
Politecnico di Torino

Corso di Laurea Magistrale: Engineering and Management

The application of two clustering methods in the

vehicle routing problem - A numerical example in

the city of Turin

Relatori: Candidato:

Arianna Alfieri Vittorio Guglielmo Glave

Erica Pastore

Dicembre 2023





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Vehicle Routing Problem and its variants . . . . . . . . . . . . . . . . 10

2.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Definition of VRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Variants of the VRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Examples of VRP in real life . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Solution methods for VRPs . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Exact methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Branch and Bound . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Branch and Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Column generation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Heuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 The saving method of Clarke and Wright . . . . . . . . . . . . . 21

3.2.2 The sweep method . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 The neighborhood methods . . . . . . . . . . . . . . . . . . . . 23

3.3 Metaheuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 The Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Guided Local Search . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 The Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.5 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . 30

3.3.6 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . 31

4 The algorithms proposed . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 The clustering phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 The k-means clustering method . . . . . . . . . . . . . . . . . . 35

4.1.2 The affinity propagation clustering method . . . . . . . . . . . . 37

2



4.2 The routing phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 The insert procedure . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 The rebuild procedure . . . . . . . . . . . . . . . . . . . . . . . 41

5 The simulation of a numerical example . . . . . . . . . . . . . . . . . . 44

5.1 The generation of the dataset . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions and future perspectives . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A The dataset of customers . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1 the dataset of customer at time t0 . . . . . . . . . . . . . . . . . . . . . 61

A.2 the dataset of customer at time t3 . . . . . . . . . . . . . . . . . . . . . 62

B The clustering phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1 K-means clustering in the insert procedure . . . . . . . . . . . . . . . . 66

B.2 K-means clustering in the rebuild procedure . . . . . . . . . . . . . . . 69

B.3 Affinity propagation clustering in the insert procedure . . . . . . . . . . 69

B.4 Affinity propagation clustering in the rebuild procedure . . . . . . . . . 72

C The routing phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C.1 The creation of routes . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3



List of Abbreviations

Abbreviations Description

ACO Ant Colony Optimization

B&B Branch and Bound

B&C Branch and Cut

CVRP Capacitated Vehicle Routing Problem

DCVRP Distance Constrained Vehicle Routing Problem

DP Dynamic Programming

DVRP Dynamic Vehicle Routing Problem

GA Genetic Algorithm

GLS Guided Local Search

HFVRP Heterogeneous Fleet Vehicle Routing Problem

MDVRP Multi-Depot Vehicle Routing Problem

PSO Particle Swarm Optimization

PVRP Periodic Vehicle Routing Problem

RVRP Rich Vehicle Routing Problem

SA Simulated Annealing

TRP Traveling Repairman Problem

TS Tabu Search

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

VRPB Vehicle Routing Problem with Backhauls

VRPPD Vehicle Routing Problem with Pick-up and Delivery

VRPTW Vehicle Routing Problem with Time Windows

WCSS Within-Cluster Sum of Squares

4



1 Introduction

Often, when talking about logistics and transportation, the concept of last mile deliv-

ery comes up, which is a specific logistics phase that can be defined as the final step of

a delivery process. Contrary to what one might think, last mile delivery is not always

a short-distance delivery but, rather, it refers to a specific service.

The logistics sector has grown significantly in recent years, thanks to e-commerce and

online purchases. More and more people prefer to buy a product online rather than

visit a physical store. Every day millions of deliveries take place to businesses and

private customers. Each individual delivery is the result of a highly complex process

that starts from the manufacturing company and enables the delivery of products of

any kind to retail points or private customers. Basically, the manufacturing company

physically produces the product, then the goods are moved from the factory to one of

the logistics hubs, and finally, the last-mile delivery is carried out. The process may

seem very simple, but in reality, there are many complexities, as well as potential issues

that may arise.

Among the main benefits of an efficient last-mile delivery, there are the capability for a

company to get and retain customers since a quick and reliable delivery service delights

clients, and the reduction of time and resources required to carry out the delivery. All

this is possible only if a careful and strategic planning of routes followed by vehicles

is performed in order to cut transportation expenses and increase the satisfaction of

customers.

The last mile delivery is almost always carried out using road transport, typically with

the deployment of vehicles like trucks, vans, or similar means. These vehicles are well-

suited for traveling through urban and suburban areas to reach the final destination,

be it a retail store or a private customer’s address. The flexibility and accessibility of

road transport make it the preferred choice for efficiently completing the last leg of the

delivery process.

It is indeed transportation that plays a crucial role for companies today in the last mile

logistics. The goal of transportation management is to connect all the pick-up and de-

livery points in the supply network while complying with time constraints demanded
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by customers, within the limits of the distribution infrastructure’s capacity, and at

the lowest possible cost [1]. Hence, it is evident that the geographical component is

a fundamental aspect in this type of problems and, in most of the cases, the routes

built for drivers are the result of an analysis of the customers locations in the attempt

to travel the shortest distance possible and thus lower transportation costs. Once the

positions of customers have been studied, the critical issue consists in selecting the op-

timal routes for vehicles, resulting in a routing problem referred to as Vehicle Routing

Problem (VRP).

A VRP is said static when the positions of customers to be served is known by

the dispatcher before the construction of the routes and, once vehicles have left the

depot, routes are not recomputed [2]. However, in real-word situations requests arrive

in different moments of time before the departure of vehicles from the depot but all

solution methods available in literature for the static VRP do not make a distinction

among customers based on their arrival time. Even if these new customers enter the

problem in a second moment, they can be still labelled like known customers if they

appear before the departure time of vehicles.

In this thesis, new solution methods that incorporate this concept of adjusting routes

based on new customers entering the problem in different moments of time are in-

troduced. Intermediate solutions are computed and continuously changed in order to

find the best solution for vehicles at the moment of departure. The last solution be-

fore the departure time of vehicles represents the routes followed by drivers to visit

all customers. The problem still falls in the category of static VRPs since, even if

new customers enter the problem in different moments, all of them appear before the

departure time of vehicles. Hence, they can be still labelled like known customers.

In particular, in this document four different algorithms are proposed. Two different

clustering approaches for the management of customers locations (i.e., the k-means

method and the affinity propagation method) and two different solution methods (i.e.,

the insert method and the rebuild method) for the planning of routes have been im-

plemented, giving rise to four different Python-based algorithms to solve the vehicle

routing problem (i.e., k-means and insert method (K-I), k-means and rebuild method
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(K-R), affinity propagation and insert method (A-I), affinity propagation and rebuild

method (A-R)). All of them are characterized by an initial analysis of customers po-

sitions through the use of clustering methods and then, from it, the best routes for

vehicles are planned. In literature the most common clustering method used to group

customers in a VRP is the k-means method. In this work, the k-means method is

also implemented in two of the four algorithms but the way routing construction is

performed is different from literature since routes are adjusted during time until a final

solution is found. Instead, in the other two solution techniques a second clustering ap-

proach called affinity propagation method is applied. The use of affinity propagation

to group customers in clusters in the context of VRP is almost absent in literature and,

for this reason, this document wants to focus on this technique.

Each pair of algorithms based on one of the two clustering methods distinguishes by

the way in which the solution is calculated. In particular, in the insert solution method

clusters are defined once at the beginning and, every time a new request arrives, it is

included in these already established clusters and routes are recomputed. Hence, it

is a method that finds the last solution to serve all customers by adjusting previous

routes found by considering a smaller amount of customers. The final solution when

all requests are known is affected by the clusters found at the beginning when only

a fraction of requests is available. Instead, in the rebuild solution method clusters

are defined every time new requests appear in the system and routes are recomputed

according to new clusters. So, the last solution when all requests are known is not in-

fluenced by clusters built at the beginning considering a smaller amount of customers.

This method simply recomputes again the clusters when all requests are available and

routes are found based on it. Hence, the rebuild solution method can be seen as the

classic clustering method used to solve VRPs in literature since, similarly, the last

moment before vehicles leave the depot could be waited for and the clustering phase

would be carried out only once at the last when all customers are known.

Hence, the first contribution of this thesis consists in introducing the concept of time

also in static VRPs to reflect real-world situations in which customers call for service in

different moments of time, differently from all solution methods available in literature

for the static VRP. The impact of time is evident in the insert solution method since
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the number of formed clusters and the way they are created depend only on customers

that appear at time t0 in the problem, regardless of whether a better grouping of cus-

tomers and consequently better routes could be found by considering the total amount

of requests at the end. However, the crucial constraint is that all customers enter the

problem before the departure time of vehicles from the depot, otherwise the problem

falls in the category of dynamic VRPs (this variant of VRP will be explained in detail

later in the document). Then, the second contribution is the use of affinity propagation

method in VRPs to group customers in clusters. In this case the aim is to assess how

the affinity propagation technique performs compared to a widely established cluster-

ing method in the context of VRP like the k-means method.

Subsequently, a simulation of a numerical example placed in the city of Turin is con-

ceived and the four algorithms (i.e., K-I, K-R, A-I and A-R) are applied to assess which

is the best method in terms of shortest distance traveled, expressed in kilometers.

In particular, the sections of the work are organized as follow:

• Chapter 1: it is the current section where an initial introduction to the purpose

of the thesis is provided. It also gives an overview of the work and how it is

organized.

• Chapter 2: it is a literature review in which the definition of vehicle routing

problem is outlined. Then, the most studied variants of the vehicle routing

problem with their main features are explained.

• Chapter 3: it is entirely focused on the most common solution methods adopted

in vehicle routing problems. It makes a distinction among exact, heuristic and

metaheuristic techniques.

• Chapter 4: it illustrates how the four conceived algorithms work. First, a descrip-

tion of the two clustering methods used to divide customers in groups is shown.

Then, the two methods adopted to plan routes is provided. The combination of

the two clustering methods with the two solution techniques gives rise to the four

different algorithms.
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• Chapter 5: it describes the example placed in the city of Turin and how the

algorithms have been applied. Finally, the obtained experimental results are

analyzed.

• Chapter 6: it is the final chapter of the document in which final considerations

are given. Moreover, possible future extensions of algorithms are outlined.
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2 Vehicle Routing Problem and its variants

2.1 Historical perspective

One of the first combinatorial optimization problems to be widely studied is the Trav-

eling Salesman Problem (TSP). The problem consists in determining the shortest dis-

tance that allows a traveling salesman to visit a set of cities once and come back to the

departure city [3]. The TSP can be applied in different fields such as the logistics, the

production and the vehicle routing problem. Indeed, the TSP and the VRP are two

extremely correlated optimization problems which belong to the category of routing

and scheduling problems.

”The Truck Dispatching Problem”, written by Dantzig & Ramser in 1959, was the

first study to introduce the concept of vehicle routing problem. A procedure based on

a linear programming method was developed to find the minimum distance travelled

by a fleet of homogeneous trucks to dispatch oil in a number of gasoline stations [4].

