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Abstract

Speech, with its various elements like intonation and non-verbal vocalizations,
is considered to be the earliest form of human language. However, existing systems
for understanding spoken language mostly focus on the textual aspect, disregarding
these additional components. Recent advancements in speech language modeling
have enabled the development of speech-based language models called SpeechLMs.
Nevertheless, text remains the primary mode of communication on the internet.
Given this pretext, the objective of the thesis is to analyze the current state-of-the-
art speech models, and design a novel approach to combine the speech and text
modalities, to obtain an architecture that is capable of leveraging the advantages of
both. To do so, we decided to base our approach around the ideas of two previous
works named respectively VisualBERT [1] and AST [2].

In VisualBERT, the authors introduce a versatile framework for various vision-
and-language tasks by leveraging BERT[3], a well-known transformer-based text
model. This approach combines regions of an input image (as "visual tokens") with
textual captions, feeding them into the Transformer[4] layers that then align the
visual and textual tokens using self-attention.

In AST (Audio Spectrogram Transformer), the authors introduce the first en-
tirely convolution-free, transformer-based model for audio classification, moving
beyond traditional approaches that combined convolutional neural networks (CNNs)
with self-attention mechanisms. The authors suggest that solely relying on atten-
tion[4] mechanisms could be sufficient for audio classification tasks.

In our work, we aim to extend and adapt the innovative approach of VisualBERT
to encompass the speech-text domain. This adaptation involves a key modification:
instead of using visual tokens derived from regions of an input image, we propose
to use patches extracted from a 2D audio spectrogram. These spectrogram patches
are obtained by following the preprocessing methodology outlined in AST for an
input speech sample.

We name our model SpectroBERT, and like its predecessor did for the image-text
modalities, we believe SpectroBERT will be able to implicitly align text and speech
features, while retaining the simple and flexible formulation originally proposed in
VisualBERT. Our approach also aims to explore how the self-attention mechanism
can be utilized to bridge the gap between auditory and textual information.
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Chapter 1

Introduction

The internet’s evolving communication landscape has undergone a transformation
in recent years, with a growing shift towards multimodal interaction, blending text
with other forms of communication like images, videos, and voice messages.

While written text remains the dominant mode of online communication, the
emergence of Machine Learning speech-based language models, is making spoken
language and non-verbal elements more integral to the digital experience. These
models enable greater accessibility and inclusivity, benefiting individuals with visual
impairments, literacy challenges, or those who simply prefer spoken communication.

However, understanding spoken language presents unique challenges related to
accents, background noise, and regional dialects, which ongoing advancements aim
to address. Moreover, human-computer interaction increasingly integrates speech
technology, creating more seamless interactions through virtual assistants, chatbots,
and voice-controlled devices. In a globally connected internet, recognizing cultural
and linguistic diversity is essential, and advances in natural language processing are
working towards bridging the gap between text and speech understanding, making
online communication more comprehensive and nuanced.

1.1 Thesis objective
Given this context, the central objective of this thesis is to propose a novel
approach to seamlessly integrate the spoken and textual domains, while giving a
comprehensive overview of the previous works that led to its formulation. We aim
to construct a framework that leverages the strength of both modalities, and to do
so we draw inspiration from two works specifically: VisualBERT [1] and AST [2].

Our approach will be explained extensively in the following chapters, but a brief
summary for the inpatients is provided here.
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Starting from VisualBERT [1]’s framework, we adapt it to bridge the realms of
speech and text - rather than images and text - by replacing the visual component
(the image encoder) with the audio preprocessing method introduced in AST [2],
as per Figure 1.1. The end result is a model that sees audio spectrograms rather
than images, hence the choice for its name: SpectroBERT.

There are other small changes and adjustments that need to be made in order to
enable SpectroBERT to work properly, but those will be discussed later, together
with the finer details that make the transition from images to spectrograms possible.

SpectroBERT

AST
Preprocessing

VisualBERT

Spectrograms

Text

Audio

TextImages

Figure 1.1: Simplified scheme of our suggested approach. Here, the visual
component is replaced to accomodate spectrograms instead.

1.2 Background
Before delving into the technical details of SpectroBERT, we find it appropriate to
provide a brief background of the concepts that are integral to this work, and also
introduce the terminology that is used throughout it, so that even an inexperienced
reader (in the field) can familiarise with those terms and ideas that are common
when dealing with modern Artificial Intelligence, and understand what is being
treated.

In introducing the concepts, we try following a (chrono-)logical order, taking
into account the first time they appeared on a publication and highlighting relations
between them when possible, but we also include Figure 1.2 as a "map" to further
assist the reader in orienting themselves within the various mentioned notions.
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Artificial Intelligence
Machine Learning

Deep Learning

SpectroBERT

VisualBERT

MLP

RNN

CNN

Wav2Vec2 AST

BERTFaster-RCNN

RCNN

LSTM Transformer

Figure 1.2: Concepts’ map. Here we highlight the relations between the concepts
and previous works that are integral to our work. This map is not an exact reference
as including all connections would be too messy, so some notations are not reported
for the sake of clarity. For example, Wav2Vec2 also has a Transformer component,
but we do not use it in our work, so that connection has been removed.

1.2.1 Artificial Intelligence

The growth in popularity that Artificial Intelligence has seen in recent years might
trick any person into believing that it is a relatively new technology. However, the
origin of the idea of a machine capable of simulating human-like intelligence has a
fascinating history that can be traced back far long before modern electronic com-
puters were even a thing, as shown in the following by some interesting anecdotes.

Ancient Myths and Legends. Even in ancient civilizations, there were
stories that hinted at the idea of artificial intelligence, like in Greek mythology for
example, where Hephaestus, the god of craftsmanship, was believed to have created
mechanical servants. These myths allude to the notion of fabricated intelligence
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that predates modern computing technology by millennia.
The Mechanical Turk. In the 18th century, there was a famous automaton

known as the "Turk", an elaborate mechanical contraption that appeared to play
chess. In truth, the machine had a human operator hidden inside, but it still
sparked public interest and discussion about the possibility of creating machines
that could one day mimic human intelligence.

Ada Lovelace’s Insights. Ada Lovelace, a visionary figure in the 19th century,
worked on the design of the Analytical Engine: a mechanical, general-purpose
computer. Her remarkable insights and notes suggested the potential for machines
to perform tasks beyond mere number crunching, foreshadowing modern general-
purpose computation and the possibility of machine intelligence.

Alan Turing’s Turing Machine. In the 1930s, mathematician and logician
Alan Turing introduced the concept of the "Turing machine" [5], a theoretical model
of computation that laid the foundation for modern computing and had a profound
influence on the development of Artificial Intelligence. His insights into the nature
of computation and algorithms were pivotal in shaping the field.

So, while the term "Artificial Intelligence" was formally introduced at the Dart-
mouth Conference in 1956, the idea of creating intelligent machines or simulating
human-like intelligence has been a topic of interest and speculation for centuries,
and the fact that AI has reached mainstream adoption in recent years only, is merely
a consequence of the exponential growth that computing capabilities underwent
during the last decade.

Progress in computer chip manufacturing, with increasingly more computational
power at our disposal, is what enabled the AI field to blossom and establish itself as
a technological revolution, and while the term encompasses a variety of techniques
and approaches, it is nowadays most closely associated with one in particular:
Machine Learning.

1.2.2 Machine Learning
Machine Learning, a subset of Artificial Intelligence, proposes a shift in the pro-
gramming paradigm such that instead of using rule-based systems relying heavily
on the explicit programming of rules, we make use of data-driven systems relying on
algorithms that can learn implicit patterns and rules directly from data, allowing
for more flexibility and adaptability.

In other words, where programmers previously had to write each and every
rule/condition by hand to obtain a desirable output, Machine Learning allows
instead to automatically infer those rules by setting up a learning scheme between
the desirable output itself and the data, as illustrated in figure 1.5.
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Figure 1.3: AI through AI’s eyes. This collection of images has been generated
using Microsoft’s Bing AI Image Generator [6], with a simple "Artificial Intelligence"
textual prompt. It’s interesting to see how AI imagines itself.
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Figure 1.4: The Mechanical Turk. This cross-section drawn by Joseph von
Racknitz (1744–1818), shows how he thought the operator sat inside, controlling
the fake Turk as it was facing the human opponent. This image is considered public
domain.
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Figure 1.5: Machine Learning’s paradigm shift. Compared to traditional pro-
gramming, we feed the ML algorithm with inputs and desired outputs, and the
model learns the rules that connect the two automatically.

There are many ML techniques, and covering all of them is out of the scope
of this work, but most of them (with exceptions) usually follow this simplified
learning scheme:

1. Collect, clean, and prepare data of interest, or use an existing dataset
if possible, and preprocess them to be fed into the ML model, eventually
removing samples that could harm the learning process, like outliers.

2. Select relevant features from data, this is usually done by means of an
Exploratory Data Analysis, where features that are not discerning enough
between samples are discarded.

3. Select a suitable model depending on factors like the "nature" of the data
found in the previous step, the task at hand, the computational resources at
disposal. Models can have many formulations, but in general they all reduce
to a parametric mathematical function:

y = f(x, m) where f is the chosen model and m are its parameters

4. Infer the outputs by feeding the data into the model:

ŷi = f(xi, m) for each sample xi in the dataset
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5. Compute loss by comparing the obtained outputs to the desirable ones,
using a loss function to quantify the error (usually a distance) between them.
A simple formulation follows:

Loss = ŷ − y =
Ø

i

(ŷi − yi)

where yi is the desirable output (or ground truth) for sample xi

6. Adjust the model by tweaking its parameters, depending on the loss.

7. Repeat steps 4-6 until the gradually-tweaked parameters make the model
perform as close as possible to the desired behavior, i.e. the loss value has
been minimized (or maximized, depending on its formulation).

Once the ML model has been trained, it can be used to make predictions on
unseen data, as in Figure 1.6.

Inputs
Desired outputsTraining

data

New data

ML Algorithm

New predictionsTrained ML model

Figure 1.6: Machine Learning scheme.

1.2.3 Deep Learning
Deep Learning is an advanced form of Machine Learning that has affirmed itself as
the pinnacle of this discipline. The idea is to employ neural networks with many
multiple successive layers - hence the term deep - to model high-level abstractions in
data, enabling machines to make decisions with minimal human intervention, and
often surpassing human performance in tasks like image and speech understanding.

Deep Learning architectures learn feature hierarchies leveraging large amounts of
data, by feeding this data into the succession of layers, and then having each layer
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in the network transform its inputs into a slightly more abstract and composite
output representation, that becomes the input for the next layer. In an image
processing context for example, the hierarchy might consist of edges in the early
layers, combinations of edges in the middle layers, and complete object parts in
deeper layers.

This ability to perform hierarchical feature extraction is where the strength of
Deep Learning lies. Contrary to traditional ML techniques that require manual
intervention to select and extract the features, Deep Learning allows for fully-
automatic feature extraction from raw data.

Figure 1.7: Deep Learning versus Machine Learning. In DL the manual com-
ponent is replaced by deeper networks capable of performing feature extraction
automatically. Credits to the original author [7].

The essential unit of these networks is the artificial neuron, which loosely models
the neurons in a biological brain. Just like a biological neuron receives input from
its dendrites and produces output through its axon, the artificial neuron in a neural
network applies a weighted sum to its input, adds a bias, and then passes it through
a non-linear activation function, as in Figure 1.8.

Mathematically, the process within a single neuron can be expressed as:

output = factivation

AØ
i

wiinputi + bias

B
(1.1)

Table 1.1 showcases the mathematical formulation of some of the most commonly-
used activation functions.
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Figure 1.8: Biological Neuron versus Artificial Neuron. Credits to the original
author [8].

ReLU f(x) =
0 for x ≤ 0

x for x > 0

Softmax fi(x⃗) = exiqJ
j=1 exj

i = 1, ..., J

tanh f(x) = tanh(x) = (ex − e−x)
(ex + e−x)

Table 1.1: Examples of activation functions, which can operate either element-wise
or vector-wise.

Deep Learning’s success is largely attributed to the ever-growing availability of
massive datasets and substantial computational power. As previously mentioned,
ML models are usually trained by minimizing a loss function that measures the
difference between the predicted and true values, so the combination of automatic
feature extraction with the increase in data and computational resources has
directly translated to more sophisticated and accurate models. Moreover, Neural
Networks have not limited themselves to linear combinations of artificial neurons,
but different ways to interconnect neurons and transform data within each layer
have been proposed, as explained in the following sections.

