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Instituto Superior Técnico, Politecnico di Torino

December 2023

Abstract

A Modal Test was conducted on four composite beams from the Laboratory of the Department
of Mechanical and Aerospace Engineering at Politecnico di Torino, under Free-free condition. These
beams featured 7075 aluminium faces and a WF-110 polymer foam core, with varying material thick-
nesses across the beams. Furthermore, Finite Element Models were created for each structure, and
numerical analyses were performed on these models. It’s noteworthy that in this work, unlike the usual
modal test practice, a Laser Doppler Vibrometer was used for response measurement, as part of
an effort to explore the viability of this technology for modal testing. After analyzing the resonant
frequencies and vibration modes of the structures, the results from both models were compared. This
comparison confirmed the accuracy of the previously developed FEM models. It also underscored the
good performance of the structure designed for simulating Free-free condition tests and highlighted
the significant potential of LDVs for modal testing.
Keywords: FEM, Free-free condition, Modal Testing, LDV

1. Introduction
Throughout generations, humanity has witnessed
significant technological advancements driven by
the need to fulfill various requirements. However,
as technological demands increased, especially in
the aerospace and automotive industries, conven-
tional materials began to demonstrate limitations
in terms of performance. To address these needs,
researchers recognized that by combining different
materials, they could create a final product with
optimized properties [1]. Therefore, extensive re-
search has been conducted in the field of composite
materials [2].

Consequently, for this work, four composite
beams from the Laboratory of the Department of
Mechanical and Aerospace Engineering at Politec-
nico di Torino were dynamically studied through
modal tests. These beams all featured 7075 alu-
minium faces and a core of WF-110 polymer foam.
However, variations in material thickness from one
beam to another led to differences in stiffness and
distributed mass among the beams. As a result,
these stiffness variations translated into distinct dy-
namic characteristics when external forces were ap-
plied using a Shaker.

1.1. Topic Overview

The primary goal of this work is to conduct modal
testing on four composite beams, making modal

testing the central focus of this work.

Modal testing, in essence, encompasses a set
of experimental techniques designed to explore
the behaviour of systems under dynamic loads.
Through these experimental methods, it becomes
feasible to determine specific modal characteris-
tics of each structure, such as natural frequencies,
modal shapes, and damping. Understanding these
characteristics subsequently allows for predictions
regarding the structural response under dynamic
loads [3, 4].

It’s important to note that prior to conducting
any modal test, it’s customary to create an initial
Finite Element Model (FEM) that accurately repre-
sents the structure under investigation [5]. Follow-
ing the modal test execution, the quality of these
numerical models should be assessed by comparing
them to the experimentally obtained results.

With that in mind, engineers commonly use
accelerometers to measure a structure’s response
[6, 7, 8], but this method has potential errors. Ac-
celerometers introduce additional mass to the struc-
ture, which can significantly alter the characteris-
tics of lightweight structures [9]. To enhance preci-
sion and reliability, an alternative method employs
Laser Doppler Vibrometry (LDV) for data acquisi-
tion.
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1.2. Objectives and Deliverables

One of the main objectives of this work is to conduct
modal testing on four beams in a Free-free condition
state. However, as suspending a beam in the air
without any support is infeasible, an approximation
to the Free-free condition scenario was devised.

Another objective is to create accurate FEM
models for each of the four beams, predicting their
dynamic behavior. After obtaining results from
both numerical and experimental models, the work
aims to develop programs for data collection and
analysis, assessing the correlation between the mod-
els to validate the constructed FEM models.

In addition, this work aims to define an optimal
point configuration for the LDV to accurately rep-
resent modal shapes. Furthermore, it seeks to eval-
uate the potential of this technology for modal test-
ing. For this reason, the potential advantages and
disadvantages of LDV technology for these activi-
ties will also be discussed.

2. Dynamics of discrete systems
2.1. SDOF systems

Applying the Lagrange Equation to single-degree-
of-freedom (SDOF) systems, which are systems that
can be fully described using a single coordinate,
yields Equation 2.1. It’s important to note that
in this equation, u represents displacement, u̇ rep-
resents velocity, ü represents acceleration, k stands
for stiffness, c for damping, m for mass, and F de-
notes the applied external force.

mü+ cu̇+ ku = F ⇔ ü+
c

m
u̇+

k

m
u =

F

m
(2.1)

Now, while various scenarios can be analyzed us-
ing Equation 2.1, the most relevant case to address
is the situation of ”Force vibrations for damped sys-
tems” meaning F ̸= 0 and c ̸= 0. In this case,
the solution to Equation 2.1 can be expressed as
u(t) = uf (t) + up(t), where uf (t) represents the
homogeneous solution, and up(t) is the particular
solution of this differential equation. Therefore, the
equation related to the particular solution can be
written as follows:

üp +
c

m
u̇p +

k

m
up =

F

m
(2.2)

To describe up(t) properly, it is essential to define
F (t) since the response is closely associated with the
force acting on any system. Assuming that F (t)
behaves as a periodic function, it can be expressed
as a linear combination of harmonic functions, such
as F (t) = F0e

jωt. Therefore, when F (t) is described
by a harmonic function, the response should also
be represented as a linear combination of harmonic
functions. Its angular frequency will necessarily be
the same as that of the force, but with a phase delay
φ, as seen in up(t) = u0e

jωt+φ.

