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per avermi concesso la possibilità di svolgere questo lavoro, per i preziosi consigli dispen-
sati e per il costante supporto durante tutto lo svolgimento della tesi.

Ringrazio i miei correlatori: l’ingegner Francesco Cacciatore, per avermi accolto alla
SENER Aeroespacial e per essere stato un assoluto punto di riferimento a livello profes-
sionale e umano, e l’ingegner Jesus Fernando Ramı́rez Sánchez, per tutto ciò che mi ha
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Abstract

Optimization of space manoeuvres is becoming a key requirement for the evolution of the
space market and paves the way towards new investigation scenarios: the purpose of this
work is to optimize rendezvous manoeuvres in the context of in-space logistics services,
such as in-orbit maintenance, propellant depot and refuelling, considering the spacecraft
trajectory and the dispatching of the limited available resources. The aim is to plant more
cost-effective, sustainable and performing missions, with the implementation of the opti-
mized guidance algorithms. The optimized manoeuvre has been simulated online through
Hardware-In-the-Loop (HIL) testing, to investigate the feasibility and robustness of the
optimization problem, replicating the 6 degree-of-freedom motion of the spacecraft (in the
context of rendezvous manoeuvres, the so called chaser), through a cooperative robotic
arm. In order to execute properly the simulations, the work envelope of the manipulator
has been investigated, to overcome the issues related to the replication of a trajectory op-
timized for a spacecraft with a tool subjected to limitations over its maximum extension
and to the risk of reaching singular configurations.
From the point of view of the guidance of the chaser, the optimization strategy that has
been applied is based on a Model Predictive Control (MPC) scheme, due to its capa-
bility of adjusting control inputs in real-time to respond to variations in the system’s
behaviour, adaptability (making it suitable for real-time implementations) and sensitiv-
ity to system’s dynamics. The optimization problem has been formulated and solved
in Matlab® exploiting a toolbox developed in-house by SENER Aeroespacial, SENER
Optimization Toolbox (SOTB), powered by an Interior-Point Method solver.
For what concerns the control allocation and the optimization of the resources available
on the spacecraft, such as fuel consumption, the problem has been optimized formulat-
ing a Quadratic Programming (QP) and developing an Active Set Method (Active-Set
Solver (ASM)) based solver in Matlab®. For the peculiar case of control allocation
problems, the ASM provides rapid convergence when a warm start of the active set is
provided and smooth transitions between consecutive optimizations, minimizing changing
in control inputs and maintaining system stability. The designed solver doesn’t recall any
predefined Matlab® function, and has been robustified to handle ill-conditioned Hessian
matrices of the QP, exploiting Singular Value Decomposition.
The accuracy of the ASM has been assessed with the applications to five different for-
mulations of the problem under analysis, aiming at minimizing the error between the
control actions generated by the actuators and the values of force and torque required to
complete the optimized trajectory. In addition, the ASM has been evaluated on its capa-
bility to distribute homogeneously the control actions between the actuators. Finally, the
optimal solution found with the ASM has been compared to the force and torque values
commanded by the control loop of the robotic facility, while the correspondent execution
time have been compared with SOTB, with the objective of verifying the applicability of
the solver to online optimization of the control allocation problem and integration in the
HIL simulation facility.
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Chapter 1

Introduction

The evolution of the space market questions for more innovative solutions in traditional
space logistics and, basing on this purpose, automatic docking maneuvers have grown in
prominence as a means of carrying out in-orbit servicing operations autonomously, partic-
ularly those involving physical contact (such as low relative-speed impact). Additionally,
space logistics includes missions with the purpose of extending satellites’ operational life-
time in orbit, rather than merely replacing them with new ones: sustainability is encour-
aged by the growing complexity and expense of satellite operations. All this elements lead
to the necessity of reliable RvD operations carried out possibly autonomously in space
between space vehicles.
The most demanding tasks to be managed in the context of space logistics include:

• In-orbit servicing such as refuelling, maintenance, propellant depot

• In-space assembly operations

• Debris removal

• Return to Earth

This work presents the design and verification of robotic-based HIL facility, with the aim
of testing optimized Guidance algorithms developed for the early prototyping of Guidance,
Navigation and Control (GNC) systems.
In particular, convex optimization has been adopted to plan the manoeuvres and carry-
out the simulation of the capture in a cooperative scenario regarding a LEO, while in
parallel an ASM has been designed to exploit again convex optimization to optimize the
propellant-usage of the virtual spacecraft involved in the simulation. The RvD testing
activities have been conducted with the support of the GNC Laboratory of the URJC,
whose instrumentation will be presented in the next chapters to better describe and jus-
tify the choices behind the implementation of the control loop for the robotic facility and
the design of the algorithms.
Performing Hardware-In-the-Loop (HIL) testings on-ground is part of the model-based
design in aerospace missions planning. The models created represents aspects of systems
behaviour, structure and interactions, providing to the designer a clear visual representa-
tion of the system behaviour. Design requirements are verified, to ensure that the system
will perform as expected in critical aerospace environments; it gets also more intuitive
to detect earlier issues, resolving before potential problems and reducing the chances
of human error. Finally, model-based approaches helps in demonstrating compliance to
regulations and makes it easier to modify the software over its lifecycle, ensuring that
changes are made with minimal disruption to mission-critical systems.

Optimizing manoeuvres in space its a critical task as it powers many aspects of a mission,
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6 CHAPTER 1. INTRODUCTION

starting from the significant reduction of the already high costs when it comes to save fuel
and resources in general, often limited (minimizing fuel consumption, for example, ex-
tends the operational lifetime of the space vehicle). Optimization ensures a further degree
of robustification against uncertainties during the planning of the manoeuvres, leading
to more precise trajectories (for example when it comes to collision avoidance) and safer
missions, and in many cases shorten the times needed for a mission, especially for human
missions in which the minimization of the exposure to space radiation has to be taken
into account. Last but not least, as space becomes more crowded, optimizing manoeuvres
helps in manage space traffic, avoid orbital congestion and consequently reduces the risk
of orbital debris generation, regulating the timing and trajectories of launches to avoid
interference with existing space assets.
In this context, convex optimization is a powerful tool because it offers a systematic
and efficient way to solve a wide range of optimization problems, characterized by the
existence and uniqueness of a global optimal and a relatively fast convergence to the so-
lution. Formulating a problem adopting convex optimization involves, in many cases, the
possibility of handle it by polynomial-time complex algorithms in terms of problem size,
making it computationally efficient when it comes to embedded applications, and a high
level of robustness against noise and perturbation in problem data, crucial for real-world
applications.
In order to optimize on-board the manoeuvre, numerical optimal control has been ex-
ploited , basing the trajectory optimization on a Linear Model Predictive Control (LMPC)
scheme, powered by an Interior-Point Method (IPM) solver. In aerospace application
LMPC is useful because it can provide precise control of complex systems, taking into
account dynamics and perturbations to provide as outputs optimal control actions, han-
dling constraints like fuel limitations, physical limitations of the actuators and stability
requirements.
In parallel to the optimization of the trajectory, an Active Set Method based solver has
been designed and implemented to carry out the optimization of the control allocation,
based on thrust dispatching techniques and on a Quadratic Programming (QP) optimiza-
tion scheme. QP results to be an interesting choice when it comes to resources allocation
because it handles efficiently capacity limits without introducing, at the same time, an
heavy computational burden in the entire optimization sequence.
This work is organized as follows. Chapter 1 presents the review of the main references
from which information have been collected, together with the description of SENER
Aeroespacial facilities used while developing of the HIL test. Chapter 2 focus on the
main concepts behind space orbital dynamics and on the theory behind the adopted
convex optimization algorithms ; the third Chapter presents the formulation of the trans-
lational state problem of the rendezvous manoeuvre under study and the implementation
of MPC control scheme. Chapter 4 focuses on the Control Allocation problem, especially
on thrust dispatching techniques, while Chapter 5 describes in depth what is an HIL test
and how it has been planned in this work. Finally, Chapters 6&7 show testings results
and present future developments for the improvement of the facility.

1.1 Mission description

In the context of in-space logistics, RvD manoeuvres play a crucial role, concerning a
chaser spacecraft that safely and reliably approximates another orbiting vehicle/debris/probe
in a non-inertial reference frame. The maneuver that has been optimized and simulated
in this work entails a V-bar approach between two cooperative In-Space Trasportation
Vehicle (ISTV) (the target is able to send information to the service satellite regarding
its state), focusing on the last 2[m] of the trajectory between two holding points and
located in a Low Earth Orbit (Low-Earth Orbit (LEO)) orbit (a circular or quasi-circular
orbit that has an altitude of less than 2000 kilometers). LEO orbits are a common choice
when it comes to transportation, telecommunication and Earth surface observation, due
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to their close proximity to the Earth’s surface and the comparatively brief orbital period;
on the other side, carrying an in- orbit demonstration in a LEO presents disadvantages,
such as the fast orbital decay due to the strong influence of air drag, and the small field
of view from the surface, which affects visibility time windows between ground station
and satellites.
When talking about ISTV, an orbital flight vehicle performing space logistics is indicated.
Some examples include:

• Motorised dispensers: spacecraft intended to provide mixed tiny satellite payloads
with maneuverable propulsion capabilities, so that they can be precisely delivered
to the desired orbits

• Space tugs: spacecraft designed to transfer new payloads from one orbit to another,
with integrated automatic GNC capabilities

• Kick-Stages: space vehicle to transport heavy payloads to complex orbits with high
energy transfer, such as Moon or Mars missions

• Capsules: end-to-end transportation of cargo or humans

Basic elements of a RvD mission are the chaser and the target spacecrafts. With the
term chaser is indicated a fully operational space vehicle that performs the RvD, while
the target is the spacecraft with respect to which the RvD manoeuvre is planned. Tar-
gets usually are passive and they can be cooperative or uncooperative, depending if they
provide their state information to the chaser and if they are capable to control their state.
For what concerns the mission taken into account in this work, the chaser has been pro-
vided with 16 cold-gas thrusters, in order to be more precise in controlling the docking
manouvre.
The whole manoeuvre is subdivided in phases: first, the launch and orbit insertion
take place, launching the chaser in its own orbit. Then, the phasing regards the moment
in which the chaser spacecraft adjusts its orbit by changing altitude or inclination; at
this point, the initial approach starts, with the chaser beginning its approach towards
the target at a safe distance. When the chaser gets closer to the target, generally firing
smaller size thrusters for precision, the rendezvous phase starts, with the chaser that
reaches the desired distance and relative position to dock with the target spacecraft. If
the objective is to dock, the spacecrafts physically connect and post-rendezvous opera-
tions take place, such as crew transfer, cargo exchanges or data collection.

In order to analyze the scenario, three different reference frames have been adopted:

• Earth Centered Inertial (ECI): The fundamental plane of this system corre-
sponds to the equator of the planet and places its origin in the planet’s center.
The right-handed triad is made up by the I axis, which points toward the vernal
equinox, the K axis, which runs across the North Pole, and J that completes the
triad. The aforementioned definition does not constitute an inertial frame, because
the equinox and the equatorial plane both gradually move with time as a result
of precession, nutation and other secular motions. By referencing the axes direc-
tions at a specific epoch and defining the transformations to go from the present
epoch to the reference one and viceversa, a pseudo Newtonian inertial system can
be achieved.
ECI spherical coordinates are commonly denoted as:

– Right ascension α: the angle between the vernal equinox and the celestial
meridian containing the object, measured eastward on the equator.

– Declination δ: the equatorial plane’s angle with the object, expressed as a
positive angle above the equator in the meridian plane in which the object
travels.
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Figure 1.1: ECI J2000 reference system, picture taken from [42]

– Radial distance: the distance between the item and the Earth’s center.

Figure 1.2: Right ascension, α, declination, δ, longitude, λ, latitude, ϕ, as spherical
coordinates, to define position; picture taken from [42]

• The orbital frame or LVLH frame:The satellite is shown as the origin in the
LVLH (Local Vertical, Local Horizontal) coordinate system. As the satellite moves
through the orbit (Local Vertical), the R axis constantly points away from it along
the Earth’s radius vector. The orbital plane is perpendicular to the W axis. The
right-handed triad is completed by the S axis. The S axis is pointing in the direction
of the velocity vector and is perpendicular to the local horizontal (horizontal) radius
vector.

• The body frame:The COM or geometrical center of the satellite is where the
satellite body coordinate system is placed. The axes are in line with prominent
body-defined directions, like the primary inertia axes or the geometric axes.

The scenario under test can be resumed in the above illustration, where P1 stands for
the phasing end, P2 closes the initial approach phase, P3 the rendezvous phase. From
point P3 on, the chaser spacecraft receives data about the target attitude and docking
port orientation at point and the docking begins.
If the chaser arrives at the docking location or approaches target’s lateral surface with
a relative velocity less than a user-specified threshold, the docking maneuver is deemed
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Figure 1.3: Illustration showing the ECI reference frame (black), the body-fixed reference
frame (red), the LVLH reference frame (blue). To obtain the target orinentation, is
commonly defined a target reference frame (green) too, with one axis oriented in the
direction of the projection of the target on Earth surface (ZTarget), YTarget given by the
cross product between ZTarget and the spacecraft velocity vector and XTarget orthogonal
to the previous ones. The picture is taken from [21]

Figure 1.4: Illustration of spacecraft rendezvous and docking process, the picture is taken
from [12]

successful, ensuring structural integrity and enabling a soft coupling between the chaser
and the target.

1.2 Literature review

The optimization of spacecraft guidance has been long researched, with a variety of ap-
proaches to handle the high complexity and in many cases non-convexity of the problem
under study.
It’s interesting to notice that in the majority of studies the target spacecraft isn’t ma-
neuvered during the rendezvous by firing thrusters, and that the disturbance forces on
the chaser and target spacecraft are not taken into account. Although topics range from
2 Degree Of Freedom (DOF) and 3 DOF position-only rendezvous in circular orbits to 6
DOF docking to tumbling targets in elliptical orbits, guidance and control of rendezvous
to a stationary target in near circular orbit is likely the subject of the most research.
The goal of optimum control problems is typically either minimizing fuel usage, time con-
sumption, or a combination of the two. On-line a priori trajectory planning and real-time
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online computations are also investigated, along with formal proofs for more scholarly
applications.
In order to better enfocus the requirements of the problem under analysis, [22] has been
studied to investigate (GNC) systems for autonomous proximity operations and docking
of two spacecrafts; in this case, the guidance was implemented by integrating state-
dependent Riccati equations derived from relative motion dynamics and relative naviga-
tion employing vision sensor systems. The guidance strategy for the capturing phase is
based on the Clohessy-Wiltshire state transition matrix and a V-bar hopping approach
reference trajectory is defined, as it is assumed also in this thesis.
[15] has been taken has reference for what concerns online trajectory planning, even if
in this case it is done for a tumbling target involved in a rendezvous manoeuvre, mod-
eling the dynamics through linearization of the HCW equations. The target experiences
a translational change due to an active maneuver or debris impact, and uses previously
planned trajectory and control as a starting approximation to solve the newer planning
faster, with constraints such as a cuboid no-fly zone around the target. It has been as-
sumed that the essential information for the algorithm is provided correctly enough by a
visual navigation system installed on a service spacecraft, as it has been assumed during
the implementation of the control loop in this work.
Also in [30] guidance is optimized to control position (and attitude) for cooperatively
docking of several small satellites. It is presented a 6 DOF position and attitude guid-
ance regarding the approach between a chaser and a target in a LEO orbit, that must
go to a specified relative location while consuming the least amount of fuel and making
a soft approach (velocity is zero at the intended target point). The trajectory control
method is based on relative motion formulation by Hill’s equations, while E-guidance is
adopted to optimize fuel consumption: thrust commands for the guidance of the vehicle
are optimized given initial and final conditions, building the so called E-matrix, that re-
lates the desired final state with the current state through guidance coefficients.
[33] has been studied for what concerns control optimization for CubeSats docking in a
LEO orbit, with the actuation system regarding cold-gas propulsion operated in Pulse
Width Modulation (PWM) (as it has been planned for the chaser spacecraft presented
in this work). Also [26] presents the optimization of a rendezvous where the chaser is
controlled by Reaction Control System (RCS) thrusters, and each thruster can deliver a
constant thrust for a varied amount of time (PWM implementation). However, in this
case the study describes an alternative optimization solution to the classical optimization
approaches for nonconvex control problems with discrete logic constraints, that involve
binary variables and mixed-integer programming that are generally slow and computation-
ally expensive. [32] resulted to be very interesting from the point of view of investigating
further goals and requirements when it comes to fuel-optimal paths accounting for system
dynamics and constraints on operation. Lossless convexification has been presented to
enforce non-convex thrust limits and to prevent from plume impingement on the target
during docking maneuvers, leading to the definition of a Second-Order Cone Program-
ming framework. It has been shown that the problem can be solved reliability and in real
time on low-powered embedded processors.

