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Abstract

Emotion analysis, a fundamental component of human-computer interaction, in-
fluences various domains, including content recommendation, image generation,
and psychological research. Images and music, as crystallizations of human culture,
inherently carry the emotions embedded by their creators. Analyzing the emotions
conveyed in these works has long been a prominent direction of exploration in the
field. Recent research in emotion analysis can be broadly categorized into two
main streams: emotion label classification and valence-arousal prediction. My work
primarily focuses on valence-arousal prediction. Valence represents the pleasure or
displeasure elicited by a stimulus, while arousal indicates the degree of excitement
or calmness. Both these metrics are crucial for the expression of human emotions.
In recent years, with the rapid development of computer vision research, people have
made breakthroughs in image and audio analysis. At the same time, multimedia
applications that combine music and images have become increasingly popular, from
advertising to movies to virtual reality experiences. Multi-modal analysis holds
great promise in these contexts. In this context, my research endeavors to construct
a multi-modal emotion prediction model employing metric learning. Throughout
the experiments, I compare two different architectures for the encoders, one based
on CNN (i.e. ResNet) and one based on more recent transformers. Different types
of training losses are also applied with the aim of not only facilitating the model
to acquire a shared latent embedding space but also allowing the model to learn
the label space of the corresponding modality. I assess the performance across
two types of encoders under this architecture, aiming to establish a foundation for
subsequent research.
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Chapter 1

INTRODUCTION

Emotion, which is one of the most important attributes that define human nature.
Likewise, the importance of emotion in human creation cannot be ignored. Through
the expression of music and images, people convey their emotions, transforming
inner experiences into tangible works of art. Music and images, as carriers of
emotion, have become powerful tools for expressing and sharing emotions.

Since the last century, people have been analyzing and predicting emotions. In
the process of modeling emotions, two directions have become the focus. They
are the emotion category model and the valence-arousal dimensional model, both
are widely used in research. My research focuses on the valence-arousal model,
in which valence represents one dimension in the emotion space, representing the
positive or negative evaluation of a stimulus, while arousal is another key dimension,
representing the energy level in the emotion. The model provides a systematic
approach to describing and understanding complex emotional experiences, providing
a structured framework for emotion analysis.

With the continuous development of deep learning research, data processing
methods are no longer limited to a single modality, and multi-modal models have
become a prominent trend. In the early days, people used data from another modal-
ity (such as text) as additional information to image data to construct multi-modal
models. These studies were mainly based on CNN encoders. However, with the
breakthrough of the Transformer-based architecture in the field of computer vision,
it can process data of various modalities. This shift has made the Transformer-
based architecture a highly regarded research direction, showing great potential for
development, especially in multi-modal tasks.

Nowadays, research on multimodal models has been increasing. Can multimodal
models effectively process data from different modalities based on emotional labels?
Is there a noticeable difference in performance based on encoders with different
architectures? These have become interesting research directions. For these reasons,
I initiated my thesis work.
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INTRODUCTION

My thesis work studies a multi-modal valence arousal label prediction model,
aiming to explore the performance comparison of CNN-based and Transformer
encoders on multi-modal emotion prediction tasks and attempt to identify the
differences in the capabilities of different encoders when handling data from various
modalities.

The experiment consists of two frameworks: a single-modal model for predicting
image or music valence-arousal labels and a multi-task multi-modal model that
aggregates single-modal models to predict similarity scores for image-music pairs
and the VA labels. Among them, the training of multi-modal models is based on
metric learning, which is optimized through the combination of multiple training
losses, aiming to lead the model to learn how to extract different modalities data
features under the shared embedding space. At the same time, the model also
needs to learn the connection between the valence arousal label and the image or
music separately.

The selection and training of encoders is the core of my thesis work. For
the CNN-based encoder, I chose ResNet pre-trained on ImageNet. Then, for
Transformer-based encoders, I selected separate encoders for images and music.
For image data, I used ViT (Vision Transformer), which was also pre-trained on
ImageNet. It was released in 2021 and achieved SOTA performance on a variety
of image processing tasks. For music data, I chose BEATs as the encoder, which
applies the same mechanism as ViT and is pre-trained on a large audio dataset-
AudioSet. A large number of experiments have proven that it has excellent audio
data processing capabilities.

In order to place the outputs of different transformer-based encoders in a shared
embedding space, I designed two strategies for aggregating the fully connected layer
after the feature extractor. The first strategy incorporates all information from
the output sequence of the transformer encoder into the fully connected layer, but
the cost is increasing model complexity. The second strategy reduces complexity
but sacrifices some information from the sequence. Additionally, comparative
experiments were conducted to assess the merits and drawbacks of each strategy.

Through rigorous experiments, the results indicate that the encoder based
on the Transformer architecture outperforms CNN in handling multimodal data.
Additionally, in the task of predicting valence-arousal labels for music, the Trans-
former architecture exhibits a significant performance improvement. Although the
performance enhancement in image emotion prediction is not as pronounced, it
still reaches a level comparable to that of CNN-based encoders, highlighting the
superiority of Transformer-based architectures in multi-modal tasks.

Following the completion of the experiment, I conducted a detailed visualization
of the experimental process and the performance of the models. This visualization
not only provides a more intuitive presentation of the training results but also
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INTRODUCTION

offers a richer understanding of the performance of the two different encoders in
this experiment.

Through this work, I hope to provide valuable experience to the emerging field
of multimodal emotion prediction, laying the foundation for its future advancement
and applications.

3



Chapter 2

STATE OF THE ART

In this chapter, I will have a comprehensive introduction of the background that
relates to my thesis work and state-of-the-art methods in this field. This chapter
will be divided into three different parts:

In the beginning, I describe in detail the research of emotion recognition, which
includes how researchers understand emotions and the mainstream methods for
quantifying emotions. Next, I will discuss music and image emotion recognition,
respectively, and introduce the development process and SOTA methods in this field.

The second part will center on the discussion of metric learning, which constitutes a
fundamental component in many existing cross-modal retrieval tasks. I will go over
a complete discussion of the mechanism of metrics learning and principles. Then, it
includes the evolution of metrics learning from single-modal to multi-modal models
and SOTA methodology.

In the final section of this chapter, I will elaborate on the core research direc-
tion of my work. I will detail findings in multi-modal models and provide an
overview of recent research advances.

4
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2.1 Emotion Recognition
Emotion is one of the most important aspects of human experience, and its
identification and prediction have been the focus of research. In this section, I
explore in detail how researchers model emotions and work to analyze the emotional
content embedded in images and music.

2.1.1 Emotion Model
As the basis of emotion recognition, people first model emotions; in recent research,
emotion modeling can be roughly divided into two approaches: categorical label
and dimensional label:

Categorical label: it can also be called discrete labels, which means people
use words to describe emotions, like "happy," "sad," "fear," "angry," and so on.
Researchers have been working on this approach since the last century, and the
model recognized by the academic community is based on Hevner’s affective ring [1]
in 1935 as Fig 2.1 shows. Hevner et al. interviewed several professional musicians for
their opinions on different musical chords. They conducted many experiments, and
they defined 67 emotional adjectives, which can be classified into eight categories:
dignified, sad, dreamy, serene, graceful, happy, exciting, and vigorous. Most of the
subsequent research on discrete labels is based on this model; Farnsworth et al. [2]
invited 200 unprofessional students and showed them musical phrases to get the
adjective. During the research, they redefined and regrouped the adjective into
ten groups. In 2003, Schubert et al.[3] attempted to refine Havner’s 67 emotion
adjectives into 46 and reclassify them into nine groups.

Language is the core way for humans to express themselves; there are many
obvious benefits to using adjectives to model emotions: first, adjectives as labels
are easy to explain, and people can receive intuitive information from labels and
match it with the corresponding data. Second, a suitable number of adjectives
are easy to annotate because the annotator can use their language as the label
when they check the data. However, as the research work went further and more
detailed, the drawback of this manner appeared. Compared with the richness of
human emotions, there needs to be more adjective categories for existing modeling.
But using a finer granularity does not necessarily solve the problem since the
language for describing emotions is inherently ambiguous and varies from different
person [4], and a larger number of emotion categories will increase the burden on
the subjects; recent research can reach 26 discrete categories [5] and even more,
accurately annotating these data is undoubtedly a heavy burden.

Dimensional label: different from the classification manner, the dimensional
approach focuses on the internal changes of human emotion. Researchers employ
various emotional dimensions represented by named axes to quantify the intensity of

5



STATE OF THE ART

Figure 2.1: Hevners eight clusters of affective terms

emotions. Participants are instructed to employ a broader range of descriptors when
characterizing the emotional aspects of music, which in turn yields foundational
factors (dimensions). Despite variations in terms, these factors yield similar
outcomes, as evidenced in psychological research [6]. Mainstream studies correspond
to the following three dimensions: valence, the extent of pleasure, from negative to
positive, arousal, the level of energy and stimulation, and dominance, the degree of
being controlled.

Russell proposed the pioneering study on this in 1980 [7]; they proposed a
circumplex model of emotion, constructed by valance-arousal dimensions. As Fig
2.2 shows, the positive emotions are distributed on quadrants 1 and 3 of the two-
dimensional coordinates, while negative emotions are the opposite. This model
can also be called the two-dimensional emotion space. Many studies based on this
model and define their objective as a regression task. This model allows for a direct
comparison of different emotions in two dimensions; however, this method is still
controversial since some people think it blurs important aspects of the emotion
process, like anger and fear; for this reason, some researchers introduced the third
dimension into the emotional space, the dominant. With an additional dimension,
the subject must annotate emotion in 3D, which will be more difficult. In summary,
the two-dimensional model offers a better balance and has become popular.

6
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Figure 2.2: Russell circumplex model

2.1.2 Music Emotion Recognition

As Chapter 1 mentions, emotional information becomes an important feature for
music retrieval. During the research, researchers found music stimulates people
in many ways, and emotional perceptions are always related to different musical
features [8]. So, the main issue of MER tasks is feature extraction; the accuracy
of the tasks will be directly affected by the quantity of data. The type of feature
extraction can be roughly classified into four groups: audio feature, symbolic
feature, lyric feature, and biological feature.

Audio features are the most widely and earliest studied in MER tasks. People
found that the valence dimension is usually associated with mode (major/minor)
and harmony (consonant/dissonant); on the other hand, the arousal dimension
is related to the pitch (high/low), loudness level, tempo, and timbre. The most
commonly used audio features include pitch, energy (i.e., loudness level), and
timbre. The work of Barthet et al. shows the timbre feature provides the best
performance in the MER system when used as an individual feature [9]. The most
commonly used timbre feature is MFCC, which represents the peak of the spectrum;
spectral features are considered to be manifestations of correlations between vocal
tract shape changes and articulatory frame movements. Nowadays, it has become
the most commonly used feature.

Symbolic features mostly refer to features extracted from music scores. Char-
acteristics of symbolic musical scores are often represented by MIDI (Musical
Instrument Digital Interface); MIDI is a music file format that contains precise
sequences of pitch, intensity, etc. In the research of Chen et al. [10] built a neural
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network-based architecture and tried to extract features from MIDI files. Finally,
they obtained an acceptable result and made the model sufficiently robust. However,
compared with audio features, there are still fewer studies based on symbol features.

Lyric feature has always been an important feature in music. From classical
opera to current pop music, most artists use lyrics as emotional carriers. With
the rapid development of natural language processing, researchers began to turn
their attention to lyrics. For the lyrics extraction, people usually base on NLP
technical, like BOW, n-grams [11], etc. It is worth mentioning that Wang et al. used
Tf-idf technical to model rhyme information and got a significant result [12]. Some
studies try to use lyrics as an additional music feature and construct a multimodal
model, like the research of Laurier et al.; they built a machine-learning model and
trained it with audio-only and lyrics-only and mixed them. The result shows that
even though lyrics-only performance is worse than audio, it has a complementary
relationship with music and can be combined to improve a classification system
[13]. This result also shows the drawback of the lyrics feature. Different types
of language may distort the meaning of the lyrics, and some music changes the
normal word order to suit the melody and rhythm [14]. So, in recent research,
the lyrics feature is always used as an additional feature and combined with other
audio features.