Therefore, by working with Equation 2.2 and rec-
ognizing that β corresponds to the Frequency Ra-
tio (i.e., the ratio between the angular frequency of
the external force and the natural angular frequency
of the system under study, β = ω

ωn
), Equation 2.3

can be deduced as follows:

u0e
−jφ =

F0

k
·

(
−β2

)
− j2ζβ

(1− β2)
2
+ 4ζ2β2

(2.3)

Additionally, it’s easy to see that Equation 2.2
can now be written as follows:

−ω2mu0e
j(ωt−φ)+cjωu0e

j(ωt−φ)+ku0e
j(ωt−φ) = F0e

jωt

(2.4)
With that said, it’s crucial to introduce the con-

cept of the Dynamic Amplification Factor, de-
noted as D(t). This factor allows us to assess how
much the dynamic response is amplified compared
to the static response, ust(t). Therefore, it is as
follows:

D(t) =
up(t)

ust(t)
=

ej(ωt−φ)√
(1− β2)

2 − 4ζ2β2

(2.5)

To determine the maximum value of D(t), it is
only necessary to identify when up(t) reaches its
maximum. Therefore, Dmax can be algebraically
expressed as:

Dmax =
1√

(1− β2)
2 − 4ζ2β2

(2.6)

It’s important to note that for ζ ≥
√
2
2 , the func-

tion Dmax does not exhibit an absolute maximum
value. However, for values of ζ <

√
2
2 , the function

Dmax consistently reaches an absolute maximum at
β =

√
1− 2ζ2, which is very close to β = 1. As ζ

increases, the value of β at which the peak in Dmax

occurs decreases. When β is very close to 1, the an-
gle φ approaches 90◦, and in this case, the response
is dominated by the damping force (cωu0). This
condition is known as Resonance, and as you will
observe, it will be the primary focus of this work.
A graphical representation of this scenario can be
seen in Figure 2.1.

Figure 2.1: Geometric representation of Equation
2.4 as β → 1 [5].

2.2. Frequency response
In many cases, analyzing the response in the time
domain proves to be a very complex task, often
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involving substantial computational costs or even
being impossible to perform. To address this chal-
lenge, a common approach is to transform the time-
domain response into the frequency domain. This
conversion between domains is typically achieved
using the Fourier Transform (FT):

F (ω) = T [f(t)] =
1√
2π

∫ +∞

−∞
f(t)e−jωdt (2.7)

Applying the Fourier transform to Equation 2.1,
where T (u) = U(ω) and T [F ] = F (ω), allow us to
obtain the following result:

U(ω) =
1

k · [(1− β2) + (j2ζβ)]
· F (ω) (2.8)

Equation 2.8 can be simplified by expressing
U(ω) as H(ω) · F (ω), where H(ω) is referred to
as the transfer function. This function can also be
further simplified through the following expression:
H(ω) = Me−jφ. Therefore, the amplitude M of
H(ω) is determined by the following equation:

M =
1

k
· 1

k

√
(1− β2)

2
+ 4ζ2β2

=
1

k
·Dmax (2.9)

Consequently, from Equation 2.9, it is clear that
the amplitude of H(ω) is directly proportional to
Dmax. This relationship demonstrates that the
frequency peaks of H(ω) coincide with the in-
stances when the function Dmax reaches its max-
imum value. In other words, the peaks of H(ω)
occur under resonance conditions (when there is
damping for β ≈ 1 ⇒ ωn ≈ ω).

2.3. MDOF systems
Similar to SDOF systems, the equations of motion
for this case are derived using Lagrange’s equation.
However, as it involves M degrees of freedom, the
resulting equation is in matrix form:

[M ] {ü}+ [C] {u̇}+ [K] {u} = {F} (2.10)

In this case, it’s useful to consider the following
scenarios: free vibrations for undamped (F = 0 and
c = 0), force vibrations for undamped (F ̸= 0 and
c = 0), and force vibrations for damped (F ̸= 0 and
c ̸= 0).

• Free vibrations for undamped systems

In this case, the equation 2.10 can be simplified
as follows: [M ] {ü}+[K] {u} = {0}. Assuming
that the response can be represented as {u} =
{ϕ} ejωnt, the result is:(

[k]− ω2
n [M ]

)
{ϕ} ejωt = {0} (2.11)

Upon analyzing Equation 2.11, it becomes ev-
ident that it can only be solved in two ways,
however, the solution {ϕ} = 0 is a trivial solu-
tion. Since the term related to the exponential
will never be zero, this problem becomes an
eigenvalue problem. That is:

det
(
[K]− ω2

n [M ]
)
= 0 (2.12)

Once the values of ωn (eigenvalues) are ob-
tained, they are substituted back into Equa-
tion 2.11 to obtain the eigenvectors, repre-
sented as {ϕ} corresponding to each ωn value.
Thus, through this substitution, a known vec-

tor
{
ϕ̂
}

is obtained (modal vector), which is

then multiplied by an unknown constant Ai(
{ϕ}i = Ai ·

{
ϕ̂
}
i

)
.

