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ABSTRACT 

 

 

This thesis presents a critical and methodical analysis of the existing literature on the 

Economic Lot Scheduling Problem, with a specific focus on metaheuristic solution 

methods, particularly genetic algorithms. While the study begins with a broad overview 

of this complex scheduling issue, it quickly narrows down to scrutinize the application 

of genetic algorithms in this context. Through a comparative analysis of various authors' 

works, the aim is to enrich the understanding of the effectiveness of genetic algorithms 

in solving this problem. By doing so, this work intends to contribute to the existing 

literature by providing an in-depth evaluation of genetic algorithms as a solution 

method for the Economic Lot Scheduling Problem. 
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1. INTRODUCTION 

 

 

The Economic Lot Scheduling Problem (ELSP) has been widely studied, with extensive 

literature reviews already available. There are comprehensive analyses that take a broad 

view of the subject, such as the taxonomic classification based on scheduling policies and 

solving methodologies proposed by Santander-Mercado & Jubiz-Diaz (2016), and the 

study by Chan et al. (2012) aimed at identifying key research themes and organizing a 

roadmap through recent trends. Given this extensive coverage, it would be redundant 

to address the problem in a general sense. Instead, this thesis aims to delve deeper into 

a specific aspect that has been less explored. The primary focus here is on metaheuristic 

solution methods, specifically genetic algorithms, in the context of the ELSP. The 

ultimate goal is to provide a more profound understanding of the effectiveness of genetic 

algorithms in solving the ELSP, comparing the works of various authors and their 

approaches. This work is not intended to be another comprehensive review, but rather 

an in-depth investigation into a critical area of the ELSP question. 

The Economic Lot Scheduling Problem is a common practical issue that arises when 

multiple products need to be scheduled for production on a single facility. This scenario 

is frequently encountered in various industries, such as food processing where a variety 

of products are made on the same equipment, or in electronics manufacturing where a 

single assembly line is used for multiple products. This cost-conscious approach of 

utilizing a single, high-speed machine capable of manufacturing a range of products is 

often more economical than investing in multiple machines, each dedicated to a 

particular product. However, this strategy prompts an operational challenge: how to 

efficiently plan the production schedule for different products on this multifunctional 

machine. This planning involves not only determining the sequence in which the 

products should be produced, but also defining the quantity to be manufactured in each 

production cycle for every product. 
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This thesis begins with an outline of the research methodology employed in this study, 

presented in Section 2. The subsequent section, Section 3, provides an extensive literature 

review, laying the groundwork for the subsequent exploration of the ELSP. Section 4 

delves into the details of the ELSP, beginning with a clear problem definition, followed 

by an exploration of scheduling policies and solution methodologies. This section also 

discusses the specific assumptions made in the ELSP and its various extensions in the 

field. In Section 5, the focus shifts to meta-heuristics, providing an overview of the tool 

and its applications. The section particularly highlights the use of Genetic Algorithms, 

presenting a comparative analysis of various Genetic Algorithm methods. The 

performance evaluation of these methods, providing an understanding of their efficacy 

in solving the ELSP, is also covered in this section. The thesis concludes with Section 6, 

synthesizing the findings of the study and presenting the conclusions drawn. 
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2. RESEARCH METHODOLOGY 

 

 

This chapter provides a detailed exposition of the research methodology adopted to 

conduct the literature review related to the Economic Lot Scheduling Problem. The core 

of the research methodology used for this thesis is based on the examination and analysis 

of various academic sources. These include scholarly articles and conferences from high-

profile journals such as "Operations Research," "Management Science," "Production and 

Operations Management," and "Journal of Operations Management." In addition, lecture 

notes directly related to ELSP were consulted. The search for relevant material was 

conducted using the keywords "ELSP" and "Economic Lot Scheduling Problem" on 

various academic databases and search engines. These included Google Scholar, JSTOR, 

ScienceDirect, IEEE Xplore, and Scopus. Despite the limited access to all free resources, 

the available scholarly literature on ELSP is comprehensive and diverse. The relevance 

and breadth of this topic is mainly due to two factors. First, ELSP is a field of study that 

has been developed and deepened over many decades, with the first formulation of the 

problem dating back to Jack Rogers in 1958. Second, ELSP comes with many aspects 

resulting from different starting assumptions, each of which can lead to a different and 

unique solution to the problem. 

It is important to note that when the topic of discussion is as broad as in the case of ELSP, 

reviews of the literature may not be able to go into detail or delve into specific 

approaches and solutions. This further substantiates the aim of this thesis, which does 

not merely summarize existing research, but seeks to conduct a deeper and more 

detailed analysis. The goal is to explore and better understand metaheuristic methods, 

with a focus on genetic algorithms, as applied to ELSP. This approach is guided both by 

a personal interest in the topic and by the recognition that, as evidenced by the existing 

literature, genetic algorithms are among the most effective solutions for ELSP. 

The initial literature review encompassed a collection of more than 60 articles. In an 

effort to refine the analysis and align it with the research objectives, a selection of the 

most pertinent papers was executed, while less relevant ones were excluded. The focus 
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was rigorously confined to articles that addressed the Economic Lot Scheduling Problem 

within the context of single-machine scenarios. Consequently, the review intentionally 

excluded studies discussing job shop, multi-machine, and multi-factory contexts. These 

contexts were disregarded as they encompass dynamics and challenges that 

substantially diverge from the scope of this research. Additionally, the multi-factory 

context was specifically excluded due to the insufficiency of available literature, which 

would impede a comprehensive analysis. In addition, the review deliberately excluded 

stochastic scheduling problems, including the Stochastic Lot Scheduling Problem and its 

variants such as the Stochastic Economic Lot Scheduling Problem. Although these 

problems provide valuable insights into scheduling under uncertainty, they introduce 

complexities that make them substantially different from the classic ELSP. The focus of 

this research is strictly on the traditional deterministic form of ELSP, as the stochastic 

and deterministic versions of the problem are not directly comparable due to their 

different underlying assumptions and methods of resolution.  
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3. LITERATURE REVIEW 

 

 

The study of the Economic Lot-Scheduling Problem has a long and rich history in the 

field of operations research and management science. The problem was first formulated 

in 1958 by Rogers, marking a significant milestone in the understanding of production 

scheduling. He introduced the basic problem of scheduling multiple items on a single 

machine, aiming to minimize the setup costs and inventory holding costs. His work laid 

the foundation for the many studies that followed, by identifying the primary trade-off 

in the ELSP between setup and holding costs.  

After Rogers, an important contribution to the field was made by Hanssman (1962), who 

introduced the idea of a cycle strategy where each item is produced exactly once in each 

cycle. This approach greatly simplifies the problem and provides an upper bound on the 

optimal solution.  

Since then, this problem has been addressed in the literature from a multitude of 

approaches, and multiple variants of the problem have been defined. The most 

widespread and traditional definition of the problem was established by Bomberger 

(1966); for further details, please refer to the following chapter. Notably, Bomberger 

introduced the Basic Period approach. This approach pivots on the idea that the cycle 

times for each of the items should be integral multiples of a fundamental minimum cycle 

time. This work is among the most well-known within the ELSP literature. 

A significant advancement in the field was made by Elmaghraby (1978), who developed 

a comprehensive framework to solve the ELSP that includes a series of heuristics to 

generate and evaluate potential schedules. His work provided a more practical approach 

to solve the ELSP in real-world situations. Moreover, Elmaghraby introduced the 

concept of an 'extended basic period'. This concept was developed to resolve issues 

encountered with the feasibility condition of the basic period, which required it to be 

long enough to accommodate the production and setup times of all items. In 1979 

Haessler introduced a heuristic procedure utilizing the concept of the extended basic 

period. His method included a mechanism for verifying the feasibility of the solution, 
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thereby adding a layer of practicality and reliability to the problem-solving process in 

ELSP. 

The Economic Lot-Scheduling Problem was first identified as NP-hard by Hsu (1983), a 

classification later expanded by Gallego & Shaw (1997) to include diverse scheduling 

schemes. This complexity has led researchers to explore various strategies for addressing 

the problem. 
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4. THE ECONOMIC LOT SCHEDULING PROBLEM 

 

 

The Economic Lot-Scheduling Problem integrates two primary challenges in the field of 

operations management: the lot-sizing problem and the scheduling problem. In the 

context of lot-sizing, the goal is to determine the optimal volume of units of a product to 

be produced or purchased in a single batch or lot. This decision requires a delicate 

balance between setup or ordering costs — which are constant for each lot and thus can 

be mitigated by producing larger lots — and inventory holding costs, which escalate in 

relation to the size of the lot. Simultaneously, the scheduling problem focuses on the 

choice of when and in what sequence various tasks or jobs should be executed. This 

decision can be complex, primarily when dealing with constraints such as limited 

availability of resources or strict deadlines to be respected. Within the context of the 

ELSP, these two problems are combined. Consider, for example, a single production 

resource such as a machine or production line, which can be utilized to produce multiple 

products. The objective then becomes to decide both the lot size for each product — that 

is, how many units of each product should be produced in a single setup — and the 

scheduling — that is, the order in which the products should be produced — in order to 

minimize the total costs (Rogers 1958). 

