
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

OCPPStorm: A Comprehensive Fuzzing
Tool for OCPP Implementations

Supervisors:
Prof. Cataldo Basile

Prof. V.N. Venkatakrishnan

Prof. Rigel Gjomemo

Candidate:
Gaetano Coppoletta

Academic Year 2022/2023
Torino

Abstract

In the context of escalating electric vehicle (EV) adoption, the development of a robust
charging infrastructure emerges as a critical enabler. At the heart of this infrastructure
lies the Open Charge Point Protocol (OCPP), serving as a standardized communication
interface between electric vehicle charging stations and central systems. Historically, the
security scrutiny of OCPP has been executed in a sporadic and unsystematic fashion.
Addressing this lacuna, this thesis presents OCPPStorm, a black-box fuzzer designed
to navigate the security landscape of OCPP with precision and agility. OCPPStorm is
architected to be indifferent to the programming language, thus making it inherently
versatile for applications across various OCPP implementations. OCPPStorm implements
a suite of fuzzing mechanisms, distinguished by their velocity and efficiency, to detect
and delineate bugs and security vulnerabilities within OCPP systems. OCPPStorm is
evaluated through rigorous testing across two different open source OCPP implementations,
highlighting the tool’s capability to transcend language and structural boundaries. The
primary objective of this research is to elevate the methodological rigor in security testing
of OCPP implementations, advancing the frontier of protocol security in the EV charging
domain. OCPPStorm, with its rapid and comprehensive fuzzing techniques, serves as a
vanguard in this endeavor, providing a scalable and effective framework for enhancing the
security OCPP implementations. OCPPStorm utilizes information extracted from the
official OCPP documentation and evaluates OCPP implementations sourced from public
repositories on GitHub, ensuring the research did not involve human subjects.

ii

Acknowledgements

I express my heartfelt gratitude to my thesis committee for their invaluable guidance and
support throughout my research. Your insights have been crucial to my academic and
personal growth.

A special thanks to my family for their unwavering love and encouragement, which
have been fundamental to my success.

I am also grateful to everyone I’ve met along this journey. Your varied influences have
been a source of inspiration and learning, enriching my experience in countless ways.

In sum, this journey has been more than an academic pursuit; it’s been a period of
personal growth and meaningful relationships. To all who have been part of this journey,
thank you for your indispensable contributions to this thesis.

iii

Table of Contents

List of Figures xi

Acronyms xiii

1 Problem Description 1

1.1 Background . 1

1.1.1 Electric Vehicles (EVs) . 1

1.1.2 Open Charge Point Protocol (OCPP) 2

1.1.3 Security in Open Charge Point Protocol (OCPP) 3

1.2 Problem description and solution overview 7

1.2.1 Problem Description . 7

1.2.2 Solution Overview . 7

2 Approach 9

2.1 Our solution . 10

2.1.1 Black-Box Fuzzing: An Overview 10

2.1.2 The Rationale for Black-Box Fuzzing 11

2.1.3 Black-Box Fuzzing for OCPP . 11

2.1.4 Key Challenges and Considerations 12

v

2.1.5 Visualizing Our Solution . 13

2.2 Fuzzer Architecture and Workflow . 14

2.2.1 Input . 14

2.2.2 OCPPStorm . 15

2.2.3 Output . 28

3 Implementation 30

3.1 Acquiring the JSON Schema . 30

3.1.1 Source of the Schema . 30

3.1.2 Processing and Storing the Schema 30

3.2 Fuzzing Implementations . 31

3.2.1 Random Fuzzer . 31

3.2.2 State Machine Fuzzer . 31

3.2.3 Isla Fuzzer . 33

3.3 Extensibility . 36

3.4 Code Metrics . 37

3.4.1 Size and Structure . 37

3.4.2 Languages and Libraries Used . 37

4 Evaluation 39

4.1 Setup . 39

4.1.1 Steve Implementation . 39

4.1.2 OCPP.Core Implementation . 41

4.2 Evaluation results . 42

4.2.1 OCPPStorm Evaluation Metrics . 42

4.2.2 Constraint Violation Analysis . 50

vi

4.2.3 Performance Metrics . 55

4.3 Identified Vulnerabilities with OCPPStorm 56

4.3.1 OCPP.Core Vulnerabilities . 56

4.3.2 Steve Vulnerabilities . 57

5 Future work 60

5.1 Deployment on Additional Server Implementations 60

5.2 Integrating White Box Fuzzing . 60

5.3 Source Code Static Analysis . 61

6 Related work 62

6.1 Introduction . 62

6.1.1 Electric Vehicle Charging Security 62

6.1.2 OCPP Security Vulnerabilities . 63

6.1.3 Testing and Compliance in OCPP 64

6.1.4 Fuzzing Techniques in Protocol Security 65

6.2 Conclusion . 65

7 Conclusion 66

7.1 Key Findings . 66

7.2 Contributions to the Field . 66

7.3 Limitations . 67

A OCPP.Core Vulnerabilities 68

A.1 DoS Vulnerability Due to Unrestricted ’chargePointVendor’ Length 68

A.1.1 Attack Description . 68

A.1.2 Expected System Behavior . 68

vii

A.1.3 Actual System Behavior . 68

A.1.4 Reproduction Steps . 69

A.1.5 Visual Evidence . 69

A.2 Inconsistency in Transaction Meter Values Allowing Negative Charging . . 69

A.2.1 Attack Description . 69

A.2.2 Expected System Behavior . 70

A.2.3 Actual System Behavior . 70

A.2.4 Reproduction Steps . 70

A.2.5 Visual Evidence . 70

A.3 StopTransaction: Unauthorized Termination with Random Transaction ID 71

A.3.1 Issue Description . 71

A.3.2 Expected System Behavior . 71

A.3.3 Actual System Behavior . 71

A.3.4 Reproduction Steps . 71

A.4 Multiple Transactions Allowed with Same connectorId and idTag 72

A.4.1 Issue Description . 72

A.4.2 Expected System Behavior . 72

A.4.3 Actual System Behavior . 72

A.4.4 Reproduction Steps . 72

A.4.5 Potential Impact . 73

A.4.6 Proposed Mitigation Strategy . 73

A.5 Vulnerability in Handling Additional and Duplicate Properties in Start-
Transaction Messages . 73

A.5.1 Issue Description . 73

A.5.2 Reproduction Steps . 73

viii

A.5.3 Expected System Behavior . 74

A.5.4 Actual System Behavior . 74

A.5.5 Potential Impact . 74

B Steve Vulnerabilities 75

B.1 Invalid Timestamp Handling in StartTransaction Messages 75

B.1.1 Issue Description . 75

B.1.2 Reproduction Steps . 75

B.1.3 Expected System Behavior . 75

B.1.4 Actual System Behavior . 76

B.1.5 Visual Evidence . 76

B.2 Handling Multiple StopTransaction Messages for a Single Transaction . . . 76

B.2.1 Issue Description . 76

B.2.2 Reproduction Steps . 77

B.2.3 Expected System Behavior . 77

B.2.4 Actual System Behavior . 77

B.2.5 Visual Evidence . 78

B.3 Improper Handling of Repeated and Slightly Modified StartTransaction
Messages . 78

B.3.1 Issue Description . 78

B.3.2 Reproduction Steps . 78

B.3.3 Expected System Behavior . 79

B.3.4 Actual System Behavior . 79

B.3.5 Additional Context . 79

B.4 Unauthorized Transaction Termination Due to Predictable Transaction IDs 79

B.4.1 Docker Container Setup . 79

ix

B.4.2 Issue Description . 79

B.4.3 Reproduction Steps . 80

B.4.4 Expected System Behavior . 80

B.4.5 Actual System Behavior . 80

B.4.6 Visual Evidence . 81

B.5 Billing Discrepancies Due to Unvalidated Meter Values in StopTransaction 81

B.5.1 Issue Description . 81

B.5.2 Reproduction Steps . 81

B.5.3 Expected System Behavior . 82

B.5.4 Actual System Behavior . 82

B.6 Duplicate Message ID Handling in WebSocket CALL Messages 82

B.6.1 Issue Description . 82

B.6.2 Reproduction Steps . 82

B.6.3 Expected System Behavior . 82

B.6.4 Actual System Behavior . 83

B.6.5 Potential Impact . 83

Bibliography 84

x

List of Figures

1.1 OCPP interaction between central system and charging point 2

2.1 Schematic representation of our fuzzing solution. 14

2.2 Architecture of OCPPStorm fuzzer . 16

2.3 Sequence of OCPP messages between Charge Point and Central System . . 20

2.4 Components of the Isla Fuzzer . 23

2.5 Components of the Message Generator . 24

4.1 Line count statistics for the Steve implementation as analyzed by the cloc tool 40

4.2 Line count statistics for the OCPP.Core implementation as analyzed by the
cloc tool . 41

A.1 Server logs capturing the crash caused by the oversized BootNotification
message. 69

A.2 The web page showing a negative charging amount due to inconsistent meter
values . 70

B.1 SQL exception error caused by invalid timestamp in StartTransaction message. 76

B.2 Database entries showing multiple stop records for the same transaction. . 78

B.3 Web interface confirmation of unauthorized transaction termination. 81

xi

Acronyms

OCPP
Open Charge Point Protocol

UIC
University of Illinois at Chicago

TLS
Transport Layer Security

EV
Electric Vehicle

xiii

Chapter 1

Problem Description

1.1 Background

Electric Vehicles (EVs) represent a significant leap towards sustainable and eco-friendly
transportation. The proliferation of EVs necessitates a robust and efficient charging in-
frastructure to support their widespread adoption. The Open Charge Point Protocol
(OCPP) emerges as a critical element in advancing EV charging technology, facilitat-
ing seamless communication and interoperability among charging stations and central
management systems.

1.1.1 Electric Vehicles (EVs)

The rise of Electric Vehicles (EVs) marks a paradigm shift in the automotive industry
towards greener and more sustainable transportation alternatives. EVs operate using
electric energy stored in batteries, offering environmental benefits and reducing dependency
on fossil fuels. The success of EVs relies on a comprehensive charging infrastructure that
caters to diverse charging needs and ensures convenient and accessible charging points.

EV Charging Types

The EV charging landscape encompasses various charging levels, each with its specific
characteristics and applications:

• Level 1: Provides standard 120-volt AC household outlets. Suitable for overnight
charging and primarily used in residential settings.

1

Problem Description

• Level 2: Delivers power at 240 volts, significantly faster than Level 1 charging.
Commonly found in public charging stations, workplaces, and commercial locations.

• DC Fast Charging: Offers high-voltage DC charging, enabling rapid charging and
usually located along highways or in strategic areas to facilitate long-distance travel
for EVs.

Efficient deployment of these charging levels is essential for catering to the diverse needs
of EV users and enhancing the overall charging experience.

1.1.2 Open Charge Point Protocol (OCPP)

The Open Charge Point Protocol (OCPP)[1][2] stands as a pivotal element in
the landscape of electric vehicle (EV) charging infrastructure. OCPP is an open and
standardized communication protocol that facilitates communication between Electric
Vehicle Charging Stations (EVCSs) and a Central System (CS), as shown in 1.1.

Figure 1.1: OCPP interaction between central system and charging point

OCPP was conceived with the primary objective of ensuring interoperability and
compatibility among diverse EV charging equipment and management systems. It addresses
the need for a uniform and robust communication standard in the burgeoning EV charging
industry, which encompasses public charging stations, private charging facilities, and
residential EV charging solutions.

Key aspects and features of OCPP include:

• Vendor-Neutral: OCPP is designed to be vendor-agnostic, allowing different
manufacturers of charging stations and central management systems to implement
the protocol, ensuring that EV infrastructure can support various hardware and
software solutions.

• Remote Management: OCPP enables remote management and monitoring of
EV charging stations, allowing CS operators to perform tasks like firmware updates,
diagnostics, and monitoring of charging sessions from a centralized location.

2

Problem Description

• Security: Security is a paramount concern in the EV charging ecosystem. OCPP
incorporates security features such as authentication, authorization, and data encryp-
tion to ensure the integrity and confidentiality of communications.

• Scalability: As the EV market continues to expand, OCPP’s scalability becomes
increasingly critical. The protocol is designed to support a growing number of
charging stations and users.

OCPP implementations

To further illustrate the adoption and significance of OCPP in the EV charging landscape,
1.1 provides an overview of major charging companies that utilize OCPP. The adoption of
OCPP has played a significant role in streamlining EV charging operations, enhancing
user experience, and fostering innovation in the EV charging industry. It has enabled the
development of a wide range of charging solutions, including public charging networks,
fleet charging management, and smart grid integration.

1.1.3 Security in Open Charge Point Protocol (OCPP)

The rapid proliferation of Electric Vehicle Charging Stations (EVCSs) and the increasing
reliance on the Open Charge Point Protocol (OCPP) underscore the importance of robust
security measures within the protocol. As with any communication protocol, especially one
that deals with critical infrastructure like EV charging, security is paramount to ensure
the integrity, confidentiality, and availability of services.

Importance of Security in OCPP

With the rise of cyber threats targeting critical infrastructure, ensuring the security of
OCPP communications is crucial for:

• Protecting user data and privacy.

• Ensuring the integrity of charging sessions.

• Preventing unauthorized access or control over charging stations.

• Safeguarding the broader electrical grid to which many charging stations are con-
nected.

3

Problem Description

Table 1.1: MAJOR CHARGING COMPANIES USING OCPP

Company Name Region OCPP Usage Additional
Notes

ChargePoint US Yes One of the largest
EV charging net-
works in the US.
Uses OCPP for in-
teroperability.

EVBox Europe Yes A leading EV
charging solutions
provider in Europe.
Adopts OCPP for
flexibility and
compatibility.

Greenlots Asia (Singapore-based) Yes Offers OCPP-
compliant charg-
ing solutions,
ensuring com-
patibility across
different charging
networks.

ABB Global (Europe, US, Asia) Yes A major indus-
trial equipment
manufacturer that
provides OCPP-
compliant EV
charging solutions.

Enel X Europe Yes Provides OCPP-
compliant charg-
ing solutions,
allowing for easy
integration with
various manage-
ment systems.

NewMotion Europe Yes One of Europe’s
largest providers
of EV charging
services. Sup-
ports open stan-
dards like OCPP.

4

Problem Description

Security Features in OCPP

OCPP incorporates several security features designed to mitigate potential threats:

• Authentication and Authorization: OCPP supports mechanisms to authenticate
both the charging station and the central system, ensuring that only authorized
entities can establish a connection and communicate.

• Data Encryption: To protect the confidentiality of data during transmission,
OCPP supports encrypted communication channels, typically using protocols like
TLS (Transport Layer Security).

• Message Integrity: Ensures that the messages exchanged between the charging
station and the central system have not been tampered with during transit.

• Regular Security Updates: As with any protocol, vulnerabilities may be discovered
over time. The Open Charge Alliance regularly updates OCPP to address known
security issues and enhance its security features.

Security Levels in Open Charge Point Protocol (OCPP)

OCPP has recognized the importance of security from its inception. However, as the
protocol matured and the threat landscape evolved, the need for enhanced security became
evident. The protocol has introduced varying levels of security across its versions:

• OCPP 1.5 and Earlier: Basic Security

– Initial versions of OCPP operated primarily over HTTP, which does not inher-
ently provide encryption.

– Basic authentication mechanisms were in place, but they lacked the robustness
required for critical infrastructure.

• OCPP 1.6: Introduction of Enhanced Security

– OCPP 1.6 introduced the option to use WebSocket over TLS (WSS), adding an
encryption layer to the communication.

– This version also introduced more robust authentication mechanisms.
– However, while these enhancements were available, they were optional, meaning

that some implementations might still operate with basic security.

• OCPP 2.0 and Later: Advanced Security

– OCPP 2.0 made significant strides in security, making many of the enhanced
security features of 1.6 mandatory.

5

Problem Description

– It introduced mutual authentication, where both the charging station and the
central system authenticate each other, ensuring a higher level of trust in the
communication.

– The protocol also began emphasizing the importance of regular security updates
and patches.

Implications of Security Levels

The varying security levels in OCPP have implications for both operators and users:

• Trustworthiness: Enhanced security ensures that users can trust the charging
infrastructure, which is crucial for widespread adoption of electric vehicles.

• Interoperability: While security is paramount, it’s essential that the introduction of
new security features doesn’t hinder the interoperability that OCPP aims to achieve.

• Upgrade Considerations: Operators using older versions of OCPP might need to
consider upgrading to benefit from enhanced security features. This could involve
both software and hardware upgrades.

In conclusion, as OCPP continues to evolve, its approach to security has become more
sophisticated, addressing the challenges of a rapidly changing digital landscape. It’s crucial
for stakeholders to be aware of these security levels and ensure that their implementations
are up-to-date and secure.

Challenges and Considerations

While OCPP has made significant strides in ensuring secure communications, there are
challenges and considerations to be aware of:

• Diverse Implementation: The open nature of OCPP means that different vendors
might implement the protocol differently, leading to potential inconsistencies in
security measures.

• Legacy Systems: Older charging stations might be running outdated versions of
OCPP that lack the latest security enhancements.

• Physical Security: While digital security is crucial, the physical security of charging
stations is equally important to prevent tampering or unauthorized access.

In conclusion, while OCPP has incorporated robust security features, continuous
vigilance, regular updates, and a holistic approach to security (considering both digital and
physical aspects) are essential to ensure the safe operation of EV charging infrastructure.

