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Abstract

One of the most essential tasks of a satellite is to point an instrument along a desired
direction in order to achieve mission requirements. In many cases, this operation is com-
plicated due to the presence of sensitive on-board instruments, which cannot be pointed
along certain directions, such as the Sun or other bright objects. This problem can be
analyzed as a reorientation problem in the presence of attitude constraints. In literature
there are not many research papers that address the constraints problem, and its solution
has great importance for practical scientific missions. In this thesis work, a guidance al-
gorithm based on the Artificial Potential Field method is analyzed and implemented in
MATLAB/Simulink environment, which allows us to describe the desired pointing and
the restricted areas through potential fields. A hybrid attractive potential field centered
at the desired pointing has been implemented: parabolic close to the objective and conic
far away from it, in order to prevent the reaction wheels from saturating and at the same
time have a smoother response; to deal with the restricted areas, a hyperbolic repulsive
potential field has been implemented, with extra care in designing the gain so that the
reference angular velocity remained compatible with the constraint given by the actua-
tion system. The advantage of this method is its analytical approach which allows us
not to have to modify either the controller hardware or software, and therefore suitable
for on-board calculation and planning. Satellite kinematics and dynamics are described
using unit quaternions to avoid the singularity issue which Euler angles are affected by.
By combining the guidance with a sliding mode control algorithm, we obtain an attitude
control law that guarantees good performance and robustness, allowing flexibility in the
presence of obstacles and orbit perturbations.
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Chapter 1

Introduction

GNC (Guidance, Navigation and Control) is one of the main and most important subsys-
tems of a spacecraft. It is responsible for providing it with values of position, angular rates
and attitude to track as reference (guidance), estimate the true variables from the mea-
surements through state observers or filters (navigation), and generate a control action
through comparison between current and desired variable (control). In figure 1.1 we have
the general structure of a GNC subsystem. It can be seen that a set of sensors measure the
dynamical variables of the system and they get estimated (cleaned of the process noise)
in the navigation block. The guidance block generates, based on the navigation estimate,
a reference value for the satellite to track. The information about the "true" and reference
values generate an error state for the control, necessary to calculate a control input action,
which directly acts on the actuators of the satellite. The feedback cycle closes with the
actuators’ external action on the satellite dynamics model (indicated here with "plant")
causing the time variation of the state variables. Such a subsystem allowed us to reach
incredible milestones. Let’s think for example of the rendezvous maneuvers, which allowed
humanity to land on the Moon, build and operate a manned orbiting space station, even
reach asteroids and comets for samples collection far away in the solar system. Specifically
in the latter case, human action is limited, and everything relies on the spacecraft ability
to orient itself through sensors and precisely calculate the relative position with the target,
the attitude to communicate with the deep space network or to track the sun for electric-
ity generation. Terrestrial applications of autonomous systems have also been developed
in recent years. Examples are easily found in robotics or aerospace research field, such
as Unmanned Autonomous Vehicles (UAV), guided by an onboard autopilot and a set
of sensors and able to follow pre-established paths avoiding obstacles. Even for ordinary
in-orbit missions, spacecrafts are equipped with a particular payload, which, depending on
the type of the mission, could be a high gain antenna for communication and data transfer
or an infrared sensor for remote sensing or even a space telescope. The space environment
is very insidious, and a certain number of factors and objects can have adverse impacts
based on the payload used: a space telescope or a star sensor need to be pointed away
from very bright objects such as the Sun, and a high gain antenna, at the same time, needs
to be pointed towards the Earth to ensure coverage and thus data transfer. Let’s take the
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1 – Introduction

Figure 1.1. General GNC structure.

example of the James Webb Space Telescope, whose attitude control subsystem is respon-
sible for high gain antenna pointing, slew maneuvers and ensuring that the observatory
remains within the sun avoidance constraints. This clearly introduces a new concept which
is the attitude forbidden constraint. This introduces a major challenge, both in a practical
and theoretical perspective when it comes to the guidance and control subsystems design.

Figure 1.2. JWST Observatory coordinates. The telescope pointing direction lies within
the solar elongation, which has to change over time as it orbits the sun.[1]
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1 – Introduction

This thesis work will analyze and simulate a guidance algorithm which, in addition to
fulfill the basic attitude orientation control purposes, takes the attitude forbidden con-
straint into account. This is to all intents a motion planning problem: in the presence of
obstacles, it is necessary to plan orientation maneuvers that allow the satellite to fulfill
the assigned task without colliding with them. Since the satellite is of course set in space,
there is the necessity for the algorithm used to be suited to on-line planning, where the
geometry of the obstacles can change and is unknown in advance. In fact, the satellite
is requested to plan its motion on-line, using information of the workspace gathered on
the basis of sensor measurements. This can be obtained with a guidance algorithm based
on the Artificial Potential Field method (APF), which is also used in robotics to model
the position dynamics of the robot taking the obstacles into account through the path.
This is achieved through a state-space formulation and the definition of a potential field,
function of the state-space variable. The variable q that can represent the position or,
in this case, the instrument attitude moves in the state space under the influence of a
potential field U , obtained as a superposition of an attractive potential to the goal and
a repulsive potential from the obstacle location. At each time step and configuration q,
the artificial force generated by the potential is defined as the negative gradient −∇U(q)
of the potential, which indicates, as is known, the direction of maximum decrease of the
potential function.[17]

Figure 1.3. Schematization of an orientation maneuver in the presence of attitude
forbidden and mandatory constraints.[7]

The challenge that arises from such a problem is the total loss of intuition when the
variable of such a state space is not a position (the movement along the −∇U direction
would be much more intuitive) but a rotation. Indeed, attitude dynamics is described by
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1 – Introduction

angles or quaternions, both of which describe a sequence of rotations (respectively 3 and
1). Added to this is the problem, in the control logic, of tracking the separation angle
between the instrument pointing and the inertial position of an obstacle, and translate
this information into a mathematical entity.
The problem of attitude forbidden constraint is generally not explicitly taken in consider-
ation in classical literature and has been addressed in only a few relatively recent papers.
The few works focus on the APF method applied to different representations of attitude,
i.e. reduced-attitude [12, 6, 9], modified Rodrigues parameters [4] or unit quaternions.
Different mathematical formulations of the potential functions have been proposed. In
[12] a conical attractive field and an hyberbolic tangent for the repulsive field have been
used whereas in [3] an exponential repulsive field is adopted as a compromise between ac-
curacy and computational complexity for their simplicity. In [19, 11] convex logarithmic
barrier potentials are adopted, as well as a logarithmic function to address the unwinding
problem. The unwinding problem is also taken into account in the formulation of a more
classic form of potentials (quadratic and hyperbolic) in [8]. The unwinding is the natural
redundancy associated with the quaternion representation of the goal attitude, it’s to say
the non-uniqueness of the goal quaternion: given an axis and a certain angle of rotation
θ to align the body frame to the inertial frame, such goal can be achieved with the same
axis, but with the rotation of an angle 2π − θ. They’re equivalent, but in a real situation
we want our satellite to perform a smart rotation, which is the one who requires the least
time and resources in terms of fuel. In [14] the APF is applied with a quadratic attractive
potential and a hyperbolic repulsive potential on a flexible spacecraft and a velocity-free
control is developed, i.e. without using explicit velocity feedback. The approach used in
[10] is to blend the potential fields in one single potential that keeps on tracking the angle
separation between the boresight vector and constrained vector and then construct the
control action through its gradient.
All the cited papers rely on one thing in common: Lyapunov theorem of stability. Both
attractive and repulsive potential fields are grouped in a single potential function V (x)
(known as a Lyapunov candidate function) and, using Lyapunov theorem of stability, by
showing the convexity of the function and choosing a control input that makes its time
derivative negative, the asymptotic stability is proven, and a mathematical form for the
control input u(x) is obtained. Our approach will be slighlty different. The potential fields
are kept separate and the total potential is given by their sum. Despite this, asymptotic
stability is still achieved by setting the gradient of the potential directly as the reference
velocity for the control. It will be shown better in the APF chapter that this is one of the
possible planning techniques. Once we have a reference goal and a reference velocity, a
controller based on the sliding mode control is used. In order to overcome the chattering
effect caused by the robust gains being much larger than the external disturbances, an
adaptive sliding mode control law is used to adjust the gains online with respect to the
external disturbances.
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1 – Introduction

1.1 Overview of the thesis
The thesis will be structured from now on in three more chapters. Chapter 2 will dive
into the mathematical modeling of the satellite, with a description of different methods of
representing the attitude including listing all the pros and cons of each one. For computa-
tional purposes, unit quaternions have been chosen to represent the attitude of the satellite
and a brief definition and main properties will be listed. In order to simulate orientation
maneuvers, the simulation need to integrate equations of motion. The equations of mo-
tion describing the rotational dynamics of rigid bodies are Euler’s equations. They will be
derived starting from the basic definition of angular momentum and it will be shown how
an external torque can give rise to a variation of the angular velocity of the satellite. The
connection between the angular velocity and the time evolution of quaternions is given
by the kinematic equations, since, as the word says (kinematics), it’s all about the de-
scription of the body motion without wondering about the causes. The integration of the
kinematic equations gives rise to the final variation of the quaternions, which tells us at
every instant of time the relative orientation between the satellite, described by its body
frame of reference, and the inertial frame of reference. The main task of the simulation is
of course to model the dynamical system of the satellite and generate an external action
given by a certain control input, it’s to say the whole plant is equipped with a feedback
controller. A model for the actuators is needed as well. The reference for this thesis work
will be the Demeter satellite, which is equipped with a cluster of 4 reaction wheels with
magnetorquers for desaturation. Starting from the principle of operation of a reaction
wheel, a mathematical model will be described, based on the filtering of the control in-
put through a low pass filter and a saturation command which takes into account the
maximum value of torque that the wheel can generate. After that, all different cluster
configurations will be listed, including a general mathematical conversion procedure of
torque between the satellite frame and the wheels cluster’s one and back. In chapter 3
the Artificial Potential Field (APF) will be introduced. A guidance algorithm known and
applied in many fields of robotics and in position dynamics problems in general, it will
be applied to the rotational dynamics instead, generating the correct reference values for
the controller to drive the satellite orientation towards the correct attitude while avoiding
any pointing obstacles along the trajectory. The APF method comes from the simple and
intuitive physical concept of a scalar field that gives rise to a force field related to its gradi-
ent. Many example in classical mechanics: a charged particle immersed in an electrostatic
field will experience a force pointing in or out of the source of the field; same applies to
the gravitational potential: a mass immersed in it will experience a force pointing inward
the source. Following the latter general meaning, an attractive potential will be defined
at the quaternion representing the goal to reach and a repulsive potential at the obstacle,
which has to take into account the separation between the instrument boresight vector
and the obstacle’s inertial vector. A first mathematical formulation of the APF method
will be presented, discussing the different mathematical functions for the scalar potential
fields and their pros and cons. For the repulsive field, the concept of attitude constraint
will be introduced and a hyperbolic repulsive field can be derived from it. A total field
can be derived by superposing the attractive and repulsive potentials and its gradient
will provide the reference value of the angular velocity. Subsequently, the sliding mode
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1 – Introduction

control algorithm will be introduced briefly and characterized. Finally, it will be applied
to the current case of attitude control, with a slight modification by the introduction of
an adaptive control law in the parameter of the sliding variable. In chapter 4 simulation
results will be presented. After listing all the satellite parameters, initial condition, guid-
ance and control parameters values and simulation parameters, two simulation will be
presented, i.e. the unwinding case and non-unwinding case, both through time evolution
of the quaternions, angular velocity and control torque of the reaction wheels. Moreover,
the value of the quadratic constraint for different obstacles will be plotted in order to
show the effective pointing avoidance performed by the satellite dynamics.