1.2.4 CNN
Convolutional Neural Networks (CNNs) have revolutionized the domain of image
analysis, harnessing the power of Deep Learning to interpret visual data with
unprecedented accuracy and efficiency.
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At the heart of a CNN is the convolutional layer, which applies a series of small
learnable filters by sliding them over the entire input image - hence the name
convolutional, inspired by the mathematical convolution - obtaining feature maps
that capture the input image’s salient features and patterns such as edges, textures,
and shapes.

After the convolutional layer, usually follows the pooling layer - often referred
to as a downsampling layer - that serves to reduce the spatial dimensions of the
feature maps, which not only lowers the computational load for subsequent layers,
but also embeds a form of translation invariance into the network, which means
that patterns in the image can be recognized irrespective of their location in the
visual field.

Figure 1.9: Example of Convolutional Neural Network. Credits to the original
author [9].

As the image data traverses through successive convolutional and pooling layers,
the CNN abstracts higher-level features, transitioning from generic to specific
representations. This hierarchical feature extraction is similar to the way the
human visual cortex interprets visual stimuli, layering simple and complex patterns
to construct a comprehensive understanding of the scene. The CNN’s architecture
is not limited to images though, but can handle any kind of grid-like 2-dimensional
data.

1.2.5 R-CNN and Faster-RCNN
Region Convolutional Neural Network [10] (R-CNN, not to be confused with
Recursive Neural Networks) pioneered a revolutionary approach to visual tasks,
transforming the way objects are identified and localized in images. Differently
from conventional sliding window methods, which proved way too computationally
intensive as the image resolution increased, R-CNN introduced the innovative
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concept of region proposals, which are the only regions of the image which will be
processed while all the other regions are ignored.

R-CNN initiates the process by generating these region proposals through a
method known as selective search, which involves over-segmenting the image into
small regions that are progressively merged based on similarity criteria. The
outcome is a set of region proposals spanning multiple scales and aspect ratios,
and each undergoes processing by a Convolutional Neural Network to extract a
fixed-length feature vector.

How these feature vectors are used is totally up to the researcher and depends
on the downstream task, but in the case of Object Detection like in the original
paper, the feature vectors extracted by the CNN serve a dual purpose, addressing
both classification and bounding box regression.

For classification, a Support Vector Machine [11] (SVM) is employed to cate-
gorize objects within each region proposal into specific classes or as background.
Meanwhile, bounding box regression is managed by a linear regressor, which infers
the coordinates of each bounding box, i.e. the smallest rectangle containing the
entirety of the object. The final step in R-CNN is a technique known as non-
maximum suppression (NMS), which prunes multiple detections of the same object
by discarding bounding boxes with too high of an overlap ratio.

Figure 1.10: R-CNN. Picture from the original paper [10].

While R-CNN [10] marked a transformative breakthrough in object detection,
its computational demands led to its evolution into Faster R-CNN [12]. This
subsequent model introduced optimizations to enhance computational efficiency
and detection speed, incorporating a Region Proposal Network (RPN) with the
CNN model. Unlike R-CNN, Faster R-CNN shares full-image convolutional features
with the detection network, thereby significantly reducing computational overhead
associated with proposal generation.
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Faster R-CNN operates as an end-to-end deep convolutional network, leveraging
the Region Proposal Network for efficient region proposal generation. The archi-
tecture of Faster R-CNN involves a two-stage process. First, the RPN generates
region proposals — potential locations of objects. Each proposal then undergoes
CNN processing to extract a fixed-length feature vector. This vector serves a dual
purpose: classification using a softmax layer to determine the object class, and
bounding box regression to refine localization. By integrating the RPN, Faster
R-CNN achieves improved efficiency without compromising the quality of region
proposals.

Faster R-CNN’s innovative approach addressed the computational bottlenecks of
its predecessors, providing a more holistic and efficient solution for object detection
tasks. The integration of RPN exemplifies a strategic optimization, allowing Faster
R-CNN to outperform R-CNN in terms of both speed and accuracy. This model
stands as a testament to the iterative nature of advancements in computer vision,
showcasing how refined architectures can strike a balance between computational
efficiency and detection precision in complex object detection applications.

Figure 1.11: Faster R-CNN. Picture from the original paper [12].
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1.2.6 RNN and LSTM
Recurrent Neural Networks [13] (RNNs) and Long Short-Term Memory [14] (LSTM)
networks are considered pivotal architectures in the field, as they were specifically
designed to handle sequences of data rather than a fixed-length input.

RNNs [13] work by incorporating feedback loops in the network architecture,
which allow information to persist over time, enabling the network to perform tasks
that involve temporal dependencies such as language modeling and time-series
prediction. However, RNNs often struggle with long-term dependencies due to
issues like vanishing or exploding gradients, where the information from earlier
inputs becomes lost or excessively magnified as it propagates through the network.

LSTMs [14] try to address these shortcomings by introducing a more complex
unit within the RNN architecture. An LSTM unit includes several gates that
regulate the flow of information: the input gate, forget gate, and output gate.
The input gate controls the extent to which a new value flows into the cell, the
forget gate determines what details are discarded from the cell state, and the
output gate decides what part of the cell state makes it to the output. These gates
work in unison to control the cell state, allowing LSTMs to remember important
information over long periods and forget the non-essential details.

Mathematically, the operations within an LSTM unit can be represented as
follows:

it = σ(Wiixt + bii + Whiht−1 + bhi)
ft = σ(Wifxt + bif + Whfht−1 + bhf )
gt = tanh(Wigxt + big + Whght−1 + bhg)
ot = σ(Wioxt + bio + Whoht−1 + bho)
ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

Here

• xt represents the input at time step t

• ht is the hidden state at time step t

• ct is the cell state at time step t

• it, ft, and ot are the input, forget, and output gates’ activations, respectively

• gt is the cell input activation vector
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• W terms denote weight matrices, b terms denote bias vectors,

• σ represents the sigmoid function and ⊙ denotes the element-wise multiplica-
tion.

LSTMs have been a significant step in advancing the state of the art in a
multitude of domains that require dealing with sequential patterns, ranging from
speech recognition to text generation, thanks to their ability to deal with long-range
temporal dependencies.

Figure 1.12: RNN and LSTM. Credits to the original author [15].

1.2.7 Transformer
The Transformer [4] architecture too revolutionized the field by introducing a
novel approach to sequence-to-sequence tasks. Unlike RNNs, which handle data
sequentially by processing one sample of the sequence at a time, Transformers
handle sequences in parallel, allowing for greater efficiency and speed.

The architecture of a Transformer consists of two main components: an encoder
and a decoder. Each of these components is composed of multiple identical layers
(six in the original paper), and each layer within these components has two sub-
layers: a multi-head self-attention mechanism and a position-wise fully connected
feed-forward network.

The multi-head self-attention mechanism is the heart of the Transformer model,
because it’s what enables the model to focus on different parts of the input sequence
when making predictions. This mechanism works by computing a weighted sum of
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input features, where the weights are dynamically determined based on the input
data themselves - hence the name self. Mathematically:

Attention(Q, K, V) = softmax
A

QKT

√
dk

B
V

where Q, K, and V represent the Query, Key, and Value matrices, respectively,
and dk is the dimensionality of the key vectors. In other words, the attention is a
continuous value between 0 and 1 that weights the importance of each sample in
relation to the others.

The encoder takes an input sequence and maps it to a sequence of continuous
representations, which aim to capture the context of each item in the sequence
with respect to all the other items in the sequence.

The decoder, on the other hand, generates an output sequence from these rep-
resentations, making use of self-attention to focus on the important places in the
input sequence.

In traditional RNNs, information from earlier time steps gets diluted over time,
making it hard for the model to handle long sequences, but thanks to the attention
mechanism Transformers overcome this limitation, allowing for direct connections
between all pairs of samples in the input sequence, which explains their ability to
handle long-range dependencies.

Being an integral part to this work, more details on Transformers and the
attention mechanism will be provided in the later chapters, where these concepts
are explained in the context of our work.

1.2.8 BERT
Bidirectional Encoder Representations from Transformers [3], or BERT, is a
Transformer-based model that revolutionized the field of Natural Language Pro-
cessing (NLP) since its introduction by Google AI Language in 2018.

Historically, traditional models would look at text sequentially, either from left
to right or right to left, but BERT’s core idea is to make the most of the attention
mechanism introduced with Transformers, which allows it to ’read’ text in both
direction at once - hence the term bidirectional. This simultaneous consideration of
context from both directions is what makes BERT exceptionally good at under-
standing the nuances and complexity of language.

An important concept to introduce now is BERT’s training strategy, as many
aspects of our own training approach are derived from it.

16



Introduction

Figure 1.13: Transformer architecture. Picture from the original paper [4].

First, BERT is pre-trained with a composition of two objectives: a Masked
Language Modeling (MLM) one, and a Next Sentence Prediction (NSP) one. This
means that during pre-training a given percentage of tokens is masked and the
model must predict their original value - the MLM objective - while also predicting
if two sentences are consecutive or not - the NSP objective.
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Figure 1.14: BERT architecture. Picture from the original paper [3].

After pre-training, with only an additional output layer, BERT can easily be
fine-tuned to excel in a wide array of different NLP tasks, from text classification to
question answering, without extensive modifications to its architecture. This ability
to transfer its pre-trained knowledge to specific tasks with minimal fine-tuning has
made it a popular choice for researchers and practitioners looking for a robust,
versatile, and relatively easy-to-use solution in the field of AI.

1.2.9 Cross-Modal Learning
Cross-Modal Learning, often referred to as Multimodal Learning, is an increasingly
important concept in the Artificial Intelligence and Machine Learning field. As the
name suggests, it involves training systems to understand and integrate information
from various sources of different modality, like images, sounds, and text. This
approach is key to creating models that can make sense of the complex and varied
data we encounter in real-world situations.

At its heart, cross-modal learning is about teaching models to find correlations
between different types of data. For example, in speech-text models like ours, the
system learns how spoken words correspond to their written form. This isn’t just
about being able to process each type of data separately; it’s about merging these
different data sources into a shared unified understanding, by filling in the gaps
between what is seen, heard, and read, trying to make the most out of the unique
strengths of each data type to improve its overall performance.

However, developing cross-modal learning models isn’t straightforward. It
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require architectures that can handle complex, high-dimensional data and find
meaningful connections across different data types, and also demands large datasets
with diverse, multimodal content. The training process must also be adapted to
ensure the model not only understands each type of data on its own, but also learns
how these different data types interact and complement one another. In essence,
cross-modal learning aims to create systems that are more intuitive and intelligent,
by leveraging multiple forms of data like the intricate human perception works.

1.3 Related works

1.3.1 VisualBERT
VisualBERT [1] has emerged as a significant model in the landscape of multimodal
learning, specifically in tasks that require the understanding of visual content
alongside textual information. It is a model that extends the capabilities of BERT
to the realm of vision and language tasks, enabling the processing of a combination
of image regions and textual descriptions through the self-attention mechanism of
the Transformer architecture.

Figure 1.15: VisualBERT. Picture from the original paper [1].

In the development of SpectroBERT, we took a lot of inspiration from Visu-
alBERT’s structure. Essentially, we’re using its clever way of handling different
types of information and tweaking it to work with audio and text instead of images
and text. We adops VisualBERT’s strategy of combining tokens from two distinct
data sources - audio and text in our case - into one stream that’s then processed
by a Transformer [4] network. The goal here is to understand how spoken words
and their written forms are related, helping us get a better grasp of how different
types of data interact with each other.
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What sets our SpectroBERT apart is how we have adapted VisualBERT’s
approach. Instead of using visual tokens derived from image regions, we introduce
’audio tokens’ extracted from spectrogram representations of audio data. This shift
lets us use the self-attention mechanism of the Transformer to explore how audio is
related to text, similar to how VisualBERT correlates visual and textual data.

1.3.2 AST

The Audio Spectrogram Transformer [2] (AST) is a cutting-edge tool in audio
processing that uses a Transformer [4] model to analyze and classify audio data.
A key part of AST is how it prepares audio for analysis: it turns audio signals
into two-dimensional spectrograms, which allows the model to interpret audio like
visual data, using techniques from image recognition tasks which are usually the
domain of Convolutional Neural Networks (CNNs).

When building SpectroBERT, we borrowed this idea from AST. We convert
audio into spectrogram patches, which is like turning sounds into many visual
snippets, that capture both the temporal and frequency details of speech, crucial
for understanding it properly. This method lets us feed ’audio images’ into our
model, similar to how VisualBERT handles visual data. The great thing about
using these spectrogram patches is that it helps our model’s attention mechanism
focus on specific parts of the audio, just like when we humans focus on certain
parts of a picture.