With all the vectors {ϕ}i, it is possible to con-
struct a modal matrix [ϕ], which is an M ×M
square matrix. This modal matrix proves to be
highly useful because it enables the diagonal-
ization of the stiffness and mass matrices ([K]
and [M ], respectively), significantly simplify-
ing the calculations. It is achieved as follows:
[ϕ]

T
[K] [ϕ] = [DK ] e [ϕ]

T
[M ] [ϕ] = [DM ].

Finally, it is also observed that for MDOF sys-
tems, the following expression is valid:

ω2
ni

=
{ϕ}Ti [K] {ϕ}i
{ϕ}Ti [M ] {ϕ}i

(2.13)

However, it is not very practical because to ap-
ply it, one needs to determine the vectors (ϕ),
which, as shown earlier, requires prior knowl-
edge of the eigenvalues ωni .

• Force vibrations for undamped systems

In this case, Equation 2.10 can be simplified
as follows: [M ] {ü} + [K] {u} = {F (t)}. It’s
evident that if the matrices [M ] and [K] are
not diagonal, solving this system can involve
significant computational costs. Therefore, a
common approach is to transform the physi-
cal coordinates into modal coordinates to di-
agonalize these matrices, as mentioned ear-
lier. This transformation is applied as follows:
{u(t)} = [ϕ] · {ν(t)}
Working in modal coordinates simplifies the
problem as it allows the diagonalization of
the system and the solution of M individual
equations, similar to solving M-SDOFs systems
This leads to the application of the TF, as pre-
viously done for SDOF systems. Thus, the ex-
pression U(ω) = [H(ω)]F (ω) is derived, where
H(ω) is represented by the following expres-
sion:

[H(ω)] =
[ϕ] [ϕ]

T

([DK ]− ω2 [DM ])
(2.14)

Typically, Equation 2.14 is represented as fol-
lows:

Hαη(ω) =

N∑
k=1

ϕ̂kαϕ̂kη

Mk

(
ω2
nk

− ω2
) (2.15)

3



It’s important to note that the symbol α refers
to the location where the response is measured,
while the symbol η indicates the point where
the structure is excited.

• Force vibrations for damped systems

This case is described by Equation 2.10 and
has not been considered until now because the
matrix [C] in Equation 2.10, unlike the ma-
trices [M ] and [K], is often not diagonalizable
when multiplied by the modal shape matrices.
Therefore, to address this matrix, it’s neces-
sary to experimentally determine the response
and excitation in the frequency domain. This
enables the acquisition of experimental values
of H(ω) (see Equation 2.15). Subsequently,
the theoretical expression of H(ω) is compared
to these experimental values using appropriate
software.

However, Equation 2.15 does not include the
damping term because it was derived for the
situation of force vibrations in undamped sys-
tems. To obtain the expression for H(ω) that
accounts for damping, an analogy with the sit-
uation of force vibrations for damped SDOF
systems (see Equation 2.8) must be made. This
analogy leads to the following expression:

Hαη(ω) =

N∑
k=1

ϕ̂kαϕ̂kη

Mk

(
ω2
nk

− ω2 + j2ζkωnk
ω
) (2.16)

3. Construction and Analysis of Numerical
Models

In this study, the four beams, introduced in Chap-
ter 1, are composite structures. They comprise
AL 7075 aluminium faces and a WF 110 polymer
foam core. These materials are isotropic, meaning
their mechanical properties, such as Young’s modu-
lus (E), shear modulus (G), and Poisson’s ratio (ν),
remain consistent in all directions.

To define these materials, it’s necessary to pro-
vide values for two out of the three unknowns: E,
G, and ν. Additionally, the mass density (ρ) for
each material must be specified for modal analyses.
Table 3.1 shows these material properties. The ge-
ometric dimensions for both materials used in the
beams are listed in Table 3.2

Property AL 7075 WF 110

E [MPa] 67545.6 194.1

G [MPa] 25393.1 66.9

ν 0.33 0.45

ρ [Kg/m³] 2750.6 109.5

Table 3.1: Values of the physical constants of the
materials that make up the beams under study.

Beam
1

Beam
2

Beam
3

Beam
4

Length
[mm]

5000
±0.5

5000
±0.5

5000
±0.5

5000
±0.5

Width
[mm]

800
±0.5

800
±0.5

800
±0.5

800
±0.5

Thick.
[mm]

43.32
±0.01

41.18
±0.01

33.53
±0.01

31.54
±0.01

Thick.
of faces
[mm]

2 1 2 1

Thick.
of core
[mm]

39.32
±0.01

39.18
±0.01

29.53
±0.01

29.54
±0.01

Table 3.2: Results obtained for the modal forms of
beam D02

,With that said, the meshes for all beams were
uniformly created. Solid elements (Hexa8) were
used for the core, and Shell elements (Quad4) were
used for the aluminium faces. In terms of subdivi-
sions, the same configuration was applied to all the
beams under study, meaning the length was divided
into 250 finite elements (FE), the width into 20 FE,
and the thickness into 10 FE. Finally, it is impor-
tant to note that Finite Element Analysis (FEA)
were conducted using the SOL 103 option in Pa-
tran.

