comprehensive understanding
of how this focused optimization effort further enhances our deep learning model
for malware detection.

65

Results

Figure 6.4: Time Taken for Each Trial During Hyperparameter Optimization

6.2.1 Hyperparameter Importance Analysis

The hyperparameter importance plot, depicted in Figure 6.5, reveals notable shifts
in HP importance compared to the previous HPO, where the choice between
LSTM and BiLSTM layers held paramount significance. In this second round of
optimization, as the model architecture is constrained to BiLSTM, other HP come
to the forefront.

The analysis shows that the most pivotal HP is the number of epochs, accounting
for a substantial 64% of the optimization process. Following closely, the dimension

66

Results

Figure 6.5: Relative Importance of Hyperparameters in the Second HPO

of the first BiLSTM layer plays a significant role with a weight of 17%, while the
batch size contributes 13%. In contrast, the dropout rate and depth exhibit lower
importance levels, at 5% and 1%, respectively.

These altered HPs importances underscore the model’s adaptability to different
architectural constraints and the evolving focus of the optimization process towards
enhancing training dynamics, batch processing, and layer dimensions.

6.2.2 Objective Function Analysis

Figure 6.6 provides a detailed insight into the validation accuracy across trials for
each HP. The results indicate a consistent preference for a two-layer model in the
HPO. In this configuration, the first BiLSTM layer typically exhibited dimensions
within the range of 50 to 200, while the second BiLSTM layer featured smaller
dimensions, primarily below 100. This configuration highlights the importance of

67

Results

effectively managing the model’s complexity while retaining its capacity to capture
critical patterns within the data.

Figure 6.6: Validation Accuracy Values for Hyperparameters in the Second HPO

6.2.3 Validation Accuracy Progression
The Validation Accuracy Progression plot, presented in Figure 6.7, offers insight
into the model’s performance across trials during the second HPO.

In contrast to the previous HPO, where the validation accuracies exhibited a
wider range of performance, all trials in this optimization cycle consistently achieve

68

Results

Figure 6.7: Validation Accuracy and Best Validation Accuracy Progression During
Hyperparameter Optimization in the Second HPO

validation accuracies above 0.94. This indicates that the model’s constrained
architecture, based on BiLSTM layers, consistently performs well, leaving less room
for performance variation.

Notably, similar to the earlier HPO, the red line denoting the best accuracy
encountered during the optimization process ascends rapidly and then reaches a
plateau around the 30th trial. This observation suggests that while the model
performs consistently well, achieving further improvements in accuracy becomes

69

Results

challenging beyond this point.
These findings highlight the reliability and consistency of the BiLSTM model’s

performance, showcasing its ability to generalize effectively across various trials
while also demonstrating the practical limits of performance gains in this particular
configuration.

6.2.4 Time Analysis
The Timeline plot, as depicted in Figure 6.8, offers an overview of the time taken
for each trial during the second HPO.

The timeline for this HPO exhibits a similar pattern to the first optimization
cycle, with trials taking a comparable amount of time. However, a notable im-
provement is observed; this second HPO was completed more efficiently, taking
only 5 hours instead of the previous 6 hours. This reduction in time can likely be
attributed to the constrained search space, as the HPO is now exclusively focused
on models utilizing BiLSTM layers.

This efficiency suggests that narrowing down the scope of the hyperparameter
search not only maintains consistent performance but also streamlines the optimiza-
tion process, making it more time-effective while achieving similar results. Such
efficiency is a valuable consideration when deploying models in real-world scenarios,
where computational resources and time are often limited.

6.3 Selected Model Evaluation
Following the HPO process, the model’s optimal hyperparameters were determined
as detailed in Table 6.1. To assess the model’s performance, it was constructed using
these hyperparameters and subsequently trained. The evaluation was conducted
using previously unseen data, specifically the test dataset, and the results are
presented below.