Figure 1.16: AST. Picture from the original paper [2].
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Using AST’s way of extracting spectrogram patches is integral to SpectroBERT.
It allows us to pick up on subtle aspects of speech, like tone and rhythm, which
are fundamental for getting the full picture of spoken language. These patches are
then turned into the tokens that SpectroBERT works with, with the goal that all
the rich details in the audio are used to the fullest and matched up effectively with
text data.

1.3.3 Wav2Vec2
Wav2Vec2 [16] [17], developed by Facebook AI, is a state-of-the-art model for
learning representations from raw audio data. Its architecture is designed to
capture hidden aspects of speech without needing labels, thanks to its unsupervised
pre-training, making it excel in a variety of audio-related tasks. Wav2Vec2’s
strength lies in its encoder, which transforms raw audio waveforms into a latent
space that efficiently captures the intricate details of sounds in a compact and
meaningful representation.

Figure 1.17: Wav2Vec2. Picture from the original paper [16].

In the development of SpectroBERT, we decided to incorporate several layers
from Wav2Vec2 to process the rich spectrogram patches previously obtained trough
AST’s preprocessing, into a format that is compatible with the BERT [3] text
encoder. By utilizing layers from Wav2Vec2, we turn the each spectrogram into an
’audio token’ - a feature vector with the same dimensionality as the textual features.
By leveraging Wav2Vec2’s layers for audio encoding, SpectroBERT benefits from
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the robust feature extraction that Wav2Vec2 offers, setting a solid foundation for
the subsequent cross-modal learning tasks.

1.3.4 Audio-Language Modeling
This section introduces recent key developments in audio-language modeling, focus-
ing on CM-BERT [18], SpeechBERT [19], and CTAL [20]. Each of these models
takes a different approach to combining audio and text, and we will briefly outline
how they work and how their proposed approach differs from ours. Understand-
ing these works also clarifies how SpectroBERT fits into this wider landscape of
audio-text integration.

CMBERT

CM-BERT [18], also known as Cross-Modal BERT, is an innovative approach in the
audio-text integration domain, aiming to effectively merge spoken language with
its textual counterpart. It operates on a dual-encoder framework where separate
encoders are dedicated to audio and text inputs. Each encoder is responsible for
creating embeddings, which are essentially rich, contextual representations of the
respective modalities. These embeddings are then aligned, enabling CM-BERT
to develop a cohesive understanding of the content from both audio and textual
perspectives.

In contrast, our model, SpectroBERT, takes a different route by adapting the
VisualBERT [1] framework and substituting visual tokens with audio spectrogram
patches. This adaptation allows for a more seamless integration of the audio and
text modalities within a singular, transformer-based architecture, diverging from
CM-BERT’s approach of using two distinct encoders. SpectroBERT’s methodology
is designed to not only process but also intertwine audio and text data, leveraging
the self-attention mechanism to understand and align the cross-modal information
within a unified context. This architectural distinction gives SpectroBERT an edge,
in terms of simplicity, in handling speech-text cross-modal learning, offering a more
integrated perspective compared to the separate processing paths employed by
CM-BERT.

SpeechBERT

SpeechBERT [19] uniquely combines audio and text by initially aligning audio
word embeddings with text word embeddings from BERT [3], creating a unified
phonetic-semantic representation. Like BERT, it undergoes MLM pre-training
with both audio and text, which enhances its ability to process spoken language,
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especially for Spoken Question Answering (SQA). Its design is particularly effective
in handling tasks where Automatic Speech Recognition (ASR) errors are common,
as it directly works with audio inputs for answer span identification.

SpectroBERT, in contrast, directly integrates audio data as spectrogram patches
into a transformer-based architecture, following the approach of VisualBERT. This
method allows us to process audio and text in a more integrated manner, leveraging
self-attention for deeper audio-text interaction. Unlike SpeechBERT, which is
focused on SQA, SpectroBERT’s versatility allows it to adapt to various tasks like
Audio Question Answering and Speech Emotion Recognition by modifying the
model’s heads.

In summary, while SpeechBERT excels in SQA by enhancing spoken language
understanding, SpectroBERT provides a more flexible approach to audio-text
integration, suitable for a wider range of applications.

CTAL

CTAL [20], or Cross-Transformers for Audio-and-Language, marks another sig-
nificant effort in the fusion of audio and text modalities. This model uniquely
leverages a transformer-based approach to process audio and text data in parallel,
employing separate but interconnected transformer networks for each modality.

In CTAL, the audio is first transformed into a feature representation, which is
then processed alongside the text data through these cross-modal transformers.
This setup allows CTAL to capture the distinct characteristics of both speech and
text while facilitating interaction between the two, making it effective for tasks
that require a deep understanding of the combined audio-text information.

SpectroBERT, in contrast to CTAL, adopts a different architectural strategy.
Instead of parallel transformers for each modality, SpectroBERT integrates audio
information directly into the transformer model used for text, by converting audio
into spectrogram patches. This method ensures that the audio and text data are
not just processed in parallel but are intricately mixed together within the same
transformer layers. Our approach emphasizes a more unified processing of the two
modalities, using a single transformer model to align and understand the speech
and text data in a shared context, offering a more cohesive and streamlined process
for handling cross-modal data, differentiating it from CTAL’s dual-transformer
structure.
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Chapter 2

Combining Speech and Text
Language Models

2.1 Introduction to SpectroBERT
In our efforts to create a model that seamlessly integrates sound and text, we
developed SpectroBERT. Our model aims to be a step forward from the VisualBERT
framework, reimagined to handle audio data effectively.

SpectroBERT starts with the basic structure of VisualBERT [1] but takes a
different turn by focusing on audio rather than visual data. We’ve replaced Vi-
sualBERT’s image processing component with the audio processing inspired by
AST [2]. This change lets SpectroBERT handle audio in a similar way to how
VisualBERT deals with images.

SpectroBERT converts audio into ’audio tokens’, which are then paired with
text data, forming a combined sequence that passes through the transformer [4].
Here, the model’s self-attention mechanism shines, finding and aligning interactions
between the sound and text elements, resulting in a model that understands both
speech and its written form.

Like its predecessor, we don’t want SpectroBERT to be a static entity but rather
a versatile framework, adaptable to a multitude of downstream tasks, like audio
question answering or sentiment analysis, by simply changing the model’s ’head’ -
the components that come after the transformer layers.

In the following sections, we’ll dive deeper into how SpectroBERT works, from
processing raw audio to its application in different speech-text language tasks,
starting from its architecture.
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2.2 SpectroBERT Architecture

The architecture begins with the preprocessing of audio inputs, employing AST’s
methodology to extract spectrogram patches, that serve as the visual representation
of sound, capturing the nuances of audio frequencies and temporal patterns in
a form that can be processed by neural networks. From here, the journey of an
audio sample in SpectroBERT transitions to encoding, where layers taken from
Wav2Vec2 [16] encode the spectrogram patches into discrete tokens, similar to the
process by which text is tokenized before being fed into BERT [3].

These audio tokens are then concatenated with their textual counterparts, cre-
ating a sequence that is then processed by SpectroBERT’s transformer layers. The
self-attention mechanism within these layers is the core of the architecture, as
this it what allows the model to draw connections and learn from the interaction
between the audio and text tokens.

Transformer Stack
(12 Transformer Layers)

Embeddings

Text Spectro

BERT
Text Tokenizer

AST
Feature Extractor

Wav2Vec2
Conv. layers

Task-specific heads

Text Audio

Figure 2.1: SpectroBERT Architecture
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2.2.1 Audio Preprocessing and Spectrogram Patch Extrac-
tion

SpectroBERT begins by first processing the audio, which involves turning complex
sounds into a structured format that’s suitable for deep learning. This transforma-
tion draws from techniques developed by AST, which cleverly converts time-domain
audio signals into spectrogram patches - rich visual representations that encapsulate
the frequency, time, and amplitude information of the audio signal, much like a
visual snapshot of sound.

The preprocessing pipeline begins with breaking down the audio through meth-
ods like the Short-Time Fourier Transform [21] [22] (STFT) or similar techniques,
which split the continuous audio signal into short segments and map them into the
frequency domain. The outcome is a two-dimensional spectrogram that’s laid out
like a graph, where the x-axis represents time, the y-axis represents frequency, and
the intensity of each point reflects the amplitude or energy at that particular time
and frequency.

Next, the spectrogram is sliced into overlapping patches, a strategy that ensures
no loss of contextual information at the edges of each piece. These patches are
similar to the image regions VisualBERT works with, and they are critical for
capturing the local and global dependencies within the audio data. Each patch is
treated as a separate entity, representing a specific temporal slice of the audio, and
is subsequently encoded into an ’audio token’ ready for the model to analyze.

AST
Feature Extractor

Audio Waveform

Spectrogram
computation Segmentation

Spectrogram Patches

Figure 2.2: Audio Preprocessing and Spectrogram Patch Extraction

2.2.2 Audio Encoding with Wav2Vec2 layers
In SpectroBERT, we turn spectrogram patches into a series of tokens ready for
analysis, a process made possible by using layers borrowed from Wav2Vec2 [16],
which are key to transforming the detailed patterns in the spectrograms into a
form that the Transformer [4] architecture can understand and work with.
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Each spectrogram patch, rich with acoustic detail, goes through a series of
convolutional layers that act as feature extractors, applying a series of convolutions
that gradually refine the raw audio data into a set of feature representations.
The convolutional nature of these layers allows them to capture local relations
within the patches, identifying characteristic audio signatures that are essential for
understanding the speech in the recordings.

Spectrogram Patches

Wav2Vec2
Conv. Layers

Audio Tokens

Figure 2.3: Audio Encoding. By means of Wav2Vec2 convolutional layers, each
patch is reduced into a ’audio token’.

The extracted features from these convolutional layers are then passed through
a series of non-linear transformations, ultimately resulting in a set of audio tokens,
which encapsulate the essence of the spectrogram patches into a dense, neural
network-friendly format. This encoding process ensures that the tokens carry
meaningful patterns of the speech, which are fundamental for the subsequent stages
of processing within SpectroBERT.

We’ve made sure that these audio tokens match up dimensionally with the text
tokens processed by the BERT text encoder. This dimensional parity allows the
audio and text data to be combined smoothly in the Transformer layers, ensuring
that the self-attention mechanism works well across both types of data.

2.2.3 Text Preprocessing and Encoding into Tokens
Text preprocessing begins with tokenization, where the input text is segmented into
atomic elements that could be as small as words, subwords, or even characters. This
is achieved using a tokenizer that’s trained to pick up on the linguistic patterns in
the text, often relying on data compression techniques like Byte Pair Encoding [23]
(BPE) - as done in the BERT’s tokenizer we used. The goal of this step is to have
a tokenizer that’s smart enough to handle common and rare words without needing
an excessively large vocabulary, but rather building complex and long words by
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combination of simpler and shorter components.

Following tokenization, each token is mapped to a unique integer ID, creating a
sequence of numerical representations that correspond to the input text. These
IDs are then used to retrieve embeddings from a pre-trained lookup table, which
contains dense vector representations that carry information about each token, like
what it means and how it’s used in language.

The final step in text preprocessing involves the addition of special tokens to the
sequence, that denote the beginning, end, and separation of sentences. For instance,
BERT[3] introduces special tokens such as ‘[CLS]‘ for classification tasks and
‘[SEP]‘ to separate multiple sentences. These tokens serve specific functions during
model training and inference, helping the Transformer’s self-attention mechanism
to understand the input structure correctly.

The mathematical representation of this encoding process into token embeddings,
including the special tokens, can be expressed as follows:

Etoken = EmbeddingLookup(IDtoken)

Here, Etoken is the embedding of a token, and IDtoken is the token’s unique
identifier obtained post-tokenization.

2.2.4 Concatenation of Audio and Text Modalities
The audio tokens, which we get as output from the convolutional layers borrowed
from Wav2Vec2, carry detailed information about the sounds. On the other
hand, the text tokens, processed by BERT’s text encoder, contain rich linguistic
information.

In combining them before being fed to the sequence of Transformer layers, we
simply concatenate the tokens from the two modalities, making sure that additional
information like padding masks and sequence identifiers are included.