6

Problem Description

1.2 Problem description and solution overview

1.2.1 Problem Description

The proliferation of Electric Vehicles (EVs) has led to a dramatic increase in the deploy-
ment of OCPP-based charging infrastructures worldwide. Given its vital role in the EV
ecosystem, ensuring the security of OCPP implementations is of paramount importance.
Yet, several challenges arise when attempting to test the security of these implementations
systematically:

1. Diverse Implementations: OCPP implementations can vary greatly depending
on the manufacturer, version, or specific requirements of the deployment. The
heterogeneity of the system complexities precludes the formulation of a universally
applicable testing methodology.

2. Language and Platform Independence: OCPP implementations can be found in
a myriad of programming languages and platforms, further complicating the process
of testing.

3. Avoidance of Code Analysis: A truly general testing method should not rely on
specificities of the codebase, making traditional code analysis-based testing techniques
less suitable.

The fundamental challenge resides in the development of a testing methodology that is
simultaneously systematic and comprehensive, addressing the aforementioned complexities
inherent to the system.

1.2.2 Solution Overview

To address the inherent challenges in testing OCPP’s diverse landscape, a shift from
traditional code-based analysis is necessary. The proposed solution revolves around the
principle of black box testing.

Black Box Testing

Black box testing refers to a testing methodology where the internal workings of the item
to be tested are not known by the tester. Instead, the tester knows only the inputs and
the expected outcomes. This methodology is particularly suitable for OCPP testing for
several reasons:

7

Problem Description

• Implementation Independence: Black box testing doesn’t rely on the specifics of
how the OCPP implementation is realized, making it suitable for diverse implemen-
tations.

• Language Neutrality: Since the internal code is not scrutinized, the programming
language or platform on which the OCPP implementation resides becomes irrelevant,
thus ensuring a broader application of the testing approach.

• Focus on Functional Outcomes: By emphasizing the expected behavior of the
OCPP implementation rather than its internal mechanics, black box testing can
identify discrepancies between intended and actual behaviors, highlighting potential
security vulnerabilities.

In essence, by leveraging black box testing for OCPP, we can systematically test various
implementations irrespective of their internal complexities or specificities. This method
offers a holistic and robust security assessment that not only identifies vulnerabilities but
also ensures the integrity and reliability of critical infrastructure systems.

8

Chapter 2

Approach

The endeavor to enhance the security and integrity of the Open Charge Point Protocol
(OCPP) extends beyond the mere prevention of operational disruptions; it involves the
reinforcement of critical infrastructure against potential security breaches. Although
traditional testing methodologies contribute valuable insights, they may not be entirely
comprehensive, with a propensity to overlook nuanced and unpredicted vulnerabilities.

Fuzz testing, commonly referred to as fuzzing, is a dynamic, automated software testing
technique that systematically injects a broad spectrum of input data into a software system.
Its primary aim is the detection of hidden anomalies and security weaknesses that are not
evident during standard operational conditions. Fuzzing delves into an extensive array of
inputs, striving to unearth vulnerabilities that may elude traditional testing methods.

It is imperative to recognize that fuzzing methodologies differ in their underlying
principles and objectives. They can be generally classified into:

• White-Box Fuzzing: White-box fuzzing tools, such as AFL[3] and LibFuzzer[4],
operate with in-depth knowledge of the internal workings of the target system.
By accessing the system’s source code, these fuzzers analyze code paths and utilize
feedback mechanisms to generate inputs that traverse previously unexplored execution
paths. Their primary advantage is their precision; by understanding the system’s
internal structure, white-box fuzzers can often uncover vulnerabilities that might
elude other methods. However, they predominantly focus on executable files and
might not be ideally suited to verify the accuracy and robustness of a protocol’s
implementation.

• Black-Box Fuzzing: Black-box fuzzing does not require knowledge of the system’s
internal logic or structure. It treats the software under test as a black box, inputting
various data and observing outputs or system behavior. Its strength lies in its
versatility; since black-box fuzzers don’t rely on any specific knowledge about the

9

Approach

software’s internals, they are universally applicable across different software systems.
This approach can be particularly effective for testing the correctness and resilience
of protocol implementations, where internal code paths might vary widely across
different implementations, but the protocol behavior should remain consistent.

Given our specific goal of validating OCPP protocol implementations, the distinction
between these two fuzzing methodologies accentuates the need for an approach precisely
tailored to our requirements.

This chapter delves into the intricacies of our selected approach, black box fuzzing.
We will elucidate its mechanisms, inherent challenges, and the individual components
that constitute this method. In doing so, we aim to highlight its efficacy in verifying the
correctness of OCPP implementations. Subsequent sections will provide a comprehensive
exploration of our solution.

2.1 Our solution

2.1.1 Black-Box Fuzzing: An Overview

• General Mechanism: At its core, black-box fuzzing is an external, dynamic testing
technique. Without any knowledge or bias of the system’s internal code, structure,
or algorithm, it solely focuses on the system’s responses to a wide array of inputs.
Black-box fuzzing essentially mimics an external attacker by probing and pushing the
system to its limits. By assessing the input-output behavior, it evaluates the system’s
robustness and security posture. This way, the technique becomes instrumental in
uncovering vulnerabilities that might remain hidden during conventional testing, such
as edge cases not covered in manual tests or unforeseen input combinations.

• Input Generation: The success of black-box fuzzing significantly relies on its ability
to generate a vast variety of input data. These inputs range from valid and expected
ones to malicious, malformed, or anomalous variants. Using techniques like mutation
(where existing data is modified) and generation (where entirely new data is created),
black-box fuzzing seeks to challenge the system’s defenses and logic. The intention
is not just to see if the system can handle regular inputs, but to understand how it
behaves under irregular, unexpected, or stress conditions. This comprehensive input
generation is what allows black-box fuzzing to identify vulnerabilities that might be
exploited in real-world attack scenarios.

• Output Analysis: Once inputs are fed into the system, the ensuing step is to
meticulously analyze the outputs. In the context of black-box fuzzing, this doesn’t
just mean checking if the system crashes or behaves erratically. It’s about deciphering
the nuanced differences between expected and actual outcomes, be it in terms of
the nature of the response, or even seemingly benign discrepancies. By interpreting

10

Approach

these outputs, researchers can pinpoint specific areas of concern, thereby guiding
subsequent testing efforts or rectification measures.

2.1.2 The Rationale for Black-Box Fuzzing

Fuzzing has consistently proven its value in the realm of software security testing. Within
the fuzzing spectrum, black-box fuzzing emerges as particularly apt for our endeavor,
offering a trinity of key advantages that align seamlessly with the complexities of testing
OCPP implementations:

• Versatility: Unlike white-box methods that require detailed insights into the soft-
ware’s internal code structure, black-box fuzzing thrives on its versatility. This
form of testing is predicated on probing the external behaviors of a system. Hence,
irrespective of the under-the-hood intricacies, modifications, or evolutions of the
OCPP implementations, black-box fuzzing remains resilient and adaptive, ensuring it
remains relevant and effective over time.

• Independence from Internal Code: One of the predominant challenges in val-
idating various OCPP implementations is the myriad of internal code structures
and languages used by different entities. Black-box fuzzing, by virtue of its design,
circumvents this challenge altogether. The technique’s ability to assess a system solely
based on its inputs and outputs—without necessitating knowledge of its internal
code—makes it an invaluable asset, especially when considering the diverse and
proprietary nature of OCPP implementations.

• Effectiveness in Protocol Validation: Protocols, by their inherent nature, define
a set of rules for data communication. Black-box fuzzing, in its essence, tests the
robustness of these rules by feeding diverse and often unexpected inputs. In the
context of OCPP, this means validating whether the implementations adhere to the
protocol’s stipulations consistently and securely, even under unanticipated conditions.
This direct alignment of black-box fuzzing’s capabilities with protocol validation
requirements underscores its efficacy in our specific use-case.

Given these attributes, black-box fuzzing not only presents itself as a logical choice but
emerges as a veritable toolset uniquely positioned to tackle the nuances and challenges
associated with securing OCPP implementations.

2.1.3 Black-Box Fuzzing for OCPP

Black-box fuzzing emerges as an apt solution to evaluate the security posture of protocol
implementations like OCPP.

11

Approach

• Protocol-Centric Approach: OCPP, being a protocol, has intricacies that are
distinct from typical software applications. To craft an effective fuzzer for it, one
must dive deep into its specification. By comprehending its operation mechanisms,
message exchange patterns, and expected error responses, we can shape the fuzzing
inputs in a way that they genuinely challenge the protocol’s bounds.

• Unbiased Testing: The beauty of black-box fuzzing lies in its ignorance of the
internal workings of the implementation. While we make our fuzzer aware of OCPP’s
rules and conventions, it remains oblivious to the specific details of any OCPP
implementation. This ensures unbiased, genuine, and rigorous testing—a fuzzer
probes the system as an external entity would, free from any preconceptions or biases
about the internal logic.

• Adherence to Specification: The ultimate goal of our fuzzing endeavors is to
validate that the OCPP implementation under test strictly adheres to the protocol’s
description. Any deviation, whether it results in an obvious malfunction or a
subtle discrepancy in response patterns, is a potential vulnerability or point of non-
compliance. Our protocol-aware fuzzer is designed to catch these deviations, ensuring
that OCPP implementations are both secure and standard-compliant.

2.1.4 Key Challenges and Considerations

While black-box fuzzing presents a promising approach for validating OCPP implementa-
tions, it’s not without its challenges. Deploying this testing technique in a protocol-centric
context brings forth certain unique hurdles. The absence of insights into the internal
workings of the target system, which is a defining feature of black-box testing, can si-
multaneously be a source of certain complexities. Before delving into the mechanics of
our solution, it is essential to outline and understand these challenges, as they shape
the strategies and methodologies we adopt. This section aims to spotlight these critical
considerations and the inherent complexities they introduce into the fuzzing process.

• Coverage: One of the core challenges with black-box fuzzing lies in the realm of
test coverage. Traditional fuzzing techniques, especially those that fall under the
white-box category, often gauge coverage by monitoring the executed lines of code.
This allows for a tangible measure of which parts of the application are tested and
which remain untouched. However, in the context of black-box fuzzing, this metric is
inaccessible due to the inherent nature of the method, we’re in the dark about the
internal intricacies of the system under test.
Given this constraint, it’s imperative to conceptualize an alternative metric for
understanding test coverage. Our focus on OCPP, a protocol, provides us with a
unique advantage in this regard. Protocols, by definition, dictate a series of potential
states and transitions, often contingent on specific sequences of messages. Consider,
for instance, the state of a charge point: it can either be authorized or unauthorized

12

Approach

to initiate charging. This binary state representation, though rudimentary, illustrates
the existence of distinct execution paths within the protocol’s purview.

Therefore, to gauge coverage, we ought to shift our perspective from code paths to
protocol paths, emphasizing the different states and state transitions as dictated by
the sequences of messages. This strategy ensures that our fuzzer comprehensively
tests all possible behaviors and responses of an OCPP implementation, thus providing
a reliable measure of test coverage.

• Response Interpretation: A significant challenge in the domain of black-box
fuzzing, especially when addressing protocol implementations, lies in the interpretation
of system responses. The complexity is compounded by the subtlety of potential
vulnerabilities or behaviors, which may not always manifest as overtly erroneous.

To effectively discern the nature of a response, it’s essential to have an intimate
understanding of the protocol in question. This involves a thorough examination of
the originating request: understanding its construction, identifying which properties
were targeted for fuzzing, and recognizing the specific type of fuzzing applied. For
instance, it’s crucial to determine whether the fuzzer’s payload involved sending a
string exceeding the stipulated maxLength property or omitting a mandatory property
before dispatching the message.

By analyzing the constructed request, we can deduce the expected outcome or
"predicted" response, grounded in the protocol’s specifications. This predicted outcome
then serves as a benchmark against which the actual server response is gauged.
Discrepancies between the two can be indicative of potential issues—whether they are
genuine vulnerabilities, deviations from the protocol, or other categories warranting
further investigation.

• Efficiency: Efficiency stands as a paramount consideration for a fuzzer, particularly
given the desire to dispatch a multitude of messages within a condensed timeframe.
In the course of our experimentation, it became evident that the predominant
contributor to inefficiencies was the message generation phase. This aspect emerged
as the principal bottleneck for a fuzzer of this nature. Addressing this challenge and
proposing solutions to enhance efficiency will be elucidated in subsequent sections.

2.1.5 Visualizing Our Solution

As we navigate the intricacies of our fuzzing solution, a visual representation can significantly
aid in understanding the architecture and workflow. 2.1 provides a schematic view of our
fuzzer, capturing its essential components and interactions.

In the next section we will dissect the components of the figure, elucidating their
individual roles and their collective contribution to the overall fuzzing process.

13

Approach

Figure 2.1: Schematic representation of our fuzzing solution.

2.2 Fuzzer Architecture and Workflow

2.2.1 Input

The effectiveness and precision of any fuzzer are largely contingent on the quality and
specificity of its inputs. Our fuzzer, tailored to address the unique challenges of protocol
fuzzing, primarily relies on two distinct but crucial inputs.

1. Protocol Description:

• Purpose: The protocol description forms the foundational knowledge for our
fuzzer. It encapsulates the protocol’s rules, permissible message structures,
and other intricate details. The fuzzer harnesses this description to gain a
comprehensive understanding of the protocol, ensuring that its testing approach
remains both rigorous and aligned with protocol specifications.

2. JSON Schemas:

• Purpose: These schemas play a pivotal role in the fuzzing process, serving
multiple essential functions.

14

Approach

(a) Message Construction: Both the Random Fuzzer and the State Machine
Fuzzer utilize the JSON schemas to deduce how messages should be accurately
constructed. This ensures that the generated messages, while intentionally
malformed for testing purposes, are still rooted in the realistic structure of
actual protocol messages.

(b) Error Validation: The JSON schemas also function as validators. Firstly,
they are employed to validate the fuzzed input. By pinpointing which
specific part of a message has been fuzzed, the Error Detector can deduce
the expected error response from the server. Moreover, after a message is
dispatched, the schemas assess the integrity and accuracy of the server’s
response. This dual use not only enables the detection of discrepancies but
also offers a more intuitive understanding of how the server might react to
malformed inputs, elucidating potential vulnerabilities or misconfigurations.

(c) Grammar and Constraints for Isla Fuzzer: The JSON schemas have
been instrumental in formulating grammars and constraints for the Isla
Fuzzer. Leveraging the Isla library [5], the Isla Fuzzer employs these gram-
mars and constraints, rooted in the JSON schemas, to generate messages
systematically.

In essence, these inputs not only guide the fuzzer in generating test cases but also aid
in the intelligent interpretation of results, thereby ensuring a more refined and targeted
fuzzing approach.

2.2.2 OCPPStorm

The OCPPStorm fuzzer is a modular and structured tool designed to examine and test
the robustness of OCPP implementations. Through its intricately connected components,
the fuzzer systematically challenges the protocol’s security, reliability, and efficiency. The
objective behind this is not only to uncover potential vulnerabilities but also to ensure
that OCPP implementations are resistant to various unexpected or malicious inputs.

As illustrated in 2.2, the OCPP Fuzzer incorporates a structured workflow integrating
three primary fuzzing modules: the "Random Fuzzer", "State Machine Fuzzer", and
"Isla Fuzzer". These modules interact with specialized components such as the Message
Generator—with its variety of fuzzing methods—and the Isla Message Generator that uses
grammars and constraints. The communication with the external server is managed by
the OCPP WebSocket Client. The generated messages undergo validation through the
Message Validator and any identified anomalies or deviations are promptly detected by the
Error Detector. This architectural synergy ensures meticulous crafting and dispatching of
test messages, maximizing the probability of identifying anomalies, errors, and potential
vulnerabilities in the targeted OCPP implementation.

In the following subsections, we delve into the individual components of OCPPStorm,

15

Approach

Figure 2.2: Architecture of OCPPStorm fuzzer

detailing their functionalities and significance within the system. In order to understand
the components of OCPPStorm we need to provide details about the OCPP messages.

Message Type and Identification

To ensure accurate communication, it’s essential to correctly identify the type and origin
of each message.

The Message Type Each message bears a distinct Message Type Number that specifies
its kind. 2.1 details the types and their respective directions.

If a server intercepts a message bearing an unrecognized Message Type Number, it is

16

Approach

Table 2.1: MESSAGE TYPES AND THEIR RESPECTIVE DIRECTIONS

MessageType MessageTypeNumber Direction
CALL 2 Client-to-Server
CALLRESULT 3 Server-to-Client
CALLERROR 4 Server-to-Client

instructed to discard the message payload, preserving its header for reference. Further,
each message type may necessitate specific fields.

The Message ID A unique Message ID is indispensable for message tracking, especially
for request identification. For CALL messages, the ID should be distinct from previously
used IDs over the same WebSocket connection by the sender. However, for CALLRESULT
or CALLERROR messages, the ID must echo the CALL message they are responding to.
2.2 illustrates the constraints for these unique identifiers.

Table 2.2: CONSTRAINTS FOR UNIQUE MESSAGE IDENTIFIERS

Name Datatype Restrictions
messageId string Limited to 36 characters

It’s important to adhere to these standards for efficient communication and response
management.

Message Structures in OCPP

The OCPP communication protocol initializes by establishing the identity of the charge
point during a WebSocket handshake.

Understanding the ’Call’ Structure Within the OCPP framework, a Call comprises
four primary components:

• MessageTypeId: A standardized identifier.