Two figures were generated for the evaluation. The first pair of graphs shows the
accuracy and loss during the training and validation of the model for each epoch.
Notably, after the 8th epoch, the model exhibits consistent behavior, maintaining an
accuracy consistently above 0.98 and a loss consistently below 0.1. This observation
demonstrates that the selected hyperparameter configuration, determined through
HPO, effectively generalizes well to both the training and validation datasets.

With confidence in the model’s performance on the training and validation
datasets, the evaluation using the test dataset was carried out. The following
metrics were calculated to assess the model’s effectiveness:

The model demonstrates impressive performance even when applied to previ-
ously unseen data, a testament to its robustness and generalization capabilities.
Additionally, the ROC curve, depicted in Figure 6.10, swiftly reaches a True Positive

70

Results

Figure 6.8: Time Taken for Each Trial During Hyperparameter Optimization in
the Second HPO

rate of 1, reaffirming the exceptional performance of the selected hyperparameter
configuration.

71

Results

Table 6.1: Selected Hyperparameters After HPO

Hyperparameter Value
Epochs 26

Batch Size 103
Depth 3

Bidirectional True
Layer 1 Dimension 169
Layer 2 Dimension 154
Layer 3 Dimension 38

Dropout Rate 0.5

Figure 6.9: Accuracy and Loss during Training and Validation

Table 6.2: Model Evaluation Metrics

Metric Value
Accuracy 0.983
Precision 0.995

Recall 0.969
F1-score 0.982

ROC AUC 0.998

72

Results

Figure 6.10: Receiver Operating Characteristic (ROC) Curve

73

Chapter 7

Conclusion

This research endeavor embarked on a quest to advance the field of malware
detection through the application of deep learning techniques. Our journey has
unveiled significant insights and contributions that underscore the potential of
machine learning models in addressing the ever-evolving landscape of cyber threats.

The fundamental contributions of this study can be summarized as follows:

• Deep Learning Model Development: We designed, developed, and op-
timized a deep learning model tailored explicitly for the identification of
malware within executable files. This model, based on LSTM and BiLSTM
architectures enhanced with word embedding, has demonstrated exceptional
capabilities in discerning intricate patterns indicative of malicious activity.

• Hyperparameter Optimization: Our meticulous HPO process offered
valuable insights into the pivotal role of hyperparameters in model performance.
Notably, the selection between LSTM and BiLSTM layers, its dimension, and
the number of training epochs emerged as critical factors influencing the
model’s accuracy.

• Evaluation and Generalization: The selected optimal hyperparameters,
determined through HPO, facilitated the construction of a model that not
only excelled during training and validation but also exhibited remarkable
performance when evaluated with unseen data, as indicated by high accuracy,
precision, recall, F1-score, and AUC-ROC.

• Practical Implications: The results of this research have practical implica-
tions for bolstering cybersecurity measures. Our model’s ability to effectively
detect malware within executable files contributes to the development of
more robust and adaptive security systems, critical for safeguarding digital
ecosystems.

74

Appendix A

Functions

In this annex, we provide some key mathematical functions used in our thesis.
These functions are essential components of various neural network architectures
and data processing techniques.

A.1 Sigmoid
The sigmoid function, also known as the logistic function, is a widely used activation
function in neural networks. It maps any real-valued number to a value between 0
and 1, making it suitable for modeling binary classification problems and introducing
non-linearity to neural network layers.

The sigmoid function is defined as:

σ(x) = 1
1 + e−x

Figure A.1 shows a graphical representation of the sigmoid function.

A.2 Hyperbolic Tangent
The hyperbolic tangent function, often denoted as tanh(x), is another commonly
used activation function in neural networks. It maps real-valued numbers to values
between -1 and 1, similar to the sigmoid function. The tanh function introduces non-
linearity and is particularly useful for modeling data with zero-centered properties.

The hyperbolic tangent function is defined as:

tanh(x) = ex − e−x

ex + e−x

Figure A.2 illustrates the graph of the hyperbolic tangent function.