Subsequent years witnessed the rise of numerous works based on diverse principles,

encompassing savings, geographical proximity, customer matchings, alongside steps to

enhance both intra-route and inter-route aspects [5]. Among all researches performed,

the most promising study was the one proposed in 1964 by Clarke & Wright who were

able to extend the linear optimization problem to the logistics and transport sector.

They analyzed a network made up by a central depot and a set of delivery points

geographically dispersed around it, each of them served once and by a fleet of trucks

with varying capacities [6].

However, modern VRP models diverge significantly from the initial formulations pre-

sented above. This is due to their growing focus on integrating real-world complexities.

For example, they incorporate factors such as travel times influenced by time-dependent

factors like traffic congestion, time constraints for both pickup and delivery, and dy-

namic changes in input data like demand information. Incorporating these aspects

introduces considerable intricacy in the problem [7].
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2.2 Definition of VRP

The Vehicle Routing Problem (VRP) is a typical operational challenge in distribution

networks which relates to the determination of routes for a set of vehicles to serve a

group of customers.

Starting from one or more central depots, a set of vehicles with specific requirements

need to visit a set of customers, also with specific characteristics. Customers are typi-

cally dispersed in a geographical network and the problem is about coming up with an

optimal route to serve all customers at the lowest possible cost.

Every customer order possesses a distinct location and the magnitude of order may

vary from customer to customer. The objective is to devise the most efficient routes

in which each customer is visited once and, at the same time, capacity constraints are

met. The task entails determining the optimal sequence for visiting these locations,

ensuring that each location is served by only one vehicle (see Figure 2.1).

The constraint is that the cumulative demand of all customers along a specific route

does not surpass the vehicle capacity. In addition, another crucial assumption is that

each vehicle starts and ends the route at the source (i.e., the depot).

Potential applications of the VRP are frequent in detailed logistics and distribution

issues. For instance, one can envision scenarios where goods must be distributed (or

collected). Real-world applications often introduce additional constraints that can

complicate the structure of the problem. In this chapter, an overview of the different

versions of VRP with their operational constraints is provided. Finally, some applica-

tions of VRPs in real life are illustrated.

Every variant of VRP is characterized by a similar solution approach, which entails

satisfying customers within the following constraints [8]:

• each route starts and ends at the depot;

• each customer is served by a vehicle only once;

• the total demand of each route does not outperform the total capacity of the

vehicle.

The network where depots and customers are located can be easily represented
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Figure 2.1: Classical VRP (source: Gupta et al. [9])

through a graph G = (N,A) in which N = {0, . . . , n} are the points that vehicles must

reach. Usually, in case of a single depot, the point {i = 0} corresponds to the depot

location while all the other nodes i = {1, . . . , n} describe the customers dispersed in the

network. Arcs A = {(i, j) : i ̸= j ∧ (i, j) ∈ (0, . . . , n)} represent the roads that connect

each pair of points. Each of them has a cost cij that, in many cases, corresponds to its

length. Arcs can be directed or undirected depending on if the road can be traveled

in only one or both directions. The amount of goods demanded by each customer i

is described by the variable qi. Finally, the last actor in the problem is the fleet of

vehicles V = {1, . . . , v}. Each of them has a fixed capacity that usually reflects the

number of goods carried out. The route travelled by each vehicle starts and ends in

the depot location.

2.3 Variants of the VRP

Starting from the classical VRP, a number of variants have been studied to increase the

complexity of the problem and bring research closer to the reality. Each of the VRP

versions that are described below includes additional features that lead the problem to

slightly deviate from the simple VRP proposed in the above section:

• The Capacitated VRP (CVRP): it is the classical VRP in which each customer

has a specific demand for the good and vehicles have finite capacity. All vehicles

have the same characteristics and the network presents only one central depot

[10]. In this case, the constraint must be updated to take into account the

12



different demands of each customer and not exceed the finite capacity of vehicles.

• The Distance Constrained VRP (DCVRP): it is assumed that vehicles have a

limited autonomy in terms of kilometres travelled [11]. This entails that each

specific distance between two nodes must be considered in order to not exceed

the total capacity of vehicles in terms of kilometres. If a vehicle can not serve

the following node, it must come back to the depot and let another vehicle visit

it. This restriction can either substitute the capacity constraint of the CVRP or

integrate it.

• The VRP with Time Windows (VRPTW): in this variant of the VRP, the concept

of time becomes fundamental. Routes of each vehicle follow a time-table since

deliveries to a given customer must occur in a specific time frame, which is

different for each customer in the network. There are two types of time windows.

When the delay in the delivery to a given point does not involve a penalty cost,

time windows are called soft. Instead, when scheduled time must be strictly

respected, time windows are referred to as hard time windows. If a vehicle visits

the customer too early, it must wait until the time window opens and it is not

permitted to arrive when the time frame is expired [12]. In this case, a time

window is assigned to each customer with a starting time when the client can

be visited and a maximum time when he can be served. Concerning the vehicle,

it is added a travel time that describes the needed time to serve the customer.

Finally, the starting time when a vehicle starts to serve a specific customer is

considered in this variant.

• The Heterogeneous Fleet VRP (HFVRP): it is another popular extension of VRP,

also called Mixed Fleet VRP, that considers vehicles whose capacities vary [13].

The constraint about the equal maximum quantity that all vehicles can carry out

is replaced by the new condition that reflects different capacities of vehicles.

• The VRP with Pick-up and Delivery (VRPPD): in this type of VRP, in addition

to the delivery of goods, vehicles must also to pick up amounts of the good from

customers. Each customer in the network might have either a delivery request or
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a collection request or both. Vehicles collect goods from the central depot that

are delivered to customers but, simultaneously, collect goods from some clients

which are supplied to other customers or returned to the depot [14]. Hence, in

this variant a distinction between demand and supply of customers is necessary.

Moreover, additional inclusions about the load of vehicles after leaving nodes,

the remaining demand after leaving nodes and the remaining supply after leaving

nodes are made to guarantee the load of each vehicle and the requirement of not

exceeding the maximum capacity of the vehicle. It needs that the remaining

demand can be handled by the load and the remaining space in each vehicle.

• The VRP with Backhauls (VRPB): it is a VRP with pick up and delivery with

the difference that on each route all deliveries take precedence over any pickups.

Customers can be grouped in linehaul and backhaul customers. Linehaul nodes

are customers that require deliveries by vehicles while backhaul nodes are points

where vehicles pick up goods from customers. The crucial constraint of this

variant is that in any route all linehaul customers must visited before than all

backhaul customers [15]. Sometimes, in this model it is assumed that routes

containing only linehaul nodes are not allowed.

• The Multi-Depot VRP (MDVRP): it is a VRP extension in which the network

is characterized by more depots spread among customers [16]. This VRP may

require either that all vehicles leave and return to the same depot or not.

• The Periodic VRP (PVRP): in this version of VRP, a planning horizon of multiple

periods is considered and the objective is to minimize the total travelling cost

provided that each node in the network can be visited by vehicles only in a

specific set of possible visit schedules [17]. Vehicle routes must be organized over

multiple days and a schedule is defined as a set of days of the planning period

in which customers can be served. Allocating a node to a schedule implies that

the node will receive goods in every day of that schedule [18]. Hence, by taking

into account the number of visits required by each customer during the planning

period, a specific schedule is defined for each of them.
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• The Dynamic VRP (DVRP): it is one of the most complex variants of VRP.

Basically, the distinctive feature of DVRP is that not all relevant inputs and

information for the resolution of the problem are available at the beginning of

the routing process [2]. Routes are recomputed and changed dynamically as

soon as new data is known. This means that the network is described by both

constantly changing data and data known in advance. Consequently, the model is

solved frequently as new information enters it and huge computational resources

are needed [19]. A graphical representation of a simple dynamic routing problem

and the required real-time communication scheme are shown. These examples

are depicted, respectively, in Figure 2.2 and Figure 2.3. In the former, there

is a single vehicle starting its route in the depot at time t0 and it must serve

all known customers (A,B,C,D,E). During the travelling of the route, at time

t1 the vehicle receives two new requests (X, Y ) and the previously defined route

must be adjusted to visit new customers. Finally, at time tf a new different route

is executed (A,B,C,D, Y,E,X).

Figure 2.2: A simple dynamic vehicle routing problem (source: Villac et al. [20])

In the second figure, the needed real-time communication that allows the dynamic

adjustment of routes is explained. The environment represents the real world

where the vehicles move while the dispatcher is the centralized power that gives

guidelines to the drivers. As soon as the vehicle is ready to leave the depot, the

dispatcher instructs the driver with the next customer to be visited (A). Once

the vehicle starts and finishes to serve the customer A, it notifies the dispatcher

that, in turn, makes a new decision about the next customer to add in the route.
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Figure 2.3: The real-time communication between dispatcher and vehicle (source: Villac et

al. [20])

Nowadays, most of these variants are merged in a unique instance of VRP to form a

set of problems known as Rich VRP (RVRP), where multiple constraints are included

to study a complex problem that can embody aspects of real-life [21].

2.4 Examples of VRP in real life

The applications of vehicle routing range from commercial to non-commercial scenarios.

Basically, three main types of routing problems can be identified:

• Transport of goods : The most common example of transport of goods is the work

of a courier delivering packages in urban areas. These packages can be either

document or goods. Once the customer position is known and the request has

being accepted, the courier is sent to pick-up the good that, in turn, will be

delivered to another location [22]. Other typical example of this category are

food delivery services or e-commerce.

• Transport of people: The transport of people is similar to transport of goods

but it is characterized by additional constraints such as waiting times and travel

times for passengers. A classical scenario of transport of people is represented

by taxi services. Clients can be known in advance but, most of the cases, a

high percentage of them is revealed dynamically during the working day. A taxi

must be allocated in the shortest time and typically the closest free driver is the
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one that takes the ride [23]. Another evidence of this category is the Dial-a-ride

problem which focuses on the online planning of routes for passengers, instead of

goods [24]. All on-demand transports such as the transportation of elderly and

handicapped people, the transportation of children, for instance from home to

school, or patients transport are included in this type of routing problem.

• Services : The dispatching of emergency services (e.g., ambulances, police or fire

services) implies a careful planning of routes. The response time is a crucial

aspect and the time between the call and the arrival time must be the shortest

possible. In addition, an adequate coverage of the service area and the avoidance

of traffic congestion must be granted [25]. Other real-life situations can be the

maintenance operations (e.g., for heating systems, elevators or other machines).

Companies have contracts with clients and send technicians for periodical and

planned maintenance visits. This problems is called Traveling Repairman Prob-

lem (TRP) and it is one of the most studied routing problems [26].

Nowadays, as shown in Figure 2.4, 32% of papers study the transportation of goods,

14% are about services, 14% about the transportation of people and last 20% of articles

study generic applications [27].