2.2.5 The Transformer Stack and Self-Attention Mecha-
nism

At the heart of SpectroBERT lies the Transformer [4] stack, a sequence of Trans-
former layers that gives the model its capacity for deep contextual understanding.
The stack is composed of multiple layers of self-attention mechanisms and position-
wise feed-forward networks, which work together to process the concatenated
sequence of audio and text tokens, enabling the capture of subtle interactions
within and across the different modalities.
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Audio TokensText Tokens

+

Figure 2.4: Concatenation of Audio and Text Modalities

The self-attention mechanism is the key feature of the Transformer stack, allow-
ing SpectroBERT to weigh the importance of each token in relation to others in the
sequence. It computes attention scores that determine how much focus should be
given to other tokens when processing a particular one, or in human words "When
you’re looking at this word or sound, you should also consider these other words or
sounds to this extent".

Mathematically, the self-attention for a single head can be formulated as:

Attention(Q, K, V ) = softmax
A

QKT

√
dk

B
V

In this formula, Q, K, and V stand for the query, key, and value matrices
derived from the input tokens, dk represents the dimension of the keys, and the
softmax function is applied to the scaled dot-product of Q and K, determining
how much weight to put on the different values V .

Through self-attention, SpectroBERT can perform a nuanced analysis that
takes into account the full context of the sequence. Each layer in the Transformer
stack refines this analysis, allowing for increasingly sophisticated representations to
emerge as the data moves through the model.

This stack is not just a one-size-fits-all solution; but rather it’s tuned during
both the pre-training and fine-tuning stages, adapting to the patterns and specific
kind of the multimodal dataset it sees. In short, the Transformer stack is where
the real strength of SpectroBERT lies, because it’s here that audio and text come
together.
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2.2.6 Model Heads for Downstream Tasks
In the final layer of SpectroBERT’s architecture lies the model heads, which are
neural network components tailored for specific downstream tasks.

Each task requires its own approach to how the model’s outputs are interpreted
and utilized, and must be designed to interface seamlessly with the Transformer
stack, receiving the contextually-enriched token sequences and applying the final
layers to produce task-specific results.

For instance, a classification head may consist of a softmax layer that maps the
Transformer stack’s output to a set of class probabilities, enabling SpectroBERT
to categorize inputs. This can be represented as:

P (class|input) = softmax(Wheadhlast + bhead)

Where P (class|input) represents the conditional probability of a class given the
input, Whead and bhead are the weights and bias of the head layer, and hlast is the
last layer’s output from the Transformer stack.

The design of model heads in SpectroBERT is modular, allowing to attach and
train heads that best suit the end-goals, without the need to retrain the entire
network.

2.3 Pre-training SpectroBERT

2.3.1 Introduction to Pre-training
The pre-training stage of SpectroBERT is an adaptation of the successful strategies
employed by VisualBERT [1], but tailored to the auditory domain. By shifting the
focus from visual to auditory, SpectroBERT is taught to understand the relationship
between spoken language and corresponding text.

A key part of this pre-training is Masked Language Modeling (MLM), a method
originally used in BERT [3]. In this process, we randomly hide some of the text
tokens in a sentence and ask the model to guess these tokens based on the unmasked
surrounding text and the full audio input. Unlike the visual tokens in VisualBERT
that match with specific image regions, the audio tokens in SpectroBERT represent
segments of sound, which remain unmasked and serve as additional context that
can help in predicting the masked textual tokens.

Alongside MLM, we also employ a Sentence-Audio Prediction (SAP) objective,
similar to BERT’s Next Sentence Prediction (NSP). In this task, the model looks
at pairs of sentences and audio segments to predict whether the audio matches the
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text. With a balanced probability - 50% that the audio matches the text and 50%
that it’s a random sample from the dataset - the model learns how elements of the
spoken and written language ’appear’ together.

The pre-training process for SpectroBERT, which leverages these dual objectives,
is key in obtaining a robust model capable of understanding and integrating
information across speech and text. Unlike some models where all types of data
might be masked during training, we keep the audio visible to aid the learning
process, thus facilitating a deeper multimodal comprehension.

In the following sections, we will delve into the specifics of the MLM and
SAP objectives, including the kind of loss functions used and how the model’s
architecture handles these tasks during pre-training. Additionally, we will introduce
the datasets we propose for pre-training stage, although more details will follow
in the next Chapter 3. This pre-training stage is essential for SpectroBERT to
learn a prior understanding of the nuances of language and sound, setting a solid
foundation for the following fine-tuning stage, where the model is specialized for
specific downstream tasks.

Audio TokensText Tokens

Transformer

[SEP]

[SEP]

[CLS]

[CLS]

[MASK]

SAP
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Figure 2.5: Pre-training

2.3.2 Masked Language Modeling (MLM)
The Masked Language Modeling (MLM) is a crucial part of SpectroBERT’s pre-
training, where the model learns about language structure and meaning.

In this objective, a portion of the input text tokens is randomly selected and
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replaced with a [MASK] token, and the goal for SpectroBERT is to predict the
original token that has been masked out, relying on the context provided by the
surrounding unmasked textual tokens and the accompanying audio data.

This task of guessing the hidden words helps SpectroBERT get better at un-
derstanding language from all directions, muck like BERT [bert], because it has
to consider the words before and after the masked token and use clues from the
audio, which serves as a complementary source of information. When using pairs of
text and its spoken version, the inclusion of audio data is particularly interesting,
as it allows SpectroBERT to utilize additional cues from the spoken version to
potentially capture nuances like emphasis and tone that are not present in the text
alone.

We follow the typical implementation of MLM, so approximately 15% of the
tokens in each sequence are masked. The selection of these tokens is random but
follows a uniform distribution to ensure that all tokens have an equal probability
of being masked throughout the pre-training data. The MLM objective can be
formally defined using the Cross Entropy Loss function as:

LMLM(θ) = −
Ø

i∈masked
log pθ(tokeni|contexti)

In this formula, LMLM(θ) represents the total loss for the masked tokens,
pθ(tokeni|contexti) is the probability assigned by the model with parameters θ
to the correct token tokeni given the context contexti, which includes both the
surrounding text and audio tokens, and the sum is taken over all masked tokens.

During pre-training, the model parameters are adjusted to minimize this loss
across all masked tokens, which improves SpectroBERT’s ability to predict the
masked words accurately.

2.3.3 Sentence-Audio Prediction (SAP)
Alongside learning about words and their meanings, SpectroBERT also gets trained
to understand how sentences and audio clips are related. This is done through
the Sentence-Audio Prediction task, which is adapted from the Next Sentence
Prediction (NSP) task used in BERT, but with a twist to include audio.

In this task, SpectroBERT is presented with pairs of text and audio data, and
the model has to figure out if the given audio segment correctly corresponds to the
text. During pre-training, half of the input examples are paired with their matching
audio segments, creating a positive example, while the other half is paired with
audio segments taken randomly from the other samples in the dataset, creating
a negative example. This reduces to a binary classification task, that essentially
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forces the model to learn contextual embeddings that are rich and informative
enough to discern the correct pairings of text and audio.

The Sentence-Audio Prediction task can be expressed through a Binary Cross
Entropy Loss, which for a single example is given by:

LSAP(θ) = −y log(pθ) − (1 − y) log(1 − pθ)

Here, L(θ) represents the loss we’re trying to minimize, y is the true label (1
if the audio matches the text, 0 if not), and pθ is the probability predicted by
the model with parameters θ that the audio matches the text. The goal during
pre-training is to get this loss as low as possible, so the model learns to predict
when text and audio are talking about the same thing.

2.3.4 Cross Entropy Loss in Pre-training
The Cross Entropy Loss function is a critical component in the pre-training of
SpectroBERT, serving as the primary metric that tells us how well the model is
doing in the Masked Language Modeling (MLM) and Sentence-Audio Prediction
tasks. Basically, it measures the gap between what the model predicts and the
actual answers (or labels) we have, by quantifying the difference between the
predicted probabilities and the actual distribution of the labels.

For the MLM task, we use Cross Entropy Loss to check each masked token,
measuring the model’s ability to predict the correct token from the entire vocabulary.
The loss for a single masked token is calculated as the negative log likelihood of
the correct token’s probability:

LMLM(θ) = −
Ø

i∈masked
log pθ(tokeni|contexti)

Similarly, for the Sentence-Audio Prediction task, the Cross Entropy Loss
evaluates the model’s ability to tell whether the audio matches the text. Since this
is a yes-or-no question, the loss calculation is a bit simpler:

LSAP(θ) = −y log(pθ) − (1 − y) log(1 − pθ)

The overall loss for pre-training SpectroBERT is a weighted sum of these two
losses:

Ltotal = αLMLM(θ) + βLSAP(θ)

The weights α and β balance the contribution of each task to the total loss,
allowing the model to prioritize learning from the MLM and Sentence-Audio Pre-
diction tasks according to the specific requirements of the downstream applications.
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In our setup, they are both set to 0.5, meaning equal importance.

Minimizing the Ltotal across the entire pre-training dataset ensures that Spec-
troBERT learns a generalized representation of language and audio-text alignment.

2.3.5 Pre-training Data and Strategies
For SpectroBERT to learn effectively during pre-training, it’s important to select
rich and diverse datasets. We suggest the usage of three main ones: LibriSpeech [24],
Common Voice [25], and WavCaps [26], that have been chosen because each of
these datasets brings something different to the table, given their different nature.

• LibriSpeech is packed with English speech from audiobooks, which means it
offers a wide variety of speaking styles and stories, that is great for exposing
the model to different ways people can express themselves.

• Common Voice, on the other hand, is more about everyday speech. It’s a
crowd-sourced repository that offers lots of accents and dialects, reflecting
more conversational and less formal speech, like the language you would hear
in regular every-day conversations.

• WavCaps instead shakes things up by bringing a more diverse set of audio, that
is not limited to speech, and with its different sound qualities and background
noises, challenges the model to adapt to various audio elements.

These datasets can serve as the groundwork for SpectroBERT’s pre-training, by
exposing the model to a broad range of different linguistic and acoustic scenarios.
Moreover, we suggest that by pre-training on these different sources, SpectroBERT
could learn to pick up the subtle differences between datasets in different ways,
potentially leading to varying performances on downstream tasks. This highlights
the importance of dataset selection in pre-training, as it can significantly influence
the model’s generalization and adaptability.

More details on these datasets will follow in Chapter 3.

2.4 Fine-tuning SpectroBERT

2.4.1 Introduction to Fine-tuning
After the extensive pre-training phase, it’s time to move on to the fine-tuning stage,
where SpectroBERT is appropriately adapted to perform specific tasks, using the
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broad knowledge it gained during pre-training and refining it for particular uses,
by adjusting the model weights to make accurate predictions for downstream tasks.
In our case, we’re focusing on two main tasks: Audio Question Answering and
Emotion Recognition.

During this phase, we make changes mainly to the final parts of the model,
which we previously referred to as the ’heads’. This way, SpectroBERT can shift its
attention from the wide-ranging understanding it developed earlier to more specific
details that are key for doing well in the chosen tasks.

The fine-tuning process involves smaller, more focused datasets, often annotated
to provide ground truth, which allows for supervised learning, where the model can
really focus and get better at the particular challenges of each task. The idea is to
use the solid foundation acquired during pre-training and build upon it, refining
the model’s abilities so that it can not only understand language and audio but
also apply this understanding in practical, real-world scenarios.

2.4.2 Generic Classification Task

Fine-tuning SpectroBERT for classification involves appending a classification layer
- or head - onto the pre-trained model. This head typically consists of a linear layer
followed by a softmax function, transforming the representation produced by the
Transformer [4] stack into a probability distribution over the target classes:

P (y|x) = softmax(Wc · hCLS + bc)

Here, P (y|x) is the predicted probability of class y given the input x, Wc is the
weight matrix, bc is the bias vector for the classification layer, and hCLS is the final
hidden state corresponding to the special [CLS] token from SpectroBERT’s output
sequence.

During fine-tuning, SpectroBERT’weights are adjusted to minimize the Cross
Entropy Loss between the predicted and actual class labels:

LCLS = −
NØ

i=1
log P (yi|xi)

In this loss function, N is the number of training examples, yi is the true class
label, and xi is the input for the i-th example.
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2.4.3 Audio Question Answering
Audio Question Answering [27] (AQA) is a cutting-edge area in multimodal learn-
ing, and it’s a real test for models like SpectroBERT to provide accurate natural
language responses based on both audio inputs and textual questions. This task
really pushes the model towards a deep cross-modal comprehension, as it must
learn to discern relevant information from the audio and align it with the question
posed in text form.