76

Functions

−6 −4 −2 0 2 4 6

0.5

1

σ(x)

Figure A.1: Plot of the Sigmoid Function

−6 −4 −2 0 2 4 6

0

1

tanh(x)

Figure A.2: Plot of the Hyperbolic Tangent Function

77

Bibliography

[1] McAfee Labs. McAfee COVID-19 Report Reveals Pandemic Threat Evolution.
Accessed on Date. Year of publication. url: https://www.mcafee.com/
blogs/other-blogs/mcafee-labs/mcafee-covid-19-report-reveals-
pandemic-threat-evolution/ (cit. on p. 6).

[2] Mihai Christodorescu and Somesh Jha. «Static analysis of executables to
detect malicious patterns». In: 12th USENIX Security Symposium (USENIX
Security 03). 2003 (cit. on p. 8).

[3] Igor Santos, Felix Brezo, Javier Nieves, Yoseba K Penya, Borja Sanz, Car-
los Laorden, and Pablo G Bringas. «Idea: Opcode-sequence-based malware
detection». In: Engineering Secure Software and Systems: Second Interna-
tional Symposium, ESSoS 2010, Pisa, Italy, February 3-4, 2010. Proceedings
2. Springer. 2010, pp. 35–43 (cit. on p. 8).

[4] Ammar AE Elhadi, Mohd A Maarof, and Ahmed H Osman. «Malware
detection based on hybrid signature behaviour application programming
interface call graph». In: American Journal of Applied Sciences 9.3 (2012),
p. 283 (cit. on p. 8).

[5] Dan Fleck, Arnur Tokhtabayev, Alex Alarif, Angelos Stavrou, and Tomas
Nykodym. «Pytrigger: A system to trigger & extract user-activated malware
behavior». In: 2013 International Conference on Availability, Reliability and
Security. IEEE. 2013, pp. 92–101 (cit. on p. 8).

[6] Konstantin Berlin, David Slater, and Joshua Saxe. «Malicious behavior de-
tection using windows audit logs». In: Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security. 2015, pp. 35–44 (cit. on p. 8).

[7] M Elif Karsligl, A Gökhan Yavuz, M Amaç Güvensan, Khadija Hanifi, and
Hasan Bank. «Network intrusion detection using machine learning anomaly
detection algorithms». In: 2017 25th Signal Processing and Communications
Applications Conference (SIU). IEEE. 2017, pp. 1–4 (cit. on p. 8).

78

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-covid-19-report-reveals-pandemic-threat-evolution/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-covid-19-report-reveals-pandemic-threat-evolution/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-covid-19-report-reveals-pandemic-threat-evolution/

BIBLIOGRAPHY

[8] Anıl Utku, İbrahim Alper Doğru, and M Ali Akcayol. «Decision tree based
android malware detection system». In: 2018 26th Signal Processing and
Communications Applications Conference (SIU). IEEE. 2018, pp. 1–4 (cit. on
p. 8).

[9] Philip O’Kane, Sakir Sezer, Kieran McLaughlin, and Eul Gyu Im. «SVM
training phase reduction using dataset feature filtering for malware detection».
In: IEEE transactions on information forensics and security 8.3 (2013),
pp. 500–509 (cit. on p. 8).

[10] Hyoil Han, SeungJin Lim, Kyoungwon Suh, Seonghyun Park, Seong-je Cho,
and Minkyu Park. «Enhanced android malware detection: An svm-based
machine learning approach». In: 2020 IEEE International Conference on Big
Data and Smart Computing (BigComp). IEEE. 2020, pp. 75–81 (cit. on p. 8).

[11] Carlos Domenick Morales-Molina, Diego Santamaria-Guerrero, Gabriel Sanchez-
Perez, Hector Perez-Meana, and Aldo Hernandez-Suarez. «Methodology for
malware classification using a random forest classifier». In: 2018 IEEE Inter-
national Autumn Meeting on Power, Electronics and Computing (ROPEC).
IEEE. 2018, pp. 1–6 (cit. on p. 8).

