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Abstract 
 

In the event of a fire emergency in a built environment, human behaviour plays an important role, 

since building occupants need to make several evacuation decisions. Exit and route choices are one 

of them. It is fundamental to investigate which factors influence this choice. Understanding how 

humans weigh different factors when they make a choice is crucial to design a safe built environment 

for evacuations.  

The main objective of this work is to study the exit choice of occupants during fires and develop an 

exit choice model which could be implemented in future evacuation software tools. In particular, this 

research focuses on the influence of two different factors: the social influence and the role-rule factor. 

To achieve this goal, this work uses a new immersive virtual reality experiment to investigate exit 

choice during a fire evacuation in a metro station. This experiment involves 131 random participants 

who were asked to choose between two possible exits in different evacuation scenarios. These 

scenarios differ in the presence or not of an instructor guiding participants, the authority of the 

instructor and the presence or not of other evacuees who use a specific exit. Using the collected data, 

a discrete choice model was estimated to investigate if and how these factors affected the participants' 

decisions. The results of the models show that all the factors considered influence the participants’ 

choices. In addition, the results show that the higher the authority level of the instructor the more 

participants follow the instructions. Finally, other models were developed to analyse the impact of 

demographic factors (i.e., age, nationality, handedness and BMI) on the choice of participants. In this 

case, the results do not show evidence that demographic factors have an impact on the exit choice. 

This work provides several novelties in terms of findings, and it has implications for both fire safety 

designs and future VR evacuation experiment designs. This study is the first one that investigates a 

unique combination of the variables mentioned above and their interactions. 

 

Keywords: Exit Choice, Fire Safety Engineering, Human Behaviour in Fire, Evacuation, Discrete 

Choice Model, Virtual Reality. 
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1 Introduction 
 

Fire safety is a fundamental aspect to consider when designing buildings and infrastructures as well 

as any built environment which is exposed to fire risk (e.g., factories, oil plants). Fire safety aims to 

enhance human life safety and protect properties, heritage, and the environment [1]. This goal is 

achieved by studying, promoting, acting, and testing standards, measures, and precautions that try to 

avoid the occurrence of a fire and, if happens, to limit its consequences [2]. 

In the field of fire safety, there are two main approaches: the prescriptive-based approach and the 

performance-based approach. The first one consists of applying some technical regulations that allow 

for obtaining a suitable level of fire safety. In this case, the risk assessment is performed by the 

legislator. The second approach provides the definition of some performances that must be obtained, 

and it is necessary to demonstrate the achievement of these objectives [3]. In this case, the risk 

assessment is performed by the designer by using back-of-the-envelope (manual) calculations or 

computer-based simulations of the fire and smoke spread and the evacuation process [4].  

The most widely used model for manual calculations is the hydraulic model which simplifies the 

behaviour of evacuees by using a set of macroscopic equations [5]. Regarding computer-based 

models, the number of these models for fire safety engineering applications and their sophistication 

is continuously increasing. Therefore, it is important to gain a better understanding of the experiences 

of current users for the development of future generations of computer pedestrian evacuation models. 

Some studies [6], [7] highlight the need for other investments in research and data collection to verify, 

validate and develop new models. The proliferation of these tools has played a key role in making 

performance-based designs feasible worldwide. 

In the last decades, many countries worldwide have integrated the performance-based approach to 

their building codes which used to be prescriptive-based [8]. This change was prompted by several 

factors, including the negative aspects of the prescriptive codes, economic and social considerations, 

progress in fire science and engineering, and the harmonization of regulation systems worldwide. The 

performance-based approach has improved the regulatory framework by clearly establishing code 

objectives and safety criteria while leaving it up to the designer to determine how to achieve these 

objectives [9]. In fact, the introduction of this approach makes the codes more flexible, functional, 

less complex, and easier to apply while allowing for innovation. This code change has been also 

affecting the Italian legislation. 
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The regulatory landscape in Italy had several changes in recent years. The first step towards the 

performance-based approach was made in 2009 by guidelines for road tunnel safety design [10]. This 

document provides general information on people's performance during evacuations and methods to 

simulate them. However, this information is often based solely on historical accident databases 

therefore it presents a lack of behavioural data for the calibration of evacuation models [11]. 

The main change in the Italian legislation happened in 2015, when a new code was introduced by 

D.M. 03/08/2015 entitled “Codice di Prevenzione Incendi”. The purpose of this code is to simplify 

the present standards to obtain a new methodological approach aligned with technological progress 

and international standards. The approach proposed in this code is defined as semi-prescriptive 

because it gives technical regulations suggested by the legislator and it also allows the adoption of 

alternative solutions that can be verified using the fire safety engineering method [3]. 

While the performance-based approach is becoming more popular worldwide, there is a constant need 

for better tools to support Fire Safety Engineering, especially in the evacuation domain. In the 

following sections, the importance of Fire Safety Engineering is explained (Section 1.1) and the 

fundamental aspects of evacuation and how it’s strictly influenced by human behaviour are described 

(Section 1.2). Finally, the objectives of this thesis are illustrated in Section 1.3. 

 

1.1 Fire Safety Engineering 
 

The term Fire Safety Engineering refers to the application of engineering principles, rules, and expert 

judgments based on the scientific evaluation of the combustion phenomenon, the effects of the fire, 

and human behaviour, with the aim of saving human lives, and protecting properties and the 

environment [3]. Fire Safety Engineering is significant because, in some complex structures that pose 

a high risk of property or life damage (e.g., large volume spaces, telecommunication, or power-

generating facilities), solely prescriptive measures may not suffice in meeting their needs [2]. 

The chapter “Performance-Based Design” of the SFPE [12] defines performance-based design as “an 

engineering approach to fire protection design based on: 

• Agreed upon fire safety goals and objectives; 

• Deterministic and/or probabilistic analysis of fire scenarios; 

• Quantitative assessment of design alternatives against the fire safety goals using engineering 

tools, methodologies, and performance criteria.”  
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The application of Fire Safety Engineering allows the definition of suitable design solutions by 

performing quantitative analysis. The designer defines the aims of the project and transforms them 

into quantitative performance thresholds; afterwards, the designer establishes several design fire 

scenarios. Fire scenarios are the most severe incidents that may reasonably occur in the activity [3]. 

Manual or computer-based modelling tools allow designers to describe and calculate the effects of 

the fire scenarios related to the design solution assumed. If the design solution allows maintaining a 

suitable margin of safety with respect to previously established performance thresholds, this solution 

is acceptable.  

To evaluate the safety of a given design solution, the performance-based approach involves 

comparing the Available Safe Egress Time (ASET) with the Required Safe Egress Time (RSET) [13]. 

ASET is the time that can pass before the environment becomes too dangerous to escape from, while 

RSET is the time required for all evacuees to exit safely. Designers evaluate ASET by considering 

several tenability criteria, such as smoke layer heights, intoxication of evacuees, etc. The main 

criterion is Fractional Effective Doses (i.e., the doses of toxic products inhaled by occupants during 

the passage of time) [11]. Regarding the evaluation of RSET, many methods and models exist in the 

current state of the art that simulate the evacuation process. 

Existing theories and data are used to develop evacuation models that estimate the time necessary to 

evacuate a building or transportation system (RSET). These models are valuable tools for analysing 

potential risks and improving safety measures. In addition, they're flexible enough to simulate 

numerous scenarios in a relatively short time [14]. By adjusting the input parameters, the models can 

easily represent different evacuation scenarios. However, it is fundamental that the designers select 

the most appropriate modelling approach for the analysis and input parameters [15]. As such, the 

analysis of the evacuation process with the performance-based approach relies heavily on the existing 

scientific knowledge of human behaviour in fire. 

 

1.2 Evacuation and Human Behaviour 
 

The design of evacuation can be a very complex task and it represents a crucial aspect of Fire Safety 

Engineering, because, according to statistical data, many of the fatalities and damages caused by fires 

can be traced more to human error than to engineering failure [16]. Over the past few decades, studies 

on pedestrian evacuation dynamics increased and became a key research topic [17], [18], [19], [20]. 

It is fundamental to understand the evacuation dynamics as this knowledge is essential to reduce 
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deaths and property losses in case of unexpected accidents or disasters. Considerable research has 

been made and different evacuation models have been developed by scholars in this area [21], [22]. 