3.1. FEA Results
It’s worth noting that the structures under inves-
tigation, being simple rectangular beams, have res-
onance frequencies associated with specific modal
shapes. These modes, which are consistent across
all beams due to their identical dimensions, en-
compass flexural modes along the x-axis, torsional
modes about the x-axis, and flexural modes along
the y-axis.

For clarity in assessing resonance frequencies us-
ing LDV, only experimental measurements up to
the 5th flexural modal shape were considered for
all beams. This decision was influenced by the
complexity of this modal shape, characterized by
6 transverse nodal lines. The numerical results for
each beam are summarized in Tables 6.1,6.2,6.3,6.4.

4. Experimental modal analysis
4.1. Modal testing
To conduct modal tests, various pieces of equipment
are necessary, including one to measure the struc-
tures’ responses to imposed excitations and another
to apply the excitation. As previously mentioned,
a Laser Doppler Vibrometer (LDV) was used for
response measurements. This choice was made be-
cause common equipment (piezoelectric accelerom-
eters) can introduce notable experimental errors.
These errors are primarily because, despite being
relatively small, the mass of these devices is not neg-
ligible, resulting in an effect known as mass load-
ing [9].
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An analysis of the coherence function (γ2) was
conducted to evaluate the quality of the data pro-
duced by LDV. This function compares the input
signal through multiplication by its complex con-
jugate, aiming for an ideal coherence value of 1.
In the presence of noise, γ2 takes a positive but
sub-unity value, indicating a decrease in coherence.
This parameter assesses result quality by identify-
ing noise that may affect the outcomes. The eval-
uation is described by Equation 4.1, with functions
GFF (ω) and GFU (ω) denoting theAverage Auto-
Spectrum of F and the Averaged Cross Spec-
trum between input F and output U, respec-
tively.

γ2 =
|Gxy(ω)|2

Gxx(ω)Gyy(ω)
(4.1)

The choice of equipment to excite the systems
considered two options: an Impact Hammer or a
Shaker. The Shaker was selected for this study due
to several advantages. With the Shaker, force ex-
citation is applied by a machine, and although any
machine or instrument always has some associated
uncertainty, the amplitude of all vibrations is quite
precise when using such devices. This reduces the
risk of damaging the structures compared to using a
Hammer. However, during the experiments, there
were concerns that the Shaker’s connection might
introduce significant stiffness into the systems, po-
tentially affecting the results. As a result, a com-
plementary study was conducted using a Hammer
to address this concern.
To evaluate the similarity between modal shapes

obtained from a modal test and those generated by
a numerical model, specific metric correlations are
commonly used. One prominent correlation in this
work is the Modal Assurance Coefficient (MAC),
expressed numerically in Equation 4.2. Here, in-
dices A and B represent the models under study
for comparison, ϕA

r is modal shape r from model A,
and ϕB

s is modal shape s from model B. The MAC’s
values range from 0 to 1. When it approaches 1, it
indicates a high similarity between the compared
modal shapes, while values closer to zero suggest
significant differences between them.

MACAB
rs =

∣∣{ϕA
r

}{
ϕB
s

}∣∣2(
{ϕA

r }
T · {ϕA

r }
)(

{ϕB
s }

T · {ϕB
s }

)
(4.2)

4.2. Introduction of Polytec LDV
The Polytec Laser Doppler Vibrometer (LDV) is
a device used to measure vibrations by employing
laser light and is based on the Doppler effect. A
representative illustration of this device is shown in
Figure 4.1.
However, the LDV, while alleviating issues like

Mass Loading, has its limitations. Notably, uncer-
tainties exist regarding the laser radiation source’s

Figure 4.1: LDV scheme used to carry out the
modal test [10].

emissions, although these are generally minor and
addressed by the LDV manufacturer.

Another crucial concern, particularly in modal
analysis, is the alignment of the laser beam con-
cerning velocity components. When the object un-
der study predominantly exhibits out-of-plane ve-
locity components, aligning the laser beam is more
manageable (what will be the case with this work).
Additionally, implementing this equipment can be
challenging in structures that limit light diffusion,
such as those in aerospace applications, and in en-
vironments with high dust levels. The presence of
dust particles can significantly impact the air’s re-
fractive index, potentially leading to notable exper-
imental errors.

5. Experimental Procedures
5.1. Configuration of points to be measured
As mentioned earlier, the experimental focus is on
studying all modal shapes up to the 5th flexural
mode. Therefore, when configuring measurement
points, it’s important to aid the LDV software in
accurately representing these modal shapes.

In numerical analyses, it was observed that
both flexural and torsional modal shapes exhibit a
parabolic pattern along the x-axis. Consequently,
selecting only the maximum and minimum points,
known as nodes where the modal shape remains
still, might lead to a representation of linear mo-
tion, failing to capture the parabolic nature of these
modes. Thus, given the time limitations of the
laboratory activity and the fact that more points
would require additional laser time, the choice of
measurement points needed to strike a balance be-
tween quality and time optimization for the task at
hand.