Figure 2.4: Division of articles according to the application analyzed (source: Rios et al. [27]
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3 Solution methods for VRPs

After an introduction about the vehicle routing problem and its variants by outlining

constraints involved in the construction of routes for a fleet of vehicles that must serve

a group of customers, in this chapter the focus shifts to the existing solutions method

adopted to solve the vehicle routing problems. Before starting with any kind of con-

sideration, it is important to emphasize that the complexity of the VRP rapidly grows

with the number of customers, the diversity of vehicles and the specific constraints of

the problem.

An equilibrium between the search for an optimal solution and the limitation of com-

putational resources should be considered for the selection of a proper methodology to

solve the VRP in an efficient way. Basically, the solution methods can be grouped in

three main categories: exact methods, heuristic methods and metaheuristic methods.

3.1 Exact methods

Exact methods are adopted in VRPs when the accuracy of the solution is required

since the key characteristic of algorithms belonging to this category is their capability

to reach the optimal solution.

3.1.1 Branch and Bound

The Branch and Bound (B&B) method is one of the most common exact methods

used to solve small instances of the VRP. The main idea behind this technique is the

division of the original problem in several sub-problems and the method focuses on the

resolution of each of these sub-problems [28].

For each node all feasible solutions are evaluated and an upper bound and a lower

bound are computed. The upper bound represents the most promising solution found

till now while the lower bound is a lower estimation of the optimal value. At each

iteration, if the lower bound of the node is larger or equal to the upper bound of the

best solution found till now, the node is pruned because the integration of the node

will lead to a feasible solution that is worse than the one found till now. When no

unexplored node has a smaller bound than the length of the current best solution, this
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best solution is optimal [29].

Hence, if the upper and the lower bounds are correctly defined, the branch and bound

method leads to the optimal solution of the problem through the elimination of not

promising nodes.

3.1.2 Branch and Cut

The Branch and Cut (B&C) algorithm is an extension of the branch and bound method

in which, like in the previous technique, the original problem is described by several

sub-problems but the set of feasible solutions is further restricted through the use of

cutting strategies [30]. Similarly to the branch and bound method, it provides an

optimal solution for small instances of the VRP. However, through the use of these

cutting techniques which are specific to the problem under examination, this method

reduces the amount of solutions in which the optimal one is chosen and achieves it

more quickly.

3.1.3 Column generation

The column generation technique tries to solve the VRP by dynamically analyzing the

feasible routes for the problem.

Instead of finding a solution in which all variables are considered since the beginning,

it solves a reduced instance of the problem that involves a limited set of variables.

Subsequently, the method starts to progressively include new variables to check if the

solution found for the reduced problem can improve or not [31]. Hence, an estimate of

the optimal solution is found by solving an initial basic problem and then the method

identifies routes that can improve the solution by adding new columns, each represent-

ing a feasible route.

3.1.4 Dynamic Programming

The Dynamic Programming (DP) method is another technique that finds a solution

for the original problem by dividing it in a group of small problems that can be easily

addressed.
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First the best routes for these small instances of the problem are built and then the

final optimal solution is computed by combining all results achieved [32]. Basically, this

method follows a bottom-up approach (i.e., from ’small’ problems to the ’big’ problem)

and build the optimal solution by exploiting routes determined in smaller problems.

However, the pursuit of an optimal solution in problem-solving typically involves

mathematical approaches. Constructing a representative mathematical model in prob-

lems where input data vary with time or stochastic factors is not always feasible.

Occasionally, due to data complexity and problem scale, a mathematical model might

yield the optimal solution but over an extended period of time [33].

VRP is an NP-hard problem and exact algorithms are only suitable when the data

size of the problem is small since the required solution time increases exponentially

with the number of nodes [34]. These methods explore the whole space of solutions

to find the optimal one and, when the problem scale is large, they are impracticable.

Moreover, the insertion of more constraints in the problem, such as time windows or

limits in the capacity of vehicles, makes the mathematical formulation of the problem

and its resolution very hard.

As a result, when the dimension of the problem is large, the computational resources

are limited and a good enough solution is more than sufficient, other approaches to

VRPs are preferred. These methods are referred to as heuristic and metaheuristic

methods.

3.2 Heuristic methods

When the computation of the optimal solution is not necessary or the complexity of

the problem is such that the time required for the optimal resolution is not reasonable,

it is preferred the use of heuristic methods.

In practice, these algorithms solve VRPs by guaranteeing a near-optimal solution in

acceptable computational time but they are not able to reach optimality [35]. If the

search for a solution is computationally expensive, a feasible solution that gets closer

to the optimal one is adequate.
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The choice of the algorithm depends on the complexity of the problem, the available

computational resources and the type of the solution pursued. In addition, in most of

the cases, the heuristic approach is specific to the VRP under consideration and it may

be inadequate to solve a different one.

3.2.1 The saving method of Clarke and Wright

The saving method of Clarke and Wright is one of the most known heuristic approaches

developed. The main concept behind is the computation of cost savings obtained by

combining two nodes on the same route, rather than serving them separately. This

cost saving is defined as the difference between the cost of serving the two customers

separately and the cost of serving them together. First, let i and j be two customers and

(xi, yi) and (xj, yj) respectively their geographical locations, the cost distance matrix

consists of Euclidean distances (ci,j) expressed by the following equation [36]:

ci,j =
q
(xi − xj)2 + (yi − yj)2 (1)

Then, the savings value between the two customers i and j is calculated as:

si,j = c1,j − ci,j (2)

where c1,j represents the distance between the depot and the customer j while ci,j is

the distance between customers i and j.

Subsequently, the equation (2) is modified and a list with all savings values sorted in

a decreasing order is built in the following way:

si,j = c1,i + cj,1 − ci,j (3)

At this point, the construction of routes takes place and it starts from the top of saving

list which corresponds to the largest si,j. If all constraints involved in the VRP under

consideration are respected, the two customers i and j are included in the same route.

Usually, the solution offered by this method is an initial reasonable solution that needs

further improvements through the application of other heuristic approaches to become

more accurate.
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3.2.2 The sweep method

The sweep method is another heuristic approach used to solve the VRP. The key feature

of this technique is the sweeping around the depot of all nodes in the network to build

the routes. In other words, customers are assigned to a route based on the angle that

is formed by considering their position in relation to the depot [37].

In the first part of the algorithm, nodes are divided in clusters and clustering is carried

out by joining in the same group the closest node to any node that is selected as the

first one in the cluster. The closest node is the one that is found with the smallest

angle. This procedure goes on by including the second closest, the third and so on

until the constrains are violated. Indeed, if adding the next closest node to the cluster

leads to a total demand higher than the capacity constraint of the vehicle, this node is

rejected and becomes the first node of the second cluster. When all nodes belong to a

cluster, routes for each cluster formed are computed.

Figure 3.1 shows how the sweep method works to build clusters.

Figure 3.1: Clustering process in the sweep method (source: Nurcahyo et al. [37])

Like the saving method of Clarke and Wright, this procedure may not lead to highly

qualitative solutions. However, the sweeping strategy can be useful to build routes for

customers in a simple and fast way.
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3.2.3 The neighborhood methods

The last described heuristic methods are the algorithms that exploits the concept of

neighborhood. Through the local search of neighbors, these procedures are capable to

modify the previously established routes for vehicles and the achievement of a good

solution is guaranteed.

The composition of neighbors can be changed by carrying out one of the following

elementary actions or through a combination of them [38]:

• Insert action: it randomly adds a node of the network to the route of a vehicle

if the incremental cost is the lowest;

• Remove action: it randomly removes a node belonging to the route of a vehicle;

• Relocate action: it randomly relocates a customer that it is removed from the

route of a vehicle and inserted to the route of another vehicle;

• Replace action: it randomly removes a customer from the route of a vehicle and

it is inserted in the route of another vehicle by taking the place of another node;

• Swap action: it randomly removes two customers from their routes and inserts

them to the respective other routes.

Now that all allowed operations adopted to change the structure of neighbors are

presented, different algorithms can be conceived by using them or a combination of

them.

Subramanian et al. [39] distinguished between methods that make changes within the

same route of neighborhoods and methods in which variations occur between routes of

the same neighborhood (see Figure 3.2). Most of these approaches are based on the

concept of λ-interchanges that consists in exchanging up to λ nodes between routes.

However, a short description of the most common methods is provided:

• Exchange-based neighborhood : this approach consists in exchanging customers

between routes traveled by different vehicles in order to improve the solution;

• 2-opt neighborhood : this method selects two nodes within the same routes and

their arcs are changed to rebuild the route with a different order;

23



• Or-opt neighborhood : in this method a route is modified by choosing a node and

serving it in a different order;

• Reverse-based neighborhood : this approach searches for better solution by revers-

ing the route direction that means serving customers of the route in the opposite

order;

• Cross-exchange neighborhood : it is a method in which segments of different routes

are exchanged.
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Figure 3.2: Neighborhood methods.

3.3 Metaheuristic methods

The last category of methods used to deal with VRPs is represented by metaheuristic

approaches.

They are more advanced algorithms that offer wider optimization to solve VRPs com-

pared to heuristic approaches since they are more versatile methods that can be applied

to any combinatorial optimization problem, irrespective of its structural specifics and
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constraints. Basically, they combine different heuristic approaches to study a wider set

of solutions but significant computational effort is required.

The three distinctive features of these methods are the capability to explore the space

of solutions for the VRP in a more efficient way, the flexibility to address different

variants of VRPs respecting their specific constraints and, finally, the continuous im-

provement of current results to reach a highly qualitative solution that gets closer to

the optimal one in reasonable timing.

3.3.1 The Tabu Search

The Tabu Search (TS) algorithm has been introduced for the first time by Glover [40].

The original idea behind this method is the construction of a tabu list that collects all

operations already used in the improvement of a solution. Through the exploitation of

this list, the algorithm avoids the future implementation of worthless actions if it was

already proved that they can not lead to a better solution.

At each iteration, the best move for the current solution is selected but it is implemented

only if it is not in the tabu list. After this new action is performed, it is inserted in the

list and it can not be repeated again. On the other hand, if the best move chosen is

already inside the tabu list, it can not be used and the next operation is carried out.

Figure 3.3 outlines the main steps followed by this procedure.
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Figure 3.3: The Tabu Search procedure (source: Peng et al. [41])

3.3.2 Simulated Annealing

The application of Simulated Annealing (SA) method derives from the thermodynamic

field and, in particular, from the annealing procedure for the modeling of materials.

Basically, the first step of this phenomenon consists in heating a metal until it reaches

the liquid state while, in a second moment, it is slowly cooled into a recrystallized solid

state to reduce imperfections.

At the same way, this method can be adopted in a large number of combinatorial

optimization problems and one of the first authors to apply it to VRPs was Osman

[42].

The SA technique generates an initial routing solution and, at each iteration, accepts

new solutions near to the current one based on a probability of acceptance. At the

27



beginning it is more likely that poor solutions are permitted but, going forward with

the process, the probability to select worse solutions reduces gradually. The crucial

metrics for the functioning of this process are the initial temperature which determine

how much the algorithm is willing to explore worse solutions at the beginning and the

cooling rate that represents the speed with which this temperature is decreased. By

reducing this temperature, the probability to accept poor solution lowers and, as a

consequence, the process begins to find better and better results.