The critical factors that define the fire response performance and therefore the evacuation of the 

building occupants can be divided into three categories: human features, building features and fire 

features (see Figure 1) [23]. The nature of the fire has a great influence on the level of fire response 

performance. The characteristics of a building have a direct consequence on its fire response 

performance, as it is a physically enclosed environment where people carry out different activities. 

Additionally, human nature also plays a significant role in determining the level of fire response 

performance. In order to examine this, it is important to study behaviour at both individual and group 

levels. This includes examining character traits, knowledge, experience, powers of observation and 

judgment, mobility, and social interactions between people present, level of engagement, roles or 

responsibilities in the building, and situational characteristics such as awareness, physical position, 

and familiarity.  

 

Figure 1. Fire response model [23] 

As stated in Section 1.1, the performance-based approach to fire safety is based on the comparison 

between ASET and RSET. In this work, it will be analysed the computation of RSET. This time is 

often categorised into four main times: the detection time, the warning time, the pre-evacuation time, 

and the movement time. The detection time estimates the time when ignition begins until the moment 

when the fire is detected. The warning time estimates the time when the fire is detected until the 

moment when occupants are informed of the danger. The pre-evacuation time corresponds to the time 

when occupants are informed until an individual or group begins purposive evacuation movement to 
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a place of safety. The pre-evacuation time is in turn divided into two: the recognition time and the 

response time. The movement period is the time in which the movement toward a safe place occurs 

[24]. Figure 2 shows the engineering timeline explained above. 

 

Figure 2. Engineering timeline [24]  

Quantifying evacuation time is a key task for fire safety engineers. Evacuation time is strongly 

affected by differences in pre-evacuation and speeds which can depend on different physiques, ages, 

genders, psychology, etc. [25]. Further, other key factors are route/exit choices and complex 

interactions between people and the environment (comprehensiveness of guidance signs, familiarity 

with the environment, suitability of emergency lighting, etc.) [26], [27]. These aspects cause various 

ripple effects, making orderly evacuation difficult to reach [28]. 

In particular, it is important for fire safety engineers to identify and use appropriate pre-evacuation 

data distributions as they can significantly affect the results of evacuation simulations. However, pre-

evacuation data is often limited, incomplete and presented in a format that can be challenging to use 

in these simulations. For instance, Lovreglio et al. [29] provide a pre-evacuation database useful to 

estimate pre-evacuation distributions.  

Therefore, the study of human behaviour in fire emergencies must be the core of all life safety 

projects. It is necessary to examine how people respond to emergencies, including their awareness, 

attitudes, behaviours, motivations, beliefs, coping strategies, and decisions. This field is highly 

multidisciplinary and involves professionals from various fields in addition to engineering, such as 

architecture, law, sociology, computer science, psychology, mathematics, human factors, 

ergonomics, and communications [30]. 
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One of the first conceptual models1 describing human behaviour in a fire is the one proposed by 

Fridolf et al. [31] (see Figure 3). It uses the following sequence categories: interpret, prepare, and act. 

Each category constitutes a sequence of consecutive actions that people perform. By adopting this 

model, human behaviour in a fire can be explained without the use of the term “panic”, which 

represents a questioned topic within the research community. In fact, some studies [32], [33] 

demonstrate that descriptions of “panic” relate more to scare or increased anxiety than any kind of 

behaviour leading to the death or injury of a person. People under stress behave relatively rationally, 

controlled, and appropriately [34]. The studies show that some suboptimal behaviours (e.g., an 

evacuee not selecting the closest and safest exit) are mostly due to a lack of information. 

 

Figure 3. A general model for explaining the behaviour sequences in fire [31] 

Another important conceptual model of human behaviour in fire is the Protective Action Decision 

Model (PADM). This model was originally proposed by Lindell and Perry [35] for large-scale 

disasters and it has been adopted by several authors to explain building evacuation too [36], [37]. 

PADM includes the factors that influence individuals’ adoption of protective actions. Studies on 

individual response to disasters provide results that can be observed on the summary proposed in 

Figure 4. This chart provides a graphic representation of the model.  

 
1 Conceptual models: to an observer B, an object A* is a conceptual model of an object A to the extent that B can use 
A* to answer questions that interest him about A, and if the model does not have any physical reality [100]. 
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Figure 4. Information flow in the PADM [35] 

Environmental cues, social cues, and warnings are the first steps of the decision-making process. 

Changes in receivers’ beliefs and behaviours are considered the relevant effects, by knowing that 

receivers’ characteristics are physical (i.e., strength), psychomotor (i.e., vision and hearing), and 

cognitive (i.e., mental models/schemas, native language), abilities and economic and social resources. 

PADM allows to understand how people usually make decisions to protect against ambient risks. 

These stages are sequential, as the stages within the information-seeking process. However, not in all 

cases people follow steps in the model in the exact sequence shown in Figure 4.  

Pedestrian evacuation dynamics has been thoroughly studied but significant work is needed to 

develop engineering models which are extensive, vigorous, and validated theory on human behaviour 

during evacuation from building fires. Currently, without comprehensive conceptual and data-driven 

models, evacuation software tools are limited in how the evacuation process is simulated. Evacuation 

software often requires extensive input data on evacuee behaviour to compensate for model omissions 

[7]. The absence of a comprehensive conceptual model of evacuee behaviour and data-driven models 

has important consequences for users, developers of evacuation models, and evaluators of evacuation 

analysis. As shown in Figure 5 (approach 1), the model requires the user to recognize the scenario 

that the evacuees are encountering. However, numerous existing models necessitate the user to predict 

how people will react to specific scenario conditions. In some cases, the user may need to provide 

additional data to make up for the lack of a conceptual model, in addition to the data used to set up 

the model for the scenario under investigation. 

Evacuation modelling, currently, can become problematic in the following cases: 

• if the user assumes that dictated agent behaviours are actually a model prediction; 
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• if the behavioural response is significantly reduced with the aim to match the user assumptions 

during model configuration; 

• if the user is not qualified [7]. 

Current evacuation models rely on user input to predict fire evacuation scenarios, which can lead to 

inaccuracies. Hence, the next generation of models should be designed to predict individual and group 

behaviour in a building fire using situational conditions, rather than depending on ad-hoc user input. 

This approach would ensure consistency and accuracy in the predicted behaviours and take the burden 

away from designers to prescribe actions. [36]. One of the behaviours that should be estimated by 

future models, and not set by users as input, is the exit/route choice, studied in this work. A possible 

modelling roadmap is proposed by Gwynne et al. [7]. They propose a schematic representation 

(Figure 5) of three different approaches characterized by different relationships between the user and 

the model: the first one represents the current situation and the other two represent the aspirations for 

the next generation. 

 

Figure 5. Model representation [7] 

In this work, the exit-route choice will be analysed; it is an important aspect that regards human 

behaviour, and consequently influences evacuation in case of fire. In particular, we will see how the 

social influence and role-rule model (explained in detail in Sections 2.2 and 2.3) can influence this 

choice. 

 

1.3 Motivation and Objectives 
 

The aim of the work is to move towards the development of the next generation of data-driven models 

and the following implementation within existing or new evacuation software tools. This approach 

would allow model users to depict essential evacuee actions within the modelling framework without 

directly imposing them on the current scenario. The evacuee behaviour analysed in this study is the 

exit choice. 
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The main objective of this work is to study the exit choice of occupants during fires and develop an 

exit choice model which could be implemented in future evacuation software tools. In particular, this 

research focuses on the influence of two different factors on this choice: social influence and role-

rule factor.  

To achieve this goal, this work uses a new immersive virtual reality experiment on exit choice during 

a fire evacuation in a metro station. This experiment was developed at the Lab of Digital Built 

Environment of Massey University. This virtual reality application was used in this research to collect 

new data and estimate a new exit choice model. This experiment involved 131 random participants 

who were asked to choose between two possible exits in 12 different scenarios, but each participant 

was asked to make only 8 choices in total. These 12 scenarios differ in the presence or not of an 

instructor guiding participant, the authority of the instructor (underground staff member or firefighter) 

and the presence or not of other evacuees who use a specific exit.  

Using the collected data, a discrete choice model was estimated to investigate if and how these factors 

affected the decisions of the participants. In addition, other models were developed to analyse the 

impact of demographic factors on the choice of participants. Finally, the model is tested in this work 

by performing sensitivity analysis. 
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2 Background 
 

This section offers insights into the factors affecting exit choice, including social and physical factors 

(Sections 2.2 – 2.4). Additionally, it provides a summary of relevant studies using VR technologies 

to investigate exit choice (Section 2.5). 