In order to clarify the design requirements to be fulfilled when planning a rendezvous
manoeuvre, [40] has been taken as reference with respect to the performance of proximity
and capture operations for on-orbit services. The document aims at drawing the attention
to the fact that there are no defined and widely agreed technical and safety standards for
on-orbit servicing manoeuvres planning, so it presents recommendations regarding how
to improve the safety and sustainability of the missions, together with design principles
applicable to all the phases of the manoeuvre.
In [38], it is addressed the problem of spacecraft rendezvous with a target orbiting in
an eccentric trajectory, with the space vehicle equipped with reaction wheels and an
arbitrary number of thrusters, in order to have a versatile configuration for a range of
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mission types. A hybrid system model is employed, where propulsive actions are treated
as impulses, while attitude control is continuously regulated over time. The proposed
solution methodology leverages the translational state transition matrix and the atti-
tude flatness property to transform the time-continous dynamics into algebric relations.
This transformation enables the reformulation of the optimal control problem into an
equaivalent, parametrized and discretized form, yielding a finite static program suitable
for computational analysis. The paper introduces a closed-loop MPC scheme, based on
the linearization of the dynamcis, with the dual purpose of mitigating disturbances and
accomodating unmodeled dynamics, enhancing the reliability and precision of the ren-
dezvous manouvre.
In [19] spacecraft rendezvous is handled again using MPC, providing with HCW equa-
tions the model that characterized spacecraft relative motion. Within this framework, the
paper explores two different scenarios: the first one emphasizes position control while con-
sidering fuel constraints, while the second scenario extends the challenge by integrating
obstacle avoidance into the position control problem. To pursuit optimized rendezvous,
fuel consumption and obstacle avoidance are incorporated into the cost function to force
efficiency and safety, that have been further tested through a set of comprehensive simu-
lations.
Autonomous docking through MPC is investigated in [24] always employing HCW model
to predict proximity trajectory, utilizing a receding prediction horizon to ensure finite-time
completion of the docking manoeuvre, while fuel consumption is minimized by incorpo-
rating a 2-norm cost index related to the control input. On the other hand, in [27] it is
presented a comparison between three significant trajectory generation methods rooted
in convex optimization, such as Lossless Convexification and Sequential Convex Program-
ming. In the first case, Pontryagin’s maximum principle is adopted to show that a convex
relaxation of a nonconvex problem leads to the globally optimal solution to the original
problem, concerning nonconvex control constraints, such as an input norm lower bound
and a nonconvex pointing constraint (lossless relaxation of nonconvex state constraints
remains under investigation). In the second case, exploiting the idea of iterative convex
approximation, SCP is applied to show its performance when it comes to safety-critical
applications in disciplines such as aerospace and automotive engineering, and to obtain
theoretical guarantees on computational complexity, in opposition to general NLP opti-
mization where the convergence guarantees are weaker.
[18] puts the focus on the enhancing of a good level of robustness while performing
trajectory optimization, determining probabilistic optimal trajectories accounting for un-
certainties in mission critical parameters. The manoeuvres are planned to be optimized
on-board, improving fuel consumption and tracking performance.

Drawbacks of MPC have also been taken into account during the guidance planning:
one of them is the heavy computational burden when it comes to the implementation of
on-line guidance on the on-board computer of a spacecraft. In [17] it is shown how the
computing cost is heavily influenced by how the optimal control problem is formulated,
presenting a compact and sparse alternative formulation of the MPC based on a variable
change that results in a block banded Hessian. In this situation, the problem can be
solved in linear time in the horizon length using an IPM. In order to better understand
the implementation of an MPC in SENER Optimization Toolbox (SOTB) and its range
of usage, [35] provided a demonstration of MPC usage to regulate the re-entering phase
of a parafoil in closed-loop, reducing the impact velocity. The optimization problem is
solved by SOTB, and in addition various design elements that are critical for getting
the desired results, such as robustifying the formulation against uncertainties through a
constraint-tightening method, have been taken as reference for the development of the
thesis.
For what concerns HIL testing of approach manoeuvres for in-orbit logistics, the European
Proximity Operations Simulator (EPOS 2.0) [7] set a milestone in the field of rendezvous
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operations on-ground, constituting a state-of-art facility. This large-scale simulator plays
a crucial role in missions involving orbital maintenance and towing services, which demand
highly complex Rendezvous and Docking (RvD) manoeuvres. One of the primary chal-
lenges addressed by EPOS 2.0 is the approach to autonomous, non-cooperative, passive
client satellites that lack specialized rendezvous equipment. It serves as hub for designing,
developing and verifying rendezvous sensors and systems, basing on two industrial robots
mounted on a 25-meter-long rail, which enables real-time testing of satellite approach.
In this set-up, one robot simulates the service satellite, while the other replicates the
movement of the client satellite. EPOS 2.0 is characterized by exceptional precision, with
sub-millimeter accuracy over a 25-meter span, and a commanding frequency of 250 Hertz.
To ensure realistic testing conditions, the facility is equipped with a high-performance so-
lar simulator, which replicated ambient lighting- a critical consideration when evaluating
optical sensors.

Figure 1.5: EPOS facility: the robotics-based testbed, picture taken from [7]

Also in [37] is presented a comprehensive framework for the autonomous capture and
servicing of satellites, shedding light on the crucial aspects of autonomy and remote op-
erations. The paper is based on laboratory experiments that underscore the practicality
and applicability of autonomous servicing operations. The core problem tackled is the one
of a satellite capture representative of a broad spectrum of on-orbit robotic manipulation
tasks within a known and structured environment, target in free flight and with the qual-
ity of communication linkages influenced by bandwidth limitations and communication
dropouts.
Docking experiments in-space are described in [11], accounting for the handling of anoma-
lies with trajectory optimization through the usage of SPHERES, a test bed constituted
by three satellites, each one provided with a GNC module to perform state estimations
form sensors and executing control algorithms with actuators.

The solver that has been used to optimize the rendezvous problem under analysis in
this work is powered by an IPM; however, well documented are also application of the
alternative ASM to the MPC control scheme, as reported in [34] where a primal ASM
for the efficient solution of the block-sparse QP that characterize the MPC is presented,
called PRESAS. The solver is implemented in a standalone C code and presents good
computational performance if compared to the present state of the art in the field of
linear and nonlinear MPC case studies.
In [20] a comparison between the implementation of IPM and ASM is presented, when
applied to MPC. The parameters under analysis are convergence speed, computational
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Figure 1.6: Simulation of a docking scenario with a robotic system: the manipulator
on the left side of the figure docks through an hand gripper, while the one on the right
presents a mock-up. The picture is taken from [37]

complexity, storage and practical implementation issues; from the analysis, it turns out
that ASM converges faster if the number of optimization variables is small, otherwise
IPM represents a better choice due to its scalability.
In order to apply the ASM to the control allocation problem and to formulate the problem
as a QP, [6] has been investigated to compare the performance and computing require-
ments of control allocation optimization algorithms.Two different control allocation prob-
lems are presented: a direct allocation approach and a mixed optimization strategy, that
minimizes the error between the desired and accomplished moments as well as the control
effort. Constrained optimization problems are converted into linear programs, which can
be solved using linear programming techniques like the simplex algorithm, but to speed
up computations also a redistributed pseudoinverse methodology and a fixed-point solu-
tion with low processing requirements were built for comparison. In [16] it is presented an
implementation of an ASM to the Control Allocation problem, to spread the control effort
among the actuators. The problem is presented as a least-squares problem, to which it is
applied an ASM algorithm that always identifies the optimal control distribution and it
is shown through simulation that the computational timing requirements are met.
[14] also presents a comparison of the performance of three algorithms in order to solve
a QP: null space method, ASM and gradient projection method, to optimize quadratic
functions. In order to implement the ASM, [25] has been studied to understand the
fundamental requirements behind the application of optimization theory to aerospace ap-
plications, while [28] has been taken as reference for the implementation of the algorithms
itself and the initial feasible guess, together with [31], that has been investigated to clar-
ify the requirements that an efficient ASM should have when it comes to MPC real-time
embedded implementations, that is the final goal of the solver designed, both in sparse
and dense setup.

1.3 Facility

These last three paragraph will introduce the facility adopted to plan the optimization of
the manoeuvre, two of them developed in-house in SENER Aeroespacial.
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1.3.1 SENER Optimization ToolBox

SOTB is a numerical optimization toolbox focusing on optimal control developed in
Matlab® in-house in SENER Aeroespacial. It offers both linear and non-linear numerical
optimal control and its optimization algorithms are powered by an IPM solver, enabling
rapid development and testing in industrial applications (the entire facility is suitable for
autocoding in C and C++). The tool presents a user-friendly interface that allows the
formulation of complex optimization problems into more direct and easier implementa-
tions.
During the verification phases of the GNC facility design, SOTB has been used to build
the optimization algorithms and it has been integrated with extra features, specific for
the scenario under study, in particular the Shrinking Horizon algorithm for the MPC
has been modified in order to exploit a dense formulation of the problem, save memory
allocation and include customized constraints for the last stage of the prediction horizon.

1.3.2 Robotic contact dynamics test facilities

In order to carry out the simulations of RvD processes, the GNC Laboratory of the URJC
in Madrid made available the hardware equipment. Due to its effectiveness in performing

Figure 1.7: UR3e robotic arm model, picture taken from [41]

motions in limited workspaces, an UR3e industrial cooperative robotic arm has been
adopted to simulate the chaser motion; the robot is equipped with 6 rotating joints, each
of which allows movements in the range of 360°.
The robotic arm is integrated with a computer-based monitoring and control system that
the user access through a control box connected to a teach pendant, to modify manually
robot joints and monitor the variables in the data pool. The teach pendant gives the
user the possibility of controlling the robotic arms in free-drift and preventing serious
harms due to singularities, which are workspace configurations that cause the loss of one
or more degrees of freedom. Alternatively to the teach pendant, each robot is controlled
in real-time by its own local control unit, provided by the robot manufacturer.
The robotic arm processes every commanded movements with respect to its own reference
systems:

• Single joints reference system: Six separate servo-controlled axes on each robot
allow the end-effector to be moved in relation to the base of the robot.
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Figure 1.8: Robotic arm control options: the robot presents a control box that commu-
nicates with the teach pendant and with the PC of the GNC Laboratory. In order to
command the robot from PC, they must be connected to the same router.
On the end-effector of the robotic arm, a RaspberryPi board controls a microcamera,
that takes pictures feeding Visual Processing Navigation algorithms. The camera re-
ceives commands by the PC of the GNC Laboratory by the connection to the router.

• Tool reference frame: By specifying the location and orientation of robot’s Tool
Central Point (TCP) with respect to its base, commands may be referred directly
to the TCP reference frame. The breadboard mounting face serves as the origin
of the tool coordinate system, which is a Cartesian coordinate system with the z-
axis perpendicular to the breadboard and the x-axis oriented toward the electrical
interface block on the breadboard’s reverse.

• Base reference frame:The z-axis is pointed toward the lab ceiling, the x-axis is
oriented to the opposite side of the cable plugs at the back of the robot, while the
origin of the Cartesian coordinate system is located at the center of the mounting
face (the base) of the robot.

A Raspberry Pi 3 camera Module 3 has been mounted on the TCP of the robotic arm
to replicate the on-board optical sensors of the real spacecraft, in order to feed back the
HIL facility. To enhance a more precise scenario simulation, the laboratory facility is
outfitted with professional studio lighting that replicates solar light (a spotlight is used
to mimic Sun light) and Earth Albedo (replicated with diffuse light panels), to reproduce
the illumination conditions to which the ISTV would be subject on-orbit.
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Figure 1.9: UR3e basis refrence frame and TCP reference frame, picture modified from
[4]

Figure 1.10: SIROM coupling interfaces installed on the robotic arm

Figure 1.11: TCP pointing four markers on a wooden table, whose middle point is iden-
tified as the target of the manoeuvre
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Figure 1.12: GNC laboratory set-up
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Chapter 2

State of art

The following chapter provides an overview of the fundamental theoretical notions ex-
ploited to investigate GNC systems and to optimize rendezvous guidance algorithms. In
the first part, an overview of the main concepts regarding standardized reference systems
commonly adopted in GNC design is presented, together with the dynamic models most
commonly adopted; following, the focus is put on optimization, with special concern for
convex optimization algorithms, regarding their capabilities and limitations. In conclu-
sion, a comparison has been made between the algorithms at the basis of the solvers
adopted to optimize the rendezvous trajectories, to provide a complete overview of the
state-of-art in the field of convex optimization.

2.1 Problem overview: the two-body problem

The term orbital dynamics refers to the description of the translational and rotational
motion of an object traveling in space, taking into account both the perturbing effects
of the space environment and the gravitational pull of the celestial bodies. In the two-
body problem (2BP) formulation, two masses are taken into account, with the smaller
mass being negligible in comparison to the bigger one (primary attractor). Due to the
preminent role of gravitational perturbation when it comes to the dynamics of two bodies
in space, the Newton’s law of universal gravitation constitutes the basis of the description
of the 2BP, when applied to a general distribution of N point masses. It is possible to
express the gravitational acceleration acting on the i-th body as:

r̈i = −
N∑

j=1,j ̸=i

Gmj

∥rij∥3
rij (2.1)

where r̈i is the ith mass’s acceleration vector with respect to the system’s barycenter,
G is the gravitational constant, mj is the group’s jth body’s mass, and rji is the ith
body’s position vector with regard to the jth body. Although it’s common to reduce the
perturbation effect to the summation of the mutual attraction of two close bodies, the
above Newton’s inverse square law predicts that the attraction decreases based on the
reciprocal of the square of the increasing distance of the ith body from the j th point
mass. Therefore:

r̈1 = − Gm2

∥r21∥3
r21 (2.2)

r̈2 = − Gm1

∥r12∥3
r12 (2.3)

The motion of the object of interest happens often far from all other bodies in the cluster
and close to a main attractor, therefore it is common to attribute the perturbation effects

19
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in this situation to the mutual attraction of the two closest bodies, leading to:

m1r̈1 +m2r̈2 = 0 (2.4)

Given that r12 = r2 − r1 by definition, it follows that the second body’s relative acceler-
ation relative to the first body is:

r̈2 =
m1

m1 +m2
r̈12 (2.5)

The relative motion is calculated by substituting Eq. (2.5) to the second equation of the
binary system dynamics in Eq. (2.3):

r̈12 = −Gm1 +m2

∥r12∥3
r12 (2.6)

The motion of the two isolated masses with regard to their shared COM is described by
the previous equation. The body with mass m2, for which the dynamics is defined, is
typically much smaller than the attractor, whose mass is regarded as m1. This allows to
define the so called Restricted Two-Body Problem (R2BP):

r̈ = −G m1

∥r∥3
r = − µ

r3
r (2.7)

where µ is regarded as the standard gravitational parameter, r = r12 and r = |r|.

Relative orbital dynamics refers to the orbital dynamics that describes the motion of a
spacecraft with respect to a free-falling unattractive point in orbit, a situation pretty com-
mon when it comes to GNC system design. To describe the relative motion of two space-

Figure 2.1: Relative motion in description reference frame, picture taken from [42]

crafts, the Local-Vertical-Local-Horizontal (LVLH) reference frame ∆i,j,k is mainly
adopted, with the center located in the COM of the target, which is following an orbital
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trajectory with angular velocity Ω(t). The inertial reference frame coincides with the ECI
reference frame denoted as Ii,j,k.
The angular velocity of an orbital point is described by the following relationship:

Ω =
h

r20
=

r0 × v0

r20

Ω̇ = −2 h
r30
ṙ0 = −2r0 · v0

r20
Ω

The inertial position of the spacecraft in the inertial frame can be described as:

rI = r0,I + δrI (2.8)

The unit vectors in ∆i,j,k are referred to as:

î =
r0
r0

, k̂ =
h

h
, ĵ = k̂× î

where h stands for the specific angular momentum.
The relative position and velocity are translated into the comoving frame as:

δr∆ = δx̂i+ δyĵ+ δzk̂

δv∆ = ˙δx̂i+ δ̇yĵ+ δ̇zk̂

Taking into account the characteristic R2BP equation:

r̈I = −G
m1

r3
rI = −

µ

r3
rI (2.9)

The relative position can be expressed as:

δr̈I = −r̈0,I −
µ

r3
(r0,I + δrI) (2.10)

And the relative acceleration in the comoving frame:

δa∆ = δ̈x̂i+ δ̈yĵ+ δ̈zk̂

Related to the absolute relative acceleration in the following equation:

δr̈∆ = δa∆ + Ω̇× δr∆ +Ω× (Ω× δr∆) + 2Ω× δv∆ (2.11)

The main contributions in the equation above come from the Euler acceleration Ω̇× δr∆,
centrifugal acceleration Ω× (Ω× δr∆) and Coriolis acceleration 2Ω× δv∆.
Expressing Eq.(2.10) in the LVLH frame and substituting Eq.(2.11), the relative dynamics
in the moving frame is described by:

δẍ− 2Ωδẏ − Ω̇δy − Ω2δx = −µ r0+δx

[(r0+δx)2+δy2+δz2]
3
2
+ µ

r20

δÿ + 2Ωδẋ+ Ω̇δx− Ω2δy = −µ δy

[(r0+δx)2+δy2+δz2]
3
2

δz̈ = −µ δz

[(r0+δx)2+δy2+δz2]
3
2

(2.12)
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2.1.1 Relative orbital dynamics: HCW equations

There is no analytical way to obtain a solution for the dynamics description presented
in the nonlinear equations Eq.(2.12). Analytical solutions are essential for investigating
system behaviour when dealing with a large number of numerical simulations, which are
a critical feature during GNC design.
The first step to define this problem more clearly is to linearize the system of ordinary
differential equations. Close-range relative motion is assumed, so it can be set that:

δr

r0
≪ 1

The aforementioned equation represents the relative speed of two objects in orbit whose
distance from one another is significantly less than their distance from the object that is
pushing them towards. Exploiting first-order Taylor expansion:

δr̈I ≈ −
µ

r30
[δrI −

3

r20
(r0,I · δrI)r0] (2.13)

where the terms in r
R of order greater than one have been neglected. Substituting

Eq.(2.11) in Eq.(2.12), it’s possible to find the set of linear second-order differential equa-
tions that describe the comoving frame’s relative motion.