6



Chapter 2

Mathematical model

In this chapter we will go through the modeling of the spacecraft dynamics. How can
attitude be mathematically described? The first section will present two main ways used
in literature: Euler’s angles and quaternions. Pros and cons will be discussed and why the
latter is a better choice for computational purposes. In the second section the spacecraft
kinematics will be discussed, i.e. how the spacecraft rotates and evolves over time as a
function of angular velocity ω. Next, Euler’s equations will be introduced, which describe
the rotational dynamics of the spacecraft, i.e. the evolution over time of ω given an
external torque M . With the final description of the mathematical model of the satellite
actuation system, based on reaction wheels, all the ingredients of the dynamical system
are ready to be integrated in a simulation environment such as MATLAB/Simulink.

2.1 Attitude description through quaternions

2.1.1 Euler’s angles and the singularity issue
In order to describe the satellite attitude, we can model it as a rigid body, so we can
use the main results and laws of rigid body dynamimcs. Introducting a body frame FB

attached to the body identified by the set of unit vectors (ê1, ê2, ê3) and an intertial frame
FI identified by the set (Ê1, Ê2, Ê3), it is possible to describe the satellite attitude by
analyzing the position of FI with respect to FB. By considering the components of êi in
the inertial frame, it is possible to obtain a linear combination between the basis vector
sets. Substituting this relation, any vector quantity v can be expressed in both frames
through a transformation matrix LIB as follows:

vI = LIBvB (2.1)

or, in matrix form: XY
Z

 =

e1,1 e1,2 e1,3
e2,1 e2,2 e2,3
e3,1 e3,2 e3,3

 xy
z

 (2.2)

7



2 – Mathematical model

The transformation matrix LIB has the property of being orthogonal. This means that
it is fairly easy to write the inverse coordinate transformation:

vB = LBIvI = (LIB)−1vI = (LIB)TvI (2.3)

Using the transformation matrix it is therefore possible to describe physical quantities in
the inertial frame of reference, and 9 parameters are needed (which are the dot product
of the basis vectors). However, it must be taken into account that the basis vectors are
not free to vary and they have to satisfy the following constraints:

êi · êj = δij =
I

0 if i /= j

1 if i = j
(2.4)

therefore, only 3 independent parameters are sufficient to describe the attitude of the
body frame with respect to the inertial frame.
One of the set of three parameters most used for this purpose are Euler’s angles, which
consist of an ordered sequence of elementary rotations in order to reach the body frame
FB starting from the inertial frame FI .
A sequence widely used in spaceflight dynamics is the 3-2-1, also known as Bryant’s angles,
which brings the orbital frame to the body frame. The orbital frame FO(xO,yO,zO), of
vectors îO, ĵO, k̂O, is the reference frame centered in the satellite center of mass and
whose axes are directed such that:

• k̂O points towards the Earth’s center of mass;

• îO is perpendicular to k̂O, points towards the satellite velocity vector and belongs
to the orbit plane;

• ĵO is such that it forms a right-handed coordinate system with the other two unit
vectors.

Following this sequence, we can describe the sequence of rotation 3-2-1 as follows[13]:

1. FO is rotated around the k̂O direction by an angle ψ. Respectively, the yO axis
moves in the yÍ direction and xO axis in the xÍ direction. A new set F Í

O is obtained.

2. A second rotation is performed around the yÍ axis by an angle θ. Respectively, the
xO axis moves in the xÍÍ ≡ x (x axis of body frame) and zO in the zÍÍ direction,
obtaining the new set F ÍÍ

O.

3. Last rotation is performed around the x axis by an angle φ until the orbital frame
FO coincides with the body frame FB.

Therefore, taken a generic vector quantity v, we obtain:

[v]FB
= L [v]FO

(2.5)

8



2 – Mathematical model

Figure 2.1. Orbital reference frame.[13]

where L = Lx(φ) Ly(θ) Lz(ψ), or in a more explicit form:

L =

 cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

 (2.6)

The transformation matrix in terms of the Bryant’s angles L(φ, θ, ψ) is affected by a
singularity, which can be seen by the fact that, for θ = ±π/2, the matrix does not depend
on φ and ψ separately, but only on their difference φ − ψ. The singularity causes more
appreciable issues later with the kinematics equations.

2.1.2 Quaternion definition
Generally speaking, a quaternion is a mathematical entity of the following form:

Q = a+ b i + c j + dk (2.7)

where a, b, c, d are real numbers and i, j, k are unit vectors. As Hamilton pointed out, a
quaternion can be described as consisting of a scalar part, a, and a vector part, b i+c j+dk.
We can use the following notation:

Q = q0 + kq or Q = (q0, q
T )T (2.8)

9



2 – Mathematical model

We can then observe that the set of quaternions form a 4-dimensional vector space with
{1, i, j,k} as basis; this allows us to define a component-wise addition:

(a1 + b1 i + c1 j + d1 k) + (a2 + b2 i + c2 j + d2 k)
= (a1 + a2) + (b1 + b2) i + (c1 + c2) j + (d1 + d2) k

(2.9)

and a component-wise scalar multiplication:
λ(a+ b i + c j + dk) = λa+ (λb) i + (λc) j + (λd) k (2.10)

How can this new formulation help describe the satellite attitude?

We can recall Euler’s eigenaxis rotation theorem, which states that it is possible to rotate
an inertial frame FI onto a body frame FB with a simple rotation by an angle α around
an axis â that is fixed in both frames called eigenaxis. This can be demonstrated recall-
ing that the eigenvalues of any orthogonal matrix have unit modulus and at least one is
exactly λ = 1. This means that, by the definition of eigenvector:

Lâ = 1 · â (2.11)
there exist a direction â which does not change under the action of the transformation
matrix L. This also means that the components of the vector â are exactly the same in
both frames:

â = a1ê1 + a2ê2 + a3ê3 = a1Ê1 + a2Ê2 + a3Ê3 (2.12)
Using some algebra, it is possible to express the transformation matrix LBI as a function
of the angle α and the Euler eigenaxis â, obtaining the following relation:

LBI = cosα1 + (1− cosα)aaT − sinα[a]× (2.13)
where 1 is the identity matrix and [a]× is the skew-symmetric matrix that represent the
cross product:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 =⇒ a× b = [a]×b (2.14)

Therefore, a rotation is represented by the following quaternion:
q0 = cos(α/2)
q1 = a1 sin(α/2)
q2 = a2 sin(α/2)
q3 = a3 sin(α/2)

(2.15)

Equation 2.13 can be expressed then as:
LBI = (q2

0 − q · q)1 + 2qqT − 2q0[q]× (2.16)
On the contrary, it is possible to calculate the corresponding quaternion from the elements
cij of transformation matrix LBI :

Q = 1
2


√

1 + c11 + c22 + c33
sign(c32 − c23)

√
1 + c11 − c22 − c33

sign(c13 − c31)
√

1− c11 + c22 − c33
sign(c21 − c12)

√
1− c11 − c22 + c33

 (2.17)

10
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2.1.3 Quaternion properties
Some useful quaternion properties are listed here.

Conjugate Let Q = (q0, q
T )T . The conjugate of Q is defined as:

Q∗ = (q0,−qT )T (2.18)

From this we can observe that (Q∗)∗ = Q. It represent a rotation by the same angle α
around the same eigenaxis but in the opposite direction.

Norm The norm of a quaternion is defined as follows:

||Q|| =
ñ
q2

0 + qTq (2.19)

A quaternion and its conjugate have the same norm. A quaternion whose norm is 1 is
called unit quaternion.

Inverse The inverse of a quaternion is defined as follows:

Q−1 = Q∗

||Q||2
(2.20)

In the case of a unit quaternion, from the definition, the inverse coincides with the con-
jugate. Moreover, a unit quaternion fulfills the following constraint:

q2
0 + q2

1 + q2
2 + q2

3 = 1 (2.21)

Reference quaternion Later on, we will associate the unity quaternion to the inertial
fixed frame, which will be our reference quaternion during the development of the guidance
system and simulations:

QI = (1, 0, 0, 0)T (2.22)

Observation. Since the final attitude achieved by a rotation of −α around the axis 2π−â
is the same of the regular rotation, the reference quaternion can also be represented by
−QI = (−1, 0, 0, 0)T .

2.1.4 Quaternion multiplication
The quaternion multiplication satisfies the following rules introduced by Hamilton:

i2 = j2 = k2 = ijk = −1
ij = k = −ji

jk = i = −kj

ki = j = −ik

(2.23)

11
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Denoting the product with the symbol ⊗, we can calculate the product of two quaternions
P and Q. In order to make everything as compact as possible, it is possible to simplify
the expression by using the dot and cross product as follows:

P ⊗Q = p0q0 − p · q + p0q + q0p + p× q (2.24)

The multiplication thus defined has a specific geometric meaning: the resulting quater-
nion represents the final orientation of a frame after two subsequent rotations described
precisely by the quaternions P and Q. Given:

P = (cos(α/2), â sin(α/2))
Q = (cos(β/2), b̂ sin(β/2))

=⇒ R = (r0, r
T )T = P ⊗Q (2.25)

where r0 and r are given by equation (2.24). This means that the cumulative rotation
occurs around the axis ĉ = r/||r|| by an angle of γ = 2 cos−1(r0).

Observation. It is easy to prove the following properties:

Q∗ ⊗Q = Q⊗Q∗ (2.26)
(P ⊗Q)∗ = Q∗ ⊗ P ∗ (2.27)
Q−1 ⊗Q = Q⊗Q−1 = 1 (2.28)

2.1.5 Quaternion error vector
In order to design a feedback control law for our satellite, we need to have a physical
quantity that represents the error between our current vector state and the desired vector
state. Since the vector state in attitude dynamics represents geometric orientations, a
way to express the difference between the two frames is needed. For this purpose, let’s
consider two reference frames: the desired attitude FD and the current attitude FB,
respectively described by the quaternions P and Q. Since the quaternions describe the
direction and amplitude of the rotation needed to bring the inertial frame to the desired
or current fixed frame, we can define a quaternion error E = (Ô0, ÔT )T which describes the
rotation needed to bring the desired attitude to the current attitude and thus a measure
of the error between the state vectors, suitable for a control law later. With a chain of
rotations, we can observe that bringing the inertial frame to the desired attitude frame
and then rotate towards the current frame is equivalent to rotate the inertial towards the
current from the start, which can be described in terms of quaternion multiplication as
follows:

P ⊗E = Q (2.29)

we can therefore calculate the quaternion error vector as:

E = P ∗ ⊗Q (2.30)

with components given by equation (2.24).