• UniqueId: Serves as a distinctive tag ensuring congruence between requests and
their corresponding results.

• Action: Specifies the desired remote operation.

• Payload: Contains pertinent arguments related to the action. In situations devoid of
payload content, an empty JSON object ({}) is favored over the use of null, ensuring
clarity and conciseness.

17

Approach

The Call syntax is typically represented as:

[MessageTypeId, UniqueId, Action, {Payload}]

Understanding the ’CallResult’ Structure In the OCPP protocol, a successful
handling of a call leads to the generation of a CallResult. It’s important to note that
certain error situations predefined in OCPP are perceived as regular results. Thus, they’re
treated as standard CallResult, even if they may not be favorably received by the recipient.

A typical CallResult is composed of three primary components:

• MessageTypeId: A standardized identifier.

• UniqueId: An identifier matching the one in the call request, ensuring the recipient
can correlate the result with the corresponding request.

• Payload: Houses the outcome of the executed action. For instances where the
payload lacks content, it’s advocated to employ an empty JSON object ({}) as a
substitute for null to maintain clarity and brevity.

The general representation of a CallResult syntax is:

[MessageTypeId, UniqueId, {Payload}]

Understanding the ’CallError’ Structure A CallError is initiated under two primary
conditions:

1. Perturbations in message transport such as network disruptions or service unavail-
ability.

2. Receipt of a call with content discrepancies such as missing essential fields or duplicate
unique identifiers.

The standard representation of a CallError entails five components:

[MessageTypeId, UniqueId, errorCode, errorDescription, {errorDetails}]

2.3 summarizes the key components of a CallError.

2.4 provides a comprehensive enumeration of valid error codes.

18

Approach

Table 2.3: KEY COMPONENTS OF A CALLERROR

Field Description
UniqueId A consistent identifier aligning with the initiating call request
ErrorCode A specific string from the subsequent ErrorCode tabl.
ErrorDescription Preferably populated; otherwise, a transparent empty string

“”
ErrorDetails A JSON object detailing the error; in the absence of details,

an empty object ({}) is mandated

Table 2.4: ENUMERATION OF VALID ERROR CODES

Error Code Explanation
NotImplemented Receiver is unaware of the requested action
NotSupported Receiver identifies but doesn’t support the requested action
InternalError Receiver’s internal disruption prevented successful action exe-

cution
ProtocolError Action’s payload is incomplete
SecurityError Security complications during action processing
FormationViolation Action’s payload has syntactical errors or non-compliance

with PDU structure
PropertyConstraintViolation Valid syntax but contains at least one incorrect field value
OccurenceConstraintViolation Proper syntax but contravenes occurrence constraints in a

field
TypeConstraintViolation Correct syntax but violates data type constraints
GenericError Captures errors not encapsulated above

OCPP Message Exchange Example

In this subsection, we explore a standard communication exchange between the charge
point and the central system using the OCPP protocol.

Scenario:

1. Initialization: A charge point powers up and establishes its connection with the
central system. Upon establishing the connection, the charge point dispatches
a BootNotification to notify the central system of its operational status. In
response, the central system verifies the identity of the charge point and sends back
a BootNotificationResponse.

2. Authorization: Subsequently, when a car owner wishes to initiate a charging session,
the charge point communicates an Authorize request to the central system. The
central system then replies with an AuthorizeResponse.

19

Approach

3. Start of Transaction: Once authorized, the charge point begins the transaction by
sending a StartTransaction message. The central system acknowledges with a
corresponding response.

4. Meter Reading: During the charging session, the charge point periodically sends
MeterValues messages to update the central system about the ongoing energy
consumption.

5. End of Transaction: Upon completion of the charging process, the charge point sends
a StopTransaction message to signal the end of the current session.

Charge Point Central System

BootNotification

BootNotificationResponse

Authorize

AuthorizeResponse

StartTransaction

StartTransactionResponse

MeterValues

MeterValuesResponse

StopTransaction

StopTransactionResponse

Figure 2.3: Sequence of OCPP messages between Charge Point and Central System

In Figure 2.3, we visually represent the sequence of messages exchanged between the
Charge Point and the Central System.

20

Approach

Fuzzing Modules

OCPPStorm is equipped with three distinct fuzzing modules. Two of these modules
intricately leverage the capabilities of the newly implemented Message Generator, while
the third is rooted in the Isla library, meticulously utilizing the grammars and constraints
devised specifically for fuzzing the OCPP protocol.

These fuzzing modules stand as the core components of OCPPStorm, orchestrating
seamless interactions with their corresponding message generators, the Message Validator,
and the OCPPWebSocketClient, ensuring a comprehensive and efficient fuzzing process.
The three modules are aptly named "Random Fuzzer", "State Machine Fuzzer", and "Isla
Fuzzer".

Random Fuzzer The Random Fuzzer is notably the simplest among the three. Its
functionality is intertwined with the Message Generator, which is designed to produce
messages randomly. During its operational cycle, this fuzzer goes through numerous
iterations. In each loop, it selects a message type at random and generates it. The
resultant message is then validated using the JSON schema and additional controls, aiming
to identify which specific property has been fuzzed. This meticulous validation aids the
fuzzer in predicting the server’s response. Following validation, the message is transmitted,
and the corresponding server feedback is assessed by the Error Detector.

State Machine Fuzzer The state machine fuzzer serves as a sophisticated adaptation of
the rudimentary Random Fuzzer. Specifically designed for this context, the fuzzer enables
users to define a series of OCPP messages, representing the intricate mechanics of a "state
machine". The intention behind allowing the state machine to be user-defined is both
deliberate and pivotal. Recognizing that many OCPP implementations remain proprietary
and each uses distinct values for some properties, this capability empowers users to tailor
the OCPP messages based on the unique parameters adopted by their individual servers.
Consequently, users can either innovate new OCPP sequences or modify the ones we
furnish by adjusting the parameters, ensuring compatibility with their specific instances
and implementations.

Given that our fuzzer operates under the paradigm of a black-box mechanism, deter-
mining code coverage becomes an uncomplicated endeavor. Consequently, employing a
state machine becomes an efficacious strategy to delve into all potential states of the server,
theoretically encapsulating the entire codebase.

This state machine is bifurcated into two distinct segments:

1. User-Defined State Machine: This segment necessitates a user-provided sequence
of OCPP messages, encapsulating an archetypal communication between the charge

21

Approach

point and the central system. Commencing its operation, the fuzzer transmits a
predetermined set of fuzzed messages, curated by the Message Generator. Upon
completion of this phase, the fuzzer picks the initial valid message from the state
machine’s input and forwards it. The subsequent response’s accuracy is assessed
by the Error Detector, operating under the assumption that the input sequence is
flawless and thus expecting a pertinent reply. Post-receipt of this response, the fuzzer
transitions to the ensuing state, reigniting the dispatch of fuzzed messages. This
cycle perseveres until all input OCPP messages are duly processed.
As an example, consider setting the fuzzed message count at 10, drawing input from
a file named input.txt, containing:

["BootNotification", {"chargePointVendor": "AAAVENDOR",
"chargePointModel": "Model X123","chargePointSerialNumber":
"CP-1234567890","chargeBoxSerialNumber": "CB-0987654321",
"firmwareVersion": "1.0.0","iccid": "12345678901234567890","imsi":
"98765432109876543210","meterType": "Electric Meter",
"meterSerialNumber": "M-9876543210"}]

["Authorize", {"idTag": "2"}]

Post the initial 10 fuzzed messages, the fuzzer forwards the BootNotification
message, anticipating a positive affirmation of transition via the response. Subse-
quently, it shoots another series of 10 fuzzed messages, targeting the newfound server
state. Progressing, it then transmits the next message from input.txt, identified as
Authorize. After validating the response, an additional 10 fuzzed messages culminate
this fuzzing phase.

2. Status Notification Transition Fuzzer: This component is designed specifically to
fuzz every conceivable transition associated with the StatusNotification message.
Drawing from the official documentation, this message is dispatched by a Charge
Point to the Central System. Its primary purpose is to relay information regarding
any status alterations or errors within the Charge Point. Notably, the transition
from a preceding status to a new status might prompt the Charge Point to issue a
StatusNotification request to the Central System.
Having delineated the role of the StatusNotification, we must emphasize that all
potential state transitions have been comprehensively defined. These state transitions
encapsulate every possible scenario, mapping out every feasible state that might be
encountered. In stark contrast to the user-defined state machine, the transitions here
are explicitly stipulated by the protocol, obviating the necessity for user intervention
and facilitating a fully automated process.
Our foundational assumption posits the Charge Point’s commencement state as
"Available". Initiating our fuzzing from this state, our approach mirrors the technique
employed in the user-defined state machine fuzzer. We predetermine the count of

22

Approach

fuzzed messages designated for each server state and dispatch them sequentially.
Subsequent to this, we opt for one potential transition from the current state, i.e.
"Available", and subject the new state to fuzzing. Following this phase, a state,
reachable from our current stance, is randomly selected and the transition is executed.
This cyclical process perseveres until all plausible transitions are traversed.
Nevertheless, a conceivable challenge may arise: reaching an impasse where all
transitions from a particular state have been explored, thus leaving the fuzzer in
a static state indefinitely. To preclude this predicament, if we deplete unvisited
transitions from the present state, we resort to a previously traversed transition.
Progressing to this state, we then evaluate if it leads to any uncharted transitions. This
iterative strategy persists until an unvisited transition is detected. Once identified,
the fuzzing procedure is reinitiated, with this cycle continuing until every potential
transition has been examined.

Isla Fuzzer The Isla Fuzzer is an integral component of our OCPP fuzzing solution,
deriving its capabilities from the Isla library. A representation of this component is shown
in 2.4.

Figure 2.4: Components of the Isla Fuzzer

This fuzzer offers users two distinct options:

1. Fuzzing With Constraints: This mode integrates grammars with constraints to
guide the fuzzing process. The constraints essentially serve as an Isla interpretation of
the JSON properties of all OCPP messages. They play a pivotal role in determining
which properties are eligible for fuzzing and provide guidelines on how the fuzzing
should be executed. This type of fuzzing is the slowest among the others.

2. Fuzzing Without Constraints: Operating in this mode allows the generation of
messages without taking into consideration the OCPP’s constraints. This approach
accelerates the message generation, enabling the creation of more fuzzed messages
within the same timeframe. By disregarding the myriad combinations of constraints,

23

Approach

the generated messages exhibit increased randomness, with messages designed to fuzz
all properties simultaneously.

It’s worth noting that the Isla Fuzzer not only communicates seamlessly with the
Isla Message Generator but also coordinates the fuzzing operations in synergy with the
fuzzer’s standard modules. This includes the Error Detector, Message Validator, and
OCPPWebSocketClient, ensuring a comprehensive and efficient fuzzing process.

Message Generator

The Message Generator stands as a pivotal component within the fuzzer architecture,
acting as an alternative to the Isla Message Generator, specifically tailored for the task of
fuzzing the OCPP protocol. While the Isla library provides a more generalized approach to
message generation, the Message Generator is intricately designed to cater to the nuances
and specificities of the OCPP protocol. This component is shown in 2.5.

Figure 2.5: Components of the Message Generator

The Message Generator plays a pivotal role in the fuzzing process, encompassing a
multifaceted approach to message creation and management. Its functionalities can be
broadly classified into the following categories:

• Schema-Conformant Message Creation: The Message Generator leverages
predefined schemas to generate messages that comply with various OCPP message
types. This ensures that the generated messages strictly adhere to the expected
structure of the protocol, making it instrumental in uncovering vulnerabilities linked
to valid, schema-based inputs.

• Randomized Message Generation: Beyond schema-specific messages, the Message
Generator has the capability to produce entirely random messages. This capability
expands the scope of the fuzz testing, targeting potential vulnerabilities that might
emerge from unforeseen and irregular inputs. The randomness is achieved by creating
random actions and payload structures, increasing the unpredictability factor.

24

Approach

• Interfacing with Other Components: The Message Generator works in synergy
with the other components of OCPPStorm, orchestrating the fuzzing operations har-
moniously with common modules. Its output serves as an input for other components
such as the error detector, message validator, and OCPP WebSocket client. This
seamless integration ensures the timely dispatch, validation, and detection of any
anomalies or errors in the generated messages, subsequently logging them for deeper
analysis.

The Message Generator serves as an alternative to the Isla library, tailored specifically
for fuzz testing the OCPP protocol. While the Isla library offers a generic platform allowing
users to specify grammars for fuzzing, the Message Generator is a specialized tool designed
exclusively fuzzing json schemas.

Isla Message Generator

The Isla Message Generator functions in tandem with the Isla Fuzzer, primarily focusing its
operations on the generation of OCPP messages. This intricate component capitalizes on
two primary strategies for message generation, leveraging both grammars and constraints,
which are elucidated as follows:

• Grammars: They represent the foundational rules governing message generation,
ensuring that the created messages maintain structural integrity. All the grammars
have been written to comply with the json schemas defined for the ocpp protocol.

• Constraints: These are specific limitations or stipulations that need to be observed
during the process of message creation. Their primary role is to ensure adherence to
particular norms or to deliberately violate them, depending on the strategy.

Two distinct strategies delineate the operation of the Isla Message Generator:

1. Generation with Constraints: Adopting this strategy implies that during the
message fuzzing process, a defined set of constraints is selected for the given message
and harnessed in its generation. For instance, while generating the Authorize
message, the only property it possesses is the idTag. This property, of the string
type, is constrained by a maximum length of 20. Utilizing the constraints-driven
generation, the Isla library would be instructed to create an idTag exceeding 20
characters, deliberately contravening the protocol’s constraints.

2. Generation without Constraints: This approach sidelines the constraints de-
lineated in the OCPP protocol’s JSON schemas, placing emphasis solely on the
grammars of these schemas. Consequently, while the generated messages will re-
tain the appropriate schema, their properties will be randomly fuzzed. No specific
constraints are enforced, allowing for a broader spectrum of generated outputs.

25

Approach

Error Detector

The Error Detector acts as a vital sentinel within the OCPPStorm fuzzer, meticulously
analyzing the server’s feedback in various scenarios. It bridges the gap between the
expected behavior dictated by the OCPP protocol and the actual responses from the
server, ensuring robustness and conformity. Given its significance, understanding the core
functionalities of the Error Detector is paramount:

• Server Response Analysis: The Error Detector scrutinizes the server’s reactions
in light of the messages dispatched by the client. Two main scenarios emerge:

1. Valid OCPP Messages: In instances where legitimate OCPP messages are relayed,
the detector ascertains that the server reciprocates with appropriate responses
and carries out the required operations.

2. Fuzzed Message Examination: When fuzzed messages are introduced to the
server, the detector’s role amplifies. It delves into understanding the server’s
feedback, registering any irregularities or deviations from the expected behavior.

• Fuzzed Message Error Prediction: Beyond mere response analysis, the Error
Detector wields predictive capabilities. By juxtaposing the fuzzed message against
its corresponding JSON schema, and leveraging certain logical constructs, it can
anticipate the errors the server might return. This stems from the ability to discern
which constraints of the JSON schema are infringed upon. Such anticipatory prowess
is instrumental in unveiling disparities between the protocol’s guidelines and its
real-world execution.

• Error and Bug Statistics Collection: Integral to the OCPPStorm’s assessment
toolkit, the Error Detector accumulates essential data regarding server errors and
potential vulnerabilities. This statistical data is subsequently chronicled in log files,
paving the way for in-depth analysis and discussions.

Referring to the provided architecture diagram (2.5), it’s evident how the Error Detector
interfaces seamlessly with various components, ensuring holistic and comprehensive fuzz
testing of the OCPP protocol.

OcppWebSocketClient

The OcppWebSocketClient plays a central role in managing the communication with
the charge point via the OCPP protocol. Acting as the primary interface to dispatch
and receive messages, it ensures that all interactions conform to the OCPP standards,
while also overseeing specific scenarios like initiating or concluding transactions. Here’s a
comprehensive breakdown of its primary responsibilities:

26

Approach

• Connection Management: The client seamlessly establishes a connection with the
central system. By taking a charge point identifier and the base URL, it crafts the
precise endpoint to interface with and initiates the handshake.

• Message Dispatch: The client has capabilities to send both fuzzed and genuine
messages to the central system. For valid messages pertaining to transactions, it
makes sure the transaction ID is appropriately appended, ensuring the correct flow
of operations.

• Transaction Handling: The client exhibits a keen sense of transactional awareness.
It recognizes the commencement of a transaction, recording the corresponding trans-
action ID, and acknowledges its conclusion. This transactional oversight is crucial for
scenarios that involve multiple sequential operations with the charge point.

• Connection Termination: Post interaction, the client gracefully terminates the
connection with the charge point, ensuring no residual open links.

Overall, the OcppWebSocketClient acts as a robust conduit for OCPPStorm to interact
with central systems, ensuring the flow of valid and fuzzed messages, while also maintaining
a vigilant eye on the server’s responses.

Message Validator

The Message Validator is integral to ensuring the correctness and integrity of messages
exchanged within the OCPPStorm framework. It functions as a gatekeeper, verifying that
messages align with specific predefined structures and standards. Below are its primary
responsibilities:

• Timestamp Verification: One of the validator’s key checks involves scrutinizing
the ’timestamp’ property within messages. This attribute, if present, is validated
against the RFC3339 standard, ensuring its format and value are consistent with
the said specification. This adherence to a universally recognized timestamp format
ensures synchronization and time-related consistency across messages.