The chosen point configuration, depicted in Fig-
ure 5.1, primarily focused on the 5th flexural mode,
which is more complex. This strategy involved plac-
ing points on the symmetry of the y-axis where
maximum displacements were expected and near
areas likely to exhibit maximum displacements for
that specific modal shape. The aim was to aid the
software in accurately representing the parabolic
behaviour observed in the numerical modes. This
approach effectively represented all flexural modal
shapes, because some of the 23 selected points also
served as minimum and maximum points for earlier
flexural modes and using 23 points were deemed suf-
ficient for accurately representing lower-order flex-
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ural modal shapes.

It’s worth noting that the chosen point configu-
ration wouldn’t allow for the determination of tor-
sional frequencies and their corresponding modal
shapes. This limitation arises from the fact that
these points are positioned on the y − axis of sym-
metry, which serves as a nodal line for all torsional
modal shapes. To address this, the same line of
points was duplicated 30 cm above and 30 cm below,
based on numerical results suggesting that these
lines should no longer act as nodal lines for tor-
sional modal shapes.

Furthermore, the point configuration presented in
Figure 5.1 was consistently used for all the beams
under study. This uniformity is maintained despite
variations in modal form frequencies and sequences
across different beams. Even when torsional modes
precede flexural modes, the positions of all nodal
lines remain consistent across all modal forms for
all beams.

Figure 5.1: Point configuration chosen to take mea-
surements.

5.2. Procedures carried out on the beams

After configuring the measurement points, a pre-
liminary test was conducted to check the ability
of the aluminium surface to effectively reflect laser
light. This concern arose due to the known issue
that aeronautical surfaces often have limited light
reflectivity. The test confirmed that these sandwich
beams faced the same challenge, and it was evident
that without addressing this issue, reliable results
could not be obtained. To overcome this problem,
small pieces of reflective tape were applied only at
the measurement points, allowing the LDV to cap-
ture the beam’s signal effectively and ensuring the
experiment’s reliability.

5.3. Structure assembly

The structure used for this experimental activity
was a square metal frame with circular through
holes and the structure was secured to a dedicated
table through these holes using screws and nuts (as
depicted in Figure 5.2).

To connect the beams under study to this metal
frame, various methods were tested. Since the aim
was to study the beams in a Free-free condition,
the goal was to introduce as little rigidity as possi-
ble into the system. None of the configurations al-
lowed for movement along the y-axis. Consequently,

due to the inability to achieve a truly Free-free con-
dition for the beams, the study of flexural modal
shapes in that plane had to be disregarded. Thus,
the focus was on selecting a configuration that min-
imized stiffness in the directions where the beams
could move. As a result, the configuration with the
least introduced rigidity in the systems is shown in
Figure 5.2.

Figure 5.2: Configurations useded for carrying out
the experimental activity.

5.4. Shaker assembly
The process of connecting the Shaker to the same
table where the rest of the structure was located in-
volved using screws and nuts. Next, the tip of the
Shaker arm was affixed to the beam. This attach-
ment point was positioned at approximately 350 cm
from the x-axis origin and 25 cm from the y-axis ori-
gin. Special care was taken to prevent any bending
of the Shaker arm, because avoiding this bending
effect, ensured that this connection wouldn’t cre-
ate an additional point of support, minimizing any
extra stiffness it might introduce to the structure.

5.5. Laser assembly
Initially, a dark cloth was positioned behind the en-
tire structure under study to minimize ambient light
interference. Subsequently, the user support docu-
ment for the device was consulted to identify the
best distance for laser placement [11]. The docu-
ment revealed that there were several optimal dis-
tances for maximizing the LDVs ability to capture
the laser light effectively. Given the laboratory’s
space limitations, it was decided to position the
LDV at 1365 mm, which corresponds to the 7th

optimal distance.
6. Results
6.1. Previous considerations
Before delving into the analysis of the results, it’s
crucial to highlight several key aspects to ensure a
comprehensive understanding of the obtained out-
comes.

Firstly, due to structural constraints during the
assembly, the Shaker had to be positioned 350 cm
from the x-axis origin and 25 cm from the y-axis ori-
gin. However, a detailed analysis of the numerical
models suggested that this specific location is close
to a node for the 4th flexural modal shape. This
means that, according to Equation 2.16, ϕ̂kβ will be
close to zero for this mode since this point serves as
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a node for the 4th flexural mode. Consequently, the
frequency peak for this mode is expected to be less
prominent, rendering it less evident in the results.
In addition, in our results analysis, numerical

transfer functions will be compared with specific
experimental data from Point 1, as illustrated in
Figure 5.1. This point was selected because it is
expected not to correspond to a node for any of the
studied modal shapes, enabling us to observe all the
associated frequency peaks.
To create numerical FRF graphs for these points,

an intermediate process was necessary because Pa-
tran/Nastran doesn’t directly provide this data.
Initially, modal vectors relating to these points’
displacements were extracted from Patran, and a
MATLAB script was developed to process and ex-
tract these values. For a meaningful comparison,
both numerical and experimental transfer functions
were normalized by dividing them by their respec-
tive maximum values. Also, it’s worth noting that
the constants, represented as ζk in Equation 2.16,
were estimated following the procedure outlined in
Chapter 2.3
Finally, to compare the differences between the

frequencies obtained for the modal shapes in nu-
merical and experimental models (dif), Equation
6.1 was utilized. Here, fFE denotes the frequencies
from the numerical model, and fExp denotes the
frequencies from the experimental model.