This context may encompass a range of costs, including setup costs, inventory holding 

costs, and potentially also stockout costs in the event that production fails to meet 

demand. Therefore, the ELSP represents a complex and notoriously difficult problem to 

solve, but its relevance is unquestionable in many real-world applications in the field of 

production and supply chain management.  

The concept of batching becomes crucial here, mainly because there is usually a cost or 

time required when the machine transitions from producing one product to another. 

This switch-over expense could be associated with the cleaning process, or the scrap 

losses incurred when adjusting the machine for the next product. The system 

experiences a downtime during these adjustments, implying a non-productive period. 
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Consequently, it necessitates maintaining a higher inventory level to cover for this pause 

in production. 

Therefore, the ELSP represents a complex and notoriously difficult problem to solve, but 

its relevance is unquestionable in many real-world applications in the field of production 

and supply chain management. Boctor (1987) describes diverse applications of the ELSP. 

It is especially apt for assembly lines producing multiple products or models, like 

appliances or vehicles, and metal forming or plastics production lines where each 

product requires a unique die. ELSP is also applicable to blending and mixing facilities 

where different products are filled into distinct containers, and to weaving production 

lines where the primary product is manufactured in varying colors, widths, and grades. 

 

 

4.1 Problem Definition 
 

In the traditional and most widely accepted formulation of the Economic Lot Scheduling 

Problem, by Bomberger (1966), the following conditions are observed: 

• A single machine for production is present, which is designed to process one 

product at a time. 

• The production capacity, although limited, is adequate to fulfill demand 

requirements. 

• The production and demand rates for each product are deterministic, known and 

constant. 

• Each product comes with a fixed setup time and setup cost, both of which are 

independent of the production sequence. 

• The holding cost of the inventory is directly proportional to the quantity of 

product kept in stock. 

Given these parameters, the aim is to determine the most efficient production sequence 

in order to minimize total costs, which encompass both setup and inventory holding 

costs.  
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Two additional assumptions typically found in the traditional model of the Economic 

Lot-Scheduling Problem are the absence of backorders and shortages. These conditions 

are theoretically allowed by the premise that the machine's capacity surpasses demand. 

Given these assumptions and conditions, the Economic Lot Scheduling Problem can be 

mathematically formulated to precisely depict the production sequence optimization.  

Since the beginning of ELSP research, many adaptations of the problem have been 

studied. These variations are founded on a range of assumptions and hypotheses 

including considerations for returns, remanufacturing, allowance for backorders and 

shortages, deteriorating production, and accounting for shelf life. The aim of these 

adaptations is to tailor the models to align more closely with the specialized conditions 

encountered in the industrial landscape. 

 

 

 4.2 Scheduling Policy 

 

In the Economic Lot Scheduling Problem the main goal is to develop efficient production 

schedules that can satisfy demand while minimizing costs. This process typically 

involves selecting a "scheduling policy" approach. As stated by Santander-Mercado & 

Jubiz-Diaz (2016), the scheduling policy provides a framework for constructing 

production schedules, with different policies leading to different schedule types and 

performance outcomes. 

These scheduling policies are broadly grouped into four main categories: 

- the Common Cycle (CC),  

- the Basic Period (BP),  

- the Extended Basic Period (EBP),  

- and the Time-Varying Lot Sizes (TVLS). 

Introduced by Hanssmann in 1967, the Common Cycle Approach assumes an identical 

cycle time for each product. This means that the length of the total cycle has to 

accommodate the production of all products, including setup times. This approach 

simplifies scheduling by creating a uniform production rhythm, always yielding a 
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feasible schedule. However, its cost can be significantly higher compared to the lower 

bound (LB), primarily due to its lack of flexibility in scenarios where products have 

different demand rates or production times. 

The Basic Period Approach, proposed by Bomberger in 1966, provides more flexibility 

by allowing different cycle times for different products. It defines a basic time period 

serving as a reference for scheduling various items production, provided that the cycle 

times are an integer multiple (!!) of the basic period T. Although generally providing 

better solutions to ELSP than the CC approach, formulating a feasible schedule using the 

BP approach is also NP-hard. 

Bomberger's BP approach was later refined by Elmaghraby in 1978 with the introduction 

of the Extended Basic Period Approach. In particular, the EBP approach relaxed the 

constraint requiring the basic period to be long enough to cover the production runs and 

setup times of all items. Instead, it utilizes two consecutive fundamental cycles of 

duration W. The items are loaded according to specific rules: if the multiplier for the 

product " (!!) is odd, the item is loaded on both periods; if instead it is even, the item is 

loaded on only one period. This arrangement ensures the two periods do not interfere 

with each other. The feasibility of the schedule is determined by checking if all items 

assigned to each period can be produced within the time W. This approach provides 

greater flexibility and is particularly suitable for situations where demand or production 

times vary significantly among different products. 

The Power of Two (PoT) restriction on multipliers, as applied in the Extended Basic 

Period policy, offers significant advantages in production scheduling. The key 

advantage is that, since all multipliers are even, item processing can be divided over two 

different cyclic periods without overlap. This mechanism substantially reduces potential 

conflicts and simplifies interference testing. As pointed out by Sun et al. (2009), the 

length of the complete repeating cycle is confined to the value of the largest multiplier, 

rather than the least common multiple of all the multipliers. Chatfield (2007) further 

emphasizes the benefits of the PoT policy in facilitating the development of effective and 

straightforward heuristics. This approach typically eliminates the need for a lengthy 

fundamental cycle time for scheduling production, making its implementation on the 
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factory floor both practical and uncomplicated. It's worth noting that the PoT policy has 

been recognized in literature for consistently delivering high-quality solutions. 

Introduced by Dobson in 1987, the Time-Varying Lot Sizes approach allows for 

different lot sizes for different products within a cycle.  Consistently produces better-

quality, feasible schedules, particularly in scenarios with significant variations in 

demand or production times across different products. Providing the most general 

model among the approaches, it has the unique advantage of not requiring the 

production runs of an item to be of the same length. However, compared to other 

methods, it is the most challenging to solve. 

Each of these approaches offers distinct advantages and is suitable for specific types of 

scheduling problems. The choice of approach often depends on the specific constraints 

and objectives of the problem at hand. 

 

Most research on the Economic Lot Scheduling Problem tends to rely on at least one of 

two assumptions: the Equal-Lot-Size (ELS) assumption or the Zero-Switch (ZS) 

assumption, (also known as Zero Inventory Production (ZIP)). The ELS assumption 

mandates that the production batch sizes for each item be the same. In other words, if 

we are manufacturing multiple items, each batch of each item will contain the same 

quantity. On the other hand, the ZS assumption dictates that a new production cycle for 

a particular item can only start when the inventory level of that item reaches zero. Thus, 

we do not start producing more units of an item until we have completely exhausted the 

existing stock of that item. 

Bulut and Tasgetiren (2014) offer an interesting categorization of scheduling policies. 

They divide them into two different model approaches: the Fundamental Cycle (FC) 

approach and the Cyclic Schedule (CS) approach. 

The FC approach, which is grounded in both ELS and ZS assumptions, mandates that 

the cycle time for any item must be an integer multiple of a base period, known as the 

Fundamental Cycle. Under this approach, the length of the main cycle is determined by 

the least common multiple of these integer multipliers. This schedule within the main 

cycle is then repeated indefinitely. Models operating under the Fundamental Cycle 
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approach are three: the Common Cycle approach, the Basic Period approach, and the 

Extended Basic Period approach. On the other hand, models developed under the CS 

approach do not adhere to the ELS assumption, and they permit lot sizes to vary over 

time. However, these models still uphold the ZS assumption. They provide complete 

schedules, but often result in solutions with extended cycle times, given their flexibility 

in accommodating varying lot sizes. 

 

 

4.3 Solution methodology 

 

Before delving into the specific methodologies employed to tackle the ELSP, it's 

important to set the stage with an understanding of the problem's inherent complexity 

and the implications this has for potential solutions. 

The classification NP-hard refers to optimization problems that cannot be reduced to a 

solvable polynomial form. In other words, it is challenging to verify every potential 

solution in a reasonable computational time. Given its basic assumptions, the ELSP 

present a complexity that has been proven to be NP-hard by both Hsu (1983) and Gallego 

and Shaw (1997). Hsu (1983) demonstrated that even a simplified version of the ELSP is 

NP-hard and suggested that an enumerative procedure is sensible for solving ELSP. 