• Schema Compliance: Beyond timestamp validation, the validator ensures that
messages are compliant with their corresponding schemas. It compares the structure
and values of the incoming message against the predetermined schema. Any deviation
from this schema results in the message being marked as non-compliant.

• Exception Handling: The validator is not just limited to positive verifications. It
is also equipped to handle scenarios where messages don’t align with expectations.
In instances where the message structure breaches its corresponding schema, the
validator promptly identifies and reports this discrepancy without causing disruptions.
This is necessary because a lot of messages are fuzzed and we use this module just to
check wheter the message is fuzzed or not.

27

Approach

The Message Validator serves as an essential checkpoint within the OCPPStorm fuzzer.
As shown in 2.2, various components of the fuzzer rely on the Message Validator to ensure
protocol compliance. Every time an OCPP message is generated, or a response is returned
from the server, it undergoes validation by the Message Validator. This ensures that
each message adheres to the established protocol schemas, maintaining the integrity and
correctness of the communication process. As observed in the system architecture, the
Message Validator’s centrality is evident, interfacing with multiple components like the
Random Fuzzer, State Machine Fuzzer, Isla Fuzzer, the OCPP WebSocket Client and the
Error Detector.

2.2.3 Output

OCPPStorm meticulously archives its output in a series of text files, each serving a distinct
purpose in documenting the fuzzing process. These files capture detailed information on
the nature of the tests conducted, the responses received, and any anomalies or noteworthy
occurrences. Below is a summary of each output file and the insights it provides:

1. correct_messages_logs.txt: Records all messages considered correct by the fuzzer,
including valid user-defined messages and status notification transitions. Useful for
investigating incorrect server rejections.

2. fuzzed_messages_without_errors.txt: Logs fuzzed messages that unexpectedly
do not result in server errors, indicating potential validation gaps.

3. response_not_valid_with_protocol_log_file.txt: Details responses that,
while technically valid, do not comply with the expected OCPP JSON schema.

4. statistics_file.txt: Compiles general metrics about the fuzzing process, such as
total iterations, correct and incorrect responses, and various types of errors detected.

5. stats_for_error_status.txt: Keeps track of the specific types of errors encoun-
tered during fuzzing, with a counter for each error type.

6. stats_status_notification.txt: Tracks the status transitions made during the
fuzzing process, particularly focusing on the StatusNotification OCPP message.

7. stats_time.txt: Records the start and end timestamps of the fuzzing process,
providing data on the duration and efficiency of the testing.

8. valid_requests_causing_errors_log_file.txt: Lists valid requests that, con-
trary to expectations, trigger server errors, suggesting issues in the server’s handling.

9. wrong_errors_received_log_file.txt: Contains instances where the server’s
error responses differ from those predicted by the fuzzer, highlighting discrepancies
in error handling.

28

Approach

Each of these files plays a crucial role in analyzing the performance of OCPPStorm
and the robustness of the OCPP implementations under test. By providing detailed and
segmented data, these logs enable a comprehensive assessment of the system’s behavior in
response to a wide array of fuzzed inputs.

29

Chapter 3

Implementation

In the previous "Approach" chapter, we discussed each component of OCPPStorm from a
theoretical perspective. In this chapter, we will delve deeper, providing more technical
details on how OCPPStorm has been implemented.

3.1 Acquiring the JSON Schema

3.1.1 Source of the Schema

The JSON schemas for each type of message are defined by OCPP 1.6[1]. We sourced these
schemas directly from the official documentation provided by the Open Charge Alliance.

3.1.2 Processing and Storing the Schema

To facilitate easy access and integration within OCPPStorm, these acquired schemas have
been organized and stored in the "schemas" folder of our fuzzer. This centralized storage
approach was adopted as these schemas are extensively referenced by multiple components,
notably for the validation of messages by the Message Validator component.

30

Implementation

3.2 Fuzzing Implementations

3.2.1 Random Fuzzer

Design and Architecture

The Random Fuzzer adopts a straightforward approach towards fuzzing by emphasizing
simplicity and volume. Its architecture is designed around the following core elements:

• Initialization: It sets up necessary prerequisites, such as logs, to ensure smooth
execution and record-keeping. The fuzzer logs the start and end times of each fuzzing
session for temporal tracking.

• Random Message Generation: At its heart, the Random Fuzzer continuously
creates messages using the MessageGenerator class. The messages are generated in a
random fashion, making sure to cover a diverse range of potential inputs.

• Schema Validation: Each generated message undergoes validation against its
corresponding JSON schema. The schemas, sourced from the official Open Charge
Alliance documentation, are housed within the ’schemas’ directory of the fuzzer.

• Message Dispatch: Depending on the validation outcome, the message is labeled
and dispatched for further processing. Valid messages are identified and sent as such,
while the others are flagged for fuzzing.

• Completion: The fuzzer concludes its session by updating the logs with an end
timestamp.

In essence, the architecture of the Random Fuzzer is streamlined to churn out a vast
array of messages, validate them, and dispatch them efficiently, all while keeping track of
its operations.

3.2.2 State Machine Fuzzer

Design and Architecture

The state machine fuzzer is designed to generate various types of OCPP (Open Charge
Point Protocol) messages. A set of predefined valid message types exists, and the fuzzer
can generate both valid and random messages to test the system.

31

Implementation

Algorithm and Operation

Main Fuzzing Loop Explanation The main fuzzing loop is designed to test a system
by sending a mixture of both fuzzed (or manipulated) and correct messages. Here is a
detailed breakdown of each step:

1. Begin recording start time:

• The start time is captured to measure the duration of the entire fuzzing process.
This is used for performance analysis and to determine the efficiency of the
fuzzing process.

2. Read a list of correct messages from a file:

• A file containing predefined correct OCPP messages is loaded. These messages
act as a reference during the fuzzing process.

• The correct messages ensure that the system can still process valid inputs amidst
random or fuzzed messages.

3. Loop until all correct messages are sent:

• Produce and send fuzzed messages: For a predetermined number, fuzzed
or altered messages are generated. Occasionally, a completely random OCPP
message might be produced.

• Validate the generated message: Each fuzzed message is validated against
known message types and schemas. Valid messages adhere to these schemas
even if they’re fuzzed versions.

• Send one correct message: After a batch of fuzzed messages, a valid message
from the list is sent as a sanity check and to move to the next state.

4. Record the end time:

• The fuzzing process concludes by recording the end time. This, combined with
the start time, gives the duration of the fuzzing operation, aiding in performance
analysis.

In summary, the main fuzzing loop is a stress-test for the system, combining fuzzed
messages with valid ones to identify potential system vulnerabilities.

State Transition Fuzzing Explanation State Transition Fuzzing is a technique that
focuses on testing the system’s behavior when transitioning between different states. It aims
to identify potential vulnerabilities or incorrect behaviors associated with state changes.
The process is outlined as follows:

32

Implementation

1. Initialize the current state to "Available":

• This step sets the starting state of the system to "Available," ensuring a consistent
starting point for the fuzzing process.

2. Calculate the total number of possible state transitions:

• A comprehensive list of potential state transitions is generated to map out the
entire state space that needs to be tested.

3. Iterate through state transitions:

• Produce and send fuzzed messages: Altered messages are generated and
sent to potentially trigger unexpected state transitions.

• Determine possible next states: Based on the current state, possible state
transitions are identified.

• Handle visited state transitions:
– If all transitions from the current state are known, a random next state is

selected and set as the current state.
– Otherwise, an unvisited transition is chosen randomly as the next state.

• Mark the transition: After deciding the next state, the transition is marked
as visited to avoid redundancy.

• Generate a notification message: A message indicating the state transition
is generated to communicate the change.

• Send the notification: The previously generated message is sent, signaling
the state transition.

• Update the current state: The system’s current state is updated to reflect
the recent state transition.

4. Record the end time:

• After all state transitions have been tested, the end time is recorded. This aids
in evaluating the duration and efficiency of the state transition fuzzing process.

In essence, State Transition Fuzzing rigorously tests the system’s behavior during state
changes, emphasizing the discovery of potential vulnerabilities or misbehaviors during
these transitions.

3.2.3 Isla Fuzzer

Design and Architecture

The Isla Fuzzer is designed as a critical component of the OCPPStorm tool, focusing on
grammar-based fuzzing with integrated constraints to effectively test OCPP implemen-
tations. This component is architected to generate a wide range of messages based on

33

Implementation

pre-defined grammars that represent the valid structural patterns of OCPP messages. The
Isla Fuzzer’s architecture is modular, facilitating the addition or modification of grammars
and constraints to accommodate updates in OCPP standards.

Algorithm and Operation

The Isla Fuzzer operates on a sophisticated algorithm that randomly selects a message
type and its corresponding grammar, applying constraints to generate test messages. The
operation begins with the selection of a message type from a predefined list, followed
by the retrieval of its grammar and associated constraints. It employs a solver that
incorporates the grammar and constraints to produce a message that is structurally correct
but potentially anomalous, challenging the robustness of the OCPP implementation.

Grammar and Constraints in Isla

Grammar Creation and Usage The grammars in Isla are meticulously crafted using
a dictionary-based structure, where each message type is associated with a specific pattern
that accurately delineates its valid format. These grammars serve as blueprints for message
generation, ensuring that all crafted messages are syntactically aligned with the structural
norms of the OCPP protocol.

To elucidate the concept of grammar-based message generation, consider the simplest
grammar defined in the Isla Fuzzer for an "Authorize" message. This grammar is represented
as follows:

AUTHORIZE: Grammar = {
"<start>": ["<authorize>"],
"<authorize>": ["{<idTag>}"],
"<idTag>": ["\"idTag\": <data>"],
"<data>": ["\"<string>\""], # maxLength = 20
"<string>": ["<char><string>", ""],
"<char>": (return_list_of_printable_char())

}

The above grammar is a foundational example used to demonstrate the mechanism of
grammar creation. It defines a recursive pattern for constructing an Authorize message,
starting with a start symbol that unfolds into an authorize structure, which further
decomposes into an idTag and its associated data. The data is then a composition of
string elements, recursively defined to be a sequence of char elements or an empty string,
adhering to the maximum length constraint.

34

Implementation

The return_list_of_printable_char() function is implied to provide a list of
printable characters, which are used to build the string values. This approach enables the
Isla Fuzzer to not only generate valid message formats but also to explore the robustness
of the OCPP implementation by testing how it handles strings of varying lengths and
compositions.

A potential output generated by this grammar, respecting the maximum length con-
straint of 20 characters for the data field, could look like the following JSON object:

{
"idTag": "B1a2C3d4E5f6G7h8I9j"

}

This output represents a well-formed OCPP "Authorize" message with a 20-character
‘idTag‘. The Isla Fuzzer would generate such messages to verify that the OCPP implemen-
tation correctly processes valid inputs and to test its behavior with inputs that push the
boundaries of the protocol’s specifications.

Integrating Constraints Constraints are a pivotal aspect of the message generation
process within the Isla Fuzzer, serving to refine and direct the fuzzing approach effectively.
These constraints are explicitly defined for each message type and can impose various
limitations, such as the length of a string or the range of permissible values for a given
field. The integration of constraints ensures that, while the generated messages adhere to
the grammatical structure prescribed by OCPP, the content within them is manipulated
to test the limits of the implementation’s handling capabilities.

For instance, the Authorize message type may have an associated constraint that
specifies the length of the ‘data‘ field must exceed 22 characters, as shown below:

"str.len(<data>)>22"

This constraint is applied during the generation process to produce messages that
deliberately violate the protocol’s maximum length requirement for the data field, which
is 20. By doing so, the Isla Fuzzer simulates scenarios that could potentially arise from
malformed or malicious inputs, assessing the OCPP implementation’s resilience to such
irregularities.

An example of a message generated under this constraint for the ‘Authorize‘ type might
be:

35

Implementation

{
"idTag": "Z1x2C3v4B5n6M7a8S9dQ0wE"

}

In this case, the idTag field contains 23 characters, which breaches the stipulated
maximum length. The Isla Fuzzer would utilize this message to evaluate whether the
OCPP implementation properly rejects this input, logs an error, or exhibits any unintended
behavior, thereby revealing its robustness and compliance with the OCPP specification.

3.3 Extensibility

OCPPStorm’s design philosophy emphasizes modularity and extensibility across all its
components, ensuring that the tool remains relevant and effective as the Open Charge Point
Protocol (OCPP) evolves. The modular nature of OCPPStorm’s components allows for
straightforward extensions and adaptations, catering to new OCPP versions and message
specifications. Key components that exhibit this extensible architecture include:

• Isla Message Generator: The core functionality of the Isla Message Generator can
be expanded by incorporating grammars corresponding to new OCPP message types
or by adapting to the specifications of OCPP 2.0, for example. This enhancement
would allow the fuzzer to cover a broader spectrum of the protocol’s communication
patterns.

• Message Generator: The Message Generator’s capability is not confined to OCPP
messages. It accepts any JSON schema as input, generating fuzzed messages that
conform to the provided schema. This versatility ensures that OCPPStorm can be
utilized for a diverse set of applications beyond OCPP, demonstrating its utility
across various domains that utilize JSON-based communication.

• Error Detector: The Error Detector component has undergone several refinements
and remains open to further enhancements. It can be extended to improve error
prediction algorithms or to recognize new error patterns that may emerge from
updates in the OCPP specifications.

• State Machine Fuzzer: Featuring a dual-state machine architecture with one
user-defined and one protocol-defined state machine, the State Machine Fuzzer is
designed for extensibility. As OCPP evolves, the state machines can be modified to
align with new protocol behaviors and state transitions, ensuring that OCPPStorm
remains an accurate testing tool for future protocol versions.

The extensibility of OCPPStorm is integral to its design, ensuring that the tool not
only addresses the current needs of OCPP security testing but is also poised to meet future

36

Implementation

challenges. This foresight in design allows OCPPStorm to serve as a lasting resource in
the continuous endeavor to secure EV charging infrastructure.

3.4 Code Metrics

3.4.1 Size and Structure

An essential aspect of understanding the complexity and maintainability of a software
system is analyzing its code metrics, particularly the size and structure of its codebase. In
the case of OCPPStorm, the codebase is distributed across various modules, each serving
a specific role in the fuzzing process. Below is a summary of the size, in terms of lines of
code (LOC), for each major component of OCPPStorm:

Table 3.1: OCPPSTORM CODEBASE SIZE

Component Lines of Code
FuzzSchema.py 286
MessageGenerator.py 48
IslaMessageGenerator.py 214
ErrorDetector.py 325
message_validator.py 20
json_grammars.py 552
random_fuzzer.py 36
state_machine_fuzzer.py 225
isla_fuzzer.py 77
OcppWebsocketClient.py 75
main.py 57
Total 1915

The table delineates the LOC for individual files, reflecting the modular design of
the tool. The largest file, ‘json_grammars.py‘, is indicative of the extensive range of
grammars used for fuzzing OCPP messages. Conversely, the main entry point of the
application, ‘main.py‘, is concise, denoting a well-structured codebase where functionalities
are encapsulated within specific modules. This modularity facilitates ease of maintenance
and the potential for future enhancements.

3.4.2 Languages and Libraries Used

OCPPStorm is developed entirely in Python, a versatile programming language well-suited
for rapid development and prototyping. Python’s extensive standard library and the

37

Implementation

rich ecosystem of third-party packages have been instrumental in the implementation of
OCPPStorm. Below is an overview of the key libraries and their roles within the tool:

• json & jsonschema: Central to the tool’s operation, these libraries are employed
for working with JSON formatted messages. The ‘jsonschema‘ library is used to
validate the structure of JSON messages against predefined schemas, ensuring their
adherence to the OCPP protocol.

• os: This standard library module provides a portable way of using operating system-
dependent functionality like reading or writing to the filesystem.

• rfc3339_validator: This library is used to validate date-time strings in the RFC
3339 format, ensuring that timestamps in messages conform to this standard.

• datetime: Part of Python’s standard library, it is used to handle and manipulate
date and time data, essential for timestamping.

• Enum & random: These modules are utilized to define enumeration classes and
generate random selections, respectively, aiding in the stochastic nature of the fuzzing
process.

• websocket: This library provides the capabilities for the OCPPStorm to establish
and manage WebSocket connections, a key component for real-time communication
with central system s.

• Isla & fuzzingbook.Grammars: The Isla library, along with components from
fuzzingbook.Grammars, is utilized for grammar-based fuzzing, aiding in the creation
and manipulation of the syntactic structure of test messages.

The combination of these libraries with Python’s expressive syntax and powerful features
has enabled the creation of a robust and efficient tool for fuzzing OCPP implementations.

38

Chapter 4

Evaluation

4.1 Setup

The evaluation of OCPPStorm was conducted against two distinct OCPP server implemen-
tations: Steve[6], an established open-source platform, and OCPP.Core[7], a .NET-based
implementation. The evaluation aimed to measure the efficacy of OCPPStorm in identifying
potential errors, security vulnerabilities, and to assess its performance and scalability.

4.1.1 Steve Implementation

Steve is an open-source OCPP server implementation written in Java. The following
table shows the result of a line count analysis performed using the cloc tool on a Linux
environment, providing insights into the size and composition of the codebase.

39

Evaluation

Figure 4.1: Line count statistics for the Steve implementation as analyzed by the cloc
tool

As indicated in 4.1, the Steve implementation comprises 526 files, with a significant
portion written in Java. The analysis details the number of blank lines, comments, and
lines of actual code, offering a comprehensive view of the code’s structure.