δẍ− ( 2µ
r30

+ h2

r40
)δx+ 2(v0·r0)h

r40
δy − 2h

r20
δẏ = 0

δÿ + ( µ
r30
− h2

r40
)δy − 2(v0·r0)h

r40
δx+ 2h

r20
δẋ = 0

δz̈ + µ
r30
δż = 0

(2.14)

Some insights into the relative motion in close proximity are offered by the linearized
equations of motion:

• The cross-track component is independent from the other two, whereas the in-plane
components δx and δy are coupled.

• The vectors r0 and v0, which represent the position and speed of the comoving
reference frame center in the nonlinear version of the equations of motion, are
functions of time

Due to the time dependence of the reference frame position and velocity in the linear
differential equations, the linearized equations likewise do not offer a straightforward
analytical solution. The current derivation is the broadest one may use with unperturbed
relative motion. The Hill-Clohessy-Wiltshire (HCW) model instead constitutes a
particular case, in which the reference orbit can be assumed to be circular (or nearly
circular) and it is one of most frequently adopted reference frames in GNC design. The
circularity of the shape of the orbits can be expressed as:

e = 0→ v0 · r0 = 0→ h =
√
µr0 → n =

√
µ

r30

The moving reference frame rotates around the attracting body with a constant angular
velocity referred to as mean motion n, describing a circular orbit in which the position
and velocity vectors are always orthogonal one to each other. The HCW model and the
associated linearized equations of motion for approximately circular orbits are:

δẍ− 3n2δx− 2nδẏ = 0

δÿ + 2nδẋ = 0

δz̈ + n2δz = 0

(2.15)
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It’s possible to determine the position as well as the velocity of the chaser at any time
given its initial position and velocity by using the closed-form solutions of these coupled
differential equations in matrix form:

δr⃗(t) = [Φrr(t)]δr⃗0 + [Φrv(t)]δv⃗0 (2.16)

δv⃗(t) = [Φvr(t)]δr⃗0 + [Φvv(t)]δv⃗0 (2.17)

Φrr(t) =

 4− 3 cos(nt) 0 0
6(sin(nt)− nt) 1 0

0 0 cos(nt)


Φrv(t) =

 1
n sin(nt) 2

n (1− cos(nt)) 0
2
n (cos(nt)− 1) 1

n (4 sin(nt)− 3nt) 0
0 0 1

n sin(nt)


Φvr(t) =

 3n sin(nt) 0 0
6n(cos(nt)− 1) 0 0

0 0 −n sin(nt)


Φvv(t) =

 cos(nt) 2n sin(nt)) 0
−2 sin(nt) 4n cos(nt)− 3 0

0 0 cos(nt)


Given only the final conditions and characteristics of the target vehicle’s orbit, it’s pos-
sible to solve equations (2.16) and (2.17), due to the fact that the matrices involved are
invertible.
The stringent assumptions that include limits on eccentricity and on the relative position
are among the limitations of such a model. As a result, it is possible to rewrite the system
that describes the relative motion of two objects as they travel through space in a linear
time-invariant (LTI) state-space form as:

x = (x, y, z, ẋ, ẏ, ż) (2.18)

If the spacecraft has mass m and a force F = (Fx, Fy, Fz) is applied, the force applied to
unit mass u = F

m lead to the definition:

ẋ = Ax+Bu (2.19)

where the state matrix A can be written as:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


and matrix B:

B =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


The mean motion is defined as:

n =

√
µ

a3
(2.20)

where a is the radius of the target’s body circular orbit and and µ is the standard
gravitational parameter.
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2.2 Optimization

In the following section, the theory behind the formulation of an optimization problem
will be presented, in order to give a better understanding of the algorithms adopted in
the implementation of the relative translational state problem and the control allocation
problem, taking as reference the manual J.Nocedal, S.J.Wright, Numerical Optimization,
Springer (2006).

In order to set an optimization problem appropriately, an objective has to be identified,
indicating a numerical measure of the performance of the system under investigation, de-
pendent from specific aspects of the system known as optimization variables or unknowns,
which are generally constrained. Modeling is the process of determining the objective,
variables, and constraints for a specific scenario; once the model has been created, the
problem can be solved using an optimization algorithm. Since there is no single opti-
mization algorithm that can be used for all applications, the user evaluates which is the
correct algorithm to be adopted, determining how quickly the problem is solved as well
as whether it is solved at all.
When determining if the current set of variables is the correct one to use as the solution
of an optimization problem, optimality conditions have to be met, that provide help-
ful insight into how to raise the estimate of the solution from its current state. By using
methods like sensitivity analysis, which indicates the sensitivity of the solution to changes
in the model and data, the model can be improved.
According to mathematics, optimization is the minimization or maximization of a func-
tion when its variables are constrained. The standard notation adopted is:

• x as the vector of the unknown variables;

• f stands for the objective function

• ci are the constraints of the problem, functions of the optimization variables that
define the equalities and inequalities that the unknowns must satisfy.

min
x∈Rn

f(x)

s.t. ci(x) = 0 i ∈ E
ci(x) ≥ 0 i ∈ I

(2.21)

where I and E stand for the indices for the inequality and equality constraints.

Discrete optimization problems are characterized by the fact that the unknown x is can
assume values from a discrete set, such as in the case of Integer Programming problems,
where the variables can only assume integer values, or cases in which the optimization
variables involve permutations of an ordered set, in addition to integers and binary vari-
ables.
In contrast, for what concerns continuous optimization problems, the elements of x cor-
respond to real values and the feasible set is uncountable infinite. The smoothness of
the shape of the functions that model a continuous optimization problem makes it easy
to exploit objective and constraint information at a specific point x, to infer information
about the function’s behavior in all other places close to x, which makes continuous op-
timization problems typically simpler to solve. In contrast, when dealing with discrete
problems, the shape of the objective and the constraints may change a lot moving from
one feasible point to another.

Many nonlinear optimization techniques only look for a local solution, or a location where
the objective function is less than any other possible location nearby. Instead, the lowest
function value among all possible points is the point that is considered to be the global
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Figure 2.2: Geometrical interpretation of an optimization problem, picture taken from
[28]

solution. Programming problems involving convexity are characterized by the property
that local and global solutions are identical and that theoretical convergence is guaran-
teed.
Working with global minimizers of the objective functions or locations where the func-
tion reaches its minimum value, is typically simpler. An formal mathematical definition
is provided below:

Definition 2.2.1 A point x∗ is called global minimizer if f(x∗) ≤ f(x) for all x

Definition 2.2.2 A point x∗ is a local minimizer if there is a region called N around it
such that f(x∗) ≤ f(x) for all x ∈ N.

A point that satisfies the requirements above is referred to as a weak local minimizer,
which is distinguished from the strict local minimizer (also known as strong local mini-
mizer) when there is a neighborhood of x∗ such that f(x∗) ≤ f(x) for all x ∈ N with
x ̸= x∗. When the function f is smooth, there are more practical and efficient ways to find
local minima. If f is twice continuously differentiable, a local minimizer (and possibly a
strict local minimizer) can be found exploiting only the gradient ∇f(x∗) and the Hessian
∇2f(x∗).
To analyze the minima of a smooth function, Taylor’s theorem has been exploited: sup-
pose that f : R →n R is continuously differentiable and that p ∈ N . Then it’s possible
to state that:

f(x+ p) = f(x) +∇f(x+ tp)T p (2.22)

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable:

∇f(x+ p) = ∇f(x) +
∫ 1

0

∇2f(x+ tp)p dt (2.23)

and that

f(x+ p) = f(x) +∇f(x)T p+ 1

2
pT∇2f(x+ tp)p (2.24)

for some t ∈ (0, 1).
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Optimality conditions

Assuming x∗ to be a local minimizer, it’s possible to obtain necessary conditions for
optimality.

Theorem 1 First-order necessary conditions: If x∗ is a local minimizer and f is
continuously differentiable in an open neighborhood of x∗, then ∇f(x∗) = 0.

If the condition∇f(x∗) = 0 is met, we call x∗ a stationary point, so it states from Theorem
1 that any local minimizer is regarded as stationary point.

Theorem 2 Second-order necessary conditions: If x∗ is a local minimizer of f and
∇2f exists and is continuous in an open neighborhood of x∗, then ∇f(x∗) = 0 and
∇2f(x∗) is positive semidefinite.

Sufficient conditions, instead, guarantee that x∗ is a local minimizer.

Theorem 3 Second-order sufficient conditions: If ∇2f is assumed to be continuous
in an open neighborhood of x∗ and ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite, then
x∗ is a strict local minimizer of f.

Theorem 3 guarantees a stronger condition than necessary conditions, stating that the
minimizer is strict. It’s interesting to highlight that if the objective is constituted by a
convex function, than local and global minimizers are easily characterized.

2.2.1 Algorithms classification

The following section will provide a set of techniques for unbounded smooth functions
optimization. Each method for unconstrained minimization needs the user to indicate a
starting point, which is typically referred to as x0, representing an accurate approxima-
tion of the solution.
Starting from x0, optimization algorithms generate a sequence of iterations xk that stops
when either no further progress is possible or it appears that a solution has been approx-
imated accurately enough, discovering a new iteration xk+1 that has a lower function
value than xk. The main strategies adopted to iterate are the line search method and the
trust region method. In the first case, the algorithm selects a direction pk and iterates
from the current iteration xk to a new iteration with a lower function value along this
direction. In order to determine how much it is convenient to proceed in direction pk, a
minimization problem can be solved:

min
α≥0

f(xk + αp) (2.25)

Solving (2.26) may be computationally heavy and is typically not necessary. The line
search method generates a finite number of trial step lengths, until it finds one that
roughly approximates the minimum of (2.26); thus the process starts again with a new
search direction and step length, computed at the new starting point.
In the case of trust region methods, instead, a model function mk that approximates f is
created, whose behavior near the current point xk is comparable to the one of the actual
objective function. However, the model mk might not be a suitable estimate of f when x
is far from xk. In order to obtain the candidate step direction p, an optimization problem
can be solved:

min
p

mk(xk + p) (2.26)

where xk + p is part of the trust region.
If the potential solution does not result in a significant reduction in f, the trust region is
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too wide and needs to be shrinked, while the problem (2.27) gets solved again. The trust
region has often the shape of a ball defined by ∥p∥2 ≤ ∆,with radius ∆. On the other
side, a quadratic function with the structure below is used to define the model mk:

mk(xk + p) = fk + pT∇fk +
1

2
pTBp (2.27)

with fk, ∇fk and B that are a scalar, a vector and a matrix, defined to approximate f
with mk at the first order.
The sequence in which the line search and trust-region techniques select the direction
and distance of the move to the next iterate is essentially where they diverge from one
another. In order to find a suitable step length, line search fixes the direction pk, while
the trust-region radius k represents the maximum distance that it’s possible to proceed
before seeking the direction and step that will result in the greater improvement given
the distance limit. If the results of this phase are not satisfactory, the distance measure
k is decreased and a new iteration is planned. When it comes to line search methods,

Figure 2.3: Trust regions (circles), corresponding steps pk and mk models of the objective
function f ; picture taken from [28]

the search direction is a crucial choice; the most common one is the steepest descent
direction pk = −∇fk, the one that identifies where the function f decrease more quickly.
The steepest descent method is thus based on the previous concept: at every step, the
line search method implemented looks for the pk along which move forward to. For
each direction vector, there is a correspondence with a step length k, that determine
how big is the step implemented. However, any descent direction causes a decrease in
f, so the steepest descent direction isn’t the only convenient one to be implemented in
an optimization algorithm. The Newton direction, for example, is obtained from the
second-order Taylor expansion of f(xk + p):

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp = mk(p) (2.28)

The Newton direction is obtained finding the vector p that minimizes mk, assumed that
∇2fk is positive definite. The following equality holds, setting mk(p) derivative to zero:

pk
N = −(∇2fk)

−1∇fk (2.29)

The approximation f(xk + p) ≈ mk(p), however, holds when ∥p∥ is small.
The vast majority of Newton’s method line search implementations rely on the unit step
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α = 1 whenever possible and only modify this value when it does not result in an ac-
ceptable decrease in the value of f. Since (∇2fk)

−1 might not exist, the Newton direction
might not even be determined when ∇2fk is not positive definite. Even if it is defined, it
might not meet the descent property requirement, in which case it is incorrect to use as
a search direction.
The rate of local convergence of Newton direction based techniques is typically quadratic,
only a few number of iterations are needed. The necessity of computing the Hessian, on
the other side, constitutes the main drawback, because the explicit computation of the
second derivatives of this matrix can be laborious and computationally expensive.

2.3 Convexity

A set S ∈ Rn is said to be convex if a straight line connecting any two points in the set
lies fully within the set. Formally, αx+ (1− αy) ∈ S for all α ∈ [0, 1] for any two points
x ∈ S and y ∈ S.

Figure 2.4: Convex function representation, picture modified from [13]

The convex hull denoted convC is the set of all the convex combinations of points that
lie in C:

convC = {θ1x1 + ...+ θkxk|xi ∈ C, θi ≥ 0, i = 1, ..., k, θ1 + ...+ θk = 1} (2.30)

The convex hull is thus always convex and represents the smallest convex set that contains
C.
A set C constitutes a cone if, for every x ∈ C and θ ≥ 0, it holds that θx; a convex cone
is a set that presents both the characteristics of convexity and the properties of a cone:

θ1x1 + θ2x2 ∈ C (2.31)

for each x1, x2 ∈ C and θ1, θ2 ≥ 0.
A polyhedron is defined as the solution set of linear equalities and inequalities, so the
intersection of a finite number of halfspaces and hyperplanes:

P = {x|ajTx ̸= bj , j = 1, ...,m, cj
Tx = dj , j = 1, ..., p} (2.32)

That is summed up in compact form as:

P = {x|ATx ⪯ b, Cx = d} (2.33)
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Figure 2.5: An example of polyhedron, as the interction of halfspaces, picture extracted
from [2]

A bounded polyhedron is known as polytope.
When it comes to functions, f is defined as a convex function if its domain S is a convex
set and if the following property is true for any two points x and y in S :

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), (2.34)

for all α ∈ [0, 1].

This inequality indicates that the chord from (x, f(x)) to (y, f(y)) falls above the graph
of f (figure 2.5). If strict inequality holds in (2.38) whenever x ≥ y and 0 ≥ θ ≥ 1,
then a function f is strictly convex. If -f is convex, then f is concave. Since the equality
always holds for affine functions in (2.38), all affine functions (and by extension, all linear
functions) are both convex and concave. On the other hand, any function that is both
concave and convex is affine.

First-order convexity conditions

A differentiable function f is convex if and only if domf and

f(y)(x) +∇f(x)T (y − x) (2.35)

and holds for all x.y ∈ domf. The above inequality represents the first-order Taylor
expansion of f near x. That means that for a convex function the first-order expansion
is a global underestimator of the function. This results leads to the conclusion that any
local solution to the optimization problem (2.21) is in fact a global solution if the feasible
region and the objective function are both convex, thus the major advantage offered by
convex functions is the easiness in identifying local and global minimizers:

Theorem 4 When f is convex, any local minimizer x∗ is also a global minimizer of f. If
f is also differentiable, than any stationary point x∗ is also a global minimizer.

Second-order convexity conditions

If f is twice differentiable, that is the Hessian ∇2f(x) exists for every point in domf, f is
convex if and only if domf is convex and the Hessian is positiv semidefinite:

∇2f(x) ⪰ 0 (2.36)

This condition can be traduced geometrically as the requirement that the graph of the
function has an upward curvature at x.
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Duality

Formulating an optimization problem in the form:

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, ...,m
hi(x) = 0, i = 1, ..., p

(2.37)

with optimization variable x ∈ Rn and without assuming the problem as convex, if the
objective function is summed up with weighted constraints functions, it’s possible to
define the Lagrangian L : Rn ×Rm ×Rp → R as:

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x), (2.38)

with domL = D ×Rm ×Rp and λi referred to as Lagrangian multiplier associated with
the inequality constraint fi(x) ≤ 0, while νi are the Lagrangian multipliers associated
with the equality constraint hi(x) ≤ 0; the multipliers are also called dual variables.
The Lagrangian dual function or dual function g : Rm × Rp → R is the minimum of the
Lagrangian over x :

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)) (2.39)

The dual function is always concave, even if the problem (2.37) is not convex, due to the
fact that the dual function is the pointwise infimum of affine functions of (λ, ν). Another
important property of the dual function is that it yields lower bounds on the optimal
value p∗ for the problem (2.37) if λ ⪰ 0 and ν:

g(λ, ν) ≤ p∗ (2.40)

The lower bound results as non-trivial only when λ ⪰ 0 and (λ, ν) ∈ domg, i.e. when
g(λ, ν) ≥ − inf.
The Lagrangian dual function thus provide a lower bounds on the optimal p∗; in order to
understand which is the best possible lower bound, the following optimization problem
can be formulated:

max
x

g(λ, ν)

s.t. λ ⪰ 0
(2.41)

This problem is regarded as the Lagrangian dual problem associated with the problem
(2.37), that is known as the primal problem; (λ, ν) is also called the dual optimal if op-
timal for the problem (2.41). The Lagrangian dual problem presents the characteristic
to be a convex optimization problem, due to the fact that it present concave objective
function to be maximized and convex constraints; this conclusion holds even if the primal
problem is convex or not.