Gallego and Shaw (1997) further extended Hsu's (1983) study by proving that ELSP is 

NP-hard under various scheduling schemes, including general cycle, zero-inventory 

cycle, time-invariant cycle, lot-invariant cycle, and basic period cycle. Therefore, it can 

be concluded that ELSP is NP-hard in general. In other words, it is not possible to 

transform the ELSP into a solvable polynomial form, making the search for an analytical 

solution for ELSP unfeasible without relaxing some assumptions. 

This NP-hardness of ELSP has led to a branching in research, with two distinct 

approaches emerging: simplified versions that involve significant relaxation of 

restrictions, and complex versions that incorporate sophisticated mathematical models. 

The former can be tackled using traditional programming methods, especially when 

employing the common cycle policy. On the other hand, heuristic approaches have 
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gained popularity as the preferred research direction for addressing the more complex 

versions of the ELSP problems.  

The solution methodology for the Economic Lot Scheduling Problem can be divided into 

various categories. Among these, exact methods are commonly used to solve restricted 

versions of the original problem. These exact methods include techniques such as branch 

and bound, dynamic programming, enumeration, exact algorithms, linear 

programming, marginal analysis, and integer linear programming, to name a few (Beck 

& Glock, 2020). However, due to the complexity of the ELSP, heuristic methods are often 

preferred. These heuristic methods encompass various strategies and techniques like 

dispatch rules, priority rules, g-group heuristic, Johnson’s algorithm, mixed integer 

nonlinear programming (MINLP), pt heuristic, and two-group heuristic, among others 

(Beck & Glock, 2020). In addition, meta-heuristic methods have gained popularity for 

their ability to find high-quality solutions in a reasonable time. Examples of these meta-

heuristic methods include local search, neighborhood search, artificial bee colony 

algorithm, simulated annealing, ant colony algorithm, binary search, cuckoo search, and 

genetic algorithm. Particularly popular among these are the genetic algorithm, tabu 

search, simulated annealing, and the hybrid genetic algorithm (Beck & Glock, 2020). 

While exact methods were once dominant, there has been a shift in recent years towards 

using more heuristic and meta-heuristic methods to solve the ELSP, reflecting the 

ongoing efforts to address the complex nature of the ELSP more effectively, efficiently, 

and robustly (Beck & Glock, 2020). 

 

 

4.4 Specific assumptions 

 

This chapter includes a selection of examples where assumptions have been adjusted to 

allow the traditional ELSP problem to align more effectively with specific real-world 

situations. Please note that the list provided is not exhaustive and does not delve into an 

in-depth exploration of each topic. The integration of specific assumptions, or the 

implementation of variants of the traditional ELSP problem - whether through the 
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addition of variables or the relaxation of certain assumptions - typically results in 

increased complexity of the mathematical model. 

In response to envinronmental pressures, many businesses are now adopting 

remanufacturing alongside traditional manufacturing. Remanufacturing restores used 

products to like-new condition, while returns indicate products sent back to the firm, 

often serving as input for remanufacturing. The return/demand ratio links 

manufacturing and remanufacturing lot sizes. This leads to a complex variant of the 

scheduling problem known as the Economic Lot Scheduling Problem with Returns 

(ELSPR), where the sequencing of production lots influences inventory costs, making 

sequencing decisions vital when determining lot sizes (Tang and Teunter, 2009).  

As businesses incorporate the concept of returns into their operations, they need systems 

to effectively manage these returned items. A crucial aspect of dealing with returns 

involves distinguishing between remanufacturable and non-remanufacturable items. 

This is where the concept of a sorting line, as studied by Ferretti (2020), comes into play. 

A sorting line allows a company to separate remanufacturable returns from those that 

are not. Of course, when implementing such a system, it's important to consider the 

associated costs of the sorting line and how disposal options for scrap items can impact 

the total costs of the system. This aspect of handling returns, and remanufacturing adds 

another layer of complexity to the ELSPR, making its study and solution even more 

challenging. 

Alle et al. (2004) studied a Mixed Integer Linear Programming (MILP) model for the 

ELSP, taking into account performance decay. This phenomenon, prevalent in many 

industrial processes such as chemical processing, involves decreased efficiency over time 

due to factors like catalyst deactivation or heat-exchanger fouling. Regular maintenance 

is required to restore performance, creating an optimization problem: the balance 

between continuing at reduced yields or stopping for maintenance. The optimal solution 

balances production losses from performance decay with gains from continuous 

operation. 

Giri et al. (2003) studied the ELSP in which the production facility is assumed to 

deteriorate due to aging, transitioning from an "in-control" state to an "out-of-control" 



 17 

state, leading to the production of defective items. To manage this issue, their strategy is 

the following: if the process is found to be in an "out-of-control" state, then corrective 

maintenance is performed to restore it to an "in-control" state before the start of the next 

production run; otherwise, preventive maintenance is carried out to enhance system 

reliability. Therefore, the problem's formulation should consider the quality-related 

costs due to the possible production of nonconforming items, as well as inspection and 

maintenance costs. 

In 2011, Goncalves and Sousa explored the ELSP with the inclusion of backorders, a 

scenario often encountered in practical settings, which can contribute to a reduction in 

inventory costs. Indeed, their model was specifically developed to address the 

challenges of a can filling company. The company struggled with maintaining excessive 

inventory levels to prevent backorders. The complexity of their scheduling was due not 

just by the wide range of products being manufactured, but also by the volatility in 

demand rates and the resultant unbalanced inventories.  

 

 

4.5 Extension of ELSP 

 

Variations in basic assumptions and constraints can dramatically alter the nature and 

structure of the problem. These variations become unique problems in themselves. 

While they maintain a relationship with the original ELSP, they are not considered 

within the same category. Instead, they are often treated separately, each with its unique 

characteristics and challenges. Among these related but distinct problems, some have 

attracted significant research interest due to their practical implications and theoretical 

complexity. The following discussion will delve into these categories, highlighting their 

distinct features and the research trends surrounding them. 

 

Stochastic Economic Lot Scheduling Problem 

The deterministic nature of the Economic Lot Scheduling Problem may limit its 

applicability in scenarios where demand is uncertain. To address this, the Stochastic Lot 
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Scheduling Problem (SLSP) and, more specifically, the Stochastic Economic Lot 

Scheduling Problem (SELSP) have been introduced as natural extensions of the ELSP 

within a stochastic context (Winands et al., 2005; Sox et al., 1999). The SELSP accounts 

for uncertainty and variability of parameters, offering a model which more accurately 

mirrors practical industrial scenarios. However, this increased adherence to industrial 

reality brings with it greater analytical complexity. Indeed, until the late 70s, attention 

to the SELSP was limited, despite its undeniable practical value (Winands et al., 2005). 

In a stochastic environment, the traditional rigid cyclic production plan of the ELSP is 

no longer sufficient. A more flexible approach is needed, capable of responding to the 

dynamic changes that characterize these contexts. Furthermore, stocks for individual 

products take on a more significant role in the SELSP compared to the ELSP. They not 

only reduce the number of setups in a cycle but also serve as a protection against 

stockouts and scheduling conflicts due to variations in demand, production, or setup 

times (Winands et al., 2005). Despite being more complex, the SELSP does not entirely 

abandon the insights derived from the ELSP. In fact, a deterministic production plan is 

often used as a basis for solving the stochastic problem, providing a starting point to 

tackle its increased complexity (Sox et al., 1999). Research on the SELSP continues to be 

an area of great interest due to its practical relevance and theoretical complexity. The 

open questions, both from a theoretical and practical point of view, stimulate further 

research in this field, making it a topic of fundamental importance for industrial 

production management (Winands et al., 2005; Sox et al., 1999). 

 

Multi-facility ELSP 

The multi-facility version of the Economic Lot Scheduling Problem, such as the Flow 

Shop ELSP (FS-ELSP), introduces a range of additional complexities compared to the 

single-machine version. In FS-ELSP, each item must go through several stages of 

production, each with specific setup and processing times. This introduces additional 

constraints, such as the fact that a machine can't process more than one product at a time 

and that a lot can't be transferred to the next stage until it's completely processed at the 

current stage. These constraints can generate waiting times between stages, increasing 
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total costs (Huang & Yao, 2008). Although these complexities are not present in the 

single-machine ELSP, the objective remains the same: to determine optimal lot sizes and 

generate a feasible production schedule that minimizes average total costs while 

satisfying the demand for each product. Despite the increased complexity, the multi-

facility ELSP has attracted research attention due to its application in various industrial 

sectors, such as metal forming, plastic extrusion, assembly lines, pharmaceutical, and 

biochemical companies. These production systems usually operate with multiple 

facilities, necessitating different problem-solving approaches than those used for the 

single-facility environment (Santander-Mercado & Jubiz-Diaz, 2016). It's important to 

underscore that the ELSP is already NP-hard, making its flow shop or multi-facility 

versions even more complex. Analytical solutions for such problems seem 

unmanageable. Chan, Chung, and Lim (2013), in their paper "Recent research trend of 

economic-lot scheduling problems," suggest that to derive valuable managerial insights, 

a mix of computational techniques, heuristics, and potentially, simulation approaches 

would be beneficial. Additionally, they propose that Genetic Algorithms, or 

computational intelligence approaches in general, can address the complexity of the 

ELSP problem, especially in its flow shop or multi-facility configurations, which are not 

uncommon in real-world applications. This perspective provides a research roadmap for 

future explorations in the field. However, for the purpose of this study, the focus will 

remain exclusively on the single-machine ELSP, leaving the exploration of multi-facility 

ELSP complexities and solutions for future research. 