To adapt SpectroBERT for AQA, we switch out the heads used during pre-
training, that are replaced with a classification head. This head is as a single linear
layer tailored to the AQA task’s requirements, whether it’s figuring out a binary
yes/no answer or selecting from multiple choice options in open-ended questions.
For tasks where the answer is either ’yes’ or ’no’, we use just one output neuron,
and apply a sigmoid function to this neuron’s output to interpret it as the likelihood
of a ’yes’ answer:

P (yes|x, q) = σ(WAQA · hCLS + bAQA)

In this equation, P (yes|x, q) is the probability of a ’yes’ answer given the audio
input x and the text question q. σ denotes the sigmoid function, WAQA is the
weight matrix, bAQA is the bias term for the AQA head, and hCLS is the final hidden
state corresponding to the special [CLS] token from the Transformer stack’s output.

For the ’open’ variant, the setup is similar, but instead of a single neuron, we
use multiple output neurons - one for each possible answer word. The activation
of these neurons is then passed through a softmax function as part of the Cross
Entropy Loss during training, which allows the model to pick the most likely answer
from the available options:

P (wordi|x, q) = softmax(WAQA · hCLS + bAQA)i

Performance on the AQA task is a strong indicator of the quality of the learned
audio-text representations. We use the Clotho-AQA [27] dataset for training,
because it provides both binary and single-word answer questions.

2.4.4 Speech Emotion Recognition
Speech Emotion Recognition [28] (SER) is an intricate challenge where Spec-
troBERT is fine-tuned to interpret and categorize the emotional tones in spoken
language. SER goes beyond a mere analysis of what was said, the content, but it’s
rather about picking up on how something was said, in terms of speech patterns —
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Figure 2.6: Audio Question Answering Tasks

tone, pitch, and rhythm — which are indicative of a speaker’s emotions such as
happiness, anger, sadness, or frustration.

In fields like Human-Computer Interaction (HCI) and advanced speech process-
ing systems, SER is an increasingly important task. The complexity of detecting
the presence of various emotions in the speaker’s voice stems from the nuanced
and subjective nature of emotional expression - we are basically asking machines
to quantify what is inherently a qualitative human experience.

For SpectroBERT, adapting to the SER task is similar to how we handled the
AQA task. The pre-training heads are replaced with a classification head, this time
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focusing on identifying emotions. This head consists of a linear layer with a number
of output neurons corresponding to the number of emotions we want to detect.
Just like with AQA, we use a softmax function to turn the neuron activations into
a probability distribution for each emotion:

P (emotioni|x) = softmax(WSER · hCLS + bSER)i

In this equation, P (emotioni|x) represents the probability of emotion i given
the speech input x. WSER and bSER are the weights and biases term for the SER
head, and hCLS is the final hidden state corresponding to the [CLS] token from
SpectroBERT’s output, capturing the overall emotional tone of the input.

To fine-tune SpectroBERT for SER, we need a dataset with audio clips la-
beled with their emotional states, and for that, we suggest RAVDESS [29] and
IEMOCAP [30], which will also be discussed in Chapter 3.
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Figure 2.7: Speech Emotion Recognition

2.4.5 Other Possibilities for Fine-Tuning
SpectroBERT’s flexible design means it is not only limited to classification tasks
like Audio Question Answering and Speech Emotion Recognition. Its ability to
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process and combine audio and text data also makes it a good candidate for
sequence-to-sequence [31] (Seq2Seq) tasks too, that are tasks about generating
output sequences based on input sequences, which can be quite complex.

In the case of SpectroBERT, Seq2Seq tasks could look like speech translation,
where the model turns spoken words in one language into written text in another.
Or it could be about summarizing what’s spoken, boiling down lengthy audio to
just the key points in a written format. Another possibility is using SpectroBERT
in dialogue systems to come up with text responses to spoken queries, almost like
having a conversation.

To tackle these kinds of tasks, SpectroBERT would be fine-tuned with an extra
layer designed for generating sequences. Imagine a decoder that puts out one
piece of the sequence at a time, building up a response or translation bit by bit,
understanding and maintaining the flow of a conversation or narrative, which can
be pretty challenging.
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Datasets

This chapter is dedicated to the datasets that we suggest using for a study of
SpectroBERT. Since the quality of a machine learning model is deeply influenced
by the data it is trained on, a careful selection of pre-training and fine-tuning
datasets is essential. We’ve chosen these datasets not just for their rich mix of audio
and text but also because they present the model with a wide range of real-world
language use, which is crucial for testing and improving its abilities.

In the following, we detail the datasets suggested for the pre-training and
fine-tuning stages, their characteristics, and the reasons for their selection.

3.1 Pre-training

3.1.1 Librispeech
LibriSpeech [24] is a corpus of read English speech designed to provide resources for
the training and evaluation of Automatic Speech Recognition (ASR) systems. This
dataset is derived from audiobooks in the LibriVox project, amounting to roughly
1000 hours of spoken English. Recorded at a sampling rate of 16 kHz, LibriSpeech
offers high-quality audio data that has been segmented and meticulously aligned
with transcripts.

The dataset is structured into subsets, catering to varying levels of modeling
complexity: ’train-clean-100’, ’train-clean-360’, ’train-other-500’ for training, and
’dev-clean’, ’dev-other’, ’test-clean’, and ’test-other’ for development and testing.
The distinction between ’clean’ and ’other’ refers to the recording quality and
speaker’s accent, with ’clean’ representing higher fidelity and less accented speech.
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In addition to audio recordings, LibriSpeech provides extensive language re-
sources, including n-gram models and the text of read passages from Project
Gutenberg books. This textual component is substantial, comprising over 803
million tokens and nearly 977 thousand unique words, enriching the dataset’s utility
for language modeling tasks.

LibriSpeech’s versatility has been demonstrated through its widespread use
across various speech-related research endeavors. It has played a crucial role in
pushing forward the fields of Speech Recognition, Speech Enhancement, Voice
Conversion, and more. The expansive nature and comprehensive structure of
LibriSpeech make it an invaluable asset for pre-training SpectroBERT, offering a
broad linguistic landscape from which the model can learn a deep representation of
spoken English language, crucial for its later abilities in cross-modal understanding.

3.1.2 Common Voice
Common Voice [25], curated by Mozilla, stands out as a monumental voice dataset
distinguished by its open-source nature and multilingual diversity. As a crowd-
sourced compilation, it harnesses the collective contributions of volunteers world-
wide, offering an ever-expanding repository of recorded speech.

This dataset is a reflection of real-world linguistic diversity, encompassing a
broad spectrum of accents, ages, and gender demographics. Each audio recording
is paired with its corresponding textual transcription, providing an aligned dataset
that is perfect for development of speech recognition technology, and the inclusion
of demographic metadata adds another layer of richness, enabling the training of
more fair speech recognition models.

Its dynamic nature means that it is in a constant state of growth, with new
voice recordings and languages continuously augmenting the dataset. Researchers
and developers can access Common Voice in its entirety or in segmented versions,
which include "Delta Segments" for efficient integration of the latest recordings,
ensuring that users can stay up-to-date with the freshest data without the need to
re-download the entire corpus.

The availability and scale of Common Voice make it an unparalleled resource
for building voice-enabled technologies. It democratizes access to a vast range of
voice data, fostering innovation and competition in the development of machine
learning applications centered around speech.
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3.1.3 WavCaps
WavCaps [26] emerges as a pivotal dataset tailored for audio-language multimodal
research, especially in the realm of audio captioning. WavCaps introduces ap-
proximately 400,000 audio clips, each accompanied by a paired caption, forming a
substantial foundation for training models that can understand and describe audio
content.

The dataset’s audio clips are curated from diverse web sources — FreeSound,
BBC Sound Effects, SoundBible — and supplemented with the AudioSet strongly-
labelled subset for a comprehensive range of sound events, ensuring a rich variety
of acoustic environments and scenarios, crucial for developing a model capable of
generalizing across different auditory contexts.

Given the inherently noisy nature of web-sourced data, WavCaps employs a
sophisticated three-stage processing pipeline to refine and elevate the quality of its
captions. This pipeline uses advanced language models like ChatGPT to filter out
noise and enhance the descriptions automatically, making them more coherent and
contextually relevant for training purposes.

Training systems on WavCaps have shown marked improvements over previous
state-of-the-art models, proving the dataset’s quality and the effectiveness of its
processing pipeline. It has proven to be a valuable asset in advancing audio-language
multimodal learning, providing a solid benchmark for models to strive towards.

3.2 Fine-Tuning

3.2.1 Clotho-AQA
Clotho-AQA [27], a dataset explicitly crafted for Audio Question Answering (AQA)
offers a focused environment to test and refine AQA systems, a subset of tasks
requiring nuanced comprehension of audio content and its relevance to posed ques-
tions.

Comprising 1,991 audio clips sourced from the larger Clotho dataset, ClothoAQA
presents a challenging array of soundscapes, each accompanied by a set of six ques-
tions with corresponding answers. The audio clips, ranging from 15 to 30 seconds,
offer a snapshot of diverse acoustic environments, providing a rich testing ground
for SpectroBERT’s interpretative capabilities.

The dataset’s questions are categorized to specific types of responses: two are
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binary (yes/no answers), and four are single-word answers, all of which are obtained
via crowdsourcing platforms like Amazon’s Mechanical Turk. This methodology
ensures a wide array of question types and answer styles, reflecting the variability
inherent in natural language inquiries and responses.

The ClothoAQA dataset not only allows us an evaluation of SpectroBERT’s
performance on binary and single-word answer tasks but also serves as a benchmark
for future innovations in AQA. The baseline experiments provided by the authors,
utilizing LSTM-based classifiers, set preliminary performance standards with an
accuracy of 62.7% for the binary classifier and a top-1 accuracy of 54.2% for the
multi-class classifier, with a top-5 accuracy reaching 93.7%.

3.2.2 RAVDESS

The Ryerson Audio-Visual Database of Emotional Speech and Song [29] (RAVDESS)
is a meticulously curated multimodal dataset that serves as a cornerstone for
research in emotional recognition. It is a comprehensive collection of high-quality
audio and video recordings focused on capturing a wide range of emotions through
vocal and facial expressions, articulated in North American English.

With a total of 7,356 files, RAVDESS showcases the talents of 24 professional
actors — equally divided between female and male performers — who vocalize
lexically-matched statements designed to be emotionally evocative. The inclusion
of professional actors ensures a degree of consistency and clarity in the emotional
expressions, enhancing the dataset’s reliability for training purposes.

The dataset encompasses a spectrum of emotions, including calm, happiness,
sadness, anger, fear, surprise, and disgust, articulated with varying degrees of inten-
sity. This variation allows for the exploration of not only the type of emotion being
expressed but also its intensity, providing a nuanced understanding of emotional
expression in speech.

RAVDESS’s versatility makes it an ideal dataset for fine-tuning SpectroBERT
on Speech Emotion Recognition (SER) tasks. The clear categorization of emotions
enables SpectroBERT to develop a sophisticated model of emotional expression,
learning to discern subtle differences in tone, pitch, and rhythm associated with
each emotional state.

The dataset’s application extends beyond SER; it has been employed in tasks
ranging from facial emotion recognition to emotion classification, both in audio
and visual modalities.
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3.2.3 IEMOCAP
The Interactive Emotional Dyadic Motion Capture [30] (IEMOCAP) dataset,
assembled by the Signal Analysis and Interpretation Laboratory (SAIL) at the
University of Southern California (USC), represents a rich multimodal collection of
emotional expression data. Collected in a controlled environment with a focus on
capturing genuine affective interactions, IEMOCAP is an acted dataset that offers
researchers high-fidelity insights into the dynamics of human emotion.

Spanning approximately 12 hours, the dataset incorporates multiple data modal-
ities, including video, speech, facial motion capture, and text transcriptions. It
features 151 dialogues, each a dyadic interaction between two actors, culminating
in 302 unique dialogue videos. The dyadic format is a deliberate choice, designed to
elicit a range of emotions through naturalistic exchanges between the participants.

The term "dyadic" is derived from the word "dyad", that means a pair, a group of
two, referring to the fact that dialogues in the dataset happen in pairs. The actors
in IEMOCAP were tasked with performing both improvised and scripted scenarios,
carefully chosen to provoke a wide spectrum of emotional states. The resulting
performances were annotated for nine distinct emotions: anger, fear, excitement,
sadness, happiness, surprise, frustration, disappointment, and neutrality. This
detailed annotation process ensures that each dialogue segment within IEMOCAP
is a valuable sample for emotional analysis.

