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Abstract

In the history of space exploration, the ability to navigate, rendezvous and interact
with a target in orbit always had profound importance. As our understanding of
the cosmos deepens, the demand for advanced satellite systems capable of undertak-
ing more complex missions has grown exponentially with newer challenges upfront.
The number of unmanned missions and satellites has recently risen more than ever,
driving a potential revolution in satellite operations thanks to topics like space de-
bris removal, on-orbit servicing and formation flying. These activities have recently
taken some spare of the space market as they are now supported and adopted in-
side the space companies. ESA is developing the “Clean Space” program and has
already expressed interest in starting on-orbit servicing missions to extend the life
of the already orbiting satellites instead of having them replaced (with every kind of
waste inferred) or having to launch more. Mission planning is a key topic of inter-
est, including the selection and sequencing of targets, along with the optimization
of transfer trajectories. The objective of this thesis is the design of a guidance al-
gorithm, able to generate an onboard trajectory, and of an adaptive control system.
This thesis is a comprehensive exploration of a 3DOF orbital simulator developed in
MATLAB Simulink which aims to replicate the dynamics of a satellite engaged in a
complex multi-target rendezvous mission. It consists of several key components: a
system, which models the satellite’s behaviour in orbit, a guidance model for path
determination, a controller model for decision-making, an actuator model, and a dis-
turbance model for orbital perturbations. The specific scenario considered involves
a satellite in Low Earth Orbit (LEO) pursuing a target within the valid range of the
Hills Equation. The control system’s primary objective is to navigate the satellite
into proximity with the target and execute rendezvous manoeuvres while accounting
for uncertainties and variations common in complex missions. The results obtained
show the system successfully completing the rendezvous with different mass proper-
ties and in different starting positions. An investigation was conducted to determine
the influence of the guidance parameters on the resulting trajectories and some cor-
relations were found with the time and propellant involved in the mission.
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Introduction

In unmanned missions, the ability to make real-time decisions on board is paramount,
ensuring autonomy and adaptability in dynamic environments. This capability not
only enhances operational efficiency but also mitigates the impact of communication
delays, enabling spacecraft to respond swiftly to unforeseen challenges and optimize
mission success. As consequence of this, automation and robotics have experienced
significant advancements and the technological developments have expanded the ca-
pabilities, the efficiency, and the safety of space missions. This rapid development of
automated satellites is also due to the rapid development of autonomous and efficient
control systems. They are vital for missions that require spacecraft to autonomously
approach and connect with other modules, such as the International Space Station
or future space habitats. The recent NASA mission “CAPSTONE” is one of the
last efforts to test a GNC system that doesn’t rely on the ground support but will
exchange information with the orbiter that monitors lunar position [26]. Several
contemporary studies [3, 4, 22] have also been conducted on the investigation of the
multi-target rendezvous mission concept. Multi-target rendezvous missions are for
sure a strong option when it comes to space debris removal, due to their efficiency
and cost effectiveness. Mission planning is a central area of interest, including the
selection and sequencing of targets, along with the optimization of transfer trajec-
tories.

Spacecraft’s autonomy is mostly given by his control system. When it comes to
autonomous path planning there are several works that take in consideration the
use of path generation algorithms such as A* and RRT* algorithms. The concept
behind these methods is to explore and sample the state space of the controlled

