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Abstract

Advanced Driving Assistance Systems and Autonomous Vehicles could
significantly reduce road accidents that can be attributed to the driver in
more than the 90% of the cases. One of the biggest challenges in driving
automation is to ensure the system is safe before placing it on the road
since they can perform badly in certain situations such as system fault,
inclement weather conditions and complex driving environment, but also
cyber security comes to the attention when vehicles are automated. The
solution to achieve safety in the context of ADAS/AVs is testing the systems
to validate them, in particular driving tests are needed. It has been estimated
that vehicles must be driven for hundreds of million kilometers in order to
achieve the expected result for the certification process and it would take
tens of years. For this reason, virtual testing is the preferred solution by
the industry. Virtual testing reduces costs, improves repeatability and raises
the scale of the number of tests. The data-driven approach gives a medium
fidelity representation of the real world but high quantity of processed data
is needed. An important process is the data annotation that is mainly
done by hand for its reliability but is slower and more expensive than an
automated annotation. As a consequence, collecting and processing a large
amount of data needed for the validation is a costly process, both in terms
of time and money, therefore the trend is to concentrate on the critical
scenarios, but also to standardize databases in order to increase the exchange
of data across company and organization and in addition to automate
processes. Standardization of databases means data are available for more
users, accelerating the automotive development, testing and validation. The
aim of this thesis study is to report the process of developing a tool capable of
automatically generating standardized labels for an automotive raw dataset.



The research and developing processes have been done as part of an internship
in Concept Quality Reply. The developed tool is able to take as an input a
structured dataset, collected from the real world by a standardized sensor
setup. The dataset’s structure is compliant to the one developed for NuScenes
by Motional which is a multimodal large-scale dataset for autonomous
driving that is now leading the industry. In particular the data under
analysis are point clouds generated from a lidar sensor. The developed
system recognizes pedestrians and vehicles with a certain accuracy and
generating bounding boxes and labels. The 3D object detection process is
made through a convolutional neural network model that gives as an output
the labels with their confidence level. The pipeline ends with a conversion
process of the resulting labels into a standardized format. The standard
identified is OpenLabel, defined by ASAM (Association for Standardization
of Automation and Measuring Systems) that is the current de-facto standard
in the automotive industry. To permit the visualization of the labels, a
graphical user interface has been developed together with a web application
and an APIs collection, that make possible the communication of the user
with the tool hosted by a server and shapes the developed system as a
“Software as a Service” (SaaS).
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Introduction

Achieving a better driving experience is one of the main challenges the auto-
motive industry is facing in the last years. Taking into account the safety side,
from the technical report produced by the National Highway Traffic Safety
Administration (NHTSA), published in February 2015, it is clear that about
94% of the crashes are driver responsibility [1]. Also European researches,
such as the study published in Poland in February 2019 states that almost
the same percentage mentioned above of traffic accidents are due to human
causes [2]. From the point of view of the sustainability, ADAS/ADS/AVs
could realize a reduction on vehicles emissions by helping to perform a more
efficient way to drive e reduce fuel or electrical energy consumption, but also
improving avoidance of traffic congestion [3]. Autonomous driving functions
are very complex systems since they introduce a non-deterministic component
that combined with the critical operational design domain results in a very
challenging validation effort that aims to ensure functional safety and quality,
in order to obtain a failures free system, that does not cause damage to users
and environment. The industry is increasingly adopting the Data-Driven
approach in order to face the challenges represented by ADAS/AVs functions
developing and validation. This innovative and relatively recent method is
integrated from the decision making process, to the validation phase passing
through the design stage and it consists in learning directly from data and
finding paths that would be very difficult or even impossible to identify by
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Introduction

modelling systems that are characterized by non-linearities and uncertainties.
Data-Driven approach is widely accepted and it is currently in the spotlight
of researches and applications. On the other hand, Data-Driven method
also means the need of a large volume of data, requirement that in the
big-data era is always less difficult to be satisfied thanks to the increasing
quantity of sensors and devices that are able to collect information. The
objective that this document aims to face is improving data exchange in the
automotive industry, by automating and standardizing data-set annotation.
The purpose is to obtain labels from the automated annotation process that
can be integrated by as many as possible systems and be widely accepted by
the industry. Data standardization surely raises the quality of the validation
process and makes it faster and more horizontal, it also encourages the
definition of an industry benchmark for the validation process.
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Chapter 1

AD complexity and
industrial needs

1.1 General

1.1.1 Feature variety and expertise domain

The Joint Working Group between ISO and SAE, taken in 2018, released a
document called "Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles", last revised on April 2021,
that defines a standard for motor vehicle driving automation description. The
aim of this common effort is to unite global experts in driving automation
technology and safety for gathering together all their knowledge and expertise
in that field [4]. With the terms "vehicle driving automation systems" (from
now on referred to as "Driving Automation System") the document refers to
the systems that perform Dynamic Driving Tasks (DDT) and upon that it
has built an important classification of this kind of systems, based on which
and how many DDT are automated. The cited taxonomy have been fully
integrated in the ADS industry’s language and are listed below:
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1. Level 0: No Driving Automation;

2. Level 1: Driver Assistance

3. Level 2: Partial Driving Automation

4. Level 3: Conditional Driving Automation

5. Level 4: High Driving Automation

6. Level 5: Full Driving Automation

In particular, the assignment of a system to a class is performed accordingly
to the expected role the human user, the driving automation system and
other components or systems related to the vehicle are expected to play.
For this reason active safety systems (e.g. Automatic Emergency Braking
and Electronic Stability Control) and some driver assistance systems (e.g.
Lane Keeping Assistance) are not included in these definitions because they
represent a momentary intervention that does not change the human inter-
vention o substitute it in performing the DDT, while for example Adaptive
Cruise Control can be considered a Level 1 driving automation because it
actually replaces a DDT. The document also groups these technologies under
thirty-two definitions:

1. Active Safety Systems are systems that belongs to the vehicle and
have the aim to detect potential dangers to the vehicle, occupants and
road users and automatically intervene to avoid or mitigate impacts
by acting on vehicle subsystems such as suspension, brake, throttle
and others or alerting the driver but also performing vehicle system
adjustments.

2. Automated Driving Systems refers to Level 3, 4 and 5 driving
automation system that is composed by the hardware and the software.
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They are able to perform continuously the whole DDT also in the case
that they belong to a specific Operational Design Domain.

3. Dispatch in Driverless Operation means the management through
software of the tasks of ADS-equipped vehicles in driverless operations,
included the pick-up or drop-off of passengers or goods in a predefined
interval of time. The dispatch can involve multiple actors that perform
different operations. Therefore, to dispatch an ADS-equipped vehicle,
consists in place it into service in driverless operations by engaging the
Automated Driving Systems.

4. Driverless Operation Dispatching Entity takes care of the dispatch
of a vehicle that is equipped with ADS in driverless operations.

5. Driving Automation is the action performed by a system of hardware
and software to realize a part or all the Dynamic Driving Task in a
continuous manner.

6. Driving Automation System or Technology is used to refer at any
system able to perform from Level 1 to Level 5 driving automation and
so a setup of hardware and software that can execute a part or the whole
DDT continuously.

7. Driving Automation System Feature is a specific function given
to the Driving Automation System of any level, in the design phase,
that act at a certain level of driving automation and within a particular
Operational Design Domain. A DAS can have multiple features that
could be driver support features or ADS features. These feature can be
grouped as follows:

• Maneuver-Based Feature is a Driving Automation System feature
capable of performing lateral and/or longitudinal vehicle motion
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control actions to achieve a specific objective that is part of the
DDT fulfilled by the driver namely Level 1 and 2 driver support
features (e.g. parking maneuver) or the entire DDT with the related
Object and Event Detection and Response namely Level 3 and 4
Automated Driving Systems features. Some examples could be the
Level 1 (with driver support) or Level 2 (only driver supervision)
parking assistance feature but also Level 3 highway overtaking
assistance feature.

• Sub-Trip Feature indicate the features that help the driver on
performing a part of the trip but require the human intervention
outside the feature’s ODD, An example of Sub-Trip Feature is Level
1 Adaptive Cruise Control feature that helps the driver in preserving
the distance between him and the front vehicle in its lane at sustained
speed.

• Full-Trip Feature, instead, can maneuver the vehicle from the
beginning to the end of the trip for example a Level 5 dual-mode
vehicle able to pick-up passengers and bring them to the destination.

8. Driver Support Driving Automation System Feature is used to
describe Level 1 and Level 2 Driving Automation System features.

9. Driverless operation of an ADS-equipped vehicle is defined as
an operation performed by a ADS-equipped vehicle on the road with or
without passengers, in the first case they are not driving.

10. Dynamic Driving Task consists of operations, performed in real-time,
needed to operate a vehicle in on-road traffic. They do not include
the strategic functions for example what concerns the trip planning.
As specified in the ISO/SAE document, there have been defined some
sub-task, cited below:
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• Lateral vehicle motion control via steering (operational).

• Longitudinal vehicle motion control via acceleration and deceleration
(operational).

• Monitoring the driving environment via object and event detection,
recognition, classification, and response preparation (operational
and tactical).

• Object and event response execution (operational and tactical).

• Maneuver planning (tactical).

• Enhancing conspicuity via lighting, sounding the horn, signaling,
gesturing, etc. (tactical).

11. Dynamic Driving Task Fallback is the response by the user or the
ADS to achieve a minimal risk condition or in the case of the user also
directly to perform the DDT after exiting from the ODD or the failure
of a system important to perform the DDT.

12. Failure Mitigation Strategy is a vehicle function that can automat-
ically stop the vehicle under the ADS action thanks to a controlled
operation, in two cases:

• When a Level 3 ADS requires a user intervention but there is a
prolonged failure to perform the fallback.

• When a system failure or an extreme external event happens and it
make the ADS incapable of controlling vehicle motion. As a result,
the ADS cannot execute the fallback to achieve a minimal risk state.

13. Fleet Operations Functions are involved in the management of a
fleet of vehicles equipped with ADS in driverless operations.
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14. Lateral Vehicle Motion Control is a DDT subtask that indicate
all the operations required for the continuous control of the y-axis
component of the vehicle motion in real-time.

15. Longitudinal Vehicle Motion Control is the counterpart of the
previous subtask for the x-axis component of the motion.

16. Minimal Risk Condition is a condition for which the vehicle is stopped
and stable. Condition realized by user or ADS to reduce the risk of a
crash when it is not possible (or not recommended) to continue the trip.

17. DDT Performance-Relevant System Failure is a malfunction of
the vehicle system or the ADS that causes the ADS to be unable to
perform part or the entire DDT.

18. Monitor is a term used to indicate the action of sensing and processing
the data used to operate the vehicle.

19. Object and Event Detection and Response, for their importance
in this paper, their description is reported literally as written in the
standard definition "The subtasks of the DDT that include monitoring
the driving environment (detecting, recognizing, and classifying objects
and events and preparing to respond as needed) and executing an
appropriate response to such objects and events (i.e., as needed to
complete the DDT and/or DDT fallback)".

20. Operate a motor vehicle describes the actions performed by the user
(supported or not by ADS) to accomplish the whole DDT.

21. Operational Design Domain is the entire set of conditions defined in
the design phase of an ADS or feature necessary for them to operate.
These conditions can include for example environmental restrictions or
traffic characteristics.
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22. Receptivity of the user

23. Remote Assistance is referred to a not present human giving informa-
tion or advice to a vehicle when the equipped ADS cannot handle the
specific situation in driverless operation.

24. Remote Driving of a non present driver that performs the DDT or its
fallback in real-time, such as braking or steering.

25. Request to Intervene made by a Level 3 ADS to the user of resuming
manual operation of the vehicle or rich a minimal risk condition, in case
of the vehicle cannot be operated.

26. Routine/Normal ADS Operation is the action performed by the
ADS within its ODD while no DDT performance-relevant system failure
occurs.

27. Supervise Driving Automation System Performance is performed
by the driver during the action of Level 1 or 2 features while the user
is operating the vehicle as consequence of the system’s wrong behavior
end eventually complete the DDT.

28. Sustained Operation of a Vehicle means to perform part or the entire
DDT both during external events and in the absence of external events,
also giving feedback to external events and ensuring the continuous
execution of the DDT.