 

2.1 Exit/Route Choice 
 

In the event of a fire emergency, it is important that people use the closest and safest emergency exits 

to reach a safe place as fast as possible. The exit and route choices can significantly affect evacuation 

performance [38], [31]. Numerous studies [39], [40], [41], [42] have investigated exit choice during 

fires, and researchers from all around the world are working on various aspects of this topic. These 

researchers have identified several elements that can affect evacuee exit choices, such as social 

influence, evacuation systems’ affordances, familiarity, the geometry of the building, and injurious 

conditions within the environment itself (i.e., smoke) [30]. 

During a fire emergency, people may not always make optimal decisions due to limited perception 

and difficulty combining information. Instead, they rely on preferences [7]. Gao et al. [40] have 

identified three major effects on decision-making: the compromise effect, the similarity effect, and 

the attraction effect. The first effect describes how an option is perceived as more attractive when it 

is seen as a middle ground between other options rather than as an extreme option [43]. The similarity 

effect occurs when the presence of a similar option leads to a decrease in choice for similar options 

and an increase in choice for dissimilar options [44]. The attraction effect happens when adding a 

similar (but inferior compared to another one) option to the choice set enhances the likelihood of 

selecting the superior option [45]. 

The factors that influence the exit decision, according to the studies made by Duives et al. [42] and 

Kinateder et al. [39], are the following: the distance to the exit, the angle that the exit route makes 

with respect to the current direction of movement, familiarity exits, and the exit choice of the other 

evacuees. Other studies [46], [47] demonstrate that people have a tendency to evacuate via familiar 

routes and exits; it is called affiliative behaviour, and it occurs when people move towards “familiar 

persons and places”, that usually correspond to the main entrances. In some cases, people prefer not 

to adopt a new route or an exit previously unknown, even if they are available and/or closer. 
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Experiments performed by Augustijin-Beckers et al. [48] demonstrate that not everyone follows the 

nearest exit when leaving a building. While about half of the people (48,5%) do choose the nearest 

exit if known, 20,7% of people return to the main entrance and 20,8% follow other evacuees. The 

assumption made by most models that evacuees go to the nearest exit is not always true. Instead, 

according to the study performed by Duives and Mahmassani [42], people usually consider four 

criteria: distance to all exits, number of evacuees that use an exit, choices made by other individuals, 

and the throughput of a specific exit. 

Therefore, the evacuee’s choice of exit can be influenced by other occupants, and this influence can 

be different based on the number of people present in the scenario [49]. A study performed by 

Haghani et al. [50] demonstrates that, in very large crowds (more than 75 people), participants don’t 

follow “the crowd”. However, studies involving a smaller number of participants provide other 

information: Lin et al [51] found that participants tend to follow the majority of evacuees who choose 

an exit when participants are around 50. This finding is true across multiple cultures.   

Sime [52] studied a post-fire investigation and concluded that “the three main factors that influence 

the direction of movement and choice of exit in an evacuation are: 

• A person’s role (i.e., staff member or visitor) and their familiarity with escape routes; 

• A person’s ties to individuals in other parts of the building (i.e., family members and friends); 

• The proximity of emergency exit doors.” 

In the following sections (Sections 2.2 and 2.3), two important factors that influence the exit choice 

will be analysed: social influence and role-rule factor. 

 

2.2 Social Influence 
 

Social Influence is the subject that studies how individuals’ beliefs, thoughts, emotions, opinions, or 

behaviours are affected by others in the social network. Several disciplines are often influenced by 

social factors, including emergency decisions. The decision-making process of an individual depends 

on their personal constraints which are significantly influenced by their social network [53]. Deutsch 

et al. [54] define two distinct forms of Social Influence: normative SI and informational SI. The first 

one is defined as “the pressure social norms and expectations exert on behaviour”; the second one 

describes that “the behaviour of others is a source of information about how to react in an ambiguous 

or insecure situation.” 
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The impact of Social Influence on human behaviour has been extensively documented in academic 

literature. Research conducted by Asch [55] illustrates that hearing the options of others can sway an 

individual’s decision and even lead to make mistakes. Another important work was performed by 

Latané and Darley [56] and it represents the beginning of the development of research that examines 

helping behaviour in dangerous situations. In these investigations, the bystander effect was explained 

and demonstrated: the diffusion of responsibility tends to make people less inclined to offer assistance 

when others are present. Some years later, Latané [57] introduced the Social Impact theory, which 

suggests three fundamental principles for explaining SI:  

• SI is a product of societal pressures; 

• SI is directly related to the number of sources of influence; 

• The more exposure people have to SI, the less impact each individual experiences as a target 

of that influence. 

During emergency situations, occupants must decide their destination (i.e., where they want to move 

to) and their route (i.e., how they want to reach their destination). In some unclear situations, what 

may be emergencies, a useful source of information can be the behaviour of other occupants [58]. 

Therefore, the presence of others in emergency situations influences an individual’s behaviour. The 

time of emergency situations in which the social influence assumes particular importance is the initial 

phase because in this phase the individual tries to find all the possible and necessary information. 

Nilsson and Johansson [59] demonstrate that, when information is partial (i.e., ambiguous fire cues), 

social influence is more significant and increases with decreasing distance between people. Therefore, 

closer people have more impact on individuals than people who are further away. 

For the purpose of this work, it is necessary to examine Social Influence in the virtual world and to 

understand if the same mechanisms and phenomena occur. Many traditional findings from Social 

Influence research have been duplicated effectively in Virtual Reality (VR), as demonstrated in 

certain studies [60], [61], [62]. These studies indicate that VR can be a successful platform for 

studying Social Influence [63]. However, a significant drawback in VR studies related to SI is that 

virtual agents might be perceived differently from real people, as participants may not recognize 

animated agents as humans [64]. 
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2.3 Role-Rule Model 
 

The role-rule model represents the relationship between roles, rules and behaviour, and it is a crucial 

aspect of human behaviour in fire emergencies. 

To analyse this important factor, Fridolf et al. [31] study a good example that allows to understand 

the behaviour of people during an emergency at an underground station: the King’s Cross fire. This 

case demonstrates the relationship between roles, rules and behaviour. Fridolf et al. [31] observed 

that the recognition, interpretation, and response to the first fire cues ware correlated with the role of 

an individual, by analysing the different behaviours of people with different roles (police, 

underground staff, and tunnel users). The role-rule model allows to understand that one's prior 

knowledge and experience before a fire can impact their behaviour during the fire. This was evident 

during the King's Cross fire, where staff members and police took on the role of authority and gave 

instructions to passengers, while the passengers reacted differently. This highlights the significance 

of preparedness and training in handling emergency situations. 

The King’s Cross fire is a clear example that shows the significance of the role-rule model. The 

behaviour sequence that a person adopts during a fire (i.e., interprets, prepares, and acts), according 

to the models, depends on the daily role a person takes on and the associated rules. 

This study [31] also observed that there was a difference in terms of response between instructions 

provided by the police present at the station and instructions from staff members: the police received 

a better response from the passengers. It could be explained by recognizing that people see the police 

as having more authority than underground staff in a non-fire situation. Some research [65], [66] on 

policing and public order shows that people’s response is not just influenced by how clear and useful 

the guidance is, but also by their perception of the organizations delivering that guidance. Templeton 

et al. [67] observed that trust in fire safety guidance is an essential factor and it should be incorporated 

into evacuation models.  

Another study performed by Proulx [68] introduced a stress model and ways to reduce it. It was found 

that providing precise information is an effective way to reduce stress and induce a reaction in the 

event of a fire. Precise information can help people interpret the situation accurately, which in turn 

enhances decision-making and problem-solving abilities, ultimately leading to a decrease in stress. 

To ensure an efficient evacuation during an emergency, it is crucial to communicate precise 

information about the situation, its location, and what is expected from the public. To achieve this 

objective, the definition of rules and roles of people are fundamental. The method of transmitting this 
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information, the exact content of the message, and the most effective procedure for coordinating the 

actions of all players during an emergency evacuation are important questions that still need to be 

explored. 