12
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2.2 Attitude kinematics

2.2.1 Evolution of Euler’s angles
In subsection 2.1.1, page 8, the Euler sequence 3-2-1, also known as Bryant’s angles, was
introduced and used in order to calculate the transformation matrix LBI . The purpose
of this section is to derive the differential equations that describe the evolution of the
Euler’s angles as a function of time and the angular velocity ω, also known as kinematic
equations. The angular velocity in body frame is given by:

ω = ω1ê1 + ω2ê2 + ω3ê3 (2.31)

but, using the sequence 3-2-1, we also know that the following is true:

ω = ψ̇Ê3 + θ̇êÍ
2 + φ̇ê1 (2.32)

Next, let’s represent the basis vectors in equation (2.32) in the body frame:

(Ê3)B = LBIÊ3 =

 − sin θ
sinφ cos θ
cosφ cos θ

 (2.33)

(êÍ
2)B =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 0
1
0

 =

 0
cosφ
− sinφ

 (2.34)

Substituting we obtain:

ω = (φ̇− ψ̇ sin θ)ê1 + (ψ̇ sinφ cos θ + θ̇ cosφ)ê2 + (ψ̇ cosφ cos θ − θ̇ sinφ)ê3 (2.35)

or in compact matrix form:ω1
ω2
ω3

 =

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ


φ̇θ̇
ψ̇

 (2.36)

Inverting the relation, we obtain the kinematic equations:
φ̇ = ω1 + (ω2 sinφ+ ω2 cosφ) tan θ
θ̇ = ω2 cosφ− ω3 sinφ
ψ̇ = (ω2 sinφ+ ω3 cosφ)/ cos θ

(2.37)

which, once integrated, give the evolution of the bryant’s angles as a function of the angular
velocity. The geometric singularity is noticeable in equation (2.37), since, for θ = ±π/2,
φ and ψ are not defined, hence the need to introduce a new way of representing attitude
such as quaternions which don’t suffer from singularity issues.

13



2 – Mathematical model

2.2.2 Evolution of quaternions
Since the attitude is being represented through unit quaternions, we need to rewrite the
kinematic equations in terms of quaternions, it’s to say an equation whose solution is the
time evolution of the quaternion given the angular velocity ω in the body frame or inertial
frame. Such a problem is basically to find, given an unit quaternion function Q(t), its
time derivative. Depending on which frame we describe the angular velocity, ωB in body
frame and ωI in inertial frame, the evolution of the quaternion follows the equation:

Q̇ = 1
2ωI ⊗Q = 1

2Q⊗ ωB (2.38)

Proof. [18] Suppose a time interval ∆t. The attitude at time t + ∆t is described by the
quaternion Q(t + ∆t). The difference between the two quaternions is an extra rotation
around the instantaneous axis ω̂B = ωB/||ωB|| in body frame by a small angle ∆θB =
||ωB||∆t. We can associate a new quaternion with this extra rotation:

∆QB = cos ∆θB
2 + ω̂B sin ∆θB

2 (2.39)

Since we are dealing with a small perturbation, we can assume:

∆QB ≈
5 1
∆θB/2

6
(2.40)

with:
ωB ,

dθB(t)
dt

, lim
∆t→0

∆θB
∆t (2.41)

Therefore, starting from time t we can reach the attitude at t + ∆t with the extra
rotation, which means through the sequence of rotation:

Q(t+ ∆t) = Q(t)⊗∆QB (2.42)

Calculating the derivative of the quaternion as the limit of the difference quotient:

Q̇(t) , lim
∆t→0

Q(t+ ∆t)−Q(t)
∆t

= lim
∆t→0

Q⊗∆QB −Q

∆t

= lim
∆t→0

Q⊗
3 5 1

∆θB/2

6
−

51
0

6 4
∆t

= lim
∆t→0

Q⊗
5 0
∆θB/2

6
∆t

= 1
2Q⊗

5 0
ωB

6

(2.43)
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By defining:
Ω(ω) ,

5 0 −ωT

ω −[ω]×

6
(2.44)

we can write (2.38) in a matrix form as follows:

Q̇ = 1
2Q⊗ ωB = 1

2Ω(ωB)Q (2.45)

Observation. The angular velocity vector ωB is expressed with respect to the body
frame. If we want to express the perturbation and hence the angular velocity with respect
to the intertial frame at each time, we can obtain so through a rotation with the quaternion
Q as follows:

ωI = Q⊗ ωB ⊗Q∗ (2.46)

By multiplying at both right sides of (2.46) by Q we obtain the other version of the
derivative showed in (2.38):

1
2ωI ⊗Q = Q̇ = 1

2Q⊗ ωB (2.47)

Summary

Throughout the discussion above, we were able to appreciate the far more intuitive geo-
metric meaning of Euler’s angles representation of attitude and the minimum number of
parameters needed. Nevertheless, a singularity problem occured, which is dangerous when
it comes to calculation. The definition of quaternions solves the singularity problem, but
with the cost of adding a 4th parameter and respecting the constraint in (2.21). Despite
this, the kinematic equation with quaternion is less computationally expensive.

2.3 Attitude dynamics
So far we’ve explored the attitude kinematics of the spacecraft and we’ve seen how quater-
nions evolve over time given the angular velocity vector ω. But where does it come from?
As is well known, kinematics only deals with the description of the different ways a body
can move. Dynamics, on the other hand, deals with the causes of motion. The backbone
of dynamics is the well known Newton second law of motion which states that if external
forces act on a body, they cause a variation of its momentum. In the same way, in rigid
body rotational dynamics, an external torque M causes a variation of angular momentum
h:

dh

dt
= M (2.48)

From equation (2.48), we will show that an external torque M causes a variation of angu-
lar velocity ω, whose integration over time provides the input function for the kinematics
equation which, in turn, provide the time evolution of quaternions.
For this purpose, let’s consider the inertial frame FI(Ê1, Ê2, Ê3) and a body frame
FB(ê1, ê2, ê3) attached to the spacecraft, represented as a rigid body, and centered in
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its center of mass CM. Discretizing the body, each small mass element dm moves, during
the rotation, with a velocity v and is identified in the body frame by the position vector
r. The infinitesimal angular momentum of the element is defined as:

dh = r × dmv = (r × v) ρ(r)dV (2.49)

and integrating over the volume of the entire body gives the total angular momentum:

h =
Ú
V

(r × v) ρ(r)dV (2.50)

Figure 2.2. Spacecraft as a rotating rigid body.[2]

As shown in figure 2.2, since the body rotates around the center of mass CM, we can
rewrite equation (2.50) as follows:

h =
Ú
V

[r × (ω × v)] ρ(r)dV (2.51)

Using vector properties we can extend the triple product in (2.51) as follows:

r × (ω × r) = (r · r) ω − (r · ω) r (2.52)

Lastly, recalling the definition of dyadic tensor by two vectors a and b as:

ab ≡ abT =
3Ø
i=1

3Ø
j=1

aibjeiej (2.53)

we can express the right dot product as follows1:

(ab) · c = ai(bjcj)ei = (b · c)a (2.54)

1The Einstein summation convention is used.
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Applying this rule to equation (2.52) we obtain the following expression of the angular
momentum:

h =
Ú
V

[r × (ω × v)] ρ(r)dV =
3 Ú

V
[(r · r)− (rr)] ρ(r)dV

4
ω = Iω (2.55)

We recognize in the parenthesis the mathematical expression of the inertia tensor, whose
components are:

Iij =
Ú
V

[δij ||r||2 − xixj ] ρ(r)dV (2.56)

indeed, we can extract some well known components using the definition of the Kronecker
delta given in equation (2.4):

Ixx =
Ú
V

[δ11(x2 + y2 + z2)− x2] ρ(r)dV =
Ú
V

(y2 + z2) ρ(r)dV

Ixy =
Ú
V

[δ12(x2 + y2 + z2)− xy] ρ(r)dV =
Ú
V
−xy ρ(r)dV

(2.57)

and so forth. The inertia tensor is symmetric and made of real components, therefore its
eigenvalues are real and its eigenvectors are mutually orthogonal. This of course allows us
to identify a frame of reference in which the inertia matrix is diagonal. The eigenvectors
are called principal axex, whereas the respective eigenvalues are called principal moments
of inertia:

I =

Ix 0 0
0 Iy 0
0 0 Iz

 (2.58)

In order to derive Euler’s equations, let’s evaluate the derivative of h in equation (2.48)
in body frame as follows:

ḣB + ωB × hB = MB (2.59)

assuming that the inertia matrix I is constant, we obtain:

Iω̇B + ωB × (IωB) = MB (2.60)

which leads us, in a set of principal axes, to the Euler’s equations:
Ixω̇1 + (Iz − Iy)ω2ω3 = M1

Iyω̇2 + (Ix − Iz)ω3ω1 = M2

Izω̇3 + (Iy − Ix)ω1ω2 = M3

(2.61)

In our case, with a satellite equipped with reaction wheels as the actuation system, equa-
tion (2.60) becomes:

Iω̇B + ωB × (IωB + IRWωRW ) = MB (2.62)

where ωRW is the angular velocity of the reaction wheel. In MB the effect of the reaction
wheels MRW and external disturbances ∆Mex are included.
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Summary

We finally closed the problem: given an external torque MB of the actuation system plus
external disturbances, we can integrate Euler’s equation and derive the time evolution of
the angular velocity ω, which, in turn, can be used to determine the time evolution of
the attitude quaternion, which can ultimately be compared with a reference and enter a
guidance and control logic, closing the loop.

2.4 Actuation system
The last ingredient of the mathematical model needed to accomplish the attitude control
is of course the actuation system. The satellite needs to provide an external force in
order to orient itself performing the control signal generated by the guidance and control
subsystem. In our case study, the satellite is equipped with 4 reaction wheels, which
provide a high pointing accuracy and are particularly useful when the spacecraft must be
rotated by very small amounts, for instance space telescopes.
A reaction wheel is a type of flywheel used primarly for three axis attitude control. It is
a brushless motor attached to a high-inertia flywheel which is free to spin along a fixed
spacecraft axis. The operating principle is simple: conservation of angular momentum,
which states that, in absence of external torque, the total angular momentum of the
spacecraft remains constant:

dh

dt
= 0 =⇒ h = constant (2.63)

For the system of satellite plus its reaction wheel, we obtain:

IωB + IRWωRW = constant (2.64)

So, in order to mantain the total angular momentum constant, by accelerating the wheel
in one direction about the wheel spin axis, it appies a reaction torque to the spacecraft in
the opposite direction.