 
Capacitated Lot Scheduling Problem  
The ELSP assumes that production capacity is sufficient to meet all demand. In the 

Capacitated Lot Scheduling Problem (CLSP), this assumption is modified by introducing 

a constraint of limited production capacity. This change implies that demand may not 

be entirely satisfied, affecting production scheduling and thereby increasing problem 

complexity, even though it brings the model closer to many real-world production 

situations.  
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5. META-HEURISTICS METHODS 

 

 

5.1 Overview of meta-heuristics 

 

Blum and Roli (2001) define a metaheuristic as a high-level process that iteratively 

guides and adjusts heuristic methods to generate high-quality solutions for complex 

problems. They often employ probabilistic decisions, differentiating from pure random 

search by using intelligent bias based on the objective function, previous decisions, or 

prior performance. In essence, a metaheuristic is a flexible algorithmic framework 

adaptable to a wide array of optimization problems. 

Key properties of metaheuristics, as outlined by Blum and Roli (2001), include: 

• Strategies guiding the search process. 

• Aim for efficient exploration to find near-optimal solutions. 

• Range from simple to complex processes. 

• Operate in an approximate, non-deterministic manner. 

• Incorporate mechanisms to avoid search confinement. 

• Abstract level descriptions due to their non-problem-specific nature. 

• Use of domain-specific knowledge through controlled heuristics. 

• Utilize search experience to guide the process. 

To better visualize the process of metaheuristics, Figure 1 presents a generalized 

flowchart that captures the main steps through which metaheuristic algorithms 

progress. This schematic representation underscores the iterative nature of these 

methods in their pursuit of the best feasible solution.  
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Figure 1. Basic flowchart of a metaheuristic process 

The process begins with the initialization of a population of potential solutions. In the 

context of the ELSP, these solutions represent different production sequences. Each 

solution's fitness is then evaluated, providing a measure of quality that guides the search 

process towards promising solution areas. For ELSP, the fitness function typically aims 

to minimize the total costs associated with the production sequence, such as inventory 

and setup costs. The algorithm subsequently checks whether a specific stopping 

condition, such as a maximum number of iterations or the achievement of a target 

solution quality, has been met. If the stopping criteria are not met, the algorithm 

generates a new set of solutions. This generation process, which often involves strategies 

like crossover and mutation in genetic algorithms or neighborhood search in methods 

like simulated annealing or tabu search, is a critical step in the metaheuristic process. 

The algorithm continues to iterate through these steps, constantly evaluating and 

refining the production sequences, until the stopping criteria are satisfied.  

In the context of the NP-hard Economic Lot Scheduling Problem, research has often 

pursued two main solution approaches: simplified versions with many relaxations, and 
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more sophisticated versions. As noted by Chan Chung and Lim (2012), metaheuristics 

have been particularly valuable for the latter, thanks to their ability to effectively 

navigate complex search spaces and efficiently find near-optimal solutions. Their unique 

properties make them well-suited for tackling sophisticated versions of NP-hard 

problems such as the ELSP, especially when dealing with large-scale problems that 

cannot be solved exactly within a reasonable timeframe. This has led to their wide use 

in the literature. In a content analysis conducted on a sample of 242 articles, Back and 

Glock (2020) revealed interesting trends in the methodology used for solving the ELSP. 

They classified the solution methodologies into five categories: exact methods, heuristic 

methods, meta-heuristic methods, artificial intelligence, and simulation. From 1958 to 

1997, the term "metaheuristics" was a recording hit in only 11% of the articles within the 

"solution methodology" category. This trend changed significantly after 1998, when 

Khouja et al. published the first study using a genetic algorithm. From 1998 to 2019, the 

recording hits for "metaheuristics" increased to 47%, indicating a growing interest in this 

approach in the field of ELSP. 

Blum and Roli (2001) propose several ways of classifying metaheuristic algorithms. For 

instance, they distinguish between nature-inspired algorithms, such as Genetic 

Algorithms and Differential Evolution, and non-nature-inspired algorithms, like Tabu 

Search and Simulated Annealing. Another key classification is based on the type of 

search approach employed: single point search methods, exemplified by Simulated 

Annealing and Tabu Search, versus population-based methods, such as Genetic 

Algorithms and Differential Evolution. They also highlight the usage of a static versus a 

dynamic objective function, and the employment of one or multiple neighborhood 

structures. The use of memory during the search process is also emphasized, with 

methods like Tabu Search employing memory, in contrast to memory-less approaches 

like Simulated Annealing. According to Blum and Roli, the use of memory is a 

fundamental feature of a powerful metaheuristic. The authors also note that the 

distinction between single point search methods and population-based methods 

provides a clear description of the algorithms and point out a trend towards the 
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hybridization of metaheuristics, integrating single point search methods into 

population-based ones (Blum & Roli, 2001). 

In the following sections, we shall embark on a brief exploration of various 

metaheuristics, elucidating their operational mechanisms and presenting specific 

instances of their application within the context of the ELSP. This comprehensive 

examination serves a dual purpose: not only does it aid in enhancing our understanding 

of these diverse techniques, but it also provides a broader comparative framework that 

allows for a more nuanced evaluation of the effectiveness of GAs across the wide 

spectrum of metaheuristics. 

1. Differential Evolution Algorithm 

To introduce Differential Evolution (DE), our reference is the study by Tasgetiren et al. 

(2011), which marked the first application of DE to the ELSP. DE is a population-based 

evolutionary optimization method that functions as a stochastic global optimizer. As 

Tasgetiren et al. (2011) report, DE was originally conceived by Storn and Price (1997) as 

a solution to the Chebychev polynomial fitting problem, and it has since proven 

successful in a multitude of applications. Although there are several mutation variations 

in traditional DEs, in their study Tasgetiren et al. (2011) follow the DE/rand/1/bin scheme 

proposed by Storn and Price (1997). This scheme, "DE/rand/1/bin", represents a 

Differential Evolution (DE) algorithm in which an individual is randomly ("rand") 

selected for mutation, the mutation is based on the difference between a single ("1") pair 

of individuals, and a binary ("bin") crossover is used to create the new individuals. A 

key distinction of DE is this unique differential mutation approach. According to 

Tasgetiren et al. (2011), mutant individuals are generated by adding a weighted 

difference between two randomly selected population vectors to a third member, thus 

perturbing the original vector and effectively exploring the solution space. Tasgetiren et 

al. (2011) address the ELSP using a BP policy and employ the DE to solve the non-linear 

and integer optimization problem. They draw inspiration from the model of Khouja et 

al. (1998) for solution representation. In fact, each individual in their model is composed 

of a floating-point value for the fundamental cycle T and integer multipliers ki of T for 

each item. The encoding is similar to that of Khouja's, despite the DE algorithm operating 
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solely within a continuous domain. Indeed, the values of the multipliers are truncated 

to handle this issue. 

2. Simulated Annealing 

In their 2008 study, Raza and Akgunduz implemented a Simulated Annealing (SA) 

algorithm to address the ELSP, using Dobson's (1987) Time Varying Lot Size 

formulation. This brief overview will provide insights into the general functioning of 

their approach. Simulated Annealing is a stochastic search algorithm inspired by the 

annealing process of slowly cooling metals to minimize their energy states. In 

optimization terms, it's designed to avoid getting trapped in local minima within a 

solution space by occasionally allowing "uphill moves," i.e., transitions to worse 

solutions (Blum and Roli, 2003). Motivated by the recent success of other meta-heuristics 

in solving the ELSP, Raza and Akgunduz (2008) introduced their SA approach. They 

capitalized on SA's adaptability and its ability to explore a larger solution space to avoid 

local minima, thus efficiently solving the ELSP. 