dif =
fFE − fExp

fFE
× 100 (6.1)

This difference was calculated in that way be-
cause the simulation of the Free-free condition can
only be done numerically.

6.2. Evaluation of the quality of results

(a) Graph
obtained for
coherence for
beam D01.

(b) Graph
obtained for
coherence for
beam D02.

(c) Graph
obtained for
coherence for
beam D03.

(d) Graph
obtained for
coherence for
beam D04.

Figure 6.1: Graphs obtained for the average coher-
ence of all the experimental tests that will be anal-
ysed.
From the analysis of the graphs in Figure 6.1, it’s
evident that the coherence values for all experimen-
tal tests were very high, close to 1. While minor
oscillations were observed, particularly at the res-
onant frequencies, the coherence function consis-
tently remained close to 1, with minimum values
never falling below 0.85. This indicates that noise
had a negligible impact on the results obtained.
Consequently, the analyses that will be performed
next should be a fair representation of the reality
under study.

6.3. Analysis of the D01 beam

numerical
modal forms

experimental
modal forms differences

(%)modal
shape type

frequency
Hz

modal
shape type

frequency
Hz

ζ (%)

1st

torsional
704.97

1st

flexu-torsional
767.5 0.68 6.81

1st

flexural
715.22

2nd

flexural
1169.4 2nd

flexural
1280 1.71 9.46

2nd

torsional
1602.4

3rd

flexural
1669.8 3rd

flexural
1862.5 1.68 11.54

4th

flexural
2101.5 4th

flexural
2377.5 1.81 13.12

3rd

torsional
2538.1 3rd

torsional
2768.75 1.81 9.09

5th ˜
flexural

2589.2 5th

flexural
2880 2.19 11.23

Table 6.1: Results obtained for the modal forms of
beam D01.

After examining Table 6.1, it’s clear that the experi-
mental modal shapes, despite not including the sec-
ond torsional mode, follow the same order as the nu-
merical ones. Notably, the differences between the
models, while significant, consistently fall within a
range of 6.81% to 13.12%.

Figure 6.2: Experimental
FRF for point 1 of beam
D01.

Figure 6.3: MAC analy-
sis results for beam D01.

Furthermore, by observing Figure 6.2 it is pos-
sible to see that the numerical and experimental
FRF graphs show a consistent pattern. Numeri-
cal data exhibit earlier frequency peaks than the
experimental data, as expected. The 4th flexural
modal shape lacks distinguishing features in both
sets of data (yellow circle). Furthermore, the pres-
ence of a plateau in both sets of FRFs for the 3rd

torsional and 5th flexural modal shapes (black cir-
cle) likely accounts for the observed frequency dif-
ferences in Table 6.1. Regarding the 1st flexural
and 1st torsional modal shapes, while the numer-
ical FRF displays two closely spaced yet distinct
frequency peaks, the experimental FRF does not,
leading to the identification of a 1st flexo-torsional
modal shape (green circle). Additionally, a single
narrow peak characterizes the 2nd torsional and the
3rd flexural modes (orange circle), indicating that
these modes might be too close together for clear
differentiation, particularly when considering the
values of ζ.
The MAC analysis, presented in Figure 6.3, de-

livered generally positive results. Except for the
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1st and 5th experimental modes, all other modes
displayed strong correlations (above 0.92) with in-
dividual numerical modes. This supports the prior
statement that the first experimental mode corre-
sponds to a 1st flexo-torsional mode. This is evident
from the mode’s resemblance to the 1st torsional
numerical mode by approximately 12% and the 1st
flexural numerical mode by about 82%. It’s worth
emphasizing that, despite the 4th and 5th experi-
mental modes showing substantial correlations with
their respective numerical modes, these correlations
were slightly weaker (0.92 and 0.73, respectively)
6.4. Analysis of the D02 beam

numerical
modal forms

experimental
modal forms differences

(%)modal
shape type

frequency
Hz

modal
shape type

frequency
Hz

ζ (%)

1st

flexural
753.14 1st

flexural
795 1.15 5.56

1st

torsional
846.32 1st

torsional
920 1.56 8.71

2nd

flexural
1344.4 2nd

flexural
1436.25 1.66 6.83

2nd

torsional
1798.5 2nd

torsional
1940 2.53 7.87

3rd

flexural
1947.3 3rd

flexural
2125 1.84 9.13

4th

flexural
2489.8 4th

flexural
2773.75 1.94 11.40

3rd

torsional
2795.3 3rd

torsional
3018.75 2.90 7.99

5th

flexural
3055.9 5th

flexural
3320 1.92 8.64

Table 6.2: Results obtained for the modal forms of
beam D02.