 

2.4 Demographics Data 
 

In addition to these external environmental factors, it is also important to focus on the individual-

specific impact of demographic variables on exit choices. There is not general agreement on if/how 

demographic variables can affect these choices. In fact, several studies [42], [69] do not show any 

evidence that individual attributes (e.g., age, gender, BMI, nationality, left-handed or right-handed, 

etc.) are significant. On the other hand, other studies, presented in the following paragraphs, found 

statistical influences of some demographic variables on the exit choices. 

Xu et al. [70] studied exit choice during an airplane’s emergency evacuation and their results show 

that individuals with a bigger BMI index are more likely to use back exits. These results suggest that 

a person’s body type might slightly influence their decision-making. Instead, Song and Lovreglio 

[71] analyse the impact of demographic variables (i.e., nationality, age, gender, education, BMI, 

disability, training and previous experience with evacuation) on exit choices and demonstrate that 

they all have a significant impact on exit choices. However, these results could be due to the big data 

nature of their sample. 

Another two relevant studies are the one published by Veeraswamy et al. [72] and Troncoso [73]. 

The former work [72] studied wayfinding behaviour within buildings through an international 

questionnaire. They demonstrate that handedness, which is a genetic factor, and the side of the road 

people are used to driving on, which represents a cultural factor, significantly affect their choice of 

routes. The handedness is the main influencing factor, and the driving side is influenced by 

handedness. Thus, to predict the wayfinding behaviour, it is important to consider the handedness of 

an individual and the country of origin. On the other hand, Troncoso [73] found that, when 

considering Chinese and European individuals in Sweden, cultural backgrounds do not seem to 

influence people’s choices during a simulated evacuation. Despite this, traditions and culture may 

still have an impact on how people think and behave.  
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2.5 Virtual Reality Experiments 
 

Various scientific observation and simulation techniques have been developed to assist in the 

evacuation of buildings threatened by disasters, such as fires. In recent years, Virtual and Augmented 

Reality (VR and AR) have gained popularity in the safety research community [74]. Different 

combinations of hardware and software allow access to these technologies to the public. Therefore, 

it is essential to review the existing literature to analyse the strengths and weaknesses of these nascent 

technologies [75].  

The primary goal of both VR and AR is to offer users virtual content. However, these technologies 

differ in how they integrate virtual content with the real world [75]. Figure 6 illustrates the conceptual 

framework proposed by Milgram & Kishino [76], emphasizing the distinctions between VR and AR. 

They provided a virtuality continuum, with VR at one extreme, offering a completely synthetic 

experience comprising solely virtual content. The scheme also identifies various mixed reality 

technologies that blend real and virtual content. In addition, AR and VR can be categorized based on 

the hardware solutions they employ: VR technologies are divided into immersive and non-immersive 

solutions. Non-immersive VR relies on displaying virtual content through a screen, while immersive 

VR uses technologies like Head-Mounted Displays or Cave Automatic Virtual Environments to 

create more immersive experiences [75]. In this work, only the VR will be discussed. 

 

Figure 6. VR and AR position in the reality-virtuality continuum [76] and their hardware solutions [77]  

VR has been defined as a “real or simulated environment in which the perceiver experiences 

telepresence” (the feeling of being present in a virtual environment) [78]. Therefore, VR in not limited 
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to computer-generated environments or any specific technology. VR is a research tool that balances 

between ecological validity and the ability to control experiments. If this balance is reached, this tool 

can serve as an effective, versatile, and affordable training platform for scenarios related to safety. 

There exist several studies that explore the use of VR to understand human behaviour and train 

individuals for emergency scenarios [79], [80], [81], [82]. 

The review by Lovreglio et al. [75] highlights the wide range of hardware options available for 

researchers to study human behaviour during disasters. The choice of the most suitable hardware 

configuration is influenced by the research budget and objectives. The review also emphasizes the 

extensive utilization of VR solutions in studying human behaviour during disasters, with a particular 

focus on building fires. However, studies are concerned about the ecological validity of the data 

collected using VR (i.e. whether behave similarly in real disasters and VR) [83]. While some studies 

[64], [84], [85] have attempted to explain this crucial issue, more studies comparing real and virtual 

scenarios are necessary to quantitatively evaluate the ecological validity of VR investigations. 

It can be assumed that ecological validity exists if participants show similar reactions in terms of their 

behaviour, emotions, cognition, and psychophysiology in both the virtual and real-world scenarios 

[86]. Nonetheless, the level of emotional reaction that is elicited in a virtual laboratory setting may 

not be equivalent to that experienced in a real-life fire emergency [83]. It is not necessary for the 

participants to believe that the simulated fire scenario is authentic to establish ecological validity. 

Even if the participants are aware that what they are seeing is a simulation, perceptual input like visual 

simulation can still provoke emotional reactions [87]. 

Kinateder et al. [83] claim that the most significant advantage of VR is its ability to generate 

experimental set-ups that are highly immersive, externally valid, highly controlled, and safe. On the 

other hand, the major drawback is the reduced ecological validity when compared to field and case 

studies. Additionally, there is a lack of validation studies specifically for human behaviour in fire. 

Finally, Virtual Reality can be employed to create challenging laboratory experiments that concern 

human behaviour in fire. It allows to study how people respond to fire-related stimuli such as flames 

or smoke, and it facilitates the meticulous collection of behavioural and psychophysiological data 

within controlled simulated situations [83]. VR is a promising tool for comprehending human 

behaviour in fire and enhancing fire safety measures. 
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2.6 Summary 
 

In the previous sections, some studies regarding factors affecting exit choice have been analysed. A 

considerable number of studies analysed the impact of these factors independently influencing exit 

or route selection, but only a limited amount of research has considered multiple factors 

simultaneously (e.g., [88], [49]). However, no study was identified that analysed the combined effect 

of social influence and role-rule factor on exit choices. 

In the following chapter, the methods involved in the work will be described. 
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3 Methods and Materials 
 

This section regards methods and materials used to perform the experiment. Section 3.1 provides a 

detailed description of the Virtual Reality experiment designed in this work. Section 3.2 explains the 

experimental procedure, while Section 3.3 describes the participants’ involved. Finally, the statistical 

analysis tools used to investigate the factors that influence participants’ choices are outlined in 

Section 3.4.  

 

3.1 VR Experiment Set-up 
 

Throughout the VR experiment, the participants are situated within a virtual metro station where they 

are asked to choose an exit to evacuate the metro during a fire emergency. The participant can choose 

between two different exits (i.e., Left Exit and Right Exit) as illustrated in Figure 7. The virtual metro 

has an exit sign indicating that there are two available paths for evacuation (see Figure 9). 

 

Figure 7. Geometry of the virtual environment and position of people involved 

Figure 7 shows the geometry of the metro station, which does not represent any real or existing 

infrastructure. The model of the metro station was purchased from Sketchfab [89]. Figure 7 also 

highlights the positions of participant (starting position “A” and decisional position “B”) and 

instructor (position “C”). The participants are initially placed into the train (position “A”) with other 

virtual evacuees (when they are present). After receiving an alarm signal, and all the other evacuees 

are out of the train (when they are present), the participants move automatically to the second position 

highlighted in the picture (position “B”), which represents the place where they have to make the exit 

choice (note: the participant movement is controlled by a computer code and it does not require any 
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physical movement of the participant). The exits from the platform are two stair ramps, and they are 

indicated in Figure 7 by the exit sign.  

The experiment includes 12 different scenarios in which the environmental conditions change but the 

geometry is kept constant. The scenarios differed by the presence and the number of virtual evacuees 

(see Figure 8), by the presence of an instructor who directs participants toward one of the exits and 

by the authority of this instructor (see Figure 9). Therefore, it is possible to define the following 

variables:  

• NPC: the number of virtual evacuees using the exit; 

• I: the presence of an instructor who indicates the way out;  

• FF: the authority of the instructor (i.e., metro staff or firefighter). 

These variables have been introduced to study the influence of two different factors on the exit choice: 

social factor (see Section 2.2) and role-rule factor (see Section 2.3). In addition, the presence of a 

different instructor with more authority allows to understand if people trust different instructors in 

different ways, and consequently the behaviour changes. 

To investigate the influence of all variables, conflicting information was provided to the participants 

in the experiment: the instructor (when he is present) always indicates the left exit while the virtual 

evacuees (when they are present) always go to the right exit (Figure 10). 