The best lower bound on p∗ that can be derived from the Lagrange dual function is,
by definition, the optimal value of the Lagrange dual problem, which is labeled d∗. In
particular, it holds that:

d∗ ≤ p∗ (2.42)

The property above is regarded as weak duality. The value p∗ − d∗ is known as optimal
duality gap, always nonnegative. If the equality holds, instead, the optimality gap is
zero and the strong duality holds. Through the exploitation of constraint qualifications,
it’s possible to derive the conditions under which the strong duality holds (if the primal
problem is convex usually it holds); a fundamental result in this terms is Slater’s theorem:
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Theorem 5 If there exist an x ∈ relintD such that:

fi(x) < 0,∀i = 1, ...,m (2.43)

with Ax = b and the problem is convex, strong duality holds.

2.4 Convex optimization: overview

In the following section, a review of some of the main optimization problem classes adopted
during the development of this work is presented: least-square problems, linear program-
ming and QP

2.4.1 Least-Square Problems

In data-fitting issues, many models are linear functions of x. Since the residuals rj(x) in
these situations are also linear, the challenge of reducing the residuals is known as a linear
least-squares problem. For a matrix J and a vector y that are both independent of x, it’s
possible to rewrite the residual vector as r(x) = Jx − y and to formulate the problem
of reducing the value of the magnitude of the residuals as a optimization problem with
objective function:

f(x) =
1

2
∥Jx− y∥2 (2.44)

with y = r(0). The point x∗ that verify ∇f(x∗) = 0 is the unique global minimizer of f .
Thus, the system of equations,

JTJx∗ = JT y (2.45)

known as normal equations, provide the solution of the least-square problem (2.44); how-
ever, this choice can lead to a heavy computational burden, due to the fact that a matrix
inversion is involved. Thus alternative solutions are taken into account, such as the QR
factorization of the matrix J (not recommendable if more information about the sensi-
tivity of the solution to data uncertainties) or the Singular Value Decomposition (SVD)
(more recommended in case of call for great robustness). If the problem has a large
dimension, an iterative approach may be more recommendable, such as the conjugate
gradient method (however, in this work such techniques won’t be discussed; the objective
was just giving to the reader an overview of the definition of least-square problem and
which are the most common solving techniques).

2.4.2 Linear programming

Another class of optimization problems are linear programming problems (LP), consti-
tuted by a linear objective function and linear constraints (both equalities and inequal-
ities), with as feasible set a polytope, which is a convex, linked set with flat, polygonal
faces. Figure (2.6) shows a linear program geometrical interpretation in two dimensions,
with dotted lines denoting the outlines of the objective function, with only one vertex
that is a singular solution.
The optimal value cTx might take on the same value over an entire edge if the polytope
is rotated, making the solution non-unique.
The standard form of a LP is formulated as:

min
x

cTx

s.t. ai
T ≤ bi i = 1, ...,m

(2.46)

The simplex methods are the most widely adopted optimization algorithms to solve LP,
together with their variants such as the dual simplex methods; in this work, however,
the IPM (the name is due to the fact that the inequality constraints have to be verified
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Figure 2.6: Geometric representation of a Linear Programming problem; the dashed lines
stand for the objective function representation. The picture is taken from [28]

strictly) are discussed more in details. Interior-point techniques differ from the simplex
technique in several ways: the interior-point approach typically requires a smaller number
of iterations, whereas the simplex method typically requires a higher number of expensive
iterations. In terms of geometry, the simplex approach tests each set of vertices of the
feasible set until it determines the best one, working its way around the feasible polytope’s
perimeter, while IPM procedures get close to the reachable set’s boundary only in the
limit.

2.4.3 Quadratic optimization problems

The quadratic programs (QP) are a class of optimization problems that present convex
quadratic objective function and affine constraints (the objective function is minimized
over a polyhedron):

min
x

1
2x

TPx+ qTx+ r

s.t. Gx ⪯ h
Ax = b

(2.47)

where P ∈ S+
n,G ∈ Rm×n and A ∈ Rptimesn.

If, on the other side, the inequality constraints are quadratic convex functions too, the
problem is denoted as Quadratic Constrained Quadratic Program (Quadratic Constrained
Quadratic Programming (QCQP)):

min
x

1
2x

TP0x+ q0
Tx+ r0

s.t. 1
2x

TPix+ qi
Tx+ ri ≤ 0

Ax = b

(2.48)

In order to solve the system (2.47), a triangular factorization of the KKT matrix can
be performed, or it is possible to implement the Schur-complement method. Alternative
to the direct factorization presented above, iterative approaches are performed such as
the Conjugate-Gradient method (CG method) or the Active-Set Method, adopted in the
development of this work and described in the following section.



2.5. KKT OPTIMALITY CONDITIONS 33

Figure 2.7: Geometric interpretation of a QP; picture taken from [28]

2.5 KKT optimality conditions

2.5.1 Equality-constrained quadratic programs

When discussing QP, the first scenario taken into account regards an optimization prob-
lem with only equality requirements. Since some generic QP algorithms necessitate the
resolution of an equality-constrained QP at each iteration, techniques for this special sit-
uation also apply to problems with inequality constraints.

The equality constrained problem:

min
x

q(x) = 1
2x

TGx+ xT c

s.t. Ax = b
(2.49)

where A stands for the Jacoubian of the constraints with dimension m × n, whose rows
are ai

T , while b ∈ Rm is the vector of components bi.
If x∗ is assumed to be a solution of the system (2.48), the same optimization problem can
be rewritten in the form below, based on the first-order necessary conditions in Theorem
4: [

G −AT
A 0

] [
x∗

λ∗

]
=

[
−c
b

]
(2.50)

By rewriting x∗ as x∗ = x + p, where x represents an estimate of the solution and p is
the optimization step, the system (2.50) can be expressed in a manner that is helpful for
computing: [

G AT

A 0

] [
−p
λ∗

]
=

[
g
h

]
(2.51)

with

h = Ax− b, g = c+Gx, p = x∗ − x (2.52)

The matrix in Eq. (16.5) is known as the Karush-Kuhn-Tucker matrix (KKT). Denoting
Z as the matrix whose columns are a basis for the null space of A, the following Lemma
holds:
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Lemma 6 If A have is a full row rank matrix and the Hessian matrix ZtGZ is positive
definite, then the KKT matrix

K =

[
G AT

A 0

]
(2.53)

is nonsingular, hence there is a unique vector pair (x∗, λ∗) that satisfies (2.50).
As the following Lemma demonstrates, if the conditions of Lemma (6) are met, x∗ not
only satisfies second-order sufficient conditions but it follows that x∗ is a strict local
minimizer of (2.49), so a global solution for the optimization problem.

Theorem 7 If A have is a full row rank matrix and the Hessian matrix ZtGZ is positive
definite, then vector x∗ satisfying (2.50) is a unique global solution of (2.49).

2.5.2 Inequality-constrained problems

This chapter discusses two techniques for handling inequality and equality constraints in
convex quadratic programs: active-set techniques and interior-point techniques.

In order to formulate an algorithm for the iterative optimization of a problem of the
type (2.49), it’s crucial to state the correspondent Lagrangian dual function to derive the
corresponding KKT conditions:

L(x, λ) = 1

2
xTGx+ xT c−

∑
i∈I∪E

λi(ai
Tx− bi) (2.54)

The active set A(x∗) = {i ∈ I ∪ E|aiTx = bi} is composed by the set of the indices of the
constraints for which the equalities in (2.49) are verified.
Any solution x∗ of the problem (2.49) satisfies the KKT conditions below:

Gx∗ + c−
∑
i∈A(x∗) λi

∗ai = 0,

ai
Tx∗ = bi, for i ∈ A(x∗)

ai
Tx∗ ≥ bi, for i ∈ IA(x∗)
λi

∗ ≥ 0, for i ∈ I ∩ A(x∗)

(2.55)

Assuming that the active set associated with the system above is constituted by linear
independent constraints at the solution and that G is positive semidefinite, the conditions
(2.58) result to be sufficient.

Active-set methods

There are three types of active-set approaches for QP: primal, dual, and primal-dual. The
ones presented in this work are only primal approaches, which produce iterations that
continuously reduce the objective function q(x) while maintaining feasibility with respect
to the primary problem (2.49). By solving a quadratic subproblem in which all of the
equality requirements and some of the inequality constraints are imposed as equalities,
primal active-set methods can determine the step from one iteration to the next. The
working set is the subset that is indicated at the kth iteration xk by W∥, with gradients
that are linearly dependent.
An iterate xk minimizes the quadratic q in the subspace denoted by the working set, given
an iterate xk and the working set W∥. If not, a step p is calculated by resolving a QP
subproblem with equality constraints, where the constraints pertaining to the working
set are treated as equalities and all other constraints are momentarily ignored. In order
to define this subproblem in terms of the step p,

p = x− xk (2.56)

gk = Gxk + c (2.57)
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Substituing x into the objective function in (2.49), it’s possible to obtain:

q(x) = q(xk + p) =
1

2
pTGp+ gk

T p+ ρk (2.58)

with ρk = 1
2x

T
kGxk+ cTxk. This term doesn’t depend from p, so it’s possible to reformu-

late the problem as:
min
p

1
2p
TGp+ gTk p

s.t. aTi p = 0, i ∈ Wk

(2.59)

with pk as the solution of this subproblem, that has been calculated exploiting the
Schur complement method. It’s important to highlight that, since the constraints in
Wkaresatisfiedinxk, they are also satisfied in xk + αkpk, for all α values.
If pk is nonzero, it’s possible to set xk+1 = xk +αkpk, where αkis the largest value in the
range [0,1] for which all the constraints are satisfied. Due to the fact that the constraints
i ∈ Wk will be met regardless of the choice of αk, this information leads to the derivation of
an explicit definition of αk. If a

T
i pk ≥ 0 for some i /∈ Wk, then aTi (xk+αkpk) ≥ aTi xk ≥ bi

exists for all αk ≥ 0. Therefore, for any nonnegative selections for the step-length param-
eter, the ith requirement will be satisfied. However, whenever aTi pk < 0 for some i /∈ Wk,
it’s possible to state that aTi (xk + αkpk) ≥ bi if

αk ≤
bi − aTi xk

aTi pk
(2.60)

with αk that has a value in the range [0, 1] while yet maintaining feasibility, to maximize
the drop in q:

min
i/∈Wk,aTi pk<0

(1,
bi−aTi xk

aT
i
pk

) (2.61)

The constraints i for which the minimum in (2.62) is attained are referred to as the
blocking restrictions. There are no blocking restrictions on this iteration if αk = 1 and no
additional constraints are active at xk + αk + pk. A new working set Wk+1 is generated
by adding one of the blocking constraints to Wk if αk < 1, meaning that the step along
pk was blocked by a constraint not in Wk.
Until a solution x̂ that minimizes the quadratic objective function over its current working
set is found, the iterations continue, adding constraints to the working set. Such a point
can be easily identified because the subproblem (2.61) presents a solution in p = 0. If
the multipliers corresponding to the inequality constraints that are not in the working set
are zero, it follows that x̂ and λ̂ meet the first KKT condition in (2.58). The second and
third KKT criteria are now also met, due to the restriction put on the step length.
At this point, the ASM checks the multiplier signs that correspond to the working set’s
inequality constraints, the indices i ∈ ∧W ∩ I. x̂ is a solution for the problem (2.49) if
all of the multipliers are nonnegative, as this requirement also satisfies the fourth KKT
condition. Having assumed that G is positive semidefinite, therefore it follows that x is
a global solution for (2.49). The objective function q() may be reduced by removing one

of these limitations if, on the other hand, one or more of the multipliers λ̂j , j ∈ Ŵ ∪ I
are negative. In order to solve a new subproblem (2.62) for the current step, the index j
is removed, corresponding to one of the negative multipliers from the working set.

Theorem 8 Suppose that the point x̂ satisfies first-order conditions for the equality-
constrained subproblem with working set Ŵ and assume that the constraint gradients
ai, i ∈ Ŵ are linearly independent, and that there is an index j ∈ Ŵ such that λ̂j < 0.
Let p be the solution obtained by dropping the constraint j and solving the following sub-
problem:

min
p

1
2p
TGp+ (Gx̂+ c)T p

s.t. aTi p = 0, i ∈ Wk, i ̸= j
(2.62)
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Then p is a feasible direction for constraint j, that is, aTj p ≥ 0. Moreover, if p satisfies

second order sufficient conditions for (2.62), then we have that aTj p > 0, and that p is a
descent direction for q().

Generally, the index corresponding to the constraint j of the greatest negative multiplier is
the one removed from the working set; this choice is justified by the fact that the amount
of decrease of the objective function is proportional, in case of constraint removal, to the
magnitude of the correspondent Langrangian multiplier.
The last result presented in this chapter shows that, whenerver pk from (2.62) is nonzero
and verifies the second-order sufficient optimality conditions, than it is a direction of strict
descent for q().

Theorem 9 Supposed that the solution pk of (2.62) is nonzero and satisfies the second-
order sufficient conditions for optimality, then the function q() is strictly decreasing along
the direction pk.

The formal specification for the ASM implemented in the development of this work follows
the one presented by J. Nocedal, S. J. Wright, Numerical Optimization (Springer, 2009):
The strength of the ASM resides in the possibility to exploit a warm start that improves

Algorithm 1 Active-set solver implementation, taken from [28]

1: procedure active set method(inputs)
2: Compute a feasible starting point x0;
3: Set W′ to be a subset of the active constraints at x0;
4: for k = 0, ..., 2 do
5: Solve (2.62) to find pk;
6: if pk = 0 then
7: if λ̂i ≥ 0 for all i ∈ Wk ∩ I then
8: Stop with solution x∗ = xk
9: xk + 1← xk; Wk+1 ←Wk\{j}

10: else
11: j ← arg mini∈Wk∩I λ̂i

12: else
13: Compute αk from (2.64)
14: xk + 1← xk + αk + pk;

15: if there are blocking constraints then
16: Obtain Wk + 1 by adding one of the blocking constraints to Wk ;
17: else
18: Wk+1 ←Wk

19: return outputs

significantly the convergence speed, thus the choice of an initial feasible point is crucial
for the efficiency of the algorithm.

Interior-point methods

Convex quadratic programs can be solved using the IPM by simply extending linear
programming algorithms. In this section, the focus is on convex quadratic programs with
inequality constraints, in the form:

min
x

q(x) = 1
2x

TGx+ xT c

s.t. Ax ≤ b
0 ≤ η

(2.63)
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with G symmetric and positive semidefinite and A and b defined as:

A = [ai]i∈I
b = [bi]i∈I

(2.64)

with I = {1, ...,m}.
The approach described covers equality constraints too, simply extending the considera-
tions that will be presented here.
Rewriting the KKT conditions, it’s possible to obtain:

Gx−ATλ+ c = 0,
Ax− b ≥ 0,

(Ax− b)iλi = 0
λ ≥ 0

(2.65)

with i = 1, ...,m. The above conditions can be rewritten adopting the slack variable
y ≥ 0:

Gx−ATλ+ c = 0,
Ax− y − b = 0,

yiλi = 0
(y, λ) ≥ 0

(2.66)

with i = 1, ...,m. The KKT conditions result as both sufficient and necessary due to the
fact that G has been assumed positive semidefinite, so to find the solution of the system
(2.67) it’s possible to solve system (2.70).
For each iteration with (x, y, λ) that satisfies (y, λ) > 0, a complementary measure µ is
defined by:

µ =
yTλ

m
(2.67)

Primal-dual methods leads to the solutions (x, y) of the system above by applying different
Newton’s method iterations to the equalities in (2.70) and changing the search directions
and step lengths so that the inequalities (y, λ) ≥ 0 are satisfied at each iteration. The
nonnegativity criterion causes all the complexities in the design and analysis of interior-
point approaches,due to the fact that it could be hardly nonlinear, so to derive the primal-
dual IPM the optimality conditions (2.70) are revised in a slightly different manner:

F (x, y, λ;σµ) =

 Gx−ATλ+ c
Ax− y − b
YΛe− σµe

 = 0 (2.68)

where
X = diag(x1, ..., xn)
Y = diag(y1, ..., yn)
e = (1, 1, ..., 1)T

(2.69)

with λ ∈ Rm and y ∈ Rn.
Primal-dual techniques produce iterates (xk, λk, yk) that verify the constraints the non-
negativity condition, i.e., xk > 0 and yk > 0. The word interior-point derives from this
characteristic. Primal-dual IPM approaches share two fundamental features with the
majority of iterative optimization algorithms: a method for figuring out the step and a
way to gauge how desirable each point in the search space is. The average value of the
pairwise products xiyi, i = 1, ..., n, which are all positive when x > 0 and s > 0, is called
duality measure and is defined:

µ =
1

n

n∑
i=1

xiyi =
xT s

n
(2.70)
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In order to solve the following system of linear equations, Newton’s method models lin-
early F around the current solution point for each iteration and determines the search
direction (∆x,∆λ,∆y):

J(x, λ, y)

 ∆x
∆λ
∆y

 = −F (x, λ, y) (2.71)

with J as the Jacoubian of F .
Newton equations can be rewritten at this point as: 0 AT I

A 0 0
Y 0 X

 ∆x
∆λ
∆y

 =

 −rc
−rb
−XY e

 (2.72)

with rb = Ax− b and rc = ATλ+ y − c.
Each iterate is defined as (x, λ, y)+α(∆x,∆λ,∆y), with α that is generally chosen α≪ 1
in order to not violate the nonnegative condition. Often the pure Newton direction (2.76)
doesn’t allow to progress much in this sense, so less-aggressive Newton directions are
implemented, reducing the product xiyi to a lower value, not all the way to zero, i.e.,
xiyi = σµ, with µ the duality measure and σ ∈ [0, 1] the desired reduction to be achieved
at each step, also called the centering parameter.