Table 6.2 clearly illustrates that the order of exper-
imental modal shapes from this beam aligns with
that of the numerical modal shapes. The frequency
differences between the numerical and experimental
models are notably significant for this beam, rang-
ing around 5.56% but never exceeding 11.40%.

Figure 6.4: Experimental
FRF for point 1 of beam
D02.

Figure 6.5: MAC analy-
sis results for beam D02.

An inspection of Figure 6.4 reveals that point
1 doesn’t correspond to any node for the exam-
ined modal shapes, as anticipated. Furthermore,
it’s essential to recognize that, similarly to previous
observations, both the numerical and experimen-
tal FRFs share a consistent trend. Additionally,
the 4th flexural mode’s lack of significance, both in
numerical and experimental contexts (highlighted
by the yellow circle), may contribute to the larger
observed frequency difference for this mode (Table
6.2).

From the analysis of Figure 6.5, it can be ob-
served that satisfactory results were obtained in the
MAC analysis for this beam. This is evident from
the high degree of similarity among all diagonal el-
ements in the matrix. Notably, only the 2nd, 4th,
and 7th modes in both models exhibited a slightly
lower level of resemblance among themselves, never
falling below 88%. Another noteworthy observation
is that each mode in each model closely corresponds
to one mode in the other model. This once again
underscores that the numerical model can be a good
approximation of the studied reality.

6.5. Analysis of the D03 beam

numerical
modal forms

experimental
modal forms differences

(%)modal
shape type

frequency
Hz

modal
shape type

frequency
Hz

ζ (%)

1st

flexural
620.64 1st

flexural
662.5 0.84 6.74

1st

torsional
693.14 1st

torsional
770 1.68 11.09

2nd

flexural
1052.6 2nd

flexural
1158.75 1.57 10.08

2nd

torsional
1508.7

3rd

flexural
1511.8 3rd

flexural
1690 2.08 11.79

4th

flexural
1925.3 4th

flexural
2210 1.54 14.78

3rd

torsional
2310.5

5th

flexural
2373.5 5th

flexural
2660 1.87 12.07

Table 6.3: Results obtained for the modal forms of
beam D03.
From Table 6.3, it’s evident that the experimen-
tal modal shapes align with the numerical modal
shapes’ order, despite the inability to identify the
2nd and 3rd torsional modes. Notably, substan-
tial differences between the two models, ranging
from 6.74% to 14.78%, are observed, particularly
for the higher-order modal shapes. This disparity
may stem from the close proximity of these higher-
order modal shapes to others that the LDV couldn’t
identify.

Figure 6.6: Experimental
FRF for point 1 of beam
D03.

Figure 6.7: MAC analy-
sis results for beam D03.

An analysis of Figure 6.6 reveals several signifi-
cant findings. Firstly, point 1 is evidently not as-
sociated with a node for any of the studied modal
shapes, as indicated by the presence of frequency
peaks in earlier graphs. Both the numerical and ex-
perimental FRFs display a similar trend. Notably,
the previously plotted frequency peaks, which the
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LDV struggled to identify, are challenging to ob-
serve for both models. This suggests that since
these peaks were very close together numerically
before accounting for damping values, considering
them made it impossible to clearly distinguish them
in the numerical FRF, which also justifies their ab-
sence in the experimental FRF. This may support
the hypothesis that it was rather difficult for the
LDV to identify these supposed modal shapes (in-
dicated by the yellow circles). Furthermore, the
4th torsional modal shape remains less distinct for
this beam, potentially accounting for the greater
frequency differences observed between models for
this mode, as shown by the green circle.

Analyzing Figure 6.7, it’s clear that except for the
2nd and 5th experimental modes, all other experi-
mental modes exhibit a very high degree of similar-
ity with a single numerical mode, with MAC values
consistently above 0.98. It’s also worth noting that
neither the 4th nor the 7th numerical modes cor-
relate with any of the experimental modes, which
supports the previously proposed hypothesis that
the LDV was unable to identify two potential fre-
quency peaks that would likely correspond to these
numerical modes.

6.6. Analysis of the D04 beam

numerical
modal forms

experimental
modal forms differences

(%)modal
shape type

frequency
Hz

modal
shape type

frequency
Hz

ζ (%)

1st

flexural
647.61 1st

flexural
653.75 1.52 0.95

1st

torsional
827.48 1st

torsional
880 2.35 6.35

2nd

flexural
1208.3 2nd

flexural
1286.75 1.42 6.49

2nd

torsional
1712.7

3rd

flexural
1770.5 3rd

flexural
1940 1.79 9.57

4th

flexural
2289.5 4th

flexural
2575 1.97 12.47

3rd

torsional
2583.7 3rd

torsional
2827.5 2.75 9.44

5th

flexural
2815.7 5th

flexural
3098.75 1.98 10.05

Table 6.4: Results obtained for the modal forms of
beam D04.