Biological feature: Music stimulation brings people many feelings, which
include biological signal. In recent years, researchers have made bold attempts to
generalize and collect data from subjects. [15] used functional magnetic resonance
imaging (fMRI) data collected while participants listened to various film soundtrack
excerpts. The work of Keelawat et al. [16] used electroencephalography (EEG) as
a feature to identify music emotions; it can effectively capture information about
emotions from the brain and has the characteristics of high temporal resolution
and low cost. EEG has become the earliest and most commonly used biological
signature. With the development of medical technology and wearable devices,
collecting peripheral physiological signals such as heart rate (HR) and body surface
temperature (TEMP) has become convenient and fast. Although compared to the
research on other music features, the study based on biological features is still in
its infancy, but it has shown enough value to drive people to research it.

From the beginning of this century, people have already started studying machine
learning techniques to achieve music emotion recognition. Li et al. [17] considered
the MER a classification task. They tried to extract timbre, rhythmic, and
pitch features and used SVM as the multi-label classifier, but the results show
that different emotion labels have a significant difference. Liu et al.’s [18] study
extracted feature values from training music files through PsySound2, generated a
music model from the generated feature data set through a classification algorithm,
and used it to detect the emotion perceived in music clips. The model achieved
satisfactory results. On the other hand, Yang et al. treat MER as a regression task

8
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[19], and their study is also considered one of the earliest works to regard MER as
a regression problem; this study uses existing toolkits to extract 114 audio features
and input them into SVR.

With the popularity of neural networks, researchers have started constructing
the MER model based on it. [20] proposed a model based on CNN trained with
the original time and frequency domain information. [21] uses various feature
extraction methods to convert the original data into spectrograms and then inputs
the spectrograms into CNN for emotion recognition. Dong et al. [22] introduced
BCRSN, called Bidirectional Convolutional Recurrent Sparse Network, which
combines the advantages of CNN and RNN. CNN can learn features adaptively,
while RNN is more suitable for processing sequence data. Meanwhile, with the
lyrics feature, people try to combine it with other music features, [23] proposed
a bimodal deep Boltzmann machine, which consists of two 2-layer DBM (deep
Boltzmann machine) networks, one for audio and one for lyrics. They conducted a
lot of experiments and proved this method is effective.

During the research, people realized the importance of time series to MER since
the emotion does not stay the same in a single song. For this reason, researchers
applied functional blocks that are good at handling long sequence data, like LSTM.
[24] Segmented the music into seconds and extracted the super-segmentation
features of each segment, which were then input into LSTM to obtain the dynamic
change process of VA values; they found that LSTM correlated better with song-
level annotations than machine learning methods. Meanwhile, people also tried to
apply the attention mechanism to the model. [25] applied LSTM combined with
an improved attention mechanism and successfully proved that the performance of
the combined attention mechanism is better than that of LSTM only. The work
of Ma et al.[26] used the attention mechanism to dynamically integrate different
time scales to learn music’s temporal and hierarchical information and obtained
advanced results. Moreover, the attention mechanism is also applied to the feature
extraction process; the work of [27] applies the attention mechanism to extract
emotion-related features and then inputs the automatically extracted features into
GRU-SVM to obtain the classification results. The experimental results show that
the manner is superior to most compared methods. With the introduction of the
Transformer architecture based on the attention mechanism, it can now handle
various data forms, and its performance in the field of MER has also become a
direction of my thesis work.

2.1.3 Image Emotion Recognition
Developing convolutional neural networks (CNN) has made them indispensable
in computer vision, especially in image emotion recognition. [28] CNNs are good
at extracting hierarchical features from images through iterative convolution and
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pooling operations. This hierarchical feature extraction enables the model to
abstract information from low-level edges and textures to high-level semantic
details, thereby comprehensively capturing the emotional cues embedded in images.
However, when researchers delved deeper into artistic imagery, they encountered
additional complexities.

While convolutional neural networks (CNNs) have proven effective at identify-
ing emotions in human facial images, artistic expression’s inherent diversity and
subjectivity require more nuanced approaches. In this regard, three features are
proposed for image data in this task [29]:

Low-level features, which are derived from elements of art, including color
and texture, etc. [30] proposed a novel CNN model that learns and integrates
content information from higher layers of a deep network and style information
from lower layers. They conducted extensive experiments on benchmark datasets
to demonstrate the superiority of the proposed representation.

Medium-level features act as mediators between high-level semantic content
and low-level elements and are typically applied in the context of more artistic
photos. Compared with high-level semantics and detailed information on low-level
elements, mid-level features provide a more abstract and general way to describe
images. In image emotion recognition, mid-level features may include artistic
principles, compositional styles, or more abstract visual elements that help capture
emotional expressions in artistic photos. Compared with semantically rich high-level
features, mid-level features are more suitable for processing images with certain
artistic and aesthetic value.

High-level features is the semantic content contained in an image. People
can easily understand the emotions an image conveys by recognizing the semantics.
[31] attempts to bridge the emotional gap between the image’s content and the
viewer’s emotional response through high-level concepts (HLC). It provides high-
level semantic and contextual information about images, and the results show a
high correlation with emotional categories.

Some researchers have also studied the task: [32] formulated the image emotion
recognition task as a probability distribution learning problem. Since image
emotions can be conveyed through visual features (e.g., aesthetic and semantic),
Zhao et al. proposed a new framework to solve this problem by fusing multi-modal
features. And they applied unsupervised domain adaptation technical. Likewise,
people have also tried to apply visual attention techniques to image emotion
recognition tasks.[33] proposed PDANet, which integrated spatial and channel-
wise attention into a CNN with an emotion polarity constraint and got a SOTA
performance. [34] developed a hierarchical attention mechanism in which polarity
and emotion-specific attended representations are aggregated for discriminative
feature embedding. They weighed the sample pairs adaptively under the guide of
the attention module and achieved a good performance.
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With the introduction of Vision Transformer (VIT) [35], transformer-based
architecture has begun to be applied to more and more computer vision tasks. Its
performance in image emotion recognition is also one of the focuses of my thesis
work.

2.2 Deep Metric Learning
Metric learning is a distance metric-based method that quantifies the similarity
or dissimilarity between objects. The goal is to reduce the distance between
similar objects while increasing the distance between dissimilar objects, as shown
in Figure 2.3. This could be an important strategy when precise data features
are crucial for accurate classification [36]. However, metric learning usually uses
linear projection, which is limited in solving real-world problems with nonlinear
characteristics. In recent years, deep metric learning has provided better solutions
for nonlinear data through activation functions, which has attracted the attention
of researchers in many different fields. [37] through learning multiple fine-grained
deep localized metrics and proposed a deep localized metric learning for visual
recognition. Meanwhile, deep metric learning has also proven to be an effective
method in audio recognition. [38]. Most of these studies are inspired by Siamese
and Triplet networks. We will introduce these two networks below.

Figure 2.3: Deep Metric Learning

As a metric learning method, the Siamese network receives pairs of images
(including positive samples and negative samples) and calculates the distance
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between image pairs through a loss function. We reduce the distance between
positive samples and expand the distance between negative samples to train the
network model. Initially, the Siamese network was used with neural networks for
signature verification [39]; the result shows the Siamese network is a very successful
model for optimizing the distance between objects, thereby improving classification
performance.

The triple network is an extension of the concatenated network principle, which
contains three objects - anchors, positive samples, and negative samples [40]. The
triple loss function aims to minimize the distance between anchors and positive
samples while maximizing the distance between anchors and negative samples. This
approach improves the discriminative power of the learned metric space and proves
to be effective in tasks such as video-based embedding models [41].

Recent advancements extend metric learning into the realm of cross-modal sce-
narios. Xu et al. proposed the Deep Adversarial Metric Learning approach(DAML),
which maps labeled data of different modalities into a shared latent feature sub-
space through nonlinear mapping. This subspace is aimed to minimize intra-class
variation and maximize inter-class variation to ensure that the differences for
each data pair captured by the two modalities from the same class are minimized
separately [42]. Narrowing the gap between different modalities by identifying
the embedding space with maximum correlation is one of the key approaches in
cross-modal retrieval using metric learning. Meanwhile, people also consider the
cross-modal heterogeneous issue, for example, the differences between the features
of audio and visual modalities. [43] designed a novel adversarial metric learning
(AML) model for audio-visual matching. It generates modality-independent repre-
sentations via adversarial learning while learning robust similarity measures for
cross-modal matching via metric learning. Inspired by previous work, zhao et
al. proposed a novel cross-modal loss based on triplet loss and log-ratio loss to
accurately optimize the distance of multi-modal embeddings based on emotional
similarity. This is the way that I handle cross-modal data in my thesis work.

2.3 Multi-modal Model

As mentioned in the previous chapter, As the research continues to deepen, people
are no longer limited to tasks involving single-modal data. In the first subsection,
the researchers aim to enhance the performance of music emotion recognition by
incorporating lyrics as additional features, marking an early stage of multi-modal
research. With the continuous advancement of metric learning and computer vision,
people have tried to develop multi-modal models based on CNN and achieved good
results.
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2.3.1 CNN-based Multi-modal Model
In 2017, Arandjelovic et al. The audiovisual correspondence (AVC) task was
studied [44]. Given a video clip and an audio clip, the model needs to predict
whether they are related, which constitutes a cross-modal retrieval task. To this
end, they designed two independent CNN-based encoders for video images and
audio and reorganized the encoding features into a decoder composed of two fully
connected layers. After extensive experiments, the results show that the model
can learn the characteristics of different modal data simultaneously and achieve
excellent performance. Based on their work, [45] developed an end-to-end image-
music emotion retrieval model by integrating deep metric learning. They designed
similarities for images and music based on dimensional labels. Similarly, they
employed CNN as an encoder. They designed a series of loss functions according to
deep metric learning, aiming to enable the model to learn a shared latent embedding
space for different modalities. This approach achieved state-of-the-art (SOTA)
performance. As an improvement, [46] tried to design two different encoders for
image and audio. Specifically, they integrated spatial, channel-wise, and temporal
attention into a visual 3D CNN and temporal attention into an audio 2D CNN and
achieved good results. Time series is also an important feature for audio data, so
the attention mechanism has also been valued. [47] uses the attention-based long
short-term memory (LSTM) model to select audio chunks and uses it to retrieve
the entire audio with the corresponding video. In the latest research, people have
begun to try to design recommendation models based on the matching of images
and music based on dimensional labels [48].

At the same time, people have tried to adopt various methods to design multi-
modal models based on image-text tasks. [49] designed two CNN-based image
and text encoders, respectively. The model minimizes discriminative loss through
supervised learning in label space and shared embedding spaces. The weight-
sharing strategy is implemented to mitigate cross-modal differences in the common
embedding space of multimedia data. The results demonstrate the effectiveness of
the method.

2.3.2 Transformer-based Multi-modal Model
With the ongoing in-depth research into transformer architectures, researchers
can now utilize data from various modalities as input to this framework. This
has positioned transformers as popular encoders in current multi-modal models
and an increasing number of studies are now attempting to construct transformer-
based multi-modal models. For example, CLIP, launched by Openai in 2021 [50],
uses data in two modalities: text and image. Researchers collected 400 million
pairs of text-image data on the Internet and pre-trained the model to learn the
representation of the image. The results proved that this method could compete
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with a variety of fully supervised baselines with zero-shot and demonstrate the
development potential of the transformer architecture in the cross-modal field.

At the same time, people are also studying whether this architecture is equally
competitive in cross-modal emotion recognition tasks. Huang et al. [51] con-
ducted a study on a multimodal transformer architecture for continuous emotion
recognition. They utilized a transformer encoder to encode audio and visual
modalities, employing multi-head attention to generate a multimodal emotional
intermediate representation from their shared semantic feature space. The model’s
self-attention mechanism facilitated effective learning of long-term temporal depen-
dencies. Additionally, they improved performance by integrating the Transformer
model with LSTM, achieving superior results compared to other methods. Their
study demonstrated the effectiveness of the attention mechanism in the Transformer
architecture for continuous emotion recognition. [52] Use the transformer-based
GPT model and RNN to model the data of three different modalities: audio, video,
and text, respectively, and then use cross-modal fusion technology to obtain excel-
lent results and make the model have sufficient robustness. [53] focuses on speech
emotion recognition; they introduce a Transformer-based multi-modal learning
framework customized for conversational emotion analysis. The framework models
speech patterns and conversation content, and experimental results demonstrate
the effectiveness of the method. A large number of studies have proven the role
of transformer architecture in cross-modal emotion recognition, which has also
become a strong basis for my thesis work.
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Chapter 3

METHODOLOGY

3.1 Task Definition
My study builds on the work of Zhao et al. (2020) [45], who proposed a cross-
modal model based on metric learning, focusing on image music matching and
emotion label prediction. Specifically, for an input image-music pair, their model
outputs similarity scores and continuous valence-arousal labels for the image and
music. They adopted a CNN-based encoder in their work. However, since CNNs
are designed for processing image data and may not effectively capture temporal
features in music data, I decided to explore the effectiveness of the Transformer
architecture, which incorporates an attention mechanism and is better suited
for capturing temporal features. To distinguish them, I name the two methods
“CNN-based encoder” and “Transformer-based encoder”.