3.3.3 Guided Local Search

Another broadly diffused metaheuristic approach is the Guided Local Search (GLS)

method. The principle of this method is to guide the local search for a qualitative

solution in most promising search space through the exploitation of the information

known about the VRP. For this purpose, penalties that increase the cost function

are introduced in the VRP and the algorithm avoids regions of solution where these

penalties are very high. If the local search gets stuck in a locally optimal solution, the

algorithm calls again the local search to further improve the cost function reached [43].

This is possible modifying penalties for the solutions found by the local search when

the results achieved by the method are not acceptable.

An illustration of the procedure carried out by the GLS technique is shown in the

Figure 3.4.

Figure 3.4: The Guided Local Search method (source: Voudoris et al. [43])
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3.3.4 The Genetic Algorithm

This Generic Algorithm (GA) takes inspiration from the evolution process of Darwin.

The initial computed routes are modified by applying operations of cross and mutation

in order to stimulate the evolution of these routes.

The aim is always to find acceptable solutions in terms of distance traveled or other

cost metrics. If good solutions are generated, they reproduce to create new improved

solutions, while less promising solutions go towards extinction [44]. Once reasonable

routes for vehicles are detected, they are kept and labelled as parents since the next

generation of routes is created starting from them.

The improved solutions are the result of both mutations in which initial routes are

randomly changed and cross operations in which characteristics of parents are merged

to give rise to new offspring [45]. When the new population of solutions is consistent

with the termination criteria set at beginning of the process, that means the minimum

acceptable requirements for a solution to be acceptable are reached, the GA ends.

Figure 3.5 provides a graphical representation of this algorithm.
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Figure 3.5: The Genetic Algorithm (source: Razali [46])

3.3.5 Ant Colony Optimization

The Ant Colony Optimization (ACO) method is another famous approach adopted to

address complex VRPs. Basically, this method is based on the principle of indirect

communication between artificial ants that, through the release of pheromones, detect

very good solutions near to the optimal one for the VRP under examination. The

concept stems from the real behaviour of ant colonies in nature that start from their

nest to look for food. On the way, they leave pheromones to attract new ants and mark

the efficient routes to reach the food [47].
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Obviously, the ants conceived for VRPs are fictitious and simply represent vehicles that

try to find the best routes to serve all customers in the network. At each iteration,

each ant builds a solution and the shortest routes accumulate more pheromones. In

this way, the new ants are only attracted by solutions possessing a large amount of

pheromones and focus only on these promising routes in the attempt to enhance the so-

lution. Ants release pheromones along the routes and the quantity of these pheromones

is inversely proportional to the distance traveled. This implies that shorter routes are

characterized by more pheromones.

However, like other metaheuristic methods, the process goes on until the stopping con-

dition is met and selected routes are the ones that have the highest level of pheromone

trail.

Figure 3.6 illustrates the main steps of this algorithm.

Figure 3.6: The Ant Colony Optimization procedure (source: Ahmmed et al. [48])

3.3.6 Particle Swarm Optimization

The last metaheuristic approach described is the Particle Swarm Optimization (PSO)

technique. Like other methods, it is suitable to solve a large number of optimization

problems, included the VRP.
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Similarly to the ACO method, this algorithm takes inspiration from the collective

behaviors of animals such as bird flocking or fish schooling [49]. In particular, PSO

leverages a swarm of particles to find a near-optimal solution to the problem. The

particles are defined by two main components that are the velocities and the best

known position till that moment. The velocity characterizes the movements of particles

while the best known position indicates the best solution achieved so far. Through

the collaborative search for solutions and the exchange of information about the best

position found so far, the particles are able to communicate between each other and

converge towards highly qualitative solutions.

Figure 3.7 outlines how the particle swarm optimization works.

Figure 3.7: The Particle Swarm Optimization method (source: Wisittipanich et al. [50])

In summary, all presented metaheuristic methods became precious tools in dealing

with complex VRPs and their constraints. When the scale of the problems is large,

although they are not capable to guarantee the optimal solution, they can generate a

near-optimal solution in a relatively short time. In addition, the high flexibility allows

these algorithms to be deployed and customized in order to address a huge number of

VRP variants. Finally, the capability to provide a good solution in fast time makes

these methods suitable for real-time applications, like in the case of dynamic VRP.
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In the next chapter, the metaheuristic algorithms conceived in this thesis are out-

lined. As mentioned in the introduction, they apply an initial clustering phase in

which customers are grouped based on their geographical proximity and then the rout-

ing problem is solved. They differentiate from all other metaheuristic approaches since

they find a solution that evolve over time in order to integrate new customers entering

the problem. However, the arrival time of new requests is always before the departure

time of vehicles from the depot and the VRP is considered static.

Concerning clustering of requests, the affinity propagation method is used to divide

customers in groups in two of the four algorithms. Instead, the other two algorithms

perform the clustering phase by leveraging the k-means method which is widely popular

in VRPs.
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4 The algorithms proposed

In this chapter, four metaheuristic approaches to solve static VRPs are proposed. The

peculiarity common to all four methods consists in the application of an initial cluster-

ing phase prior to the routing phase. Basically, two different clustering techniques (i.e.,

the k-means method and the affinity propagation method) and two different procedures

to build routes (i.e., the insert method and the rebuild method) are implemented by

giving rise to four different algorithms.

The k-means method is a widely spread technique in the context of VRP to group cus-

tomers in groups whereas the application of the affinity propagation method is almost

absent in the literature. The four deriving algorithms are called k-means and insert

algorithm (K-I), k-means and rebuild algorithm (K-R), affinity propagation and insert

algorithm (A-I) and affinity propagation and rebuild algorithm (A-R).

All conceived algorithms are made up by two main sequential phases:

• Clustering: Once the orders made by customers are known, methods start the

clustering analysis through which the requests are divided into clusters.

• Routing: In the second step, the routing construction is performed. All cus-

tomers inside the same cluster are served by the same vehicle and the VRP inside

each cluster is treated as a traveling salesman problem.

In chapter 5, the simulation of a numerical example consisting of a static VRP placed

in the city of Turin is conceived in order to test the four proposed algorithms. Then,

the results are compared to the solutions found by another metaheuristic approach in

order to evaluate their competitiveness in relation to this already established method.

4.1 The clustering phase

The clustering of orders is the first step carried out by the algorithms. In this part the

customers are divided into groups based on their geographical positions. The adopted

clustering techniques are the k-means method and the affinity propagation method.
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4.1.1 The k-means clustering method

The k-means clustering procedure is the first method analyzed to separate nodes in

groups. The aim of k-means is clustering data based on similarity by maximizing it

for points within the same cluster and minimizing it for points belonging to different

clusters. In the case of customers characterized by geographical positions, this method

tends to maximize similarity among customers based on the shortest distance between

them and the centroid of the cluster [51].

The k-means method requires that the number of clusters k for the dataset must be

specified at the beginning. Once the k number of clusters is chosen, k points in the

dataset are randomly selected like the current centroids. At this point, the Euclidean

distance between all the points of the dataset and the cluster centroids is computed in

order to assign each of them to the nearest centroid. Once all distances are determined,

all points are assigned to one centroid and k clusters are formed. Now, the new centroids

of created clusters are recomputed and again all points of the dataset are reassigned

to the nearest new centroids. Again the algorithm builds new clusters for which new

centroids can be detected.

This procedure goes on until convergence when the positions of centroids for new

clusters do not change anymore. The steps followed by the k-means clustering are

illustrated in Figure 4.1.

The k-means method chooses centroids that minimize the total intra-cluster vari-

ation which is called total Within-Cluster Sum of Squares (WCSS). It is expressed

as:

WCSS =
nX

i=0

min
µj∈C

(xi − µj)
2 (4)

where xi is a data point that belongs to the cluster center µk. Each point xi in the

dataset is assigned to a specific cluster having µk as centroid such that the total sum

of squares distance between points and cluster centers is minimized.

However, as mentioned before, in k-means algorithm the best number of clusters must

be found at the beginning. A famous graphical method adopted to find the k value is

the elbow method. This method shows how the WCSS varies by changing the number

of clusters k (Figure 4.2 is a general graphical illustration of how the method works).
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Figure 4.1: K-means algorithm (source: Qiu-yu et al. [52])

In particular, WCSS is inversely proportional to the number of clusters and the WCSS

value starts to decrease by increasing k. The graph has the shape of an elbow and

the best number of clusters corresponds to the point where the WCSS starts to move

parallel to the x-axis.

Figure 4.2: The elbow method
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4.1.2 The affinity propagation clustering method

The other clustering approach used is the affinity propagation method. The idea behind

this clustering algorithm is the passing of ’messages’ between points of the dataset in

the attempt to discover similarity between points and build clusters in which this

similarity is maximized.

The crucial difference with the k-means method is that it does not require the number of

clusters in advance. The number is estimated by the algorithm itself based on the data

provided [53]. The affinity propagation method chooses centroids, called exemplars, in

the dataset to be representative of clusters and, as a consequence, every time a new

exemplar is added, also a new cluster is formed.

Clustering is made up by referring to three matrix that are the similarity matrix, the

responsibility matrix and the availability matrix. The first matrix shows how much

two points are similar, the second matrix contains values that express the responsibility

a point has towards another point and, finally, the cells of the third matrix describes

how available is one point to be the exemplar of another point.

In particular, the expression that govern responsibilities between points is the following

one:

r(i, k)← s(i, k)−max[a(i, k′) + s(i, k′)],∀k′ ̸= k (5)

where r(i, k) is the responsibility of point i to the cluster centroid k that means how

much it is worth to assign the point i to the cluster defined by the exemplar k. s(i, k)

is the affinity between point i and the exemplar k. It indicates how much two points

are similar and if the point i should be assigned to the cluster of k. Finally, the last

part of expression represents the accumulated responsibility of point i towards all other

exemplars k′ different from k. In other words, this expression assessed if a point i must

be assigned to an exemplar k by taking into account its affinity with the cluster centroid

k and its similarity with others cluster centroids k′.

Instead, the expression that refers to the availability is written as follows:

a(i, k)← min[0, r(k, k) +
X
i′ /∈i,k

r(i′, k)] (6)
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where a(i, k) shows the availability of the exemplar k to incorporate in its cluster the

point i. In other words, it expresses how much the cluster centroid k is available to

accept the point i as member of the cluster. For this purpose, the algorithm also

evaluates r(i′, k) which is the responsibility of all other points i′ towards the cluster

centroid k.

A simple graphical representation of these expressions is illustrated in Figure 4.3.

Figure 4.3: The affinity propagation method (source: documentation [54])

4.2 The routing phase

After all the customers have been grouped in clusters, the second step is to build the

routes that minimize the total distance traveled by the fleet of vehicles. Each cluster is

served by only one vehicle and, as a consequence, the VRP inside each cluster reduces

to a TSP.