Size and Structure:

• Total Files: 526

• Total Lines of Code (LOC): 31432

• Languages Used: Primarily Java, with additional scripting and configuration
languages such as JSP, XML, and SQL.

Comments and Documentation: The high number of comment lines suggests a
well-documented codebase, which is beneficial for maintainability and further development.

Environment: For the purpose of controlled testing, the Steve server was installed
on a local machine. This provided a stable environment, which is crucial for the accurate
assessment of OCPPStorm’s capabilities.

Database State: The database backing the Steve server was initialized with a set of
valid states to simulate an operational charging network environment, allowing for tests
that cover normal operational conditions as well as error handling and exceptional cases.

40

Evaluation

4.1.2 OCPP.Core Implementation

OCPP.Core is a .NET-based OCPP server implementation. Displayed below are the results
from a line count analysis using the cloc tool, which gives a detailed breakdown of the
codebase.

Figure 4.2: Line count statistics for the OCPP.Core implementation as analyzed by the
cloc tool

4.2 provides a snapshot of the OCPP.Core implementation’s composition, encompassing
186 files and reflecting a diverse usage of languages within the .NET ecosystem.

Size and Structure:

• Total Files: 186

• Total Lines of Code (LOC): 21684

• Languages Used: A mixture of C#, JavaScript, XML, and other languages for web
development and database scripting.

Comments and Documentation: The analysis indicates a comprehensive documen-
tation practice, as evidenced by a substantial number of comment lines, which underscores
the implementation’s maintainability.

Environment: Similar to the Steve implementation, OCPP.Core was deployed on a
local machine. This ensured that the testing environment was consistent and that the
results could be directly attributed to the differences in the server implementations rather
than the underlying infrastructure.

41

Evaluation

Database State: The OCPP.Core server was paired with a database seeded with legal
values, ensuring that the fuzzer’s interactions could be as close to real-world operations as
possible.

4.2 Evaluation results

The following section presents a comprehensive assessment of the performance and efficacy
of the OCPPStorm tool when applied to two distinct OCPP implementations: Steve and
OCPP.Core. The evaluation was structured to meticulously document the behavior of each
fuzzer component under test conditions, with a focus on a variety of performance metrics
that include the rate and accuracy of message processing, error detection capabilities, and
overall system efficiency.

The evaluation hinged on a series of metrics, each designed to probe a different aspect
of the fuzzing process. The metrics encompass the throughput of messages, gauged as
Messages per Second (MPS), the Total Execution Time of the fuzzing session, the Average
Time per Message, which provides insights into the efficiency of the system, and a suite
of error-related statistics that illustrate the tool’s precision in identifying and cataloging
system vulnerabilities.

4.2.1 OCPPStorm Evaluation Metrics

In our comprehensive evaluation of the OCPPStorm’s performance, a series of extensive
fuzzing techniques were applied to scrutinize all possible properties of the OCPP messages.
This endeavor aimed to cover a broad spectrum of test scenarios, ranging from schema
violations and exceeding length constraints to the processing of unexpected input types.
Due to the iterative nature of fuzz testing, some test messages were generated multiple
times, leading to the same error being identified by different inputs or the repetition of
identical inputs.

Before presenting the tables with detailed results, it is essential to understand the
specific metrics used to assess the outcomes of our fuzzing efforts:

1. Total Iterations: The complete count of fuzzing tests executed.

2. Correct Responses Rate: The ratio of responses that were accurate, aligning with
expectations for both valid and invalid inputs. Specifically, we consider a response as
correct in two cases: 1) if the fuzzer sends an invalid message and we receive an error
response, matching the type of error predicted by the fuzzer, 2) if the fuzzer sends a
valid message and we receive a valid response. Ideally, this value should be as close
to 100% as possible. This rate therefore reflects the system’s accuracy in responding

42

Evaluation

correctly according to the expected outcome for each specific input. An example of
correct message that falls into this category is:

[2,"1","Authorize","idTag":"abcde12345"]

which will receive this response:

[3,"1",{"idTagInfo":{"expiryDate":"2024-01-24T00:00:00-06:00"
,"status":"Accepted"}}]

An example of uncorrect message (idTag is not a string) that trigger the correct error
and so falls into this ratio is:

[2,"1","Authorize","idTag": 123]

which will receive the predicted error (TypeConstraintViolation), here is a possible
response:

[4,"1","TypeConstraintViolation","idTag longer than 20",{}]

3. Uncorrect Response Rate: This metric is the opposite of the Correct Response
Rate. It is the ratio of responses that were different from the expected ones. This is
composed of the following subcategories:

• Wrong Error Rate: The ratio of errors differing from those anticipated by
the fuzzer, suggesting potential issues in error handling. An example of message
that cause the wrong error is:

[2,"1","Authorize","idTag":123]

which should trigger a TypeConstraintViolation error. If we receive another type
of error, this ratio becomes higher. An example of wrong error for this message
is:

[4,"1","InternalError","",{}]

• Valid Requests Causing Error Rate: The ratio of instances in which valid
inputs erroneously triggered errors, indicating improper processing by the system.
An example of message that falls into this category is:

[2, ’15505’, ’StatusNotification’, {’connectorId’: 6,
’errorCode’: ’GroundFailure’, ’status’: ’Finishing’}]

43

Evaluation

The StatusNotification message comply with the constraints defined by its json
schema and it should be accepted by the server. If it’s not accepted and the
server sends an error, this ratio becomes higher. An example of response is:

[4,"15505","InternalError","",{}]

• Non-error-Causing Fuzz Rate: The fraction of invalid messages that did not
cause an error but ideally should have, indicating possible validation gaps. An
example of message that falls into this category is:

[2, ’84’, ’MeterValues’, {’connectorId’: 7}]

the json schema of the MeterValues message has two required properties: con-
nectorId and meterValue. The message in the example does not contain the
meterValue property and so is flagged as fuzzed and should trigger an error. If
we do not receive an error from the server this ratio will be higher. An example
of response is:

[3,"84",{}]

• Responses Not Valid with Protocol: The frequency of responses that did
not adhere to the OCPP protocol’s constraints. In particular the response is
validated against its json schema and if it does not comply with it, the message
falls into this category. An example of message for this ratio is:

[2, ’1’, ’Authorize’, {}]

This message is not valid because the idTag property is required and here is
missing. The server sends this response:

[3,"1",{}]

which does not comply with the json schema for the AutorizeResponse message,
that must contain at least the idTagInfo property.

4. Comprehensive Handling Rate: This ratio evaluates the system’s overall ability
to correctly process inputs, but with a broader scope than the Correct Responses
Rate. It includes all well-formed messages that receive an appropriate response and
all uncorrect messages that successfully trigger any error response, regardless of
the specific error type. This rate is indicative of the system’s general resilience and
effectiveness in handling a wide range of inputs, reflecting its capacity to appropriately
respond under varied circumstances, without being restricted to the accuracy of error
types. An example of message that falls into this category is:

[2,"1","Authorize","idTag":123]

44

Evaluation

the predicted error for this message is TypeConstraintViolation but here we are just
looking for an error without checking if it’s the predicted one. Examples of possible
responses for this category are:

[4,"1","TypeContraintViolation","idTag longer than 20",{}]

[4,"1","InternalError","",{}]

[4,"1","GenericError","",{}]

Following these metrics, the subsequent tables detail the performance metrics for
each fuzzing approach and OCPP implementation. They highlight the system’s profi-
ciency in parsing and evaluating protocol communication, illuminating areas for potential
improvement.

The ensuing tables, therefore, offer a holistic view of our testing process, reflecting both
the meticulousness of the fuzzing techniques employed and the resilience of each OCPP
implementation against the generated test cases.

4.1 (Random Fuzzer against Steve): This table highlights a Correct Responses Rate of
approximately 22.44%, indicating that only a fraction of the responses from Steve matched
the expected outcomes for both valid and invalid inputs. The Comprehensive Handling
Rate, at 57.31%, suggests that while Steve can handle a broader array of inputs, there’s
still room for improvement, particularly in responding accurately to fuzzed inputs. The
Uncorrect Response Rate reveals that a significant portion of responses deviated from the
expected outcomes, including instances of wrong error responses and non-error-causing
fuzzed messages. These findings underline areas in Steve’s implementation that could
benefit from further refinement for enhanced protocol adherence and error handling.

Table 4.1: EVALUATION METRICS FOR OCPPSTORM USING THE RANDOM
FUZZER AGAINST STEVE

Metric Value
Total Iterations 500,000
Correct Responses Rate 112212

500000 ≈ 0.2244 or 22.44%
Uncorrect Response Rate 387788

500000 ≈ 0.7756 or 77.56%
Wrong Error Rate 255544

500000 ≈ 0.5111 or 51.11%
Valid Requests Causing Error Rate 0 or 0%
Non-error-Causing Fuzz Rate 104098

500000 ≈ 0.2082 or 20.82%
Responses Not Valid with Protocol 28146

500000 ≈ 0.0563 or 5.63%
Comprehensive Handling Rate 286560

500000 ≈ 0.5731 or 57.31%

45

Evaluation

4.2 (Random Fuzzer against OCPP.Core): The data shows a Correct Responses Rate of
22.04%, indicating that about a fifth of the responses were as expected. The Comprehensive
Handling Rate is notably higher at 86.37%, suggesting that while the system frequently
responds correctly to both valid and invalid inputs, it often categorizes errors incorrectly,
as reflected in the high Wrong Error Rate of 75.20%. This points towards a need for better
error categorization. The low Non-error Causing Fuzz Rate of 2.75% indicates effective
detection of malformed inputs.

Table 4.2: EVALUATION METRICS FOR OCPPSTORM USING THE RANDOM
FUZZER AGAINST OCPP.CORE

Metric Value
Total Iterations 500,000
Correct Responses Rate 110209

500000 ≈ 0.2204 or 22.04%
Uncorrect Response Rate 389791

500000 ≈ 0.7796 or 77.96%
Wrong Error Rate 376025

500000 ≈ 0.7520 or 75.20%
Valid Requests Causing Error Rate 0 or 0%
Non-error Causing Fuzz Rate 13766

500000 ≈ 0.0275 or 2.75%
Responses Not Valid with Protocol 0 or 0%
Comprehensive Handling Rate 431870

500000 ≈ 0.8637 or 86.37%

4.3 (Isla Fuzzer without constraints against Steve): The table indicates a fairly balanced
Correct Responses Rate of 57.80%, suggesting that over half of the responses aligned
with expectations. The Comprehensive Handling Rate stands at 58.79%, pointing to
a relatively consistent handling of both correct and incorrect messages. However, the
Uncorrect Response Rate at 42.19% and Wrong Error Rate at 23.18% highlight areas for
improvement, particularly in error handling and response accuracy.

Table 4.3: EVALUATION METRICS FOR OCPPSTORM USING THE ISLA FUZZER
WITHOUT CONSTRAINTS AGAINST STEVE

Metric Value
Total Iterations 100,000
Correct Responses Rate 57804

100000 ≈ 0.5780 or 57.80%
Uncorrect Response Rate 42196

100000 ≈ 0.4219 or 42.19%
Wrong Error Rate 23185

100000 ≈ 0.2318 or 23.18%
Valid Requests Causing Error Rate 0 or 0%
Non-error Causing Fuzz Rate 13256

100000 ≈ 0.1326 or 13.26%
Responses Not Valid with Protocol 5755

100000 ≈ 0.0575 or 5.75%
Comprehensive Handling Rate 58792

100000 ≈ 0.5879 or 58.79%

4.4 (Isla Fuzzer without constraints against OCPP.Core): This table shows a Correct
Responses Rate of 42.07%, indicating less than half of the responses were as expected. The

46

Evaluation

Comprehensive Handling Rate is higher at 61.99%, reflecting a reasonable degree of system
resilience in processing both correct and uncorrect inputs. However, the high Uncorrect
Response Rate of 57.93% and Wrong Error Rate of 36.58% highlight significant challenges
in error handling and protocol adherence, necessitating further refinement.

Table 4.4: EVALUATION METRICS FOR OCPPSTORM USING THE ISLA FUZZER
WITHOUT CONSTRAINTS AGAINST OCPP.CORE

Metric Value
Total Iterations 100,000
Correct Responses Rate 42069

100000 ≈ 0.4207 or 42.07%
Uncorrect Response Rate 57931

100000 ≈ 0.5793 or 57.93%
Wrong Error Rate 36577

100000 ≈ 0.3658 or 36.58%
Valid Requests Causing Error Rate 19134

100000 ≈ 0.1913 or 19.13%
Non-error Causing Fuzz Rate 2220

100000 ≈ 0.0222 or 2.22%
Responses Not Valid with Protocol 0 or 0%
Comprehensive Handling Rate 61990

100000 ≈ 0.6199 or 61.99%

4.5 (Isla Fuzzer with constraints against Steve): This table reveals a relatively low
Correct Responses Rate of 31.35%, suggesting significant challenges in Steve’s ability to
handle both valid and fuzzed inputs effectively. The high Uncorrect Response Rate at
68.65%, primarily driven by a Wrong Error Rate of 49.63%, indicates notable discrepancies
in error handling. The Comprehensive Handling Rate of 69.63% implies a moderate level of
system robustness, yet the underlying issues in error categorization and protocol adherence
are evident and require attention.

Table 4.5: EVALUATION METRICS FOR OCPPSTORM USING THE ISLA FUZZER
WITH CONSTRAINTS AGAINST STEVE

Metric Value
Total Iterations 19,950
Correct Responses Rate 6254

19950 ≈ 0.3135 or 31.35%
Uncorrect Response Rate 13696

19950 ≈ 0.6865 or 68.65%
Wrong Error Rate 9902

19950 ≈ 0.4963 or 49.63%
Valid Requests Causing Error Rate 37

19950 ≈ 0.0018 or 0.18%
Non-error Causing Fuzz Rate 3757

19950 ≈ 0.1883 or 18.83%
Responses Not Valid with Protocol 0 or 0%
Comprehensive Handling Rate 13892

19950 ≈ 0.6963 or 69.63%

4.6 (Isla Fuzzer with constraints against OCPP.Core): Exhibits a Correct Responses
Rate of 33.67%, indicating challenges in accurately processing inputs according to protocol
specifications. The substantial Uncorrect Response Rate of 66.32%, largely due to a high
Wrong Error Rate of 60.57%, suggests issues in error classification and handling. Notably,

47

Evaluation

the Comprehensive Handling Rate is relatively high at 82.90%, suggesting that while the
system is generally effective in processing a range of inputs, it struggles with accurate
error categorization and adherence to protocol in certain instances.

Table 4.6: EVALUATION METRICS FOR OCPPSTORM USING THE ISLA FUZZER
WITH CONSTRAINTS AGAINST OCPP.CORE

Metric Value
Total Iterations 19,950
Correct Responses Rate 6718

19950 ≈ 0.3367 or 33.67%
Uncorrect Response Rate 13232

19950 ≈ 0.6632 or 66.32%
Wrong Error Rate 12085

19950 ≈ 0.6057 or 60.57%
Valid Requests Causing Error Rate 196

19950 ≈ 0.0098 or 0.98%
Non-error Causing Fuzz Rate 951

19950 ≈ 0.0477 or 4.77%
Responses Not Valid with Protocol 0 or 0%
Comprehensive Handling Rate 16539

19950 ≈ 0.8290 or 82.90%

4.7 (State Machine Fuzzer against Steve): This table reveals a Correct Responses Rate
of only 22.74%, highlighting significant issues in adhering to the protocol and accurately
processing inputs. The Uncorrect Response Rate is notably high at 77.24%, with a
predominant Wrong Error Rate of 50.99%, indicating major challenges in error handling
and response categorization. The Comprehensive Handling Rate, at 57.08%, suggests a
moderate level of effectiveness in managing inputs, but also reflects substantial room for
improvement in ensuring protocol compliance and error accuracy.

Table 4.7: EVALUATION METRICS FOR OCPPSTORM USING THE STATE MA-
CHINE FUZZER AGAINST STEVE

Metric Value
Total Iterations 1,114,800
Correct Responses Rate 253558

1114800 ≈ 0.2274 or 22.74%
Uncorrect Response Rate 861182

1114800 ≈ 0.7724 or 77.24%
Wrong Error Rate 568591

1114800 ≈ 0.5099 or 50.99%
Valid Requests Causing Error Rate 0 or 0%
Non-error Causing Fuzz Rate 230361

1114800 ≈ 0.2066 or 20.66%
Responses Not Valid with Protocol 62229

1114800 ≈ 0.0558 or 5.58%
Comprehensive Handling Rate 636325

1114800 ≈ 0.5708 or 57.08%

4.8 (State Machine Fuzzer against OCPP.Core): The Correct Responses Rate for
OCPP.Core stands at 21.86%, pointing towards substantial issues in protocol adherence
and response accuracy. The high Uncorrect Response Rate of 78.14% is predominantly
due to a Wrong Error Rate of 75.41%, suggesting significant inaccuracies in error handling.
However, the Comprehensive Handling Rate of 86.48% suggests that while there are issues

48

Evaluation

with error categorization, the system shows a high level of resilience in handling a variety
of inputs, indicating its overall robustness despite the noted deficiencies.