29. Trip refers to the whole path of the vehicle that travel from the origin
to the destination.

30. Usage Specification defines a specific level of driving automation
within its ODD.

31. Human User.
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32. Motor Vehicle.
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1.1.2 Safety: need for accuracy

The context of Advanced Driver Assistance Systems and Autonomous Vehi-
cles is very complex, in particular a lot of attentions are reasonably given
to achieving safety conditions. With the emergence of driver assist and
automated driving systems, functional safety has grown its importance in
the development of safety-critical automotive systems. To achieve functional
safety, the automotive industry has referred to the "ISO 26262: Functional
Safety – Road Vehicles" since its first release in 2011. In 2018, it has been
published the second edition. In the latest release, the standard has been
extended to all road vehicles such as motorcycles, trucks, buses, trailers
and semi-trailers defining requirements for their safety life-cycle. The terms
"safety-critical automotive systems" refer to systems that can cause problems
related to the safety while they are not operating as expected or as designed,
for this reason it is needed to follow specific rules in a meticulous manner
for the whole development phase. In particular the standard focuses in the
sector of electrical/electronic systems within road vehicles. The safety goals
are defined during the concept phase with the aim of facing the hazards
caused by malfunctioning behavior of E/E systems and identified through
the hazard and risk assessment process. Those goals are used to defines
requirements for the design phase that consists in development of system,
hardware and software. The definition of safety - in this document - is the
absence of unreasonable risk, below some definitions as reported in [5]:

• Risk: "Combination of the probability of occurrence of harm and the
severity of that harm."

• Unreasonable Risk: "Risk judged to be unacceptable in a certain
context according to valid societal, moral concepts."

• Severity: "Estimate of the extent of harm to one or more individuals
that can occur in a potentially hazardous situation."

11



AD complexity and industrial needs

• Harm: "Physical injury or damage to the health of persons."

• Exposure: "state of being in an operational situation that can be if
coincident with the failure mode under analysis."

• Controllability: "Ability to avoid a specified harm or damage through
the timely reactions of the persons involved, possibly with support external
measures."

• Safety Goal: are the highest level safety requirements produced by the
processes of hazard analysis and risk assessment.

• Safe state: is the way of functioning without an unreasonable level of
risk of an item after a failure.

• Safety Mechanism: is the technical approach to identify and address
faults and failures, either by preventing them or managing them, in
order to uphold the intended functionality or ensure a safe state.

• Work Product: is the documentation that is produced in order to
achieve a requirement defined by ISO 26262.

• Confirmation Review: is a verification that a work product has
sufficiently reached the functional safety.

• Safety Case: a well-structured document, proved by the outcome of
the work product, that states a system can be safely operated within a
specific context.

Once the potential hazards are identified by analyzing the system, they
are classified through their level of severity, probability of exposure and
controllability. The classification lead to the assignment of an Automotive
Safety Integrity Level, both to the potential hazards and to the safety goals
while the safety requirements that derive from the goals inherit the same
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ASIL. During the situation analysis and hazard identification phase the
system is observed in the operating modes that are known for triggering
the potential hazards if a malfunctioning behavior happen, the effects of
this procedure are evaluated and documented. The next step is the Hazard
Classification that, as said, is based on the estimation of severity, probability
of exposure and controllability. The standard define four levels of severity
(S), from S0 when no injuries are caused to S3 when the injuries are fatal,
while for exposure (E) it goes from E0 when it is an very unusual situation
to E4 for a scenario with a high probability to happen and controllability
(C) is categorized from C0 for a simply controllable event and C3 for totally
uncontrollable. Below Table 1.1 representing all the ASIL Determination.

C1 C2 C3

S1

E1
E2
E3
E4

QM
QM
QM
QM

QM
QM
QM
A

QM
QM
A
B

S2

E1
E2
E3
E4

QM
QM
QM
A

QM
QM
A
B

QM
A
B
C

S3

E1
E2
E3
E4

QM
QM
A
B

QM
A
B
C

A
B
C
D

Table 1.1: ASIL Determination (Source [5]).

ASILs goes from the lowest safety integrity level "A" to the highest "D".
In addition one more class "QM" i.e. Quality Management, is defined for the
cases in which there is no requirement from the ISO 26262. For what concerns
the safety goal formulation the guide lines state that to each hazardous
event must correspond at least a safety goal. Safety goals inherit the ASIL
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from the hazardous event. Two or more hazardous events can be related to
the same safety goal and the assigned ASIL is the highest one. Safety goals are
not technical solutions but functional objectives to be achieved. From safety
goals are derived the "Functional safety requirements" that inherit the ASIL.
The next phase is the product development at the system level that begin
with the definition of the Technical Safety Concept, that is where Technical
Safety Requirements come from, before being allocated to the system elements
i.e. hardware and software. These kind of concepts and requirements are
more detailed version, from the point of view of the technical aspects such
as the specific operations to detect faults and control or mitigate failures.
When the technical safety requirements are available, product development
at the hardware and software level are performed separately while identifying
the required coordination between hardware and software. At this point
systems and items can be integrated and verified. The last step is the safety
validation, that is the process of ensuring the safety concepts previously
defined are compliant with the functional safety of the item and proving it
reached the safety goals identified before. The validation process involves test
procedures for each of the safety goals, characterized by a pass/fail criterion.

Figure 1.1: Product development at the System Level (Source [5]).
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1.2 Software development

1.2.1 Data driven approach

Toward agile methodology

Over the past twenty years, the software development industry, gradually
increased the adoption of the agile approach until it became the most trusted
one. The term agile indicate conceptual guidelines to reduce the overhead in
the software development process and to face changes while saving the project
and keeping small the amount of work to be done due to the variations.
The aim is to reach the deploy phase through iterative and incremental
interactions for the whole project’s life-cycle. Customer satisfaction is the
priority but also a flexible process and an improved collaboration among all
the actors. According to [6], the entire idea is based on four values:

• Individuals and interactions over processes and tool: communi-
cation, interactions and the humans as developer are the real key factor
of the project and not the instruments nor the processes.

• Working software over comprehensive documentation: since
producing an up-to-date and exhaustive documentation during the
development process requires a huge amount of time and resources due
to the big number of changes that are performed, the documentation
is realized once the software is in its final version and it meets all
the requirements, saving the synchronization time; documentation of
software that is not yet meeting the demands, not only it is time
consuming but also ambiguous and could lead to misunderstanding.

• Customer collaboration over contract negotiation: the customer
is involved in the whole development process in order to catch the
feedback at every stage and meet the real customer requests and not the
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ones defined in contracts, that are still needed but often not sufficient
to be sure of how the final result should look like.

• Responding to change over following a plan: following a predefined
path is not a priority for agile because during a developing process both
the developer and the customer will gain a better understanding of the
project as well as more knowledge and changes will be made in relation
to that since the objective is always the customer satisfaction.

Also twelve principle are given in order to guide the agile developing process
implementation:

1. The trust between customer and developers is built through "early
and continuous delivery of valuable software" since customers will be
satisfied by the product at each stage because they are shaping it with
their feedback that are coming from an improved understanding and
the developers team will perfectly know, step by step, which are the
requirements reducing the lack of understanding.

2. Changes are not feared but embraced as they are the reflection of
turbulence in business and in technology and they can help not to being
stuck at old necessities, but at the same time it is more effective to
facilitate the changes than attempting to prevent it.

3. the time between working software delivery should go from a couple of
week to a couple of month (the less the better), delivery doesn’t mean
release. The first one is for the internal use while the second one refers
to the production phase.

4. Reducing distances between business people and developers helps clarify
doubts and fills the gap between the set of functionalities that people
want to buy and the different way the software development works.
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5. Team’s feeling reflects how the job will be done, so the project will benefit
of giving trust and make developers feel comfortable and motivated.

6. Direct human communication is more efficient and effective than written
plans.

7. Divide the product into small pieces to be delivered is a better progress
measurement method.

8. The developing process should maintain a certain rhythm, delivering
small high quality pieces and not aim to the ultimate error free delivery.

9. High quality code is a priority, even in presence of necessary refactoring.

10. The software should be as simple as possible to reduce the amount of
work to be done while fulfilling the customer requirements.

11. Agile teams use their knowledge to self-organize themselves and to
optimize their structure.

12. On a regular base the team should work on its behavior to improve
effectiveness.

Figure 1.2: Traditional agile methodology cost-change curve (from [7]).
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Before the advent of agile methodologies, one of the most popular ap-
proaches since 1970 was the waterfall model that was inherited from the
hardware manufacture and construction strategies. As the name suggests,
the philosophy of the model is to execute task in a sequential way, the
succession of phases has only one direction [8]. The project has the follow-
ing phases: requirement specification, conception, analysis, design, coding,
testing and debugging, installation and finally, maintenance. The flow starts
with the first phase and does not enter the next one until the phase is totally
completed. This kind of approach consumes a lot of time because every
problem that could affect the project in the future is solved in the conceptual
phase, therefore every requirement must be accomplished, every difficulty
is cleared and no changes can be made in the next phases. In addition, an

Figure 1.3: Waterfall model.

extensive documentation is needed in order to link each stage because teams
do not communicate since they are often separated also in terms of time as
well as the phases, it results in a very rigid structure, not able to embrace
changes nor to learn from evolving project. In comparison with the agile
approach, the Waterfall one in less efficient because the quality of the final
software has more probability to be low since new information give a smaller
contribute. Waterfall would be suitable in that case where the requirements
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are very clear and bug are very predictable because it could reduce costs but
that level of predictability is very rare and it also need a longer deadline.
From the point of view of the validation, also testing is a procedure that
can be performed in a agile compliant manner [8]. Agile testing consists in
testing iteratively the new software component in parallel to the regression
tests. The whole team become composed by testers because of how dynamic
this task is. Testers must be ready to change test suits in order to validate
all new deliveries, they have to adapt themselves to the rapid development
cycles and assume the point of view of the customer. Involving testers in the
project some phases before allow them to give earlier the necessary feedback,
useful for the development that means less time and more quality for the
software. For the Waterfall method a similar approach can be found in one
of its extensions that is the V-Model. This model implements a test design
phase parallel to each stage, in such a way testing is part of the project for
the entire software development life-cycle.

Figure 1.4: V-Model.
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In the last years, many agile methods have been ideated and below are
listed and shortly described some of them accordingly to [9]:

• Feature Driven Development (FDD) method, thought for large
project, consists in five short incremental iterations: model development
based on the requirements, features’ list creation with the customer help,
a high level plan based on the features’ list is prepared to schedule each
feature with its priority, features are finally designed and built, the life
cycle begin again for another feature following the plan. It provide a
high number of deliveries and accepts changes but there are no guidelines
about requirement handling and it requires expert team, not to mention
the lack of attention for the project problems.

• Test Driven Development (TDD) method is based on build a
small automated testing programs from the requirements and then write
the code that can pass that test. Some test will be failed and so the
next step is to solve the problems that cause the test to fail. In this
step performances are not taken into account but lately the software
will be refined and stress or performance tests will be done. When the
code will pass all the test it will satisfy the requirements and changes
can be made but it must still pass the tests. Errors are found early in
the process and therefore are easier to be solved, software’s quality is
improved but developers must have also tester’s skills. TDD can be time
consuming when repeated failures happened and poor documentation
for maintenance is produced by this method.

• Dynamic System Development Method (DSDM), uses Rapid Ap-
plication Development (RAD) and it is an incremental method where the
amount of functionality is decided based on time and resources available
instead of the opposite. It passes through the feasibility and business
study phases before analyzing the model by producing prototypes that
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permit to define the subjects, the timing and the methodologies of
development. Once the software is designed and coded it is published
and tested directly by the users that will give feedback used to enhance
the system iteratively. When the software is ready it is released with
training sessions and user’s manuals. DSDM follows many of the Agile
principles and is a very rapid software development but it needs many
roles that make the administration of the project difficult, it does not
take into account project criticality and the team size can result in
issues.

• Extreme programming XP method includes six phases: in the first
one, the exploration phase, in which user stories are used to identify
requirements and features, the team get introduced to the future working
environment and a sample prototype of the system is built in order to
better understand the future system; The planning phase consists in
scheduling, prioritizing and estimating future; in the Iterations to Release
phase, iterations are done from the first overall system architecture to
the production system, passing through the testing directly developed
by the customer and executed at the end of each phase; during the
Productionizing phase performances are tested one last time and the
system is released to the customer but it must be kept running while
new iterations are made; The Maintenance phase may require to add
people to the team for the customer support; the last phase is the Death
one, where no more changes are needed since there are no more user
stories but also when going on with the development is too expensive.

• SCRUM method is the most popular one due to its simplicity and
to the fact that it concentrates more on the management issues rather
than on the technical ones that makes it applicable to many fields.
Firstly objectives, tools and resources are identified, after that it passes
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through a sprint phase, where iterations are done thanks to sprint cycles
with fixed duration and each time an incremental value is given to the
system with the same stages that goes from the sprint planning, where
requirements are analyzed, to the delivery one after the design phase
and the sprint review. The project is closed when objectives are reached
and the documentation is ready. This kind of approach leads to divide
the whole software in small components that can be easy managed and
understood, improving the shareability among the teams and therefore
also the communication that takes place during the frequent scheduled
meetings. Also continuous testing is implemented since achieved goals
can be self assessed and productivity increases while changes are not
considering before the end of the sprint and the teams does not get
distracted during the completion of current functionality. However since
responsibilities are not well defined some violation can occur as well as
the lack of technical guidelines can introduce some complications.