To do this, I built two model frameworks: one using a CNN-based encoder and
the other using a Transformer-based encoder. In addition, I conducted experiments
on continuous valence-arousal label prediction for music and image branches. In
the following sections, I will detail the selection of the dataset and the construction
of the model architecture.

3.2 Dataset
Given that my thesis work was based on deep neural networks, the necessity of
a large dataset became critical. On the other hand, in order to ensure that the
model effectively learns the features of multi-modal data, the selection of music
and image corpora should also be fully considered.

For music corpora, it must cover a wide range of music styles, including pop,
classical, electronic, jazz, etc. This diversity is crucial for the model’s emotional
expression in different musical contexts. At the same time, detailed emotional

15



METHODOLOGY

annotation is equally important. Annotation can focus on the precise classification
of emotions such as joy, happiness, and sadness; or the dimensional annotation
of valence and arousal. This information allows the model to capture different
emotional dimensions skillfully during the learning process. Finally, a wide range
of artists and eras need to be considered in the dataset. This inclusiveness ensures
that the model can adapt to the changing trends of different musical cultures and
time periods.

Ensuring that the image corpora are diverse and representative is crucial for
effective training of deep neural networks. The dataset should contain a wide
range of images, from natural scenes and cityscapes to portraits and everyday
objects. In terms of contextual diversity, images should cover a range of scenes,
including indoor and outdoor environments, different lighting conditions, and
different viewing angles. This broad contextual representation ensures that the
model can consistently recognize and interpret emotions in different situations,
thus contributing to its adaptability. Furthermore, displaying images of different
artistic styles enables the model to identify and integrate emotional elements in
various visual forms. This inclusiveness enhances the model’s flexibility, allowing it
to learn and generalize image information effectively.

Finally, in the design of multi-modal labels, unbalanced distribution should be
avoided, and there should be enough samples for each emotional state to prevent the
model from learning bias in certain emotions. At the same time, the rationality of
label design should also be ensured. Multimodal labeling systems should be scalable
and able to accommodate growing data sets and label types without compromising
performance and efficiency.

Based on the above considerations, I decided to use the image-music large-scale
cross-modal emotion dataset launched by Zhao et al. in 2020, Image-Music-Emotion-
Matching-Net (IMEMNet) [45], which consists of an image corpus and a music
corpus based on continuous emotion labels. The dataset contains 140k image-music
pairs. For multi-modal labels, the author calculated the similarity score based on
the continuous emotion labels of its single-modal data, as Formula 3.1 shows.

S(Ii, Mj) = exp(−d(yIi , yMj )
σm

n

), i = 1, ..., n, j = 1, ..., m, (3.1)

Where yIi and yMj stands for the continuous emotion labels (valence-arousal label)
for image Ii and music Mj. d(·), is the Euclidean distance between labels from
different data. σm

n set as the average Euclidean distance between all music and
image labels. The design of this multi-modal label integrates the emotional label
features of images and music to provide a comprehensive and consistent multi-modal
emotional representation.

For the image-music pairs construction, since the number of all possible pairs
is m × n, it will lead to hundreds of millions of pairs. In order to avoid the
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scale explosion, for a single music clip, the author selected 50 images, 10 of them
with the highest similarity score and 10 with the lowest score; the remaining 30
were randomly selected. The distribution of similarity score as Fig 3.1 shows, the
sampling strategy causes a high peak on the high matching score (> 0.8) and low
matching score (< 0.2). This kind of distribution automatically offers an adequate
number of positive and negative pairs. For the train-test split, the training set,
verification set, and test set do not intersect.

(a) Training set distribution (b) Validation set distribution

(c) Test set distribution

Figure 3.1: Similarity score distribution.

The dataset was constructed by music corpora, i.e., the Database for Emotional
Analysis in Music (DEAM), and the image corpora is composed of three different
sub-datasets, which are The International Affective Picture System (IAPS), Nencki
Affective Picture System (NAPS), and EMOTIC. Table 1 shows the details of the
dataset and how image-music pairs are allocated on the training, validation, and
test sets.
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Training Validation Test Total
Songs Num. 1,442 90 270 1,802

Songs clips Num. 21,804 1,750 6,759 30,313
Images Num. 19,770 1,275 4,918 26,026
Paires Num. 109,129 8,741 26,018 143,888

Table 3.1: Statistics of IMEMNet dataset

Subsequently, I will provide a detailed introduction to the information and
composition of these sub-datasets.

3.2.1 Image Corpora
As mentioned before, the image corpus contains 20,496 images from three different
data sets. The labels of all sub-datasets are annotated using valence-arousal to
ensure the consistency of the labels.

The International Affective Picture System (IAPS) [54] Contains 1,182
documentary-style natural color images widely used in psychological research to
evoke emotions. Each image in the set has been painstakingly annotated by
approximately 100 college students on the Valence, Arousal, and Dominance (VAD)
dimensions on a 9-point scale. In my task, in order to avoid a complex label space,
only the valence and arousal labels are taken, and discarded the dominance label.

(a) Shopping scene (b) Theft scene

Figure 3.2: Examples of IAPS dataset

From natural scenery to life scenes, from human portraits to animal photos,
this database includes a wide range of photos of various types. It is also worth
noting that this database also contains some carefully designed images to recognize
completely different or even opposite emotions in the same people and scenes.
As shown in Fig 3.2, the scenes of the two images are the same: a woman in
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the supermarket; (a) shows her walking in the supermarket, conveying a leisurely
feeling (valence: 5.31, arousal: 3.26), while the content of (b) is that the woman
was stealing in the same supermarket. She secretly put the products on the shelves
into her bag. This picture conveys a sense of tension (Potency: 3.91, Arousal:
5.17). This intelligent design helps force the model to discern and learn subtle
high-level features related to the emotion depicted in the image, going beyond
simplistic predictions based solely on low-level features such as color and lines.
By presenting contrasting scenes within the same visual context, the model is
challenged to transcend the limitations of basic visual elements and grasp the
complexity of human emotion interpretation in complex visual scenes.

Figure 3.3: IAPS valence-arousal label distribution

In terms of labels, IAPS provides a complete and detailed continuous emotion
label, and each picture is annotated with a valence-arousal label ranging from 0
to 9. In order to ensure the labels from different datasets are on the same scale,
the labels are normalized in the range 0 to 1. Fig 3.3 shows the distribution of
labels: Most labels are assigned in the central region of the distribution and lack
high-valency low-arousal image labels and low-valency low-arousal image labels.

Nencki Affective Picture System (NAPS) [55] is a set of image databases
based on continuous emotion labels launched by the Laboratory of Brain Imaging
(LOBI) of the Polish Academy of Sciences in 2014. It also extends a variety of
databases for different tasks, such as NAPS BE [56] based on discrete emotion
labels, NAPS ERO [57] based on cross-sexual comparison study and SFIP dataset
[58] based on the study of different phobias. Today, this dataset has been recognized
by the academic community and is widely used in various studies.
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The dataset contains a total of 1,356 real high-fidelity photos, carefully divided
into five different categories: individuals, facial portraits, animals, inanimate objects,
and landscapes. Each category contains a variety of visual stimuli covering a wide
range of human experience and environmental contexts. The inclusion of these
carefully curated categories helps enhance the representative richness of the dataset,
enabling comprehensive exploration of all aspects of visual content.

Figure 3.4: NAPS valence-arousal label distribution

These labels are continuous emotion labels annotated by 204 participants, most
of whom are from Europe. The scale of the labels is in the range from 0 to 9. Fig
3.4 shows the label distribution of NAPS. Affective space in NAPS compared to
IAPS. NAPS ratings demonstrated a more linear correlation between valence and
arousal dimensions, in contrast to the “boomerang-shaped” relationship observed
in IAPS. This difference is mainly attributed to the arousal dimension. Marchewka
et al. [55] studied this phenomenon: in IAPS, both positive and negative images
were rated as arousing, while neutral images were placed at the opposite extreme.
In contrast, NAPS is characterized by negative images being rated as arousing,
positive images being rated as relaxing, and neutral images being in the middle of
the arousal scale. Selecting these two databases as image corpora at the same time
can make them complementary in label space, allowing the model to learn more
comprehensively.

EMOTIC, named after EMOTions In Context. This is a dataset of human
images in different natural situations [59] [5], which is also the largest image sub-
dataset in the image corpora with 23,082 images. The Emotic dataset exhibits a
distinctive domain characteristic, given that all contained images are human-centric;
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fig 3.5 shows some examples of the Emotic dataset. This divergence renders Emotic
somewhat distinct from the other two sub-datasets and contributes to a more
comprehensive perspective for the model.

Figure 3.5: Examples of EMOTIC dataset

Emotic offers 26 discrete emotion categories and continuous emotion labels in
three dimensions (Valence, Arousal, and Dominance) from 0 to 10. The annotation
work was provided by the Amazon Mechanical Turk (AMT) platform. The creator
of the dataset employs a large number of non-professionals (about 20,000) from
the platform, which provides a strong guarantee for the label consistency and
stability of the data set. Interestingly, the label distribution of the Emotic dataset
is significantly different from the other datasets, as shown in figure 3.6:

After label normalization, I found that the labels are evenly distributed in the
label space. The Emotic label is noteworthy for its comprehensive nature, covering
a wide range of emotional expressions, including extreme cases. This balanced label
distribution has significant advantages for the model. This diversity ensures that
the model is exposed to the nuances of a variety of emotions, allowing it to learn
powerful features that generalize well to unseen data. Furthermore, the inclusion of
extreme cases in labels poses a challenge for models to capture subtle distinctions
and complex patterns in emotional expressions. Additionally, a balanced label
distribution helps mitigate biases that may arise from imbalanced datasets. Models
trained on uniformly distributed labels are less likely to be biased toward predicting
general emotions, thus promoting a fairer learning experience.

In summary, these three image databases achieve extensive coverage of images
from different domains, scenes, and subjects. Simultaneously, as fig 3.7 shows,
the comprehensive continuous emotion labels encompass nearly all conceivable
scenarios. This not only provides an ample amount of data for the models but also
ensures that the models have sufficient transfer ability and robustness to handle
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Figure 3.6: EMOTIC valence-arousal label distribution

Figure 3.7: Image corpora label distribution

diverse emotional expressions in various application scenarios effectively.
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3.2.2 Music Corpora
Considering the music corpora of the dataset, the author selected MediaEval
Database for Emotional Analysis in Music (DEAM) [60], which was released in
2018. This dataset is constructed by several royalty-free music sources: freemu-
sicarchive.org (FMA), jamendo.com, and the medleyDB dataset [61]. It contains
2058 pieces of music, and all the music in the dataset is re-encoded to have the
same sampling rate, i.e., 44100HZ. The length of songs is diverse; most of them are
around 45 seconds long, but some songs can reach a maximum length of 600 sec-
onds. The coverage of music types is wide, from classical music to pop music, from
instrumental solos to operas. The richness of its diversity contributes significantly
to enhancing the model’s generality and robustness.

For the labels of the music, which are annotated by 195 different raters. Each
rater is responsible for annotating a part of the song. This database provides
diverse emotional annotations: the valence-arousal labels for a single song and
dynamically. The song-level labels are annotated in the range of 0 to 9, and the
dynamical labels are generated every 500ms; the range is from -1 to +1. It is
worth noticing that they removed the labels from the first 15 seconds due to the
instability of the annotation at the start of the clips. The music corpora are based
on dynamic annotations; they cut the song into two-second music clips and average
the dynamic labels. In order to ensure the labels from different corpora are on the
same scale, the range is re-scaled in the range from 0 to 1.

Figure 3.8: Music valence-arousal label distribution

Fig 3.8 shows the valence-arousal label distribution of music corpora. The
majority of labels are allocated in the range from 0.5 to 0.8 on valence and 0.4 to
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0.7 on arousal. It can also be observed that the low price high arousal area and
the high price low arousal area have no distribution labels, and the low price low
arousal represents boredom, which is an emotion that music should avoid making
the listener appear. And high prices always bring a certain level of arousal, so both
situations are acceptable.

In addition, this dataset also offers some features extracted by openSMILE
[62], which contains the features for 500ms windows, with multiple kinds of audio
features. Since my task is focused on cross-modal learning, I constructed the feature
in another way.