 

 

 

  



 25 

5.2 Genetic Algorithms 

 

In recent years, Genetic Algorithms (GAs) have significantly gained traction within the 

Production and Operations Management (POM) field as a problem-solving tool, 

demonstrating their potential to tackle a broad spectrum of problems. Their heuristic 

nature provides a versatile and effective alternative to traditional methods like hill 

climbing, Tabu search, and simulated annealing. Even at the time of the review by Aytug 

et al. (2003), GAs were already considered valuable tools, and since then, the scientific 

literature has further expanded, particularly concerning the Economic Lot Scheduling 

Problem. This growth is underscored by Chung and Chan (2012), who recognize GAs as 

an optimal approach for the ELSP. GAs are a robust and flexible class of optimization 

techniques that operate over iterative generations. They are based on principles of 

genetic inheritance and Darwinian 'survival of the fittest', aiming to find near-optimal 

solutions to complex problems (Khouja et al., 1998). As Raza and Akgunduz (2008) note, 

the distinctly stochastic nature of GAs, including the initial random generation of 

solutions and the probabilistic selection of individuals for reproduction, makes them 

well suited to problems that are complex and have a large search space, making them 

impossible to search exhaustively. Before we delve into the details of these components, 

let's consider the following flowchart (Figure 2), which provides a visual overview of the 

Genetic Algorithm process. This will help us better understand how these components 

interact within the algorithm.  
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Figure 2. Overview of the Genetic Algorithm process 

In the following analysis, we will explore the eight basic components that a GA must 

have, as defined by Aytug et al. (2003). 

1. Genetic Representation for Potential Solutions 

In GAs, each potential solution to the problem at hand is represented as an individual, 

often referred to as a chromosome. Depending on the nature of the problem, 

chromosomes can be represented using various data structures. As Aytug et al. (2003) 

and Raza and Akgunduz (2008) explain, it's common to use binary, integer, or floating-

point representations. These various representations are designed to suit the problem 

domain. In the specific case of the ELSP, the solution can be represented as a discrete 

sequence of production lots. This makes GAs a particularly suitable choice of algorithm; 

as stated in the work of Aytug et al. (2003), there is empirical evidence of their success in 
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tackling computationally intractable problems, especially those with discrete solution 

spaces. The representation of the solution further depends on the chosen solution 

method, such as Basic Period (BP), Extended Basic Period (EBP), or Time Varying Lot 

Sizes (TVLS), while the general objective is to effectively represent a production 

sequence for optimization. 

2. Creating an Initial Population of Solutions 

The genetic algorithm process begins with the creation of an initial population of 

individuals. These individuals, each representing a potential solution, are typically 

generated randomly within the problem's search space (Raza and Akgunduz, 2008). This 

initial population is the starting point for the search for optimal solutions (Khouja et al., 

1998). 

3. Evaluation Function to Rate ‘Fitness’ 

Each chromosome in the population is evaluated using a fitness function, which 

measures how well it solves the problem. Higher fitness values correspond to better 

solutions. As per the principle of "survival of the fittest," individuals with higher fitness 

are more likely to be selected for the next generation (Aytug et al., 2003). This evaluation 

process includes a step called fitness scaling, which is used to adjust the fitness values 

of individuals in the population (Raza and Akgunduz, 2008). The fitness function for 

ELSP typically aims to minimize the total costs associated with the production sequence, 

such as inventory and setup costs. At each iteration, every new generation of production 

sequences is evaluated based on this fitness function.  Often, a penalty term is 

incorporated into the fitness function to discourage infeasible solutions that might 

appear in the new generations. 

4. Scheme for Selecting Individuals 

Selection is a vital step in the genetic algorithm process. Selection mechanisms determine 

which individuals are chosen to create the next generation. The selection scheme is 

typically probabilistic and biased towards individuals with higher fitness. There are 

various selection methods, but all aim to balance the exploration of new areas in the 

solution space with the exploitation of already discovered effective solutions (Khouja et 

al., 1998). The selection scheme for ELSP could be a technique like roulette wheel 
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selection or tournament selection, where individuals (production sequences) are selected 

probabilistically based on their fitness values. Other selection strategies such as rank 

selection or steady-state selection can also be utilized, each offering different balances 

between exploration and exploitation. Elitism, which guarantees the survival of the most 

fit individuals, is another method often incorporated to maintain high-quality solutions 

in the population. The choice of selection scheme significantly influences the 

performance of the Genetic Algorithm and should be tailored to the specific 

characteristics of the problem. 

5. Operators to Alter Genetic Composition 

Genetic operators, such as mutation and crossover, are used to alter the genetic makeup 

of individuals. Crossover combines parts of two or more individuals to create new 

offspring. Mutation, on the other hand, introduces small variations in an individual. 

These operators play a crucial role in exploring the search space for optimal solutions 

(Aytug et al., 2003). The crossover operator could be applied by swapping portions of 

two production sequences to create new offspring. Mutation can be introduced by 

randomly altering a position in the production sequence. 

6. Replacement Scheme for Creating New Generations 

The selected and genetically altered chromosomes form the next generation. This 

replacement scheme allows the genetic algorithm to iteratively improve the population, 

ideally leading to increasingly better solutions over time. The specific replacement 

scheme used can vary, but the primary goal is always to maintain or improve the overall 

fitness of the population (Aytug et al., 2003). The new generation of production 

sequences is formed from the offspring (created by crossover and mutation). Often, an 

elitist strategy is applied, where some of the better-performing individuals from the 

current generation are retained. However, it's vital to maintain a degree of exploration 

in the population to avoid convergence to local optima. This is typically achieved by 

ensuring a portion of the new generation is composed of diverse or mutated solutions. 

7. Stopping Criteria 

The iterative process of selection, crossover, and replacement continues until certain 

termination criteria are met. According to Aytug et al. (2003), these criteria might include 
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reaching a fixed number of generations, a lack of diversity in the population, or a 

predefined threshold of solution quality. 

8. Selection of GA Parameters 

The performance of genetic algorithms can be significantly influenced by the choice of 

parameters, such as population size, crossover rate, mutation rate, and selection strategy. 

The optimal parameter settings often depend on the specific problem being solved, and 

it can be a complex task to select the best parameters (Khouja et al., 1998). The importance 

of parameter selection in genetic algorithms is highlighted in Chatfield's (2007) study, 

which dedicates an entire section to applying an "offline performance" metric (described 

in another of his papers), which tracks a genetic algorithm's progress toward finding the 

best solution. Through this function, he is able to identify the optimal values for 

crossover and mutation applied to the Bomberger problem. The study also includes 

graphs depicting the impact of these parameters through curves. 

 

After having outlined the fundamental aspects of a genetic algorithm, the focus now 

shifts to an analysis of how the authors, who are the subjects of this thesis, have 

developed their genetic algorithms to solve the Economic Lot Scheduling Problem. Table 

1 provides a brief description of the method and summarizes the benchmarks used for 

the experimental validation of their proposed models. Table 2, on the other hand, offers 

a succinct overview of the specific features of these genetic algorithms. A more detailed 

examination of the information summarized in these tables will be undertaken in the 

subsequent chapter, which will focus on analyzing and comparing the various 

approaches. 

 



 

Table 1. Comparisons on Genetic Algorithms and benchmark problems 

Author Method description Benchmark problems  Compared methods 

Khouja et al. 
(1998) 

GA for solving the ELSP using the BP approach  Bomberger’s 10 items problem 
Dynamic Programming by 
Bomberger (1966) 

Moon et al. 
(2002) 

Hybrid Genetic Algorithm based on the time-varying lot 
sizes approach  

Bomberger’s 10 items problem 
Mallya’s 5 items problem  

Heuristic by Dobson (1987) 
GA by Khouja et al. (1998) 

Chatfield 
(2007) 

Genetic Lot Scheduling (GLS) is a genetic algorithm for 
ELSP that utilizes an approach similar to EBP, but with an 
enhanced item-to-period loading scheme and integer 
multipliers for the cycle time. 

Bomberger’s 10 items problem 
Six benchmark ELSP problems 

GA by Khouja et al. (1998) 
Heuristic by Haessler (1979) 

Sun et al. 
(2009) 

GA for solving ELSP under the EBP and PoT policy 
Bomberger’s 10 items problem 
Six benchmark ELSP problems 

GA by Chatfield (2007) 
Heuristic by Haessler (1979) 
GA by Khouja et al. (1998) 

Qiu and 
Chang 
(2009) 

Hybrid Genetic Algorithm with BP approach that  
incorporates specific heuristics to expedite the discovery of 
feasible solutions and mitigate the risk of converging to 
local optima. 

Bomberger’s 10 items problem, 
with 66% and 88% utilization rate 

GA by Khouja et al. (1998) 

Goncalves 
and Sousa 
(2011) 

Genetic Algorithm for Lot Sizing (GALS): hybrid approach 
combining a GA and a surrogate LP formulation for the 
ELSP, with a Rolling Horizons policy that allows 
backorders. 