[12] Danish Vasan, Mamoun Alazab, Sobia Wassan, Babak Safaei, and Qin Zheng.
«Image-Based malware classification using ensemble of CNN architectures
(IMCEC)». In: Computers & Security 92 (2020), p. 101748 (cit. on p. 8).

[13] Guosong Sun and Quan Qian. «Deep learning and visualization for identi-
fying malware families». In: IEEE Transactions on Dependable and Secure
Computing 18.1 (2018), pp. 283–295 (cit. on p. 9).

[14] Jungho Kang, Sejun Jang, Shuyu Li, Young-Sik Jeong, and Yunsick Sung.
«Long short-term memory-based malware classification method for information
security». In: Computers & Electrical Engineering 77 (2019), pp. 366–375
(cit. on pp. 9, 50, 55).

[15] Hamed HaddadPajouh, Ali Dehghantanha, Raouf Khayami, and Kim-Kwang
Raymond Choo. «A deep recurrent neural network based approach for internet
of things malware threat hunting». In: Future Generation Computer Systems
85 (2018), pp. 88–96 (cit. on pp. 9, 50, 55).

[16] Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wenqiang Wan, Kui Wang,
Yinming Mei, and Qi Xiong. «Heterogeneous temporal graph transformer: An
intelligent system for evolving android malware detection». In: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
2021, pp. 2831–2839 (cit. on p. 9).

[17] Abir Rahali and Moulay A Akhloufi. «MalBERT: Using transformers for cyber-
security and malicious software detection». In: arXiv preprint arXiv:2103.03806
(2021) (cit. on p. 9).

79

BIBLIOGRAPHY

[18] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E
Shannon. «A proposal for the dartmouth summer research project on artificial
intelligence, august 31, 1955». In: AI magazine 27.4 (2006), pp. 12–12 (cit. on
p. 10).

[19] Warren S McCulloch and Walter Pitts. «A logical calculus of the ideas
immanent in nervous activity». In: The bulletin of mathematical biophysics 5
(1943), pp. 115–133 (cit. on p. 12).

[20] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65.6 (1958),
p. 386 (cit. on p. 12).

[21] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic opti-
mization». In: arXiv preprint arXiv:1412.6980 (2014) (cit. on p. 16).

[22] Paul Werbos. «Beyond regression: New tools for prediction and analysis in
the behavioral sciences». In: PhD thesis, Committee on Applied Mathematics,
Harvard University, Cambridge, MA (1974) (cit. on p. 17).

[23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. «Learning
representations by back-propagating errors». In: nature 323.6088 (1986),
pp. 533–536 (cit. on p. 17).

[24] Paul J Werbos. «Applications of advances in nonlinear sensitivity analysis». In:
System Modeling and Optimization: Proceedings of the 10th IFIP Conference
New York City, USA, August 31–September 4, 1981. Springer. 2005, pp. 762–
770 (cit. on p. 20).

[25] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 21).

[26] Alex Graves and Jürgen Schmidhuber. «Framewise phoneme classification
with bidirectional LSTM and other neural network architectures». In: Neural
Networks 18.5 (2005). IJCNN 2005, pp. 602–610. issn: 0893-6080. doi: https:
//doi.org/10.1016/j.neunet.2005.06.042. url: https://www.science
direct.com/science/article/pii/S0893608005001206 (cit. on p. 23).

[27] Mike Schuster and Kuldip K Paliwal. «Bidirectional recurrent neural net-
works». In: IEEE transactions on Signal Processing 45.11 (1997), pp. 2673–
2681 (cit. on p. 23).

[28] John Firth. «A synopsis of linguistic theory, 1930-1955». In: Studies in
linguistic analysis (1957), pp. 10–32 (cit. on p. 25).