Surely, Big Data revolution characterized the last decade as discussed in
[10], in fact the amount of collected data is exponentially increasing due
to the growing number and diffusion of devices capable of collecting them
(e.g. IoT) as well as the sharing channels, storage capacity and applications.
The Big Data era led to the emergence of a relatively new approach to the
ASD, the Data-Driven one. Industry started to experiment the use of data in
decision making, since if quality of data and processing techniques, but also
the right interpretation of them can result in better choices. An important
step that leading-edge firms have done is to perform customer experiments
in order to collect data on new products instead of passively make use of
old data, we can define it a "test and learn" strategy. In [11] they provided
evidence that Data-Driven Decision Making (DDDM) can strongly help to
improve productivity, return on assets, return on equity and market value,
that relates DDDM to firms performance.
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Development

The development of ADAS and ADS functions is a very challenging task
since these systems must interact with real world traffic scenario that is a
very complex environment in addition to the serious safety issues that the
user have to face. Vehicles have a highly nonlinear dynamics, especially in
dangerous situations that may occur due to inclement weather conditions,
high speed etc., that makes these systems very difficult to be controlled. From
[12] emerges that the classical approach is to perform a model-based control
analysis as well as synthesis techniques such as linear robust and optimal
control, Nonlinear Parameter Varying (NLPV), Model Predictive Control
(MPC), polynomial or Lyapunov control methods. However identifying and
modelling nonlinearities and uncertainties - introduced also by the numerous
external sources - is a very challenging task, for this reason the data-driven
approach i.e. machine learning methods, in particular deep neural network, is
growing in popularity to accomplish the perception and scene interpretation
tasks.

Figure 1.5: "Data-driven development for developing autonomous vehicles
leverages a data loop. This consists of data collection on the road, high-
bandwidth data ingestion in a data center, analysis of data for relevant traffic
situations, and labeling for AI training and for generation of ground truth in
the data replay testing." (Source [13]).

Machine learning is used to automatically detect patterns in data collected
from the real world. There are two types of machine learning methods:
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Supervised and unsupervised learning. Supervised Learning uses methods
such as Linear Regression, Bayes Theorem, Gaussian distributions, Euclidean
dince etc. in order to extract a mathematical model from a labelled data set
given as an input in the training phase. Naïve Bayes classifiers, k-Nearest
Neighbours, Support Vector Machines and Artificial Neural Networks are
just some of the most used supervised learning methods. Unsupervised
learning is used to classify unlabelled data through a "trial and error"
procedure that divides the data set into homogeneous groups, or clustering,
and it is applied in data mining and market stocks analysis. The main
models are Maximum Likelihood, Maximum a Posteriori, K-means, mixture
and hierarchical models. One of the main challenges of machine learning is
the large volume of data needed. As explained in [14] amount, size and scale
of data are crucial parameters to be accounted. For machine learning size of
data can be expressed either vertically by the number of records and samples
in a data set, and horizontally by the number of features or attributes that
are included. Volume is about the data typology, since quantity of data may
compete with complexity of data, a smaller data set could be comparable
with a bigger one but composed by simpler data. Naturally, the scale of
the data introduces computational challenges because computational time
will increase exponentially with the size of the data set. For example SVM
has a training time complexity of O(m3) and space complexity of O(m2) or
logistic regression O(mn2 + n3) where m is the number of training samples
and n the number of features. These algorithms are very sensitive to the
imbalance of classes occurrence probabilities, in particular as data sets grows
larger, uniformity of data distribution across all classes goes reducing itself.
Also dimensionality, i.g. the number of features or attributes, represents a
challenging issue since as dimensionality grows, the performance and accuracy
of the model decreases, because of the similarity-based reasoning on which
many of these algorithms rely on in parallel to the time complexity of many
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of them. These volume issues lead to lose the assumption of holding all the
processing data in memory or in a single file on the disk and most popular
solution is parallel execution on a large number of nodes. Another extremely
time consuming task in the field of ML is the feature selection based on
their relevance, it can also reduce dimensionality and hence time but become
challenging for high dimensions due to spurious correlations and incidental
endogeneity that is the correlation of the variable that explains variations in
the response variable. Furthermore non-linearity of the system the algorithm
is learning from, negatively affects model such as neural networks and logistic
regression since even the correlation coefficient loses its meaning. Linearity
is often exploited through graphical techniques but with large cloud of
points, observation of relationships comes out to be more complicated. The
learning process passes through the analysis of data to generate a prediction
and therefore this necessarily introduces a generalization error, that can be
divided in two components: variance and bias 1.6. Variance measures how
consistent is the learner in predicting random things (overfitting) while bias
is the tendency of the learner to learn the wrong thing (underfitting). A point
of optima should be found in order to produce a good model. Regularization
techniques are used to improve generalization and reduce overfitting but
on the other hand, approaches such as cross-validation are needed in order
to fit the model on unseen data. A less impactful but still important ML
challenge, is the variety of the data set adopted for the training process, that
means its sources, what the data represents, their semantic interpretation,
the structural data set variation, data type and content. Other aspects of
data variety is physical data location, as previously explained, as well as
its syntactic and semantic heterogeneity not to mention that data are often
dirty and noisy. After discussed the quality of data problems are not over
because they need to be produced and analyzed with a high rate, it means
that in some cases collect a huge amount of data is very complex, expensive
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Figure 1.6: bias-variance trade-off (Source).

and requires time but even if availability is sidelined just for a moment, train
again the model is a slow, costly and complex task. Following this path
is easy to arrive at data veracity, another huge challenge for the industry.
Veracity refers to the quality of the data for its provenance, i.e. how data
was collected, from where the data is taken and how it will be analyzed, in
this context data sources become a central topic. Knowing the source of data
means also knowing the source of processing error, identifying invalid data
thanks to the knowledge of contextual information. Thus, must be taken
into account the data uncertainty introduced by the gathering process and
procedures. For example some method can rely only upon subjective criteria,
that makes very difficult for the learner to find a path. Such a subjectivity
can influence also data processing resulting, for example inaccurate labels
are very dangerous for these models because from their point of view there
is no difference between the wrong image and an unclear one.
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Validation

Data driven approach, as seen, is revolutionizing the world of decision making
and management, it has been also a disruptive news for software development
introducing Artificial Intelligence in developing functions and it has its huge
effect also in validation processes. Ensuring safety of ADAS and AVs is one of
the most challenging automotive industry’s objectives of our time. As stated
in [15], software testing, very often turns to be a bug hunt instead of an entire
and well performed quality ensuring process. When the objective is deploying
a safe autonomous vehicles at scale, the safety assessment must be a more
methodical approach. Dealing with autonomous driving functions means
encountering a unique testing challenge that the ISO 26262 tries to face with
a V process that establishes a structured framework that connects various
types of testing to specific design or requirement documents. According to the
standard, five major challenge areas have been found for what concerns the
testing process, which are: driver out of the loop, complex requirements, non-
deterministic algorithms, inductive learning algorithms, and fail-operational
systems. To this day autonomous driving systems are considered safe when
they are designed and validated within the ISO 26262, i.e. must be shown
that these system may conform or map to the standard. The first concept
that have to be taken into account is the infeasibility of complete testing and
vehicle-level testing is not enough to achieve an ensured safety. According to
[16], in order to demonstrate that failure rate of Autonomous Vehicles is lower
than some benchmark, modelling the problem as a binomial distribution, the
number of miles AVs must be driven n is given by:

C = 1 − Rn → n = ln(1 − C)
ln(R) (1.1)

where R is the reliability, that can be also expressed as R = 1 − F where
F is the per-mile failure rate of a vehicle and C is the desired confidence.
For example, in order to have 1.09 fatalities per 100 million miles (R =
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99.9999989%) with a C = 95% confidence level the vehicle should be driven
on the road for 275 million failure-free miles, if the task is split among
one hundred vehicles, that are driven for 24 hours a day, 365 days at an
average speed of 25 miles per hour, it would take about 12.5 years. But if it
is necessary to estimate the distance to obtain a failure rate with a specific
degree of precision things become even more costly in terms of miles. In fact,
it must be taken into account the real autonomous failure rate that is the
number of failure that occur for a given distance driven with its probability,
in [16], a normal approximation to the Poisson distribution have been used to
calculate such a number. With the same data previously used but estimating
the fatality rate of the fleet to be within 20% of the assumed rate using a 95%
CI, it gives 8.8 billion miles that have to be driven, it would take 400 years
in the conditions of previous example. The paper also includes a calculation
where the concept of "power" is added, the power of the test is the probability
that the test will reject the tested hypothesis when a specific alternative
hypothesis is true. The calculation are made with a power of 80% and the
result is that in order to demonstrate failure rate of AVs is 20% better than
the human driver fatality rate, they have to be driven for more than 11 billion
miles, that means 518 years. An interesting observation is that Advanced
Driver Assistance Systems can still rely upon the driver to over-ride the
software function that is faulting. For highest automation level the driver
cannot take any corrective action and there is a lack if controllability, that is
a popular automotive safety arguments for low-integrity devices, that means
they have to be designed to a higher Automotive Safety Integrity Level.
Potentially high ASIL can be handled through keeping severity and exposure
low while controllability is set to C3 but there is also another approach
that consists in designing a redundant monitor/actuator system. In this
architecture the primary function is performed by the actuator while the
monitor has a behavior validation role, shutting the entire function down
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when detecting actuator’s misbehavior. If it is done properly, the actuator
can be designed to a low ASIL when the monitor has a sufficiently high ASIL,
requirements also take care of detecting latent faults in the monitor that
could cause it to fail in detecting an actuator fault. The action of the monitor
could cause a loss of the actuator function and in the case of operational
fail it is a huge problem, for this reason it is required more redundancy
as well as design diversity because same design leads to the same failure
across primary and backup system, which become a systematic fault. The
absence of the driver in handling unpredictable situations that can occur in
a very complex scenario as the road traffic leave to the autonomous system
the responsibilities of reacting to exceptions such as bad weather, traffic
rule violations, local drive conventions, animal hazards and many more.
High quantity and many different type of these exception make classical
requirements impossible for the use case. A solution is to plan a phased
expansion of the requirement and limit them to precise operational concepts,
the latter can be scaled in many direction for example:

• Limitations in road access such as urban street, highways, rural roads,
suburbs, HOV lanes, closed campuses, etc.

• Visibility conditions e.g. : day, night, fog, haze, smoke, rain, snow, etc.

• The interactions with the external environment like infrastructure sup-
port, pre-mapped roads, convoying with human-driven cars.

• for what may concern speed it is know that reducing speed can decrease
the damage caused by failures and larger recovery margins.