However, the majority of the implementations of interior-point solvers have to manage
an unfeasible starting point, so algorithm enhancements are needed to find a feasible so-
lution. A crucial feature is the use of corrector steps, adopted to compensate the effects
of the linearization from Newton steps. If the affine scaling Newton step direction is
considered:  0 AT I

A 0 0
Y 0 X

 ∆xaff

∆λaff

∆yaff

 =

 −rc
−rb
−XY e

 (2.73)

and a full step is taken in the direction defined as the solution of the system above, it’s
possible to obtain:

(xi +∆xaffi )(yi +∆yaffi ) = xiyi + xi∆yaffi + yi∆xaffi +∆xaffi ∆yaffi = ∆xaffi ∆yaffi

(2.74)

The value of the product xiyi, i = 1, ..., n is ∆xaffi ∆yaffi instead of ideal zero. To attempt
to correct the deviation from the ideal result, a corrector step is introduced: 0 AT I

A 0 0
Y 0 X

 ∆xcor

∆λcor

∆ycor

 =

 0
0

−∆Xaff∆Y affe

 (2.75)

The IPM for QP result to be more efficient if the step lengths alphapri and alphadual for
the primal and dual variables are equal, due to the fact that they lead to the same rate
of reduction in the residuals values rb and rc.

αpriτ = max{α ∈ (0, 1] : y + α∆y ≥ (1− τ)y}; (2.76)

αdualτ = max{α ∈ (0, 1] : λ+ α∆y ≥ (1− τ)λ}; (2.77)

The Mehrotra predictor-corrector is the most well-known interior-point approach for con-
vex QP. By setting σ = 0 in (2.82), first an affine scaling step
(∆xaff ,∆yaff ,∆λaff ) is computed, thus, by computing a corrector step, the iteration
solution is improved and refined. The centering parameter is then calculated and the
system below is solved in order to determine the total step: G 0 −AT

A −I 0
0 Λ Y

 ∆x
∆y
∆λ

 =

 −rc
−rb

−ΛYe−∆Λaff∆Yaffe+ σµe

 (2.78)
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Algorithm 2 Mehrotra Predictor-corrector Algorithm for QP, taken from [28]

1: procedure interior point method(inputs)
2: Compute (x0, y0, λ0) with (y0, λ0) > 0;
3: for k = 0, ..., 2 do
4: Set (x, y, λ) = (xk, yk, λk) and solve (...) with σ = 0 for (∆xaff ,∆yaff ,∆λaff )

;

5: Calculate µ = yTλ
m ;

6: Calculate α̂aff = max {α ∈ (0, 1]|(y, λ) + α(∆yaff ,∆λaff ) ≥ 0};
7: Calculate µaff =

(y+α̂aff∆yaff )
T (λ+α̂aff∆λaff )
m ;

8: Set centering parameter to σ = (
µaff

µ )3;

9: Solve (...) for (∆x,∆y,∆λ)
10: Choose τk ∈ (0, 1) and set α̂=min (αpriτk

, αdualτk
)

11: Set (xk+1, yk+1, λk+1) = (xk, yk, λk) + α̂(∆x,∆y,∆λ)

12: end
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Chapter 3

GNC design of the relative
translational state

In the following chapter, the focus will be put on the formulation of the optimization prob-
lem for the trajectory followed by the chaser spacecraft during the rendezvous manoeuvre,
in order to control position and velocity of the vehicle for each step. The attitude is as-
sumed to be fully under the control of a PD controller, fixed during the whole duration
of the manoeuvre.

3.1 Model Predictive Control

In order to optimize the trajectory for the rendezvous manoeuvre, guidance and control of
the translational state have been handled with MPC, formulating a fuel-optimal consump-
tion and path-tracking problem under constraints that account for both control inputs
and state. MPC results a suitable choice in the context of embedded implementations,
due to the basic idea behind this advanced control scheme: each time that the MPC is
called, an optimization problem is solved and the change in time of the optimization vari-
able is forecasted. In this way, it’s possible to handle efficiently the physical constraints of
the systems and building a control scheme with a certain robustness implicit in, ensuring
onboard path tracking of the optimized trajectory also in real-time applications. This
means that, in the context of GNC systems, MPC implementations reduce to the mini-
mum the need for ground support during the rendezvous operation, providing a further
degree of automatization in the whole guidance and control loop.

MPC control schemes can use a model of the dynamics in the form:

xi+1 = fd(xi, ui) (3.1)

with xi that represents the system state at time step i, ui as the current control input
and fd for the discretized model of the dynamics.
For each time step, the MPC selects a sequence of control actions {uk}N−1

k=0 that optimizes
a sequence of states {xk}Nk=0; in doing so, a forecast of the state over a defined number
of time steps belonging to the so called prediction horizon N is realized. A discrete-
time optimal control problem arise, with the prediction of the state constrained to the
dynamics of the system:

min
U(i|i)

∑Hp−1
k=0 xT (i+ k|i)Qx(i+ k|i) + uT (i+ k|i)Ru(i+ k|i)+

+xT (i+Hp|i)Sx(i+Hp|i)
(3.2)

s.t. U(i|i) = [u(i|i), u(i+ 1|i), ..., u(i+Hp − 1|i)]T

41
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x(i+ 1) = Ax(i) +Bu(i)

u(i+ k|i) ∈ U, k = 0, ..,Hp − 1

x(i+ k|i) ∈ X, k = 0, ..,Hp − 1

x(i+Hp|i) ∈ Xf

umin ≤ u(i+ k|i) ≤ umax, k = 0, ...,Hp − 1

with matrices Q,R, S that are positive semidefinite. In this formulation, U represents the
optimal input sequence, Hp stands for the prediction horizon and U(i|i) represents the
current control input. The first two terms of the objective function accounts for the cost
of each i stage, while the latter corresponds to the cost of the terminal stage.
Once solved problem (3.2) and obtained the optimal control sequence, only the first con-
trol action u∗

0 is applied to the system, discarding u∗
i with i = 1, ..., N−1, and the optimal

control problem (3.2) is solved after the execution of u0. Recomputing at every iteration
the control action robustifies the control problem against deviations of the predicted tra-
jectory from the actual trajectory/modelling errors/external disturbances, and indirectly
takes into account what has happened beyond the modeled dynamics.

For each call of the MPC scheme, SOTB optimizes a QP of the form (3.2) adopting
an IPM solver. The QP formulation is constrained taking into account the dynamic
model of the system through the Clohessy-Wiltshire equations and the objective function
is minimized over a Receding Horizon (a moving prediction horizon).

Figure 3.1: Differentiation between the phases of application of Receding Horizon scheme
and Shrinking Horizon scheme

Generally, rendezvous manoeuvres cover two different phases:

• When the chaser moves from an holding point to the next one along the V-bar axes
of the LVLH reference frame, stabilizing around each holding point before moving
to the next one

• When the chaser gets sufficiently close to the target and, exploiting orbital dynamics
drift, reaches the target

In the first case, a receding horizon scheme is the most indicated control scheme, to opti-
mize the trajectory from transitioning between holding points, considering only the next
fixed prediction horizon. In order to save propellant consume, if the spacecraft remain
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within a sphere of tolerance around the holding point just exploiting orbital mechanics,
control is turned off, while in case of exit from the sphere thrusters are turned on again.
When the chaser gets closer to the target, instead, Shrinking Horizon schemes allow
to improve the prediction capability: the length of the prediction horizon is set as suf-
ficiently large to get to the target and then, for each iteration of the MPC scheme, the
horizon length is progressively reduced to the difference between the time step in which
the controller is turned on with respect to the time step in which the final state is reached.
In this way, it’s possible to cut the control horizon as much as the chaser get closer to
the target, forecasting the time step in which docking will happen:

U(i|i) = [u(i|i), u(i+ 1|i), ..., u(i+Hc − 1|i)]T , Hc ≤ Hp

where Hc represents the control horizon, during which only the correspondent Hc con-
trol actions are optimized to make predictions over Hp.

Figure 3.2: Graphic illustration of MPC control scheme, picture taken from [1]

Figure 3.3: Receding Horizon and Shrinking Horizon schemes, picture modified from [29]
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In this work, only the docking phase of the manoeuvre has been investigated, regarding a
Shrinking Horizon scheme implementation; in order to deal with the high computational
burden introduced by the MPC, due to the length of the prediction horizon, the appli-
cation of a Move-Blocking (MB) strategy to the control loop has been investigated as
an option, to reduce the number of control variables forcing a control input for multiple
discretization steps (the same logic behind a Zero Order Hold filter), but maintaining a
first step equal to the inverse of the MPC frequency, so that the complete u0 computed
is applied before executing again the MPC.

∆u = T∆û = (Tb ⊗ Inu×nu
)∆û =


E0

E1

. . .

EM−1




∆û0

∆û1

...
∆ûM−1


with Ej that are identity matrices of size equal to the number of control inputs for each
iteration nu, and ∆û = [∆ûT0 ,∆ûT1 , ...,∆ûTM−1] with M < N that stands for the sequence
of the new control input applied for Nj intervals. I = [I0, ..., IM ] is the vector containing
the starting index of each input block, that is computed:

I0 = 0,

Ij =

j−1∑
i=0

Ni, j = 1, ...,M − 1

Ij =

M−1∑
i=0

Ni = N

However, during the implementation of the Shrinking Horizon scheme in the control loop
in Simulink®, given the maximum time length of the capture manoeuvre, a MB scheme
has not been foreseen required, keeping a higher prediction accuracy.

3.2 Translational state problem

The scenario modelled in this work regards the last 2 [m] of the rendezvous manoeuvre,
along the V-bar axis of LVLH reference frame that mantains a ciruclar orbit with a suit-
able attitude; thus the formulation of the problem can be simplified by describing the
motion of the spacecraft through the linearized HCW dynamics equations, assuming that
the chaser is modeled as a 6-DOF rigid body with constant mass and that is affected only
by the non-inertial forces of the relative motion dynamics in the LVLH frame and by the
forces generated by the RCS thrusters.
The trajectory spans between two holding points laying on the V-bar axes of the LVLH
reference frame, respectively located at -2[m] and in the origin. In order to simulate in a
more efficient way the algorithms with the robotic test bed, it has been chosen to imple-
ment a linear trajectory, on the same orbital plane of the target spacecraft. This choice
allows the user to exploit a default function of the Universal Robot model UR3e adopted
for the chaser spacecraft: the Tool Central Point (TCP) (Tool Central Point) maintains
the default starting orientation during the execution of the trajectory commanded, sim-
ulating the fixed attitude of the chaser.

In order to optimize the trajectory, Linear Model Predictive Control (MPC) has
been implemented, due to its capability to optimize in the current prediction horizon
while taking into account the future timeslots, making this advanced control scheme in-
dicated when it comes to automatized on-board guidance. In order solve the problem,
a tool developed in-house in SENER has been adopted, the Matlab® SOTB toolbox,
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whose strength relies in the possibility for the user to solve large optimization problems
just filling a user-friendly interface in Matlab®; once the interface is filled up, the prob-
lem is automatically handled by an IPM, with high computational speed already verified
on representative hardware, that makes SOTB indicated for embedded on-board applica-
tions.
The optimization problem under study has been formulated as follows:

min
xi,ui,γi

1
2 (xN − xrefN )TP (xN − xrefN ) + 1

2γ
T
i Cγi + cT γi+

+
∑N−1
i=o

1
2 (xi − xrefi)

TLi(xi − xrefi) +
1
2u

T
i Riui

(3.3)

s.t. xi+1 = fi(xi, ui); ∀i = 0, ..., N − 1 (3.4)

Axi xi ≤ bxi + Jaffxi γ; ∀i = 0, ..., N (3.5)

Aui ui ≤ bui γ; ∀i = 0, ..., N − 1 (3.6)

γ ≥ 0 (3.7)

x0 = xinit (3.8)

where N represents the number of time steps needed by the chaser to cover the whole
trajectory to the target; xi stands for the discretized system state for each ith step (ac-
cording to the fourth order Runge-Kutta method), ui represents the discrete control input
and γi are slack variables adopted to relax the constraints.

Figure 3.4: Final approach along V-bar axis

The aim of the minimization problem above is to minimize as much as possible the error
between the position and the velocity of the chaser in the last step xN , when reaching the
target (that is assumed to be fixed in the origin of the LVLH reference frame), with an
associated matrix cost function P . Additionally, the objective includes the minimization
the error between the reference linear trajectory and the trajectory followed by the chaser,
reaching as fast as possible the V-bar axes, weigthed by matrix Li, and an homogeneous
distribution of the force and torque that the spacecraft has to generate at each time step
between the actuators, regulated by matrix cost Ri.
In order to robustify the formulation of the problem, slack variables γi have been included
to soften the constraints (from Eq. (3.3) to Eq. (3.6)), a common practice in embedded

applications; matrix Jaffxi selects the slack variable for each time step (in the case of
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this work, it deals with just one slack). The slack variable prioritizes the re-entering in
the allowed zone in case of violation of the state constraint, when the spacecraft with
its maximum capabilities it is not able to avoid a future/current violation of the state
constraint, and is associated with a cost matrix Ci, to increase the weight of the cost
term of the slacks in case of violation of the constraint, and so the weight of the whole
cost function.

C = 105;

c = 105;

In this study, the target’s COM is located in a nearly circular orbit and that the distance
between the chaser and the target is assumed to be small. Environmental disturbances
including solar radiation pressure and air drag are disregarded in orbital motions, thus
the Clohessy-Wiltshire (HCW) equation have been exploited to characterize the relative
translational dynamics between the two vehicles and propagate the state (Eq. (3.2)).
Recalling the formulation of the relative motion between chaser and target:

δẍ− 3n2δx− 2nδẏ = 0

δÿ + 2nδẋ = 0

δz̈ + n2δz = 0

(3.9)

the state dynamics has been translated in terms of state transition matrices, in order to
simplify the implementation in the solver:

ẋ = Ax+Bu (3.10)

where the state matrix A can be rewritten as:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


and matrix B:

B =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


For what concerns the constraints of the problem, a conic approach corridor with the
vertex on the V-bar axes has been introduced as a state constraint to maintain the im-
plemented trajectory in a conic envelope, and avoid dangerous deviations from the linear
reference trajectory when the chaser gets closer to the target. However, such a constraint
would have resulted in an heavy computational burden for the solver, due to the fact
that a Second-Order Cone constraint would have been introduced; an approximation of
the constraint has been adopted, replacing the cone with four tangent planes, each one
defined by the point of intersection plane-cone and the normal to the tangent plane in
the point of intersection.
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Figure 3.5: Violation of the conic approach corridor

In correspondence of the last step of the rendezvous manoeuvre, an additional state con-
straint has been introduced as a box located in correspondence of the target: in the
volume of this box, thrusters are turned off to save propellant, exploiting only orbital
drift to dock the chaser with the target on a flat surface of the target vehicle (the docking
manoeuvre require the chaser to approach the target with almost zero velocity). The
box has dimensions 30[cm]× 30[cm]× 30[cm], to safely absorb error in final position due
to perturbations/noise; the constraint has been relaxed with slack variables, γi ≥ 0, to
ensure the feasibility of the problem formulation and the prioritizing of the reentering
in the allowed region in case the chaser stops outside the box delimitation. This is a
robustness measure in terms of convergence, but that the optimal solution will tend to
be inside the box.

Figure 3.6: Illustration of slack variables weight change in case of violation of the con-
straints L

When dealing with rendezvous problem, F requested to the actuators to move in a certain
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time step can’t be obtained without taking into account T and viceversa (they are linked
by the attitude of the spacecraft). In order to take into account this pairing and not break
problem (3.1) formulation when it’s not possible to provide a certain value of F given a
value of T for the thrusters, a thrust envelope has been built and inserted as constraint
(3.4) in the MPC scheme. In the scenario under study, a value of ∥T∥ = 0 has been
imposed, since the attitude is modelled as fixed and regulated by a PD controller. The
thrust envelope in figure (3.4) has been plotted to represent the feasible magnitude and
direction of F to be commanded to the actuators: each point within the surface of the
envelope represents the F value that the thrusters have to produce given ∥T∥ = 0 , while
each point on the surface represents the value of F that is requested to the actuators if
isn’t possible to provide at the same time ∥T∥ = 0 and a value of F within the surface. In
this case, the thrusters must provide the biggest value of F that it’s possible to produce
according to design specifications, so they will be all turned on at maximum, but some
of the actuation capacity will be sacrified in order to produce ∥T∥ = 0.

The thrust envelope derives from a further optimization:

min
fi

cT fi + (F −Aeqfi)
TQ(F −Aeqfi) (3.11)

s.t. Aeqfi = T ;

AΦfi = F∞;

MIB ≤ fi ≤ Fmax

with variable fi that stands for the distribution of the actuation capacity between the
thrusters, that is constrained between a minimum value corresponding to the Minimum
Impulse Bit that a Pulse Width Modulator is able to provide (more in Chapter 5) and a
maximum value Fmax = 22[N ]. The objective is to minimize the error between the force
generated and the one requested to the thrusters, softening the constraints on F while
maintaining the requirement T = 0. Matrix Q homogenise the priority given to the soft-
ening of the equality constraint Aeqfi = Fdesired between all the thrusters, with matrix
Aeq that distributes the force value between the actuators according to their directional

cosines αi =
Fxi

∥Fxi∥ , βi =
Fyi

∥Fxi∥ and γi =
Fzi

∥Fxi∥ .