Figure 2.3. Operating principle of a reaction wheel.[5]

For this reason a reaction wheel is considered a momentum exchange device, since angular
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momentum is transferred between wheels and satellite to control its attitude. But equation
(2.48) clearly states that in case of an external torque, there’s a change in overall spacecraft
angular momentum. Therefore, if the control objective is to keep the spacecraft attitude
inertially fixed (the satellite platform keeps zero angular momentum), all the angular
momentum change due to the external disrturbance torque is absorbed by the reaction
wheels, which will start spinning faster. This rises a crucial point, which is the wheel
saturation. As disturbances keep on acting, they result in a build-up of wheel angular
momentum, causing the wheel to face the following limitations:

• torque saturation: due to reaching the maximum current that can flow in motor
wires, the wheel is not able to provide a torque higher than the one for which it has
been designed;

• momentum saturation: due to mechanical limitations, the wheel, once the maximum
angular velocity is reached, it is not able to further accelerate.

Thus it is necessary to de-saturate the wheel, and it can be achieved by applying an
external torque to de-load the wheel; it can be provided by reaction control thrusters
or magnetorquers. A reliable three-axis stabilization attitude control system, therefore,
needs a minimum of three reaction wheel, an additional one for redundancy and a set of
thrusters and/or magnetorquers for the de-saturation.

2.4.1 Reaction wheels modeling
With the introduction of the reaction wheels, Euler’s equations (2.60) becomes:

ω̇B = I−1(Mex − MRW − ωB × (IωB + hRW )) (2.65)

In the boxes, we recall the torque from the reaction wheels, which enters Euler’s equations
with a "minus" sign, and the reaction wheel angular momentum. One advantage of reaction
wheels is that they apply a continuous and variable torque to the system. Therefore,
the control torque only needs to undergo a "minus sign" gain, a possible geometrical
transformation due to the relative positioning of the wheels, a low-pass filter to filter out
high frequencies of the control torque for each wheel and a saturation action which limits
the value of the actual torque for the dynamics. What figure 2.4 shows are the following
equations in Laplace domain:

MRW = − 1
τRW s+ 1Mc

hRW = 1
s
MRW

(2.66)

As we already said previously, a satellite needs a cluster of reaction wheels, to fully
control the three-axis attitude, made of 3 wheels plus 1 for redundancy: in this way if a
fail occurs, a three-axis attitude control is always ensured, even though pointing accuracy
may be degraded. Hence, we can find different configurations of clusters. The most used
are:
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Figure 2.4. Block scheme of a simple reaction wheel model.

• NASA 3+1 : three wheels are aligned with the satellite main inertia axis whereas
the fourth is inclined by a certain angle with respect to all the planes;

• pyramidal: the wheels spin axis are pointed towards the faces of a pyramid with
squared base;

• tetrahedral: just like the pyramidal one, here the spin axes are pointed towards the
faces of a tetrahedron.

We note that, before applying equations (2.66), the control torque, which is a 3×1 column
vector, needs to be allocated to the four wheels assembly, it’s to say to check how each
reaction wheel axis contributes to the control torque along the three body axes. In our
case, a pyramidal configuration will be used in the simulation. In order to describe how

Figure 2.5. Pyramidal configuration with mounting angles β = 30◦ and α = 0◦.[5]

the allocation process works and derive the transformation matrix, let’s focus on figure 2.5.
Let’s consider the case with α = 0◦. The red vectors are the torque component given by
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each wheel. How can we go back to the 3-components vectors? We can notice that, fixing
one axis at a time, for instance the x axis, only the wheel number 1 and 3 contribute,
respectively with a coefficient cos β and − cos β, whereas the number 2 and 4 do not
contribute. Same thing happens with y axis, but here only 2 and 4 contribute. Finally,
along the z axis all the wheels contribute with a coefficient sin β. This transformation is
then represented by the following matrix relation:

MRW 1

MRW 2

MRW 3

 =

cos β 0 − cos β 0
0 cos β 0 − cos β

sin β sin β sin β sin β



MW1

MW2

MW3

MW4

 (2.67)

where MWi is the component of torque given by the i-th wheel in the cluster. What if
α /= 0? In that case we can simply multiply the vector obtained in equation (2.67) with a
rotation matrix along the z axis by an angle of α. We can group the two matrices in the
Z matrix, which transforms the torque in the cluster to the 3-components torque needed
by the dynamics:

MRW 1

MRW 2

MRW 3


ü ûú ý

MRW

=

cosα − sinα 0
sinα cosα 0

0 0 1

 cos β 0 − cos β 0
0 cos β 0 − cos β

sin β sin β sin β sin β


ü ûú ý

Z


MW1

MW2

MW3

MW4


ü ûú ý

MW

(2.68)

where we define:

Z =

cos β cosα − cos β sinα − cos β cosα cos β sinα
cos β sinα cos β cosα − cos β sinα − cos β cosα

sin β sin β sin β sin β

 (2.69)

To summarise, with a reaction wheels cluster, the control torque, which is a 3× 1 vector,
needs to be transformed in the cluster frame of reference and this can be achieved invert-
ing equation (2.68) through the definition of the pseudo-inverse matrix (or generalized
inverse):

M ∗
C = Z+MC =⇒ MRW = ZMW (2.70)

where M ∗
C is the control torque in the cluster frame before the filtering.
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Chapter 3

Guidance and Control
Algorithms

In the following chapter the guidance algorithm will be presented. It’s based on the Ar-
tificial Potential Field method (APF), whose mathematical formulation will be presented
first, and subsequently applied to the case in question.
The APF method goes through the mathematical concept of the gradient descent, where
a generalized force is generated by taking the gradient of the potential field at each point
in state-space and the state variable evolves accordingly. Attitude constraint and quater-
nions are taken into account in a particular manner exploiting quaternion properties and
a global potential field, function of the quaternion error state vector, can be formulated,
providing a reference value for the control system and dynamics to follow.

3.1 Mathematical formulation of APF
In the introduction we explained the importance of on-line motion planning and it’s
mandatory for a satellite to orient itself with help of partial information provided by
the on-board sensors. The APF method is suitable for on-line planning, since the satellite
and obstacle attitudes can be measured and therefore it is possible to evaluate a potential
field of a predefined mathematical form; thus, a promising direction of local motion is
indicated by the negative gradient of the potential −∇U . In this section we won’t work
with attitudes yet, but introduce the general formalism with a general configuration q.

3.1.1 Attractive Potential
The attractive potential is designed to guide the system to its goal configuration qg. It is
possible to think of two types of potential fields: a conical attractive field and a parabolic
field. A parabolic attractive field has the following form[17]:

Ua1(q) = 1
2kae

T (q)e(q) = 1
2ka||e(q)||2 (3.1)
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where ka > 0 is a constant used to shape the field and e = qg − q is the error vector with
respect to a configuration goal qg. It’s been defined so that it’s always positive and has a
global minimum at the origin (in qg). Calculating the gradient:

fa1 = −∇Ua1(q) = kae(q) (3.2)

This tells us that the resulting force is linear and converges linearly to zero. Notice that
the apparent lack of a minus sign is due to the definition of the error vector, which,
working the chain rule, leads to ∇(qg − q) = −1.

Figure 3.1. Parabolic attractive potential.

On the other hand, a conical attractive field has the following form:

Ua2(q) = kb||e(q)|| (3.3)

Just like the parabolic field, it’s always positive except at the origin where it is zero. The
resulting force is:

fa2 = −∇Ua2(q) = kb
e(q)
||e(q)|| (3.4)

we can notice that the force is constant in modulus. Why is it even considered? Having
a constant force is an advantage when the error vector is very large. This is the case of
having, at the beginning of the simulation, an obstacle kind of far away from the current
position and, with a parabolic field, the resulting force would be too large (it grows linearly
with the error) and the actuation system may not be able to achieve the reference value;
a constant force when the error is large avoids an unfortunate saturation of the actuation
system. On the other hand, the conical field has a discontinuity in the derivative in qg
and the resulting force is indefinite.
We can combine the advantages of the two potential fields by defining a hybrid attractive
potential made of a conical surface away from the goal and a parabolic surface in the
vicinity of the goal. In order for the combination to produce a continuous force, an extra
care of the mathematical form must be taken. Let’s indicate with ρ the separation region
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Figure 3.2. Conical attractive potential.

of the two forms of field. Looking at figures 3.1 and 3.2 we notice that for the combination
to be continuous at ||e(q)|| = ρ, the vertex of the cone must translate, and then be non
zero at qg. This can also be derived by noticing that at that point the "conic line" must
have the same slope as the parabola at that point, which equals to the derivative of the
parabolic field at that point; subsequently, one line from the sheaf of parallel lines must be
chosen, in particular the one passing through that same point. We express the attractive
potential as follows:

Ua(q) =


1
2ka||e(q)||2 if ||e(q)|| ≤ ρ

kb||e(q)||+K if ||e(q)|| > ρ
(3.5)

Keeping the constant ka fixed and known, we have two constant to determine (kb and K).
We can do so by imposing the condition of continuity and differentiability to the field.

Differentiability

We impose that at ||e(q)|| = ρ the derivatives of the two pieces in (3.5) are equal:

kae(q)
---
ρ

= kb
e(q)
||e(q)||

-----
ρ

=⇒ ka = kb
ρ

=⇒ kb = ρka (3.6)

Continuity

We impose the same condition directly at the potential in (3.5) to find out the value of
K:

1
2kaρ

2 = kaρ
2 +K =⇒ K = −1

2kaρ
2 (3.7)
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The combined attractive potential is of the following form:

Ua(q) =


1
2ka||e(q)||2 if ||e(q)|| ≤ ρ

ρka||e(q)|| − 1
2kaρ

2 if ||e(q)|| > ρ
(3.8)

and the resulting force:

fa =


kae(q) if ||e(q)|| ≤ ρ

ρka
e(q)
||e(q)|| if ||e(q)|| > ρ

(3.9)

Figure 3.3. Final attractive potential.

3.1.2 Repulsive Potential
A repulsive potential field must be added to account for the presence of obstacles as the
attractive field is followed. The idea is to add a barrier potential in the vicinity of the
obstacle, which is a region where the field, from zero, start to rise and keeps growing as
close as we get to the obstacle, so that the resulting force always points outwards of the
obstacle. Indicating with η(q) the relative distance from the obstacle and with η0 the
range of influence, for each obstacle we can build the following repulsive potential:

Ur,i(q) =


1
2kr,i

3 1
ηi(q) −

1
η0,i

42
if ηi(q) ≤ η0,i

0 if ηi(q) > η0,i

(3.10)
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Figure 3.4. Profile detail of the attractive potential.

The resulting repulsive force is:

fr,i(q) = −∇Ur,i(q) =


kr,i
η2
i (q)

3 1
ηi(q) −

1
η0,i

4
∇ηi(q) if ηi(q) ≤ η0,i

0 if ηi(q) > η0,i

(3.11)

For n obstacles, the aggregate repulsive is obtained by summing up the individual poten-
tials:

Ur(q) =
nØ
i=1

Ur,i(q) (3.12)

For the sake of simplicity, we’ll assume throughout the thesis work and simulation that
the goal is placed far away from the obstacles, and thus outside of the range of influence
of any obstacle.