Obviously many combinations of these degrees of freedom can be made in
order to reduce the complexity of requirements. In the next phases the
operational scenario can be extended adding degrees of freedom. Another
huge challenge in validating Autonomous Vehicles comes from the fact that
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in this field some technologies are inherently statistical for their nature,
means that the responses have to be taken with their probability (when it is
available) therefore they are non-deterministic and so non-repeatable, some
vehicle-level test could give a different outcome in each attempts of executing
the same test case. For example, this is the case of probabilistic roadmap
planners or perception algorithms. Some sources of non-determinism are the
modeling geometry of surroundings through sensors acquisitions or extraction
of labels from that data in order to perform the object detection, for example
shadows and reflective surfaces in the case of vision system or the tradeoff
between false negatives and false positives that any classification process must
face. It implicates that in the testing phase, the results of such algorithms
have to be taken with a statistical approach. One of the main consequences
of non-determinism in testing is that it become very difficult to reach a
specific edge-case situation since the system under test could require a very
specific input sequence from the world in order to trigger such edge-case,
small changes of input can cause a very different response each time. A
problematic testing situation, for example, is to test the behavior of the
worst choice between two roadways but the system would never choose the
most unattractive one and it must be manually forced to do such choice.
This leads to an even more difficult testing scenario which validate the
vehicle’s ability to consistently choose the better of two equally bad paths
without vacillating. Also stating the correctness of the test result for a
stochastic system, is not a simple task due to the presence of more than
one correct behavior, moreover, there could be no certainty that a passed
test will always success, in fact validating probabilistic systems often means
make sure that the statistical characteristics of the behavior are accurately
specified, but it requires a large number of tests. Some of the solutions to
the cited issues in validating high automation level systems are to target
the tests on edge cases and specific data-driven scenarios but also replace or
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partially replace physical testing with virtual testing. As explained in [17]
Scenario-based testing and virtual testing can bring many advantages such
as tests repeatability across different combinations of autonomous systems,
the ability of scaling up the amount of tests, a safer environment for the
validation and shrinking the costs that arise from the validation process.
When the process is executed with the system in a simulated environment
it is referred to as X-in-the-loop. The latter is a very recent approach and
still has its challenges, first of all the huge amount of data needed in order
to create the simulation environments and to structure the training, testing
and validation data sets. In the previously discussed context where a lot
of data are produced and consumed, they must be consistently exchanged
as well as the certification processes must be scalable and repeatable not
only in the same organization but also across different stakeholders, in order
to permit also a comparison between certifications from different subjects
due to requirements and results that can be shared across the industry. A
standardized data structure means it can be better processed, analyzed,
transferred and stored.
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The Standard

2.1 ASAM: The Organization

ASAM e.V. (Association for Standardization of Automation and Measuring
Systems) is an organization that was born in 1998 from the previous project
"ASAM " by AUDI, BMW, Daimler-Benz, Porsche and Volkswagen gathered
in a cooperative effort to promote the standardization in the automotive
industry, trying to reverse the direction of the standardization process in
fact, until that moment, OEMs were developing standards in a unilateral
manner and then imposing them to the suppliers. The initiative was taken
because in the area of measurement and testing for vehicle development, the
founders identified as a source of costs that could be optimized, the lack of
interconnectivity and exchange of data due to the presence of incompatible
interfaces and data formats. The proposed solution consisted in including
the suppliers in the standard developing process from the beginning as equal
partners, in such a way also their technological know-how was added to the
project improving standards feasibility and cost-efficiency of the products.
Today ASAM e.V. is a no-profit association that encourages and gives its
contributes to the standardization of tool chains in automotive development
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and testing, it distributes the owned standards, developed with the help of
experts who are its members, in fact, standards are result of the stakeholders
collaboration which are OEMs, suppliers, tool vendors, service providers and
research institutes. Common challenges are identified in a wide range of use
cases in automotive development, test and validation, then members try to
find a solution all together. The organization respects the EU competition
law by defining no product or taking no business decisions, there are no
relations with the regulatory framework and everyone can download or
purchase the standards. The process of standardization takes place on a
neutral platform where members can cooperate in a non-competitive manner.
ASAM e.V. can count on more than 400 members companies worldwide that
are OEMs such as AUDI AG, BMW AG, VolksWagen AG, PSA Group etc.
or tool vendors such as Amazon, MathWorks, National Instruments, Vector
or academics such as Politectnico di Torino, Research Institute of Sweden,
Shangai Artificial Intelligence Innovation Center and so on. These members
provide experts that make possible the standardization through the exchange
of technical ideas [18].
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2.2 The ASAM Domains

The ASAM standards cover seven domains of the automotive sector and they
are categorized within the domain each standard belongs:

1. Measurement & Calibration: inside this class there are the standards
for working with ECU variables and parameters that includes read-write
access to the data in ECU memory, meta-description of the data, storing
the data in files and describing the Calibration process. The standards
are: ARTI, CDF, CMP, CPX, HMS, MCD-1 CCP, MCD-1 POD, MCD-1
XCP, MCD-2 CERP, MCD-2 MC and MDF.

2. Diagnostics: contains the standards for describing and testing the
diagnostic subsystems of devices, which are MCD-2 D, MCD-3 D and
SOVD.

3. ECU Networks: this domain includes the standards for describing
and testing ECU networks, in particular ASAM MCD-2 NET.

4. Software Development: it groups all the standards that help the ECU
software development and the development of functional safety features
such as the formal description and documentation of ECU software or
the description of change requests, but also blocks sets for model-based
engineering and a notation for graphically represent the interactions
between safety design and system architecture. The standards in this
domain are: CC, FSX, ISSUE, LXF, MBFS, MDX and SCDL.

5. Test Automation: all the standards that refer to the test systems
such as in APIs for programmatic access to sensor and actuator devices,
Measurement and Calibration systems, HIL systems, DoE systems and
formats for test descriptions, are included in this domain. ASAM
standards for test systems are ACI, ASAP 3, ATX, GDI, iLinkRT,
MCD-3 MC, OTX Extensions, XI and LXIL-MA.
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6. Data Management & Analysis: these are the standards used when
it comes to store, retrieve and analyze mass data captured during simu-
lation, testing, production and the operation of vehicles. In particular
they are CEA and ODS.

7. Simulation: The ASAM standards inside the domain Simulation are
called ASAM OpenX® standards and are thought to provide a complete
set of standards for simulation-based testing of automated driving func-
tions. They span over a wide range of use cases for virtual development,
for example hybrid testing approaches that combine virtual and physical
components. The standards that are part of ASAM OpenX are Open-
CRG, OpenDRIVE, OpenLABEL, OpenODD, OpenSCENARIO and
OSI.
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2.3 ASAM OpenX: The Simulation Domain

As noticed before the technological progresses allowed the vehicles to be
equipped with a growing number of sensors and an increasing computational
power while keeping the costs reasonably low. The affordability of such a
system led to the development of new driving assistance functions and the
ADAS swiftly became standard installation in vehicles sold in the consumer
market, from being just optional, mainly because of the 5-star requirements
provided by the New Car Assessment Program, therefore the potential of
Automated Driving Systems is estimated to rapidly grow in the next years.
Development and validation of these systems, as evident from the previous
discussion, cannot rely only on the physical tests due to many reasons
such as the long distance they should be driven and the not availability of
the target hardware, where the software will run, during the development
phase since it is being produced in parallel. In this context, simulation
plays a crucial role because it allows software testing to commence at a
very early stage. This early testing phase enables the detection of bugs
and missing capabilities, which can then be rectified in the development
phase and as simulations become more realistic in mimicking stimuli for
the target system under test, their importance in the automotive industry
continues to escalate. Simulations can be used for challenging virtual models
(Model in the Loop) or software containers (SiL) that represent ADAS or
ADS systems. As the development progresses, simulations also interface
with tangible components, individual Electronic Control Units (ECUs), or
groups of ECUs (HiL) within the final product. These physical components
of the vehicle will already run the software on the intended target hardware.
When the complete set of ECUs and software can be assembled to form the
vehicle control system (ViL/DiL/proving ground), simulations can continue
to interact with the system. What makes SiL and MiL testing exceptionally
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advantageous is the possibility to perform tests and validation without
relying on a physical Device under Testing (DuT). This approach offers
significant benefits, notably in terms of time and cost efficiency. In the realm
of simulations, one second corresponds to about 20 real-world seconds, this
allows for the execution of a higher number of test cases, enabling larger
validation among the necessary scenarios. Consequently, this accelerated
testing process not only saves time and costs but also ensures that the system
undergoes rigorous scrutiny across a wide array of situations, enhancing
its overall reliability and functionality. Physical testing needs test drivers,
test vehicles, large spaces for proving ground, is expensive and relies on
external factors to reach specific use cases, such as weather conditions that
are not controllable. On the other hand, virtual testing in simulations
permits parallel testing, allows to create scenarios that focus on the test
objectives, enables to perform a larger number of tests in the same amount
of time, tests can be replicated and helps to define the test focus for physical
test sites. Creating the necessary test cases for validating ADAS or ADS
systems is a daunting and time-consuming task. It’s practically impossible
to anticipate and cover every conceivable scenario a vehicle might encounter
throughout its life cycle. The challenge becomes even more challenging when
developing level 3 or level 4 automation, even for major OEMs. Collaboration
is vital in this context to prevent unnecessary expenditures, such as those
incurred for format conversion or incompatible tooling. The demand for
exchange formats and description formats that support the development of
these systems is consistently increasing. Standardized approaches are not
just helpful but essential: employing universally accepted exchange formats
enables the industry to collaborate effectively, fostering an environment
where automated driving can truly become a reality. The standards inside
the ASAM Simulation Domain pursue precisely this goal since they have
been conceived from the original owner to the ASAM release.
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Figure 2.1: ASAM OpenX Standards (Source [19]).

The Simulation Domain contains the following standards:

• ASAM OpenXOntology: it is currently in a early stage where the
first concept have been released. The aim of this project is to provide
a foundation of common definitions, properties and relations for main
concepts of the ASAM OpenX standards, in fact, despite all of them
refer to the same domain i.e. road traffic, they are based on different
domain models. This results in redundant definitions and descriptions of
concepts that sometimes also contradict themselves. For example exist
two overlapping definitions of lane references one in OpenSCENARIO
and one in OpenDRIVE. OpenXOntology aims to solve this issue in order
to allow the linkage of data stored in the different formats of the OpenX
standards. For example the concepts inside the scenario labels for driving
simulations, their properties and relations are not standardized so it is
difficult to extract scenarios form logged data in a standardized manner
or automatically generate synthetic scenarios in a traceable way. It could
also prevent the use of common labels for object and scenes and therefore
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retrieve scenarios from common queries. An ASAM ontology, which
encompasses definitions related to traffic infrastructure, interactions
among traffic participants, and environmental conditions, addresses a
crucial gap by establishing a standardized foundation for vocabulary
and domain models within the OpenX standards. This standardization
not only offers a common language but also streamlines the integration
of artificial intelligence into OpenX applications. It also allows a more
efficient and effective implementation of artificial intelligence for OpenX
applications.

• ASAM OpenODD: (Operational Design Domain) it is in the last
stages of the development phase and its objective is to represent a
specific Operational Design Domain for Connected Automated Vehicles
through a machine-interpretable format. It should be valid throughout
the entire operating life of a vehicle and it is part of the safety and
operational concept of the system, furthermore, the ODD is used for the
functional specification of the CAV and which environment parameters
(both static and dynamic) the vehicle must be able to manage i.e. every-
thing that compose the driving situation such as traffic participants, the
weather conditions, the infrastructure, the location, the time of the day
etc. ASAM OpenODD represents the vehicle ODD and it can be used
for description, simulation and post-processing purposes but the format
must be searchable, exchangeable, extensible, readable by machine and
by humans (constrained natural language), measurable and verifiable.
ASAM OpenODD is composed by a base set of attributes, semantics
and syntax of its description language includes different ontologies and
taxonomies, it also enables the possibility for any application to per-
form analysis on the ODD making use of the measurable metrics, the
ODD format is capable of handling rare events and misuse throughout
the representation of uncertainty. The ASAM OpenODD development
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consider to enrich the activities of BSI (BSI PAS 1883 provides a tax-
onomy for ODD) and ISO (ISO 34503 uses the taxonomy to provide a
high-level definition format for ODD), these projects communicate to
avoid contradictions.

• ASAM OpenDRIVE: have been developed multiple versions and there
is another one in the conceptual phase but their goal is always to give a
common base for describing road networks with the syntax of extensible
markup language using the file extension xodr. Within an ASAM Open-
DRIVE file, stored data outlines the geometry of roads, lanes and objects
like roadmarks and features such as signals. Described road networks can
either be artificial constructed or based on real-world data. The ASAM
OpenDRIVE primarily functions is to provide a detailed description of
road networks, essential for simulations used in the development and
validation of ADAS and Automated Driving Systems features. Thanks
to the ASAM OpenDRIVE standard, these descriptions of road net-
works can be seamlessly shared between different simulators, promoting
interoperability in the industry. By establishing a standardized format
for road descriptions, the automotive sector benefits from reduced costs
associated with the creation and conversion of these files for various de-
velopment and testing purposes. These road datasets may be generated
manually using road network editors, derived from map data conversions,
or even originated from scanned real-world roads, further illustrating the
versatility and practicality of the ASAM OpenDRIVE format. One of
the main characteristics of ASAM OpenDRIVE is that it is organized in
nodes that the user can extend with its own defined data, allowing a high
level of specialization of the single application (often simulation) but
still preserve the capability of interoperate that permits the exchange
of data. Another important aspect is that the whole road network is
modelled along the reference line. Road and lanes with their elevation
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profile are attached to the reference line that represents a s/t-coordinate
system. Objects, representing features, refers either to the reference
line which is the core of the road or to the global coordinate system.
The road network is composed by segments of road and junctions that
interconnect the sections of road and the lanes. The junction snippets
tell which is the predecessor and the successor of the piece of road
it refers to. The only roads with overlapping surfaces are the roads
that connect entry roads, they are called "connecting-roads". However,
to fully represent the entire environment, supplementary formats are
necessary. These additional formats detail static 3D objects found along
roadsides, such as trees and buildings. Road surface profiles, crucial for
accurate representation, are integrated from the ASAM OpenCRG file
format. When it comes to the dynamic aspects of driving simulations,
including vehicle maneuvers and behaviors, ASAM OpenSCENARIO
steps in to provide a detailed description. These three standards are
complementary and together describe all the static and dynamic content
of in-the-loop vehicle simulation applications.