The equality constraint AΦfi = F∞ is expressed as a trigonometric function of the actua-
tion provided by each thruster: if it isn’t possible to provide F compatible with T = 0, an
very big value of F is requested to the actuators (ten times Fmax). Due to the fact that
they aren’t able to reach this value, they will turn on at the maximum of their capability.
The objective function of problem (3.9) contains also a unitary linear term c that mini-
mizes the thrust value provided by each actuator, in order to turn off the largest number
of thrusters:

Q =

 100 0 0
0 100 0
0 0 100


The desired value of F requested to the thrusters corresponds to the first control action
given as input to the MPC in the control loop of the robotic arm. However, it has been
chosen to approximate the thrust envelope with a cube that lies within the bigger enve-
lope, providing a further degree of conservatism in the F value requested to the actuators,
not exploiting their maximum actuation capabilities.

Coming back to problem (3.1) formulation, the values of the entries of the matrix in-
volved in the problem objective function are reported below. Matrix Li maximizes the
number of time steps in which the chaser moves linearly along V-bar axis (qxi

term), the
speed of approaching the V-bar axis (qyi) and the speed in reaching the condition z = 0
(qzi). The last three diagonal entries play a role in the determination of the shape of
the manoeuvre, making it smoother (qvxi

, qvyi , qvzi ). It is defined as stage-dependant,
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Figure 3.7: Thrust envelope

and in order to reach as fast as possible the reference trajectory (and so the V-bar axis),
it defines a sigmoidal shape for trajectory in the first steps and a linear shape in the
remaining steps.
In the last stage, in theory LN ≡ P ; in reality, matrix P has a higher cost value, to pri-
oritize the minimization of the error in position in the last step of the prediction horizon
with respect to the error in velocity.
Finally, control path cost matrix Ri presents a small weight if compared to the other
matrices, to prioritize the minimization of path following associated error.

P =


104 0 0 0 0 0
0 104 0 0 0 0
0 0 104 0 0 0
0 0 0 107 0 0
0 0 0 0 107 0
0 0 0 0 0 107



Li =



qxi 0 0 0 0 0
0 qyi 0 0 0 0
0 0 qzi 0 0 0
0 0 0 qvxi

0 0

0 0 0 0 qvyi 0

0 0 0 0 0 qvzi



R =

 10 0 0
0 10 0
0 0 10
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Figure 3.8: Path-following cost function L

Figure 3.9: Monte Carlo simulation of the offline docking manoeuvre, to assess the predic-
tion capabilities of the Shrinking Horizon scheme implemented when dealing with unstable
initial conditions (the initial position deviates from the V-bar axis). The initial position
in V-bar has been perturbed according to a normal distribution with µ = 2 and σ = 0.5,
while the initial position in R-bar varies according to a normal distribution with µ = 0
and σ = 0.05.



Chapter 4

Control Allocation for flight
control

Managing control allocation in a spacecraft involves the strategic distribution of control
efforts among the actuators, generally redundant with respect to the number of control
variables to ensure a further degree of robustness of the control scheme, in case of mal-
functioning or failure of one of the actuators. The distributed control actions between
the independently controlled actuators have to replicate the whole virtual control action
that the feedback of the control system delivers.

The main features of the design of a control allocation strategy include:

• System Modeling: modeling in a detailed way the spacecraft, including its phys-
ical properties, dynamics and environmental factors

• Objective Definition: orbit insertion, attitude control, payload deployment or
rendezvous with another spacecraft present specific performance requirements that
influence the propellant usage

• Control Actuators: such as reaction wheels, thrusters, gyroscope that generates
the forces and torques needed to control the spacecraft

• Control Allocation Algorithm: these tools determine how much control author-
ity should be assigned to each actuator to achieve the desired objectives, taking into
account spacecraft’s dynamics, constraints and the defined objectives.

• Optimization and error minimization: crucial to determine the most efficient
and effective distribution of control efforts, includes minimizing fuel consumption,
maximizing stability or ensuring redundancy for fault tolerance, taking into account
the case in which commanded torque/force is not feasible

• Autonomous Management of Safety and Redundancy: redundancy is a
main feature of spacecraft control, ensuring that if one control fails, the others can
compensate, as in the case of fault detection (FDI) and isolation systems.

• Testing and Validation: including testing on ground and during mission simula-
tions to ensure it performs as expected under various scenarios.

This work presents a thrust dispatching strategy for control allocation applied to the
capturing phase of a rendezvous manoeuvre, subdividing the workflow in two parts: first
the determination of the desired force and torque to be generated to reach the target,
then an active set solver has been developed and tested on the allocation module.
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4.1 The actuators

The choice of the actuators depends on specific mission requirements, spacecraft size and
tasks; many vehicles are equipped with combinations of actuators to provide redundancy
and ensure that the spacecraft can work effectively in the harsh space environment.
The most common categories of actuators include thrusters, used to generate thrust for
orbit changes, trajectory adjustments and attitude control. Based on expelling propel-
lant to produce an action in the opposite direction, thrusters can be chemical, electric
or cold-gas type. They include the possibility to design electric propulsion systems, that
generate thrust by ionizing propellant and accelerating the ions using electric fields, guar-
anteeing a high efficiency especially during deep space missions. Reaction wheels, instead,
are spinning flywheels mounted inside the body of the spacecraft that, by changing their
speed, alter angular momentum enabling control of spacecraft’s orientation.
On the other hand, magnetic torquers interact with Earth’s magnetic field, adjusting the
orientation of the spacecraft controlling the intensity and the direction of the magnetic
field generated; Control Moment Gyroscopes are high-speed spinning flywheels that pro-
vide both angular momentum and torque for attitude control, allowing rapid changes in
spacecraft’s orientation.

Figure 4.1: Monopropellant thruster, picture taken from [3]

Figure 4.2: Bipropellant thruster, picture taken from [5]

For what concerns the scenario under analysis in this work, it has been assumed that the
chaser spacecraft is controlled by cold-gas thrusters, being highly indicated to execute
small adjustments requiring control precision. The control allocation proposed in this
work focuses on the thrust modulation for the cold-gas thrusters via Pulse-Width Modu-
lation, with the objective of minimizing the propellant consumption and minimizing the
error between the thrust requested to the thrusters and the thrust actually generated.
Cold gas thrusters (also known as cold gas propulsion systems) use the expansion of
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an inert pressurized gas as propellant to generate thrust (typically nitrogen or helium),
avoiding combustions as conventional monopropellant and bipropellant rocket engines;
this leads to less efficiency that the second ones in terms of specific impulse, but allows
them to operate at a relative low temperature and to be chemically stable. The gas
is stored in high pressure tanks on the spacecraft and, when fired, a valve or regulator
releases the compressed gas into a nozzle. As the gas escape the thruster chamber, it ex-
pands rapidly generating a high-speed jet of gas. The thrust is generated in the opposite
direction with respect to the desired motion, propelling the spacecraft forward.
In order to control thrust in output, Pulse-Width Modulation allows to regulate thrust

Figure 4.3: Cold-gas thruster, picture taken from [10]

level controlling the ratio of time that the thruster is turned on with respect to the time
it is off:

fij∆tctrl = fnom∆tij

∆tij =
fij
fnom

∆tctrl

where ∆tij indicates how much time the ith thruster keeps turned on at time step j, fij is
value of thrust requested at the ith thruster at time step j, fnom stands for the maximum
actuation requested to thruster ith and ∆tctrl is the duration of a guidance time step.
To control thrust, the spacecraft onboard computer adjusts the duty cycle of the PWM
signal: if the duty cycle is increased, the thruster is on for a larger portion of each cycle,
resulting in a higher thrust. PWM leads to high precision in control due to the small
increments that can be obtained by altering the duty cycle and allowing the spacecraft to
control the temperature (and so the thermal load) on the thrusters, making PWM well-
suited for automatized operation and dynamics adjustments during missions, regulating
it digitally by the spacecraft’s onboard computer.

4.2 Control allocation by thrust dispatching

In this section it will be analyzed how to optimize the distribution of the available thrust
among multiple thrusters to achieve precise control of the chaser spacecraft’s position.
Once determined the required thrust value and direction, control module dispatches com-
mands to the individual thrusters (the control actions to be provided by the thrusters
during each pulse of the optimized trajectory are obtained as output from the transla-
tional state problem, imposing the force envelope as constraint).
Thrust dispatching optimization techniques not only achieve fine adjustments in the
chaser’s position and velocity, but also handle efficiently redundancies. In spacecraft’s
design, the vehicle is often provided with redundant thrusters to ensure continued op-
eration in the case of failures or faults; thrust dispatching is well-suited to handle and
compensate the asymmetrical forces or disturbances that could generate in this case,
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maintaining stability of the whole spacecraft and mission flexibility. Furthermore, it is
particularly indicated as optimization strategy for the mission under study due to fact
that it avoids the overusage of a single thruster, preventing overheating and reducing
workload on individual components.

Figure 4.4: Thrusters configuration for the chaser satellite for the study case under anal-
ysis

The control allocation problem has been formulated as a QP, assuming a fixed con-
figuration of the thrusters:

min
fi

1
2f

TRf + 1
2 (F −Aeqfi)

TQ(F −Aeqfi) +
1
2 (T −Aeqfi)

TG(T −Aeqfi) (4.1)

s.t. Aϕfi = 0;

Aeqfi = T

MIB ≤ fi ≤ Fmax

with matrix Q that homogenise the relative weight of the error produced by each thruster
in providing the requested force value, matrix G that gives the same priority to the
minimization of the error in the norm of the T provided by the thrusters and matrix
R that regulates the distribution of controls fi between the thrusters. The thrust value
generated by each actuator lies between a Minimum Impulse Bit (MIB) and a maximum
value fmax; the lower bound is referred to the minimum time interval during which the
pulse provided by the thruster recalls the ideal value, as represented in figure (4.5) by the
blue stair: The thrust level for each thruster is bounded between a MIB and a maximum
value: that means that all the thrusters work in an homogeneous way and none of them
will be deactivated. This will for sure worsen the propellant consume, so an fmin = 0
constraint has to be added to the problem formulation. However, requiring that the
thrust generated by each thruster lies between a MIB minimum value and a maximum
and requiring at the same time a value of fmin = 0 constitutes a non-convex constraint
for the problem formulation, so it has been relaxed assuming 0 ≤ fmin ≤ fmax. The error
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Figure 4.5: PWM of the control input: ideal and actual action, picture taken by [8]

Figure 4.6: Graphic representation of the softened equality constraint for the force zono-
tope: Fcmd stands for the control input commanded to the thrusters, while Fexec is the
actual thrust level produced by the actuators

generated by this softened constraint is assumed to be compensated by the PWM action
and by the feedback in the control loop.

0 ≤ fi ≤ fnom
∆tPWM

∆tctrl

In order to make the problem formulation more robust, the force allocation constraint
Aeqfi = Fcmd has been softened, hard-constraining only the direction of the force pro-
duced by the thrusters through the equality constraint AΦfi = 0: in this way, the only
error that must be compensated and minimized is the one in the magnitude of the F
provided by the thrusters, while the direction is always the one requested, as shown in
figure (4.6):

AΦfi = dj · Fexec = dj ·Aeqfi = 0

with direction dj defined as: dj := {dj |Fexec · dj = 0 ∪ ∥dj∥2 = 1}.

4.3 Active-set method application to control alloca-
tion

An ASM has been developed to optimize the Control Allocation problem and its perfor-
mance, compared with the one of SOTB. The solver has been structured as presented in
Chapter 2, following the reference of Nocedal, 2006 with the option for the user to provide
to the algorithm a warm starting of the active set by exploiting a pre-processing function;
the initial guess of the active set will be coincident with the equality constraints, always
active.
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Figure 4.7: Illustration of the ASM algorithm implementation, picture taken from [23]

The control allocation problem has been reformulated in five variants and solved adopt-
ing the ASM (results are shown in Chapter 6). In order to avoid ill-conditioning of the
Hessian matrix of the QPs and consequently problems in the inversion of the KKT ma-
trix (the computational complexity of ASM is mostly dominated by the computation of
the Hessian of the Lagrangian associated), a regularized inverse of the Hessian matrix
has been implemented in the ASM, resorting to SVD: in particular, the least significant
singular values have been removed and an approximate of the inverse has been built.
SVD allows to express the Hessian matrix H as:

H = USV T

with U and V orthogonal matrices (in detail, square matrix whose columns form a or-
thonormal basis) ans S is a diagonal matrix, whose diagonal entries are called singular
values si and are si ≤ 0. The SVD makes it easy to compute the inverse of the Hessian
matrix H:

H−1 = V S−1UT

If any of the singular values si is close or equal to zero, matrix S−1 doesn’t exist, due to
the fact that the diagonal presents terms like 1

si
= 1

0 . However, it is possible to recover
some information from the Hessian matrix by selecting only the p higher singular values
and the first p left and right singular singular vector to represent the original data (the
process is known as low-rank approximation):

H =

p∑
i=1

σiuiv
T
i = UpSpV

T
p

with matrices UD and VD that contains only the first p columns of U and V , and SD is
the diagonal matrix with only the p highest singular values.



Chapter 5

Model-based driven design

This chapter contains an overview of GNC systems validation and verification (V&V) pro-
cesses, focusing on Model-In-The-Loop (MIL) and Hardware-In-The-Loop (HIL).
Then a presentation of the simulator developed in Simulink®, Matlab® and Python®

to test the algorithms is presented, together with a description of the robotic testbed in
the GNC Laboratory of the Universidad Rey Juan Carlos (URJC) of Madrid.

Building and developing systems for applications in space environment is indeed a compli-
cated engineering task, especially when it comes to recreate all the circumstances faced in
space prior to the launch of the spacecrafts in-orbit. Due to the unfeasiblity of correcting
faults on-orbit, software testing relies on hardware-in-the-loop (HIL) as verification
method: in the case of this work, the hardware of the satellites has been replicated ex-
ploiting robotics facility, reproducing real sensors signals with models and feeding them
back to a control loop that simulates the action of actuation.

According to the guidelines of the European Cooperation for Space Standardization (ECSS):

• ”(A) verification process [.] demonstrates through the provision of objective evi-
dence that the product is designed and produced according to its specifications and
the agreed deviations and waivers, and is free of defects. A waiver can arise as an
output of the verification process. Verification can be accomplished by one or more
of the following methods: analysis (including similarity), test, inspection, review of
design.”

• ”(A) validation process [.] demonstrates that the product is able to accomplish its
intended use in the intended operational environment. Verification is a prerequisite
for validation.”

In the case of GNC systems, V&V is applied by steps, progressively moving from the
modeling environment to real-world implementation:

• MIL (Model-in-the-loop) simulation

• SIL (Software-in-the-loop) simulation

• PIL (Processor-in-the-loop) simulation

• HIL (Hardware-in-the-loop) simulation

• In-orbit test (IOT)

The baseline to prototype space GNC software algorithms is to build a Functional Engi-
neering Simulator (FES) in Matlab®/Simulink® via a model-based approach; the models
are validated in a MIL environment, where the GNC algorithms are tested in closed loop
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with modellizations of the mission environment and of the spacecraft subsystem simula-
tion.
In industry, to validate a model simulator means mostly employing Monte Carlo simula-
tions, in which a probability distribution function is linked with significant variables and
a fixed degree of errors, actuator/sensor noises, and perturbation is defined.
After the MIL validation phase, the algorithms are translated into embedded-like code,
in most cases in C/C++ (SIL validation). At this point, code translation is an auto-
mated function (autocoding): by following basic guidelines when developing the simula-
tion model, the user can easily retrieve the corresponding embedded-like code.

The PIL test is the next step in the V&V process, during which the controller code
is incorporated in a dedicated processor, with performance comparable with the one of
the final spaceship on-board computer. This test verifies that the synthesized controller
can be run on a CPU, albeit with restricted performance in comparison to an on-ground
computer.
The HIL test is the last on-ground validation phase, in which the real plant and/or sen-
sors/actuators are interfaced with the control loop running on the embedded processor;
HIL testings occur in real time, thus processes are executed or simulated in situations as
close to reality as possible. As a result, the correct timing execution of all the equipment
associated with its necessary software is verified.
For spacecraft applications, it is often difficult to recreate on-ground the identical set-
ting as in space; while some environmental characteristics, such as Sun radiation, can be
replicated, others, such as the microgravity condition, cannot be handled in the testings.
Thus, sensors and actuators like reaction wheels are tested in an HIL testbed, while space-
craft dynamics are simulated on a real-time platform. The real-time software simulates
both the plant and the environment in a functional model of the On-Board Computer
(OBC) and sends analog commands to the actuators, which are subsequently computed
by the control unit processor.

Software simulation is made up of Dynamics and Kinematics Environment (DKE) model
as well as sensor and actuator models, that are not interfaced with the GNC software
at the hardware level. The dynamics and kinematics models represent the spacecraft’s
behavior in terms of attitude motion and linear motion, while the environment models
represent the Earth gravity model, Sun and Moon position propagation, and the action
of disturbances such as atmospheric drag, solar pressure, magnetic interference. Because
a real-time conversion of the models in software simulation is required, the hardware in-
terface part manages the signal frequency. The software signals of sensor and actuator
models are subsequently transformed into physical signals and supplied to the appropri-
ate electrical connector to facilitate a flight-like connection between the OBC and the
equipment. In the case of sensors, signals will be delivered from the hardware interface
to the OBC, whereas in the case of actuators, command signals from the OBC will be
received and used to influence plant dynamics via the hardware interface, allowing the
user to take into account aspects not covered till later mission phases.