In summary, in order to obtain a sufficient amount of music data, each piece of
music is cut into 2-second clips. Excluding clips at the beginning and end of the
song, the total number of clips is 35,817. The training set contains 28,825 clips,
and the validation set and test set have 1,759 and 5,223 clips, respectively. These
clips do not overlap each other.

3.2.3 Data Preprocessing
Data preprocessing serves as a critical conduit in model training, facilitating a
better understanding of input information. Thoughtfully designed and selected
types of data preprocessing enable the model to effectively capture key information
within the input data, thereby enhancing the model’s expressive capabilities.

These carefully crafted Data preprocessing manners not only aid the model in
learning inherent associative information within the data but also, particularly
in cross-modal training, support the model in comprehending correspondences
between different modalities, consequently improving performance in cross-modal
tasks.

Music Preprocessing

For music data, to match it with the encoder, a variety of audio features are ex-
tracted: Mel Frequency Cepstral Coefficients (MFCCs), Chroma features, Spectral
contrast, Tonal centroid, and Mel spectrogram. Subsequently, I will elaborate on
these features and provide a visual representation for better clarity.

Mel Frequency Cepstral Coefficients (MFCCs) mainly represent the
spectral characteristics of audio signals, especially the frequency distribution in the
Mel frequency domain. Specifically, MFCC captures the energy distribution of the
audio signal on the spectrum, as well as the important frequency components on
the Mel frequency axis. The calculation process of MFCC covers framing, Fourier
transform, Mel filter bank application, logarithmic operation, and discrete cosine
transform (DCT). This series of operations converts the audio signal from the
time domain to the Mel frequency domain, ultimately generating a set of MFCC
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(a) High valence-arousal label (b) Low valence-arousal label

Figure 3.9: Visualization of MFCC with the opposite level of valence-arousal
labels

coefficients that reflect important frequency characteristics in audio related to the
human auditory system. Fig 3.9 shows the visualization of MFCCs, which contains
audio for two levels of valence valance-arousal labels; high-level is va label higher
than 0.7 and low-level means lower than 0.3.

Chroma features are a set of features used to represent tonal information in
audio. Chroma features focus primarily on the distribution of tones and chords
without taking into account the pitch of the audio signal. Chroma features can
be used to analyze chord structures, melodic contours, and pitch changes in audio.
Similarly, Fig 3.10 shows the visualization of Chroma features at different levels of
VA levels.

(a) High valence-arousal label (b) Low valence-arousal label

Figure 3.10: Visualization of Chroma features with the opposite level of valence-
arousal labels

Spectral contrast is an audio characteristic that describes the difference in
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intensity between different frequency bands in the audio spectrum. It is useful
for capturing harmonic structure, resonant properties, and other changes in the
frequency spectrum in audio. In the field of music, it can be used to distinguish
different musical instruments or identify different styles of music. In speech pro-
cessing, it can also be used to extract speech features. Its visualization is shown in
Figure 3.11.

(a) High valence-arousal label (b) Low valence-arousal label

Figure 3.11: Visualization of Spectral features with the opposite level of valence-
arousal labels

Tonal centroid is a feature used to characterize the distribution of pitch in
the audio spectrum. It is obtained by computing the center frequencies of various
frequency bands in the spectrum along with their corresponding energy weights.
The tonal centroid provides the average pitch position of the audio spectrum,
reflecting the distribution of pitch in the audio. In music analysis, the tonal
centroid is often employed to differentiate the pitch characteristics among different
musical pieces—fig 3.12 shows the visualization.
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(a) High valence-arousal label (b) Low valence-arousal label

Figure 3.12: Visualization of Tonal centroid with the opposite level of valence-
arousal labels

Mel spectrogram is a spectral representation method used for audio signal
analysis. It uses Mel filter banks to process signals in the frequency domain. The
Mel spectrogram mainly represents the spectral distribution of the audio signal
on the Mel frequency axis rather than the traditional linear frequency axis. This
representation is more consistent with the way the human ear perceives pitch, so it
is widely used in speech processing and music analysis. The visualization of the
mel spectrogram is shown in Fig 3.13.

(a) High valence-arousal label (b) Low valence-arousal label

Figure 3.13: Visualization of Mel spectrogram with the opposite level of valence-
arousal labels

As shown from the visualization above, there are clear differences in these
characteristics for music with different valence-arousal levels. These features can
more effectively build high-performance emotion recognition models. This helps
improve the model’s sensitivity to music-emotional information, making it more
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reliable and effective in practical applications.
Musical features were generated by extracting 12 chroma features, 7 spectral

contrast features, 40 MFCCs, 6 tonal centroids, and 128 features from the mel
spectrogram. Assuming that the duration of the music clip is 2 seconds, the
characteristic length along the second dimension is 87. In order to align the music
data with the input dimensions of the CNN-based encoder, the data needs to be
reshaped into the format of (H, W, C). Therefore, these features are connected
and tiled to achieve the shape of (193, 87, 3). To omit the feature extraction step
during training, I pre-extracted the music features and stored them in a Numpy
matrix using the Numpy library. as shown in Figure 1.

Figure 3.14: Music features extraction

For transformer-based encoders, the extraction of music data is simplified and
only the waveform data of the music is required. Given a sample rate of 44100,
the length along the second dimension is determined by the duration of the music
(2 seconds) multiplied by the sample rate. In summary, the shape of the musical
feature will be (1, 88200). Likewise, for the music features in this case, I used the
TorchAudio library to pre-extract them and stored them using the Pytorch library.

Image Preprocessing

For the feature extraction of image data, current methods are relatively mature.
Specifically, different-sized images are first resized to dimensions of 224 by 224.
Subsequently, RGB features are extracted, and the features are normalized based
on the statistical data (mean, standard deviation) from the pre-training database
(ImageNet 1K) of the image encoder. The final result is data with a shape of (224,
224, 3). The current methods for feature extraction of image data are relatively
mature. Specifically, images of different sizes are first resized to 224×224 size.
Subsequently, RGB features are extracted and normalized based on the statistics
(mean, standard deviation) in the image encoder pre-training database. The final
result is data of shape (224,224,3). For CNN-based encoders, the data will be
stored in a NumPy matrix, while for Transformer-based encoders, the data will be
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preprocessed using a pre-trained preprocessor and will be stored in a tensor matrix.
The process is shown in Figure 3.15.

Figure 3.15: Music features extraction

3.3 Model Structure
A reasonable model structure has many advantages during the training process
and plays a crucial role in the performance, convergence speed, and generalization
ability of the model. First, it enables the model to better capture key features in the
input data, thereby improving the model’s performance. With carefully designed
hierarchies and activation functions, the model can learn nonlinear relationships in
the data more effectively, thereby improving its expressive power.

Secondly, a reasonable model structure can balance the complexity of the model
and avoid overfitting. Appropriate regularization techniques, judicious selection of
layers and nodes, and effective dropout methods help control the complexity of the
model and enhance its ability to generalize to unseen data.

In the following sections, I will go ahead and introduce the model structure used
in my thesis work in detail.

3.3.1 Model Encoders
As mentioned before, I attempted to use CNN-based encoders and transformer-
based encoders. For a CNN-based encoder, its output is a two-dimensional tensor
(includes batch size as the first dimension), which can be easily connected to
subsequent fully connected layers.

When moved to the transformer-based encoder, unlike that of a ResNet, the
output is a three-dimensional tensor. This poses a challenge when integrating it
with a fully connected layer. To overcome this. I’ve tried two strategies:
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The first method is to flatten the data in two dimensions, ultimately transforming
it into a 2D tensor. While this method retains all sequence information, it leads to
an exceptionally large input dimension for the subsequent fully connected layer,
approximately 150,000.

The second strategy draws inspiration from the Vision Transformer. In this
approach, a Class sequence (CLS) token is added to the first position of the output
sequence for classification tasks. The embedding of the CLS token aggregates
information from all other tokens, ensuring it retains the most relevant information
compared to other tokens. This method leverages the CLS token to capture and
consolidate essential information for downstream tasks. During the experiment, I
tried both strategies and compared their performance.

Next, I will detail the components of the model and its parameters.

Image Encoder: My image encoder is based on CNN and Transformer. For
CNN-based, I used an image encoder that is now widely used in the field of
computer vision, ResNet [37]. ResNet (residual network) is a deep convolutional
neural network architecture. Its main feature is the introduction of residual
learning, which directly adds the input to the output of the middle layer of the
network through a shortcut connection, thereby effectively solving the gradient
disappearance and gradient explosion problems in deep network training. For the
image part, ResNet50 is selected.

For aspects of transformer-based encoders, I selected ViT (Vision Transformer)
[35], which is an image classification model based on a self-attention mechanism,
which breaks through the conventional framework of traditional CNN in processing
image tasks. Compared with CNN, ViT pays more attention to the capture of
global information. By dividing the input image into small blocks and flattening
these blocks into a one-dimensional sequence, it achieves global interaction with
the overall image. Vision Transformer performs well in image classification tasks,
especially showing strong generalization capabilities on large-scale image data sets;
fig 3.16 shows the mechanism of ViT. To put the features from different modalities
into a shared embedding space, I added a fully connected layer after the image
encoder to reshape features into 512 dimensions. Table 3.2 shows the details of the
image encoder parameters.
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Figure 3.16: Vision Transformer

Encoder Parameters
CNN-based Input dimension Output dimension

Resnet50 (ImageNet) 1 (224, 224, 3) (2048,)
Fc (2048,) (512,)

Transformer-based
ViT (ImageNet) (224, 224, 3) (197, 768)

Fc (v1) 2 (151296,) (512,)
Fc (v2) (768,) (512,)

Table 3.2: Image encoder parameters

Music Encoder: As the same as the images encoder, I selected ResNet18 for
CNN-based encoder. For the transformer-based encoder, I decided to use BEATs
[63], which was published in 2020 by Microsoft. I use this model based on the
following considerations: First, BEATs stand out among many transformer-based
encodings and achieve sota performance on multiple audio tasks. Secondly, as a
model based on self-supervised learning (SSL), it is pre-trained on a large-scale
database and optimized for multiple iterations, especially on AudioSet, which
contains thousands of hours of audio extracted from YouTube. The data covers
more than two hundred different audio categories, including quite a lot of music
data. This is relevant to a music dataset from my thesis work. The detailed
parameters of the music encoder are presented in Table 3.3

1Pre-trained dataset
2Fc is the abbreviation of the fully connected layer, v1 represents the flatten strategy, and v2

represents the CLS token embedding strategy.
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Encoder Parameters
CNN-based Input dimension Output dimension

Resnet18 (ImageNet) (224, 224, 3) (512,)
Fc (512,) (512,)

Transformer-based
BEATs (AudioSet) (1, 88200) (96, 768)

Fc (v1) (73728,) (512,)
Fc (v2) (768,) (512,)

Table 3.3: Music encoder parameters

3.3.2 Model Decoders
As mentioned before, my thesis work is designed for two different tasks, namely
image-music similarity prediction and valence-arousal prediction of these two
different modal data; two decoders are needed.

In the context of similarity prediction, a concatenation of data from various
modalities is fed into the decoder architecture. The decoder consists of three fully
connected layers, which reduce the dimensionality of the input features to 256
and 128, respectively. The last fully connected layer will output the result, i.e., it
reshapes the output dimension as 1. To reduce the risk of overfitting, normalization,
and dropout mechanisms with a dropout rate of 0.5, are incorporated between each
fully connected layer. In addition, the middle layer uses ReLU (rectified linear unit)
as the activation function to introduce nonlinearity into the model. The final layer
utilizes a sigmoid function to ensure that the output specification falls within the
constrained range of 0 to 1. This design choice imposes constraints on the output
values, enhancing the interpretability and relevance of similarity predictions.

The decoding mechanism for continuous emotion labels follows the same struc-
ture as the similarity predictor. However, the input method is slightly different.
Specifically, different features extracted from various modalities are fed into the
decoder individually. After the same decoding step, its output dimension is 2,
corresponding to the valence and arousal values respectively. This customized input
configuration enables the decoder to process data from different modalities, thereby
facilitating the generation of predictions related to continuous emotion labels.

3.4 Losses Design and Combination
Metric learning takes center stage in my thesis, so the experimental design involves
a combination of multiple losses. Within this framework, it is crucial to discuss the
right combination of design and loss, as they directly impact the effectiveness of
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model learning.
First, the choice of loss must fully consider the nature of the task and the

characteristics of the data. Different loss functions show different effects when
processing different types of tasks and data. By carefully analyzing the goals of the
task and the properties of the data, I can choose loss functions suitable for metric
learning, ensuring their positive impact on model learning.