3.1.3 Total Potential
The total potential, as mentioned before, can be obtained by superposition of the attrac-
tive and repulsive potentials:

Ut(q) = Ua(q) + Ur(q) (3.13)

which results in the force field:

ft(q) = −∇Ut(q) = fa(q) +
nØ
i=1

fr,i(q) (3.14)

The resulting potential fiel will then have a global minimum in qg which will attract the
configuration vector while avoiding the obstacles thanks to the repulsive forces pointing
along the negative gradient (for an obstacle this is away from it).
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Figure 3.5. Repulsive potential field.

Figure 3.6. Graphic example of the total potential field as a superposition of
attractive and repulsive fields.

3.1.4 Planning Techniques
So far we’ve been calling the gradient of the potential a generalized force, from the for-
malism of classical mechanics. But can it be considered an actual force? The answer
is yes... but also other things. Based on the physical meaning given to the gradient of
the potential, we can have different planning techniques. The three main used are listed
below[17]:

1. We let the gradient be:
τ = ft(q) (3.15)

which is an actual set of generalized forces that act on the system according to its
dynamic model.
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Figure 3.7. Total potential field. Left: equipotential contours, right: resulting force field.[17]

2. We consider the system as a point mass, hence the generalized forces are indeed an
acceleration vector:

q̈ = ft(q) (3.16)

3. Third possibility is to consider the force as a reference velocity:

q̇ = ft(q) (3.17)

Let’s discuss briefly on their role. In the first case, (3.15) directly represents control input
for the system (the force goes directly into the pant dynamics), whereas (3.16) requires
the solution of the inverse dynamics problem, i.e. substituting into the dynamic system
q̈ (i.e., ω̇) to solve for the generalized force τ that realize such acceleration. Finally,
(3.17) can provide a reference value (ω) for the controller to follow. What are the pros
and cons of these techniques so that a suitable one can be chosen? The use of (3.15)
generates smoother paths, since the reactions of the presence of obstacles are filtered
by the system dynamics, but, just like (3.16), in order to achieve asymptotic stability a
dumping term proportional to q̇ must be added to the gradient of the potential. On the
other hand (3.17) is safer because it’s faster in executing the motion corrections given by
the potential gradient. In addition, it automatically guarantees the asymptotic stability of
the goal. The third choice (3.17) is typically used. Generally at this point, equation (3.17)
is numerically integrated to obtain, at each time step, the next system configuration:

qk+1 = qk + ∆tft(qk) (3.18)

with ∆t as the time step. Since ft(q) = −∇Ut(q), equation (3.18) is also known as algo-
rithm of steepest descent.

3.2 Attitude guidance design with APF
In this section the application of APF method to the problem in exam is presented. We will
move from general system with general state variable (or configuration) q to an attitude
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reorientation problem, with the rotational dynamics and kinematics represented through
a unit quaternion Q. A way to link the quaternion configuration at each time step to the
angular separation between instrument and obstacle is needed, and the APF method will
be used, with the technique given by (3.17). After that, both the reference values for the
quaternion and the angular velocity (the latter as the output of the guidance algorithm)
will generate error state vectors, which in turn will enter the control law and provide the
dynamic system with a control torque.

3.2.1 Attitude constraints
For the attitude constraints model, let’s identify the pointing direction of the on-board
instrument with a normalized boresight vector y in FB and the direction of the obstacle
with a normalized vector x in FI and suppose a half-cone angle greater than θ must
be maintained between the two vectors. As shown in figure 3.8, during the reorientation

Figure 3.8. Attitude constraint model.[15]

maneuver the cone around the instrument vector should avoid the unwanted objects. How
can we make sure this information includes the system state variable, the unit quaternion,
for an APF implementation? Let’s note first that the vector y is expressed in the body
frame whereas the obstacle x is expressed in the inertial frame. From the mathematical
model chapter we’ve seen how we can calculate the rotational matrix LBI knowing the
quaternion. Using equation (2.16), we can express the boresight instrument vector in the
inertial frame as follows:

yI = LIBy = LT
BIy = (q2

0 − qTq)y + 2(qTy)q + 2q0(q × y) (3.19)

The attitude constraint can be expressed as follows:

x · yI < cos θ (3.20)
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it’s to say, the cosine of the angle between the two normalized vectors must be less than
the cosine of the angle θ, which means that the angle between the vectors must be greater
than the angle θ throughout the maneuver. It follows from eq. (3.20) that:

q2
0xTy − qTqxTy + 2(qTy)xTq + 2q0qT (y × x) < cos θ (3.21)

using some algebra, we can highlight the entire attitude unit quaternion Q as follows:

QT

5
xyT + yxT − (xTy)I3 y × x

(y × x)T xTy

6
Q < cos θ (3.22)

We can generalize equation (3.22) supposing there are m on-board sensitive instruments
and, for the jth instrument, n constrained obstacles are associated with it. Therefore, the
attitude unit quaternion Q for which the boresight vector yj is associated with the ith
obstacle should satisfy the following equation:

QTM j
i Q < cos θji (3.23)

where
M j

i =
C
Aji bji
bjTi dji

D
(3.24)

with

Aji = xiy
T
j + yjx

T
i − (xTi yj)I3, bji = yj × xi, dji = xTi yj

i = 1, 2, . . . , n, j = 1, 2, . . . ,m

The angle θji is the constraint angle for the jth instrument boresight vector yj about the
direction of the ith object specified by xi. We can assume its domain to be (0, π).
By defining M̄ j

i = M j
i − cos θji I4, equation (3.23) can be written as follows:

QTM̄ j
i Q < 0 (3.25)

we will refer to the term in equation (3.25) by quadratic constraint in the results chapter:
it tells us numerically the difference value between the cosine of the separation angle and
the cosine of the constraint angle of instrument and obstacle throughout the simulation
and its being negative reflects the starting constraint stated in eq. (3.20) and guarantees
us that during the maneuver the instrument actually avoids the obstacle.

3.2.2 Attractive potential
The attractive potential used for our attitude problem will be of the form of eq. (3.8),
which is parabolic close to the goal and conical far away from it. As the error state
variable in this case we will use the vectorial part of the error quaternion Qe defined in
eq. (2.30). Therefore, defining the goal quaternion Qg, we will express the potential fields
as a function of:

qe = Vec[Qe] = Vec[Q∗
g ⊗Q] (3.26)
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which is the vectorial part of the error quaternion Qe. The resulting attractive potential
is:

Ua(qe) =


1
2ka||qe||

2 if ||qe|| ≤ ρ

ρka||qe|| −
1
2kaρ

2 if ||qe|| > ρ
(3.27)

Once the value of ρ is chosen, in our case the value ka needs to fulfill a crucial point.
When the satellite is far away from the goal the conical part of the attractive potential
field is on and therefore a constant reference angular velocity (−∇Ua) is followed. But
clearly this value needs to comply with the actual performance of the actuation system:
a reference value greater than the maximum obtainable angular velocity of the system
can’t be... obtained! The actuation system would saturate and not be able to follow
the reference value which comprise of the path to avoid the obstacle. Hence, ka needs
to be chosen accordingly in order to generate a constant reference value which is equal
to the maximum value given by the actuation system: we’ll call it Ω. As we did in the
mathematical formulation of APF, by taking care of continuity and differentiability, we
can obtain the reference value of angular velocity by taking the gradient of the attractive
potential field:

ωa =


−Ω
ρ

qe if ||qe|| ≤ ρ

−Ω qe
||qe||

if ||qe|| > ρ
(3.28)

In order to account for the unwinding problem, simulation shows that it can be taken into
the account by multiplying ωa with the sign of the scalar part of the error quaternion,
obtaining:

ωa =


−Ω
ρ
sgn(qe,0) qe if ||qe|| ≤ ρ

−Ω sgn(qe,0) qe
||qe||

if ||qe|| > ρ
(3.29)

The values of the constants will be presented in the results chapter.

3.2.3 Repulsive potential
A repulsive potential for attitude constraints needs to take into account the modeling
of the latter. We have done it by introducing the whole attitude unit quaternion into
the angle separation inequality through the quadratic constraint in eq. (3.25). We can
construct a repulsive potential field that is hyperbolic through the function in eq. (3.23)
such that if the quadratic constraint (which indicates the cosine of the separation angle)
approaches the cosine of the constraint angle, it generates a higher and higher value of the
repulsive reference angular velocity which of course deviates the path from the obstacles.
Such a potential has the following form:

Ur(Q) = α

(QTMQ− cos θ)2 (3.30)
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Supposing the presence of m on-board sensitive instruments and n constrained obstacles,
a repulsive potential field can be constructed as the sum of the contributions:

Ur(Q) =
mØ
j=1

nØ
i=1

α

(QTM j
i Q− cos θji )2

(3.31)

or equivalently:

Ur(Q) =
mØ
j=1

nØ
i=1

α

(QTM̄ j
i Q)2

(3.32)

where α is a design parameter used to adjust the relative weighting between the attractive
and repulsive potential, usually chosen to be a small value in this case in order to maintain
a reasonable value for the control input. By taking the gradient, we obtain the reference
value for the repulsive angular velocity. Since the repulsive potential is constructed with
unit quaternions, the gradient would give back a 4× 1 vector. We can construct a 3× 1
reference angular velocity by extracting the vectorial part as follows:

ωr =
mØ
j=1

nØ
i=1

4αVec[QTM j
i ]

(QTM j
i Q− cos θji )3

(3.33)

Exactly as the attractive potential, we can insert the sign of the scalar part of the quater-
nion in order to take into account the unwinding problem:

ωr =
mØ
j=1

nØ
i=1

4α sgn(q0)Vec[QTM j
i ]

(QTM j
i Q− cos θji )3

(3.34)

3.2.4 Total potential
Superposing the contributions of the attractive and repulsive potentials, we can build
the total potential field acting on the satellite which guides it towards the goal avoiding
obstacles. We will assume the obstacles are far away from the goal position, so that only
the function for ||qe|| > ρ in eq. (3.28) affects the repulsive part. We can then sum the
contributions:

ωref = ωa + ωr = −Ω sgn(qe,0) qe
||qe||

+
mØ
j=1

nØ
i=1

4α sgn(q0)Vec[QTM j
i ]

(QTM j
i Q− cos θji )3

(3.35)

After defining all the parameters in eq. (3.35), given the value of the reference quaternion
Qg an error quaternion Qe can be defined and eq. (3.35) gives, step by step, the reference
value for the angular velocity which guides the satellite to the reference quaternion by
avoiding obstacle along the path.
We then have the two main ingredients for a control law, which are (e.g. with the purpose
of aligning the body frame on the inertial frame):

Qref = [1,0,0,0] and ωref given by (3.35)
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3.3 Sliding mode control
We will analize now the control law used in this thesis work. A sliding mode control has
been chosen: because of the nonlinear nature of the system and the need for robustness
against perturbation for an online planning, it is suitable and provides us with asymptotic
stability. Following, the general mathematical formulation for the sliding mode control
will be introduced and, after that, a slightly modified version including an adaptation law
will be applied to our case study.