Bomberger’s 10 items problem 
Mallya’s 5 items problem 

Heuristic by Dobson (1987) 
GA by Moon et al. (2002) 
Simulated Annealing by Raza and 
Akgunduz (2008)   

Chung and 
Chan (2012) 

Two-level GA using either the nearest integer or power-of-
two methods for a time-varying lot size ELSP 

Bomberger’s 10 items problem 
Mallya’s 5 items problem  

Heuristic by Dobson (1987) 
GA by Moon et al. (2002) 
Simulated Annealing by Raza and 
Akgunduz (2008)  
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Table 2. Comparisons of GA’s characteristics 

Author Encoding and representation 
Population parameters and 
termination condition applied 

Genetic operators  
1. selection, 2. replacement,  
3. crossover, 4. mutation 

Feasibility and 
fitness 

Khouja et 
al. (1998) 

Chromosomes consist of one floating-
point number for cycle time and n 
integers indicating the cycle count for 
each item production ($, &", &#, … , &$),  
represented in binary format. 

Population size: 200. Random 
initialization. 
Runs up to 1 000 generations; 
stops if no improvement for 
150 gens or < 0.1 improvement 
in last 10 best solutions. 

1. Stochastic tournament, 
2. Generational replacement 
with elitism, 
3. Combination of 1-point, 2-
points, and uniform crossover, 
probability = 0,7 
4. Probability of mutation: 1/ 
(chromosome length). 

Objective fitness 
function with 
increasing 
penalization of 
infeasible solutions 

Moon et al. 
(2002) 

Real integer string representation. Two 
parts of chromosome: )*+,	. =
(0", 0#, … , 0$), 0! is index of product. 
)*+,	1 = (2", 2#, … , 2$), 2! is absolute 
location of genes in Part A.  

Population size: 100. Random 
initialization. 
Runs until 1000 generations or 
no improvement over 150 
generations. 

1. Stochastic tournament, 
2. Generational replacement 
with elitism 
3. Partial Matched Crossover, 
with a 0,9 rate, 
4. Mutation rate: 1/ (string 
length of chromosome). 

Objective Fitness 
Function, scaled with 
sigma truncation  

Chatfield 
(2007) 

Solutions for production scheduling are 
encoded in binary strings. Each 
chromosome includes a fundamental 
cycle W, multipliers {!", !#, … , !%}, and 
start periods {5", 5#, … , 5%}. 

Population size: 30 
Random initialization.  
10 000 generations. 

1. Fitness-weighted roulette 
wheel selection  
2. Generational replacement 
with elitism 
3. One-point crossover 
6&'()) = 0,8  
4. Bit flipping (0 becomes 1 and 
vice versa), 6*+, = 0,01 

Cost-based fitness 
function, scaled in a 
range between Cmin 
and Cmax, with 
infeasibility penalty 
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Sun et al. 
(2009) 

Solutions for production scheduling are 
encoded in integer strings. Each 
chromosome consists of a set of power-
of-two multipliers {!", !#, … , !-},, and 
production positions {:", :#, … , :-},. 

Population size: 100. 
Run for 10 000 generations or 
until no improvement over 
1 000 generations. 

1. Fitness Proportional Selection 
2. Elitist strategy (10%) 
3. Two-point crossover 
4. Mutation rate = 0,1 

Objective fitness 
function with 
increasing 
penalization of 
infeasible solutions 

Qiu and 
Chang 
(2009) 

Each individual, encoded as a binary 
string, represents a production 
schedule with the fundamental 
cycle T and the multipliers 
(&", &#, … , &$)   for each item's 
production. 

Initialization: assign each  
&" = 1 and sets T to a random 
value between its LB and UB. 

Not specified 

Feasibility is guided 
by 3 heuristic 
theorems to find 
viable solutions and 
avoid local optima. 

Goncalves 
and Sousa 
(2011) 

Random-Keys alphabet used for 
encoding. Indirect representation 
generates the Master Production 
Sequence (MPS) and the maximum 
number of setups for the solution. Final 
solution (PS and production 
times/quantities) obtained via Linear 
Programming. 

Population size: 100. 
Initialization with a Random-
key vectors uniformly sampled 
from [0,1]. 
Stop after 100 generations 

1. Elitist (top 15% copied) 
2. Elitist strategy 
3. Parameterized uniform 
crossover, between top 15% 
chromosomes and others 
6&'()) = 0,7  
4. Generation of new 
chromosomes (bottom 10%) 

Feasibility: All 
offspring formed by 
crossover are feasible 
solutions. Fitness: 
Exact total cost 
function 

Chung and 
Chan (2012) 

Two-level GA, with two integer 
chromosomes. Type α: each gene 
represents product’s production 
frequency rounded off to the nearest 
integer or to the power of two of 
T. Type β: an ordered string 
representing the corresponding 
sequence of product production.  

Population size: 20 + 50. 
Random initialization (in α 
two randomly chosen 
chromosomes are recoded: one 
to the nearest integer 
frequency, and another to the 
nearest power of two 
frequency) 

1. Roulette wheel  
2. Elitist strategy (low fit 20% 
replaced with a random 
generation) 
3. cr1 = cr2 = 0,2 
4. mr1 = mr2 = 0,2 

Fitness is calculated 
using Dobson's ELSP 
formulation (cost and 
durations), first on 
chromosome β, then 
on α. 



 

5.3 A comparative analysis of Genetic Algorithms 

 

Commencing our analysis, it becomes apparent that different authors have adopted 

unique approaches in applying Genetic Algorithms to the Economic Lot Scheduling 

Problem, starting with different scheduling policies. 

Khouja (1998) introduced a Genetic Algorithm as a solution to the ELSP, formulating it 

based on the Basic Period approach. Also Qiu and Chang (2009) opted for the Basic 

Period approach in their genetic algorithm, due to its ability to create economically 

viable lot sizes and ensure production feasibility. Despite its inability to guarantee 

feasible production schedules, they chose it for its practicality and widespread use in 

production facilities, aiming to address its shortcomings through their research of an 

efficient algorithm.  

Sun et al.'s (2009) genetic algorithm employs the EBP policy with PoT multipliers, where 

each cycle time is a power of two of the basic period. Chatfield (2007), instead, utilizes 

an approach similar to EBP, that enhanced item-to-period loading scheme and integer 

cycle time multipliers, aiming to construct a fully defined and simplified solution 

structure. The identification of a fundamental cycle and a set of multipliers alone isn't 

sufficient to fully define a solution: by incorporating a set of start periods along with 

basic item loading and sequencing rules, this approach creates a production schedule 

that can be feasibly and efficiently checked. 

Moon et al. (2002), building upon Dobson's (1987) formulation for the Time-Varying Lot 

Sizes approach, proposed a hybrid GA. However, their approach utilized the GA solely 

for determining the production sequence, without extending it to the determination of 

production run lengths, frequencies, or cycle lengths. In a similar vein, Chung and 

Chang (2012) also started with Dobson's formulation for the Time-Varying Lot Size, and 

proposed a modified hybrid GA designed to address the rounding off of the production 

frequency method. Their GA uniquely combined the procedures of rounding off the 

production frequencies, optimizing the production schedule, and calculating the 

production time into a single GA.  
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As pointed out by Chatfield (2007), Basic Period approach, despite being well-suited to 

chromosomal representation and genetic search, imposes limitations that prevent it from 

producing solutions as competitive as those from less restrictive ELSP formulations. This 

point will be further emphasized by the forthcoming results of the comparison 

experiments. However, shifting to a formulation like the EBP is not without its 

challenges, particularly due to the complexity brought about by feasibility issues, which 

call for a more intricate representation of solutions. One possible middle ground could 

be the adoption of the Power of Two policy, which provides a balance between solution 

flexibility and feasibility constraints. This policy restricts the feasible production cycles 

to powers of two, reducing the complexity of the search space while allowing for a wider 

array of potential solutions compared to the Basic Period approach. 

A separate discussion is required for the work of Goncalves and Sousa (2011), 

particularly because they also consider backorders. This is not a common assumption 

within the scope of the classical ELSP, as the hypothesis of production capacity satisfying 

all demand typically makes the use of backorders unnecessary (though it could be more 

effective for high utilization rates). Indeed, the inclusion of backorders significantly 

complicates the resolution model: the paper employs a rolling horizon policy with a non-

linear and not positive-definite objective function. This model is subsequently simplified 

by applying an upper bound on inventory costs, transforming it into a mixed integer 

quadratic programming model. Finally, the quadratic objective is linearized into a linear 

programming (LP) model.  

This added complexity has implications for the performance evaluation of their study. 