Second, the combination of losses needs to consider their contributions and their
interaction within the overall framework. Some losses may prioritize model stability,
while other losses may contribute more to improving the model’s generalization
performance. By considering these factors, I can design a more comprehensive and
effective combination of losses, thereby improving the performance of the model
when facing data in different modalities.

The selection of losses involves two main tasks: cross-modal similarity loss and
valence-arousal prediction loss. The goal of the cross-modal similarity loss is not
only to enable the model to learn the similarity between different modalities but
also to reduce the distance in the shared embedding space between feature data
from different modalities with high similarity while increasing the distance between
data with low similarity. On the other hand, the single-modal valence-arousal
prediction loss aims to enable the model to learn the relationship between different
modalities and their respective continuous emotion labels space, facilitating effective
prediction of valence-arousal labels. Next, I will explain in detail the loss designs
used in the paper and how they are combined.

Cross-modal Feature-Ratio Loss. As mentioned in chapter 2, traditional
metrics learning is based on increasing the distance between the distinct classes and
reducing the distance between the same class, which works well on the majority of
classification tasks. Since my thesis work is a regression task, it is hard to define
different classes, and the now widely used metric learning-based loss is difficult to
apply to my experiments. Kim et al. proposed a novel triplet loss in 2019 [64],
which enables the model to learn the similarity of different features. Following his
research, Cross-modal feature-ratio loss was used. Its formula is shown in 3.2.

LCF R =
NØ

i=1

I
log D(f Ii , fMi)

D(f Ii , fMj ) − log S(Ii, Mi)
S(Ii, Mj)

J2

+
NØ

i=1

I
log D(fMi , f Ii)

D(fMi , f Ij ) − log S(fMi , f Ii)
S(Mi, Ij)

J2 (3.2)

For given image i and music i, f Ii and fMj stands for the image feature and
music feature after encoding, where D(·) is the Euclidean distance between the
features, and S(·) is the similarity score between the current image and music. In
the first half of the formula, image i serves as the anchor, and music i serves as the
second term. Simultaneously, a random selection of music j is chosen as the third
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term for image i. The same principle applies to the second half of the formula.
This loss aims to increase the distance between image-music pairs with lower

similarity scores and reduce the distance between image-music pairs with higher
similarity scores. However, during the experiment, I found that the summation
operation caused extremely high losses from the beginning, and there was a high
risk of gradient explosion, which forced me to train the model with an extremely low
learning rate. In order to overcome this problem, I tried to change the summation
operation to the mean operation, which brought the loss to an acceptable range
and allowed the model to be trained at a normal learning rate, as shown in Formula
3.3.

LCF R = 1
N

NØ
i=1

I
log D(f Ii , fMi)

D(f Ii , fMj ) − log S(Ii, Mi)
S(Ii, Mj)

J2

+ 1
N

NØ
i=1

I
log D(fMi , f Ii)

D(fMi , f Ij ) − log S(fMi , f Ii)
S(Mi, Ij)

J2 (3.3)

Cross-modal Feature-Margin Loss. This is a classic marginal loss, which
can help the model increase its stability. As shown in the formula 3.4.

LCF M =
NØ

i=1

è...f Ii − fMi

...
2

− α
é

+
(3.4)

Where [·]+ represent the max(0, ·), it will return 0 when the difference between
the image and music feature is less than 0, and the α is the threshold for the
maximum tolerable distance. The introduced loss function LCF R imposes con-
straints on the encoders, forcing them to extract features that do not exceed a
predetermined maximum distance. This strategically imposed constraint helps
the model effectively incorporate the unique characteristics inherent to the two
different modal data types within the scope of the shared embedding space.

Essentially, the proposed loss function acts as a regularization mechanism,
guiding the learning process to encourage the generation of embeddings that
maintain a specified level of consistency between image and music features. By
imposing an upper bound on acceptable dissimilarity, the model becomes adept at
seamlessly integrating information from different modalities, thereby enhancing its
ability to fuse cross-modal features. This regularization technique helps improve the
overall robustness and effectiveness of the model when dealing with heterogeneous
data sources.

Single-modal Feature-Ratio Loss, which belongs to the single-modal valence-
arousal prediction losses family, calculates the loss of image features and music
features, respectively. The formulas are shown in 3.5 and 3.6. where yI∗ and yM∗

are the valence-arousal labels of Images and Music. D(·) stands for the Euclidean

34



METHODOLOGY

distance, and for each anchor Ii and Mi, their neighbors j, k are selected for
computing the loss.

LSF R_I =
NØ

i=1

I
log D(f Ii , f Ij )

D(f Ii , f Ik) − log D(yIi, yIj)
D(yIi, yIk)

J2

(3.5)

LSF R_M =
NØ

i=1

I
log D(fMi , fMj )

D(fMi , fMk) − log D(yMi, yMj)
D(yMi, yMk)

J2

(3.6)

The mechanism is the same as LCRF . The proposed loss function aims to
group features with similar valence-arousal labels while dispersing features with
different labels. This addition helps emotion predictors establish more effective
connections between single-modal data features and their emotional information.
This loss function enhances the model’s ability to effectively predict emotion labels
by encouraging the model to discern relationships in the data related to specific
emotional states and preventing over-generalization between different emotion
categories. Taken together, it serves as a guide, promotes a detailed understanding of
emotional characteristics, and improves the overall accuracy of Emotion recognition.

Meanwhile, the summation operation in the process has the inherent risk of
causing a gradient explosion during the training process. To alleviate this concern,
I chose to replace it with an average operation. This modification helps stabilize the
training process by preventing excessive gradients, thereby enhancing the overall
robustness and convergence of the model during optimization.

Mean Squared Error (MSE) loss. Given that the focus of my work revolves
around regression tasks, specifically the prediction of similarity scores and valence-
arousal values, specifically tailored training losses had to be incorporated to optimize
performance on these tasks. Therefore, the mean square error (MSE) loss, also
known as L2 loss, has been integrated into the training framework. Their formulas
are shown in 3.7, 3.8, and 3.9, where the parameters with hat stand for the
prediction result, and the opposite is the ground truth.

LSim = 1
N

NØ
i=1

(S(Ii, Mi) − Ŝ(Ii, Mi))2 (3.7)

LMSE_I = 1
N

NØ
i=1

(yIi − ŷIi)2 (3.8)

LMSE_M = 1
N

NØ
i=1

(yMi − ŷMi)2 (3.9)

This choice of loss function is ideal for regression scenarios because it quantifies
the average squared difference between predicted and actual values. By introducing
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an MSE loss, the training process is tailored to specifically address the nuances
of regression, aligning the model’s optimization goals with the complex task of
similarity score and valence-arousal prediction.

Loss Normalization and Combination. Throughout the experiment, I was
dealing with the challenge of varying scales between various loss functions. Taking
Loss CFR as an example, the loss is calculated based on the Euclidean distance
between features extracted by the encoder from different modal data, ranging from
10 to 102. In contrast, the MSE loss is tailored to model predictions in the range 0
to 1, resulting in a scale of approximately 10−1.

The difference in scale between different loss functions may lead to instability
in the training process, as the optimization process may be more sensitive to
larger-scale losses, and there may even be a risk of gradient explosion. To solve
this problem, a feasible approach is to introduce appropriate scaling factors or
weight adjustments to balance the contributions of different loss functions. This
adjustment ensures that the impact of each loss function on the overall optimization
goal is relatively balanced.

Another strategy is to normalize the loss functions so that they operate within
a similar range of values. This can be achieved through standardization or nor-
malization of loss values, ensuring a more consistent impact on model parameter
updates.

In my study, I tried to implement a normalization strategy. Specifically, at the
beginning of training, I recorded the exact value of each loss in the first batch and
assigned it as the maximum value. Subsequently, during the next training session,
I normalized each batch’s loss to a range of 0 to 1 by dividing it by the loss in the
first batch. Eventually, when combining all the losses, I calculated their average
value to ensure that the final combined loss also remained within an acceptable
range. The formula 3.10 shows the total loss of a single batch. N represents the
number of combination losses, and L̂ stands for the loss of the first batch.

LT OT = 1
N

(LCF R

L̂CF R

+ LCF M

L̂CF M

+ LSim

L̂Sim

+ LSF R_I

L̂SF R_I

+LSF R_M

L̂SF R_M

+ LMSE_I

L̂MSE_I

+ LMSE_M

L̂MSE_M

)
(3.10)

Taking these steps addresses the potential training instability caused by the
varying sizes of the different loss functions. By normalizing each loss to operate
within a comparable range of values, I aim to balance their impact on the training
process more effectively. Additionally, averaging the losses helps ensure that the
scale of the individual loss functions does not overly influence the final composite
loss.
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3.5 General Pipeline
After exhaustively detailing all the basic components of model training, the training
process studied in this paper comes into focus, as shown in Figure 1. In this
comprehensive framework, various components interact with each other to build an
efficient training process with metric learning as the core. The goal is to achieve
precise adjustment of model parameters to maximize optimization of predefined
training objectives.

Figure 3.17: Pipeline of the training process

This is an end-to-end cross-modal emotion recognition model. In this model,
preprocessed image data and music data are input into two predefined encoders
respectively. The outputs of these encoders are then encoded and integrated into
512-dimensional features. This step aims to map data from different modalities
into a shared embedding space to achieve more effective information fusion.

Subsequently, I employed a metric learning approach using Cross-modal Feature-
Ratio Loss, Cross-modal Feature-Margin Loss, and Single-modal Feature-Ratio
Loss to optimize the encoder. This optimization enables the encoder to learn the
underlying shared embedding space of the data and the corresponding label space of
its modalities. The introduced loss functions ensure the encoder extracts meaningful
representations of correlations between modal data in the shared embedding space.

The encoded data features are then processed by a decoder consisting of three
fully connected layers to handle different tasks, outputting similarity scores and
their respective continuous emotional labels. To optimize these backend tasks, I
also leverage MSE Loss to ensure that the decoder can perform its task efficiently
and generate predictions that are as close to the true labels as possible.

While conducting cross-modal experiments, I also separated the model structure
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according to the data of different modalities, using the same encoder and decoder
structure. They constitute the image branch and the music branch respectively,
taking single-modal data as input and using MSE loss for optimization. The final
objective is to predict the valence-arousal emotional label of single-modal data.
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Chapter 4

EXPERIMENT AND
SETUP

4.1 Experiment Details

In this section, I will discuss in depth the experimental part of the thesis work.
This includes an introduction to the development environment, hyperparameter
settings, training procedures, and evaluation metrics. This section aims to provide
a transparent and thorough understanding of the experimental setup for subsequent
analysis and interpretation of results. Then I also drew and analyzed the loss curve
in the experiment to explore the effect of training.

4.1.1 Development Environment

This experiment is written in Python with version 3.9 and uses the PyTorch deep
learning framework. For the extraction of parameters of CNN-based pre-trained
models, the Torchvision library provides a rich set of computer vision operations
and pre-trained models. For Transformer-based pre-training models, the Hugging
Face Transformers library provides corresponding resources. During the testing
phase, I used the NumPy and SciPy libraries to perform statistics on performance
results and combined the Scikit-Learn and Matplotlib libraries to visualize the
results.

In terms of data feature extraction, as mentioned earlier, I used Librosa and
Torchaudio to extract two versions of music features for their respective encoders.
As for image features, I used Pillow to extract features. Table 4.1 summarizes the
main libraries used in the experiment and their corresponding versions.
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Library Version
Pytorch 2.1.0
Torchvision 0.16.0
Transformers 4.34.1
NumPy 1.26.1
SciPy 1.11.3
Scikit-Learn 1.3.2
matplotlib 3.8.0
librosa 0.10.1
Torchaudio 2.1.0
Pillow 10.1.0

Table 4.1: Development environment

Since multiple deep networks need to be trained simultaneously in the experiment,
a large amount of computing resources are required. The training phase of the
experiment was initially conducted on Google Colab, which provides users with
free Tesla T4 GPUs and access to NVIDIA Tesla A100 GPUs on a paid basis.
However, even in the paid version of Colab, stability issues persist, with frequent
disconnections from the virtual environment causing model training progress to be
lost. The Links Foundation then provided me with an NVIDIA RTX 3090 GPU.
Its performance is slightly better than the Tesla T4 GPU and supports long-term
stable training, allowing my experiment to be completed. Next, I will introduce
the training process and hyperparameters setup in the experiment.