• ASAM OpenCRG: establishes a specific file format tailored for de-
scribing road surfaces. Initially designed to store high-precision elevation
data collected from scans of road surfaces, its main applications are in
tire, vibration, and driving simulations. This highly accurate elevation
data is used in conducting realistic endurance simulations, whether for
the individual vehicle components or the entire vehicle undergoing anal-
ysis. In fact, for driving simulators, OpenCRG enables the creation of a
realistic 3D representation of the road surface. Moreover, the versatility
of the OpenCRG file format is evident as it can also accommodate other
essential road surface properties these include factors like the friction co-
efficient or gray values. The standard outlines a technique for organizing
data in a specialized format known as "curved regular grid" (abbreviated
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as CRG). This method offers several key advantages. Firstly, it ensures
optimal memory usage, maximizing efficiency in storing vast datasets.
Secondly, it significantly reduces the time required for both generating
files and processing data within simulation tools. Lastly, the CRG layout
guarantees exceptional accuracy when positioning data onto intricate
road networks, ensuring precise and reliable representation of the road
surface in simulations. The fundamental approach to depicting the road
surface involves organizing data within a grid aligned along the road
reference line, the segments of the latter are described by a start position
and a heading angle. This grid is constructed through longitudinal
cuts (columns) and lateral cuts (rows) made along these consecutive
line segments. Within each grid cell, there is a specific value assigned,
usually denoting the elevation of that particular point on the road. The
end position provides crucial information that can be utilized to identify
and rectify any potential discrepancies or shifts in the placement of
data along the roads. ASAM OpenCRG establishes both ASCII and
binary file formats, each incorporating clear-text headers. Within these
headers there are road parameters for the reference line as well as the
overall configuration of the longitudinal sections, modifiers and option
parameters. They also outline the data format (ASCII and binary) and
describe the expected sequence of data in the trailing data block. The
format includes the possibility of referencing to external files that often
contains the actual data, in order to manage different parameters for
the same dataset.

• ASAM OpenSCENARIO: defines a file format specifically tailored
for describing the dynamic aspects of driving and traffic simulations.
Its main purpose is to depict intricate and synchronized maneuvers
involving various entities like vehicles, pedestrians and other traffic
participants. These maneuvers can be described based on driver actions,
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such as lane changes, or on trajectories derived for example, from
recorded driving maneuvers. Additionally, OpenSCENARIO includes
details about the ego vehicle, driver appearance, pedestrians, traffic,
and environmental conditions. The standard defines vehicle maneuvers
in a structured manner, organized into storyboards containing stories,
acts, and sequences. A story can either outline the maneuvers of an
individual vehicle or describe the dynamic behavior of multiple entities,
such as vehicles performing a lane change when reaching specific positions.
Stories are composed by acts that specific conditions trigger for example
when a specific distance to a vehicle ahead is reached, but also exceeding
a fixed speed or when the vehicle is going off-road and with the concept
of sequences, the standard permit to respond with the definition of
maneuvers of multiple vehicles, for example overtaking another car with
a lane change or creating a corridor for emergency vehicles. The driving
behavior of the vehicle is detailed through events and actions, the latter
can also be related to the environment and such a traffic light change.
Thanks to the standard can be defined also the routes and trajectories
that the vehicle must follow. All these element organizes in catalogs
as well as the complete scenario description can be parameterized to
improve test automation without large amount of scenario files. ASAM
OpenSCENARIO organizes data in a hierarchical structure and serializes
them in an XML file format with a precise schema, since it is technology
and vendor independent it can be easily validated, edited, imported
and exported by content editors and simulation tools. Since maneuver
description is essential for the safety certification process the industry,
certification agencies and government authorities are working together
on the definition of maneuver libraries.

• ASAM OpenLABEL: it provides the annotation format and the
labeling methods for objects and scenarios. ASAM OpenLABEL defines
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a set of rules to guide the process of labeling. The categorization and
description of the objects that populate the driving environment are
fundamental parts of the Automated Driving Systems perception stack
and this format represents a huge effort to standardize these processes
in order to solve many issues that affect the industry, for this reason it
will be better discussed in the next paragraph.

• ASAM OSI: ASAM Open Simulation Interface ensures intuitive and
consistent compatibility between automated driving functions and differ-
ent driving simulation frameworks. It permits users to connect sensors
to automated driving functions and various simulator tools through
a standardized interface. This simplifies integration, significantly en-
hancing the accessibility and usefulness of virtual testing. ASAM OSI
was initially thought to be a generic data exchange interface compliant
with the ISO 23150 logic interface for the environmental perception
of automated driving functions in virtual scenarios. In collaboration
with packaging specifications like ASAM OSI Sensor Model Packaging
(OSMP), this standard offers solutions for exchanging simulation model
data efficiently across various implementations. The environment de-
scription inside ASAM OSI is object-based and uses the message format
of the protocol buffer library, developed and maintained by Google. Top-
level messages are defined in order to exchange data between separate
models and they represent the GroundTruth interface, the SensorData
interface, the SensorView/Sensor-View configuration interfaces and the
FeatureData interface. While the GroundTruth interface provides en
exact representation of the simulated object in a global coordinate sys-
tem, the FeatureData interface gives a list of of simple features in the
reference frame of the respective sensor of a vehicle for environmental
perception. The list is generated by a GroundTruth message and could
be an input for a sensor model that simulates object detection or feature
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fusion of multiple sensors. Also traffic participant models have their
own interfaces, in fact, it is possible to send them commands through
the TrafficCommand interface and through the TrafficUpdate interface
it is possible to get the updated state of the traffic participant models.
The latter can also make use of other ASI OSI interfaces internally to
model autonomous vehicles.
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2.4 ASAM OpenLABEL Standard

The ASAM OpenLABEL is a widely adopted standard in the automotive
industry. The current and below described version is the 1.0.0. It provides
a standardized annotation format and gives precise labeling methods for
multi-sensor data streams and scenario files. This standardization process
helps stakeholders in cutting costs and avoiding the processes of creating,
converting and transferring annotated and tagged data and as a consequence
also saving resources. ASAM OpenLABEL provides many methods for la-
beling multi-sensor data streams such as images or point clouds that are
for example 2D or 3D bounding boxes. The standard also focuses on sce-
nario tagging that allows the scenarios to be categorized and searched inside
large data sets but also gives information about the individual scenario such
as the scenario creator, the setup used to capture the scenario and so on.
Essentially it is a common data structure for organizing annotations for
labeling multi-sensor data streams and perform simulation and test scenarios
tagging. As already demonstrated, for developing, testing, and validating
highly automated driving functions, the industry heavily relies on Machine
Learning (ML), particularly for tasks involving perception and prediction.
Machine learning demands substantial training data, which not only needs
to be abundant but also meticulously annotated and enriched with metadata
to serve its purpose effectively during the training and validation processes.
The lack of an industry standard for defining the structure and the organi-
zation of these annotations results in a limited reuse of annotated datasets,
the annotations maintenance and updating become difficult, the sharing of
datasets across the industry and between industry and academia is necessarily
hindered and annotations surely experience a worsening in quality. On the
other hand the presence of a multi-sensor data labeling standard such as
ASAM OpenLABEL can lead to an efficient sharing of annotated perception
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datasets and object lists, an increase in annotations quality and finally im-
prove the maintainability and reuse of annotated datasets. The main sectors
to which ASAM OpenLABEL is targeted are: Perception/computer-vision
engineers, Machine-learning engineers, Perception/computer-vision research
scientists, Machine-learning research scientists, Data-annotation engineers,
Data-annotation analysts and Test engineers. The need for a scenario tagging
standard comes from the fact that scenario databases storing multi-sensor
data, annotated multi-sensor data, simulation scenarios and test scenarios
can be very extensive and must be organized and tagged using semantic,
meaningful tags that refer to the content of the data, its ODD, the high-
level behavior of the dynamic agents and administrative information. The
process of information extraction from scenario artifacts, required for the
tags, is difficult and sometimes impossible due to the used scenario defi-
nition language but ASAM OpenLABEL based scenario tagging aims to
solve this problem. It permits to group test scenarios in scenario databases,
facilitate the scenario storage systems, make more navigable the scenario
databases throutgh search and filtering, improve the scenario data sharing,
gain easier maintainability and reuse of test scenario and scenario data,
increase quantity and quality of machine-learning training and validation
datasets but also Enable specific machine-learning classification tasks to
be performed on scenario data. The main target groups of the standard
are systems engineer, validation and verification engineers, functional-safety
engineers, simulation specialists. ASAM OpenLABEL consists in a JSON
format and for such reason, it can be easily parsed by tools and applications.
The structure, sequence, elements and values within the JSON file are also
specified by ASAM OpenLABEL. The elements of the standard are actions,
objects, events, contexts, relations, frames and tags and also relationships
between them are defined in the standard. Quality of the annotations is
no taken into consideration between the features that can be described in
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the format but it includes geometries, coordinate systems and transforms,
and other concepts relevant to spatio-temporal annotations for multi-sensor
data labeling. For what may concern the taxonomy it allows the integration
of external knowledge repositories/ontologies and in particular of ASAM
OpenXOntology as the ontology of reference. The standard provides naming
conventions, units, guidelines for timestamps, date and time formats. Data
annotation means enhancing raw data, like sensor streams from cameras,
LiDAR, radar, or test scenario artifacts, with extra metadata. This meta-
data provides context, such as identifying static or dynamic objects in a
video, detailing their actions, or describing the surrounding environmental
conditions. Raw data can be enriched by adding other pertinent additional
information. Raw data can take many forms, for example, individual files,
file streams, or test scenario artifacts. For ASAM OpenLABEL, important
example of raw data are png images, frames in a video sequence, pcd point
clouds, or OpenSCENARIO files. ASAM OpenLABEL provides a very well
defined annotation schema that represents a data model.

Figure 2.2: Multi-sensor data labeling concept (Source [20]).
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The annotation format includes geometries, such as, bounding boxes,
polygons or other primitives to isolate and localize relevant semantic concepts
inside the raw data. Labels usually represent a semantic reference to agents
type identification, their relations, actions they are performing and contexts
in which these actions or agents take place or exist. Moreover, the standard
gives space for details about spatial calibration across sensors, temporal
synchronizations, coordinate transforms and consistent entity IDs across
frames and sensor streams. In figure 2.3 an example of the relations between
files that the annotations refer to.

Figure 2.3: Multi-sensor data labeling example (Source [20]).

Annotations of multiple raw sensor data streams inside example.pcd,
example.png and example.json files are contained in the example.json file
that is compliant to the schema present in the openlabel_json_schema.json
file that can be used to validate the annotations. There is also represented an
external ontology in the example.owl and is referenced by the file example.json
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in order to semantically enrich the annotations.
The annotation schema outlines the organization of annotations, including

data types and clear conventions, ensuring unambiguous interpretation.
It also dictates how annotation data is encoded for storage in computer
files. ASAM OpenLABEL’s annotation schema is versatile, accommodating
tasks such as basic object labeling in single images, with techniques like
bounding boxes or semantic segmentation, but also intricate multi-sensor data
labeling involving elements like cuboids, odometry, coordinate systems, and
transforms. Its format (JSON schema) allows for easy serialization of labels in
files or messages, making them readable for both computers and humans. This
flexibility ensures communication and understanding between systems and
users. The annotation schema is defined using JavaScript Object Notation
(JSON) schema, specifying the format that valid JSON annotation instances
must adhere to. This schema is serialized in the ASAM OpenLABEL JSON
schema file, outlining the structure. The schema itself conforms to the JSON
schema Draft 7 specification. The keys in the JSON schema can be either
predefined keywords as strings or identifiers that can be numerical, strings
or unique identifiers. The schema tells which pattern keys shall follow for
different types of items. ASAM OpenLABEL annotations can be represented
as JSON string payloads, where the data, organized as key-value pairs,
is encapsulated within a string format. As encoding format of characters
shall be used UTF-8. Labels are nothing but spatiotemporal descriptive
information of data such as images, through objects, actions, events, contexts
and relations. It is possible to add simple o complex tags to any content
such as images, data files or scenarios and through additional structures can
be added details for metadata, ontologies, frames and coordinate system.
For the purposes of this thesis work the focus will be mainly on the process
of multi-sensor data labeling that consists in adding information to data
streams about the location and the characteristics of labeled objects or even
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the entire scenario at a given point in time. Labeling means taking relevant
semantic entities within the raw data and locating them in a spatiotemporal
manner relatively to the other data using spatiotemporal constructs such as
many labeling geometries, each one suitable for a specific use like computer
vision or machine learning. Raw data can be images, videos, point clouds.