3.3.1 Mathematical formulation
Sliding mode control is a non-linear variable structure control method. It is one particular
approach to robust controller design. Like all robust controllers, it solves the problem of
providing the desired performance in the presence of disturbances and/or uncertainties,
whose action creates the discrepancy between the real plant and its mathematical model.
We’ll start by giving the general definition of the methodology and apply it to a basic
example to understand better its power. It follows the following approach. Given a generic
nonlinear system:

ẋ(t) = f(x(t), u(t)), x(t) ∈ Rn (3.36)

the sliding mode control method consists of the two following steps:

• a sliding variable is defined, function of the system state-variables:

σ(x(t)) ∈ Rm (3.37)

and the relative sliding surface or sliding manifold follows, which is a subset of the
state-space of dimention n−m and on which the trajectory of the system in state-
space is desired to lie:

σ(x(t)) = 0 (3.38)

• a control law is designed to force the trajectory towards the sliding surface and, once
there, keep it close to it until the desired position.

The control law design generates thus two main phases: a reaching phase where, starting
from the initial condition, the trajectory is brought towards the sliding surface in a finite
time and a sliding phase where the trajectory, by means of the control action, is forced
to slide along the sliding surface, well designed with the purpose of crossing the origin of
the state-space, providing asymptotic convergence. The phases are well shown in figure
3.9. It is noted that the way the sliding mode is defined and the control law is designed
really depends on the structure of the system and eventually on the bounded values of
the uncertainties. Moreover, the type of mathematical function that the control action
assumes characterizes the type of the sliding mode controller. We have in fact, to cite a
couple, a first order sliding mode control (FOSM ), the super-twisting sliding mode control
(STW ), etc. The difference consists on the ability of dealing with disturbances which
are not bounded or to solve the chattering effect coming out of the discontinuous nature
of the control law. In order to appreciate how the method works, how it tackles the
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Figure 3.9. Sliding mode control phases.[5]

disturbances and what’s the procedure of choosing a suitable sliding variable and control
action, let’s consider the basic example of a system that describes the single-dimensional
motion of a unit mass, also known as a double integrator, and apply in the end a control
law for a FOSM. Introducing the position and velocity of the mass x1 = x and x2 = ẋ, a
state-variable description is[16]:I

ẋ1 = x2 x1(0) = x10

ẋ2 = u+ f(x1, x2, t) x2(0) = x20
(3.39)

where u is the control force and f(x1, x2, t) the disturbance term, assumed to be bounded,
i.e. |f(x1, x2, t)| ≤ L > 0. The problem is to design a feedback control law u that drives
the mass to the origin asymptotically, i.e.:

u = u(x1, x2) : lim
t→∞

x1, x2 = 0

The challenge is in the presence of the unknown bounded disturbance f(x1, x2, t). What
we want is the dynamics to behave, for example, as a linear time-invariant differential
equation for the position of the unit mass, i.e., reaching the origin in a finite time:

ẋ1 + cx1 = 0, c > 0 (3.40)

which has the following solution:

x1(t) = x1(0)e−ct (3.41)

of course since x2 = ẋ1, the velocity as well will converge to the origin. In this compensated
desired dynamics we observe no effect of the disturbance. In order to achieve this, we can
define a sliding variable σ, function of the state-space variables of the system:

σ(x1, x2) = x2 + cx1, c > 0 (3.42)
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Figure 3.10. Single-dimensional motion of a unit mass.[16]

The sliding manifold or sliding surface is described by the equation:

σ(x1, x2) = 0 (3.43)

and it has been designed so that the system in sliding mode reaches the origin; in fact we
have from eq. (3.42) a line that crosses the origin in the state-space:

σ = 0 =⇒ x2 = −cx1

After the definition of a suitable sliding variable and sliding surface, a feedback law is
designed to bring the trajectory towards the sliding surface in a finite time and, once there,
to stay close to it. To make sure than the original system (3.39) reaches asymptotically
the origin despite the disturbance, we have to ensure it reaches, moving along the sliding
variable, the sliding surface in finite time by means of the control u. We can derive the
σ-dynamics using eqs. (3.39) and (3.42):

σ̇ = cx2 + f(x1, x2, t) + u, σ(0) = σ0 (3.44)

We can use the Lyapunov function method in order to ensure we have asymptotic stability
towards the sliding surface σ = 0. Let’s define a candidate Lyapunov function:

V = 1
2σ

2 (3.45)

For σ = 0 to be an equilibrium point about which there’s asymptotic stability, the function
in eq. (3.45) must satisfy the following conditions:

1. V (σ) = 0, for σ = 0

2. V (σ) > 0, ∀ σ /= 0

3. lim|σ|→∞ V =∞
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4. V̇ < 0, for σ /= 0
The first 3 conditions are already satisfied by eq. (3.45). In order to achieve finite-time
convergence, the fourth condition can be modified as follows[16]:

V̇ ≤ −α
√
V , α > 0 (3.46)

integrating the differential equation we obtain:

V 1/2(t) = −1
2αt+ V 1/2(0) (3.47)

and hence V (t) reaches zero in a finite time tr bounded by:

tr ≤
2V 1/2(0)

α
(3.48)

Therefore, a well defined control u can drive the sliding variable σ to zero (to the sliding
surface) in a finite time and will keep it a zero thereafter. Let’s now calculate the derivative
of V :

V̇ = ∂V

∂σ

∂σ

∂t
= σσ̇ = σ(cx2 + f(x1, x2, t) + u) (3.49)

Assuming u = −cx2 + ν:
V̇ = σ(f(x1, x2, t) + ν) = σf(x1, x2, t) + σν ≤ |σ|L+ σν (3.50)

by choosing ν = −ρ sgn(σ) with ρ > 0, we obtain:
V̇ ≤ |σ|L− |σ|ρ = −|σ|(ρ− L) (3.51)

Condition (3.46) can be rewritten, taking into account the function in eq. (3.45) as:

V̇ ≤ −αV 1/2 = − α√
2
|σ| (3.52)

Combining:
V̇ ≤ −|σ|(ρ− L) = − α√

2
|σ| (3.53)

This lets us compute the control gain ρ:

ρ = L+ α√
2

(3.54)

Finally, a control input u that drives the sliding variable to the sliding surface in a finite
time is:

u = −cx2 − ρ sgn(σ) (3.55)
Observation. The condition (3.46) can be written as:

σσ̇ ≤ − α√
2
|σ| (3.56)

which is known as the reachability condition, which ensures that the trajectory of the
system (3.39) is driven towards the sliding surface in a finite time and remains on it
thereafter.

The mathematical structure for the control input (3.55) is what characterizes a first-
order sliding mode control FOSM. We can notice the presence of the sign function which
is discontinuous.
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Equivalent control and sliding mode equations

The effect of the sign function in the input control (3.55) is to "average" the effect of the
perturbation: the bounded value of the latter is in fact used to the design the control gain
ρ. In a pure theorical way though, we could compute the so called equivalent control ueq.
Once the sliding surface is reached at time tr, the trajectory remains on it by means of
(3.55); this means that[16]:

σ = σ̇ = 0 =⇒ cx2 + f(x1, x2, t) + u = 0 ⇐⇒ ueq = −cx2 − f(x1, x2, t) (3.57)

It ensures that the trajectory stays on the sliding surface (σ̇ = 0) but of course it’s not
the actual control applied to the system; nevertheless, as mentioned, it averages the effect
of the high frequency of the switching control. This procedure is useful to derive the
system’s compensated dynamics in the sliding mode. The equivalent control ueq drives
the system’s dynamics in sliding mode. Substituting we obtain[16]:

ẋ1 = x2

ẋ2 = (−cx2 − f(x1, x2, t))ü ûú ý
ueq

+f(x1, x2, t) =⇒
I
ẋ1 = x2

ẋ2 = −cx2
=⇒

I
ẋ1 = −cx1

ẋ2 = −cx2
(3.58)

The system’s compensated dynamics in the sliding mode is:I
ẋ1 = −cx1

x2 = −cx1
(3.59)

The fact that the compensated dynamics is of first-order, less than the system’s one,
is due to the fact that the dynamics in (3.59) describes the "slow" motion only, and it
disregards the effect of the high-frequency switching control. As already mentioned, the
compensated dynamics do not depend on the bounded disturbance f(x1, x2, t); however,
the design of the gain control ρ takes into account its upper limit L.[16]

Chattering elimination

We previously mentioned a high-frequency switching control. It is indeed correct because
of the presence of the sign function in (3.55). What this provokes is a "zigzag" motion of
small amplitude and high frequency in the state-space. This is due to the high-frequency
switch of the input control, which, based on the sign of the σ variable, changes sign,
switching from −ρ to ρ. This effect given by the imperfection of the sign function im-
plementation is called chattering. In many practical control systems, including our case
study, it is important to avoid the chattering since the actuation system cannot act back
and forth with high frequency. To avoid this, it is possible to approximate the sign function
by some continuous function. A function that approximate it well is:

sign(σ) ≈ σ

|σ|+ ε
(3.60)

It can be observed that:
lim
ε→0

σ

|σ|+ ε
= sign(σ)
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the parameter ε is chosen as a compromise between mantaining robustness and ensuring
a smooth control action. The input control can then be expressed as:

u = −c x2 − ρ
σ

|σ|+ ε
(3.61)

This function is part of the so-called saturation functions, since they bound the input
function with finite upper and lower values, like the sign function, but providing a smooth
transition at zero. Another saturation function used, for reference, is the hyperbolic
tangent:

sign(σ) ≈ tanh(kσσ) (3.62)
As with the sigmoid function, it can be observed that:

lim
kσ→∞

tanh(kσσ) = sign(σ)
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Figure 3.11. Approximation of the sign function. Left: sigmoid, right: hyperbolic tangent.

Super-twisting sliding mode control

In many cases a high frequency switching control is impractical and continuous control is
a necessity. A different form of the sliding variable can be chosen. It can be shown that
the following form: I

u = c|σ|1/2sign(σ) + w

ẇ = b sign(σ)
(3.63)

is continuous since both c|σ|1/2sign(σ) and the term w = b
s
sign(σ)dt are continuous,

since the high-frequency switching term sign(σ) is "hidden" under the integral. This
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Figure 3.12. Continuity of the term c|σ|1/2sign(σ).

Figure 3.13. Typical phase portrait with a super-twisting sliding mode control.[16]

is the super-twisting sliding mode control which is a second-order sliding mode control
method.[16] Figure 3.12 shows the absence of discontinuity in the first term of equation
(3.63). In figure 3.13 a typical phase portrait with a super-twisting sliding mode control
is shown. As a regular SMC, it can be shown it drives the state onto the sliding surface in
finite time and forces it to lay onto it during the sliding phase. The advantage of not having
a discontinuous control action is reflected in its capability to deal with the unbounded
nature of external disturbances and, more importantly, to make sure the stationary state
errors go to zero in finite time instead of asymptotically.
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3.3.2 Attitude control with adaptive sliding mode
Let’s go back to our case study. In the previous subsection, we’ve introduced and de-
scribed the sliding mode control and its effect on a system affected by unknown bounded
disturbances, being able to provide asymptotic stability nevertheless, proving its charac-
teristic of robustness. Through a basic example, we introduced the methodology for the
implementation of a first-order sliding mode control (FOSM) and also described briefly
the super-twisting sliding mode control (STW) and listed its advantages. In this simu-
lation, however, a FOSM has been used for a simpler computational demand but, even
so, it gives us good results nevertheless thanks to the coupling with the APF algorithm
and the planning technique (3.17). In addition, we will implement a variable form of the
first-order sliding mode control: we’ll call it adaptive sliding mode. In order to understand
it, let’s first go through the steps of choosing the sliding variable and the input control.