Table 4.8: EVALUATION METRICS FOR OCPPSTORM USING THE STATE MA-
CHINE FUZZER AGAINST OCPP.CORE

Metric Value
Total Iterations 1,114,800
Correct Responses Rate 243672

1114800 ≈ 0.2186 or 21.86%
Uncorrect Response Rate 871068

1114800 ≈ 0.7814 or 78.14%
Wrong Error Rate 840691

1114800 ≈ 0.7541 or 75.41%
Valid Requests Causing Error Rate 0 or 0%
Non-error Causing Fuzz Rate 30377

1114800 ≈ 0.0272 or 2.72%
Responses Not Valid with Protocol 0 or 0%
Comprehensive Handling Rate 964041

1114800 ≈ 0.8648 or 86.48%

49

Evaluation

4.2.2 Constraint Violation Analysis

The comprehensive analysis of constraint violations forms the cornerstone of our evaluation
methodology. This segment aims to meticulously examine the system’s adherence to the
specified constraints under various testing conditions. Presented in the form of an extensive
longtable, this analysis focuses on critical aspects such as Required Field Omission, Length
Constraint Breach, and Data Type Discrepancy, which are pivotal in assessing the system’s
capacity to handle protocol deviations effectively.

Each of these aspects is carefully examined to gauge the system’s compliance with the
predefined protocol specifications and its resilience to anomalous input scenarios.

50

Evaluation

Table 4.9: CONSTRAINT VIOLATION RESULTS FOR STEVE

MessageType.Property
Required

Field
Omitted

Length
Constraint
Breached

Data
Type

Discrepancy
Authorize.idTag X X X
BootNotification.chargePointVendor X X X
BootNotification.chargePointModel X X X
BootNotification.chargePointSerialNumber - X X
BootNotification.chargeBoxSerialNumber - X X
BootNotification.firmwareVersion - X X
BootNotification.iccid - X X
BootNotification.imsi - X X
BootNotification.meterType - X X
BootNotification.meterSerialNumber - X X
DataTransfer.vendorId X X X
DataTransfer.messageId - X X
DataTransfer.data - - X
DiagnosticsStatusNotification.status X - X
FirmwareStatusNotification.status X - X
MeterValues.connectorId X - X
MeterValues.transactionId - - X
MeterValues.meterValue[*].timestamp X - X
MeterValues.meterValue[*].sampledValue X - -
MeterValues.meterValue[*].sampledValue[*].value X -
MeterValues.meterValue[*].sampledValue[*].context - - X
MeterValues.meterValue[*].sampledValue[*].format - - X
MeterValues.meterValue[*].sampledValue[*].measurand - - X
MeterValues.meterValue[*].sampledValue[*].phase - - X
MeterValues.meterValue[*].sampledValue[*].location - - X
MeterValues.meterValue[*].sampledValue[*].unit - - X
StartTransaction.connectorId X - X
StartTransaction.idTag X X
StartTransaction.meterStart X - X
StartTransaction.reservationId - - X
StartTransaction.timestamp X - X
StatusNotification.connectorId X - X
StatusNotification.errorCode - X
StatusNotification.info - X
StatusNotification.status -
StatusNotification.timestamp -
StatusNotification.vendorId
StatusNotification.vendorErrorCode X
StopTransaction.idTag - X
StopTransaction.meterStop X - X
StopTransaction.timestamp X - X
StopTransaction.transactionId X - X
StopTransaction.reason - - X
StopTransaction.transactionData[*].timestamp X
StopTransaction.transactionData[*].sampledValue X

Continued on next page

51

Evaluation

Table 4.9 continued from previous page

MessageType.Property
Required

Field
Omitted

Length
Constraint
Breached

Data
Type

Discrepancy
StopTransaction.transactionData[*].sampledValue[*]
.value

X

StopTransaction.transactionData[*].sampledValue[*]
.context
StopTransaction.transactionData[*].sampledValue[*]
.format
StopTransaction.transactionData[*].sampledValue[*]
.measurand
StopTransaction.transactionData[*].sampledValue[*]
.phase
StopTransaction.transactionData[*].sampledValue[*]
.location
StopTransaction.transactionData[*].sampledValue[*].unit

52

Evaluation

Table 4.10: CONSTRAINT VIOLATION RESULTS FOR OCPP.CORE

MessageType.Property
Required

Field
Omitted

Length
Constraint
Breached

Data
Type

Discrepancy
Authorize.idTag X X
BootNotification.chargePointVendor X X
BootNotification.chargePointModel X X
BootNotification.chargePointSerialNumber - X X
BootNotification.chargeBoxSerialNumber - X X
BootNotification.firmwareVersion - X X
BootNotification.iccid - X X
BootNotification.imsi - X X
BootNotification.meterType - X X
BootNotification.meterSerialNumber - X X
DataTransfer.vendorId X
DataTransfer.messageId - X
DataTransfer.data - -
DiagnosticsStatusNotification.status -
FirmwareStatusNotification.status X
MeterValues.connectorId -
MeterValues.transactionId - -
MeterValues.meterValue[*].timestamp X -
MeterValues.meterValue[*].sampledValue X - -
MeterValues.meterValue[*].sampledValue[*] .value X -
MeterValues.meterValue[*].sampledValue[*] .con-
text

- -

MeterValues.meterValue[*].sampledValue[*] .format - -
MeterValues.meterValue[*].sampledValue[*] .mea-
surand

- -

MeterValues.meterValue[*].sampledValue[*] .phase - -
MeterValues.meterValue[*].sampledValue[*] .loca-
tion

- -

MeterValues.meterValue[*].sampledValue[*] .unit - -
StartTransaction.connectorId -
StartTransaction.idTag
StartTransaction.meterStart X -
StartTransaction.reservationId - -
StartTransaction.timestamp -
StatusNotification.connectorId - X
StatusNotification.errorCode -
StatusNotification.info - X
StatusNotification.status -
StatusNotification.timestamp -
StatusNotification.vendorId
StatusNotification.vendorErrorCode X
StopTransaction.idTag -
StopTransaction.meterStop -
StopTransaction.timestamp -
StopTransaction.transactionId -
StopTransaction.reason - -

Continued on next page

53

Evaluation

Table 4.10 continued from previous page

MessageType.Property
Required

Field
Omitted

Length
Constraint
Breached

Data
Type

Discrepancy
StopTransaction.transactionData[*].timestamp
StopTransaction.transactionData[*] .sampledValue
StopTransaction.transactionData[*] .sampled-
Value[*].value
StopTransaction.transactionData[*] .sampled-
Value[*].context
StopTransaction.transactionData[*] .sampled-
Value[*].format
StopTransaction.transactionData[*] .sampled-
Value[*].measurand
StopTransaction.transactionData[*] .sampled-
Value[*].phase
StopTransaction.transactionData[*] .sampled-
Value[*].location
StopTransaction.transactionData[*] .sampled-
Value[*].unit

54

Evaluation

When comparing the constraint violation results for Steve (4.9) and OCPP.Core (4.10),
a clear distinction in their handling of protocol constraints emerges.

Steve’s implementation shows a significant degree of leniency in adhering to protocol
specifications. It often accepts inputs that do not conform to the protocol’s defined
constraints, such as permitting fields longer than specified, overlooking required property
omissions, and ignoring type discrepancies. This pattern is observed across numerous
message properties and types. While this may indicate flexibility in input handling, it simul-
taneously raises potential concerns regarding security and system behavior predictability
when faced with non-standard or malformed inputs.

On the other side, OCPP.Core exhibits a more rigorous adherence to protocol constraints.
The system demonstrates a higher level of compliance, especially regarding the handling
of required fields and data types, and is more stringent in accepting inputs that exceed
the expected format or length. This approach suggests a heightened attention to protocol
fidelity, enhancing the system’s robustness against malformed inputs and maintaining
consistent behavior.

In summary, Steve and OCPP.Core each display distinct methods of protocol adher-
ence, with varying implications. Steve’s more accommodating approach could offer user
convenience and flexibility but at the risk of increased security vulnerabilities. Conversely,
OCPP.Core’s strict adherence to protocol standards may bolster security and consistency,
ensuring that only inputs that precisely match the protocol specifications are accepted.

4.2.3 Performance Metrics

The first set of tables delineates the performance metrics derived from the fuzzing sessions
conducted on both the implementations. It juxtaposes the results from the Random
Fuzzer, State Machine Fuzzer, and Isla Fuzzer, both with and without constraints, offering
a multi-faceted view of the tool’s performance across different operational modes. In
particular 4.11 shows the performance metrics comparison for Steve, while 4.12 shows the
performance metrics comparison for OCPP.Core.

Table 4.11: PERFORMANCE METRICS COMPARISON FOR STEVE

Performance Metric Random
Fuzzer

State
Machine
Fuzzer

Isla
Fuzzer(w/o
con-
straints)

Isla
Fuzzer(w
con-
straints)

Total Messages 500000 1,114,800 100,000 4950
Messages per Second (MPS) 521.4 595.5 3.99 1.36
Total Execution Time 0h 15m 59s 0h 31m 12s 6h 57m 14s 1h 0m 38s
Average Time per Message (s) 0.0019 0.0017 0.2503 0.7349

55

Evaluation

Table 4.12: PERFORMANCE METRICS COMPARISON FOR OCPP.CORE

Performance Metric Random
Fuzzer

State
Machine
Fuzzer

Isla
Fuzzer(w/o
con-
straints)

Isla
Fuzzer(w
con-
straints)

Total Messages 500000 1,114,800 100,000 19950
Messages per Second (MPS) 20.69 20.59 3.36 1.37
Total Execution Time 6h 42m 42s 15h 2m 33s 8h 15m 48s 4h 2m 30s
Average Time per Message (s) 0.0483 0.0486 0.2975 0.7293

• Comparison of Fuzzers: 4.11 and 4.12 reveal notable differences in the performance
of the State Machine, Random Fuzzer, and Isla Fuzzers. Both the State Machine
and Random Fuzzers process messages at a much faster rate (approximately 521.4 to
595.5 MPS for Steve and 20.59 to 20.69 MPS for OCPP.Core), while the Isla Fuzzers
(with and without constraints) operate more slowly (3.99 to 1.36 MPS for Steve and
3.36 to 1.37 MPS for OCPP.Core). This indicates that the isla library is much slower
in generating messages compared to the other fuzzers.

• Steve vs. OCPP.Core: When comparing the two implementations, Steve generally
exhibits a higher message processing speed across all fuzzers, indicating a more
efficient handling of incoming messages. However, this does not necessarily reflect
the overall robustness or security posture of the implementations. It is essential to
consider this in the context of the fuzzing method employed.

4.3 Identified Vulnerabilities with OCPPStorm

Each identified issue was systematically reproduced, verified, and documented, with detailed
logs and visual evidence collected to support the findings. The vulnerabilities identified
are critical not only for the OCPP.Core and Steve implementations but potentially for
other systems adhering to the OCPP standards, highlighting the need for rigorous protocol
compliance and system validation.

4.3.1 OCPP.Core Vulnerabilities

Our comprehensive evaluation using OCPPStorm has uncovered several vulnerabilities
within the OCPP.Core implementation. These issues span various aspects of the system,
ranging from potential Denial of Service (DoS) exploits to logical inconsistencies that could
affect transaction integrity and security.

• DoS Vulnerability: A significant flaw was discovered where the system fails to

56

Evaluation

validate the length of the ’chargePointVendor’ field in ‘BootNotification’ message,
potentially leading to server instability and DoS when processing excessively large
inputs.

• Negative Charging Transactions: The system accepts ’StopTransaction’ messages
with ’meterStop’ values lower than ’meterStart’ from ’StartTransaction’ messages,
leading to incorrect logging of negative charging amounts and potential billing
inaccuracies.

• Unauthorized Transaction Termination: A security lapse allows ’StopTrans-
action’ messages with any random ’transactionId’ to terminate active transactions,
indicating insufficient validation procedures.

• Concurrent Transaction Handling: The system permits multiple transactions
with the same ’connectorId’ and ’idTag’, contrary to the expected ’ConcurrentTx’
status, which could result in critical transaction management and billing errors.

• Handling of Additional and Duplicate Properties: A vulnerability where the
server processes StartTransaction messages containing additional, arbitrary properties,
or duplicate properties without proper validation. Particularly concerning is the
server’s acceptance of the last occurrence of a duplicate property. This could be
exploited to alter transaction records or impact system integrity, as the server does not
reject messages with unknown additional properties or duplicate entries, potentially
leading to unpredictable system behavior.

• Repeated Use of Message ID: The system exhibits a compliance issue with the
OCPP specification, which mandates that each CALL message must have a unique
message ID on the same WebSocket connection. Our tests revealed that the system
fails to enforce this requirement, accepting multiple messages with the same message
ID. This oversight could lead to confusion in request identification and processing,
potentially impacting the integrity and traceability of transactions.

4.3.2 Steve Vulnerabilities

• Invalid Timestamp Handling in StartTransaction: A significant flaw was
detected in how the server processes the ‘StartTransaction‘ OCPP message, specifically
related to the handling of the ‘timestamp‘ parameter. When a ‘StartTransaction‘
message is sent with the ‘timestamp‘ set to 1000000, the server erroneously stores
the ‘start_timestamp‘ in the database as ‘0000-00-00 00:00:00.000000‘. This incorrect
handling leads to an SQL exception error when attempting to retrieve or display
the transaction data in the system’s web interface. The expected behavior is for the
server to either store a valid timestamp or reject the message if the timestamp is
invalid, thus ensuring the integrity and accuracy of transaction records.

• Handling of Multiple StopTransaction Messages: The system displays a
critical issue in maintaining transaction integrity. Despite expectations that a single

57

Evaluation

‘StartTransaction‘ message should correspond to only one ‘StopTransaction‘ message,
the system erroneously accepts multiple ‘StopTransaction‘ messages for the same
transaction. This improper handling results in the creation of multiple stop records for
the same transaction in the ‘transaction_stop‘ table. Such behavior causes significant
inconsistencies and potential errors in transaction management and reporting. The
reproduction of this problem involves sending a ‘StartTransaction‘ message followed
by several ‘StopTransaction‘ messages with varying ‘meterStop‘ values for the same
transaction, each of which is incorrectly recorded as a separate entry in the database.

• Reprocessing of StartTransaction Messages: The system exhibits a notable
flaw in handling the lifecycle of transactions. Ideally, once a transaction is initiated
with a ‘StartTransaction‘ message and subsequently concluded with a ‘StopTransac-
tion‘ message, any further attempts to resend the same ‘StartTransaction‘ message
should be rejected, with the system indicating that the transaction has already been
concluded. However, in its current behavior, the system erroneously accepts the
repeated ‘StartTransaction‘ message without creating a new record in the database.
This could mislead users into believing a new transaction has commenced. Moreover,
the system allows the initiation of a new transaction by merely altering a single field
in the ‘StartTransaction‘ message, such as the ‘meterStart‘ value. This can lead
to transaction duplication and data inconsistencies. To reproduce this issue, one
needs to send a ‘StartTransaction‘ message, stop the transaction, then resend the
same ‘StartTransaction‘ message, and finally send it again with a minor modifica-
tion. This behavior poses significant challenges in accurately managing and tracking
transactions, potentially impacting billing and auditing processes.

• Unauthorized Transaction Termination via Predictable Transaction IDs: A
potential security vulnerability was identified in the system’s handling of transaction
IDs. The server issues new transaction IDs for incomplete ‘StartTransaction‘ requests,
and these IDs are auto-incremented, making them predictable. This predictability
allows an unauthorized entity to terminate ongoing transactions. The issue was
reproduced using two Docker containers simulating OCPP clients. The first container
initiates a valid transaction, while the second container sends an incomplete ‘Start-
Transaction‘ request to obtain a new transaction ID, then uses this ID (minus 1) to
issue a ‘StopTransaction‘ request, thereby unauthorizedly terminating the transaction
started by the first container. This behavior was confirmed through the system’s web
interface. The expected behavior is for the server to not issue transaction IDs for
incomplete requests and to authenticate ‘StopTransaction‘ requests before processing
them, thus preventing unauthorized transaction terminations.

• Billing Discrepancies from Invalid MeterStop Values: The server’s handling of
‘StopTransaction‘ messages has been found to potentially lead to billing discrepancies.
Specifically, the server accepts ‘StopTransaction‘ messages where the ‘meterStop‘ value
is less than the ‘meterStart‘ value provided in the corresponding ‘StartTransaction‘
message. This acceptance can result in incorrect billing calculations. The issue was
identified through the following steps: initiating a ‘StartTransaction‘ with a given
‘meterStart‘ value, followed by a ‘StopTransaction‘ message with a ‘meterStop‘ value

58

Evaluation

lower than the ‘meterStart‘. Despite the logical inconsistency, the server processes
the transaction, impacting the billing accuracy. The expected behavior is for the
server to validate the ‘meterStop‘ values, ensuring they are equal to or greater than
the ‘meterStart‘ values, thereby maintaining billing integrity.

• Repeated Use of Message ID: The system exhibits a compliance issue with the
OCPP specification, which mandates that each CALL message must have a unique
message ID on the same WebSocket connection. Our tests revealed that the system
fails to enforce this requirement, accepting multiple messages with the same message
ID. This oversight could lead to confusion in request identification and processing,
potentially impacting the integrity and traceability of transactions.

59

Chapter 5

Future work

5.1 Deployment on Additional Server Implementa-
tions

Expanding the deployment of OCPPStorm to additional server implementations is crucial
for a more comprehensive understanding of its effectiveness. Future work in this area will
focus on several key aspects:

• Diverse Implementation Testing: test OCPPStorm on a variety of server imple-
mentations, particularly those that are prevalent in the industry or possess unique
architectural features. This will help understand the tool’s adaptability and effective-
ness across different server configurations.