Figure 2.4: ASAM OpenLABEL schema (Source [20]).

The annotation schema is based on three main characteristic aspects of
the annotation data:

• Structure: the organization of the data such as hierarchies and key-
value dictionaries.

• Types: Primitive data types for key-value items.
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• Conventions: Documented interpretation of data values.

For what may concern the structure, ASAM OpenLABEL JSON file is a
dictionary with a root key named openlabel. The value of the root key is an
object containing all the other keys, such keys are supporting structures and
are the followings: ontologies that groups all the terminologies that shall
be used to conform to the standard, resources external items to link data
and coordinate_systems in order to explicitly specify the transformation of
the data and finally streams for other information on the collection of data
they refer to, for example, sensor information, such as intrinsic calibration
parameters of cameras. Other keys are the elements listed below:

• objects: contains information about physical entities in scenes for ex-
ample pedestrians, cars, the ego-vehicle, traffic signs, lane markings,
building, and trees.

• actions: where acts with a semantic meaning that are being done and
can last several frames, are described, for example isWalking.

• events: where instants in time with a semantic load are reported, they
can trigger other events or actions, for example startsWalking.

• contexts: are additional described information that are not inside events
or actions because have no specific timing or location, for example
weather conditions, properties of the scene (e.g. Urban or Highway) or
general condition about the locations, such as the country name.

Elements have similar properties from the point of view of the attributes,
types and hierarchies. Attributes of elements are:

• uid: it is a unique identifier for a specific element, it can be a simple un-
signed integer or a Universal Unique Identifier (UUID) of 32 hexadecimal
characters.
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• name: it is an identifier, simply understandable by humans and it is not
unique.

• type: this attribute corresponds to the class of the elements identified,
for example a Car type.

Additional items can be added to the elements, such as:

• ontology_uid: a reference to the ontology used for the type of the
element.

• Element data, for example object_data: this element contains static
information referring to the object.

• Element data pointers, for example, object_data_pointers: are pointers
to element data at frames that also reduce the nesting of data.

• frame_intervals: it lists the frame intervals where the element exists
through an array.

Another main key is the frames where all dynamic (temporal) information of
the annotation are specified at frame level and each frame is indexed with an
integer number. While in the frame_intervals key the array of frame intervals
for which the whole json file data contains information, it is composed of a
starting and ending frame number as a closed interval. Information can be
included with the structure previously defined for elements. Frame properties
could be:

• timestamp: it is the time instant the frame correspond to and can be a
relative or an absolut time reference.

• streams: includes information for different streams of data collect with
a multi-sensor setup, in fact inside this field it is possible to specify, for
example, intrinsic calibration parameters and frequency and then it is
possible to correlate the stream and the labeled element.
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• transforms: inside this key the changes of position and orientation with
respect to coordinate systems can be managed, it will be better explained
below the document.

It is possible to synchronize the frames under the master frame indexes that
group data from different stream by their timestamp and relate them to
a specific instant or interval instead of classifying them under the stream
specific frame index. Multiple streams of data could be collected with more
than one sensor and with different frequency, in this case it is needed or a
downsampling and the master frame indexing follows the slower one or it
can follow the faster one. The annotations can be enriched with numerical
properties of objects, for example the position, the size or other physical
magnitudes, for this reason it is important to take into account the different
coordinate systems the scenes could be referring to. In ASAM OpenLABEL
the scenes are considered as Euclidean spaces and right-handed Cartesian
coordinate systems that could be two or three dimensional. If any geometry
is initially expressed with respect to a specific coordinate system, it can
be changed thanks to transformation that are available inside the format.
These coordinate systems are declared with a friendly name, used as an index
and should be in the form of parent-child links to establish their hierarchy.
Coordinate systems also have a type, they are:

• scene_cs: that is the static coordinate system.

• local_cs: indicates the coordinate system of a rigid body such as the
vehicle carrying the sensors.

• sensor_cs: the coordinate system attached to the sensor.

• custom_cs: coordinate systems defined by the user.

Coordinate systems can have a parent which is the coordinate system they
relate to and the list of the children coordinate system that refer to it, but
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also a pose_wrt_parent that contains the default or static pose of the specific
children with respect to its parent. The pose_wrt_parent can be defined
three ways:

• 4x4 homogeneous matrix;

• quaternion and translation vector;

• vector of Euler angles with sequence code, and translation vector;

Transforms between coordinate systems can also be defined for each frame
with the key transform inside the frame_properties one and with the following
properties: src and dst, these are the name of the source and destination
coordinate systems, listed in the coordinate_systems field and another last
key transform_src_to_dst containing the actual transform expressed in
algebraic form. In ASAM OpenLABEL can be used geometric and non-
geometric (generic) data types that allow labels and tags to represent any
type of information. In this project 3D bounding boxes data type have been
adopted in order to annotate the LiDAR point clouds. A 3D bounding box is
a cuboid in three dimensional Euclidean space, defined by position, rotation,
and size. Position and size are expressed as three elements vectors, while
rotation can be defined in two alternative forms, using four elements vector
quaternion notation or three element vector Euler notation (to be applied in
ZYX order equivalent to yaw-pitch-roll order). The cuboid object can have
the following keys: attributes, coordinate_system with respect to which it
is expressed, name that is an index inside the corresponding object data
pointers and val that contains an array of values that identify the position,
rotation and dimensions of the bounding box. In the case that such rotation
is expressed through quaternion notation, the array will have the following
structure (x, y, z, qa, qb, qc, qd, sx, sy, and sz) better described in table 2.1
while if the cuboid is defined thanks to the Euler notation it is (x, y, z, rx,
ry, rz, sx, sy, and sz) explained in table 2.2.
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Attribute unit Description
x m Specifies the x-coordinate of the 3D position of the

center of the cuboid.
y m Specifies the y-coordinate of the 3D position of the

center of the cuboid.
z m Specifies the z-coordinate of the 3D position of the

center of the cuboid.
qa Specify the quaternion in non-unit form (x, y, z, and

w) as in the SciPy convention.
qb Specify the quaternion in non-unit form (x, y, z, and

w) as in the SciPy convention.
qc Specify the quaternion in non-unit form (x, y, z, and

w) as in the SciPy convention.
qd Specify the quaternion in non-unit form (x, y, z, and

w) as in the SciPy convention.
sx m Specifies the x-dimension of the cuboid or the x-

coordinate.
sy m Specifies the y-dimension of the cuboid or the y-

coordinate.
sz m Specifies the z-dimension of the cuboid or the z-

coordinate.

Table 2.1: Available attributes of a 3D bounding box (cuboid) using
quaternion. The quaternions conform to the SciPy convention (Source [20]).
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Attribute unit Description
x m Specifies the x-coordinate of the 3D position of the

center of the cuboid.
y m Specifies the y-coordinate of the 3D position of the

center of the cuboid.
z m Specifies the z-coordinate of the 3D position of the

center of the cuboid.
rz rad Specify Euler angles, rz = yaw.
ry rad Specify Euler angles, ry = pitch.
rx Specify Euler angles, rx = roll.
sx m Specify the quaternion in non-unit form (x, y, z, and

w) as in the SciPy convention.
sx m Specifies the x-dimension of the cuboid or the x-

coordinate.
sy m Specifies the y-dimension of the cuboid or the y-

coordinate.
sz m Specifies the z-dimension of the cuboid or the z-

coordinate.

Table 2.2: Available attributes of a 3D bounding box (cuboid) using Euler
angles (Source [20]).
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Tool to generate
OpenLABEL annotations

3.1 Overview

The designed solution is entirely shaped as a SaaS (Software as a Service), in
fact, the user can interface with the service through a web application that
has a custom frontend developed for this specific purpose. The service itself
is hosted in a server that gives the computing capacity needed to execute the
analysis and the frontend interacts with the backend thanks to a RESTful
API collection that allows the client to use any of the developed services.
The pipeline is composed by the first step where the users are able to upload
their own datasets, collected on the road using a standard LIDAR sensor
configuration and files and information are structured in a defined manner.
Once the dataset is uploaded, the next input from the user is the choice of
the annotation model he/she would like the annotation tool to adopt based
on the required performances, at this point the user can make the process
start, the algorithm will execute a data preparation in order to have the data
ready to be given as input to the annotation model, that is the service that
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follows the data preparation. The Convolutional Neural Network will analyse
the LIDAR point clouds given as an input and will perform the objects
detection task based on the parameters given by the chosen model. Labels of
the identified objects in the point clouds will be stored in a JSON file with a
custom structure and format. When the custom labels are ready, the next
service developed for this work of thesis will begin to convert these labels in
an ASAM OpenLABEL compliant format. Once the converter has finished
to operate, the user will be able to retrieve the ASAM OpenLABEL labels
of its own dataset by downloading them from the user interface. Another
provided service is the merging of a large number of point clouds in order to
obtain a more defined and human understandable scene, these merged point
clouds can be downloaded by the user in order to be visualized together with
the labels. Also the visualizer has been developed during the realization of
this project and it allows the user to interact with 3D scenes and bounding
boxes but also the ground truth if available, for example the score of the
labels can be changed and the scene can be navigated through.

59



Tool to generate OpenLABEL annotations

3.2 Selected and Structured Input Data

The designed service takes as an input a structured dataset, in this part it
will be described how the data should be collected, structured and enriched
with information on the collection process. It has been taken as a model for
the input dataset the one called NuScenes produced by Motional. NuScenes
is one of the most consolidated and widely accepted and adopted public
multimodal large scale datasets, this is mainly due its availability from its
release in March 2019 but also because is one of the largest, most innovative
and complete automotive datasets. NuScenes supports six tasks:

• 3D Object Detection that consists in placing bounding boxes around
objects that are grouped in ten categories: barrier, bicycle, bus, car,
construction_vehicle, motorcycle, pedestrian, traffic_cone, trailer and
truck;

• 3D Object Tracking is the next step after detection where the aim is
to track objects across time and are only taken into account seven
categories because static objects such as barrier, traffic_cone and con-
struction_vehicle are excluded;

• Motion Prediction is thought for the goal of predicting the trajectories
of the ego vehicle with a series of x-y positions, each prediction lasts six
seconds and must be sampled at 2 hertz.

• another task is to perform the LiDAR Segmentation that consists in
predicting the category of every point in a set of 3D LiDAR point clouds.
There are 10 foreground classes and 6 background classes for a total of
16 categories.

• the Panoptic Segmentation and tracking task aims to predict the semantic
categories of every point, and additional instance IDs for things, it also
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gives temporal coherence and pixel-level association over time. There
are 10 thing classes and 6 stuff classes that means 16 categories.

Motional organizes Challenges where uesers can participate and challenge
themselves to achieve the best performances on the NuScenes Tasks. Thanks
to the popularity of this dataset, a lot of participants present their projects
each time and they always improve the results. All these reason make
NuScenes the perfect dataset to be adopted for this project.

3.2.1 Data Collection

From the official paper [21] we can extract some information. NuScenes
data has been collected by driving through two cities: Boston (Seaport and
South Boston) and Singapore (One North, Holland Village and Queenstown).
They are both two cities with a dense traffic and highly challenging driving
situations, but it has been taken into account also the diversity of the dataset
across locations by spanning from left-hand to right-hand traffic, but also
changing between different surrounding environments. The car used to realize
the dataset are two electric Renault Zoe Supermini with the same sensor
layout, compliant with ISO-8855 showed in 3.1 and composed by the sensor
listed and described in 3.1.

Extrinsics and intrinsics of every sensor has been accurately calibrated in
order to obtain high quality multi-sensor data. Taking as a reference the ego
frame, placed in the midpoint of the rear vehicle axle, it has been possible
to express the extrinsics of the sensors. In addition, for what concerns the
synchronization, since the exposure of a camera is almost instantaneous, it
is triggered when the top LiDAR sweeps across the center of the camera’s
FOV and the timestamp given to the image is the exposure trigger time
while the timestamp of the LiDAR scan is the time when the full rotation of
the current LiDAR frame is completed. The cameras’ frame rate is reduced
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Sensor Details
6x Camera RGB camera model Basler acA1600-60gc, 12Hz cap-

ture frequency, Evetar Lens N118B05518W F1.8
f5.5mm 1/1.8", 1/1.8" CMOS sensor of 1600 × 900
resolution, Bayer8 format for 1 byte per pixel encod-
ing, 1600x900 ROI is cropped from the original resolu-
tion to reduce processing and transmission bandwidth,
auto exposure with a maximum of 20 ms, JPEG com-
pressed images. Front and side cameras have a 70◦

FOV with an offset of 55◦, rear camera has a FOV
110◦

1x Lidar Spinning, model Velodyne HDL32E, 32 beams with
1080 (±10) points per ring, 20Hz capture frequency, 32
channels, 360◦ horizontal FOV, −30◦ to 10◦ vertical
FOV, ≤ 70m range, uniform azimuth angles 80m-
100m range, ±2cm accuracy, ∼ 1.39M points per
second.