   

Figure 8. Screenshots of the virtual experience showing the presence or not of people in the metro station 
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Figure 9. Screenshots of the virtual experience showing the presence of two different instructors   

   

Figure 10. Screenshots of the virtual experience showing conflicting information provided to the participant 

All variables have a number of dimensions that can be different within the experiment. The number 

of virtual evacuees leaving the metro station (NPC) can be equal to 0, 1, 10 or 20. The variable related 

to the instructor (I) is Boolean and, therefore, it can be equal to 0 (the instructor is not present) or 1 

(the instructor is present). If the I variable is equal to 1, it is possible to introduce another Boolean 

variable (FF) that can be equal to 1 if the instructor is a firefighter or equal to 0 if the instructor looks 

like a metro staff member. The recap of the levels and values for each variable is provided in Table 

1. 
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Variable 

Right Exit Left Exit 

Levels Values Levels Values 

NPC – Number of evacuees 

using the exit 

4 0, 1, 10, 20 1 0 

I – Presence of instructor 1 0 1 1 

FF – Presence of instructor 

who is a firefighter 

1 0 1 1 

Table 1. Levels and values of each variable 

The experimental scenarios that represent the different immersive VR experiences are shown in Table 

2. These scenarios are divided into three different classes depending on the value of I and FF. The 

class A was experienced by the total amount of participants (131 people), the class B was experienced 

by 66 participants and the class C by 65 participants. As such, each participant was asked to make 

only 8 choices in total. This experiment choice was made to reduce experimental fatigue for the 

participants. 

Class Scenario Right Exit Left Exit  

NPC I FF NPC I FF 

A 1 0 0 0 0 0 0 

2 1 0 0 0 0 0 

3 10 0 0 0 0 0 

4 20 0 0 0 0 0 

B 5 0 0 0 0 1 0 

6 1 0 0 0 1 0 

7 10 0 0 0 1 0 

8 20 0 0 0 1 0 

C 9 0 0 0 0 1 1 

10 1 0 0 0 1 1 

11 10 0 0 0 1 1 

12 20 0 0 0 1 1 
Table 2. Experimental scenarios 

The VR experience was developed using the integrated platform “Unity”, which is a popular gaming 

engine for developing VR applications. Regarding the virtual environment, the 3D model of the metro 

station was sourced from Sketchfab and subsequently imported into Unity. To generate NPCs (Non-

Player Characters), a low-cost and high-quality human body model generation algorithm was used. 
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Within the framework of the XR Interaction Toolkit, the comprehensive interaction mechanism (e.g., 

movement and animation of the NPCs, movement of the player, randomization of the scenes, data 

storage, and audio management) was programmed in C#. The application has been developed by the 

research team of the Digital Built Environment Lab at Massey University. 

Participants interacted with the virtual environment using the Oculus Meta Quest 2. It provides a 

headset and two controllers. This headset is characterized by six degrees of freedom, it tracks the 

movement of both head and body, and then translates them into VR with realistic precision. The 

specifications of the technology are the following: 

• Fast-switch LCD display 

• 1832 x 1920 resolution per eye 

• 60, 72, 90 Hz refresh rate supported 

• Glasses compatible 

In addition, the headset is equipped with 3D positional audio technology, enabling users to hear 

what’s all around. 

 

3.2 Experimental Procedure 
 

The experiment was executed between July and September 2023 at Massey University’s Albany 

Campus in Auckland, New Zealand. The experimental procedure involves the following steps: 

1. Before participating in the experiment, the participants were initially required to read a 

participant information sheet and sign a consent form. This document outlined their right to 

discontinue their involvement in the experiment at any point and to request the deletion of 

their data if desired. Additionally, it provided information about medical conditions that 

would make them ineligible to participate in the experiment. All the participants completed 

the experiment (see Section 3.3 for the description of the sample). 

2. After a brief introduction to explain how the VR headset works, participants were asked to 

stand up and wear the VR headset; the participants were allowed to stand anywhere in the 

room and only use one of the two manual controllers. A representation of the physical space 

where the experiment took place is shown in Figure 11.   

3. After wearing the VR headset, participants are immersed in the metro station and the 

evacuation starts a few seconds later. At the beginning, the participants are placed into the 
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train (position “A” in Figure 7) and then they are automatically moved outside the train. In 

this second position (position “B” in Figure 7), the participant must choose an exit (Left or 

Right). 

4. This procedure is repeated 8 times per participant and in each of them the scenario is different 

(Table 2). The sequence of the 8 scenarios changes randomly for each participant. 

5. After the VR part of the experience, a post-experiment survey was dispensed to gather 

participants’ information using a tablet. The questionnaire collects data regarding 

participants’ demographics and their prior experiences with virtual reality and their 

knowledge of fire emergencies. In addition, the questionnaire gathered feedback on the 

realism of the VR experiment, ease of participation, emotional state, social identity, urgency 

perception, and behaviour validity. Most of the data was collected by using seven-point Likert 

scale questions (from -3 = “strongly disagree” to +3 = “strongly agree”). Participants also 

have the possibility to choose “I do not know”. The complete questionnaire can be found in 

Appendix 1.  

The participants were not informed that the real purpose of the experiment was to observe the 

influence of social factor and role-rule factor on their exit choice during an evacuation, as they 

were told to choose the exit that they preferred.  

 

Figure 11. Physical space used to carry out the VR experiment 

 

3.3 Participants 
 

The majority of participants were enlisted via social media platforms and flyers distributed on the 

campus, especially in the library building of Massey University, Albany Campus (New Zealand). A 
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total of 131 individuals participated in the study, with the majority being either employees or students 

affiliated with Massey University. The sample comprised 75 females and 56 males, with ages 

spanning from 16 to 71 years, as shown in Figure 12. The average age was 31.7 years, with a standard 

deviation of 10.7 years. The 25th percentile age was 22 years, and the 75th percentile was 40 years. 

Participants’ nationality was heterogeneous, but most people defined themselves as Asian (around 

67%); then approximately 17% of participants were from New Zealand and around 16% were from 

other countries of the world. Another important data collected about the sample is the BMI, calculated 

by knowing the height and the weight of participants: 𝐵𝑀𝐼 =
𝑤

ℎ2 . The distribution of the participants’ 

BMI is shown in Figure 13. 

 

Figure 12. Participants age 

 

Figure 13. Participants BMI 
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3.4 Data Analysis 
 

The data gathered from the experiments were assessed using random utility models. In fact, several 

model specifications of Multinomial Logit Models are estimated in this study. Random utility models 

are dependent on the following assumptions [90], [91]: 

• A decision-maker q assigns a utility 𝑈𝑞,𝑖 to each available choice alternative i. The utility is 

defined by a measurable component 𝑉𝑞,𝑖 and a random component 𝜀𝑞,𝑖: 

 

𝑈𝑞,𝑖 = 𝑉𝑞,𝑖 + 𝜀𝑞,𝑖 Eq. 1 

 

This equation facilitates the explanation of two significant concepts: individuals with identical 

attributes and confronted with the same set of choices might opt for different alternatives, and 

some individuals may not consistently choose what seems to be the optimal option.  

 

• The measurable component has a linear specification defined by the following equation:  

 

𝑉𝑞,𝑖 = ∑ 𝛽𝑖,𝑗𝑋𝑞,𝑖,𝑗

𝑗

 Eq. 2 

 

where 𝑋𝑞,𝑖,𝑗 are the known values of the factors j perceived by the decision-maker q affecting 

the choice for the alternative i, and 𝛽𝑖,𝑗 are parameters weighting the preferences of the 

decision-makers related to the factors j. 𝛽𝑖,𝑗 are the parameters to estimate [49]. 

The Multinomial Logit Model is the simplest and most popular practical discrete choice model. It can 

be generated assuming that the random components are distributed as Extreme value Type I with 

variance 𝜋2

6
 and these distributions are independent and homoscedastic [90]. By assuming it, the 

probability that the decision-maker q selects alternative i can be formulate by the following equation 

(i.e., multinomial logit formulation): 

𝑃𝑞,𝑖 =
𝑒𝑥𝑝(𝑉𝑞,𝑖)

∑ 𝑒𝑥𝑝(𝑉𝑞,𝑘)𝑘

 Eq. 3 
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This equation can be employed to build a likelihood function which is then utilized to estimate the 

parameters 𝛽𝑖,𝑗, by identifying the parameter combination that maximizes the likelihood function. In 

this work, the multinomial logit models have been estimated using the “mlogit” package available in 

R Studio [92]. 

In addition, to observe the predictability of the model, the concept of confusion matrix has been used. 