The size of the corpus, along the detailed motion capture information and
interactive setting that promote authentic emotions, makes this dataset a valuable
addition to the existing databases for the study and modeling of multimodal and
expressive human communication, demonstrated by how the dataset has been used
in a variety of tasks of Emotion Recognition in many different modalities.

3.3 Data Preparation
This section gives an additional overview of the text and audio data preparation
processes, adding more details in respect to what has been discussed before.

3.3.1 Text Processing
As we prepare data for SpectroBERT’s training and fine-tuning, the text processing
pipeline transforms raw text into a structured sequence that the model can interpret.
Below are the steps:

1. Tokenization: The raw text is first tokenized using the BERT tokenizer from
Hugging Face’s Transformers [32] library. This process involves breaking down
the text into a sequence of tokens and adding special tokens required by the
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model, such as ‘[CLS]‘ for the start of a sequence and ‘[SEP]‘ for separation
between segments.

2. Truncation and Padding: Sequences longer than the model’s maximum
sequence length are truncated to fit, while shorter sequences are padded with
a special ‘[PAD]‘ token to ensure uniformity across all inputs. We use 128 as
the maximum text length.

3. Attention Masks: An attention mask is created for each sequence, enabling
the model to differentiate between the actual sequence and padded areas
during self-attention calculations.

4. Embedding Lookups: Each token goes through an embedding layer, which
converts it into an embedding vector, that encodes the semantic and syntactic
information of the tokens.

3.3.2 Audio Processing
In preparing data for SpectroBERT’s training and fine-tuning phases, the audio
processing step transforms raw audio input into a structured format that the model
can interpret. The audio processing pipeline involves the following steps:

1. Waveform Loading: The first step involves loading the audio files into
the processing pipeline. This stage converts the raw audio files (typically
in formats like WAV, although FLAC was used for WavCaps) into digital
waveforms, representing the audio signal as a series of data points.

2. Spectrogram Patch Extraction: We use the AST Feature Extractor
available on Hugging Face’s Transformers library to convert the loaded audio
waveforms into spectrogram patches. Each patch represents a portion of the
audio signal, capturing both frequency and time information, and is then
used as an input token for the model. This step implicitly includes a series of
sub-steps, like normalization, feature extraction by converting the waveforms
into their mel-spectrogram, and segmentation to split the spectrogram into
patches.

3. Audio Tokenization with Wav2Vec2 Layers: The spectrogram patches
are then processed through Wav2Vec2 convolutional layers to encode them
into audio tokens as explained in Chapter 2.
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Chapter 4

Experimental Settings

This chapter delves into the experimental framework designed to evaluate the
efficacy of SpectroBERT, our proposed model for speech-text cross-modal learning.
The experiments are suggested to test various aspects of SpectroBERT, including
its ability to process and align speech and text data, its performance in compari-
son to existing models, and its adaptability to different types of speech and text
inputs. The suggested framework not only aims to demonstrate the capabilities of
SpectroBERT, but to also provide insights into the strengths and limitations of
the model.

This chapter will detail the experimental setup and the metrics suggested for
evaluation, while an analysis of the obtained results follows in the next chapter.

4.1 Pre-Training
In this stage of SpectroBERT’s development, we employ pre-training to establish a
foundational understanding of speech and text modalities. The choice of datasets,
which is of fundamental importance, was previously discussed, but a summarized
overview is offered below.

We suggest three distinct datasets: LibriSpeech [24], CommonVoice [25], and
WavCaps [26], each offering unique characteristics and challenges.

• LibriSpeech: This dataset, well-regarded in speech recognition, offers a
diverse range of English speech from audiobooks.

• CommonVoice: An open-source dataset, CommonVoice provides a wide
array of accents and dialects, enhancing the diversity of the speech data.
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• WavCaps: Unlike LibriSpeech and CommonVoice, WavCaps is not limited
to speech, and it includes richly annotated textual captions that have been
processed with ChatGPT, offering a structure that integrates more contextual
information with the audio data.

We were able to successfully pre-train SpectroBERT on the WavCaps and
LibriSpeech datasets, while CommonVoice is temporarily left aside as a future
work.

4.2 Fine-Tuning
Once SpectroBERT has completed its pre-training, it enters the fine-tuning stage,
where we really start to tailor the model to specialized tasks. Fine-tuning allows the
model to adapt its broad understanding of speech and text to handle the specific
nuances and requirements of the applications of interest. In this phase, we focus
on two distinct tasks: Audio Question Answering (AQA) and Speech Emotion
Recognition (SER).

• For AQA, we utilize the Clotho-AQA dataset, a challenging collection designed
for evaluating a model’s ability to comprehend and respond to complex audio-
based questions.

• For SER, we utilize RAVDESS, and suggest to adapt it for IEMOCAP in
future works, given the two datasets offer a different range of emotional speech
data.

This section will explore the fine-tuning processes for these tasks, detailing the
dataset-specific adaptations, training methodologies, and the learning regime that
SpectroBERT undergoes to specialize in the downstream applications.

4.2.1 Evaluation Metrics
Before delving into the details of the suggested experiments, we find it convenient
to introduce the metrics proposed to quantify how well a certain model is doing.

A metric can have many appearances - some might be a scalar value that
has to be minimized or maximized, like a difference or score, some might be a
percentage, like the proportion of correctly classified instances out of the total in-
stances - and the choice of metrics merely depends on the nature of the task at hand.

In our case all downstream tasks are either binary or multiclass classification
tasks, and for consistency with previous works, we evaluate the models in terms of
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Accuracy, but we also suggest the usage of the Area Under the Receiver Operating
Curve (AUROC).

Accuracy

Accuracy (Acc) is a foundational metric in machine learning, defined as the ratio
of correctly predicted instances to the total number of instances in the dataset.
Mathematically, it is expressed as:

Acc = TP + TN

TP + TN + FP + FN

where:

• TP is the number of true positives (correctly predicted positive instances).

• TN is the number of true negatives (correctly predicted negative instances).

• FP is the number of false positives (incorrectly predicted positive instances).

• FN is the number of false negatives (incorrectly predicted negative instances).

While accuracy is intuitive and provides a quick assessment of a model’s overall
correctness, its suitability depends on the specific characteristics of the dataset. In
cases of imbalanced datasets, where one class is significantly more prevalent than
others, accuracy may be misleading, and for those cases we suggest considering
additional metrics such as precision, recall, and the F1 score to gain a more nuanced
understanding of a model’s performance.

Despite its limitations, accuracy remains a valuable metric, offering a straight-
forward measure of a model’s effectiveness, and for consistency with previous works,
we conduct our experiments only taking accuracy into account.

Area Under the Receiver Operating Curve

The Area Under the Receiver Operating Characteristic (ROC) Curve, or AUROC,
is a key metric in machine learning, especially for binary classification tasks. The
ROC curve shows how a model balances between correctly predicting positive
cases (true positive rate or sensitivity) and incorrectly predicting negative cases as
positive (false positive rate, which is 1 minus specificity).

In other words, it measures how well a model can differentiate between two
classes across all possible thresholds, with values ranging from 0 to 1, where a score
of 0.5 indicates random chance, and a score of 1 suggests perfect discrimination.
Mathematically, AUC-ROC is calculated as the area under the ROC curve:
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AUC-ROC =
Ú 1

0
TPR(FPR−1(t)) dt

where TPR is the true positive rate (sensitivity), FPR is the false positive rate,
and FPR−1(t) is the inverse function of FPR.

A higher AUROC value means the model does a better job at telling positives
from negatives. Here’s a general interpretation of AUROC values:

• 0.5: This indicates a model that performs no better than random chance. The
curve hugs the diagonal line, and the model is not effectively distinguishing
between the two classes.

• 0.7-0.8: This is considered acceptable. The model has some discriminatory
power, but there is room for improvement.

• 0.8-0.9: This is considered good. The model has a strong discriminatory
power and is effective in distinguishing between the positive and negative
classes.

• 0.9 and above: This is considered excellent. The model has a high dis-
criminatory power, and its ability to differentiate between classes is very
strong.

AUROC becomes particularly valuable in scenarios where the class distribution
is imbalanced. However, it is essential to consider the context of the problem and
the specific consequences of false positives and false negatives, as AUC-ROC alone
may not provide a complete picture of a model’s performance.

4.2.2 Parameters Freezing
When fine-tuning a complex model like SpectroBERT, we often use a technique
called ’parameters freezing’ or weight freezing. This method involves selectively
stopping updates to certain parts of the model’s weights to preserve what the
model learned during pre-training while allowing it to adjust to new tasks during
fine-tuning. In fine-tuning SpectroBERT, we want to see how freezing some layers
of the model impacts the training behaviour and downstream performance.

Good candidates for freezing are the initial layers, which capture more universal
aspects of language and audio, and don’t always need to be adjusted for specific
tasks. They’ve already learned a lot about language and sound during pre-training,
so by freezing their parameters, we make sure SpectroBERT retains its foundational
understanding of these basic elements, while the layers closer to the end of the
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Figure 4.1: ROC and Area Under the Receiver Operating Curve. Credits to the
original author [33].

model - those that directly deal with the task-specific data - are fine-tuned, helping
these parts of the model become more skilled at handling the specific requirements
of the tasks we’re focusing on.

Deciding which parameters to freeze depends on various factors, like how big
and representative the fine-tuning dataset is, the complexity of the task, and how
similar the fine-tuning task is to what the model learned during pre-training. We
can think of this process in mathematical terms as well:

θfrozen = constant

θfine-tune = arg min
θ

L(θ, Dfine-tune)

In this representation, θfrozen are the weights that stay the same during fine-
tuning, and θfine-tune are the ones we update. L is the loss function we’re trying
to minimize over the fine-tuning dataset Dfine-tune. This approach helps balance
preserving the general knowledge SpectroBERT has gained and adapting it to new,
specific tasks.

4.2.3 Audio Question Answering
The capability of SpectroBERT to comprehend and integrate complex audio-text
relationships are put to the test in the Audio Question Answering (AQA) task.
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We suggest a series of experiments to assess how different pre-training strategies
and weight freezing configurations affect the model’s performance in both ’binary’
(yes/no) and ’open’ (single-word) AQA tasks.

For each variant of the AQA task, we propose four main experiments:

• Without Pre-Training: The model is initialized with BERT’s [3] pretrained
weights (for the transformer stack and the embedding layers) and random
weights (for everything else), and directly fine-tuned on the AQA tasks, serving
as a baseline to understand the importance of pre-training.

• Pre-Trained on Each Dataset: Here, the model is pre-trained separately on
LibriSpeech, Common Voice, and WavCaps, and then fine-tuned for the AQA
tasks, to test the impact of domain-specific pre-training on AQA performance.

• Full Model Fine-Tuning: The model, pre-trained on the above datasets, is
fine-tuned with all weights unfrozen, allowing the entire model to adapt to
the AQA tasks.

• Partial Model Fine-Tuning: all layers except the classification head (and in
another variant, also the last layer of the transformer) are frozen, to determine
whether preserving lower-level representations while adapting only the higher-
level representations is beneficial, or excessively restricting.

For each of these configurations, the model is fine-tuned on the Clotho-AQA
dataset, separately for binary and open question-answer pairs.

We propose to measure the model’s performance using standard classification
metrics such as accuracy for binary questions and also top-5 and top-10 accuracy
for open questions. These metrics provides insights into how well the model can
generalize from its training data to accurately answer unseen questions.

The results from these experiments are expected to reveal the importance of
pre-training in AQA tasks, the effectiveness of domain-specific knowledge, and the
impact of freezing various parts of the model during fine-tuning.

4.2.4 Speech Emotion Recognition
The Speech Emotion Recognition (SER) experiments for SpectroBERT aimed
to understand how the model interprets and classifies emotional nuances within
speech. SER is a task that requires high sensitivity to acoustic variations, and
SpectroBERT’s ability to integrate audio and text data is crucial for its performance.
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We followed a similar experimental structure to the AQA tasks to evaluate
SpectroBERT’s capabilities in this domain:

• Without Pre-Training: Like for AQA, SpectroBERT is assessed without any
pre-training, using BERT’s pretrained weights (for the transformer stack
and the embedding layers) and random weights (for everything else). This
experiment establishes a baseline for the model’s intrinsic SER capabilities
without the influence of transfer learning.

• Pre-Trained on Each Dataset: Here, the model is pre-trained separately on
LibriSpeech, Common Voice, and WavCaps, and then fine-tuned for the SER
tasks to test the impact of domain-specific pre-training on SER performance.