5x Radar model Continental ARS 408-21, ≤250m range, 77GHz,
FMCW, 13Hz capture frequency, ±0.1km/h vel. ac-
curacy.

GPS & IMU GPS, IMU, AHRS. 0.2◦ heading, 0.1◦ roll/pitch, 20mm
RTK positioning, 1000Hz update rate.

Table 3.1: NuScenes sensor data.

to 12Hz in order to keep the compute, bandwidth and storage requirement
of the perception system low, but this means that not all LiDAR scans
correspond to a camera frame because of LiDAR’s higher frequency of 20Hz.

3.2.2 Data Format

All information about data such as calibration, maps, vehicle, coordinate and
so on are stored inside a relational database with a specific schema defined
by Motional. The database is composed of JSON tables where each object is
identified by its unique primary key token.
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Figure 3.1: Car sensor setup (Source [[22]]).

Figure 3.2: Camera orientation and overlap (Source [[22]]).
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Figure 3.3: NuScenes Relational Database Schema (Source [[22]]).
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For the purposes of this project, below will be described the parts of the
database where the information about the vehicle and the data extraction
are stored i.e. the database status before the annotation process. The table,
containing vehicle’s information, useful for submitting the custom dataset to
the annotation service are:

• sensor : it groups all the sensor types with this object:

1 {

2 "token": <str >, unique record identifier .

3 " channel ": <str >, Sensor channel name.

4 " modality ": <str >, (camera, lidar, radar)

5 }

6

• calibrated_sensor : inside this table are listed the parameters resulted
from the calibration process of a sensor between lidar, radar and camera,
with respect to the ego vehicle body frame (camera images should be
undistorted and rectified) with objects like the next one:

1 {

2 "token": <str >, unique record identifier .

3 " sensor_token ": <str >, identifier pointing to

the sensor type.

4 " translation ": <float > [3], coordinate system

origin in meters: x, y, z.

5 " rotation ": <float > [4], coordinate system

orientation as quaternion : w, x, y, z.

65



Tool to generate OpenLABEL annotations

6 " camera_intrinsic ": <float > [3, 3], intrinsic

camera calibration matrix, it is empty for

sensors that are not cameras .

7 }

8

• map: also map data can be added to the database, stored as binary
semantic masks from a top-down view and they are identified with a
specific object, as follows:

1 {

2 "token": <str >, unique record identifier .

3 " log_tokens ": <str > [n], identifiers pointing

to the logs.

4 " category ": <str >, map category (

semantic_prior for drivable surface and

sidewalk ).

5 " filename ": <str >, relative path to the file

with the map mask.

6 }

7

• log: contains information about the log that originated the related data:

1 {

2 "token": <str >, unique record identifier .

3 " logfile ": <str >, log file name.

4 " vehicle ": <str >, vehicle name.
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5 " date_captured ": <str >, date (YYYY -MM -DD).

6 " location ": <str >, area where log was

captured .

7 }

8

While tables related to the data extraction that must be included in the
submitted database are:

• ego_pose: it is the ego vehicle pose at a particular timestamp, it is
expressed with respect to the global coordinate system of the map.
The z-component of the translation key is always equal to 0 since the
localization is expressed on a 2D x-y plane overlying the map.

1 {

2 "token": <str >, unique record identifier .

3 " translation ": <float > [3], coordinate system

origin in meters: x, y, z=0.

4 " rotation ": <float > [4], coordinate system

orientation as quaternion : w, x, y, z.

5 " timestamp ": <int >, unix time stamp.

6 }

7

• sample_data: are the data about a sample returned by cameras, lidar
or radar, if the related sample is a key frame the timestamps are very
close, while if it is not a key frame the timestamps are the closest:
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1 {

2 "token": <str >, unique record identifier .

3 " sample_token ": <str >, identifier pointing to

the sample to which this sample_data is

associated .

4 " ego_pose_token ": <str >, identifier pointing

to the ego_pose .

5 " calibrated_sensor_token ": <str >, identifier

pointing to the calibrated_sensor .

6 " filename ": <str >, relative path to data -blob

on disk.

7 " fileformat ": <str >, data file format.

8 "width": <int >, for images it is the width in

pixels.

9 "height": <int >, for images it is the height

in pixels.

10 " timestamp ": <int >, Unix time stamp.

11 " is_key_frame ": <bool >, True if sample_data

is part of key_frame , else False.

12 "next": <str >, identifier pointing to the

sample data from the same sensor that follows

this in time. Empty if end of scene.

13 "prev": <str >, identifier pointing to the

sample data from the same sensor that precedes

this in time. Empty if start of scene.

14 }

15

• sample: the sample is a keyframe that will be annotated, often result of a
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downsampling to match the sample of all sensors and reduce the amount
of data to be annotated without a significative loss of information. For
NuScenes samples have a 2Hz frequency with approximately the same
timestamp as part of a single LIDAR sweep.

1 {

2 "token":<str >, unique record identifier .

3 " timestamp ":<int >, unix time stamp.

4 " scene_token ":<str >, identifier pointing to

the scene.

5 "next":<str >, identifier pointing to the

sample that follows this in time. Empty if end

of scene.

6 "prev":<str >, identifier pointing to the

sample that precedes this in time. Empty if

start of scene.

7 }

8

NuScenes also provides samples grouped in 1000 scenes, i.e. 20s log sequence
of consecutive frames extracted from a log, where object identities are
preserved for the whole duration of the scene and not across scenes. Scenes
are not mandatory for the submission to the developed service but can be
useful for future development. The scene object is structured as follows

1 {

2 "token": <str >, unique record identifier .

3 "name": <str >, short string identifier .
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4 " description ": <str >, longer description of the

scene.

5 " log_token ": <str >, identifier pointing to log

from where the data was extracted .

6 " nbr_samples ": <int >, number of samples in this

scene.

7 " first_sample_token ": <str >, identifier pointing

to the first sample in scene.

8 " last_sample_token ": <str >, points to the last

sample in scene.

9 }

10

Data must be wrapped inside a unique compressed folder, grouped in
different folders as follows:

• sweeps: it contains all the collected data file, grouped by sensor in
different folders named in relation with the sensor name:

– CAM_BACK

– CAM_BACK_LEFT

– CAM_BACK_RIGHT

– CAM_FRONT

– CAM_FRONT_LEFT

– CAM_FRONT_RIGHT

– LIDAR_TOP

– RADAR_BACK_LEFT

– RADAR_BACK_RIGHT

– RADAR_FRONT
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– RADAR_FRONT_LEFT

– RADAR_FRONT_RIGHT

it is not mandatory for the developed service.

• samples: it is the result of the downsampling of the sweeps folder and
has the same structure. It is mandatory for the developed service, in
particular the data files contained in the folder LIDAR_TOP are used
for the annotation and together with the files in CAM_FRONT they are
taken as input in order to be visualized together with the annotations.

• v1.0-mini: is the folder of the relational database that stores the JSON
tables named and structured as previously described.

• maps: if available, there are stored the maps and it is not mandatory.
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3.3 Annotation tool

The annotation is thought to be fully automated and this goal is achieved
making use of MMDetection3D, an open source object detection toolbox
based on PyTorch, the popular machine learning framework based itself
on the Torch library. OpenMMLab released MMDetection3D for the
first time in July 2020 due to the absence of a universal codebase in 3D
object detection. The toolbox has been chosen not only because it is an
open source project but also because it represents one of the most powerful
tool of its kind, in addition it is very well documented and it supports
state-of-the-art single-modality/multi-modality 3D object detectors such
as MVXNet, VoteNet, PointPillars and so on, in indoor/outdoor datasets,
including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI and
many more. It is proved that it trains faster than other codebases such as
OpenPCDet, votenet or Det3D. Thanks to MMDetection3D it is possible to
implement an inference of the model PointPillars. It is a deep neural network
and a fast encoder for object detection from 3D point clouds. The differencies
of detecting object from lidar point clouds, instead of using images are that
the former is three-dimensional and a sparse representation while the latter
is two-dimensional and dense, for this reason the object detection must
move away from the classical image convolutional pipelines while taking
into account different approaches. In fact, techniques that project a 3D
point cloud to a 2D image are fast and have high reference resources but are
characterized by a very low accuracy, instead, methods that performs the
feature extraction directly using the 3D point clouds have a relatively high
accuracy but the inference is slow. PointPillars revolutionized this rule, since,
when it was developed, other models were designed to extract the features
directly from the 3D point cloud at a maximum of 30Hz inference speed
while it can reach 62Hz. The secret of the model high speed is removing the
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expensive 3D convolutional layer and opting for dense 2D convolutions on
pillars. As presented in [23], PointPillars main concept is to see the point
cloud as a group of pillar and it can be divided in three major parts as also
showed in figure 3.4:

• Pillar Feature Net: considering that each point in the cloud is charac-
terized by the coordinates x, y, z and reflectance r, the first part consists
in a conversion of the point cloud into a pseudo-image by discretizing
the point cloud into an evenly spaced grid in the x − y plane, as a result
a set of pillar is created. Then, all the points are enriched with the
xc, yc, zc distances to the arithmetic mean of all points in the pillar and
with the couple xp and yp that are the offset from the pillar x, y center.
Each augmented lidar point is now D = 9 dimensional. In addition, in
order to take into account the sparsity of the point cloud, it is imposed
a limit both on the number of non-empty pillars per sample (P ) and
on the number of points per pillar (N) to create a dense tensor of size
(D, P, N). In the case that a single sample or a pillar holds too much
data to be represented in this tensor it is randomly sampled, on the
other hand if data are not enough a zero padding is applied. At this
point a simplified version of the neural network PointNet is used to
apply a linear layer to each point i.e. a 1x1 convolution across the
tensor that is a very efficient computation, followed by Batch Norm and
ReLU to generate a (C, P, N) sized tensor that after a max operation
results in a (C, P ) sized tensor. After the encoding process, the feature
are distributed with the same location of the original pillar in order to
originate a pseudo-image of size (C, H, W ).

• Backbone: the backbone is composed of two sub-networks: one top-
down network that generate features at increasingly small spatial res-
olution and a second network that applies an upsampling and a con-
catenation of the top-down features. The top-down backbone can be
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seen as a series of blocks Block(S, L, F ), each one running at a different
stride S. L is the number of 3x3 2D conv-layers and F the output
channels each followed by BatchNorm and a ReLU. In order to ensure
the block operates at stride S after the input blob of stride Sin, the first
convolution inside the layer has stride S/Sin, while all next convolutions
in the block have stride 1. Before applying again BatchNorm and ReLU,
features are upsampled, Up(Sin, Sout, F ) from Sin to Sout thanks to a
transposed 2D convolution with F final features. The result are features
that are concatenation of all features produced at different strides.

• Detection Hand: in the phase of 3D object detection, the Single Shot
Detector (SSD) setup is adopted in order to match the priorboxes to
the ground truth with 2D Intersection over Union (IoU). Having a 2D
match, the height and elevation become additional regression targets.

Figure 3.4: PointPillars Network Structure (Source [23]).
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3.4 Converter

The output of MMDetection3D is annotations in a format compliant with the
one defined by NuScenes for the submission of Object Detection task. For
this task NuScenes provides the annotations for the training and validation
data sets but not for the test one. In order to get the annotation at inference
time it is possible to make use of a maximum of 6 past camera images,
6 past radar sweeps and 10 past lidar sweeps, that result in a window of
approximately 0.5s. The annotation resulted from the detection are stored
in a database that consists in a single JSON file called results_nusc. It has
the following keys:

• the key meta has a corresponding value that is an object itself composed
by five keys with a boolean value based on whether the data from the
specific sensor in the key have been used for the object detection.

1 {

2 " use_camera ": <bool >

3 " use_lidar ": <bool >

4 " use_radar ": <bool >

5 " use_map ": <bool >

6 " use_external ": <bool >

7 }

8

• the value of the other key, results, that mirrors the sample_annotation
table inside the NuScenes database, is another object with samples
tokens as keys, each key correspond to a sample and its value is a list of
objects composed as follows:
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1 {

2 " sample_token ": <str >, identifies the sample

/ keyframe for which objects are detected .

3 " translation ": <float > [3], estimated

bounding box location in meters, a list of x-y

-z coordinates of the cuboid center in the

global frame.

4 "size": <float > [3], estimated bounding box

size in meters: width, length, height.