[29] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. «Bag
of tricks for efficient text classification». In: arXiv preprint arXiv:1607.01759
(2016) (cit. on p. 26).

80

https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206

BIBLIOGRAPHY

[30] Kumar Ravi and Vadlamani Ravi. «A survey on opinion mining and sentiment
analysis: tasks, approaches and applications». In: Knowledge-based systems
89 (2015), pp. 14–46 (cit. on p. 26).

[31] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. «Neural machine
translation by jointly learning to align and translate». In: arXiv preprint
arXiv:1409.0473 (2014) (cit. on p. 26).

[32] Christopher D Manning. An introduction to information retrieval. Cambridge
university press, 2009 (cit. on p. 26).

[33] Tomas Mikolov and Google Research. Word2Vec: Efficient Estimation of Word
Representations in Vector Space. https://code.google.com/archive/p/
word2vec/. Accessed: August 2023 (cit. on p. 26).

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. «Efficient
estimation of word representations in vector space». In: arXiv preprint
arXiv:1301.3781 (2013) (cit. on p. 26).

[35] Bernd Bischl et al. «Hyperparameter optimization: Foundations, algorithms,
best practices, and open challenges». In: Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 13.2 (2023), e1484 (cit. on p. 31).

[36] Kevin Jamieson and Ameet Talwalkar. «Non-stochastic best arm identification
and hyperparameter optimization». In: Artificial intelligence and statistics.
PMLR. 2016, pp. 240–248 (cit. on p. 32).

[37] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. «Hyperband: A novel bandit-based approach to hyperparameter
optimization». In: The journal of machine learning research 18.1 (2017),
pp. 6765–6816 (cit. on p. 33).

[38] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual,
Volume 2: System Programming. Section 2.5. 2015. url: https://www.amd.c
om/content/dam/amd/en/documents/processor-tech-docs/programmer-
references/24593.pdf (cit. on p. 35).

[39] Debian Popularity Contest. https://popcon.debian.org/. [Online; accessed
30-Jan-2023] (cit. on p. 41).

[40] VirusShare. https://virusshare.com. [Online; accessed 5-Feb-2023] (cit. on
p. 43).

[41] Radim Řehřek and Petr Sojka. «Software framework for topic modelling with
large corpora». In: (2010) (cit. on p. 50).

[42] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/ (cit. on pp. 51, 59).

81

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://popcon.debian.org/
https://virusshare.com
https://www.tensorflow.org/
https://www.tensorflow.org/

BIBLIOGRAPHY

[43] Derek G. Murray, Jiri Simsa, Ana Klimovic, and Ihor Indyk. tf.data: A
Machine Learning Data Processing Framework. 2021. arXiv: 2101.12127
[cs.LG] (cit. on p. 52).

[44] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. «Optuna: A next-generation hyperparameter optimization frame-
work». In: Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. 2019, pp. 2623–2631 (cit. on pp. 57, 59).

[45] Universitat Politècnica de Catalunya. SERT Cluster Wiki of UPC. 2023-11-24.
2023. url: https://www.ac.upc.edu/app/wiki/serveis-tic/Clusters/
Sert/FuncionamentGeneral (cit. on p. 58).

[46] Python Core Team. Python: A dynamic, open source programming language.
Python version 3.8.18. Python Software Foundation. 2019. url: https :
//www.python.org/ (cit. on p. 59).

[47] F. Pedregosa et al. «Scikit-learn: Machine Learning in Python». In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 59).

[48] Radim Řehůřek and Petr Sojka. «Software Framework for Topic Modelling
with Large Corpora». English. In: Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. http://is.muni.cz/publication/
884893/en. Valletta, Malta: ELRA, May 2010, pp. 45–50 (cit. on p. 59).

[49] The pandas development team. pandas-dev/pandas: Pandas. Version v2.0.3.
June 2023. doi: 10.5281/zenodo.8092754. url: https://doi.org/10.
5281/zenodo.8092754 (cit. on p. 60).