As already mentioned more than once in this document, these routing methods solve

a static VRP. However, they want to reflect the real word in which requests made by

customers arrive in different moments in time before the departure of vehicles from

depot. For this reason, these algorithms compute intermediate solutions by adding

new customers in the problem before finding the final routes that vehicles must follow.

In particular, the two routing methods are called the insert procedure and the rebuild

procedure.
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4.2.1 The insert procedure

The insert procedure is one of the two methods applied to solve the VRP. As it is

evident in Figures 4.4 and 4.5 that represent, respectively, the steps followed by the

insert procedure and the results of the procedure applied on an example (e.i., this

example will be deeply analyzed in chapter 5), the customers are first divided in clusters

(according to the clustering method selected) and a first routing solution is obtained

by considering only data available at time t0. When new customers enter the problem

in a second moment of time t1, the initial solution is modified by adding the points

to the nearest clusters. At this point, a second routing solution is computed and it is

characterized by slightly different routes built to integrate the new customers.

Hence, in the insert method clusters are defined once at the beginning. When new

requests arrive, they are included in these already established clusters and routes are

recomputed. The final planned routes are the ones followed by vehicles when they leave

the depot.
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Figure 4.4: The insert procedure.



Figure 4.5: The application of insert method to a dataset.

4.2.2 The rebuild procedure

The alternative technique for the construction of routes is the rebuild procedure. Again,

Figure 4.6 illustrates how this resolution method works while Figure 4.7 shows the re-

sults of the procedure applied on an example (e.i., this example will be deeply analyzed

in chapter 5). Now, like in the insert method, the first step is selecting the clustering

method, then customers available at time t0 are grouped in different clusters and an

initial routing solution for them is obtained. But, now differently from before, every

time new requests enter the system, clusters are formed again and it may happen that

customers belonging before to a cluster, now are part of another cluster. Then routes

are recomputed on new clusters.

Hence, in rebuild method clusters are defined every time new requests appear in the

system and routes are reformulated according to new clusters. When the moment to

serve customers arrives, the final solution found by the algorithm is the one followed

by the fleet of vehicles and routes can not be modified anymore.
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Figure 4.6: The rebuild procedure.
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Figure 4.7: The application of rebuild method to a dataset.

In sections B.1 and B.2 appendix B, the Python code written to execute respectively

the k-means clustering in the insert procedure and the k-means clustering in the rebuild

procedure is illustrated. Instead, in sections B.3 and B.4 appendix B the Python

code written to execute respectively the affinity propagation clustering in the insert

procedure and the affinity propagation clustering in the rebuild procedure is outlined.

Finally, in section C.1 of Appendix C, it is shown the code that solves the vehicle

routing problem.

However, these main components must be connected in the correct order to build

algorithms. Moreover, they are applied to the specific example of the next chapter

5. Therefore, before reading the appendix, it is suggested to have a look to the next

section in order to comprehend how the code works.

43



5 The simulation of a numerical example

In this chapter, the simulation of a fictional VRP placed in the city of Turin is con-

ceived. Let suppose that a logistics company must plan routes for its vehicles. It

accepts orders made by customers until a certain moment in time, after which vehicles

leave the depot and follow the last routes computed. Requests by customers occur in

different moments in time and, every time, the company changes routes to satisfy new

orders. However, the re-computation of routes is possible till the departure time of

vehicles from the depot.

The aim is to analyze the performance of the four different algorithms (i.e., K-I, K-

R, A-I, A-R) explained in the previous section to assess which is the best method in

terms of shortest distance traveled, expressed in kilometers. Moreover, a comparison

with solutions found by a known metaheuristic approach (GLS), that does not divide

customers in clusters, is shown to evaluate the competitiveness of the algorithms. How-

ever, it is important to remember that these algorithms are metaheuristic approaches

and, as such, their application finds a near-optimal solution for the fleet of vehicles.

The assumptions of the example are as follows:

• each vehicle starts and ends the route at the depot;

• customers appears in the routing problem in different moments of time;

• the arrival time of all customer requests is before the departure time of vehicles

from the depot and therefore they are considered all known customers;

• each customer is visited by only one vehicle;

• each cluster is served by only one vehicle.

First, a short description about how the several datasets of customers have been created

is provided. The number of generated datasets is equal to 30 in order to study the

behaviour of the algorithms in customers datasets of different size. Hence, each of the

five algorithms (i.e., K-I, K-R, A-I, A-R, GLS) has been applied to each dataset and

the total number of performed test is 150.

Then, the obtained experimental results from the application of algorithms are detailed.
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However, before starting with the analysis of this example, it is important to clarify

that all 150 tests have been coded in Python on a personal computer equipped with a

Intel Core i5 processor 2.7 GHz and 500 MB of memory.

5.1 The generation of the dataset

As mentioned before, the four adopted algorithms adjust the routes for vehicles every

time a new request appears. However, although all these customers enter the problem

in different moments, it arrives a moment in time when vehicles leave the depot and

no new request is considered. This means that the routing problem is static and surely

all requests are known before the departure time of vehicles from the depot. In real

world, new orders calling in for service occur continuously till the last moment and,

consequently, every time algorithms should recalculate the routes to incorporate new

orders.

In this example it is supposed that the arrival process is governed by a Poisson dis-

tribution. The main property of this distribution is that events occur independently

within a specified interval of time. The parameter λ represents the average number

of requests that arrive within a specified time interval. In this experiment, the time

is divided in three intervals of equal length in which requests can occur. The exact

length of one interval of time is not relevant and the only needed parameter is the

mean arrival rate of orders λ.

In each of 30 datasets, it is supposed that the first 50 customers known at time t0

are always the same. Their position is defined by the latitude and longitude coordi-

nates. These coordinates have been generated randomly by constraining them to the

geographic area of Turin and its surroundings. However, once these coordinates have

been defined, they are saved in a file because this is the fraction of customers that

never change in each dataset.

Concerning the following three moments in time (i.e., t1, t2, t3), the number of new

customers depends on the chosen parameter λ. In all datasets, this parameter varies

in order to generate datasets of customers that assume different dimensions. In this

way, algorithms are tested on datasets of different size. In particular, tests with a small
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size of total customers in which the λ parameter ranges between 3 and 7, tests with a

medium size of requests in which the λ parameter varies between 10 and 25 and, finally,

big size tests characterized by a λ parameter that fluctuates between 40 and 65 are

considered. These values of λ have been selected because they allow to study datasets

of customers that approximately ranges between 50 and 200 customers in total.

Hence, each of 30 customer datasets comprises a different total number of customers

depending on the value of λ specific for the dataset under examination. Instead, what

is common to all datasets is the initial fraction of customers known at time t0 which

always corresponds to the same amount of 50 customers.

Concerning the positions of customers, each request is represented by the latitude and

longitude coordinates that have been constrained to the geographic area of Turin and

its surroundings. Again, in all datasets the initial customers at time t0 are described al-

ways by the same latitude and longitude coordinates. Hence, both the amount and the

locations of customers known at time t0 remain the same in all 30 datasets. Instead,

similarly to what happens in the case of new customers appearing in the following

three moments in time in which the number depends on the specific value of λ for the

dataset, the latitude and longitude coordinates for new customers are always generated

randomly and different in each dataset.

Hence, all 30 datasets include a fraction of 50 customers that is always the same in

terms of amount and coordinates about their position. Instead, what makes datasets

unique is the specific value of the λ parameter that generates an additional amount

of customers that varies in each dataset, and their changing latitude and longitude

coordinates.

In sections A.1 and A.2 of Appendix A, an example of the File.csv with known cus-

tomers at time t0 common to all datasets and one of 30 UpdatedFile.csv with additional

new customers generated by the Poisson distribution is outlined. In the specific test

shown in Appendix A, the UpdatedFile.csv including the total amount of customers

has been generated with a λ parameter equal to 15.
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5.2 Experimental results

In this section, results with the shortest distance computed by each of the proposed

algorithms are illustrated.

In particular, Table 1 provides distances traveled by vehicles in final routes at time t3,

when all customers are known and vehicles are going to leave the depot. The table

outlines the results provided by each of the five algorithms for each of 30 customer

datasets. The final row shows the average distance considering all tests.

The bold values in Table 1 represents distances computed by clustering-based algo-

rithms that overcome the solution provided by the GLS approach without clustering.

The purpose of the comparison is not to choose one algorithm over another but rather

to understand whether the methods based on clustering provide acceptable solutions

or not. All metaheuristic approaches stand out for their peculiarity in addressing the

VRP differently from exact techniques. What matters is finding admissible solutions

that satisfy the stopping criteria for the VRP under examination, considering time and

resource constraints. However, if the GLS method is one of the most used metaheuris-

tic techniques and its solutions are given for good, the comparison allows to realize if

the clustering-based solutions get closer to the GLS solutions and whether techniques

based on clustering methods can be assessed competitive in terms of performances.

In 13 out of the 30 datasets, the K-I algorithm finds a cheaper solution than the

GLS. A similar trend is obtained also in the case of the K-R algorithm where, in 15

out of 30 datasets, it offers a better solution that overcomes the one provided by the

GLS technique. Concerning methods based on the affinity propagation, both A-I and

A-R algorithms always perform worse than the GLS approach, except for 3 tests in

which the A-I algorithm gives more competitive solutions. By taking into account only

clustering-based algorithms, in all tests K-I and K-R algorithms alternate in provid-

ing the most promising solutions, while A-I and A-R techniques finds more expensive

routes in terms of distance traveled, with the A-R algorithm that is confirmed to be

always the worst. All these considerations are also proven by the average distances in

the last row of the table.