• Vulnerability Analysis: The extended deployment aims to uncover a broader
range of vulnerabilities or behavior inconsistencies in various server implementations,
enriching our understanding of potential security flaws in OCPP ecosystems.

• Architectural Impact Assessment: By analyzing how different server designs
and architectures influence fuzzing results, we can provide insights into design choices
that enhance or weaken the security of OCPP implementations.

5.2 Integrating White Box Fuzzing

Incorporating white-box fuzzing techniques alongside our existing black-box methods can
greatly enhance the depth and breadth of our security analysis of OCPP implementations:

60

Future work

• Combining Fuzzing Techniques: Employing both black-box and white-box fuzzing
approaches allows us to leverage the strengths of each method. While black-box
fuzzing offers a broad, surface-level assessment, white-box fuzzing can provide detailed
insights into the internal logic and structure of the OCPP implementations.

• Enhanced Code Coverage: White-box fuzzing will enable us to achieve higher
code coverage, particularly in areas that are less exposed or not typically triggered in
normal operation. This approach is crucial for uncovering vulnerabilities that require
specific conditions or sequences of actions to manifest.

• Synergistic Approach: The use of white-box fuzzing in conjunction with black-box
techniques represents a synergistic approach to security testing. It combines the
unpredictability and broad application of black-box testing with the targeted and
detailed examination of white-box methods.

5.3 Source Code Static Analysis

The integration of static code analysis into the evaluation of OCPP server implementations
offers a valuable complement to dynamic fuzzing techniques. This approach aims to
enhance the overall security assessment framework:

• Static Analysis Methodology: Static code analysis techniques can be applied to
OCPP server implementations to identify a range of potential vulnerabilities and code
quality issues. These issues might not be evident through dynamic testing methods.

• Types of Vulnerabilities Detected: Static analysis is particularly effective in
uncovering various types of security vulnerabilities, including but not limited to code
injection, buffer overflows, and similar flaws that could remain concealed during
dynamic testing phases.

• Integration with Fuzzing: The convergence of findings from static analysis and
fuzzing data is expected to forge a more comprehensive and robust framework for
security testing in OCPP implementations. Such an integrated approach ensures a
thorough assessment, covering both dynamic and static aspects of code security.

61

Chapter 6

Related work

6.1 Introduction

This chapter presents a review of existing literature pertinent to the security and testing
of the Open Charge Point Protocol (OCPP). It encapsulates various studies, ranging
from security assessments of electric vehicle (EV) charging ecosystems to advanced testing
methodologies for OCPP. This review sets the stage for understanding the current landscape
of OCPP security and the innovative contributions of this thesis.

6.1.1 Electric Vehicle Charging Security

The rapid growth in the adoption of Electric Vehicles (EVs) has stimulated numerous
studies examining the security aspects of EV charging infrastructures. Key studies in
this domain include [8] and [9]. These papers provide an exhaustive examination of the
vulnerabilities inherent in EV charging systems, extending from hardware components to
critical communication protocols like OCPP.

In [8] the researchers conduct a multi-faceted analysis of the EV charging ecosystem.
They explore the potential security risks associated with various components of EV charging
infrastructure, including charging stations, network connections, and payment systems.
The study highlights specific vulnerabilities in communication protocols, emphasizing the
need for robust security measures in protocol design and implementation. This paper is
particularly relevant as it underscores the complexity of the EV charging ecosystem and
the intricate web of interactions that need to be secured.

Similarly, the [9] paper takes a comprehensive approach to scrutinize the security
challenges facing EV charging systems. It delves into the potential cybersecurity threats

62

Related work

that could compromise the integrity and reliability of these systems. The paper pays
special attention to communication protocols like OCPP, discussing how vulnerabilities in
these protocols could lead to unauthorized access, data breaches, and even disruption of
charging services. This review is instrumental in understanding the broad spectrum of
cybersecurity challenges that must be addressed to safeguard the burgeoning EV charging
infrastructure.

Both studies underscore the criticality of secure communication protocols in the EV
charging domain. They highlight how vulnerabilities in protocols like OCPP can have far-
reaching implications, not just for individual charging stations but for the entire network
of EV infrastructure. This aligns closely with the focus of our thesis, which seeks to
enhance the security of OCPP implementations through rigorous testing methodologies.
By understanding the potential security gaps identified in these studies, we can better
tailor our fuzzing tool, OCPPStorm, to detect and mitigate similar vulnerabilities in OCPP
implementations.

6.1.2 OCPP Security Vulnerabilities

The security of OCPP implementations has been a focal point of several research endeavors,
particularly in the context of identifying and addressing specific vulnerabilities. Studies
like [10] and [11] have been pivotal in uncovering and analyzing critical security threats
within OCPP-based systems.

In [10], the researchers present a detailed analysis of the susceptibility of OCPP to
man-in-the-middle (MitM) attacks. These attacks, where an unauthorized intermediary
can intercept and potentially alter the communication between the charging station and
the central system, pose a significant threat to the integrity of OCPP communications.
The study not only identifies the potential for such attacks but also proposes mitigation
strategies to enhance the security of OCPP implementations against MitM scenarios. This
research is crucial as it directly addresses one of the fundamental security concerns in any
communication protocol – the integrity and trustworthiness of the transmitted data.

Similarly, [11] explores the vulnerabilities in OCPP that could allow attackers to disrupt
charging sessions or even gain remote code execution capabilities. This study delves
into the practical implications of such vulnerabilities, demonstrating how they could be
exploited to compromise the functionality of EV charging stations or gain unauthorized
control. The findings of this study are particularly alarming as they expose the potential
for severe disruptions in the EV charging process, underscoring the need for stringent
security measures in OCPP implementations.

Both these studies highlight the multifaceted nature of security challenges in OCPP
implementations. They reveal not only the potential for data interception and manipulation
but also the possibility of direct attacks on the functionality and control of EV charging
systems. These insights are invaluable for our research, as they provide a clear indication

63

Related work

of the types of vulnerabilities that our tool, OCPPStorm, should be adept at detecting and
mitigating. By incorporating the knowledge gleaned from these studies, we can enhance
OCPPStorm’s effectiveness in uncovering and addressing critical security vulnerabilities in
OCPP implementations, thereby contributing to the overall resilience and reliability of EV
charging infrastructures.

6.1.3 Testing and Compliance in OCPP

The evolution of Electric Vehicle (EV) charging systems, particularly regarding the Open
Charge Point Protocol (OCPP), has underscored the necessity for robust testing mecha-
nisms. Traditional approaches, often reliant on predefined test cases, have been foundational
in ensuring protocol adherence, as seen in studies like [12]. However, the advent of fuzzing
methodologies like those employed by OCPPStorm represents a significant paradigm shift
in testing protocols.

The study mentioned above introduces a specialized tool for assessing OCPP 1.6 message
conformance. This tool is crucial for validating the structural and content accuracy of
messages against OCPP 1.6 specifications. While such tools are invaluable for confirming
compliance with known standards, they operate within the boundaries of predefined
scenarios and expected message formats.

In contrast, fuzzing, as employed by OCPPStorm, introduces a dynamic and unpre-
dictable element into testing. Fuzzing does not rely on preset test cases; instead, it
generates unexpected and often anomalous inputs. This approach is designed to uncover
vulnerabilities and bugs that might elude conventional testing methods. Fuzzing’s strength
lies in its ability to simulate real-world scenarios where inputs may not always conform to
expected patterns, thereby exposing potential weaknesses in protocol implementations.

The novelty of OCPPStorm lies in its ability to offer a more exhaustive testing landscape.
By moving beyond the constraints of predefined test cases, it provides a broader and more
realistic assessment of OCPP implementations. This is critical in a domain where the
reliability and security of communication protocols are paramount for the safe operation
of EV charging infrastructures.

In summary, while traditional testing tools like the one highlighted in the mentioned
study play a crucial role in ensuring baseline compliance, the introduction of fuzzing
methodologies through tools like OCPPStorm marks a significant advancement in the
field. By embracing unpredictability and rigorously challenging protocol implementations,
OCPPStorm sets a new standard in OCPP testing, ensuring that EV charging systems
are not only compliant but also resilient against a wider array of potential threats and
anomalies.

64

Related work

6.1.4 Fuzzing Techniques in Protocol Security

AutoFuzz[13] exemplifies the advancement in automated fuzzing techniques for network
protocols. While AutoFuzz[13] focuses on automating the fuzzing process, OCPPStorm
introduces novel aspects specifically tailored for the Open Charge Point Protocol (OCPP).

OCPPStorm distinguishes itself by its specialized approach to fuzzing in the context of
OCPP. Unlike AutoFuzz[13], which targets a broad range of network protocols, OCPPStorm
is meticulously designed to address the unique challenges and intricacies of the OCPP. It
leverages specialized knowledge of the protocol to generate more targeted and relevant
test cases. This results in a more effective identification of potential vulnerabilities specific
to OCPP implementations.

Moreover, OCPPStorm incorporates a blend of techniques that are not just automated
but also intelligently adapted to the protocol’s structure and requirements. This includes
understanding the specific message formats, error codes, and communication flows unique
to OCPP. In doing so, OCPPStorm extends beyond the capabilities of generic automated
fuzzers like AutoFuzz[13], providing a deeper, more focused analysis that is crucial for the
nuanced environment of electric vehicle charging systems.

In essence, while AutoFuzz[13] sets the stage for automated fuzzing in network pro-
tocols, OCPPStorm builds upon these principles, introducing specific adaptations and
enhancements for the OCPP. This represents a significant step forward in protocol-specific
fuzzing, particularly in the evolving domain of electric vehicle charging infrastructure
security.

6.2 Conclusion

The literature review reveals a growing focus on the security of EV charging systems and
the need for rigorous testing of protocols like OCPP. While existing studies have laid a
solid groundwork, there remains a need for advanced testing methodologies that can adapt
to the diverse and evolving nature of OCPP implementations. Our research, through the
development of OCPPStorm, aims to address this gap, building upon the existing body of
knowledge and introducing innovative approaches to protocol security testing.

65

Chapter 7

Conclusion

This thesis introduced OCPPStorm, a sophisticated fuzzing tool tailored for the Open
Charge Point Protocol (OCPP), aiming to enhance the security of electric vehicle charging
systems. Through extensive testing, OCPPStorm has proven effective in uncovering a
variety of vulnerabilities in OCPP implementations, demonstrating its potential as a
valuable asset in the realm of EV charging system security.

7.1 Key Findings

OCPPStorm was rigorously applied to various OCPP implementations, revealing significant
vulnerabilities, including Denial of Service (DoS) exploits, transaction integrity issues, and
unauthorized transaction terminations. These findings highlight critical security lapses in
current implementations and underscore the necessity for enhanced security measures and
rigorous protocol compliance.

7.2 Contributions to the Field

The development of OCPPStorm represents a substantial contribution to the field of
electric vehicle charging system security. By focusing specifically on OCPP, this tool
addresses a niche yet crucial aspect of EV infrastructure, providing insights into potential
security weaknesses and aiding in the development of more robust systems.

66

Conclusion

7.3 Limitations

Despite its effectiveness, OCPPStorm has limitations. Its current scope is confined to
specific versions of OCPP and may not comprehensively cover all possible security threats.
Future enhancements are required to broaden its applicability and effectiveness across
different protocol versions and configurations.

In conclusion, OCPPStorm marks a significant step towards fortifying the security of
electric vehicle charging infrastructures. It not only sheds light on existing vulnerabilities
but also provides a robust framework for future research and development in this critical
area.

67

Appendix A

OCPP.Core Vulnerabilities

A.1 DoS Vulnerability Due to Unrestricted ’charge-
PointVendor’ Length

A.1.1 Attack Description

An exploitable Denial of Service (DoS) condition in OCPP.Core was identified, charac-
terized by the absence of length validation for the chargePointVendor field within the
BootNotification message.

A.1.2 Expected System Behavior

The system should adhere to the OCPP specification by enforcing a maximum length of
20 characters for the chargePointVendor field, rejecting any messages that exceed this
threshold.

A.1.3 Actual System Behavior

In practice, the system accepts and attempts to process BootNotification messages
containing a chargePointVendor field with lengths far exceeding the specified maximum,
resulting in server instability and potential DoS attacks.

68

OCPP.Core Vulnerabilities

A.1.4 Reproduction Steps

1. Construct and transmit a BootNotification message with the chargePointVendor
field containing 442 MB of data.

2. The server attempts to process the oversized message, which leads to a crash, demon-
strating the DoS vulnerability.

A.1.5 Visual Evidence

Below is a screenshot from the server logs illustrating the system’s response to the oversized
BootNotification message:

Figure A.1: Server logs capturing the crash caused by the oversized BootNotification
message.

A.2 Inconsistency in Transaction Meter Values Al-
lowing Negative Charging

A.2.1 Attack Description

A logical discrepancy was detected in OCPP.Core’s handling of transaction meter values.
The system accepts StopTransaction messages with meterStop values that are lower
than the meterStart values provided in the initial StartTransaction messages, resulting
in the logging of negative charging amounts.

69

OCPP.Core Vulnerabilities

A.2.2 Expected System Behavior

The system should validate meterStop values to ensure they are greater than or equal to
meterStart values, preserving the logical integrity of transaction data.

A.2.3 Actual System Behavior

The system logs transactions with negative charging amounts, which contradicts the
principle of energy metering and could lead to billing inaccuracies.

A.2.4 Reproduction Steps

1. Initiate a StartTransaction with a specific meterStart value.

2. Proceed to send a StopTransaction message with a meterStop value that is less
than the meterStart value.

3. Observe the server’s acceptance of the transaction and the recording of a negative
charged amount.

A.2.5 Visual Evidence

The screenshot below displays the negative charged amount recorded in the system database
and shown in the web interface, highlighting the inconsistency:

Figure A.2: The web page showing a negative charging amount due to inconsistent meter
values

70

OCPP.Core Vulnerabilities

A.3 StopTransaction: Unauthorized Termination with
Random Transaction ID

A.3.1 Issue Description

A significant security flaw was found within the OCPP.Core server’s transaction manage-
ment process. The server incorrectly accepts a StopTransaction message with a random
transactionId, disregarding the need for the specific transactionId allocated at the
transaction’s initiation.

A.3.2 Expected System Behavior

The server is expected to validate StopTransaction messages to confirm the inclusion
of the initial transactionId, ensuring that transactions are conclusively tied to and
terminated by authorized entities.

A.3.3 Actual System Behavior

The system erroneously terminates active transactions upon receipt of StopTransaction
messages containing arbitrary transactionIds, indicating a lack of essential validation
mechanisms.

A.3.4 Reproduction Steps

1. A transaction is initiated via StartTransaction, and a valid transactionId is
provided by the server.

2. A StopTransaction message is submitted with a random transactionId not corre-
sponding to the one initially provided.

3. The server processes the request, resulting in the unwarranted termination of the
transaction.

71

OCPP.Core Vulnerabilities

A.4 Multiple Transactions Allowed with Same con-
nectorId and idTag

A.4.1 Issue Description

An inconsistency with the OCPP server implementation was identified concerning the
handling of concurrent transactions. According to OCPP documentation, the initiation
of a new transaction with an ‘idTag‘ already engaged in an ongoing transaction should
prompt an ‘AuthorizationStatus‘ of ‘ConcurrentTx‘. Deviations from this protocol were
noted:

1. Server allows multiple transactions with the same ‘idTag‘ without issuing a ‘Concur-
rentTx‘ status.

2. Server processes a ‘StopTransaction‘ message with a random ‘transactionId‘, effectively
terminating the current transaction.

A.4.2 Expected System Behavior

The server should reject new transactions involving an ‘idTag‘ already in use, providing an
‘AuthorizationStatus‘ of ‘ConcurrentTx‘ as per OCPP standards.

A.4.3 Actual System Behavior

The server permits the creation of multiple transactions using identical ‘idTags‘ with-
out the ‘ConcurrentTx‘ status and accepts ‘StopTransaction‘ messages with arbitrary
‘transactionIds‘.

A.4.4 Reproduction Steps

1. Transmit a ‘StartTransaction‘ message with a designated ‘idTag‘.

2. Send another ‘StartTransaction‘ message with the identical ‘idTag‘ during the active
transaction.

3. The server fails to return a ‘ConcurrentTx‘ status.

4. Issue a ‘StopTransaction‘ with a non-specific ‘transactionId‘.

5. The server halts the most recent transaction.

72

OCPP.Core Vulnerabilities

A.4.5 Potential Impact

This issue may precipitate significant transaction management and billing discrepancies,
compromising the system’s functional integrity.

A.4.6 Proposed Mitigation Strategy

Revisions are suggested for the server’s logic to encompass:

• The issuance of an ‘AuthorizationStatus‘ of ‘ConcurrentTx‘ for simultaneous ‘Start-
Transaction‘ requests with the same ‘idTag‘.

• The validation of ‘transactionId‘ within ‘StopTransaction‘ requests to ensure accurate
transaction termination.

A.5 Vulnerability in Handling Additional and Dupli-
cate Properties in StartTransaction Messages

A.5.1 Issue Description

A vulnerability was discovered in the OCPP server’s handling of the StartTransaction
message. Specifically, the server incorrectly accepts additional, arbitrary properties and, in
cases of duplicate properties, uses the value from the last occurrence without proper vali-
dation. For instance, if a StartTransaction message includes two different connectorId
properties, the server processes the message using the value of the last connectorId.