A confusion matrix of size n x n associated with a classifier shows the predicted and actual 

classification, where n is the number of different classes [93]. Figure 14 shows a confusion matrix 

for n=2, where: 

• a is the number of correct negative predictions; 

• b is the number of incorrect positive predictions; 

• c is the number of incorrect negative predictions; 

• d is the number of correct positive predictions. 

 

Figure 14. The confusion matrix of the two-class classification problem [93] 

The prediction accuracy and classification error can be obtained from this matrix as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 Eq. 4 

 

𝐸𝑟𝑟𝑜𝑟 =
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
 Eq. 5 

 

The choices predicted by the model can be calculated by using Eq. 2 to measure the utility by knowing 

the parameters of the model. Subsequently, by using Eq. 3 it is possible to estimate the probability of 

choosing an exit. It is then assumed that the predicted choice is the one with the highest probability. 

In this work, it has not been considered the scenarios where the probabilities were 50% and 50%, 

because all variables were equal to zero. 

Another important concept has been used to compare different models and understand the one that 

fits data in a better way: likelihood and McFadden’s R2. The likelihood gives an idea of how well a 

model fits to the data, instead, McFadden’s R2 calculates the ratio of the log-likelihood for the specific 
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model and an intercept-only model and subtracts this ratio from 1. The formulation that allows to 

determine McFadden’s R2 is shown in Eq. 6 [94]. 

𝑅2 = 1 −
ln �̂�(𝑉𝑖)

ln �̂�(𝑉0)
 Eq. 6 

Where ln �̂�(𝑉𝑖) is the log-likelihood of the specific model and ln �̂�(𝑉0) is the log-likelihood of the 

intercept-only model. 

In the end, boxplots were used to analyse participants’ responses to the post-experiment survey on 

different aspects of the Virtual Reality experience (see Section 3.2), assessing the mean response and 

the spread of answers. 
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4 Results 
 

This section provides the results of the exit choice models proposed in the Sections 4.1 and 4.2 of this 

work. In particular, Section 4.1 concerns models about external environmental factors and Section 

4.2 relies on models that consider demographic factors. Then, a sensitivity analysis, performed 

considering one of the models presented, is provided in Section 4.3. The last Section 4.4 presents 

respondents’ feedback about the VR experience. 

 

4.1 Exit Choice Models – External Factors 
 

In this work, two multinomial logit model formulations are proposed. The first model (Model 1) is 

linear, so it was possible to estimate 𝛽𝑖,𝑗 weighting the impact of NPC, I and FF (see Table 1 for 

definitions) using Equation 7: 

Model 1 
𝑉𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑅 + 𝛽𝑁𝑃𝐶 ∙ 𝑁𝑃𝐶𝑖 + 𝛽𝐼 ∙ 𝐼𝑖 + 𝛽𝐹𝐹 ∙ 𝐹𝐹𝑖 

 
𝑖 = 𝐿, 𝑅 

Eq. 7 

 

The intercept (𝑐𝑜𝑛𝑠𝑡𝑅) was assigned only to the Right Exit for all the models. The estimated 

parameters for Model 1 are displayed in Table 3. The model shows that all the parameters are 

statistically different from zero, with the p-values below the significance level of 0.05, with the 

exception of 𝛽𝐹𝐹 which is partially significant (p-value < 0.1). In other words, Model 1 shows that all 

the variables under examination had an impact on the decision-making process. In particular, 

according to the parameters, it is possible to observe that variable I is around 11 times bigger than the 

variable NPC. This result means that to compensate for the presence of an instructor who indicates 

an exit, it is necessary the presence of around 11 virtual evacuees who use the other exit. On the other 

hand, in the case of the presence of a firefighter, to compensate it is necessary the presence of around 

13 virtual evacuees who use the other exit. 

McFadden’s 𝑅2 = 0.286   Log Likelihood = −485.12 
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Variable Estimate Std error z-value p-value 

𝒄𝒐𝒏𝒔𝒕𝑹  0.263 0.115 2.275 0.023 

𝜷𝑵𝑷𝑪  0.244 0.065 3.752 <0.001 

𝜷𝑰  2.741 0.225 12.184 <0.001 

𝜷𝑭𝑭  0.559 0.329 1.698 0.090 
Table 3. Estimated parameters for Model 1 

In addition, to observe the reliability of the model, the concept of confusion matrix has been used. In 

this case, it was necessary to calculate how many choices effectively made by participants matched 

the predicted ones. The choices matched are 806 and the total amount of scenarios, considering all 

participants, is equal to 1044. The percentage of choices matched is equal to 77%. It is also possible 

to affirm that 61% of these matched choices were for the Left Exit (i.e., the exit indicated by the 

instructor). 

The second model (Model 2) estimated in this work is not linear and it involves a logarithmic 

transformation of the NPC variable. Utilizing logarithmic transformations on variables in a regression 

model is a commonly employed method for determining the presence of a non-linear relationship 

between the independent and dependent variables [95]. In this case, we tested the non-linearity only 

for the variable NPC, because the variables I and FF are Boolean. The equation for Model 2 is the 

following: 

Model 2 
𝑉𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑅 + 𝛽𝑁𝑃𝐶 ∙ ln(𝑁𝑃𝐶)𝑖 + 𝛽𝐼 ∙ 𝐼𝑖 + 𝛽𝐹𝐹 ∙ 𝐹𝐹𝑖 

 
𝑖 = 𝐿, 𝑅 

Eq. 8 

 

The estimated parameters for Model 2 are shown in Table 4. 

McFadden’s 𝑅2 = 0.287   Log Likelihood = −484.38 

Variable Estimate Std error z-value p-value 

𝒄𝒐𝒏𝒔𝒕𝑹  0.162 0.131 1.241 0.215 

𝜷𝑵𝑷𝑪  0.244 0.065 3.752 <0.001 

𝜷𝑰  2.741 0.225 12.184 <0.001 

𝜷𝑭𝑭  0.559 0.329 1.698 0.090 
Table 4. Estimated parameters for Model 2 

The model shows that all parameters are statistically different from zero, having their p-values below 

the level of significance of 0.05, with the exception of 𝛽𝐹𝐹 which is partially significant (p-value < 
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0.1). Model 2, according to Model 1, shows that all the variables under examination had an impact on 

the decision-making process. 

Also for Model 2, the confusion matrix has been calculated. The percentage of choices matched is 

equal to 77%, the same percentage as Model 1.  

By observing these data it is possible to affirm that Model 2 fits data in a better way than Model 1, 

because McFadden’s R2 is closer to 1. For this reason, the model considered for the demographic 

analysis (Section 4.2) and for the sensitivity analysis (Section 4.3) is Model 2. 

 

4.2 Exit Choice Models – Demographic Factors 
 

After the observation of two multinomial logit models related to external factors, models concerning 

demographic factors were analysed. By considering Model 2 as the basis, the following demographic 

factors have been examined: age, nationality, BMI and handedness. Regarding nationality, it was 

tested the difference between people from New Zealand and people from other countries in the world. 

Model 3 relies on age, and it is described by the following equation: 

Model 3 

𝑉𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑅 + 𝛽𝑁𝑃𝐶 ∙ ln(𝑁𝑃𝐶)𝑖 + 𝛽𝑁𝑃𝐶_𝐴𝑔𝑒 ∙ ln(𝑁𝑃𝐶)𝑖 ∙ 𝐴𝑔𝑒 + 𝛽𝐼

∙ 𝐼𝑖 + 𝛽𝐼_𝐴𝑔𝑒 ∙ 𝐼𝑖 ∙ 𝐴𝑔𝑒 + 𝛽𝐹𝐹 ∙ 𝐹𝐹𝑖 
 

𝑖 = 𝐿, 𝑅 
 

Eq. 9 

The estimated parameters for Model 3 are shown in Table 5. The model shows that the parameters 

related to the demographic factor (i.e., age) are not statistically different from zero, with the p-values 

above the significance level of 0.05. Therefore, Model 3 does not show evidence that the variable 

under examination have an impact on the decision-making process.  