Sliding variable

The algorithm to implement needs to be of course general: it has to work with different
values of reference quaternion and angular velocity; hence, the system does not need to
be driven to zero always. The goal of course is, once defined the reference values, to drive
to zero the errors of both state-variables, namely:

qe = Vec[Q∗
ref ⊗Q], ωe = ω − ωref

Therefore, we can build up a sliding variable as a linear combination of the error quaternion
and error angular velocity:

σ = λ qe + ωe (3.64)

it has the general form of a manifold in the state-space (qe,ωe) and the corresponding
sliding surface σ = 0 corresponds to a straight line in the same space which drives the
system’s dynamics to null values for both the errors.

Observation. Recall that, from the kinematics equation (2.38), the angular velocity
ω does in fact contribute to the determination of the derivative of the quaternion Q.
Equation (3.64) can then be thought of as a conventional sliding variable with the error
dynamics e:

σ = ė+ λe

whose sliding surface corresponds to the stable dynamics of a first-order system, just like
the compensated dynamics for the unit mass system introduced in the general mathemat-
ical formulation in (3.40).

Input control

As mentioned, the coupling with the APF algorithm ends up giving good results even
with the implementation of a first-order sliding mode control with chattering elimination.
The input control will then be of the form:

u = −Ksat(σ) = −Ksat(λqe + ωe) (3.65)
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Lambda adaptation

What about the adaptive? It is in the parameter λ. An adaptive control law will be
implemented so that, when the error on the quaternion is large, the input control will
only act on the reference angular velocity: it will be to all intents a guidance law releasing
some computational demand as well; once the error quaternion gets smaller and smaller,
the input control will change its form and act on both variables, guaranteeing a smoother
response at the vicinity of the goal. This method can be implemented acting on the form
of the parameter λ, which can’t be a constant value anymore but a function of time and
error quaternion. The values of λ are bounded in the interval [λl, λu], which is chosen as
[0, λu], since what we want the form of σ to be :I

σ = ωe if λ = 0
σ = λuqe + ωe if λ = λu

(3.66)

The differential equation that describes the time evolution of lambda for our case is chosen
as follows: I

λ̇ = −α∗(λ− λu) + β||qe||
λ(0) = λu

(3.67)

where, we will see in the results chapter, β = f(α∗), α∗ > 0 and β < 0. The general
solution has the form:

λ(t) = e−α∗t

5 Ú
eα

∗t!β||qe||+ α∗λu
"
dt

6
(3.68)

Of course, eq. (3.67) must be solved numerically since ||qe|| does not have a pre-defined
dependence on time. Imposing the bounded values for lambda [0, λu] in the integra-
tion procedure in a numerical calculus environment, we obtain the evolution wanted for
lambda, which is zero when ||qe|| is large (at the beginning of the simulation) and a de-
fined value λu when ||qe|| is close to zero (closer to the goal). Finally, u is the control
torque that enters the actuation system model, which we called MC in eq. (2.70).
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Figure 3.14. Time evolution of λ(t) obtained in the simulation.
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Chapter 4

Simulation and results

In this chapter simulation parameters will be defined and results of two simulations pre-
sented: one with the unwinding phenomenon and one without. Geometrical data for the
satellite are chosen, i.e. inertia data and all the parameters needed from the actuation
system. Later on, guidance and control parameters are chosen, i.e. the parameters of the
potential fields and the ones defining the sliding mode controller. After defining initial
condition for both simulations, results will be produced and subsequently presented and
commented.

4.1 Satellite parameters
The satellite reference of the simulation is the Demeter satellite, which was a micro-
satellite devoted to the investigation of the ionospheric disturbances due to seismic and
volcanic activity. It’s a small satellite, and its actuation system model is used to simulate
the attitude dynamics in the presence of obstacles. The satellite model is characterized by
defining its inertial matrix I, used for the dynamics modeling, and the actuation system
performance, i.e. the maximum torque and maximum angular momentum achievable. The

Parameters Value Units
Ixx 30.012 kg ·m2 Inertia moment around x
Iyy 30.012 kg ·m2 Inertia moment around y
Izz 40.012 kg ·m2 Inertia moment around z
Ixy -3 kg ·m2 Cross inertia moment x-y
Ixz 0 kg ·m2 Cross inertia moment x-z
Iyz -2 kg ·m2 Cross inertia moment y-z
Tmax 0.005 N ·m Maximum torque produced by reaction wheel
hmax 0.12 kg ·m2/s Maximum angular momentum of reaction wheel

Table 4.1. Satellite parameters used in the simulator.

values Tmax and hmax in table 4.1 are used in the actuation system model as limit values of
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respectively the satellite torque and angular momentum commands. The implementation
of such limits in Simulink environment can be done using the saturation block. The
actuation system of the Demeter satellite is modeled as a second-order low-pass filter,
with the following transfer function:

G(s) = 1.214s+ 0.7625
s2 + 2.4s+ 0.7625 (4.1)

The actuation control input (torque), after being expressed in the cluster reference frame
by eq. (2.70), is fed to the saturation block with Tmax and −Tmax as limits. Afterwards,
it is filtered through the transfer function in eq. (4.1). By integrating the torque, we get
the angular momentum of the reaction wheel, which can be in turn saturated with hmax
and −hmax and finally return to the satellite frame with eq. (2.70) again.

Figure 4.1. Saturation and filtering of the reaction wheels cluster in the simulator.

4.2 Simulation without unwinding
Let’s first list all the parameters needed for the first simulation, which doesn’t account for
the unwinding phenomenon. These are a set of initial conditions and all the parameters
for the guidance and control algorithm, whose references like obstacles position and initial
quaternion vary between the simulations.

4.2.1 Initial conditions
Initial conditions have to be specified for the simulation to work. As specified in the
mathematical model of attitude representation, we will use quaternions for computational
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reasons, but, for the sake of simplicity, we will choose a set of initial Euler’s angles and
from there calculate the initial unit quaternion for the calculations. Hence, an initial
angular velocity vector is needed for the dynamics integration, namely eq. (2.62) which
we recall here for a better reading:

Iω̇B + ωB × (IωB + IRWωRW ) = MB

and, after that, with the initial quaternion, the kinematic equations can be integrated,
namely eq. (2.38) which we recall:

Q̇ = 1
2Q⊗

5 0
ωB

6
Also initial value for the integrator in fig. 4.1 representing the initial reaction wheel’s
angular momentum is shown in table 4.2.

Parameters Value Units
φ0 80 deg Initial roll angle
θ0 120 deg Initial pitch angle
ψ0 -100 deg Initial yaw angle
ωx0 0 rad/s Initial roll rate
ωy0 0 rad/s Initial pitch rate
ωz0 0 rad/s Initial yaw rate
q0 0.6726 − Scalar component of initial quaternion
q1 -0.3016 − First vector component of initial quaternion
q2 0.6726 − Second vector component of initial quaternion
q3 0.0644 − Third vector component of initial quaternion

Qref [1,0,0,0] − Reference quaternion
hrw0 0 kg ·m2/s Initial angular momentum of the reaction wheels

Table 4.2. Initial conditions for the simulation without unwinding.

4.2.2 Guidance and control algorithm parameters
All the algorithms of guidance and control contain parameters and gains in order to solve
their purpose. The tuning of such parameters has been accomplished by trial and error.
As regards the guidance algorithm, we need to specify all the parameters of the attractive
potential field, such as Ω and ρ and the ones of the repulsive potential, which are the
inertial position of the obstacles and the position in the body frame of the instrument, as
well as the gain parameter α and the constraint angle θm. For the sliding mode controller,
in order to integrate the sliding gain λ, we need to specify the parameters α∗, β, λu
and the controller gain K. All the parameters for the guidance algorithm used in the
simulation are presented in table 4.3. In table 4.4 we can find all the parameters needed
for the sliding mode controller tuning. In particular, in the sliding mode control section
we mentioned that β = f(α∗); it has in fact been chosen to be β = −αλu/ρ.
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Parameters Value Units
Ω 3 · 10−3 rad/s Upper limit of reference attractive angular velocity
ρ 5 · 10−2 − Attractive field transition value
x1 0.6634 m x-component of first obstacle’s position vector
y1 0.7297 m y-component of first obstacle’s position vector
z1 0.1658 m z-component of first obstacle’s position vector
x2 0.7036 m x-component of second obstacle’s position vector
y2 0.6920 m y-component of second obstacle’s position vector
z2 -0.1615 m z-component of second obstacle’s position vector
x3 0.5774 m x-component of instrument’s position vector
y3 0.5774 m y-component of instrument’s position vector
z3 0.5774 m z-component of instrument’s position vector
α 6 · 10−4 − Gain of repulsive potential function
θm 9 deg Constraint angle

Table 4.3. Guidance algorithm parameters for the simulation without unwinding.

Parameters Value Units
α∗ 0.05 − Parameter for the adaptive mode of λ
β -0.1 − Parameter for the adaptive mode of λ
λu 0.1 − Initial value of λ
K 5 · 10−3 − Control gain

Table 4.4. Sliding mode control algorithm parameters for the simulation without unwinding.

4.3 Simulation with unwinding

Here all the parameters will be listed for the case with the unwinding. Let’s recall that
only the initial attitude (and thus initial quaternion) and the inertial position vectors for
the obstacles change. All the gains of the guidance and control algorithms are unchanged.

4.3.1 Initial conditions

As we said, we will present here a similar table for initial conditions, with the only
difference in the initial attitude; the initial angular velocity and reference quaternion
stay the same. Note in table 4.5 the minus sign of the component q0 of the quaternion.
Even though the reference stays [1,0,0,0], the guidance and control algorithm deal with it
and make the simulation and final attitude converge to the quaternion [−1,0,0,0], which
physically represent the same attitude as [1,0,0,0], converging then to the right attitude
but in a faster and "smarter" way.
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Parameters Value Units
φ0 40 deg Initial roll angle
θ0 60 deg Initial pitch angle
ψ0 60 deg Initial yaw angle
ωx0 0 rad/s Initial roll rate
ωy0 0 rad/s Initial pitch rate
ωz0 0 rad/s Initial yaw rate
q0 -0.6193 − Scalar component of initial quaternion
q1 0.4914 − First vector component of initial quaternion
q2 0.2588 − Second vector component of initial quaternion
q3 0.5550 − Third vector component of initial quaternion

Qref [1,0,0,0] − Reference quaternion
hrw0 0 kg ·m2/s Initial angular momentum of the reaction wheels

Table 4.5. Initial conditions for the simulation with unwinding.