Table 2 shows the best number of clusters formed by each of the four clustering-based
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Total distance traveled [km] at time t3

test K-I K-R A-I A-R GLS

1 12.54 12.57 15.19 15.32 11.42

2 12.02 12.19 14.54 15.2 11.72

3 12.14 12.07 14.41 15.86 11.06

4 13.07 12.92 14.96 17.01 11.43

5 13.41 13.35 15.95 15.28 12.18

6 11.58 11.36 13.78 13.79 10

7 13.07 13.19 15.2 16.94 11.8

8 11.77 11.82 14.6 14.78 11.03

9 11.3 11.3 13.66 13.85 10.7

10 11.94 11.94 14.81 14.67 10.96

11 15.17 14.89 17.02 17.36 14.35

12 16.02 15.17 16.6 17.98 14.56

13 19.09 18.15 19.96 22.72 18.94

14 19.64 18.94 21.22 23.79 21.07

15 14.74 14.4 16.2 17.83 14.42

16 14.37 14.35 17.19 18.28 13.84

17 17.65 16.74 19.47 22.76 16.33

18 17.26 17.2 19.68 21.44 18.43

19 18.41 18.36 18.41 23.34 18.94

20 16.48 16.52 18.64 20.34 15.97

21 23.42 23.22 25.9 29.72 24.15

22 20.54 19.97 23.08 27.49 20.96

23 24.42 24.61 25.03 29.75 26.21

24 22.7 21.83 24.66 29.04 24.27

25 21.54 21.49 23.78 27.34 23.64

26 21.16 21.36 23.06 26.63 22.86

27 23.76 24.68 25.51 30.22 25.12

28 23.34 22.84 24.34 28.41 23.43

29 26 26.01 27.45 32.84 28.12

30 25.49 25.27 27.36 32.13 26.19

average 17.47 17.29 19.39 21.74 17.47

Table 1: Total distance traveled [km] at time t3
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algorithms at time t3 when all requests are known. The algorithms characterized by the

insert procedure (i.e. K-I and A-I) detects the number of clusters with only customers

known at time t0. Then, new customers in following moments of time are simply added

to these already formed clusters. The K-I procedure applies the elbow method (see

Figure 5.1) and finds that the best number of clusters is equal to 4 when considering

only 50 customers known at time t0. Instead, in the A-I algorithm, in which the best

number of clusters is computed by the algorithm itself, customers known at time t0 are

grouped within 6 clusters. Instead, concerning algorithms that rebuild clusters every

time new customers are included, in the K-R algorithm the value of k ranges between

3 and 4 clusters while the A-R technique provides values of k that increase as the total

number of customers in the problem grows.

Figure 5.1: The optimal number of clusters at time t0 according to the elbow method.

The results observed in these two tables are consistent with each other. The best

clustering-based algorithms to solve the VRP placed in Turin are those that rely on

the k-means method.

This clustering method, regardless of the resolution procedure chosen (i.e., the insert or

the rebuild method), finds a smaller best number of clusters in each test. This implies
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Number of clusters at time t3

test K-I K-R A-I A-R

1 4 4 6 6

2 4 4 6 7

3 4 4 6 7

4 4 4 6 8

5 4 4 6 6

6 4 4 6 6

7 4 4 6 8

8 4 4 6 7

9 4 4 6 6

10 4 4 6 7

11 4 4 6 7

12 4 4 6 8

13 4 4 6 9

14 4 3 6 10

15 4 4 6 8

16 4 4 6 8

17 4 3 6 10

18 4 4 6 9

19 4 3 6 10

20 4 4 6 9

21 4 4 6 11

22 4 4 6 12

23 4 3 6 11

24 4 3 6 12

25 4 4 6 13

26 4 3 6 11

27 4 3 6 12

28 4 4 6 12

29 4 3 6 13

30 4 3 6 12

average 4 3.7 6 9.2

Table 2: Number of clusters at time t3
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p-value

K-I vs K-R K-I vs A-I K-I vs A-R K-I vs GLS K-R vs A-I

0.013 2.561e-06 1.862e-09 1.0 1.862e-09

K-R vs A-R K-R vs GLS A-I vs A-R A-I vs GLS A-R vs GLS

1.862e-09 0.477 1.024e-07 1.419e-09 1.862e-09

Table 3: Statistical test of Wilcoxon between each pair of algorithms

a smaller amount of vehicles used to serve all customers and a consequent reduction in

the distance traveled to visit them.

Instead, the algorithms based on the affinity propagation tend to select a higher value

of k for the same amount of customers. This translates in a larger number of vehicles

committed to serve all customers and a consequent increase in the distance traveled to

satisfy them. Indeed, for instance, the A-R algorithm is the technique that creates on

average the highest number of clusters and, at the same time, the one that provides on

average the less promising solutions in terms of distance traveled.

However, a statistical analysis using the test of Wilcoxon is performed to investigate

whether differences in results provided by algorithms are statistically significant. The

comparison is made two by two for each pair of algorithms. The null hypothesis states

that differences are not statistically significant and the aim is to accept or reject this

hypothesis through the statistic test.

Table 3 shows the p value computed at statistical level of α = 0.05 for each pair of

algorithms. All these p values are less than α, except for the comparison between K-I

versus GLS and K-R versus GLS. The statistical test proves that differences between

algorithms are statistically significant, except for the comparison between K-I versus

GLS and K-R versus GLS in which the null hypothesis can not be rejected. This

means that for comparisons characterized by p < α there is enough statistical evidence

to assert that the difference between algorithms is due to a real cause and not to chance.
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6 Conclusions and future perspectives

The document, after having provided a definition of the VRP with its main extensions

and a description of all resolution methods studied over the years, focused on four par-

ticular algorithms used to solve the VRP. The common concept behind these methods

is the execution of an initial phase of clustering to divide customers in groups based

on their geographical locations. In addition, in these techniques the concept of time is

fundamental since, every time new customers enter the VRP, clusters are updated or

formed again depending on the algorithm selected.

The benefit of clustering consists in simplifying the planning of routes to serve cus-

tomers. Without clustering, the number of possible routes grows exponentially with

the number of requests, making the problem computationally burdensome. Clustering

permits to reduce the complexity since routes are built for each cluster and not for all

customers in the problem. On the other hand, the limitation of algorithms proposed,

like all metaheuristic approaches, is that finding the optimal solution for a NP-hard

problem like the VRP is not feasible when its size is large.

However, the experimental results achieved for the example placed in the city of Turin

give little space to the emergence of possible doubts. In each test performed, the

distance traveled by vehicles is directly proportional to the number of clusters k. Al-

gorithms that perform better are the ones that detect a smaller value of k. Indeed,

regardless the solution procedure selected, in k-means algorithms solutions are quite

similar since the value of k is always equal to 4 for the K-I procedure while it ranges

between 3 and 4 for the K-R method. Instead, the performances of algorithms based

on affinity propagation are poorer since the value of k is higher for these algorithms.

In particular, there is an evident difference between the A-I and A-R methods because

the value of k for the A-I algorithm is stable to 6 while the number of clusters in the

A-R procedure ranges between 6 and 13.

So, in conclusion if an algorithm should be selected, this would be one of the two

based on the k-means method in which the optimal number of clusters is detected by

the elbow method. Algorithms based on affinity propagation tend to overestimate the

necessary number of clusters and this leads to a larger amount of vehicles used that
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translates in a higher number of kilometers traveled. Surely each client is visited faster

but the solution is not efficient in terms of distance traveled.

However, this work wants to be a starting point for future implementations. Possible

extensions could be the analysis of the algorithms behaviours in dealing with more com-

plex scenarios of VRPs. Additional constraints such as the integration of time windows

to serve customers or the limitation of vehicles capacity could be included. Moreover,

the possibility to accept new customer requests occurring after the departure time of

vehicles from the depot shifts the analysis of the proposed algorithms in the context

of dynamic VRP. Finally, another option could be represented by the comparison of

the algorithms based on clustering with the algorithms conceived by other authors in

other cases of study.
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A The dataset of customers

The arrival of new customers is governed by a Poisson distribution. In particular, the

Poisson arrival process has been implemented by passing the parameter λ in input to

the method random.poisson of the Python library numpy. At time t0, in all performed

tests customers are always the same and equal to 50, while in the following three mo-

ments in time (i.e., t1, t2, t3), the number of new customers depends on the chosen

parameter λ.

Concerning the positions of customers, each request is represented by the latitude and

longitude coordinates that have been constrained to the geographic area of Turin and

its surroundings. Again, the generation of the location for each customer has been

implemented by passing the constrained latitude and longitude coordinates of Turin to

the method numpy.random.uniform.

Then, the generated list of customers with their position and arrival time is saved on

a File.csv so that it can be used by all the algorithms. In sections A.1 and A.2 of

Appendix A, the File.csv with known customers at time t0 common to all datasets

and one of 30 UpdatedFile.csv with additional new customers generated by the Poisson

distribution are outlined. In particular, in section A.1 of Appendix A, the File.csv

containing the initial fraction of customers common to all datasets with their corre-

spondent positions and arrival time (i.e., it is t0 for all requests) is provided.

Then, in section A.2 of Appendix A, one of 30 UpdatedFile.csv including the complete

amount of customers with their correspondent positions and arrival time (i.e., it is t0

for the first 50 customers and t1, t2 or t3 for the remaining customers depending on

their arrival time) is shown. In the specific test illustrated in this appendix, the λ

parameter is equal to 15 and, from the initial customers equal to 50 at time t0, the

total amount of requests at time t3 is equal to 82.

Before showing the two files csv, it is important to clarify how a csv file is repre-

sented. A csv file is characterized by data in the form of text and the values of each

cell are separated by commas. However, for ease of representation, the dataset of cus-

tomers is shown inside a table.
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Each row, except for the first one, is a specific customer while each column describes

a characteristic for that customer. The first column denotes the type of request (i.e.,

0 if the customer is known at time t0 and 1 if the customer is known at time t1, t2

or t3,), the second and the third consist in the latitude and longitude coordinates of

the request, and the last column shows the arrival time of the customer. The first

row represents the geographical coordinates of the depot and it has NaN value in New

request and Time interval columns since, obviously, it is not a request.

A.1 the dataset of customer at time t0

In this table, the initial fraction of known customers common to all 30 datasets is re-

ported. They are equal to 50 at time t0 and have the following latitude and longitude

coordinates in all tests performed.

New request Latitude Longitude Time interval

Nan 45.0688 7.68 Nan

0 45.0120873378955 7.64552613150164 0

0 45.0520083467709 7.72652983631041 0

0 45.0568951740094 7.68568255803922 0

0 45.1235974207845 7.66349414065841 0

0 45.0879276661641 7.72567134778513 0

0 45.0232216157975 7.66067835894532 0

0 45.0867109369781 7.68725084793321 0

0 45.1067040686691 7.63733836569737 0

0 5.1255929708042 7.73428354454981 0

0 45.015892657567 7.65280337957878 0

0 45.0296639806245 7.73757376380078 0

0 45.0987964409615 7.6546727535446 0

0 45.014438398235 7.61019079554931 0

0 45.0694666275897 7.71653675132062 0

0 45.0403792523293 7.66504937272296 0

0 45.1243313011729 7.69965635904461 0
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New request Latitude Longitude Time interval

0 45.0875103197832 7.60972765695222 0

0 45.0555748186703 7.74582988305926 0

0 45.0487545622969 7.71028679252593 0

0 45.1098499839172 7.73776810247859 0

0 45.0685436661552 7.61695929634866 0

0 45.0970365058818 7.7180245392484 0

0 45.0391118403773 7.65846066692718 0

0 45.1138724949252 7.69396394765023 0

0 45.0733702947586 7.68239801093924 0

0 45.0270365602449 7.69793638524497 0

0 45.0221754859492 7.69069672527829 0

0 45.0991781275793 7.69321701156751 0

0 45.1006261336581 7.65785520936468 0

0 45.1151816626905 7.72764385877252 0

0 45.0439685550232 7.63337104487315 0

0 45.0475297912567 7.71073809743528 0

0 45.0844798660921 7.66027750832561 0

0 45.0552698110098 7.7315267657797 0

0 45.0443121164434 7.74371781383988 0

0 45.0484745506056 7.63971395240225 0

0 45.0220276904403 7.65514497199478 0

0 45.0828323900947 7.59705666542283 0

0 45.0186928701289 7.59735897745475 0

0 45.0218487633904 7.614032626916 0

0 45.0964299069134 7.67623866158172 0

0 45.0477736798047 7.71791950578131 0

0 45.0595291787738 7.69834795890168 0

0 45.069705816995 7.71808073848439 0

0 45.1158582955046 7.69260894360755 0

0 45.1156436889776 7.7392685952947 0

0 45.0382193314983 7.63081653108776 0

0 45.0234548965359 7.72206715206364 0

0 45.0781593070208 7.62969061914881 0

0 45.1153474489998 7.66852829101108 0

A.2 the dataset of customer at time t3

In this table, one of 30 datasets with all the customers up to time t3 is shown. After

time t3, new requests are not considered because final routes are computed and the

vehicles are leaving the depot. In particular, in this test the final dataset of customers

has been created by using a λ parameter equal to 15. From the initial customers equal
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to 50 at time t0, the total amount of requests at time t3 is equal to 82.