Specifically, Goncalves and Sousa assessed the effectiveness of their Genetic Algorithm 

for Lot Sizing by benchmarking it against other classical ELSP approaches. They 

enforced a cyclical production schedule to minimize both setup and inventory holding 

costs by equalizing the initial and final inventory levels and setting the planning horizon 

to the sum of the setups in the production schedule. To ensure fair comparisons and 

prevent backorders in the optimal solutions, they increased the backorder cost per unit 

until backorders were eliminated, while also monitoring for any backorder occurrences. 
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The genetic algorithm introduced by Khouja et al. (1998) represents the first application 

of this metaheuristic for solving the ELSP. The Basic Period formulation of the ELSP is 

ideally suited for genetic algorithms and offers significant advantages over the 

traditional dynamic programming method proposed by Bomberger (1966). Indeed, 

finding the optimal solution for the fundamental cycle T and multipliers with dynamic 

programming requires numerous iterations, resulting in a process that is both 

computationally intensive and time-consuming. However, through Khouja et al.'s 

representation in the chromosomes, the cycle time and multipliers are simultaneously 

optimized using the genetic algorithm. This approach significantly simplifies the 

process. Qiu and Chang (2009) also use the BP approach and follow Khouja's genetic 

algorithm representation. However, their introduces some innovations as it is a hybrid 

GA that also uses heuristics. For instance, they expedite the search for the optimal 

solution by initializing T within its upper and lower bounds and setting each multiplier 

equal to 1 for the first generation of members. This approach, inspired by the Common 

Cycle method, ensures the creation of some feasible individuals in the initial generation. 

This increases the possibility of finding a feasible search space, leading to a faster 

convergence rate towards the optimal solution. 

Sun et al. (2009) applied a GA to the ELSP under the Extended Basic Period policy with 

Power of Two multipliers. Their innovative approach uses a chromosome, composed of 

two arrays of integer numbers, to represent a solution. This chromosome comprises a set 

of PoT multipliers !! and a corresponding set of production positions :!. The cycle length 

(W) is not explicitly stated in this chromosome, instead, its optimal value is analytically 

determined based on the given multipliers (!!) and positions (:!). To ensure the 

feasibility of the production schedule represented by the chromosome, they set 

constraints on its integers. Specifically, the multiplier for each product is limited to the 

range 1 ≤ !! < 1 >!⁄  and the production position for each product is constrained to 

1 ≤ :! < !!. 
Chatfield (2007) developed the Genetic Lot Scheduling (GLS), an innovative approach 

to the ELSP. In this approach, solutions are represented by binary strings encoding a 

fundamental cycle (W), its multipliers {!", !#, … , !%} and start periods {5", 5#, … , 5%}. The 



 36 

inclusion of start periods allows the algorithm to construct a fully defined solution 

structure, enhancing the item-to-period loading scheme and allowing integer multipliers 

for the cycle time. Unlike traditional ELSP methods that restrict multipliers to Powers of 

Two, the GLS approach permits multipliers to be distributed across various periods. 

Items are assigned to periods based on their multiplier (!!) and start period (5!) values, 

with the condition that 1 ≤ 5! ≤ !!. A standout feature of this approach is how it 

manages items with non-PoT multipliers. It reserves machine time for these items in an 

'odd/even' style, similar to the EBP approach, which prevents sequence feasibility issues 

and helps maintain schedule stability. Moreover, GLS addresses sequence interference 

problems by sequencing items within a period based on their multiplier value. This 

effectively extends the nested schedule properties to all integer multiplier values, 

significantly enhancing the feasibility and efficiency of the production schedule. 

Both studies, Moon et al. (2002) and Chung and Chan (2012), apply a genetic algorithm 

based on the TVLS approach to solve the ELSP. However, they differ significantly in 

chromosome representation and problem-solving structure. Moon et al. (2002) use a 

hybrid GA and present a composite and unique chromosome representation. Their 

chromosome is split into two parts: Part A, which contains the indices of the products, 

and Part B, which indicates the absolute positions of the genes in Part A. This model 

combines the production frequencies and production sequence into a single 

chromosome, allowing the GA to operate on both aspects simultaneously. On the other 

hand, Chung and Chan (2012) propose a nested two-level GA with a distinct 

chromosome representation at each level. At the first level, the α-type chromosome 

optimizes the production frequencies, rounded to the nearest integer or the power of 

two. At the second level, the β-type chromosome, derived from the optimized α-type 

chromosome, is used to optimize the production sequence. This nested approach allows 

for more specific and focused optimization, addressing each aspect of the problem 

separately. 

Selection and replacement operators play a crucial role in determining the effectiveness 

of genetic algorithms, but there's no universally superior approach. The choice of 

operators largely depends on the specific problem the algorithm needs to solve. 
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In terms of selection, a common approach is fitness-proportional selection, often termed 

"roulette wheel selection". This method, used by researchers like Chatfield (2007) and 

Sun et al. (2009), assigns each individual a selection probability proportional to their 

fitness. Thus, individuals with a high fitness score have a higher chance of being selected 

for crossover. This approach tends to favor high-quality solutions, accelerating 

algorithm convergence, but risks premature convergence to a local optimum. Another 

common selection approach is tournament selection, used by Khouja et al. (1998) and 

Moon et al. (2002). In this method, a subset of individuals is randomly selected, and the 

one with the best fitness is chosen. This strategy tends to maintain greater population 

diversity, reducing the risk of premature convergence. 

Regarding replacement, the most widespread approach seems to be elitism, where the 

best solutions are preserved from one generation to the next. This method has been used 

by Khouja et al., Moon et al., Chatfield, and Sun et al. Elitism helps ensure the algorithm 

doesn't lose its found best solutions, but if applied too rigidly, can limit population 

diversity and hinder the exploration of new solutions. 

Fitness-proportional selection and elitism are popular techniques, but there's no "one-

size-fits-all" solution. The optimal choice of genetic operators depends on the specific 

problem to be solved and requires a careful balance between preserving found best 

solutions and exploring new solution space areas. 

A similar discussion can be made for genetic operators, where there is no universally 

"best" genetic operator. The choice of genetic operators is heavily dependent on the 

nature of the problem and the specific needs of the algorithm. It requires a balance 

between preserving genetic material that contributes to high fitness and introducing new 

genetic material to explore a wider range of potential solutions. 

Single-point crossover is the most commonly used among the authors studied, being 

employed by Khouja et al. (1998) and Moon et al. (2002). However, two-point crossover 

and uniform crossover are also used when the authors believe they are more suitable to 

their specific problem. For instance, Chatfield (2007) opts for two-point crossover, while 

Sun et al. (2009) use uniform crossover. 
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Bit-flip mutation is the most common mutation operator due to its simplicity and ability 

to introduce new diversity. This operator is used by Chatfield, Sun et al., and Khouja et 

al. However, when a higher level of diversity is necessary, multi-point mutation is 

employed, as is the case with Goncalves and Sousa (2011). 

Every iteration of the genetic algorithm involves the evaluation of solutions in terms of 

feasibility and fitness. Both of these aspects depend on the specific ELSP formulation 

being used, whether it's the Basic Period approach, Extended Basic Period approach, or 

Time Varying Lot Sizes approach. Initially, the feasibility of a solution is assessed. This 

involves checking if the solution meets all of the problem's constraints, such as adhering 

to production capacities. Next, the fitness of the solution is evaluated. This process 

gauges the quality of the solution using the objective cost function as a reference. After 

the genetic operators have been applied, the algorithm may generate infeasible 

solutions. To handle these cases, a penalty function is typically incorporated into the 

fitness evaluation. Instead of outright discarding infeasible solutions, they are assigned 

a penalty to indicate their deviation from feasibility. This approach is crucial as it helps 

prevent premature convergence to local optima and encourages the exploration towards 

a globally optimal solution. This penalty approach in fitness evaluations has been 

utilized by various researchers in the field, including Khouja et al. (1998), Chatfield 

(2007), Sun et al. (2009), and Qiu and Chang (2009). Qiu and Chang (2009), in particular, 

employed heuristics to further enhance the fitness of solutions, directing the algorithm 

towards feasible and high-quality solutions. 

 

 

5.4 Evaluation of performances  

 

The objective of this research is to explore the recent advancements and enhancements 

in the application of Genetic Algorithms to solve the Economic Lot Scheduling Problem. 

The optimal approach to evaluate performance involves implementing a series of 

simulations to validate the efficacy of the proposed solution method. As indicated in 

Table 1, all authors have used the classic 10-items problem, originally proposed by 
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Bomberger in 1966, as a common ground for their experiments. This benchmark has been 

extensively utilized to test new approaches to the ELSP, providing a consistent basis of 

comparison for advancements in this field. The data for Bomberger's stamping problem 

are detailed in Table 3. Costs are computed based on 240 operational days per year, and 

production is estimated for an eight-hour workday. An annual interest rate of 10% is 

also accounted for. The desired utilizations are obtained by multiplying the base 

demands by a constant.  