4.1.2 Hyper-parameter Setup
The effectiveness of model training critically depends on the choice of hyperpa-
rameters. Striking a balance and carefully tuning these parameters is critical to
achieving optimal performance across a range of tasks. This requires careful con-
sideration of nuances in task characteristics, dataset properties, and chosen model
architecture. Systematic exploration of hyper-parameter configurations ensures
a comprehensive understanding of their impact on model learning dynamics and
ultimate generalization capabilities.

As described in section 3, my experimental framework consists of two basic
components: the training of a multi-modal model for multiple tasks and the
training of a single-modal model for valence-arousal label prediction. Throughout
the experiment, I considered the following hyper-parameters for each experiment
and kept them as consistent as possible for subsequent comparison.

First, choosing an appropriate optimizer and learning rate is a pivotal decision
in the training step of deep learning models, as it directly influences the model’s

40



EXPERIMENT AND SETUP

convergence speed and performance. The optimizer is responsible for adjusting
model parameters to minimize the loss function, while the learning rate determines
the step size of each parameter update.

The choice of optimizer can significantly affect the performance of the model.
Commonly used optimizers include Stochastic Gradient Descent (SGD), SGD with
Momentum, and Adam. Each optimizer has unique advantages and is suitable
for specific scenarios. SGD, as a basic optimizer, may exhibit slow convergence
in some cases. By introducing a momentum term in SGD speeds up convergence
and provides greater stability when dealing with noisy gradients. Adam combines
momentum and adaptive learning rate features, which may have better performance
in some specific scenarios.

Equally important is the choice of learning rate. A learning rate that is too large
will cause the model to oscillate in the loss function space or even fail to converge.
Conversely, a learning rate that is too small may result in slow convergence or
oscillation around a local minimum. A common approach is to implement a learning
rate scheduling strategy that gradually reduces the learning rate during training to
maintain balance. The choice of learning rate usually requires experimenting on
the validation set and monitoring the performance of the model.

On the other hand, when choosing a batch size in the data loader, you must
carefully consider its impact on model performance. The batch size directly
determines the number of samples processed each time the model parameters are
updated. Choosing a larger batch size can increase training speed by allowing more
data to be processed in parallel. However, it can also lead to increased memory
pressure, especially if the GPU memory is limited. On the other hand, smaller
batch sizes may reduce memory requirements but may also slow down training.

In practice, adjusting the batch size can observe the convergence speed and
generalization performance of the model. Larger batches may lead to faster
convergence, but they may carry the risk of overfitting. Smaller batches can
improve model robustness, but training may require more iterations.

Unimodal Model Setup

For the unimodal model dedicated to valence-arousal label prediction in image and
music data, I set up both models using the same hyperparameters. In terms of
optimization, I chose stochastic gradient descent (SGD) with a momentum of 0.9
to enhance the model’s ability to explore the parameter space more effectively.

Given that the model is optimized using only mean squared error (MSE) loss
and the initial loss values fall within a relatively small range, I set the learning
rate to 1e-3, which is relatively high. To address potential non-convergence issues
associated with large learning rates in SGD, I integrated the stepLR scheduler
during training, which is configured to reduce the learning rate by a factor of 10
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every ten epochs.
In terms of batch size, I used two different sizes depending on whether the

feature extractor in the encoder was trained or not. When I choose to freeze the
feature extractor and train only the fully connected layers in the encoder, I set
the batch size to 128. However, as I continued training all the parameters in the
encoder, the demand for GPU memory increased. Therefore, I had to reduce the
batch size to 64 to ensure that the experiment ran smoothly.

Multi-modal Model Setup

As mentioned earlier, for the sake of facilitating subsequent comparative experi-
ments, I try to align the training of multi-modal models with the unimodal models
by using similar hyperparameters. Likewise, in the selection of the optimizer, I
opted for SGD with a momentum value of 0.9 with an initial learning rate of 1e-3.
StepLR is used as a scheduler, which gradually reduces the learning rate as training
progresses.

The situation becomes more intricate when it comes to setting the batch size.
The multi-modal models necessitate the simultaneous training of four deep neural
networks and involve intricate gradient propagation, placing higher demands on
hardware resources compared to training single-modal models. While the existing
computational devices can handle a batch size of 128 when freezing the parameters
of the feature extractor, the scenario changes when training all parameters of the
entire framework.

In this context, the CNN-based encoder can only be trained on a data loader
with a batch size of 16. On the other hand, due to the greater number of parameters
in the transformer architecture compared to ResNet, training the transformer-based
encoder is constrained to a batch size of 8. Such a diminutive batch size inevitably
results in an extremely low number of samples, significantly impacting the training
process.

Loss Hyperparameter

In Chapter 3, the loss functions employed for specifying and training cross-modal
data labels have been thoroughly described. However, the author did not provide
a detailed report on the parameters required for these functions during training.
Specifically, it is necessary to determine the value of the average distance σm

n

in Formula 3.1, which is used for computing similarity scores, and to select an
appropriate maximum margin value α in Formula 3.4. This is crucial to ensure that
the encoder can guarantee that the features of different modalities in the shared
embedding space do not have excessive distances.

Firstly, regarding the similarity scores, there are some missing images in the
experimental dataset I used compared to the one utilized by the author for various
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reasons. This discrepancy has resulted in slight variations between the similarity
scores provided by the author and those obtained in my experiments. As the
calculation of similarity scores is based on the average distance, σ, between all
images and the emotional labels of music, I iterated through all images and music in
the dataset. Then, I recalculated the value of σ and employed it in the subsequent
experiments.

Regarding the parameter α, the author designed it to impose a penalty on
the encoder for extracting feature representations with excessively large distances
in the shared embedding space. During the experimental process, I conducted
distance calculations on the features extracted by the image encoder and music
encoder. After careful consideration, I have decided to set α to 15. This choice is
aimed at achieving a balance in penalizing the encoder for extracting features with
distances that are too large, aligning with the original intent of the parameter in
the experimental design.

Table 4.2 shows the value of loss parameters I set during the experiment.

Parameter Value
σm

n 0.397071
α 15

Table 4.2: Loss Parameters

4.1.3 Evaluation Metrics
After obtaining the model’s predictions for similarity and VA labels, it becomes
crucial to evaluate its performance. To achieve this goal, mean square error (MSE)
and mean absolute error (MAE) are used as the main evaluation metrics. The
formulas for MSE and MAE, shown in equations 4.1 and 4.2 respectively, provide
a quantitative assessment. Here, l̂i represents the predicted value, li is the ground
truth label, and t represents the number of samples in the test set. These metrics
facilitate a comprehensive and objective evaluation of the model in the regression
task of predicting similarity and VA labels.

MSE = 1
t

tØ
i=1

(li − l̂i)2 (4.1)

MAE = 1
t

tØ
i=1

---li − l̂i
--- (4.2)

These metrics were chosen based on their ability to quantify the difference
between predicted and actual values, thus providing a quantitative assessment of
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the accuracy of the model. Lower MSE and MAE values indicate closer proximity
between predicted and true labels, which means superior model performance.

4.1.4 Experiment Process
To systematically investigate the impact of training the encoder on overall model
performance, I employed two distinct approaches. Initially, I took a conservative
stance, preserving the parameters of the feature extractor within the encoder while
exclusively training the last fully connected layer. Subsequently, I opted for a more
extensive training strategy, which involved adjusting the entire encoder, including
the feature extractor.

Given the substantial time investment required for training epochs in multi-
modal models (approximately 3.5 hours per epoch with the transformer encoder on
the NVIDIA RTX 3090), I decided to limit all training procedures to a maximum
of 60 epochs. Recognizing the challenges posed by extended training periods, such
as potential interruptions, I implemented a training resumption mechanism. This
mechanism enables my model to seamlessly resume training from any selected
checkpoint, ensuring resilience against disruptions.

Throughout the training process, the validation set is used for model evaluation
after each epoch. This evaluation produces a validation loss that guides subsequent
training cycles and serves as the basis for establishing checkpoints. I save the model’s
state at the checkpoint corresponding to the epoch with the lowest validation loss.
To account for potential later improvements, I also retained the model state from
the most recent epoch, even if its validation loss did not reach an absolute minimum.
These practices are rooted in empirical considerations, ensuring a methodologically
sound and effective training approach.

Additionally, I recorded both training and validation losses for each epoch, laying
the foundation for a comprehensive assessment of the model’s training effects in
subsequent analyses. This documentation provides not only a historical record of
the model’s progression but also facilitates a detailed retrospective analysis of its
performance characteristics across different stages of training.

After the model training is completed, the evaluation of the model performance
needs to be tested on a dedicated test set. I performed different evaluations using
the model associated with the minimum validation loss and the model for the most
recently ended epoch.

While using metrics to evaluate model performance, I used the SciPy library
to record and store the specific output of the model systematically. Recording its
output results is not only for retention but also to prepare for the visualization of
model performance.

A structured approach to testing and recording results is essential to gain reliable
insights into a model’s generalization and predictive capabilities. In addition to
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cold numerical values, this method can also show the performance of the model
more comprehensively. Recorded outputs combined with visualization techniques
help provide a richer description of the model’s efficacy.

4.2 Analysis of Loss Curves
During the process of training the model, I systematically recorded the training
and validation losses for each epoch. This approach holds significant importance
for gaining in-depth insights into the model’s training process, the progress of
experiments, and the interpretability of results.

Unimodal Model

To investigate the effectiveness of the training designed for the unimodal model, I
recorded the training and validation losses for both the image and music branches.

Figure 4.1: CNN-based music encoder training and val loss

Figure 4.1 shows the training and validation losses of the CNN-based music
encoder. The training process went smoothly, and the training loss began to
converge to around 0.018 after the 20th epoch. Likewise, the validation loss, while
exhibiting some oscillations, remains within acceptable limits, around 0.017. This
observation demonstrates the effectiveness of our experimental setup. Relatively
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stable convergence of training and validation losses means that the model is learning
from the data effectively and that the observed fluctuations are within reasonable
limits.

Things changed when the experiment progressed to using a transformer-based
encoder, as shown in Figure 4.2.

(a) Flatten strategy (b) CLS token embedding strategy

Figure 4.2: Transformer-based music encoder train-val loss

As mentioned in Chapter 3, I implemented two strategies for the input dimension
of the fully connected layer aggregated after the transformer-based encoder, with
their respective training and validation losses depicted in Figure (a) and Figure
(b). It becomes evident that, when using a transformer-based encoder, the model
rapidly enters an overfitting state. In the flattening strategy, the model’s training
loss converges to an extremely low value, approximately at 6 × 10−3, after 20
epochs. In contrast, its validation loss fluctuates significantly over a large range
and fails to converge. This pattern, where the model performs exceptionally well
on the training set but fails to converge on the validation set, aligns with the
characteristics of overfitting.

The performance of extracting only CLS (class) token embeddings is relatively
good. The training loss starts to converge after 20 epochs, while the validation
loss gradually slows down after the 8th epoch. Although there are some remaining
oscillations, validation losses are reduced by about 7% compared to the initial epoch.
This shows an improvement in validation set performance for the extraction-only
CLS token embedding strategy.

Regarding the image encoder, the CNN-based encoder also demonstrated a
smooth training process, as illustrated in Figure 4.3. The training loss converged to
around 0.033 after 20 epochs of model training, while the validation loss converged
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to 0.031.

Figure 4.3: CNN-based image encoder training and val loss

When transitioning to the transformer-based image encoder, the situation,
compared to the music encoder, shows some improvement but still exhibits signs of
overfitting. Firstly, as shown in Figure (a), under the first strategy, the training
loss converges to around 5 × 10−3 after approximately 20 epochs. In contrast, the
validation loss reaches its minimum in the initial epochs and experiences significant
fluctuations. With the second strategy, although the training loss is relatively higher
compared to the first, the range of fluctuation in the validation loss substantially
decreases, and it remains at a lower value than the first validation loss.
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(a) Flatten strategy (b) CLS token embedding strategy

Figure 4.4: Transformer-based music encoder train-val loss

Multi-modal Model

Training of multi-modal models introduces higher complexity compared to single-
modal models. The complexity arises from the combination of seven different losses,
each designed to fulfill a specific role in the training process. During the initial
stages of the experiment, a recurring challenge emerged in the form of exploding
gradients. This problem is particularly relevant for LCRF 3.2 and LSRF 3.6 based on
the summation operation, which sums the distances of all image features and audio
features, resulting in values exceeding 4000. Therefore, the optimization process
requires the use of a very small learning rate (approximately 1e-7). To address
this challenge, I replaced the summation operation with an averaging operation.
Furthermore, to promote numerical stability and facilitate optimization, all losses
during the training phase are normalized, ensuring that their values are limited to
around 1, allowing experiments to proceed smoothly.
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(a) Training Loss

(b) Validation Loss

Figure 4.5: CNN-based encoder, train only fully connected layer

Figure 1 illustrates the training and validation losses when training a fully
connected layer using only frozen encoder parameters. The experimental process
went relatively smoothly, and the training loss converged from the initial value of
0.75 to about 0.5. At the same time, the validation loss fluctuates around 0.85, a
decrease of about 20% compared to the initial value.