5.1 Hardware and software set-up

In order to simulate the on-board guidance algorithm with representative sensors in the
loop, a robotic test bench has been exploitedthat recreates the space scenario for what
concerns illumination conditions, with the support of the GNC Laboratory of the URJC.
In order to simulate the on-board guidance algorithm with representative sensors in the
loop, a robotic test bench that recreates the space scenario has been exploited, with the
support of the GNC Laboratory of the URJC.
The first step of this process has been to build a control loop of the robotics facility
exploiting Simulink®, Matlab® and Python®, to command the optimized guidance to
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the robotic arm that represents the chaser dynamics and to receive/handle the information
coming from Navigation sensors.
The control loop has been divided into functional blocks:

Figure 5.1: Robotic facility control architecture

• MPC Optimization: in order to optimize the rendezvous manoeuvre, SOTB has
been implemented in the control loop to obtain optimized control inputs exploiting
an MPC advanced control strategy. Every time that the solver in SOTB receives
a call, the translational state problem presented in Chapter 3 is solved, providing
as output to the user the optimized trajectory in terms of position and velocity
of the chaser spacecraft x = [x1, x2, x3, ẋ1, ẋ2, ẋ3 and the pulses requested to the
thrusters to obtain such trajectory, for the whole prediction horizon. However, the
position and the velocity values come from a linearization and discretization of the
dynamics, so it has been chosen to propagate in the following blocks the optimized
control inputs for each step, in order to maintain an acceptable level of accuracy in
the iterations.
In order to provide an output, SOTB needs an initial condition in terms of opti-
mization variables: in the case of this work, it coincides with the data about the
position of the Tool Central Point of the chaser-robot provided by Navigation Visual
Processing algorithms.

• Differential Kinematics Equations (DKE): The optimal control inputs are
used to propagate the DKE presented in Chapter 2 and obtain an optimized trajec-
tory to be commanded to the robotic arm. The first step of the optimized trajectory
is taken from the the internal sensors of the robotic arm, in order to replicate the
measurement errors coming from the real world.

• Robotic Arm Adaptation: In order to send commands to the robotic arms, the
optimized position and velocities from SOTB must be scaled and rotated in terms of
reference frame. The chaser dynamics is represented by a 6 degree-of-freedom UR3e
robot, whose work envelope is a sphere of 50[cm] of radius; a sequential scaling has
been applied to replicate a docking manoeuvre of 2[m] in 40[cm], such that the last
0.3[m] of the manoeuvre are in scale 1:1.
The commanded trajectories are executed by the robotic arm with respect to its
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basis reference frame, along positive x -axis and approaching the middle point be-
tween four ArUco markers (detected by the visual sensors of Navigation) positioned
on a table orthogonal with respect to robot basis reference frame.

• Communication protocol: To send the optimized trajectories step by step to
the robotic arm, a socket has been opened in Matlab® (version R2020b) to han-
dle the communication between the PC on which the control loop is implemented
and the robotic arm. The commands are sent exploiting URX, a library developed
in Python® (version 3.8.0, to be compatible with Matlab®) by Universal Robots,
that allows the user to send commands in terms of linear displacements of the TCP
(movel function) or to control the angles of the single joints of the robotic arm
(movej function). Every time that the robot receives a command in terms of linear
displacement by Python®, the internal controllers of each joint compute the joint
angles that are most suitable to reach such position; however, this way of proceed-
ing don’t provide any control on robotic singularities, blocking in a sudden way the
whole simulation if reached.
The socket not only sends commands to the robotic arm but also receives the in-
formation coming from the TCP in terms of position and velocity, and throught a
broadcaster developed with URX (created by the URJC work team), the data are
send back to the control loop, as information coming from the internal sensors of
the robotic arm.

• Navigation (VBN algorithms): this block includes the Visual Processing algo-
rithms developed by the Navigation area of the work team and integrated in the
control loop. The idea is to identify the middle point between four ArUco mark-
ers of lateral length 6[mm] taken as target of the manoeuvre, virtually set in the
origin of the LVLH reference frame. The markers are positioned at the corners of
a flat table, orthogonal with respect to the xy plane of the basis reference frame
of the robotic arm; the Navigation algorithms detect the relative distance between
the markers and the camera placed in the TCP of the robotic arm, connected to
the RaspberryPi board. With this information, the algorithm gets the position of
the middle point between the markers and feeds back the information to Guidance
algorithms.

(a) Illumination set-up (b) UR3e cobot with the installation of
SIROM, SENER coupling interface

Figure 5.2: GNC Laboratory set-up

5.1.1 Kinematic analysis of the UR3e robotic arm

During the execution of the optimized trajectories with the robotic arm, some of the
commanded steps of the trajectory led to singular configurations for the joint angles,
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due to the fact that the robotic arm is equipped with internal controllers, one for each
joint. In order to prevent a sudden stop of the implementation of the trajectories, the
control loop has been provided with an additional warning in correspondence of the robot
adaptation block: every time that a singularity is detected, the robotic arm comes back
to the starting point and executes the remaining part of the optimized trajectory from
this point. In this way, the robotic arm avoids damages due to the sudden stops.
To implement the singularity detecting strategy, the kinematics of the UR3e robotic arm
has been analyzed: the UR3e is constituted by six rotational joints, each one representing
a single degree-of-freedom of motion (the angle of rotation θi). Any manipulator presents
in general n joints and n+1 links, since each joint creates a connection between two links;
joints are numbered from 1 to n while links from 0 to n, regarding link 0 as the basis of
the robotic arm, always fixed and not moving when the joints are actuated.
[ht] In order to analyze the kinematics of the robotic arm, a reference frame has been

Figure 5.3: Spherical work envelope, picture taken from [39]

Figure 5.4: Links-joints identification, picture taken from [39]

associated to each link of the robotic arm link; in the case of UR3e cooperative robot, the
kinematic chain (the whole structure of the robot comprehensive of joints and links) is
open, as there is only a sequence of links connecting the ends of the chain. The position
of a generic point P can be expressed with respect to the basis reference frame O0−x0y0z0
as:

p0 = o0i +R0
i p
i (5.1)

taking into account the rotation matrix R0
i of the ith frame with respect to the basis frame

and vector o01, that describes the origin of frame i with respect to frame 0. The homo-
geneous transformation matrix Ai provides a compact notation of this coordinates
transformation:

A0
i =

[
R0
i o01

0T 1

]
(5.2)
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Figure 5.5: Reference frames associated to the joints of the UR3e, picture taken from [9]

A sequence of transformations can be represented as:

p̃0 = A0
1A

1
2 · · ·An−1

n p̃n (5.3)

Relating the end-effector position with respect to the joint angles of the robot constitutes
the direct kynematics analysis of the robotic arm, expressed in a compact notation by
the homogeneous transformation matrix:

T be (q) =

[
nbe(q) sbe(q) abe(q) pbe(q)
0 0 0 1

]
(5.4)

with q the vector of joint variables, the unit vectors labeled s (the sliding direction of
fingers of the gripper), a (approach direction of the gripper with respect to an object)
and n (normal direction with respect to s and a) attached to the end-effector; vector pe
describes the origin of the end-effector with respect to the basis.

Figure 5.6: Description of the end-effector reference frame, picture taken from [39]

However, matrix Ai can assume a complicated formulation when it comes to express the
position and orientation of the reference frame of the end-effector of the robotic arm with
respect to the basis; to simplify further computations, it is possible to rewrite the same
matrix adopting the Denavit-Hartenberg convention.
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5.1.2 Denavit-Hartenberg representation

The Denavit-Hartenberg convention reformulate the homogeneous transformation ma-
trix Ai as the product of basic transformations. Denoting with i the axis connecting link
i-1 to link i, frame i is defined (according to B. Siciliano, L. Sciavicco, L. Villani, G.
Oriolo, Robotics, Modelling, Planning and Control (Springer, 2000)):

• Choose axis zi along the axis of joint i+ 1

• Locate the origin Oi at the intersection of axis zi with the common normal to axes
zi1 and zi. Also, locate Oi at the intersection of the common normal with axis zi1.

• Choose axis xi along the common normal to axes zi1 and zi with direction from
Joint i to Joint i+ 1.

• Choose axis yi so as to complete a right-handed frame.

In order to describe position and orientation of frame i with respect to frame i − 1, the
convention involves four parameters:

• θi is the angle between xi−1 and xi around zi−1.

• αi is the angle from zi−1 to zi around xi.

• ai is the distance between the origin of the i-1 frame and the origin of the i frame
along the xi direction.

• di is the distance from xi−1 to xi along the zi−1 direction.

For each link of the robotic arm, three of the four parameters result to be constant, while
the fourth one constitutes the joint variable (θi for a revolute joint and di for a prismatic
joint).
In the case of the UR3e cobot, Denavit-Hartenberg parameters are summed up in table
(5.1).

The coordinate transformation from basis frame to end-effector frame can be obtained

UR3e
Kinematics θi[rad] a[m] d [m] αi[rad]
Joint 1 θ1 0 0.15185 π/2
Joint 2 θ2 -0.24355 0 0
Joint 3 θ3 -0.2132 0 0
Joint 4 θ4 0 0.13105 −π/2
Joint 5 θ5 0 0.08535 π/2
Joint 6 θ6 0 0.0921 0

Table 5.1: Denavit-Hartenberg parameters for the UR3e robotic arm

by post-multiplication of the corresponding homogeneous transformation matrices (for
the UR3e robot, all the joints are rotational):

Ai−1
i =


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)
sin(θi) cos(θi)cos(αi) −sin(αi)cos(θi) aisin(θi)

0 sin(αi) cos(αi) di
0 0 0 1


T 0
6 (q) = A0

1A
1
2A

2
3A

3
4A

4
5 (5.5)
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5.1.3 Singular configurations for the robotic arm

During the implementation of the trajectories with the robotic arm, singularities arise
when a position is commanded to the TCP in Cartesian space but the internal controllers
of the manipulator encounter problem in the inverse mapping from Cartesian space to
joint space. The consequence is that in correspondence of such configurations the manip-
ulator loses a degree-of-freedom, reducing its mobility.
Singular configurations are distinguished between boundary singularities and inter-
nal singularities: in the first case, one of the joints of the robotic arm reaches its full
extension, with the robot trying to reach the limit of its work envelope, while in case of
internal singularities two axes of the robot get aligned in space. This means that infinite
inverse kinematic solutions (determining joint configuration for which the TCP reaches
the target) may exist, and that small Cartesian displacement may require infinite joint
velocities.
In order to understand how to handle singular configurations, the mapping between the
Cartesian space and the joint angles space is analyzed, which is represented in the Ja-
coubian matrix J . The Jacoubian matrix relates changes in joint parameter velocities to
Cartesian velocities, with a number of columns equal to the number of degrees of free-
dom in joint space, and a number of rows equal to the number of degrees of freedom in
Cartesian space.

ṗe = JP (q)(̇q) (5.6)

ωe = JO(q)(̇q) (5.7)

that are the manipulator differential equations.
For the general case, the Jacoubian matrix can be obtained:

J =

[
JP
JO

]
As a consequence, if Cartesian velocities are specified, the inverse of the Jacoubian leads
to joint velocities. When a singularity occurs, however, the determinant of the Jacobian
gets close to zero, and its not possible to invert the matrix. In the case of the six revolute

Figure 5.7: Singular configurations of UR3e, picture taken from [36]

joints cobots, the most frequent singularities occur when:

• Wrist singularities: it happens when the axes of joints 4 and 6 become parallel;
this condition corresponds to θ5 = deg 0, θ5 = ±deg 180 or θ5 = ±deg 360.

• Elbow singularities: in this case, the singular configuration is reached when the
axes of joints 2 and 3 lie on the plane passing through the axes of joints 4, leading
to the full extension of the arm; this situation correspond to θ3 = deg 0.
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• Shoulder singularities: it occurs when the intersection point of the axes of joints
5 and 6 lies in the plane passing through the axes of joints 1 and 2.

In order to detect when these configurations occur while commanding the optimized
position and velocities to the robotic arm, the control loop has been integrated with the
calculation of the Jacoubian corresponding to each time step of the optimized trajectory,
to prevent the simulation of the rendezvous scenario by stopping.
In order to compute the contribution of each revolute joint to the linear velocity and to
the angular velocity of the end-effector frame, the Jacoubian for the UR3e robot can be
obtained: [

JO
]
=

[
zi−1 × (pe − pi−1)

zi−1

]
If the Jacoubin degenerates in correspondence of a singularity, the dimension of the space
of the end-effector velocities that can be generated by the joints decreases, increasing
the dimension of the null space (joint velocities that don’t produce movements in the
end-effector), according to:

dim(R(J)) + dim(N (J)) = n

In correspondence of a singular configuration, the Jacoubian is no more full rank, meaning
that the determinant becomes close to zero.
In the Simulink® control loop for the chaser robot, every time that a optimal trajectory is
calculated, the determinant of the Jacoubian associated to the each position commanded
to the robotic arm is computed, checking if the corresponding determinant is close to
zero. In that case, the robotic arm implements the commanded trajectory starting from
the feasible point x0 = [0,−2, 0, 0, 0, 0]T in robotic basis coordinates, in order to continue
to implement the simulation.
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Chapter 6

Model&Results

The following chapter has the double goal of showing the prediction capabilities of the
MPC implemented in the control loop of the robotic arm to optimize the rendezvous
manoeuvre, in-line with offline computations of the trajectory, and to demonstrate the
accuracy and the fast convergence of the ASM solver, applied to CA problem presented
in Chapter 4.
The first section of the chapter is dedicated to the comparison between the optimized
rendezvous manoeuvre computed offline with SOTB, based on an MPC control scheme
powered by a SH strategy, with respect to the results of the MIL testings, that show the
capability of the control scheme of prediction of the docking instant when feeded with
Visual Based Navigation estimation of the pose. Once assessed the feasiblity of the opti-
mized manoeuvre, the optimization strategy has been applied online to the robotic arm
in the GNC Laboratory of the URJC, focusing this time on demonstrating the high level
of accuracy that is possible to reach when simulating an orbital manoeuvre through a
robotic facility, and the robustness of the optimization scheme in presence of noise and
disturbances coming from real sensors.

The second part of the chapter, instead, aims at comparing the optimal solution pro-
vided by the ASM designed during the development of this work with the computational
capabilities of a professional solver (SOTB), when applied to the optimization of the
Control Allocation problem of the chaser spacecraft involved in the rendezvous manoeu-
vre under analysis; for each one of the test cases, the execution time of the solver has
been computed, to evaluate a future implementation of the same solver in the Simulink
structure that controls the simulations executed by the robotic facility.
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6.1 Robotic arm testings

In order to simulate the optimization of the rendezvous manoeuvre under analysis, the
translational state problem presented in Chapter 3 has been first solved offline adopting
SOTB. The manoeuvre that has been plant is linear, assuming the attitude of the chaser
spacecraft under the full control of a PD, with the chaser that approached the target
along the V-bar axis of the LVLH reference frame within the last 2 [m] of the trajectory.

Figure 6.1: SOTB offline trajectory

Figure 6.1 presents an overview of the optimized linear trajectory in the LVLH reference
frame, while in figure 6.2, where it’s possible to appreciate the speed of the convergence
of the formulated optimization problem and the compliance of the trajectory with the
requirements expressed in problem (3.3): the manoeuvre results to be linear along the
V-bar axis (X and Z optimization variables result to be zero, correspondent respectively
to the linear displacement along the R-bar axis and to the linear displacement orthogonal
with respect to the orbit plane), approaching the target in only 16 [s] (as it’s possible to
notice from the Y optimization variable, correspondent to the linear displacement along
the V-bar axis). Such speed of convergence is emphasized by the implementation of the
SH scheme, that lets the user shrinks the prediction horizon until the docking instant is
reached, based on iterative predictions of the docking state.

In order to simulate correctly the optimized rendezvous manoeuvre on hardware, the
optimization scheme has been first tested in a MIL framework, developed as a Simulink
structure, that recalls the MPC control scheme, computes an optimized control input
sequence and propagates the translational state through the HCW dynamic model based
only on the first control input. Once the state has been propagated, a Matlab function
block simulates the change of reference frame and the sequential scaling strategy, essential
to replicate the trajectory of a spacecraft with a robotic arm, whose maximum extension
is limited by its work envelope. The Simulink control loop has also been integrated with
a Navigation block, to estimate the position of the virtual robotic arm through Visual
Based Navigation algorithms; such information is then fed back to the optimization block,
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Figure 6.2: Time evolution of the optimization variables for problem (3.1), solved offline
by SOTB

to compute a new prediction of the docking state and a new optimized trajectory based
on Navigation data. Figure 6.3 presents a comparison between the recomputed optimized
trajectory by the MPC after implementing only the first control input of the optimized
sequence (blue lines) and the HCW propagation of the translational state (red line), based
on the first control input; at the same time, it’s possible to appreciate how the integration
of the Visul Based Navigation algorithms in the control loop leads to the exact tracking
of the trajectory computed by the MPC, that shows robustness against the noise level
introduced by the Navigation algorithms during the simulations, modeled as a normal
distribution whose parameters are reported in table 6.2.