McFadden’s 𝑅2 = 0.288   Log Likelihood = −484.21 
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Variable Estimate Std error z-value p-value 

𝒄𝒐𝒏𝒔𝒕𝑹  0.164 0.131 1.253 0.210 

𝜷𝑵𝑷𝑪  0.264 0.074 3.560 <0.001 

𝜷𝑵𝑷𝑪_𝑨𝒈𝒆  -0.002 0.002 -0.564 0.573 

𝜷𝑰  2.778 0.236 11.792 <0.001 

𝜷𝑰_𝑨𝒈𝒆  <0.001 0.018 0.033 0.974 

𝜷𝑭𝑭  0.473 0.535 0.885 0.974 
Table 5. Estimated parameters for Model 3 

Model 4 relies on nationality, and it is described by the following equation: 

Model 4 

𝑉𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑅 + 𝛽𝑁𝑃𝐶 ∙ ln(𝑁𝑃𝐶)𝑖 + 𝛽𝑁𝑃𝐶_𝑁 ∙ ln(𝑁𝑃𝐶)𝑖 ∙ 𝑁 + 𝛽𝐼 ∙ 𝐼𝑖

+ 𝛽𝐼_𝑁 ∙ 𝐼𝑖 ∙ 𝑁 + 𝛽𝐹𝐹 ∙ 𝐹𝐹𝑖 
 

𝑖 = 𝐿, 𝑅 
 

Eq. 10 

The estimated parameters for Model 4 are shown in Table 6. The model shows that the parameters 

related to the demographic factor (i.e., New Zealand nationality or not) are not statistically different 

from zero, with the p-values above the significance level of 0.05. Therefore, Model 4 does not show 

evidence that the variable under examination have an impact on the decision-making process.  

McFadden’s 𝑅2 = 0.288   Log Likelihood = −484.12 

Variable Estimate Std error z-value p-value 

𝒄𝒐𝒏𝒔𝒕𝑹  0.164 0.131 1.245 0.213 

𝜷𝑵𝑷𝑪  0.231 0.068 3.393 <0.001 

𝜷𝑵𝑷𝑪_𝑵  0.084 0.127 0.665 0.506 

𝜷𝑰  2.740 0.244 11.208 <0.001 

𝜷𝑰_𝑵  0.045 0.480 0.093 0.926 

𝜷𝑭𝑭  0.551 0.331 1.664 0.096 
Table 6. Estimated parameters for Model 4 

Model 5 relies on BMI, and it is described by the following equation: 

Model 5 

𝑉𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑅 + 𝛽𝑁𝑃𝐶 ∙ ln(𝑁𝑃𝐶)𝑖 + 𝛽𝑁𝑃𝐶_𝐵𝑀𝐼 ∙ ln(𝑁𝑃𝐶)𝑖 ∙ 𝐵𝑀𝐼 + 𝛽𝐼

∙ 𝐼𝑖 + 𝛽𝐼_𝐵𝑀𝐼 ∙ 𝐼𝑖 ∙ 𝐵𝑀𝐼 + 𝛽𝐹𝐹 ∙ 𝐹𝐹𝑖 
 

𝑖 = 𝐿, 𝑅 
 

Eq. 11 

The estimated parameters for Model 5 are shown in Table 7. The model shows that the parameters 

related to the demographic factor (i.e., BMI) are not statistically different from zero, with the p-values 
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above the significance level of 0.05. Therefore, Model 5 does not show evidence that the variable 

under examination have an impact on the decision-making process.  

McFadden’s 𝑅2 = 0.288   Log Likelihood = −483.95 

Variable Estimate Std error z-value p-value 

𝒄𝒐𝒏𝒔𝒕𝑹  0.162 0.131 1.235 0.217 

𝜷𝑵𝑷𝑪  0.410 0.196 2.091 0.037 

𝜷𝑵𝑷𝑪_𝑩𝑴𝑰  -0.007 0.007 -0.901 0.367 

𝜷𝑰  3.216 0.757 4.250 <0.001 

𝜷𝑰_𝑩𝑴𝑰  -0.019 0.028 -0.661 0.508 

𝜷𝑭𝑭  0.560 0.330 1.696 0.090 
Table 7. Estimated parameters for Model 5 

Model 6 relies on handedness, and it is described by the following equation: 

Model 6 

𝑉𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑅 + 𝛽𝑁𝑃𝐶 ∙ ln(𝑁𝑃𝐶)𝑖 + 𝛽𝑁𝑃𝐶_𝐻 ∙ ln(𝑁𝑃𝐶)𝑖 ∙ 𝐻 + 𝛽𝐼 ∙ 𝐼𝑖

+ 𝛽𝐼_𝐻 ∙ 𝐼𝑖 ∙ 𝐻 + 𝛽𝐹𝐹 ∙ 𝐹𝐹𝑖 
 

𝑖 = 𝐿, 𝑅 
 

Eq. 12 

The estimated parameters for Model 6 are shown in Table 8. The model shows that the parameters 

related to the demographic factor (i.e., right-handed or left-handed) are not statistically different from 

zero, with the p-values above the significance level of 0.05. Therefore, Model 6 does not show 

evidence that the variable under examination have an impact on the decision-making process.  

McFadden’s 𝑅2 = 0.289   Log Likelihood = −483.64 

Variable Estimate Std error z-value p-value 

𝒄𝒐𝒏𝒔𝒕𝑹  0.162 0.131 1.239 0.215 

𝜷𝑵𝑷𝑪  0.432 0.175 2.462 0.014 

𝜷𝑵𝑷𝑪_𝑯  -0.204 0.175 -1.164 0.244 

𝜷𝑰  3.041 0.652 4.664 <0.001 

𝜷𝑰_𝑯  -0.324 0.661 -0.491 0.623 

𝜷𝑭𝑭  0.562 0.330 1.703 0.089 
Table 8. Estimated parameters for Model 6 
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4.3 Sensitivity Analysis 
 

Sensitivity analyses are performed to demonstrate how the variables considered in Model 2 can 

influence the likelihood of selecting an exit. This model has been selected because, compared to 

Model 1, the McFadden R2 is slightly higher. Three different analyses are conducted to visualize the 

influence of all variables included in Model 2. The first analysis investigates the probability of 

choosing the Right Exit by varying the number of virtual evacuees that use each exit (the value of 

NPC varies from 0 to 30), in a case where the instructor is not present. The 3D representation of this 

analysis is obtained by using 3D plots of surfaces. The results of Scenario 1 are shown in Figure 15. 

 

Figure 15. Sensitivity analysis of Scenario 1 

In line with the sign of 𝛽𝑁𝑃𝐶, it is possible to observe that an increase of the value of NPC for the 

Right Exit leads to an increase in the probability of this exit being selected. On the other hand, for the 

Left Exit, the probability of choosing the Right Exit decreases in an increment of NPC. Figure 16 

shows the top view of the graph shown in Figure 15. 
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Figure 16. Sensitivity analysis of Scenario 1 

The second analysis investigates the probability of choosing the Right Exit by varying the number of 

virtual evacuees that use each exit (the value of NPC varies from 0 to 30), in a case where the 

instructor is shown, and he is a staff member. The results of Scenario 2 are shown in Figure 17 and 

Figure 18. 

 

Figure 17. Sensitivity analysis of Scenario 2 
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Figure 18. Sensitivity analysis of Scenario 2 

The third analysis investigates the probability of choosing the Right Exit by varying the number of 

virtual evacuees that use each exit (the value of NPC varies from 0 to 30), in a case where the 

instructor is visualized, and he is a firefighter. The results of Scenario 3 are shown in Figure 19 and 

Figure 20. 

 

Figure 19. Sensitivity analysis for Scenario 3 
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Figure 20. Sensitivity analysis for Scenario 3 

To compare different scenarios, it is possible to observe two-dimensional charts (Figure 21 and Figure 

22) obtained sectioning the 3D graphs shown in Figure 15, Figure 17 and Figure 19. Figure 21 shows 

a section of the 3D graphs when NPC for Left Exit is equal to zero, instead Figure 22 shows a section 

with NPC for Right Exit equal to zero. 

 

Figure 21. Sensitivity analysis - Comparison between scenarios 
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For Scenario 1, the probability of choosing the Right Exit increases from 0.5 to 0.7. This increment 

is lower for the scenarios with the presence of an instructor. In fact, for Scenario 2, the probability 

increases from 0.06 to 0.13, and for Scenario 3, the probability increases from 0.04 to 0.08.  

 

Figure 22. Sensitivity analysis - Comparison between scenarios 

Figure 22 shows that, in this case, the probability of choosing the Right Exit decreases in an increment 

of NPC for the Left Exit. For Scenario 1 the probability decreases from 0.5 to 0.3, for Scenario 2 the 

probability decreases from 0.06 to 0.03, and for Scenario 5 the probability decreases from 0.04 to 

0.02. 