Simultaneously, when attempting to train all parameters in the model framework,
as depicted in Figure 2, the training loss exhibited a descending trend. However,
the magnitude of the reduction was not as pronounced as observed previously.
However, the validation loss failed to converge, displaying characteristics indica-
tive of overfitting. It is worth noting that the largest loss in the validation set
remained smaller than that observed during training the fully connected layer alone,
suggesting the possibility of early convergence in the training process.

In experiments on transitioning to a transformer-based encoder, the first strategy
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(a) Training Loss

(b) Validation Loss

Figure 4.6: CNN-based encoder, train with feature extractor

showed faster convergence than the second strategy, considering the scenario where
the feature extractor was not trained. The training loss of the first strategy is rela-
tively low, as figure 4.8, but both strategies show signs of overfitting. Visualization
of validation loss is omitted given that it reaches a minimum within the first five
epochs.

When training the parameters of the entire framework, due to the large GPU
memory consumption, experiments can only be conducted with a batch size of 8.
Existing research has proven that the Vision Transformer framework requires a
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(a) Flatten strategy Training Loss

(b) CLS token strategy Training Loss

Figure 4.7: Transformer-based encoder, train only fully connected layer

large amount of data to obtain optimal performance, so it has a lower reference
value than previous experiments. It is worth noting that when both strategies of the
Transformer-based encoder are trained with full parameters, the flattening strategy
exhibits a gradient explosion-like phenomenon around the 14th epoch. This causes
both training and validation losses to become NaN, and this is consistent across
multiple experiments. Preliminary inference is that the model complexity increases
due to the high input dimension of the fully connected layer, which may lead
to gradient explosion. Figure 4.8 shows the training and validation losses when
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training parameters (including those of the feature extractor) under the second
strategy.

(a) CLS token strategy Training Loss

(b) CLS token strategy Validation Loss

Figure 4.8: Transformer-based encoder, train with feature extractor

It is evident from the figure that compared to the single-modal case in the
transformer-based experiments, a similar phenomenon occurs: the training loss
shows a smooth decrease, but the validation loss fails to converge. Considering
the early experiments, this occurrence may be attributed to the possibility of the
model initiating convergence in the early stages of training.
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Chapter 5

RESULTS

In this chapter, I will provide a thorough analysis and comprehensive summary
of the experimental results, aiming to extract meaningful insights and illustrate
the effectiveness of the experimental approach. I will put forward a comprehensive
and objective conclusion through a systematic discussion of various aspects. This
will help readers gain a deeper understanding of the performance of the proposed
method and provide valuable insights and references for research in related fields.

5.1 Performance Evaluation
5.1.1 Unimodal model
I will initiate the analysis by focusing on the unimodal model. It comprises two
branches, each designed to predict valence-arousal labels for images and music,
respectively.

Image Branch

The model in the image branch has the same structure as the image encoder
and continuous emotion label predictor in the multi-modal model. I conducted
experiments using CNN (ResNet50) and transformer-based (ViT) encoders, op-
timized using Mean Squared Error (MSE) loss. Since training unimodal models
does not require extensive computational resources, I trained the entire model in
all experiments.

Table 5.1 shows the model’s performance in predicting valence arousal labels in
the image branch. Among them, I trained and tested two strategies applied to the
fully connected layer aggregation after the Transformer encoder. V1 represents the
operation of flattening the sequence data, while V2 represents the strategy of only
taking the CLS token in the sequence.
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Encoder V MSE V MAE A MSE A MAE

ResNet50 0.023 0.114 0.038 0.156

ViT V1 0.021 0.11 0.036 0.151

ViT V2 0.021 0.11 0.036 0.153

Table 5.1: Image valence-arousal prediction on unimodal model

From the table, it is clear that the encoder with Transformer-based architecture
shows improvement (around 3%) compared to the CNN-based encoder. This
shows that under a well-designed Transformer architecture, its performance can be
comparable to or even slightly better than traditional CNN architectures. However,
for the ensemble of fully connected layers after the Transformer encoder, both
strategies achieved similar results, and it is not possible to judge which strategy
performs better based on these results.

Audio Branch

Like the image branch, the music branch underwent training and testing with
encoders based on both CNN (ResNet18) and Transformer (BEATs) architectures.
Additionally, experiments were conducted with the flattening strategy and the
strategy of extracting the CLS token. The results are presented in Table 5.2.

Encoder V MSE V MAE A MSE A MAE

ResNet18 0.019 0.112 0.013 0.092

BEATs V1 0.02 0.106 0.012 0.086

BEATs V2 0.019 0.105 0.012 0.088

Table 5.2: Music valence-arousal prediction on unimodal model

The results show that the encoder based on the transformer architecture achieves
better results on the test set and has a non-negligible improvement compared to
ResNet performance. This improvement is attributed to BEAT’s clever design
in processing audio data within the Transformer framework, allowing it to cap-
ture feature information that traditional CNNs may ignore, especially temporal
information. This enhancement of the Transformer-based music encoder achieves
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superior performance in music Emotion recognition tasks. The findings highlight
the potential advantages of the Transformer architecture in processing multi-modal
data.

5.1.2 Cross-modal
Next, I will show the test results of the multi-modal model. The experiment
with the multi-modal model was a multi-task experiment involving predicting
similarity scores for image-music pairs while simultaneously predicting arousal-
evaluated continuous emotion labels for images and music. In this experiment, I
integrated the image and music branches to form the overall model framework and
adopted various loss functions for optimization. The experimental results include
full parameter training of CNN-based and Transformer-based encoders and training
of only parameters of the fully connected layer.

Similarity score prediction

check point MSE MAE

Only train FC max epoch 0.061 0.209

min val loss 0.061 0.209

Full-parameter
training

max epoch 0.054 0.196

min val loss 0.058 0.204

Table 5.3: Similarity prediction on multi-modal model based on CNN-based
encoder

Table 5.3 presents the performance of the multi-modal model with a CNN
encoder on the task of predicting similarity scores for image-music pairs. It can
be observed that the model achieves its optimal performance at the checkpoint of
the maximum number of epochs under full-parameter training. This phenomenon
indicates that the model still has the potential for improvement in similarity
prediction tasks after reaching the minimum validation loss.

Table 2 presents the performance of the model using the Transformer encoder
in the image-music similarity prediction task, as mentioned in Chapter 4, when
both strategies of the Transformer-based encoder are trained with full parameters,
a phenomenon similar to gradient explosion occurs in the training of the flattening
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strategy. Therefore, I decided to exclude full parameter training of the flattening
strategy. The results show that the best performance is obtained at the maximum
epoch checkpoint when only fully connected layer parameters are trained. At
the same time, compared with the CNN-based encoder, the Transformer-based
encoder showed significant improvement in the similarity prediction task under the
same conditions (i.e., only training fully connected layer parameters), showing a
performance gain of up to 10%. This highlights the excellent capabilities of the
Transformer architecture in cross-modal tasks.

On the other hand, this result demonstrates that, compared to the strategy of
only taking the CLS token from the sequence, the flattening strategy, which involves
inputting the entire output sequence of the Transformer encoder into the fully
connected layer, can capture more information and achieve superior performance
during training.

Similarity score prediction

check point MSE MAE

Only train FC

max epoch V1 0.05 0.188

min val loss V1 0.052 0.192

max epoch V2 0.056 0.198

min val loss V2 0.056 0.198

Full-parameter
training

max epoch V2 0.057 0.204

min val loss V2 0.057 0.204

Table 5.4: Similarity prediction on multi-modal model based on Transformer-
based encoder

For the full-parameter training of the Transformer encoder, limitations in device
capacity mandated training with a batch size of 8, a significant deviation from
the batch size of 128 used in training only the fully connected layer. Nevertheless,
even under these circumstances, it exhibits performance comparable to ResNet,
showcasing the robust capabilities of Transformer.

When predicting image-music similarity, the cross-modal model is additionally
trained to independently predict the valence-arousal labels for both images and
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music, aiming to recognize their emotions. The performance is outlined in Table 3:

Image Emotion recognition Music Emotion recognition

V MSE V MAE A MSE A MAE V MSE V MAE A MSE A MAE

CNN-based Only train FC

Max epoch 0.056 0.176 0.076 0.227 0.03 0.145 0.034 0.15

Min val loss 0.056 0.176 0.076 0.227 0.03 0.145 0.034 0.15

Full-parameter training

Max epoch 0.068 0.196 0.082 0.229 0.03 0.141 0.031 0.147

Min val loss 0.062 0.187 0.074 0.223 0.029 0.14 0.03 0.142

Transformer-based Only train FC

Max epoch V1 0.059 0.181 0.075 0.223 0.034 0.155 0.034 0.152

Min val loss V1 0.056 0.176 0.074 0.222 0.033 0.153 0.033 0.149

Max epoch V2 0.06 0.184 0.077 0.226 0.033 0.153 0.035 0.151

Min val loss V2 0.06 0.184 0.077 0.226 0.033 0.153 0.035 0.151

Full-parameter training

Max epoch V2 0.067 0.197 0.077 0.228 0.07 0.223 0.046 0.167

Min val loss V2 0.061 0.185 0.077 0.23 0.055 0.197 0.04 0.163

Table 5.5: Valence-Arousal label Prediction on Multi-modal model

As can be seen from the table, for CNN-based encoders, the model trained
with full parameters shows better performance. Since training involves optimizing
multiple losses simultaneously, the model sacrifices some ability to identify sentiment
in single-modal data while enhancing similarity score prediction. This phenomenon
could explain why the checkpoint with the best performance in similarity prediction
coincides with the final epoch reached, while the best performance for emotion
recognition on single-modal data is at the checkpoint where the verification loss is
minimal.

Similarly, the Transformer-based encoder exhibits similar patterns in the testing
phase for this task, further confirming my hypothesis. The model based on the
Transformer architecture achieves performance comparable to the CNN-based model
in the single-modal emotion recognition task. Both strategies yield highly similar
results, providing evidence to some extent that the training strategies devised
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for CNNs may not necessarily be suitable for Transformers. More specifically,
it underscores that a tailored approach, including loss functions and training
procedures, is essential to unleash the full potential of the Transformer architecture.

Finally, in the experiment involving the Transformer-based model with full-
parameter training, the extremely low batch size resulted in comparatively lower
test results when compared to other models.

5.2 Results Visualization
In this section, I will perform a visualization of the model performance and
the phenomena observed during the experiments. The purpose is to facilitate a
comprehensive comparison of the advantages and disadvantages between different
encoder architectures and to conduct a thorough analysis of the experimental
results.

5.2.1 Visualization of Predict Labels Distribution
To begin, in terms of predicting the valence-arousal labels for the single-modal
model, the distribution of predictions on the test set can be visualized by recording
the model’s predicted labels and corresponding true labels. The distribution of
labels for the image branch is illustrated in Figure 5.1, where the orange points
represent the true label distribution of the test set, the green points depict the labels
predicted by the CNN encoder, and the blue points indicate the labels predicted
by the Transformer encoder.

Figure 5.1: Image emotion label distribution
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It is evident that both encoders tend to predict labels around the central part of
the distribution, indicating a relatively robust strategy. However, when comparing
the distribution of predicted labels between encoders, the Transformer architecture
produces a sparser distribution of predicted labels compared to the CNN-based
distribution. This shows that the Transformer model is more sensitive to data
representing different valence-arousal labels and exhibits superior performance.

Figure 5.2 illustrates the distribution of predicted emotion labels for the single-
modal model on the music branch. Unlike the image distribution, the ground truth
distribution of music emotion labels is denser. This prompts both encoders to adopt
relatively bold strategies in prediction, presenting a different distribution than the
image labels. This distribution also provides a basis for why the single-modal model
performs better in music emotion recognition than in image emotion recognition.