New request Latitude Longitude Time interval

Nan 45.0688 7.68 Nan

0 45.0120873378955 7.64552613150164 0

0 45.0520083467709 7.72652983631041 0

0 45.0568951740094 7.68568255803922 0

0 45.1235974207845 7.66349414065841 0

0 45.0879276661641 7.72567134778513 0

0 45.0232216157975 7.66067835894532 0

0 45.0867109369781 7.68725084793321 0

0 45.1067040686691 7.63733836569737 0

0 5.1255929708042 7.73428354454981 0

0 45.015892657567 7.65280337957878 0

0 45.0296639806245 7.73757376380078 0

0 45.0987964409615 7.6546727535446 0

0 45.014438398235 7.61019079554931 0

0 45.0694666275897 7.71653675132062 0

0 45.0403792523293 7.66504937272296 0

0 45.1243313011729 7.69965635904461 0

0 45.0875103197832 7.60972765695222 0

0 45.0555748186703 7.74582988305926 0

0 45.0487545622969 7.71028679252593 0

0 45.1098499839172 7.73776810247859 0

0 45.0685436661552 7.61695929634866 0

0 45.0970365058818 7.7180245392484 0

0 45.0391118403773 7.65846066692718 0

0 45.1138724949252 7.69396394765023 0

0 45.0733702947586 7.68239801093924 0

0 45.0270365602449 7.69793638524497 0

0 45.0221754859492 7.69069672527829 0

0 45.0991781275793 7.69321701156751 0

0 45.1006261336581 7.65785520936468 0

0 45.1151816626905 7.72764385877252 0

0 45.0439685550232 7.63337104487315 0

0 45.0475297912567 7.71073809743528 0

0 45.0844798660921 7.66027750832561 0

0 45.0552698110098 7.7315267657797 0

0 45.0443121164434 7.74371781383988 0

0 45.0484745506056 7.63971395240225 0

0 45.0220276904403 7.65514497199478 0

0 45.0828323900947 7.59705666542283 0

0 45.0186928701289 7.59735897745475 0
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New request Latitude Longitude Time interval

0 45.0218487633904 7.614032626916 0

0 45.0964299069134 7.67623866158172 0

0 45.0477736798047 7.71791950578131 0

0 45.0595291787738 7.69834795890168 0

0 45.069705816995 7.71808073848439 0

0 45.1158582955046 7.69260894360755 0

0 45.1156436889776 7.7392685952947 0

0 45.0382193314983 7.63081653108776 0

0 45.0234548965359 7.72206715206364 0

0 45.0781593070208 7.62969061914881 0

0 45.1153474489998 7.66852829101108 0

1 45.011013153103995 7.65984763476217 1

1 45.04576824585266 7.6814795437522 1

1 45.02787692744397 7.617479201605071 1

1 45.02161893839841 7.626309527829987 1

1 45.032419924308435 7.718513919007357 1

1 45.05073948360995 7.744144021085067 1

1 45.05662825953653 7.643953899258364 1

1 45.07296392441039 7.7019253601974045 1

1 45.05920736915638 7.730087540301294 1

1 45.08980024254563 7.732874819516089 1

1 45.034512008719126 7.609011764339576 1

1 45.11198350518496 7.601975381834631 1

1 45.014149573217765 7.621984054193379 1

1 45.08810376367052 7.7303558030247 1

1 45.12115729596731 7.710469345120115 2

1 45.072314007771894 7.638907930785854 2

1 45.090565868104306 7.716759737253078 2

1 45.047284297565696 7.611793579006379 2

1 45.08994760668338 7.664527709504913 2

1 45.1069819522682 7.735015111973244 2

1 45.01310315189458 7.640922964701173 2

1 45.09726659621867 7.640029626803711 2

1 45.124719025224245 7.615894371534097 2

1 45.06753091331724 7.677992150105073 3

1 45.01713669268847 7.697560580718627 3

1 45.077023524631585 7.674778034144921 3

1 45.02787378611417 7.740522997666594 3

1 45.07877013674388 7.6857429211968045 3

1 45.091472211402404 7.734220493039046 3

1 45.0227684593152 7.617033629734374 3

1 45.05861643859925 7.617309281129366 3
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New request Latitude Longitude Time interval

1 45.09085601813869 7.719530867172557 3

1 45.0586306159956 7.656844556058786 3

1 45.0167446477788 7.621299192158891 3
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B The clustering phase

Once the UpdatedFile.csv containing the information about all customers to be served

in Turin is built, each of the proposed algorithms accesses it in order to start with the

clustering phase. Both k-means and affinity propagation methods have been imple-

mented through the Python machine learning library Scikit-learn. In this appendix,

the written code for the execution of the two clustering methods is shown. Depending

on which solution method used (i.e., the insert or the rebuild procedure), the clustering

is made respectively either only at the beginning or every time new customers enter

the problem.

B.1 K-means clustering in the insert procedure

In this section, the code for the k-means clustering in the insert procedure is provided.

In particular, clusters are formed by taking into account only customers know at time

t0. The optimal number of clusters is detected by the elbow method. Then, each new

customers is simply added to the nearest already established clusters.

# CLUSTERING BY CONSIDERING ONLY KNOWN CUSTOMERS AT t=0

X = dtf[dtf["base"]==0][ dtf["Time␣Interval"]==0][["Lat","

Lng"]]

# FIND THE OPTIMAL NUMBER K OF CLUSTERS

max_k = 7

# iterations

distortions = []

for i in range(1, max_k +1):

if len(X) >= i:

model = cluster.KMeans(n_clusters=i, init=’k-means++

’,

max_iter =300, n_init =10, random_state =0)

model.fit(X)

distortions.append(model.inertia_)
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# best k: the lowest derivative

k = [i*100 for i in np.diff(distortions ,2)]. index(min([i

*100 for i

in np.diff(distortions ,2)]))

# plot the elbow method

fig , ax = plt.subplots ()

ax.plot(range(1, len(distortions)+1), distortions)

ax.axvline(k, ls=’--’, color="red", label="k␣=␣"+str(k))

ax.set(title=’The␣Elbow␣Method ’, xlabel=’Number␣of␣clusters

’,

ylabel="WCSS")

ax.legend ()

ax.grid(True)

plt.show()

# DIVIDE CUSTOMERS IN K CLUSTERS

k = 4 # it is found by the elbow method

model = cluster.KMeans(n_clusters=k, init=’k-means++’)

X = dtf[dtf["base"]==0][ dtf["Time␣Interval"]==0][["Lat","

Lng"]]

dtf_X = X.copy()

dtf_X["cluster"] = model.fit_predict(X)

dtf["cluster"] = dtf_X["cluster"]

dtf.sample (5)

# plot customers divided in clusters found

fig , ax = plt.subplots ()

palette_personalizzata = ["#FF5733", "#33 FF57", "#3366FF",

"#FF33A1",

"#33 FFFF", "#FF3366", "#FFFF33", "#9933FF", "#FF9933",

"#33 FF99"]
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sns.scatterplot(x="Lat", y="Lng", data=dtf ,

palette=sns.color_palette(

palette_personalizzata ,k),

hue=’cluster ’, legend=False ,

ax=ax).set_title(’Clustering(k=’+str(k)+’):

␣known␣customers␣at␣time␣t=0’)

ax.set_xlabel(’Latitude ’)

ax.set_ylabel(’Longitude ’)

ax.scatter(start[0], start[1], c=’black’, marker=’^’)

plt.show()

Once the division of known customers at time t0 in k clusters is performed, an initial

solution to serve these customers is computed. Then, every time new customers enter

the system, this initial solution is adjusted to incorporate them in the routes. The code

to add following customers in the established clusters is outlined below. In this piece

of code new customers appearing at time t1 are included. The same procedure is also

used to add new customers at time t2 and t3, and for this reason is not repeated.

# ADDING NEW CUSTOMERS ARRIVED AT t=1 IN CLOSEST CLUSTERS

new_customers = dtf[dtf["base"]==0][ dtf["Time␣Interval"

]==1][["Lat","Lng"]]

dtf_new_cust = new_customers.copy()

dtf_new_customers["cluster"] = model.predict(new_customers)

# update clusters with new customers

dtf.loc[dtf["Time␣Interval"] == 1, "cluster"] =

dtf_new_customers["cluster"]

# plot customers divided in clusters

fig , ax = plt.subplots ()

palette_personalizzata = ["#FF5733", "#33 FF57", "#3366FF",

"#FF33A1",

"#33 FFFF", "#FF3366", "#FFFF33", "#9933FF", "#FF9933",
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"#33 FF99"]

k = dtf["cluster"]. nunique ()

sns.scatterplot(x="Lat", y="Lng", data=dtf ,

palette=sns.color_palette(

palette_personalizzata ,k),

hue=’cluster ’, legend=False ,

ax=ax).set_title(’Clustering(k=’+str(k)+’):

␣new␣customers␣at␣t=1’)

ax.scatter(start[0], start[1], c=’black’, marker=’^’)

for k,v in dic_routes_clusters.items ():

route_coordinates = dtf.loc[v, ["Lat", "Lng"]]

ax.plot(route_coordinates["Lat"], route_coordinates["

Lng"], linestyle=’--’, color=’black’)

ax.set_xlabel(’Latitude ’)

ax.set_ylabel(’Longitude ’)

plt.show()

B.2 K-means clustering in the rebuild procedure

In this section, the code for the k-means clustering in the rebuild procedure is described.

In this algorithm, clusters are rebuilt every time new customers enter the routing

problem. This implies that only the first block of code seen in the section B.1 of

Appendix B is run. In particular, the first block is run four times, one for every time

requests appear (i.e., t0, t1, t2 and t3). At any moment of time, the best number of

clusters is detected by the elbow method.