• Full Model Fine-Tuning: After pre-training, the entire model undergoes fine-
tuning on the RAVDESS and IEMOCAP datasets with all layers unfrozen, to
test the model’s ability to adapt its entire range of learned parameters to the
SER task.

• Partial Model Fine-Tuning: To understand the benefits of focused adaptation,
certain layers of SpectroBERT are frozen, leaving only the classification head
(and in some variants, the last layer of the transformer too) unfrozen. This
allows to investigate whether maintaining the pre-trained features in earlier
layers while fine-tuning deeper layers would yield better SER performance.

The RAVDESS and IEMOCAP datasets offer a rich array of emotional ex-
pressions, providing a solid testing ground for SpectroBERT. We were able to
successfully fine-tune SpectroBERT on the RAVDESS dataset, with its acted
speech that present clear emotional categories, while IEMOCAP, with its more
natural dialogues, is temporarily left aside as a future work.

For evaluation, we propose using accuracy at top-1 and top-2 only, given the
low amount of classes.
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Chapter 5

Experimental Result and
Analysis

In this chapter, we are going to analyse how well SpectroBERT did during its
training phases, in order to figure out what the model is good at and where it
might need some work. We will start by looking at the pre-training phase, with our
main focus being on the differences between the pre-training results when using
WavCaps and LibriSpeech, and how each of these affected the model’s learning
behaviour.

After that, we will move on to how SpectroBERT performed when fine-tuned
for specific tasks. We will cover its performance in Audio Question Answering
(AQA) tasks, both when the answers were just ’yes’ or ’no’ and when they were
more open-ended, and we will also look at how it did in recognizing emotions in
speech. This part will give us a good idea of how flexible and accurate the proposed
framework is when it comes to dealing with different kinds of challenges.

By the end of this chapter, we aim to have a solid understanding of Spec-
troBERT’s current capabilities and a few ideas on where to take it next, while in
the next (and final) Chapter 6 we will pull together what has been learned from
these analyses, to obtain a clear picture of where SpectroBERT stands right now,
how it performed in our tests, and what could be improved in the future.

5.1 Pre-Training

5.1.1 Differences between WavCaps and LibriSpeech
In this section, we analyse how SpectroBERT’s training differed when using two
distinct datasets: WavCaps [26] and LibriSpeech [24]. Our findings in Figure 5.1
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indicate that using WavCaps generally led to better training outcomes, as reflected
by lower loss values during the training process, suggesting that the type of data
SpectroBERT is trained on can significantly impact its learning efficiency and
effectiveness.

Train loss Validation loss

Step

LibriSpeech
WavCaps

LibriSpeech
WavCaps

Step

Figure 5.1: Pre-training graphs.

WavCaps seems to have provided a richer training ground for SpectroBERT,
with its diverse and complex audio environments that might have helped the model
learn more robust and adaptable representations of speech, as evidenced by the
generally-lower and smoother loss curves. It’s possible that the broader range
of acoustics and contexts in WavCaps challenged the model in ways that better
prepared it for real-world applications. On the other hand, LibriSpeech, while still
a valuable dataset, appears to have offered a somewhat limited learning experience,
perhaps because its clean audiobook-style speech, may not have presented the same
level of complexity and diversity as WavCaps. This could explain why the training
loss with LibriSpeech was generally higher compared to WavCaps.

The comparison of these two datasets in training SpectroBERT highlights the
importance of dataset selection in Machine Learning and how varying audio char-
acteristics can influence a model’s learning behaviour.

In the following experiments, we will only be using WavCaps as a pre-training
dataset, given its prospected better performance.

5.2 Fine-Tuning

5.2.1 AQA Binary
In this section, we explore how SpectroBERT performed on the Audio Question
Answering (AQA) task with binary (yes/no) responses. Specifically, we looked at
results from a setup without pre-training and several setups with pre-training on
the WavCaps dataset, but with varying degrees of parameters freezing.
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Firstly, we have the scenario where SpectroBERT was fine-tuned without any
pre-training. This serves as a baseline to understand the importance of pre-training
in preparing the model for specific tasks. Then, in the pre-trained setups we
experimented with freezing different layers:

• Freezing everything (bin-frz). In this experiment, we froze the entire
network except the classification head. This setup is similar to what is
commonly done when fine-tuning a model.

• Freezing everything except last Transformer layer (bin-frz-nolast).
In this experiment, starting from the setup of the previous one, we unfroze
the very last layer of the Transformer stack, in an attempt to let it learn the
interaction of audio and text specific for this task.

• Freezing everything except the audio encoder (bin-frz-noaudio). In
this experiment , we moved in a different direction. While keeping the entire
Transformer stack frozen as in the first experiment, we unfroze the Wav2Vec2-
inspired [16] convolutional layers that extract audio features. The idea here
was to let those layers learn to extract audio clues that might be specific for
the task.

Figure 5.2 shows the different combinations of freezing. These varying degrees
of freezing allows us to observe how restricting updates to certain parts of the
model impacts its ability to handle the AQA task. Generally, freezing layers is
thought to help retain the general knowledge gained during pre-training, but it also
limits the model’s ability to adapt to the specifics of a new task. The results from
these experiments can better help understand how to balance between preserving
pre-learned knowledge and adapting to new tasks.

In figure 5.3 the losses behaviour, together with the accuracy values, are reported.
Our findings show that all the three pre-trained versions of SpectroBERT out-

performed the non-pretrained setup, highlighting the importance of pre-training
in preparing the model for specific tasks. However, we also observed that setups
with less freezing generally performed better, indicating a benefit in allowing more
layers to adapt to the task. This improved performance, nonetheless, came with a
caveat: a tendency to overfit more quickly.

Overfitting is a common issue in machine learning where a model learns the
details and noise in the training data to an extent that it negatively impacts the
performance of the model on new data. Essentially, an overfitted model is too
well-tuned to the training data: it’s great at handling that specific set of data, but
it doesn’t generalize well to other, unseen datasets.
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Figure 5.2: Different combinations of freezing in the AQA-binary setting

This happens when the model becomes complex enough to capture not just the
underlying patterns in the training data, but also the random fluctuations and
irrelevant features (noise). As a result, while the model might perform exceptionally
well on the training data, showing high accuracy and low loss, its performance
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Train loss Validation loss

Step Step

baseline
bin-frz
bin-frz-noaudio
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Validation accuracy
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Figure 5.3: AQA-binary training graphs.

Figure 5.4: Overfitting visualized. The green line depicts an overfitted model,
closely tracing the training data but likely less effective on new, unseen data (shown
as black-outlined dots). In contrast, the black line represents a regularized model,
balancing data fit and generalization, potentially performing better on new data.
Credits to the original author [34].

drops significantly when presented with new, unseen data, as visualized in Figure
5.4.
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Nevertheless, if we consider the results at a step where the validation loss has not
diverged too much from the training loss - which is a common signal of overfitting
- we find that the versions of SpectroBERT with a balanced degree of freezing
outperformed the version where the entire network is frozen, as shown in Figure
5.5.

Validation loss

Step
baseline
bin-frz
bin-frz-noaudio
bin-frz-nolast

Validation accuracy

Step

Figure 5.5: Comparison between varying degrees of freezing at early steps.

With these considerations in mind, Table 5.1 compares in terms of accuracy our
results - cherry-picked at a early step of the training to avoid overfitting - with the
results of Clotho-AQA’s original paper.

Table 5.1: Accuracies (%) of ‘yes’ or ‘no’ binary classifier on Clotho-AQA

Experiment Pre-training Epoch Top-1 Acc.
ClothoAQA - - 62.7
baseline None 4 64.9
bin-frz WavCaps 30 68.8
bin-frz-nolast WavCaps 6 74.3
bin-frz-noaudio WavCaps 4 69.6

5.2.2 AQA Open
In this section, we analyze SpectroBERT’s performance on the open-ended Audio
Question Answering (AQA) task under various experimental setups. These experi-
ments were designed to assess how different levels of pre-training and parameter
freezing impact the model’s ability to handle more complex, open-ended questions.
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Similar to the AQA-binary setup, we first have the scenario where SpectroBERT
was fine-tuned without any pre-training. This setup serves as a baseline, helping
us understand the importance of pre-training in preparing the model for complex
questioning scenarios.

Then, in the pre-trained setups we experimented with freezing different layers:

• No freezing (open-nofrz). In this experiment, no freezing was applied
during fine-tuning. This allowed all layers of the model to adjust freely to the
specifics of the open AQA task, potentially enhancing task-specific learning.

• Freezing everything except last Transformer layer (open-frz-nolast).
In this experiment, everything was frozen except the classification head and
the last layer of the Transformer stack. The idea was to allow the final layer
to adapt to the intricacies of the task while retaining the previously learned
knowledge in the other layers.

• Freezing everything except last 2 Transformer layer (open-frz-nolast2).
In this experiment, expanding on the previous setup, in this experiment we
unfroze the last two layers of the Transformer stack along with the classifica-
tion head. This provides even more flexibility for the model to adapt to the
AQA task, potentially capturing more complex interactions between audio
and text necessary for open-ended questions.

Figure 5.6 shows the different combinations of freezing. We analyse how these
varying degrees of freezing impacts the model ability to handle the AQA-open task.
In figure 5.7 the losses behaviour, together with the accuracy values, are reported.

Like in the binary case, our findings show that all the three pre-trained versions of
SpectroBERT outperformed the non-pretrained setup, highlighting the importance
of pre-training in preparing the model for specific tasks, but differently from
the binary case, overfitting does not seem to be too much of a problem in this
experiments. We attribute the cause of this finding to the more complex nature of
the open-ended single-word question answering compared to the simpler ’yes/no’
scenario.

Table 5.2 compares in terms of accuracy our results with the ones of Clotho-
AQA’s original paper [27].

5.2.3 SER
In this section, we delve into SpectroBERT’s performance in the Speech Emotion
Recognition (SER) task under different training and fine-tuning conditions. Our
experiments aimed to understand how the model reacts to varying levels of pre-
training and parameter freezing, especially in a task that focuses more on emotional
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Figure 5.6: Different combinations of freezing in the AQA-open setting

nuances rather than content.

Similar to the AQA tasks, we initially fine-tuned SpectroBERT on the RAVDESS
dataset without any pre-training. This setup helps us evaluate the model’s innate
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Figure 5.7: AQA-open training graphs.

Table 5.2: Accuracies (%) of single-word answers multi class classifier on
ClothoAQA

Experiment Pre-training Epoch Top-1 Acc. Top-5 Acc.
Clotho-AQA - - 54.2 93.7

baseline None 9 20.1 44.4
open-nofrz WavCaps 28 49.7 87.9
open-frz-nolast WavCaps 30 46.7 78.3
open-frz-nolast2 WavCaps 30 50.8 85.4

ability to recognize emotions without the benefit of prior learning, and provides a
baseline.

Then, in the WavCaps pre-trained setups we experimented with freezing different
layers:

• Freezing everything except last Transformer layer (ser-frz-nolast).
In this experiment, fine-tuning is performed freezing all but the classification
head and the last layer of the Transformer stack. This setup allowed us to see
how much the final Transformer layer contributes to understanding emotions
when most of the model’s parameters are fixed.

• Freezing everything except the audio encoder (ser-frz-nolast-noaudio).
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In this experiment, expanding on the previous configuration, we unfreeze not
only the last Transformer layer and the classification head, but also the audio
feature extractor (Wav2Vec2 convolutional layers). This was done to assess
whether allowing these layers to adapt would enhance the model’s ability to
extract emotion-relevant information from the audio.

Figure 5.8 shows the different combinations of freezing, while in Figure 5.9 the
losses behaviour, together with the accuracy values, are reported.

Interestingly, these results indicate that the difference between pre-trained and
non-pre-trained versions of SpectroBERT for SER is not as pronounced as one
might expect, suggesting that the task of emotion recognition may rely less on
content understanding and more on picking up emotional cues, an ability on which
pre-training might not significantly impact.

Instead, a notable improvement was observed in experiment #2, when the audio
feature extractor was unfrozen. This implies that allowing these layers to adjust
and learn specifically from emotion-related audio features is beneficial for the task,
suggesting that in this case the emotional tone of the audio is more crucial than
the linguistic content itself.

Table 5.3 compares in terms of accuracy the results obtained in the various
experiments.