On the other hand, when observing the prediction distributions of the two
encoders, a similar phenomenon to the image emotion label distribution appears:
the distribution predicted by the Transformer encoder is sparser. This shows
that the Transformer encoder also exhibits stronger performance in music emotion
recognition tasks.

Figure 5.2: Music emotion label distribution

Visual analysis of the distributions generated by these two tasks makes phenom-
ena that are difficult to discern in the table very apparent. It can be seen at a glance
that the encoder based on the Transformer architecture shows higher sensitivity to
the data features of different emotional labels and superior performance.

5.2.2 Visualization of Shared Embedding Space
For the similarity score prediction task, considering the model framework designed
around metric learning, the main goal is to bring high-similarity image-music pairs
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closer while moving away from low-similarity pairs. Visualizing the output of the
feature extractor can help provide a deeper understanding of the training dynamics
of the model. For the above purpose, I extracted 512 image-music pairs from the
test set using both a fully trained model and a zero-shot model (meaning the model
was never trained on this dataset). After obtaining the 512-dimensional output
features from the respective encoders, I used principal component analysis (PCA)
[65] to reduce the dimensionality to 2 dimensions for visualization.

(a) Zero-shot

(b) After-training

Figure 5.3: CNN-based shared embedding space visualization

Notably, I recorded high-similarity image-music pairs (with similarity scores >
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0.5, 257 pairs) and low-similarity pairs (255 pairs), representing them with distinct
colors in the visualization to enhance clarity. This approach aims to provide a
comprehensive representation of the model’s performance across different similarity
scenarios.

Figure 5.3 illustrates the shared embedding space when using a CNN-based
encoder. In the zero-shot scenario, the embedded features of music and images
are distributed in an extremely sparse space (see Figure a). For music with low
similarity, the distance from the image in the first dimension is as high as 1200. Due
to the pre-training of the image encoder on the ImageNet dataset, the embedded
features of the image are relatively concentrated. In such a wide embedding space,
the embedded features of images are compressed into single points, which shows
that untrained encoders are relatively weak in extracting embedded features from
music.

When model training ends, a significant shift in the scene can be observed (see
Figure b). First, the distance between images and music in the shared embedding
space is placed within an acceptable range. Second, high-similarity music embedding
features are placed close to the image, while most low-similarity music embedding
features are placed within a certain distance from the image. The emergence
of this phenomenon indicates that the model is able to learn the differences and
connections between different modal data, providing clear evidence for the validity of
the experiment. This change in the embedding space reflects the model’s successful
acquisition of semantic relationships between images and music throughout the
training process, confirming the successful execution of the experiment.

In Figure 5.4, I show the features of the shared embedding space extracted by
the Transformer-based encoder. In the zero-shot scenario (Figure a), I observe that
the embedded features are relatively evenly distributed, similar to the trained CNN
encoder. This trend is partly due to my choice to pre-train the Transformer model
on the audio dataset. The self-attention mechanism in the Transformer architecture
makes it good at capturing audio-related features to form such a distribution in
the shared embedding space.

However, after the model training is completed (Figure b), I observe that
the distribution of high-similarity image-music pairs is more compact, and they
gradually converge into a point at low-similarity distance scales. This phenomenon
may indicate that the model learned to represent similar image-music pairs more
closely in the embedding space during training but may also lead to reduced
generalization performance. These distribution features provide more information
about the effectiveness of model training, further supporting the inference that the
Transformer architecture achieves convergence early in training.

61



RESULTS

(a) Zero-shot

(b) After-training

Figure 5.4: Transformer-based shared embedding space visualization

The visualization of the shared embedding space gave me a deeper understanding
of the experimental results. CNN-based encoders show certain limitations when
handling cross-modal tasks, but good results can still be obtained with appropriate
training. Transformer-based encoders, on the other hand, show superior perfor-
mance in handling multi-modal data but require more careful training to mitigate
the potential risk of overfitting.
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5.2.3 Qualitative Results
In order to thoroughly evaluate the performance of the model, qualitative evaluation
becomes crucial. Therefore, I designed a mini music-to-image retrieval system
specifically for the multi-modal model based on the Transformer encoder. Specifi-
cally, I carefully selected three songs of different emotional styles and randomly
selected 38 images from Google Images based on categories (e.g., happy, sad, fearful,
etc.). I predicted the similarity score of each song to these images separately and
selected the most similar image to represent it.

It is worth mentioning that the use of the flattening strategy brings obstacles in
the similarity score prediction process. The flattening strategy results in the input
size of the fully connected layer after the feature extractor being heavily dependent
on the length of the training music (i.e., 2 seconds). It cannot make predictions
when faced with music clips longer than 2 seconds. This also shows that the first
strategy limits the generalizability of the model.

I designed this approach because it provides a comprehensive evaluation frame-
work, allowing for a more thorough understanding of the model’s performance and
the discovery of potential shortcomings. This also opens up possibilities for future
applications of this multi-modal emotion prediction model.

paganini.mp3. The first piece of music is a track by the violinist Niccolò
Paganini, featuring a fresh and cheerful melody that evokes a sense of joy. After
using this song to assess the similarity with 38 images, the one with the highest
similarity is an image labeled ’joy,’ as shown in Figure 5.5. This indicates that
our model can recognize different modal data in scenarios characterized by high
valence and arousal.

Figure 5.5: The picture with the highest similarity score to Paganini.mp3

Verdi.mp3. The second song is a work by Giuseppe Verdi, with an impassioned
melody and strong drum sounds in many places. The arousal experience is high,
but the valence is relatively low. The model predicted an image labeled “angry”
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that represented the song, a similar feeling I had while listening to the song, as
shown in Figure 5.6. This shows that the model can correctly identify multi-modal
data at high arousal and low valence levels.

Figure 5.6: The picture with the highest similarity score to Verdi.mp3

wagner.mp3. The third piece comes from a segment of the symphony "Cav-
alcata delle Valchirie" composed by Richard Wagner. In this segment, the violin
performance creates a tense atmosphere with its dense tones, conveying a sense of
fear and anticipation. The model predicted images associated with the label ’fear,’
as illustrated in Figure 5.7

Figure 5.7: The picture with the highest similarity score to wagner.mp3

This qualitative analysis demonstrates the excellent performance of the multi-
modal model in capturing different musical emotions. The model successfully
associated different emotional styles of music with their corresponding images and
showed consistency in its predictions. The model demonstrated the ability to
understand a wide range of emotions, from lightheartedness to enthusiasm and
excitement, to nervousness and fear, providing strong support for its reliability in
emotion recognition tasks.
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The consistent performance highlights the model’s versatility and adaptability in
cross-modal emotion recognition. The success of the qualitative study emphasized
the model’s deep understanding of musical emotions and laid the foundation for
further research.
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Chapter 6

CONCLUSIONS AND
FUTURE WORK

This chapter is a summary of my thesis work after this long research journey.
Initially, I will provide an overview of the entire research process, emphasizing

crucial findings and contributions. Following this, a comprehensive analysis of the
experimental results will be conducted, offering insights gained and identifying
potential areas for enhancement.

Subsequently, I will delve into exploring prospective avenues for future research,
providing readers with potential advancements in the field.

6.1 Conclusion for the emotion prediction model
The goal of my thesis work is to build a framework for emotion recognition in
multimodal data. Throughout the process, I experimented with encoders based
on CNN and Transformer architectures, aiming to analyze their strengths and
weaknesses through experiments.

Experimental results show that Transformer-based encoders outperform CNN-
based encoders in emotion recognition tasks on unimodal data, especially in the
case of music data. This phenomenon is attributed to the attention mechanism of
the Transformer architecture and the researchers’ clever handling of non-natural
language data. The former enables the model to capture temporal features in music
data, resulting in more effective predictions. The latter allows audio data to be
used as input to the Transformer architecture, allowing pre-training on large-scale
audio datasets. Compared to CNN architectures which focus on image processing,
encoders that are pre-trained on audio are better at extracting audio features,
resulting in superior performance.
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On the image emotion prediction task, both encoders achieved similar perfor-
mance. However, subsequent analysis of label distribution visualizations shows
that the Transformer-based encoder still outperforms the CNN architecture to
some extent. This confirms that the Transformer architecture can compete with
traditional CNN architectures in the image processing task.

When the experiments extended to cross-modal tasks, specifically the task of
predicting similarity scores for image-music pairs, the performance gap between
these two encoders widened. Visualizations of the shared embedding space reveal
that the untrained Transformer encoder exhibits comparable capabilities in extract-
ing features from multimodal data as the CNN encoder trained on relevant datasets.
After training, although sacrificing some performance in unimodal emotion label
prediction, the Transformer encoder demonstrates a non-negligible improvement in
cross-modal tasks compared to CNN.

This indicates that while the Transformer architecture is originally designed for
tasks like natural language processing, it shows considerable potential when dealing
with multimodal data. Multimodal models based on the Transformer architecture
have now become a prominent direction in current research, demonstrating its
adaptability and effectiveness beyond its initial design scope.

When using a transformer-based encoder, the design of its training is critical.
Although the current training has improved its performance compared to the CNN
encoder. However, during the training process, the phenomenon that it begins to
converge in the early stages of training, even before completing an epoch, shows
that there is still room for improvement in the design of its experiments.

At the same time, a large number of studies have shown that image encoders
based on transformer architecture, Vision Transformer, usually require more data
for effective training because of their large number of parameters, and learning
meaningful representations from visual data is very complex and richer. Data can
also effectively prevent overfitting and enhance its versatility. This also means that
if you want to realize the full potential of the transformer encoder, it will require a
higher cost compared to CNN-based encoders. Therefore, different considerations
need to be carefully weighed when choosing an encoder architecture.

To optimize the shared embedding space of multiple modal encoders, I devised
two strategies for fully connected layers integrated after their feature extractors.
During the experiment, each strategy shows its advantages and disadvantages. The
flattening strategy enables subsequent fully connected layers to receive all informa-
tion from the output sequence simultaneously, thus achieving better performance.
However, its huge input dimension also leads to a significant increase in model
complexity, leading to excessive convergence, and even exhibits the characteristics
of gradient explosion when the model framework is trained with all parameters. At
the same time, as mentioned before, the input dimension of the fully connected
layer after the music encoder is highly dependent on the length of the music. This
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limits it to encoding only 2 seconds of music, reducing the generality of the model.
On the other hand, the strategy of only taking CLS tokens limits the information

received by the fully connected layer thus limiting its performance. However, this
approach does not increase the complexity of the model and allows it to encode
music of arbitrary length. Processing of the transformer output requires careful
balancing of the effects of different strategies. Only through careful design can the
transformer architecture reach its full potential.

At the end of the experiment, a detailed qualitative analysis of the model’s results
demonstrated its ability to understand emotions conveyed in images and music.
When provided with music, the model successfully identified and retrieved images
with similar emotions. This achievement highlights the development potential of
multi-modal models in the field of emotion recognition and lays a solid foundation
for subsequent related research.

6.2 Future work and improvements
For future work, further optimization of the experiment is needed. Currently,
experiments with multi-modal models have achieved high performance in cross-
modal tasks but at the expense of some performance in unimodal emotion prediction.
One potential direction for improvement is to improve and rationally combine loss
functions to achieve high performance across all tasks. Furthermore, there is room
for improvement in the training of the Transformer-based encoder. The existing
strategies have their pros and cons, impacting the entire model architecture to
varying extents.

The music image retrieval system I designed may pave the way for future re-
search directions. Using the similarity score as a basis, the system automatically
retrieves images or music with similar emotions from the given data. This system
opens avenues for various applications such as enhanced content recommenda-
tions, emotion-based image retrieval, and personalized emotion-aware systems.
Furthermore, exploring the integration of this system into real-world applications
could provide valuable insights and contributions to the broader field of affective
computing.

In addition, in the field of music emotion recognition, lyrics are an important
element for creators to express their emotions. Moreover, lyric data has natural
language attributes, and through appropriate preprocessing, the performance of
Transformer-based encoders can be enhanced. On this basis, the three-modal
(image, text, music) emotion prediction model has great potential for further
development.

Last but not least, the direct expression of human emotions is still based on
language. Therefore, the mapping of valence-arousal labels to emotion categories
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becomes crucial. Previous research in this area has been undertaken, but the results
have not always been satisfactory. Establishing an effective mapping of valence-
arousal labels to emotion categories at different scales can significantly reduce the
cost of experiments and facilitate the integration of these two different emotion
modeling approaches. Moreover, it can enhance the efficiency of human-computer
interaction, allowing computers to more effectively recognize human emotions,
making them more human-like.
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