4.3.2 Guidance and control algorithm parameters

For the guidance algorithm different positions for the obstacles have been chosen in order
to place it along the free trajectory to activate the guidance effect. The control parameters

Parameters Value Units
Ω 3 · 10−3 rad/s Upper limit of reference attractive angular velocity
ρ 5 · 10−2 − Attractive field transition value
x1 0.7771 m x-component of first obstacle’s position vector
y1 0.4989 m y-component of first obstacle’s position vector
z1 0.3837 m z-component of first obstacle’s position vector
x2 0.6914 m x-component of second obstacle’s position vector
y2 0.5416 m y-component of second obstacle’s position vector
z2 0.4782 m z-component of second obstacle’s position vector
x3 0.5774 m x-component of instrument’s position vector
y3 0.5774 m y-component of instrument’s position vector
z3 0.5774 m z-component of instrument’s position vector
α 6 · 10−4 − Gain of repulsive potential function
θm 9 deg Constraint angle

Table 4.6. Guidance algorithm parameters for the simulation with unwinding.

are the same as the case without the unwinding phenomenon, shown in table 4.4.
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4.4 Simulation parameters
In the end, we specify all the simulation parameters, such as the simulation stop time
Tf , the step size ∆t and the type of solver. In table 4.7 basic simulation parameters

Parameters Value Units
Tf 1000 s Stop time of the simulation
∆t 0.01 s Time step of the simulation

Solver type Runge-Kutta 4 − Type of solver used in the simulation.

Table 4.7. Simulation parameters.

are shown. A fixed-step solver has been chosen, in particular a 4-th order Runge-Kutta
method has been used. Let’s recall briefly the Runge-Kutta method. It is a family of
numerical methods for integrating ordinary differential equations (also known as ode4 in
various numerical calculus softwares). Here the 4-th order method has been used. Given
an initial value differential problem:

ẏ = f(t, y), y(t0) = y0 (4.2)

with t0 and y0 known values, defining tn+1 = tn + ∆t and yn+1 = y(tn+1), the general
discretization of the Runge-Kutta method is the following:

yn+1 = yn +
sØ
i=1

∆t biki (4.3)

where: 

k1 = f(tn, yn)
k2 = f(tn + c2∆t, yn + ∆t(a21k1))
k3 = f(tn + c3∆t, yn + ∆t(a31k1 + a32k2))
...
ks = f(tn + cs∆t, yn + ∆t(as1k1 + as2k2 + · · ·+ as,s−1ks−1))

(4.4)

In order to choose a particular type of Runge-Kutta method, the number s of terms and
the parameters aij and bi have to be chosen. All the parameters can be grouped in a
tableau, known as Butcher array:

0
c2 a21
c3 a31 a32
...

... . . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs
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A 4-th order Runge-Kutta method has the following parameters:

k1 = f(tn, yn)

k2 = f(tn + ∆t
2 , yn + 1

2k1∆t)

k3 = f(tn + ∆t
2 , yn + 1

2k2∆t)

k4 = f(tn + ∆t, yn + k3∆t)

(4.5)

with the following Butcher array:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

so that:
yn+1 = yn + ∆t

6 (k1 + 2k2 + 2k3 + k4) (4.6)

Once set, the simulation runs successfully providing us with the main results which will
be presented in the next section.

4.5 Results
In this section the main results of the simulations are shown. In order to appreciate the
satellite dynamics, we need to have a look at the time evolution of the unit quaternion
and check that it reaches the reference quaternion Qref = [1,0,0,0] or [−1,0,0,0] for the
unwinding case, and the time evolution of the angular velocity checking that it eventually
goes to zero for both cases.

4.5.1 Case without unwinding
Since we chose such a value for the reference quaternion, we can look at the time evolution
of the quaternion error Qe and check that it reaches the same value, equivalent to the
zero. Figure 4.2 shows that the satellite successfully reaches the desired attitude given
by the inertial reference of frame: it starts from the initial values of the quaternion and
reaches the reference quaternion, both specified in table 4.2. We can notice from figure
4.2 the presence of the obstacles; in fact the vector components modify their heading to
zero at around t = 400 s until overshooting a bit at around t = 650 s. This is given by the
control action wanting to reduce to zero the norm of the error quaternion, which recall is
the main ingredient of the attractive field and as well the sliding mode control once close
to the objective. Figure 4.3 shows the time evolution of the norm of the error quaternion.
We notice the overshoot in order to avoid the obstacle and the final convergence to zero.
Let’s see the angular velocity. Figure 4.4 shows the time evolution of the angular velocity
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Figure 4.2. Time evolution of the error quaternion Qe without unwinding.
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Figure 4.3. Time evolution of the norm of the error quaternion qe without unwinding.

vector. It follows the evolution dictated by the reference value given by the guidance
algorithm until converging to zero once reached the desired attitude. Here as well we can
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Figure 4.4. Time evolution of the angular velocity ω without unwinding.

notice the slight overshoot but, overall, the saturation phenomenon is never encountered
for the absence of constant values of ω as time goes by. What about the actuation system?
Figure 4.5 shows the time evolution of the control torque acting on the satellite by means
of the actuation system. The values plotted are those indicated by MRW in eq. (2.70),
which is the control action filtered after being represented in the cluster reference of frame.
At the same time instances we find again the action at the overshoot which makes the
satellite stick to the reference values despite the obstacles’ presence. Moreover, we can
notice the torque values stay below the maximum value given by Tmax in table 4.1 (and
above −Tmax of course), without saturation.
How can we know that the attitude constraint has actually been respected? We can recall
the definition of the quadratic constraint expressed in eq. (3.25); let’s recall it here for
simplicity:

QTM̄ j
i Q < 0

which embodies the constraint stated in eq. (3.20):

x · yI < cos θm

with θm specified in table 4.3, in such a way that the quaternion Q comes in and can be
used in the definition of the repulsive potential field and its gradient (3.34). Hence, by
plotting the time evolution of the quadratic constraints for each obstacle, we can check
and make sure they stay negative throughout the whole simulation. Figure 4.6 shows the
time evolution of the quadratic constraints. They both start from negative and higher
absolute values meaning that the angle separating the instrument and the obstacle at the
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Figure 4.5. Time evolution of the control torque MRW without unwinding.
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Figure 4.6. Time evolution of the quadratic constraints QT M̄iQ without unwinding.
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start is greater than the constraint angle. As time evolves and the satellite attitude gets
closer to the obstacles, the separation angle decreases and its cosine takes on higher and
higher values. Of course it’s not a linear growth since the avoidance maneuver modifies
the separation angle, as figure 4.6 shows: it grows again for a bit during the avoidance
maneuver until stabilizing at a constant separation once reached the desired attitude.
The different values for the two obstacles depend on their position in the inertial space,
the constraint angle θm and the guidance gain α∗. By working on the gain parameter,
a less "aggressive" algorithm can be found, allowing the instrument to get closer to the
obstacle; this of course depends on the instrument itself and its capability of tolerating
small separation angles.

4.5.2 Case with unwinding
The second simulation deals with the unwinding problem. The relative initial attitude with
respect to the reference attitude is such that a standard guidance and control algorithm
based on APF would strickly make the quaternion to converge to [1,0,0,0], even though the
"smart", most efficient rotation is the one obtained along the same direction but opposite
verse, taking less time and less fuel; this case corresponds to the convergence to the final
quaternion [−1,0,0,0]. This is done, as we saw in the mathematical formulation of APF,
by considering the sign of the scalar part of the error quaternion since the start. We’ll
now list the same physical quantities and show that the right quaternion and the right
angular velocity are reached, as well as the quadratic constraint is respected.
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Figure 4.7. Time evolution of the error quaternion Qe with unwinding.

In figure 4.8 we can notice a small but noticeable stationary state error. This happens
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Figure 4.8. Time evolution of the norm of the error quaternion qe with unwinding.
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Figure 4.9. Time evolution of the angular velocity ω with unwinding.
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because of the order of the sliding mode control we chose, which we remind is a FOSM,
in order to keep the computational demand low. It can be adjusted by raising the order
of the control model, for example with a super-twisting algorithm, in future works.

0 100 200 300 400 500 600 700 800 900 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5
10

-3

Figure 4.10. Time evolution of the control torque MRW with unwinding.

The different evolution in figure 4.11 depends on the relative position of instrument and
obstacles. Since the obstacles’ positions had to be changed because of the different initial
attitude, the evolution of the separation angle can take different trajectory; the main
important fact is that it stays below the zero as the attitude constraint described by
the quadratic constraint says. Again, different values for the guidance and control gains
and/or the constraint angle can be chosen based on the payload requirements.
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Figure 4.11. Time evolution of the quadratic constraints QT M̄iQ with unwinding.

56



Chapter 5

Conclusions and future works

The simulations have shown that a guidance algorithm based on the Artificial Potential
Field (APF) method can successfully solve the main problem of attitude constraints during
a reorientation maneuver, avoiding damage to sensitive payloads. The method is used a
lot to deal with problems concerning positional dynamics, not only terrestrial applications
but also space ones: APF can be used as a guidance algorithm for on-orbit rendezvous
and docking maneuver. A mathematical model describing the relative position dynamics
is used by integration of the Clohessy-Wiltshire equations and an APF method can work
fine by placing at the docking goal an attractive potential field. With an extra care on
the mathematics, we have shown that translating the APF to the attitude dynamics is
possible and it generates the correct value for the reference angular velocity. The diffi-
culty arises only with the usage of quaternions to represent the satellite attitude, both for
their low capacity of description of what is actually going on and for their slightly more
complex algebra and non-linearity. Nevertheless, it is possible to deal with the state-space
of unit quaternions and construct scalar potential fields functions of Q. Focusing on the
requirement of keeping a boresight vector of a sensible instrument away from an inertial
obstacle it was possible to take advantage of the quaternion algebraic properties and con-
struct a quadratic constraint, which encapsulates the dependence on the quaternion and
the positions of obstacle and instrument. From it, a repulsive potential field could be con-
structed and implemented. The simulations show us that the coupling of APF and SMC
works and allows the satellite’s attitude to converge. Nevertheless, slight modifications
could be implemented in order to correct some stationary state errors, e.g. implementing
a STW sliding mode control, providing a continuous control action and thus converging
the state in a finite time instead of only asymptotically; moreover, it is better suited for
all kinds of disturbances, included unbounded ones. Different types of potential fields as
well can be implemented, with different functions based on the specific requirement of the
on-board instrument, as well as the control parameters. Therefore, the next step could be
the simulation of a higher number of obstacles and on-board instruments, with a different
repulsive potential field that can provide stability and keep the satellite away from all
the obstacles. Moreover, it could be modified to account for possible problems that could
occur like the local minima or a too close to the goal obstacle’s position, all coupled with
a super-twisting sliding mode control to secure the spacecraft from perturbations.
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