 
Table 3. Data from Bomberger’s (1966) 10-items problem 

Item 

" 
Prod. rate 

6! (units/day) 

Demand rate 

@! (units/day) 

Setup time 

A! (days) 

Setup cost 

.! ($) 

Standard cost 

B! ($/unit) 

1 30 000 100 1 15 0,006 5 

2 8 000 100 1 20 0,177 5 

3 9 500 200 2 30 0,127 5 

4 7 500 400 1 10 0,100 0 

5 2 000 20 4 110 2,785 0 

6 6 000 20 2 50 0,267 5 

7 2 400 6 8 310 1,500 0 

8 1 300 85 4 130 5,900 0 

9 2 000 85 6 200 0,900 0 

10 15 000 100 1 5 0,040 0 

 

 

In order to gauge the quality of the models, it's critical to consider the utilization of the 

machines (or the sum of densities), defined as: > = ∑ .!
/!!  (where: " = item index; @! = 

demand rate for item "; 6!  = production rate for item ").  Some authors, such as Moon et 

al. (2002), and Chung and Chan (2012), refer to its complementary: D = 1 − ∑ .!
/!! , which 

is defined by Moon et al. (2002) as the long-run proportion of time available for setups. 

Utilization measure is critical for evaluating results as it provides a broader perspective. 

In the literature, reference utilization values such as 66% and 88% have been used. 
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However, it's clear that solving the ELSP is more challenging and meaningful for high 

values of utilization (small values of D). In fact, values of 92%, 95%, and 98% are often 

considered as well. Moon et al. (2002), Goncalves and Sousa (2011), and Chung and Chan 

(2012) have calculated the total cost only for D = 0,01, representing a highly loaded 

facility. These latter authors, by the way, are the only ones who have calculated the total 

cost on a daily basis, considering 240 working days in a year. For ease of comparison, in 

this study, the annual costs will be reported for all models. Table 4 provides annual costs 

expressed in dollars for different levels of utilization, with each row representing a 

different author's model. Furthermore, lower bound values have also been included as 

a point of comparison. 

The simplest approach that comes to mind when finding a lower bound to the ELSP is 

the Independent Solution (IS). This method applies basic lot-sizing techniques to each 

product independently, treating them as if they were the only item being produced. By 

calculating the Economic Production Quantity (EPQ) for each product individually, the 

IS essentially disregards the capacity constraints imposed by the shared use of the 

machine among several products. This oversimplified approach has limited its 

application as a benchmark, with only a few studies, such as those by Khouja et al. (1998) 

and Chatfield (2007), considering it. In contrast, the majority of papers reviewed in this 

thesis adopt a tight lower bound scheme for benchmarking. This scheme, initially 

suggested by Bomberger (1966) and later rediscovered by researchers starting with 

Dobson (1987), calculates the EPQ under the machine's capacity constraints. This ensures 

a sufficient amount of time is available for setups, although it does not account for the 

synchronization constraint preventing simultaneous production of two items. Despite 

not being a closed-form expression like the IS, the solution to this nonlinear 

programming problem, which can be obtained via a line search algorithm, serves as a 

more accurate and practical lower bound on the total cost for the general ELSP due to its 

consideration of setup capacity. The common cycle approach, assuming identical cycle 

times for all products, has been proposed as an upper bound by some researchers. 

However, for benchmarking purposes in this study, this approach may not be 

considered useful. 
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Table 4. Annual cost (in USD) for different level of utilization 

Utilization 66% 88% 92% 95% 98% 99% 

Independent Solution   7 589 7 715 7 812 7 906 7 936 

Tight Lower Bound  6 739 7 589 7 715 8 420 15 683 29 508 

Dynamic Programming by 
Bomberger (1966) 

7 178 8 796         

Heuristic by Haessler (1979)   7 697 7 972 11 962 22 526   

Heuristic by Dobson (1987)   7 697       30 802 

Khouja et al. (1998) 7 024 8 782 9 746 12 018 24 534 55 545 

Moon et al. (2002)           30 269 

Chatfield (2007)   7 697 7 947 9 140 20 500   

Simulated Annealing by Raza and 
Akgunduz (2008) 

          30 034 

Sun et al. (2009)   7 697 7 947 9 097 19 004   

Qiu and Chang (2009) 6 998 8 738         

Goncalves and Sousa (2011)           30 058 

Differential Evolution algorithm by 
Tasgetiren et al. (2011) 

7 024 8 782 9 746 11 952 24 477 47 633 

Chung and Chan (2012)           29 698 

 

One intriguing observation from the data is that the performance of several algorithms 

is highly dependent on the level of utilization. While certain algorithms excel in 

scenarios with low utilization, their performance can dramatically decrease when faced 

with high utilization problems. In some instances, identifying an optimal feasible 

solution becomes increasingly challenging as the utilization level reaches its peak. This 

pattern is particularly evident when examining the maximum level of utilization. The 

most successful model, as shown in the table, was devised by Chung and Chang (2012), 
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utilizing a two-level genetic algorithm. This model comes remarkably close to the tight 

lower bound value, indicating its high efficiency. Similarly, the genetic algorithms 

developed by Moon et al. (2002) and Goncalves and Sousa (2011), along with the 

Simulated Annealing method by Raza and Akgunduz (2008), demonstrate 

commendable performance. On the contrary, the model proposed by Khouja seems to 

falter when dealing with high levels of utilization, indicating a possible limitation in its 

application. 

 

The authors who employ the Time Varying Lot Size scheduling policy, including Moon 

et al. (2002), Raza and Akgunduz (2008), and Chung and Chan (2012), incorporate 

production times into their solutions. These sequences of production times are derived 

from the production sequences that are presented as solutions from their respective 

algorithms. In their solution for Bomberger's 10-items problem, all of them considered a 

utilization rate of 99%, which is representative of a highly loaded facility. Under this 

assumption, it's feasible to approximate idle time as zero. By applying the constraints of 

the ELSP in Dobson's (1987) formulation, it's possible to estimate the production times. 

This method is referred to as the "quick-and-dirty" heuristic by Moon et al. (2002). 

However, these production time calculations are not included in this study because they 

do not provide a basis for comparison, as they are not a standard feature across all the 

analyzed models, and they do not offer any significant insight for comparing models or 

identifying a superior one. 

 

The experimental outcomes clearly indicate that the time-varying lot size approach is 

the most effective. In their 1998 study, Khouja et al. developed a genetic algorithm based 

on the Basic Period approach. While they recognized that this model might not surpass 

Dobson's Time-Varying Lot-Size method, proposed in 1987 and known for its superior 

performance, they nonetheless chose to use the Basic Period approach in their pioneering 

application of genetic algorithms to the ELSP. 
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6. CONCLUSIONS  

 

A key aspect of this study lies in the substantial differences between scheduling policies. 

The time-varying lot size method has proven to be the best both in terms of total cost 

performance and inherent flexibility. This method allows for variable production run 

lengths, catering to the dynamic needs of production processes. However, it's also the 

most complex model to implement. Therefore, it's imperative to compare the solutions 

proposed by various authors based on their adopted scheduling policy. Moreover, when 

applied to real-world scenarios, the chosen model should best align with the case study, 

considering factors such as implementation difficulty and calculation speed. This 

ensures that the model not only theoretically fits but also practically adapts to the 

specific circumstances of each case.  

The study of genetic algorithms applied to the Economic Lot Scheduling Problem has 

involved a comprehensive review of papers produced over a long-time span. This 

provides a unique perspective on the evolution of this field, both in terms of the models 

used and the results achieved. Throughout the thesis, we trace this evolution, 

highlighting key developments and shifts in approach. 

As the sphere of production scheduling evolves, numerous opportunities arise for 

further investigation and refinement. One prominent area of interest is the study of the 

effects of specific assumptions on the efficacy of scheduling methods. The incorporation 

of these assumptions into the models not only opens up new possibilities for refining 

and improving scheduling methods, but also increases model complexity. This poses a 

significant challenge in developing models that accurately represent the evolving 

realities of production while remaining manageable and efficient in practice.  By 

carefully selecting and implementing these assumptions, we could tailor our models 

more closely to the realities of production. This could enable us to better address issues 

like waste reduction, energy efficiency, and other sustainability goals. In this way, the 

ongoing refinement of these models could contribute significantly to the broader 

transition towards more sustainable production practices. The continuous evolution, 

development, and adaptation of scheduling methods, particularly as applied to the 



 44 

ELSP, are crucial for improving both production processes and sustainability outcomes. 

The challenges are significant, but so too are the opportunities for innovation and 

improvement. As we move forward, the evolution of these methods will likely play a 

key role in shaping the future of sustainable production. 
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