B.3 Affinity propagation clustering in the insert procedure

In this section, the code for the affinity propagation clustering in the insert procedure

is provided. In particular, clusters are formed by taking into account only customers

known at time t0. The best number of clusters is detected by the algorithm itself.
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Then, each new customers is simply added to the nearest already established clusters.

model = cluster.AffinityPropagation ()

X = dtf[dtf["base"]==0][ dtf["Time␣Interval"]==0][["Lat","

Lng"]]

dtf_X = X.copy()

dtf_X["cluster"] = model.fit_predict(X)

dtf["cluster"] = dtf_X["cluster"]

dtf.sample (5)

k = dtf["cluster"]. nunique ()

## plot

fig , ax = plt.subplots ()

palette_personalizzata = ["#FF5733", "#33 FF57", "#3366FF",

"#FF33A1", "#33 FFFF", "#FF3366", "#FFFF33", "#9933 FF", "

#FF9933", "#33 FF99"]

# create a graph using the sns library

sns.scatterplot(x="Lat", y="Lng", data=dtf ,

palette=sns.color_palette(

palette_personalizzata ,k),

hue=’cluster ’, legend=False , ax=ax).

set_title(’Clustering(k=’+str(k)+’):␣

known␣customers␣at␣time␣t=0’)

ax.set_xlabel(’Latitude ’)

ax.set_ylabel(’Longitude ’)

ax.scatter(start[0], start[1], c=’black’, marker=’^’)

plt.show()

Once the division of known customers at time t0 in k clusters is performed, an initial

solution to serve these customers is computed. Then, every time new customers enter

the system, this initial solution is adjusted to incorporate them in the routes. The code
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to add following customers in the established clusters is outlined below. In this piece

of code new customers appearing at time t1 are included. The same procedure is also

used to add new customers at time t2 and t3, and for this reason is not repeated.

# ADDING NEW CUSTOMERS ARRIVED AT t=1 IN CLOSEST CLUSTERS

k = dtf["cluster"]. nunique ()

new_customers = dtf[dtf["base"]==0][ dtf["Time␣Interval"

]==1][["Lat","Lng"]]

dtf_new_customers = new_customers.copy()

dtf_new_customers["cluster"] = model.predict(new_customers)

# update clusters with new customers

dtf.loc[dtf["Time␣Interval"] == 1, "cluster"] =

dtf_new_customers["cluster"]

# plot customers divided in clusters

fig , ax = plt.subplots ()

palette_personalizzata = ["#FF5733", "#33 FF57", "#3366FF",

"#FF33A1", "#33 FFFF", "#FF3366", "#FFFF33", "#9933 FF", "

#FF9933", "#33 FF99"]

sns.scatterplot(x="Lat", y="Lng", data=dtf ,

palette=sns.color_palette(

palette_personalizzata ,k),

hue=’cluster ’, legend=False , ax=ax).

set_title(’Clustering(k=’+str(k)+’):␣new

␣customers␣at␣t=1’)

ax.scatter(start[0], start[1], c=’black’, marker=’^’)

for k,v in dic_routes_clusters.items ():

route_coordinates = dtf.loc[v, ["Lat", "Lng"]]

ax.plot(route_coordinates["Lat"], route_coordinates["

Lng"], linestyle=’--’, color=’black’)

ax.set_xlabel(’Latitude ’)
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ax.set_ylabel(’Longitude ’)

plt.show()

B.4 Affinity propagation clustering in the rebuild procedure

In this section, the code for the affinity propagation clustering in the rebuild procedure

is described. In this algorithm, clusters are rebuilt every time new customers enter the

routing problem. This implies that only the first block of code seen in the section B.3

of Appendix B is run. In particular, the first block is run four times, one for every

time requests appear (i.e., t0, t1, t2 and t3). At any moment of time, the best number

of clusters is detected by the algorithm itself.
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C The routing phase

In this appendix, the written code for the execution of the routing phase is illustrated.

In all algorithms the vehicle routing problem is solved by using ortools. It is a Python

library developed by Google and it is capable to solve a large number of linear pro-

gramming and optimization problems. The two main components that must be defined

to solve the VRP are the manager and the routingmodel. The former needs in input

the length of the distance matrix, the number of vehicles and the index of the depot.

The latter takes in input the manager object and it is the component that defines and

solves the routing problem.

Concerning the distance matrix passed as input parameter to the manager object, it is

an array in which the cell (i, j) represents the distance from customer i to customer j.

These distance values inside the distance matrix are computed by adopting the Python

library osmnx that provides the real street distances for each pair of nodes.

Once the routingmodel has been defined, the Guided Local Search is the metaheuristic

approach called to solve the VRP in all algorithms.

C.1 The creation of routes

In this section, the code used to solve the routing problem within each cluster is pro-

vided. In particular, it shows the creation of routes for clusters at time t0. This means

that the following code is run four times, one for every time requests appear (i.e., t0,

t1, t2 and t3), and for this reason is not repeated. The final solution computed at time

t3 represents the final routes that vehicles travel to serve all customers.

# create network graph

G = ox.graph_from_point(start , dist =10000 , network_type="

drive")

G = ox.add_edge_speeds(G)

G = ox.add_edge_travel_times(G)

# get the node for each location (both depot and customers)
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# create a new column ’node’ in dtf with the node value for

each location

dtf["node"] = dtf[["Lat","Lng"]]. apply(lambda x: ox.

nearest_nodes(G, x[1], x[0]), axis =1)

dtf = dtf.drop_duplicates("node", keep=’first’)

dtf.head()

# this function computes the distance shortest path between

each node

def shortest_distance(a,b):

try:

d = nx.shortest_path_length(G, source=a, target=b,

method=’dijkstra ’, weight=’travel_time ’)

except:

d = np.nan

return d

# CLUSTERING WITH ONLY KNOWN CUSTOMERS AT t=0

dic_routes_clusters = {}

total_distance = 0

total_load = 0

for cluster in range(k):

lst_for_dist_matrix = dtf[dtf["base"] == 1]["node"].

tolist ()

lst_for_dist_matrix += dtf[dtf["cluster"] == cluster ]["

node"]. tolist ()

lst_id_nodes = dtf[dtf["base"] == 1]["id"]. tolist ()

lst_id_nodes += dtf[dtf["cluster"] == cluster ]["id"].

tolist ()

my_dict = dict(zip(lst_id_nodes , lst_for_dist_matrix))
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size = list(range(0, len(lst_for_dist_matrix)))

dict_route_nodes = dict(zip(size , lst_id_nodes))

distance_matrix = np.asarray ([[ shortest_distance(a, b)

for b in lst_for_dist_matrix] for a in

lst_for_dist_matrix ])

distance_matrix = (np.rint(distance_matrix)).astype(int

)

# Parameters

driver = 1

# we need the equivalent node in the graph

start_node = ox.nearest_nodes(G, start[1], start [0])

print("start␣node:", start_node , "|␣total␣locations␣to␣

visit␣in␣the␣cluster:", len(lst_for_dist_matrix) -

1,

"|␣drivers:", driver , "\n")

driver_capacity = [100]

demands = [0] + [1] * (len(lst_for_dist_matrix) - 1)

max_distance = 100000

# Create the routing index manager

manager = pywrapcp.RoutingIndexManager(len(

lst_for_dist_matrix), driver , lst_for_dist_matrix.

index(start_node))

# Create routing model.

routing = pywrapcp.RoutingModel(manager)

def distance_callback(from_index , to_index):

"""Returns the distance between the two nodes."""

75



# Convert from routing variable Index to distance

matrix NodeIndex.

from_node = manager.IndexToNode(from_index)

to_node = manager.IndexToNode(to_index)

return distance_matrix[from_node ][ to_node]

transit_callback_index = routing.

RegisterTransitCallback(distance_callback)

# Define cost of each arc.

routing.SetArcCostEvaluatorOfAllVehicles(

transit_callback_index)

# The constraint about capacity

def get_demand(from_index):

return demands[from_index]

demand = routing.RegisterUnaryTransitCallback(

get_demand)

routing.AddDimensionWithVehicleCapacity(demand ,

slack_max=0, vehicle_capacities=driver_capacity ,

fix_start_cumul_to_zero=True , name=’Capacity ’)

# The constraint about distance

name = ’Distance ’

routing.AddDimension(transit_callback_index ,

slack_max=0, capacity=max_distance ,

fix_start_cumul_to_zero=True , name=name)

distance_dimension = routing.GetDimensionOrDie(name)
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distance_dimension.SetGlobalSpanCostCoefficient (100)

# Initial solution that minimizes costs

parameters = pywrapcp.DefaultRoutingSearchParameters ()

parameters.first_solution_strategy = (routing_enums_pb2

.FirstSolutionStrategy.PATH_CHEAPEST_ARC)

# Metaheuristic optimization of initial solution

parameters.local_search_metaheuristic = (

routing_enums_pb2.LocalSearchMetaheuristic.

GUIDED_LOCAL_SEARCH)

parameters.time_limit.FromSeconds (1)

solution = routing.SolveWithParameters(parameters)

index = routing.Start (0)

route_idx = []

route_distance = 0

route_load = 0

while not routing.IsEnd(index):

node_index = manager.IndexToNode(index)

route_idx.append(manager.IndexToNode(index))

previous_index = index

index = solution.Value(routing.NextVar(index))

route_distance += distance_callback(previous_index ,

index)

#update load

route_load += demands[node_index] ## for data

route_idx.append(manager.IndexToNode(index))

my_route = [dict_route_nodes[x] for x in route_idx]

print(my_route)

dic_routes_clusters[cluster] = my_route

77



print(f’distance:␣{round(route_distance␣/␣1000,␣2)}␣km’

)

print(f’load:␣{round(route_load ,␣2)}’, "\n")

total_distance += route_distance

total_load += route_load

print(f’Total␣distance:␣{round(total_distance␣/␣1000,␣2)}␣

km’)

print(f’Total␣load:␣{total_load}’)

# ROUTING REPRESENTATION FOR ALL CLUSTERS AT t=0

fig , ax = plt.subplots ()

palette_personalizzata = ["#FF5733", "#33 FF57", "#3366FF",

"#FF33A1", "#33 FFFF", "#FF3366", "#FFFF33", "#9933 FF", "

#FF9933", "#33 FF99"]

# Scatter plot for clusters

sns.scatterplot(x="Lat", y="Lng", data=dtf ,

palette=sns.color_palette(

palette_personalizzata , k),

hue=’cluster ’, legend=False , ax=ax).

set_title(’Clustering(k=’ + str(k) + ’):

␣routing␣representation␣at␣t=0’)

# Add the start point (depot)

ax.scatter(start[0], start[1], c=’black’, marker=’^’)

ax.set_xlabel(’Latitude ’)

ax.set_ylabel(’Longitude ’)
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for k,v in dic_routes_clusters.items ():

route_coordinates = dtf.loc[v, ["Lat", "Lng"]]

ax.plot(route_coordinates["Lat"], route_coordinates["

Lng"], linestyle=’--’, color=’black’)

plt.show()
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