It’s important to highlight that the analyses presented in this section show examples of possible 

analyses that can be carried out using Model 2 (see the results in Table 4). The purpose of this section 

is to provide simple examples of the proposed model to illustrate how various factors impact the 

likelihood of evacuees selecting a particular exit. 

 

4.4 Respondents’ Feedback 
 

After the Virtual Reality experience, a post-experiment survey was dispensed to participants to collect 

their information (see Section 3.2). This survey asked participants to offer feedback on the realism of 

the experiment, on their emotional states, on the feeling of urgency and unsafely, on their engagement 

in the VR experience, and on the ease with which they were able to take part in the VR experiment. 

This feedback is shown in the boxplots in Figure 23, Figure 24, Figure 25 and Figure 26.  
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Figure 23. Participants' score on emotional states during the VR experience 

 

Figure 24. Participants' score on engagement and ease of the VR experience 
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Figure 25. Participants' score on realism of the VR experience 

 

Figure 26. Participants' score about urgency 

The box plots in Figure 23 show that the level of stress of participants during the VR experience was 

not so high. The chart in Figure 26 also demonstrate that participants did not feel unsafe during the 

experiment. On the other hand, the charts in Figure 24 also show that the scores regarding the 

engagement of participants in the VR experience and the belief to be a player are high. Regarding the 

realism of the VR experience (see Figure 25), participants’ scores are worse concerning the realism 

of virtual evacuees and interaction with them. Other results (Figure 26) show that the perception of 

urgency and severity was quite high. 
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5 Discussion and Conclusions 
 

The goal of the thesis is to investigate the exit choice of occupants during fires. In particular, this 

research focuses on the influence of two different factors on this choice: social factor (i.e., the number 

of people using different exits) and role-rule factor (i.e., the presence of an instructor who direct 

evacuees). Further, the differences between different instructors were also investigated by using two 

roles with different authorities in the experiment: the first half of the participants visualized a staff 

member, and the second part visualized a firefighter. 

In this work, several models have been developed for the forecasting of exit choice based on the 

factors previously mentioned. The results of the models show that all the factors considered influence 

the choice of participants. In addition, the results show that the higher the authority of the instructor 

the more participants follow the instructions. Model 2 shown in Table 4 demonstrate that the exit 

choice decision is the result of a compromise of the factors included in the model. These findings are 

aligned with previous research in building fire evacuation [30], [42], [39], [49]. However, it is 

important to highlight that just a few studies analysed multiple factors [49], [88] and no research was 

identified that integrated social influence and role-rule factor within a single experiment. 

Other models were tested to analyse the influence of demographic factors on exit choice. In this case, 

the results do not show evidence that demographic factors (i.e., age, nationality, handedness and BMI) 

have impact on the exit choice. The results about demographic factors are aligned with some previous 

research regarding evacuations [42], [69], but not aligned with others [70], [71], that show opposite 

results. These differences are probably due to some distinctions in the size of the sample and methods 

used to collect data, such as questionnaires.  

This work provides several novelties in terms of findings. This study is the first one that investigates 

a unique combination of the variables (see Table 1) and their interactions. It was possible by asking 

participants to choose an exit in multiple scenarios. The results show that the variables influence the 

choice with different weights: the presence of a firefighter who indicates the correct choice has greater 

impact on participants, compared to the presence of an underground staff member doing the same 

action or the presence of a number of people below 11 who using an exit. In the following paragraphs, 

the conformity of our findings with the existing literature is discussed. 

The studies including multiple factors [49], [88] show similar results in terms of social influence 

because people were more likely to follow other people to an exit. The same similarity was found in 

some research performed in experimental buildings or tunnels [58], [96]. Another work that shows 
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similar results is Nilsson and Johansson’s research [59] which demonstrates that social influence is 

more significant when the information is limited. This fact can be demonstrated in this work by 

observing that, when the instructor is not present, most people choose the exit used by other virtual 

evacuees, instead when the instructor is present, so more information is provided, people tend to 

follow his instructions. On the other hand, some contrasts were seen in some studies performed by 

Haghani et al. [97] and Lovreglio et. al [27], who found that participants mostly preferred less 

crowded exits. The possible reason for this difference is the distinction between the technologies used 

to investigate this factor.  

Regarding the existing research on the role-rule model, this work supports all the research analysed 

in Section 2.3. All the studies demonstrate that “the way a person interprets, prepares and acts in the 

event of a fire is highly dependent on the everyday role that person has adopted and the rules attached 

to that role” [31]. In particular, this work highlights that perceiving the guidance as furnishing 

adequate practical information was linked with a more favourable perception of the source of the 

information [14], [65], [66]. In fact, the model presented in Section 4.1 shows that in the case where 

the firefighter is present, the probability of choosing the exit indicated by the instructor is higher.  

The proposed findings of this study align with the existing literature, indicating signs of convergent 

validity. Despite the main finding of this study (i.e., the combined effect of the variables listed in the 

previous sections) is unique, there are some aspects of the results that are comparable with previous 

research, further supporting the convergent validity. In addition, the study measured construct validity 

by distributing a post-experiment questionnaire to gauge participants' perceived realism levels. The 

methodology used in this study (VR) scores high on fidelity and quality of visualization, as well as 

self-reported behavioural validity, as evidenced by the participants' answers to the post-experiment 

questions, indicating a high level of ecological validity. 

In collecting behavioural data, it is important to consider the advantages and disadvantages of the 

research methods and techniques used. The research strategy selected should be a combination of 

appropriate research methods and data collection techniques, taking into account the research 

objectives and other boundary conditions such as time and cost intensity, ethical considerations, and 

experimental control [14]. The main objective is to reach the appropriate ecological validity. To 

assume ecological validity, it is essential that participants exhibit similar behavioural, emotional, 

cognitive, and psychophysiological reactions in both virtual reality (VR) and the real world [86]. 

Using case studies and unannounced evacuation drills is the best way to achieve ecological validity 

in emergency response research. These methods allow evacuees to experience real-world scenarios, 

which makes their behaviour less biased than if they knew they were part of an experiment. However, 
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case studies have limitations when it comes to obtaining real accident data due to privacy and ethical 

issues. Even when videos of real accidents are available, researchers have no control over the evacuee 

sample or the variables affecting their choices. As a result, selected choices can only be inferred from 

the evacuees' behaviour during the emergency, which increases measurement uncertainty [14]. 

The findings of this research also underscore the significance of using VR for collecting data on 

human behaviour during building fires. This work demonstrates that VR can be used to design 

challenging laboratory experiments on Human Behaviour in Fire because it allows analysing how 

occupants react to fire cues and it allows collecting precise behavioural and psychophysiological data 

during controlled simulated events. Participants’ feedback indicated that the simulation of the “virtual 

world” and the fire environment was realistic, but some improvements are necessary for future 

research. In addition, participants don’t feel anxiety, tension or fear and it is consistent with reality 

because in the VR experience participants do not see fire or smoke [98], as in many real cases, so it 

is common not to feel that type of emotions. While there were perceptions of urgency and likelihood 

of similar actions in an actual fire emergency, it's important to note that these perceptions are based 

solely on participant feedback. We do not have actual data to compare these perceptions to. 

Nevertheless, this feedback highlights the potential for the continued use of Virtual Reality 

technology in future studies of human behaviour. 

This work has some drawbacks. The sample of this study is characterised by participants who all live 

in New Zealand (despite having different nationalities), so it is not possible to consider this sample 

as representative of the world population, because different cultures are not considered. Future studies 

are necessary to understand if differences in terms of culture can influence the evacuees’ behaviour. 

Another limitation of this study is that some participants did not perceive the NPCs as realistic 

enough. This could have affected their perception of the NPCs' social interaction and biased the 

results. However, the self-reported ecological validity suggests that participants behaved in the 

experiment as they would in a real emergency. To overcome this limitation, future research can use 

the experimental deception technique proposed by Shipman et al. to enhance the realism of NPCs 

[99]. With the enhancement of computer graphics and AI applications for VR this limit is likely to 

become marginal in future studies. 

Finally, considering the methods adopted in this work and the findings, it is possible to expand the 

research and analyse different topics. For instance, an interesting topic for future studies could be the 

influence that different types of evacuation signals (i.e., signs, alarm) have on human behaviour and 

decisions taken during evacuation. 
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