Table 5.3: Accuracies (%) of emotional multi class classifier on RAVDESS

Experiment Pre-training Epoch Top-1 Acc. Top-2 Acc.
baseline None 47 42.3 67.3
ser-frz-nolast WavCaps 28 29.9 50.4
ser-frz-nolast-noaudio WavCaps 23 63.2 82.1
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Figure 5.9: SER graphs.
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Chapter 6

Conclusion

6.1 Final Considerations
As we reach the conclusion of this thesis, several key takeaways and directions for
future works emerge from the analysis of SpectroBERT.

• First and foremost, our experiments and the results obtained throughout the
development of SpectroBERT offer a promising validation of the fundamental
premise of this thesis: it is indeed possible to create a model that can seamlessly
integrate and interpret speech and text data by leveraging self-attention; this
approach, previously proven effective in VisualBERT for bridging visual and
textual data, is successfully adapted to connect speech and text modalities
instead, demonstrating once again the versatility and potential of Transformer-
based models in multimodal contexts.

• Second, another key insight from our experiments is the effectiveness of the
two-step process of pre-training and fine-tuning. Our results have shown that
pre-training SpectroBERT on diverse datasets, like we did with WavCaps, can
significantly contributes to its performance in downstream tasks, as it was the
case in the Audio Question Answering task. On the other hand, fine-tuning
after pre-traning might only give a slight advantage over training from scratch
if the pre-training dataset is not aligned in nature and distribution of data
with the fine-tuning one, as it was the case in the Speech Emotion Recognition.
As such, we suggest that pre-training a model in the multimodal context be
an essential part of future works in the field, but with a careful choice of
pre-training datasets.

• Third, is the careful approach to choosing a strategy of parameter freezing
during fine-tuning. Our results suggest that carefully choosing which layers to
freeze or unfreeze can greatly impact the model’s performance on specific tasks.
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As seen in tasks like Speech Emotion Recognition - where allowing the model to
adapt its audio feature extraction layers led to noticeable improvements - this
finding points to the potential benefits of layer-specific fine-tuning strategies
depending on the nature of the task at hand.

In conclusion, we are confident that the main goal of researching and developing
a framework for "Speech-Text Cross-Modal Learning through Self-Attention Mecha-
nisms" - this thesis’ title - has been accomplished, by providing the reader with an
introductory background of the problem at hand first, and by having later proposed
a novel architecture which we named SpectroBERT, which has been demonstrated
to work through our suite of experiments.

6.2 Future works
Looking ahead, there are several possibilities for future research and development
of our proposed method.

One immediate area is the exploration of the tasks and configurations that could
not be tested in the current phase of our work, and thoroughly experiment with
all the different combinations of datasets - like Common Voice and IEMOCAP,
which have been left aside in this phase of our work - and fine-tuning strategies
- like different layer-specific freezing strategies - to further study how the choice
of the pre-training datasets, and the varying degree of freezing, impacts on the
downstream tasks’ performance.

Another promising direction is the exploration of SpectroBERT’s applicability
in more diverse and challenging real-world scenarios, extending its use beyond the
tasks of Audio Question Answering and Speech Emotion Recognition.

For example, investigating its performance using different languages and dialects,
or in environments with varying levels of background noise, could provide valuable
information about its practical utility and limitations. Also, an extension to the
aforementioned sequence-to-sequence class of tasks, or to the generative class of
tasks, is to be taken into consideration.
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Appendix A

Training settings

In developing SpectroBERT, we made a series of choices regarding our training
settings which we share for those interested in replicating our experiments or
gaining deeper insights into our methodology.

Hardware Specifications
All of our experiments, in both the pre-training and fine-tuning stages, were con-
ducted on a single NVIDIA V100 GPU, equipped with 32 GB of VRAM. This choice
of hardware provided the necessary computational power and memory capacity to
handle the complexity and size of SpectroBERT.

Batch Size
In all of our experiments we set the batch sizes to either 24 or 26, which closely
met the limitations of our hardware depending on the task at hand.

Optimization
For optimization, we employed RAdam [35] (Rectified Adam), an optimizer known
for its refinement over the standard Adam [36] algorithm. RAdam introduces a term
that rectifies the variance of the adaptive learning rate, ensuring more stable and
consistent optimization, especially in the early stages of training. This rectification
improves convergence and offers better performance with fewer hyperparameter
tuning requirements compared to traditional Adam. We set the initial learning
rate to 1e-5, aiming for stability throughout the training process.

Training Duration
Our models were trained with maximum epochs either 30 or 50, depending on
the task at hand. During pre-training for example, the maximum epochs were set
to 50 to give the model enough time to truly learn from the data, while during
fine-tuning on smaller datasets, the maximum epochs were set to 30.
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Training settings

Regularization Techniques
To further guard against overfitting and to enhance the model’s generalization
capabilities, we incorporated dropout layers [37] within the model, with dropout
probability set to 0.1. These layers randomly deactivate certain neurons during
training, which helps the model to learn more robust features.

Additionally, we used gradient clipping [38], a technique that prevents the ex-
ploding gradient problem by clipping them to a maximum value - 5.0 in our case -
thereby ensuring more stable and consistent training.
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Appendix B

Sbatch scripts

The development of SpectroBERT was made possible by the computational re-
sources provided by HPC@POLITO (http://www.hpc.polito.it), which offers
a SLURM environment where jobs are queued to the cluster by means of sbatch
scripts. For the sake of completeness, we report some example sbatch scripts, in
the hope they might be useful to those interested in replicating our experiments.

Pretraining

1 #! / bin /bash
2 #SBATCH −−time =96:00:00
3 #SBATCH −−ntasks−per−node=1
4 #SBATCH −−cpus−per−task=4
5 #SBATCH −−p a r t i t i o n=cuda
6 #SBATCH −−mem=12GB
7 #SBATCH −−g r e s=gpu : 1
8

9 ##########################
10

11 # p r e t r a i n i n g
12 # −−datase t wavcaps or l i b r i s p e e c h or common_voice
13 DATASET=wavcaps
14 python t r a i n . py −− i n i t i a l i z e _ w e i g h t s −−cuda −−task pre −−datase t ${

DATASET} −−experiment_name ${DATASET} _pret ra in ing
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Sbatch scripts

AQA

1 #! / bin /bash
2 #SBATCH −−time =12:00:00
3 #SBATCH −−ntasks−per−node=1
4 #SBATCH −−cpus−per−task=2
5 #SBATCH −−p a r t i t i o n=cuda
6 #SBATCH −−mem=6GB
7 #SBATCH −−g r e s=gpu : 1
8

9 ##########################
10 # −−task e i t h e r ’ aqa_binary ’ or ’ aqa_open ’
11 python t r a i n . py −− i n i t i a l i z e _ w e i g h t s −−cuda −−task aqa_binary −−

datase t c lothoaqa −−experiment_name clothoaqa_binary

SER

1 #! / bin /bash
2 #SBATCH −−time =2:00:00
3 #SBATCH −−ntasks−per−node=1
4 #SBATCH −−cpus−per−task=2
5 #SBATCH −−p a r t i t i o n=cuda
6 #SBATCH −−mem=6GB
7 #SBATCH −−g r e s=gpu : 1
8

9 ##########################
10

11 # s e r
12 # −−datase t ravdess or iemocap
13 DATASET=ravdess
14 python t r a i n . py −− i n i t i a l i z e _ w e i g h t s −−cuda −−task s e r −−datase t ${

DATASET} −−experiment_name ${DATASET}_ser
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Appendix C

Datasets download scripts

For the same reasons we included the sbatch scripts, we also report the bash scripts
used to download the publicly-available datasets.

Note: LibriSpeech [24] and CommonVoice [25] are not included here because,
although public, they are available in Hugging Face’s Datasets [39] library, which
makes their usage easier.

WavCaps

1 #! / bin /bash
2

3 print_usage ( ) {
4 p r i n t f " Usage : . / download_wavcaps . sh [−a ] [−b ] [− f ] [− s ] \ n
5 \t−a : Download AudioSet
6 \t−b : Download BBC Sound E f f e c t s
7 \t−f : Download FreeSound
8 \t−s : Download SoundBible \n
9 Flags can be f r e e l y combined , f o r example :

10 \t−ab f s : Download a l l o f the above\n "
11 }
12

13 p r i n t f "
14 ===================================
15 === Downloading WavCaps datase t ===
16 ===================================\n"
17

18 p r i n t f " \n>>> Cloning the r e p o s i t o r y from HuggingFace <<<\n"
19 g i t l f s i n s t a l l
20 GIT_LFS_SKIP_SMUDGE=1 g i t c l one https : // hugg ing face . co/ da ta s e t s / cvssp

/WavCaps
21
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Datasets download scripts

22 p r i n t f " \n>>> Changing cur rent working d i r e c t o r y to the r e p o s i t o r y
<<<\n"

23 cd WavCaps
24 pwd
25

26 p r i n t f " \n>>> Downloading a l l the metadata <<<\n"
27 g i t l f s p u l l −−i n c l ude " ∗ . j s on "
28

29 p r i n t f " \n>>> Downloading the reques ted sub−data s e t s only <<<\n"
30 whi le ge topt s ’ ab f s ’ f l a g ; do
31 case " ${ f l a g } " in
32 a ) echo " AudioSet_SL "
33 g i t l f s p u l l −−i n c l ude " ∗/AudioSet_SL/∗ " ; ;
34 b) echo " BBC_Sound_Effects "
35 g i t l f s p u l l −−i n c l ude " ∗/BBC_Sound_Effects/∗ " ; ;
36 f ) echo " FreeSound "
37 g i t l f s p u l l −−i n c l ude " ∗/ FreeSound /∗ " ; ;
38 s ) echo " SoundBible "
39 g i t l f s p u l l −−i n c l ude " ∗/ SoundBible /∗ " ; ;
40 ∗) pr int_usage
41 e x i t 1 ; ;
42 esac
43 done
44

45 p r i n t f " \n>>> Done <<<"

Clotho-AQA

1 #! / bin /bash
2

3 p r i n t f ">>> Downloading ClothoAQA datase t <<<\n"
4 mkdir ClothoAQA
5 cd ClothoAQA
6 pwd
7

8 p r i n t f " \n>>> Downloading the audio f i l e s <<<\n"
9 wget −nc https : // zenodo . org / record /6473207/ f i l e s / a u d i o _ f i l e s . z ip ?

download=1 −O a u d i o _ f i l e s . z ip
10

11 p r i n t f " \n>>> Downloading the metadata f i l e s <<<\n"
12 wget −nc https : // zenodo . org / record /6473207/ f i l e s /clotho_aqa_metadata .

csv ?download=1 −O clotho_aqa_metadata . csv
13 wget −nc https : // zenodo . org / record /6473207/ f i l e s / clotho_aqa_test . csv ?

download=1 −O clotho_aqa_test . csv
14 wget −nc https : // zenodo . org / record /6473207/ f i l e s / clotho_aqa_train . csv

?download=1 −O clotho_aqa_train . csv
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Datasets download scripts

15 wget −nc https : // zenodo . org / record /6473207/ f i l e s / clotho_aqa_val . csv ?
download=1 −O clotho_aqa_val . csv

16

17 p r i n t f " \n>>> Unzipping the audio f i l e s <<<\n"
18 unzip −n a u d i o _ f i l e s . z ip
19

20 p r i n t f " \n>>> Fixing a typo in a f i l ename <<<\n"
21 mv a u d i o _ f i l e s / souf f le_me . t a l l i q u e . wav a u d i o _ f i l e s /

sou f f l e_me_ta l l i que . wav

RAVDESS

1 #! / bin /bash
2

3 p r i n t f ">>> Downloading RAVDESS datase t <<<\n"
4 mkdir RAVDESS
5 cd RAVDESS
6 pwd
7

8 p r i n t f " \n>>> Downloading the audio f i l e s <<<\n"
9 wget −nc https : // zenodo . org / r e co rd s /1188976/ f i l e s /

Audio_Speech_Actors_01 −24. z ip ?download=1 −O Audio_Speech_Actors_01
−24. z ip

10

11 p r i n t f " \n>>> Unzipping the audio f i l e s <<<\n"
12 unzip −n Audio_Speech_Actors_01 −24. z ip

78



Appendix D

Environment details

The project was developed using Python [40] version 3.10 with the following
requirements:

1 torch >=2.0
2 torchaudio
3 t o r c h v i s i o n
4 pytorch−l i gh tn ing >=2.0
5 l i b r o s a
6 pandas
7 numpy
8 matp lo t l i b
9 t rans f o rmer s

10 data s e t s
11 t o k e n i z e r s
12 i s o r t
13 black
14 r i c h
15 comet_ml
16 pyte s t
17 t o r chmet r i c s
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