A.5.2 Reproduction Steps

1. Send a StartTransaction message with a custom, additional property.

2. Send a StartTransaction message with duplicate properties, such as two different
connectorId values.

3. Observe that the server accepts the message and processes it based on the last
occurrence of the duplicate property.

73

OCPP.Core Vulnerabilities

A.5.3 Expected System Behavior

The server should reject messages with unknown additional properties and messages
containing duplicate properties.

A.5.4 Actual System Behavior

The server processes the StartTransaction message, storing the value from the last
occurrence of a duplicate property, which can lead to potential misconfigurations and
system inconsistencies.

A.5.5 Potential Impact

Accepting additional and duplicate properties without proper validation can lead to
unpredictable system behavior. This vulnerability could potentially be exploited to alter
transaction records or impact the overall system integrity, posing significant risks to the
reliability and security of the system.

74

Appendix B

Steve Vulnerabilities

B.1 Invalid Timestamp Handling in StartTransaction
Messages

B.1.1 Issue Description

A critical vulnerability was identified in the handling of timestamp values in StartTransaction
OCPP messages. Specifically, when the timestamp parameter is set to 1000000, the server
incorrectly stores the start_timestamp in the database as 0000-00-00 00:00:00.000000,
leading to an SQL exception when attempting to retrieve transaction data.

B.1.2 Reproduction Steps

1. Send a StartTransaction OCPP message with the timestamp set to 1000000.

2. Check the start_timestamp in the database, noting it is stored as 0000-00-00
00:00:00.000000.

3. Access the web interface to view the transaction data.

4. Encounter an SQL exception error due to the invalid timestamp storage.

B.1.3 Expected System Behavior

The server should accurately handle the timestamp value, either storing a valid timestamp
or rejecting the message if the timestamp is determined to be invalid.

75

Steve Vulnerabilities

B.1.4 Actual System Behavior

The server stores an invalid timestamp, causing an SQL exception when reading the
transaction data.

B.1.5 Visual Evidence

A screenshot is attached, demonstrating the SQL exception error encountered when the
system tries to read transaction data with the invalid timestamp.

Figure B.1: SQL exception error caused by invalid timestamp in StartTransaction
message.

B.2 Handling Multiple StopTransaction Messages for
a Single Transaction

B.2.1 Issue Description

A significant issue was identified in the system’s handling of StopTransaction messages.
The server erroneously accepts multiple StopTransaction messages for a single trans-
action, leading to the creation of multiple stop records for the same transaction in the
transaction_stop table. This vulnerability results in inconsistencies and potential errors
in transaction management and reporting.

76

Steve Vulnerabilities

B.2.2 Reproduction Steps

1. Send a StartTransaction message:

[2,"1","StartTransaction", {
"connectorId": 2,
"idTag": "6",
"meterStart": 2,
"reservationId": 11,
"timestamp": "2023-10-03T12:34:56Z"

}]

2. Send a StopTransaction message multiple times for the same transaction, with
varying meterStop values:

[2,"1","StopTransaction", {
"idTag": "6",
"meterStop": 200,
"timestamp": "2023-11-06T15:54:23Z",
"transactionId": 676897,
"reason": "EVDisconnected"

}]

(Repeat with different meterStop values and/or reason values)

3. Observe that each StopTransaction message creates a new entry in the transaction_stop
table for the same transaction_pk.

B.2.3 Expected System Behavior

The system should enforce transaction integrity by only allowing a single StopTransaction
message for each StartTransaction. Additional StopTransaction messages for a trans-
action that has already been stopped should be rejected, preventing duplicate entries in
the database.

B.2.4 Actual System Behavior

The server accepts multiple StopTransaction messages for a single transaction, resulting
in multiple records for the same transaction in the transaction_stop table, causing
inconsistencies in transaction management.

77

Steve Vulnerabilities

B.2.5 Visual Evidence

A screenshot is provided, showing the state of the database after sending two different
StopTransaction messages for the same transaction, one with meterStop = 0 and another
with meterStop = 1000.

Figure B.2: Database entries showing multiple stop records for the same transaction.

B.3 Improper Handling of Repeated and Slightly
Modified StartTransaction Messages

B.3.1 Issue Description

The system exhibits improper handling of StartTransaction messages following a trans-
action’s conclusion. After a transaction is stopped using a StopTransaction message,
any subsequent attempts to resend the same StartTransaction message are erroneously
accepted by the system, leading to potential confusion and mismanagement. Addition-
ally, the system allows the initiation of a new transaction by altering a single field in
a StartTransaction message, such as meterStart, which could result in transaction
duplication and data inconsistencies.

B.3.2 Reproduction Steps

1. Send a StartTransaction message and receive a transactionId.

2. Send a corresponding StopTransaction message to conclude the transaction.

3. Resend the same StartTransaction message. Observe that the system accepts the
message but does not create a new record in the database; the previous transactionId
is returned.

4. Modify a single parameter (e.g., meterStart) in the StartTransaction message and
send it again. Note that a new transactionId is generated, and a new transaction
appears to start.

78

Steve Vulnerabilities

B.3.3 Expected System Behavior

Once a StartTransaction message is sent and subsequently concluded with a StopTransaction
message, further attempts to resend the same StartTransaction message should be re-
jected, with the system responding with an error indicating that the transaction has already
concluded. Additionally, new transactions should require unique initiation messages, rather
than accepting messages with minor alterations.

B.3.4 Actual System Behavior

The system accepts the resend of a StartTransaction message after the transaction has
been concluded, misleading users into believing a new transaction has started. Furthermore,
the system permits the initiation of a new transaction by only altering a single parameter
in the StartTransaction message, leading to potential transaction duplication and data
inconsistencies.

B.3.5 Additional Context

This behavior can lead to significant issues in transaction management. It may cause
confusion, complicate accurate transaction tracking, and could impact billing and auditing
processes.

B.4 Unauthorized Transaction Termination Due to
Predictable Transaction IDs

B.4.1 Docker Container Setup

Two Docker containers are configured to simulate two OCPP clients for testing purposes.

B.4.2 Issue Description

A security vulnerability was identified in the system related to unauthorized transaction
termination. This vulnerability stems from the server’s practice of issuing new transaction
IDs for incomplete StartTransaction requests and the predictable, auto-incremented
nature of these IDs, which allows an attacker to foresee and misuse them for terminating
other transactions.

79

Steve Vulnerabilities

B.4.3 Reproduction Steps

1. From the first Docker container (Client 1), initiate a transaction:

[2,"1","StartTransaction", {
"connectorId": 1,
"idTag": "test",
"meterStart": 20,
"timestamp": "2023-09-03T12:34:56Z"

}]

2. From the second Docker container (Client 2), send a StartTransaction request with
an empty idTag to receive a new transaction ID:

[2, "1", "StartTransaction", {"idTag": ""}]

3. Client 2 then sends a StopTransaction request using the new transaction ID minus
1:

[2, "1","StopTransaction", {
"meterStop": 1,
"timestamp": "2023-11-06T15:54:23Z",
"transactionId": [Retrieved Transaction ID - 1],
"reason": "EVDisconnected",
"transactionData": [...]

}]

4. The unauthorized termination of Client 1’s transaction is verified via the web interface.

B.4.4 Expected System Behavior

The server should not issue transaction IDs for incomplete StartTransaction requests and
should authenticate StopTransaction requests before processing to prevent unauthorized
transaction terminations.

B.4.5 Actual System Behavior

The server erroneously processes unauthorized StopTransaction requests using predictable
transaction IDs, compromising transaction integrity.

80

Steve Vulnerabilities

B.4.6 Visual Evidence

A screenshot is provided, showing the unauthorized transaction termination confirmed
through the web interface.

Figure B.3: Web interface confirmation of unauthorized transaction termination.

B.5 Billing Discrepancies Due to Unvalidated Meter
Values in StopTransaction

B.5.1 Issue Description

A significant issue has been identified in the Steve OCPP server’s transaction handling
process. Specifically, when a StopTransaction message is sent with a meterStop value
that is less than the meterStart value from the corresponding StartTransaction, it
could result in billing discrepancies.

B.5.2 Reproduction Steps

1. Send a StartTransaction message with a specified meterStart value.

2. Later, send a StopTransaction message with a meterStop value that is less than
the meterStart value.

3. Observe the server’s acceptance of the transaction and note the resulting billing
calculation.

81

Steve Vulnerabilities

B.5.3 Expected System Behavior

The server should validate meterStop values to ensure they are equal to or greater than
the corresponding meterStart values. This validation is essential to prevent errors in
billing calculations.

B.5.4 Actual System Behavior

The server accepts StopTransaction messages with a meterStop value that is less than the
meterStart value. This acceptance can lead to incorrect billing calculations, potentially
resulting in significant financial inaccuracies.

B.6 Duplicate Message ID Handling in WebSocket
CALL Messages

B.6.1 Issue Description

An issue was discovered in the Steve OCPP server regarding the handling of CALL messages
over WebSocket connections. Contrary to the OCPP specification, which mandates that
each CALL message’s ID must be unique within the same WebSocket connection, the server
was found to process multiple messages using the same message ID without rejection.

B.6.2 Reproduction Steps

1. Establish a WebSocket connection to the Steve OCPP server.

2. Send multiple OCPP CALL messages using the same message ID.

3. Observe that the server accepts and processes these messages, disregarding the
uniqueness requirement for message IDs.

B.6.3 Expected System Behavior

According to the OCPP specification, the server should enforce the uniqueness of the
message ID for each CALL message. Any messages with duplicate message IDs should be
rejected to maintain message tracking integrity and avoid confusion.

82

Steve Vulnerabilities

B.6.4 Actual System Behavior

The server does not adhere to the OCPP specification regarding message ID uniqueness.
It processes messages with duplicate message IDs, potentially leading to issues in message
tracking and misinterpretation of responses.

B.6.5 Potential Impact

This issue could result in complications with message correlation and response handling,
and potentially affect the transactional integrity of communications between charging
stations and the central system.

83

Bibliography

[1] Open Charge Alliance. Open Charge Point Protocol 1.6(OCPP) Documentation.
Version 1.6. url: https://www.openchargealliance.org/protocols/ocpp-16/.

[2] Open Charge Alliance. Open Charge Point Protocol 2.0.1(OCPP) Documentation.
Version 2.0.1. url: https://www.openchargealliance.org/protocols/ocpp-
201/.

[3] Michal Zalewski. AFL: American Fuzzy Loop. 2014-2017. url: https://lcamtuf.
coredump.cx/afl/.

[4] The LLVM Project. LibFuzzer: a library for coverage-guided fuzz testing. 2002-2018.
url: https://llvm.org/docs/LibFuzzer.html.

[5] Dominic Steinhöfel and Andreas Zeller. «Input Invariants». In: Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ESEC/FSE 2022. Singapore, Singapore:
Association for Computing Machinery, 2022, pp. 583–594. isbn: 9781450394130. doi:
10.1145/3540250.3549139. url: https://doi.org/10.1145/3540250.3549139.

[6] Steve Community. Steve - OCPP 1.6 Implementation. https://github.com/steve-
community/steve.

[7] Dallmann Consulting. OCPP.Core - OCPP 1.6 Implementation. https://github.
com/dallmann-consulting/OCPP.Core/tree/main.

[8] Joseph Antoun, Mohammad Ekramul Kabir, Bassam Moussa, Ribal Atallah, and
Chadi Assi. «A Detailed Security Assessment of the EV Charging Ecosystem». In:
IEEE Network 34.3 (2020), pp. 200–207. doi: 10.1109/MNET.001.1900348.

[9] Jay Johnson, Timothy Berg, Benjamin Anderson, and Brian Wright. «Review of
Electric Vehicle Charger Cybersecurity Vulnerabilities, Potential Impacts, and De-
fenses». In: Energies 15.11 (2022). issn: 1996-1073. doi: 10.3390/en15113931. url:
https://www.mdpi.com/1996-1073/15/11/3931.

[10] Juan E. Rubio, Cristina Alcaraz, and Javier Lopez. «Addressing Security in OCPP:
Protection Against Man-in-the-Middle Attacks». In: 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS). 2018, pp. 1–5. doi:
10.1109/NTMS.2018.8328675.

84

https://www.openchargealliance.org/protocols/ocpp-16/
https://www.openchargealliance.org/protocols/ocpp-201/
https://www.openchargealliance.org/protocols/ocpp-201/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3540250.3549139
https://github.com/steve-community/steve
https://github.com/steve-community/steve
https://github.com/dallmann-consulting/OCPP.Core/tree/main
https://github.com/dallmann-consulting/OCPP.Core/tree/main
https://doi.org/10.1109/MNET.001.1900348
https://doi.org/10.3390/en15113931
https://www.mdpi.com/1996-1073/15/11/3931
https://doi.org/10.1109/NTMS.2018.8328675

BIBLIOGRAPHY

[11] David Elmo, George Fragkos, Jay Johnson, Kenneth Rohde, Sean Salinas, and Junjie
Zhang. «Disrupting EV Charging Sessions and Gaining Remote Code Execution
with DoS, MITM, and Code Injection Exploits using OCPP 1.6». In: 2023 Resilience
Week (RWS). 2023, pp. 1–8. doi: 10.1109/RWS58133.2023.10284654.

[12] Dwidharma Priyasta, H. Hadiyanto, and R. Septiawan. «Ensuring Compliance and
Reliability in EV Charging Station Management Systems: A Novel Testing Tool for
OCPP 1.6 Messages Conformance». In: Journal Européen des Systèmes Automatisés
56 (Mar. 2023), pp. 121–129. doi: 10.18280/jesa.560116.

[13] Serge Gorbunov and Arnold Rosenbloom. «Autofuzz: Automated network protocol
fuzzing framework». In: Ijcsns 10.8 (2010), p. 239.

85

https://doi.org/10.1109/RWS58133.2023.10284654
https://doi.org/10.18280/jesa.560116

	List of Figures
	Acronyms
	Problem Description
	Background
	Electric Vehicles (EVs)
	Open Charge Point Protocol (OCPP)
	Security in Open Charge Point Protocol (OCPP)

	Problem description and solution overview
	Problem Description
	Solution Overview

	Approach
	Our solution
	Black-Box Fuzzing: An Overview
	The Rationale for Black-Box Fuzzing
	Black-Box Fuzzing for OCPP
	Key Challenges and Considerations
	Visualizing Our Solution

	Fuzzer Architecture and Workflow
	Input
	OCPPStorm
	Output

	Implementation
	Acquiring the JSON Schema
	Source of the Schema
	Processing and Storing the Schema

	Fuzzing Implementations
	Random Fuzzer
	State Machine Fuzzer
	Isla Fuzzer

	Extensibility
	Code Metrics
	Size and Structure
	Languages and Libraries Used

	Evaluation
	Setup
	Steve Implementation
	OCPP.Core Implementation

	Evaluation results
	OCPPStorm Evaluation Metrics
	Constraint Violation Analysis
	Performance Metrics

	Identified Vulnerabilities with OCPPStorm
	OCPP.Core Vulnerabilities
	Steve Vulnerabilities

	Future work
	Deployment on Additional Server Implementations
	Integrating White Box Fuzzing
	Source Code Static Analysis

	Related work
	Introduction
	Electric Vehicle Charging Security
	OCPP Security Vulnerabilities
	Testing and Compliance in OCPP
	Fuzzing Techniques in Protocol Security

	Conclusion

	Conclusion
	Key Findings
	Contributions to the Field
	Limitations

	OCPP.Core Vulnerabilities
	DoS Vulnerability Due to Unrestricted 'chargePointVendor' Length
	Attack Description
	Expected System Behavior
	Actual System Behavior
	Reproduction Steps
	Visual Evidence

	Inconsistency in Transaction Meter Values Allowing Negative Charging
	Attack Description
	Expected System Behavior
	Actual System Behavior
	Reproduction Steps
	Visual Evidence

	StopTransaction: Unauthorized Termination with Random Transaction ID
	Issue Description
	Expected System Behavior
	Actual System Behavior
	Reproduction Steps

	Multiple Transactions Allowed with Same connectorId and idTag
	Issue Description
	Expected System Behavior
	Actual System Behavior
	Reproduction Steps
	Potential Impact
	Proposed Mitigation Strategy

	Vulnerability in Handling Additional and Duplicate Properties in StartTransaction Messages
	Issue Description
	Reproduction Steps
	Expected System Behavior
	Actual System Behavior
	Potential Impact

	Steve Vulnerabilities
	Invalid Timestamp Handling in StartTransaction Messages
	Issue Description
	Reproduction Steps
	Expected System Behavior
	Actual System Behavior
	Visual Evidence

	Handling Multiple StopTransaction Messages for a Single Transaction
	Issue Description
	Reproduction Steps
	Expected System Behavior
	Actual System Behavior
	Visual Evidence

	Improper Handling of Repeated and Slightly Modified StartTransaction Messages
	Issue Description
	Reproduction Steps
	Expected System Behavior
	Actual System Behavior
	Additional Context

	Unauthorized Transaction Termination Due to Predictable Transaction IDs
	Docker Container Setup
	Issue Description
	Reproduction Steps
	Expected System Behavior
	Actual System Behavior
	Visual Evidence

	Billing Discrepancies Due to Unvalidated Meter Values in StopTransaction
	Issue Description
	Reproduction Steps
	Expected System Behavior
	Actual System Behavior

	Duplicate Message ID Handling in WebSocket CALL Messages
	Issue Description
	Reproduction Steps
	Expected System Behavior
	Actual System Behavior
	Potential Impact

	Bibliography