Upon reviewing the Table 6.4, it’s clear that the
experimental modal shapes follow the same order
as the numerical modal shapes, despite the 2nd tor-
sional mode not being identified. Notably, there
are significant differences between the models, es-
pecially for modal shapes above 1700 Hz, where the
discrepancies range from 9.57% to 12.47%. How-
ever, these differences were lower for this specific
beam compared to the other beams studied. It’s
essential to emphasize that the 4th flexural mode
exhibited the highest difference of frequency, which
further supports the earlier hypothesis that the
Shaker’s positioning might have negatively influ-
enced the visualization of this modal shape.

Figure 6.8: Experimental
FRF for point 1 of beam
D04.

Figure 6.9: MAC analy-
sis results for beam D04.

Upon analyzing Figure 6.8, several key observa-
tions become apparent. Firstly, it’s clear that point
1 doesn’t correspond to a node for any of the an-
alyzed modal shapes, as all the related frequency
peaks were observed in the previous plots. Further-
more, it’s noteworthy that the numerical and ex-
perimental FRF plots exhibit some degree of sim-
ilarity, with the frequency peaks of the numerical
model appearing before those of the experimental
model. Another important finding is the absence
of a frequency peak corresponding to the 2nd tor-
sional mode in both the experimental and numerical
FRF plots (indicated by the black circle). More-
over, the peak related to the 3rd flexural mode ap-
pears slightly broader in both models, suggesting
that the 2nd torsional mode may have mixed with
this modal shape (indicated by the yellow circle).
Additionally, it’s confirmed that the frequency peak
detected by the laser at 722.5 Hz is exclusive to the
experimental model (indicated by the green circle).
However, it’s uncertain if this peak corresponds to
a specific modal shape since there is no significant
phase change. Lastly, it’s evident that the peak
associated with the 4th flexural mode lacks signif-
icance (orange circle), further supporting the idea
that the greater frequency difference observed for
this modal shape is attributable to the Shaker’s po-
sitioning.

The analysis of Figure 6.9 reveals that each ex-
perimental mode closely corresponds to the corre-
sponding numerical mode, with consistently high
similarity values observed in all cases (the lowest
value observed was approximately 0.94 for the re-
lationship between the 7th experimental mode and
the 8th numerical mode). Additionally, it can be in-
ferred that the 4th numerical mode did not correlate
with any other experimental mode, indicating that
this mode might have mixed with the 3rd flexural
mode. It’s also worth noting that the MAC anal-
ysis values for this beam were higher than those
obtained for any of the other beams studied.

6.7. Hammer Test

The observed discrepancies between the numerical
and experimental models for all beams studied were
around 10%. This raised a hypothesis that the
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Shaker introduced significant stiffness at the con-
tact point with the structure, potentially altering
the natural frequencies of the experimental model.
To explore this, the Shaker was disconnected from
beam D02, and the structure was excited using an
Impact Hammer.

Shaker Test Hammer Test

frequencies
[Hz]

diferences with
numerical model (%)

frequencies
[Hz]

diferences with
numerical model (%)

795 5.56 788.75 4.51

920 7.44 923.75 7.87

1436.25 6.83 1452.5 8.04

Table 6.5: Comparison of the results obtained for
all the experiments for beam D02.
Upon examining Table 6.5, it’s evident that

the results from the experimental tests using the
Shaker and the Impact Hammer show relatively mi-
nor differences. Specifically, only the first natu-
ral frequency obtained with the Impact Hammer is
slightly lower than that obtained in the Shaker test
(by approximately 7 Hz). This suggests that the
investigated issue is not significant and is unlikely
to be the primary cause of the notable disparities
between the numerical and experimental models.

7. Conclusions
First and foremost, the use of the LDV proves to
be a favourable alternative for conducting this type
of experimental work, as evident from consistently
very high values for the coherence function (always
above 0.85).
Furthermore, it’s notable that the frequencies

of the experimental modal shapes consistently ex-
ceeded those of the numerical modal shapes, with
differences typically around 10% (slightly greater
for higher-frequency modal shapes). Despite these
distinctions, the shared modal order and the ob-
served coherence in the FRF plots for both mod-
els, which exhibited a similar trend, lead to the
conclusion that the numerical models can be con-
sidered a robust approximation of the studied re-
ality. This conclusion finds additional support in
the MAC analyses, where, with few exceptions in-
volving insignificant frequency differences between
modal shapes, all modal shapes had values above
0.95.
Additionally, based on the results presented be-

fore, it can be concluded that beams D02 and D04
were the most suitable for experimental analysis.
For the first beam, all experimental modal shapes
were obtained, while for D04, only the 2nd torsional
mode was not acquired. Also, it’s crucial to note
that the 4th flexural mode consistently exhibited the
highest differences in all beams. This strengthens
the earlier hypothesis that the Shaker’s placement
might impede the acquisition and visualization of
this specific modal shape.
Finally, regarding the Shaker’s influence, it was

determined that it doesn’t significantly affect the

structures under examination. Nevertheless, one
potential contributor to stiffness, which cannot be
dismissed, is the configuration itself used to simu-
late the Free-free condition.
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