5 " rotation ": <float > [4], Estimated bounding

box orientation as quaternion in the global

frame: w, x, y, z.

6 " velocity ": <float > [2], estimated bounding

box velocity in m/s in the global frame: vx,

vy.

7 " detection_name ": <str >, the predicted class

for this sample_result , e.g. car, pedestrian .

8 " detection_score ": <float >, object

prediction score between 0 and 1 for the class

identified by detection_name .

9 " attribute_name ": <str >, name of the

predicted attribute or empty string for

classes without attributes .

10 }

11

for what concerns the attribute_name, it is ignored for classes without
attributes. There are a few cases (0.4%) where attributes are missing also
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for classes that should have them. We ignore the predicted attributes
for these cases.

Detection challenges take into account ten different detection classes, they
are:

• car with the associated attributes vehicle.{moving, parked, stopped} and
detection range equal to equal to 50m.

• bus with the associated attributes vehicle.{moving, parked, stopped} and
detection range equal to 50m.

• bicycle with the associated attributes cycle.{with_rider, without_rider}
and detection range equal to 40m.

• barrier with a detection range equal to 30m.

• construction_vehicle with the associated attributes vehicle.{moving,
parked, stopped} and detection range equal to 50m.

• motorcycle with the associated attributes cycle.{with_rider, without_rider}
and detection range equal to 40m.

• pedestrian with the associated attributes pedestrian.{moving, standing,
sitting_lying_down} and detection range equal to 40m.

• traffic_cone with a detection range equal to 30m.

• trailer with the associated attributes vehicle.{moving, parked, stopped}
and detection range equal to 50m.

• truck with the associated attributes vehicle.{moving, parked, stopped}
and detection range equal to 50m.
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The conversion algorithm is entirely written in Python language making
use of the NuScenes devkit, in order to easily navigate the database and the
prediction resulted from the detection task, also the vcd library developed
by the ASAM member organization called Vicomtech. It is a very useful
tool to instantiate the OpenLABEL objects and wrap information within
them. The converter takes as inputs the database structured as previously
explained and it retrieve all the information from the collection process
stored in the relational database, such as the ego pose, timestamps, logs,
sensor information, location, samples file name and they are grouped in
order to be organized following the OpenLABEL guidelines. Moreover, the
coordinate systems are added to the OpenLABEL file with their parents,
children and pose with respect to parent, the coordinate systems of the maps
are added as scene_cs with vehicles as children, vehicles reference systems
are added as local_cs with map as parent and sensors as children, sensors are
added as sensor_cs with vehicle as parent. In order to make the database as
standardized as possible, the pose with respect to the parent is expressed as a
4x4 spatial transformation matrix that represent rotation and translation of
the reference system with respect to the parent, because it is a more popular
formality. The transformation from the quaternion used by NuScenes to the
4x4 transformation matrix is the following:

R =


1 − 2(q2

y + q2
z) 2(qxqy + qzqw) 2(qxqz − qyqw)

2(qxqy − qzqw) 1 − 2(q2
x + q2

z) 2(qyqz + qxqw)
2(qxqz + qyqw) 2(qyqz − qxqw) 1 − 2(q2

x + q2
y)


Where q = qw + qxi + qyj + qzk

All the streams such as GPS/IMU, lidar, radar and camera are added, in
particular the cameras streams are reported with the pinhole camera intrinsic
properties through an intrinsics matrix K defined below, sensors also come
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with a short description.

K =


fx 0 cx

0 fy cy

0 0 1


Where fx and fy are the focal lengths expressed in pixels while cx and cy

are the principal components offset. At this point each frame is identified
with ordered integers starting from 0, based on where the frame is located
in time and cuboids can be added to the frame they refer to. The name
given to each cuboid is composed by the class of the detected object plus
the integer n for the n − th object detected for its class in the whole dataset,
for example if a car is detected and it is the third until that moment, the
name of such object will be "car3 ". Another important information reported
in the ASAM OpenLABEL file is the name of the coordinate frame that the
cuboid translation and orientation are expressed with respect to. Since each
annotation is made with respect to the global reference frame, all the cuboids
will now refer to the coordinate system of the a specific map. At the end, the
coordinates of the cuboid’s center point, its orientation as a quaternion and
the width, length and height in meters are taken from the annotation where
they belong to different keys and are stacked in a single array, compliant
to ASAM OpenLABEL. The final task of the code is to enrich the cuboids
with the detection score and the attribute in the object_data object and the
conversion is completed.
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Results

The architecture of the developed system is composed by multiple micro-
services that run in a local machine. Thanks to the Flask web micro-
framework, a RESTful set of APIs have been exposed in order to access the
micro-services from the front-end through the HyperText Transfer Protocol.
The back-end is composed by five requests:

• a POST request used to upload the custom dataset to be annotated.

• a POST request that when called make the annotation of the dataset
start.

• a POST request useful to execute the conversion process and generate
the ASAM OpenLABEL file.

• a GET request to retrieve the OpenLABEL compliant annotation in a
.zip file.

• a GET request to download the merged point clouds.

Each request sends back a response body in JSON format containing four
key-value pairs, a boolean one if the process succeed or failed, two for the
timestamps when the request has been received and the other when it is sent
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back, one last key contains the output file of the process encoded in base64
if the method generates one, otherwise it is "None".

Figure 4.1: Structure of the developed system.

In order to understand the performances of PointPillars, the model "point
pillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py" present in the MMDetection3D
framework trained by OpenMMLab, it has been evaluated with 8 gpus using
the available checkpoint "hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_202
00620_230405-2fa62f3d.pth" in the MMDetection3D repository. Motional
uses some metrics in order to evaluate the models, the metrics are listed and
described below. Firstly the well known mean Average Precision mAP
from the AP that in this case is calculated by defining a match considering
the 2D bounding boxes center distance d on the ground plane rather than
intersection over union (IOU), both in order to decouple detection from object
size and orientation and because if object with small footprints (for example
pedestrians and bikes) are detected with small translation error the IOU is 0.
This approach is used to not penalize vision-only methods which often have
large localization error. Four thresholds for center-distance are fixed and
they are D = {0.5, 1, 2, 3} meters. For each threshold the Average Precision
is calculated by taking as a match the predictions with the ground truth
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objects that have the smallest center-distance under the specific threshold,
moreover, only recalls and precisions greater than 0.1 are considered. The
Average precision is obtained by integrating the precision-recall curve varying
the confidence score, where the precision p is the number of the correct
predictions (true positive TP ) over the total predictions (True Positive +
False Positive TP + FP ), and the recall r is the ratio between the true
positive an the total number of ground truth (True Positive + False Negative
TP + FN). At the end AP is averaged over all the match thresholds and
the mean is computed across all the classes C.

mAP = 1
|C||D|

Ø
c∈C

Ø
d∈D

APc,d

In addition, a set of True Positive metrics are defined, they are all based on
prediction matched with a ground truth box using d = 2m center distance.
Tp errors are:

• Average Translation Error (ATE): it is the Euclidean center distance
in 2D expressed as meters.

• Average Scale Error (ASE) is the 3D intersection over union (IOU)
after aligning orientation and translation (1-IOU).

• Average Orientation Error (AOE) is the smallest yaw angle dif-
ference between prediction and ground truth, expressed in radians and
measured on a full 360◦ period except for barriers where it is 180◦.

• Average Velocity Error (AVE) is the absolute velocity error, cal-
culated as the L2 norm of the velocity differences in 2D expressed as
m
s .

• Average Attribute Error (AAE) is defined as (1 - acc) where acc =
attribute classification accuracy.
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For each TP metric the mean (mTP) is computed over all classes:

mTP = 1
|C|

Ø
c∈C

TPc

AVE and AAE are not calculated for cones and barrier because respectively
they are stationary and there are no attributes for them. Since cones do not
have a well defined orientation neither their AOE can be obtained. NuScenes
also define its custom detection score (NDS) in order to take into account
the detection performance and the quality in terms of box location, size,
orientation, attributes and velocity. It is defined as below:

NDS = 1
10[5mAP +

Ø
mT P ∈TP

(1 − min(1, mTP ))]

mTP is bounded between 0 and 1 since mAVE, mAOE and mATE can be
greater than 1. As reported in [24] the performances with 8 GPUs are:

Object Calss AP ATE ASE AOE AVE AAE
car 0.503 0.577 0.152 0.111 2.096 0.136

truck 0.22 0.857 0.224 0.220 1.389 0.179
bus 0.294 0.855 0.204 0.190 2.689 0.283

trailer 0.081 1.094 0.243 0.553 0.742 0.167
construction_vehicle 0.058 1.017 0.450 1.019 0.137 0.341

pedestrian 0.392 0.687 0.284 0.694 0.876 0.158
motorcycle 0.317 0.737 0.265 0.580 2.033 0.104

bicycle 0.308 0.704 0.299 0.892 0.683 0.010
traffic_cone 0.555 0.486 0.309 nan nan nan

barrier 0.466 0.581 0.269 0.169 nan nan

Table 4.1: Evaluation results of an inference of PointPillars with MMDe-
tection3D (Source [24]).

The system has been tested on the "mini" version of the NuScenes dataset.
Once the annotations are generated in the NuScenes compliant format they
are successfully and efficiently created following the ASAM OpenLABEL
format. In the table 4.3 are listed the object classes with the total number
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mAP: 0.3197
mATE: 0.7595
mASE: 0.2700
mAOE: 0.4918
mAVE: 1.3307
mAAE: 0.1724
NDS: 0.3905

Eval time: 170.8s

Table 4.2: Metrics mean (Source [24]).

of boxes generated over all the samples and converted to ASAM OpenLabel
format. These labels can be downloaded and it has been developed a visualizer
for such labels in order to understand the correctness of the annotations.

classes number of boxes
car 2728

truck 2035
trailer 225

bus 126
construction_vehicle: 611

bicycle 678
motorcycle 367
pedestrian 2316
pedestrian 2316

traffic_cone 478
barrier 146

Table 4.3: Number of bounding boxes per class.

The visualizer is developed using the language Python and the library
Open3D. Thanks to this application it is possible to navigate through the
point clouds, enriched with images from all camera in order to better under-
stand the surroundings, in addition it is possible to show only the generated
bounding boxes or if available also the ground truth, at the end the user can
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filter the bounding boxes to be displayed by their detection score. As it can
be seen in figure 4.2, bounding boxes maintain their orientation, location
and size during the conversion.

Figure 4.2: Visualizer

In order to obtain a real software as a service, Reply also provided a
user interface thanks to a web application developed using HTML, CSS and
JavaScript, in order to make the user capable of accessing the offered service
in a simple way, making it easier to grow in popularity between organizations
and reducing even more the time needed to interface with the system.
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Conclusion

In conclusion the tool can be used to automatically generate labels for a
custom dataset, followed by a manual check that integrates the already present
OpenLABEL structure, it extremely improves the annotation process, making
it faster and more efficient, in fact, a standardized format results in a minimal
learning curve for annotators that means reducing cost and effort. The
conversion makes annotation output compliant with a huge number of tools
and applications, for example participant companies are Deepen AI, Kognic,
Ansys Inc., Five, Peak Solution GmbH, Tata Consultancy Services Pvt. Ltd,
understandAI GmbH, Vicomtech and so on. The system developed for this
project become very useful when it comes to validate ADAS/Automated
Driving Systems through a simulated environment. In fact, it helps in
building a realistic ground truth to be reproduced in a virtual environment,
ensuring a faithful digital twin of the real world. Generated labels could
be also taken as input for a synthetic scenarios generator, dramatically
increasing the quantity and the quality of automotive annotated datasets.
New and better annotation models can be trained with a huge amount of
labeled data, thanks to the partial automation and the standardization of
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the labels. At the ASAM International Conference 2022, TATA Consultancy
Services estimated a 62.4% of reduction in time if the annotation process
is supported by AI, automation and standardization. This is an interesting
starting point to reach the fully automated annotation and standardization.
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Further Development

The project previously described can be seen as a starting point for many
further developments. For the first micro-service, the annotation tool, it can
evolve towards better models since, day by day, teams of researchers develop
different architecture and improve existing models, obtaining always better
performances. It can be implemented a model that combines both lidar
point clouds and camera images, for example choosing the Bird’s-Eye-View
(BEV) models that increase the robustness but need the support of powerful
hardware. For what concerns the converter micro-service, it can be added
the functionality of converting actions and events into the OpenLABEL
file, while maintaining it updated with the additional information introduced
by the new adopted annotation models. In order to make the process more
reliable and ensure the compatibility with other tools, the next step can be
the development of an OpenLABEL format validation software that would
helps even with the debugging process. For the user interaction point of view,
a visualizer integrated in the web application would be an improvement but
also a page where metrics and data are showed, evaluated and described.
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