After the MIL testings, the focus moved to simulations on hardware, replicating the
manoeuvre in two different frameworks: first feeding the optimization block with the
TCP pose estimation coming from the internal sensors of the robotic arm, assumed as
the ideal case, while in a second moment the optimization block has been fed with the
data coming from the Visual Navigation algorithms developed by the Navigation area
of the work team, reproducing in the GNC Laboratory the same illumination conditions
to which the spacecraft is subjected on-orbit and exploiting as sensors a microcamera
connected to a RaspberryPi board installed on the TCP of the robotic arm. A socket
has been opened in Matlab®/Pyhton to connect with the IP of the UR3e cobot adopted
during the testings, and to the real-time port of the robotic arm, to acquire data in real-
time concerning the position of the TCP (that simulates the chaser spacecraft); table 6.1
shows the frequency at which each step of the optimized trajectory is commanded to the
robotic arm when the socket is opened (port 30003) and the frequency at which the data
are collected (port 30004).
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Figure 6.3: Trajectory obtained propagating the DKE equations according to the control
input provided by SOTB, executed by the robotic arm and tracked by the Visual Navi-
gation algorithms

Figure 6.4: Real-time data from the TCP, acquired at a frequency of 500 [Hz].
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Primary Secondary Real-time RTDE

Port no. 30001 30011 30002 30012 30003 30013 30004

Frequency [Hz] 10 10 10 10 500 500 500

Receive URScript - URScript - URScript - Various data

Table 6.1: Remote control via TCP/IP overview

Figure 6.5: Evolution of the trajectory in real-time with respect to the basis reference
frame of the robotic arm

Figure 6.4 presents the data acquired in real-time from the TCP of the robotic arm,
assuming perfect Navigation, and showing how the MPC control scheme tracks the tra-
jectory implemented offline; the whole 2-meter-long manoeuvre is replicated in 40[cm],
compliant with the work envelope of the UR3e robotic arm (50[cm] of radius), applying
a scaling factor of 1 (red line, that has been scaled to fit the first part of the executed
trajectory) only to the last 30 [cm] of the manoeuvre, while the previous part presents a
scaling factor of 0.175.
The optimized trajectory leads to no singular configurations for the joints of the robotic
arm, as it’s possible to notice by the absence of sudden deviations from the reference
trajectory in figure 6.4. In correspondence of a possible violation of the work envelope
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of the robot, the manipulator is programmed to reach a feasible point for the trajectory
implemented (in the case under analysis, the starting point of the optimized trajectory)
and, exploiting the sequential scaling strategy implemented in the control loop, to con-
tinue to implement the commanded steps. This recovery strategy effect is shown in figure
6.5, that reports the evolution in time of the optimization variables, according to the
real-time data received by the internal sensors of the robotic arm; in correspondence
of the change of the scaling factor, the robotic arm returns to its initial position (X
equal to 0.1[cm] and Y equal to -0.13[cm], referred to the basis reference frame of the
UR3e), then it continues to implement the optimized trajectory until the docking instant.

After the testing of a perfect Navigation scenario, the optimized guidance algorithms
have been tested assuming as initial condition the pose estimation coming from the Vi-
sual Based Navigation algorithms, introducing the error range presented in figure 6.2. In
this case, only the last 30[cm] of the 2-meter-long manoeuvre have been replicated, due
to the fact that, for the time being, the VBN are not programmed to take into account a
scaling of the manoeuvre during simulations.

Figure 6.6: Comparison between navigation estimation of the position of the virtual
spacecraft on-orbit (black points), DKE propagation of the trajectory (black line) and
MPC predictions of the docking state. Only the last 30[cm] of the trajectory have been
implemented adopting VBN algorithms integration, to work in scale 1:1.

The plot in figure 6.6 shows that the optimization strategy successfully handles Nav-
igation error, reaching the target positioned at the origin of the virtual LVLH reference
frame. The black line tracks the ideal manoeuvre, coming from the propagation of the
state based on the HCW equations, assuming as initial condition the pose estimation of
the internal sensors of the robotic arm. In contrast, Navigation algorithms introduce a
source of error when estimating the correspondent position of the TCP, deviating from
the black line, but the optimization block recovers the error and lets the virtual chaser
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Estimation error 1[m]

Lateral µ -0.2[mm]

Lateral 3σ 0.5[mm]

Range µ 0[cm]

Range 3σ 0[cm]

Yaw, pitch µ 0°

Yaw, pitch 3σ 4°

Roll µ 0°

Roll 3σ 0.2°

Table 6.2: Pose estimation error of ArUco markers in 3σ deviation; the values in the table
have been estimated by the Navigation area of the team work

to dock at the origin of the virtual LVLH reference frame.
The main error source is introduced when measuring the distance between the middle
point of the four ArUco markers regarded as the target and the basis of the robotic arm,
to translate the optimized manoeuvre from the virtual LVLH frame to the reference frame
of the basis of the cobot. In future, such error range will be decreased by adopting an
OptiTrack PrimeX 13 capturing system, equipped with cameras for motion tracking of
four spherical markers that will be distributed on the TCP of the robotic arm.

6.2 Active Set Method test campaign

In order to optimize fuel consumption on the chaser spacecraft and to reduce the error
between the force and torque values commanded to the actuators and the ones actually
obtained through thrust dispatching, the Control Allocation problem for the chaser has
been optimized as presented in Chapter 4, in the form of a QP. Once formulated, the
problem has been adopted to test the computation capabilities of the ASM developed
during this thesis, with the aim of integrating a control allocation block in the Simulink
structure that controls the robotic arm; however, due to time issues, the solver has been
only tested offline.
The CA problem presented in Chapter 4 has been reformulated in five different versions,
to compare the thrust dispatching performed by the ASM with the results of SOTB, a
professional solver. For each test case, 100 shots of F and 100 shots of T from a random
distribution have been fed to the ASM solver, to obtain the fi control efforts for each
one of the 16 cold-gas thrusters with which the chaser is equipped; the values of fi have
been then used to compute the actual F and T values that have been obtained by the
actuators, and the relative error has been computed.

Case 1: hard constraints on force and torque values

The first test case is constituted by a reformulation of problem (4.1), with hard constraints
on both the F and T values commanded to the actuators.

min
fi

1
2f

TRf (6.1)

s.t. Aeqfi = F

Aeqfi = T
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MIB ≤ fi ≤ Fmax

The boxplot in figure 6.7 presents the comparison between the computational time of

Figure 6.7: Statistics of computation times for the ASM compared with SOTB on an
Intel® Core™ i5 processor

the ASM with respect to SOTB, in terms of mean value (red cross) and 3σ (black lines):
it’s possible to appreciate how the first solver presents a lower computational time with
respect to SOTB according to the mean values of each solver (red cross), due to the
fact that the computations required by the ASM are less expansive with respect to an
IPM (the heavier operation executed by the ASM is the inversion of the KKT matrix
associated to the QP problem). In both cases, the execution time is compliant with real-
time implementations, making the developed solver suitable for future integrations in the
Simulink control loop of the robotic test bed.
Figure 6.8 and 6.9 show that for both the solvers the error in reconstructing the F and T
values is very low, due to the presence of the hard constraints on both force and torque.
The IPM presents a higher lever of accuracy, as it’s possible to notice from the mean
value and from the 3σ distribution, due to the lower tolerance level set when defining
the convergence criterion (10−15 for the IPM, 10−10 for the SOTB); this means that the
ASM shows almost the same level of accuracy of the IPM but converges in fewer iterations.

Case 2: absence of equality constraints

min
fi

1
2f

TRf + 1
2 (F −Aeqfi)

TQ(F −Aeqfi) +
1
2 (T −Aeqfi)

TG(T −Aeqfi) (6.2)

MIB ≤ fi ≤ Fmax



6.2. ACTIVE SET METHOD TEST CAMPAIGN 75

Figure 6.8: Statistics of the error distribution for the ASM compared with SOTB in Fx

Figure 6.10: Statistics of computation times for the ASM compared with SOTB on an
Intel® Core™ i5 processor

In this case, as it’s possible to notice from boxplots in figure 6.10, the computational
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Figure 6.9: Statistics of the error distribution for the ASM compared with SOTB in Tx

times of the ASM is confirmed to be lower that the IPM, always compliant with real time
applications. Figure 6.11 and 6.12 shows that the computed control effort for both the
solvers present a higher error with respect to the previous case, due to the fact that hard
constraints on magnitude of commanded F and T have been softened (has shown in the
cost function).
It’s also interesting to notice that in this case the two solvers present the same accuracy,
even if the tolerance set for the ASM and IPM is different, with the ASM that converges in
a fewer number of iterations with respect to the IPM but with the same level of accuracy.

Case 3, 4, 5: softened constraints

Test cases 3, 4 and 5 are constitued by variations of the QP presented below:

min
fi

1
2f

TRf + 1
2 (F −Aeqfi)

TQ(F −Aeqfi) +
1
2 (T −Aeqfi)

TG(T −Aeqfi) (6.3)

s.t. Aϕfi = 0

Aψfi = 0

MIB ≤ fi ≤ Fmax

Boxplots in figures 6.13, 6.14 and 6.15 confirm the considerations previously presented
for the cases of hard constraints on F and T and absence of constraints. In this cases,
the Hessian matrix associated to the QP resulted to be ill-conditioned most of the times,
but the SVD implemented in the solver guarantees a further degree of numerical stability,
leading in any case to a fast convergence in a finite number of iterations.
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Figure 6.11: Statistics of the error distribution for the ASM compared with SOTB in Fx

Case 5: hard constraints on F , softened constraints on T

Figure 6.18: Statistics of the error distribution for the ASM compared with SOTB in TX

Test case 5 combines both hard constraints on T and softened constraints on F to the
formulation presented for test cases 3 and 4; from figure 6.19 it’s possible to appreciate
leads to small reconstruction error for both the ASM and the IPM solver for what con-
cerns the T value. Figure 6.18 presents the reconstruction error on F , higher if compared
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Figure 6.12: Statistics of the error distribution for the ASM compared with SOTB in Ty

with torque reconstruction error but justified by the softening of the hard constraints on
force.
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Figure 6.13: Statistics of computation times for the ASM compared with SOTB

Figure 6.14: Statistics of the error distribution for the ASM compared with SOTB in Fx
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Figure 6.15: Statistics of the error distribution for the ASM compared with SOTB in Tz

Figure 6.16: Statistics of computation times for the ASM compared with SOTB
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Figure 6.17: Statistics of the error distribution for the ASM compared with SOTB in Fx
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Chapter 7

Conclusions and future work

7.1 Conclusions

This work aims at evaluating the online optimization strategy planned for a rendezvous
manoeuvre through the usage of MPC, starting from the analysis of the scenario and the
formulation of a convex optimization problem to the development of an HIL framework
capable of reproduce the 6 DOF motion of a chaser spacecraft that executes the trajec-
tory. The optimization of the Guidance of the vehicle has been handled only focusing
in the translational state problem, adopting a SENER Aeroespacial in-house developed
tool, SOTB, to handle the MPC control scheme powered by an IPM solver.
Once the Guidance problem has been formulated, the MPC logic has been translated into
a control loop developed in Matlab®/Simulink®/Python®, to execute the optimization
of the trajectory online with the usage of a robotic arm, regarding as target of the ma-
noeuvre the middle point between four ArUco markers, placed on a flat surface orthogonal
with respect to the basis reference frame of the robot. The control loop has been first
provided only with Guidance algorithms, while in a second moment a Navigation block
has been added, to simulate the visual sensors data exchange of the spacecraft in orbit,
recreating in the GNC Laboratory the illumination conditions to which the vehicle is
subject in space.
The HIL testings show the adaptability of the MPC to real-time implementations, op-
timizing the rendezvous manoeuvre online and preventing the robotic arm to fall into
singular configurations; additionally, the integration of Guidance and Navigation proved
to be successful, allowing an accurate tracking of the optimized trajectory in realistic il-
lumination conditions and taking into account the dynamics of the system under analysis
(chaser and target). The implementation of a SH strategy in the MPC shows a dynamic
approach to forecasting that adapts to changing conditions by updating the prediction
horizon, supported by an appropriate tuning of the optimization problem parameters and
simulation of the system dynamics.
In the context of the development of the HIL control loop, the integration of a Control Al-
location optimization strategy has been planted, starting from five different formulations
of the thrust dispatching problem as a QP, powered by an ASM based solver that has
been developed in Matlab® without recalling any pre-defined Matlab® function. The
ASM algorithm solution has been compared to the one provided by SOTB, revealing a
fast convergence to the global optimum when a warm starting of the active constraints is
provided, characteristic that results particularly useful when it comes to real-time imple-
mentations, due to the fact that the computations required at each iteration of the ASM
solver are cheaper with respect to the IPM (the most expansive one is the inversion of
the KKT matrix associated to the QP). Also, the ASM presents an accuracy level in in
the same range as SOTB when optimizing each one of the thrust dispatching test cases,
avoiding saturation of the thrusters and minimizing the number of actuators turned on.

83



84 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future work

The implementation of the framework presented in this work and the ASM offer various
starting points for further developments, some of them yet planted in correspondence of
the end of this first investigation phase.
The HIL testing facility has as final objective the capability of execute simulations of
in-orbit manoeuvres in an automatized way and in real-time; the robotic arm will be
upgraded with a processor integrated with the autocoded control loop, getting rid of the
communication protocol needed by the socket Matlab®/Python®/Simulink®, to evalu-
ate the computational performance of the algorithms developed. In the specific case of the
scenario under analysis, this objective is related to the formulation of a definite Guidance
optimization problem; for the time being, attitude is assumed to be fully controlled by a
PD, however a more realistic simulation of the GNC scenario will include the control and
optimization of the rotational configuration of the spacecraft, handling the nonlinearity
of the attitude problem in through Sequential Convex Programming (SCP) for example.
The scenario presented in this work regards a cooperative target, however further in-
vestigations will regard uncooperative scenarios, in which the target can’t provide any
information about its state, as it happens in the case of space debris. In this case, the
target will be simulated with a UR10e robotic arm, yet available in the GNC Labora-
tory of the URJC. The simulation facility will be integrated with a 4-meter-long rail to
overcome the limitation in the maximum extension of the robotic arm and progressively
increasing the scaling factor, to simulate the online optimization with a higher accuracy.
For what concerns the ASM, the algorithm will be reviewed in order to make it suitable for
the rapid accelerator mode in Simulink® and autocoding, without recalling pre-defined
Matlab® toolboxes/functions, to integrate it in the framework of more complete GNC
simulation environments and to plan real-time HIL simulations, investigating a wider
range of control schemes based on QPs, such as MPC or SQP.
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Appendix A

GNC Laboratory Equipment

A.1 UR3e robotic arm

The UR3e robotic arm is a collaborative robotic arm designed for tasks that require
precision and flexibility. It is known for its ease of use, quick setup, and safety features,
making it suitable for a wide range of applications, including assembly, packaging, machine
tending and more.

A.1.1 Technical Specifications

• Payload Capacity: The UR3e has a maximum payload capacity of 3 [kg] (6.6
pounds).

• DOF: The UR3e presents 6 DOF, which allows it to move in six different directions
and orientations, providing great flexibility in motion.

• Weight: The robot itself weights approximately 11 kilograms (24.3 pounds), mak-
ing it relatively lightweight for a robot of its capabilities.

• Speed: The UR3e is designed for precision and accuracy rather than for high speed
operations. It moves at a maximum speed of 1[m/s] (39.4 inches per second).

• Precision: It has a repeatability of ± 0.1[mm], which ensures precise and consistent
movements.

• Collaborative Features: The UR3e is designed to work safely alongside humans
without the need for safety cages. It is equipped with force/torque sensors in its
joints, enabling it to detect and respond to collisions, making it a collaborative
robot (cobot).

• Control System: The UR3e uses the Universal Robots’intuitive programming
system, which allows for easy programming by teaching the robot tasks manually
or using a graphical user interface. It also supports external programming interfaces.

• Mounting Options: The UR3e can be mounted in various orientations, including
floor, ceiling or tabletop (the case of this thesis), providing flexibility for different
workspaces setup.

• Communication: It offers various communication options, including Ethernet and
USB interfaces, to connect and control the robot from external devices or systems.

• Safety Features: The robot has built-in safety features like collision detection,
a TCP speed limit and adjustable force and torque limits to ensure safe operation
around humans.
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• Power Supply: The UR3e typically operates on a standard 110−230[V AC] power
source.

The robotic arm is accompanied by a control box that houses the robot’s control system
and provides the necessary power and communication interfaces.

Figure A.1: UR3e control box, picture taken from [41]

A.1.2 Technical Specifications

• Hardware: The control box contains the hardware required for the robot’s opera-
tion, including the CPU and memory.

• Power Supply: It includes a power supply unit, compatible with standard 110−
230[V AC] power sources.

• Communication Ports: It provides various communication options, including
Ethernet and USB ports, used to connect the robot to external devices, networks
or control systems, enabling remote operations and data exchange.

The PolyScope teach pendant is an accessory that accompanies the UR3e robotic
arm, providing a user-friendly interface for users to interact with the robot and execute
various tasks. It can be conncected to the robot’s control box via cable and includes
safety features such as an emergency stop button and password protection to prevent
unauthorized access to robot’s functions.

Figure A.2: UR3e teach pendant, picture taken from [41]
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Specifications

Payload 3.3[kg]

Reach 500[mm]

DOF 6 rotating joints

Programming Touchscreen with PolyScope graphical user interface

Footprint Diameter: 128[mm]

Materials Aluminium, Plastic, Steel

Weight included cable 11.2[kg]

Power Consumption Maximum Average 300[W]

Force Sensing, Tool Flange (Force) Range: 30.0[N]

Precision: 2.0[N]

Accuracy: 3.5[N]

Force Sensing, Tool Flange (Torque) Range: 10.0[Nm]

Precision: 0.1[Nm]

Accuracy: 0.1[Nm]

Pose Repeatability per ISO 9283 ± 0.03[mm]

Axis movement (Working range) Base: ± 360°
Shoulder:± 360°
Elbow: ± 360°
Wrist 1: ± 360°
Wrist 2: ± 360°
Wrist 3: Infinite

Axis movement (Maximum speed) Base: ± 180[°/s]
Shoulder:± 180[°/s]
Elbow: ± 180[°/s]
Wrist 1: ± 360[°/s]
Wrist 2: ± 360[°/s]
Wrist 3: ± 360[°/s]

Typical TCP speed 1[m/s]

Noise Less than 60[dB]

I/O Ports Digital in: 2

Digital out: 2

Analog in: 2

Table A.1: Technical details of the UR3e and of the correlated teach pendant
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