[50] Thomas A Caswell et al. matplotlib/matplotlib: REL: v3.7.3. Version v3.7.3.
Sept. 2023. doi: 10.5281/zenodo.8336761. url: https://doi.org/10.
5281/zenodo.8336761 (cit. on p. 60).

[51] Joblib: Tools to provide lightweight pipelining in Python. Version 1.3.2. url:
https://joblib.readthedocs.io/ (cit. on p. 60).

[52] Andy B. Yoo, Morris A. Jette, and Mark Grondona. «SLURM: Simple Linux
Utility for Resource Management». In: Job Scheduling Strategies for Parallel
Processing. Ed. by Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60. isbn: 978-3-
540-39727-4 (cit. on p. 60).

82

https://arxiv.org/abs/2101.12127
https://arxiv.org/abs/2101.12127
https://www.ac.upc.edu/app/wiki/serveis-tic/Clusters/Sert/FuncionamentGeneral
https://www.ac.upc.edu/app/wiki/serveis-tic/Clusters/Sert/FuncionamentGeneral
https://www.python.org/
https://www.python.org/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.5281/zenodo.8092754
https://doi.org/10.5281/zenodo.8092754
https://doi.org/10.5281/zenodo.8092754
https://doi.org/10.5281/zenodo.8336761
https://doi.org/10.5281/zenodo.8336761
https://doi.org/10.5281/zenodo.8336761
https://joblib.readthedocs.io/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation and Background
	Problem Statement
	Research Objectives
	Thesis Outline

	Literature Review
	Introduction
	Taxonomy of Malware Analysis
	Trends in Malware Detection

	Background
	Artificial Intelligence
	Machine Learning
	Neural Networks
	Neuron

	Fully Connected Layer
	Loss Function
	Stochastic Gradient Descent
	Adam Optimization Algorithm

	Backpropagation
	Forward Pass
	Backward Pass

	Recurrent Neural Networks
	Vanishing and Exploding Gradient Problem in RNNs
	Long Short-Term Memory
	LSTM Cell
	Working of an LSTM Cell
	Addressing the Gradient Problem

	Bidirectional Long Short-Term Memory
	Information Fusion

	Word Embedding
	Word2Vec

	Training Process
	Data Split
	Epochs
	Batch Size
	Learning Rate
	Optimization Algorithm
	Validation Split

	Model Evaluation Metrics
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F1-Score
	Receiver Operating Characteristic (ROC) Curve
	Area Under the ROC Curve

	Hyperparameter Optimization
	Fidelity Level in Hyperparameter Optimization
	Successive Halving
	Hyperband

	Instruction Set Architecture
	x86-64 (AMD64) ISA

	ELF Format

	Proposed Model
	Model Architecture
	Word Embedding Layer
	Deep Learning Model
	Model Overview

	Methodology
	Data collection
	Benign files collection
	Malicious file collection
	Malicious Binaries Filtering by Architecture

	Disassembly of AMD64 ELF Files
	Process Overview

	Data Splitting
	Model Training
	Data Preparation: Tokenization and Indexing
	Word Embedding
	Feature Extraction
	Feature Embedding
	Training the Deep Learning Model

	Execution and Testing of the Model
	Feature Extraction
	Feature Embedding
	Evaluating and Executing th Deep Learning Model

	Hyperparameter Optimization
	Search Space
	Hyperparameter Optimization Setup

	Experimental Setup and Infrastructure
	Hardware Configuration
	Software Configuration
	Cluster Configuration

	Results
	Hyperparameter Optimization Results
	Hyperparameter Importance Analysis
	Objective Function Analysis
	Validation Accuracy Progression
	Time Analysis

	Second Hyperparameter Optimization
	Hyperparameter Importance Analysis
	Objective Function Analysis
	Validation Accuracy Progression
	Time Analysis

	Selected Model Evaluation

	Conclusion
	Functions
	Sigmoid
	Hyperbolic Tangent

	Bibliography