(a) Esa Clean Space (b) Nasa Capstone
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system and to estimate the reaching and remaining cost in the approach toward the
target. Based on these calculations the “optimal path” is then traced. In [12] the A*
search algorithm is used and implemented for spacecraft rendezvous missions using
an optimization control as heuristic/criteria for the optimal path selection. Another
study [14] uses RRT* instead and couples it with a genetic algorithm to have the
optimal path obtained. The study in [2] couples the idea of the APF (artificial
potential fields) with an already generated path, exploiting the APF nature of ob-
stacle avoidance and using an additional force definition based on the distance from
the path. All these studies centre their focus on the optimization and constraints
definition and subsequent application on already established path generation algo-
rithms. Most of the other studies reviewed have the same framework, with a focus
on the efficiency of the sampling. Sometimes the path is calculated and then used
as the initial guess for some nonlinear programming. Some techniques involve the
use of convex optimization. A lot of optimization-based frameworks are reliable,
don’t need a starting guess, and have been tested in real-world situations. Lately,
they’ve been used and studied for planning paths during orbital rendezvous and
close approaches in space.
In [24] and [27], the trajectory planning problem is transformed in a SOCP prob-
lem, by taking advantage of the linear dynamics provided by CW equations. The
problem is posed without the need for an initial guess, and it is easy to add con-
straints regarding the cone of approach, keep out zones and control bounds without
escaping the SOCP formulation. Ref.[27] also proposes the same technique used in
an arbitrary rotating frame, more suitable for tumbling and uncontrolled satellites
and objects. It should be noted that this formulation requires the problem to be
time fixed, so the total time required for the rendezvous and for the obtained tra-
jectory is considered given a priori. There are also some examples, as in [32], where
problems are posed in a general NLP formulation and then solved through genetical
algorithms.
Finally, another approach reviewed and considered is based on model predictive
concept. Model Predictive Control (MPC) operates by repeatedly predicting a sys-
tem’s future behaviour using a mathematical model, then optimizing control inputs
to steer the system towards desired outcomes. It iteratively refines predictions and
adjustments to achieve optimal performance, inspiring to the model predictive appli-
cations, where the concept of “horizon” is used, which means that there is a limited
and determined amount of time for the prediction, . The horizon keeps moving
together with the system and it’s also useful to balance the computational burden
of the algorithm. Refences [9] and [1] take advantage of some predefined trajectory
to be followed and develop a technique based on model predictive methods to for-
mulate an optimal trajectory to follow and reach the predefined one. To predict the
system behaviour, since in this case no necessary control is being computed, it is
necessary to consider a closed-loop system for the system prediction. This allows
for different initial states to be take in account, but once again, a predefined path
must be already defined to run the algorithm.
At last, another most critical design topics when it comes to on board computing is
the computational burden for the on-board computer. Practical situations lead to
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design trade-offs and choices to make, unless there is a way to overcome them.

Sliding Mode Control (SMC) is a widely adopted control strategy in the space in-
dustry due to its robustness, precision, and adaptability. SMC’s ability to handle
uncertainties, provide accurate control, respond rapidly to changing conditions, and
accommodate nonlinear systems makes it suitable for various space missions. As the
SMC controllers are not new, different types of algorithms based on it have been
developed in the years, trying to reduce the limits of this control method. Some
algorithms try to eliminate the problem of the discontinuity [28], others are focused
on the time needed to the system for converging to the desired state [6, 30, 25]. Even
though SMC is already a versatile controller, some of the latest investigations also
include solutions and methods for erasing the reaching phase. This means reduc-
ing the time frame inside which the system is the most vulnerable to uncertainties
and disturbs and thus making it more adaptable to situations. For the purpose of
this work, the implementation of the control algorithm has been made under the
assumption of a multi-target rendezvous mission engaged satellite and so with the
intention to provide the satellite of a controller able to withstand changes in the
satellites mass properties, consequence of a serviced satellite or captured debris.

This thesis aims to create a guidance algorithm, capable of generating an onboard
trajectory, and an adaptive control system. The focus of the development is to
enhance the autonomy of the controlled system during its mission. The proposed
guidance algorithm is adaptable and open to future refinements for real-world appli-
cations. The goal is to establish a versatile and adaptable framework for trajectory
planning across various design environments. The algorithm, created and tested
in Simulink simulations, reflects ideas gathered from the literature review and it is
designed to be flexible.

Overview

This report is divided in sections, each sections illustrating a different aspect of
this work. In the first chapter the main mathematical models and relationships
are illustrated and reported as well as the main assumptions behind them. The
second chapter will explain the starting points and the development of the guidance
algorithm, the main challenges and steps taken to front them. The third chapter
will be a discussion on the control strategy and the two main pieces composing it
will be explored. The fourth chapter will provide the results and the observations
made in this study, the most interesting correlations found will be found and the
main objectives will be given a verification. In the appendix it is possible to find
every parameter used in the simulations.
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Chapter 1

Models and reference system

In this chapter all the components of the simulator not related to the control system
are illustrated with the main hypothesis and assumptions stated and explored.

1.1 Reference System

The satellite’s dynamics is described in the LVLH frame, also known as the Local
Vertical Local Horizontal frame. It is one of the most used coordinate systems used
in aerospace engineering and spaceflight dynamics to describe the orientation and
position of a spacecraft or satellite relative to another body under the influence of a
much greater celestial body. This system is linear approximation of the space near
the target and it’s fixed on the target itself, moving with it along the orbit.
In the LVLH frame, the ”Local Vertical” axis points radially outward from the
central body (typically Earth) toward the spacecraft. The ”Local Horizontal” axis
is perpendicular to the local vertical axis and lies in the plane tangent to the central
body’s surface. The third axis, often called the ”Local Nadir” axis, completes the
right-handed coordinate system.
To better visualize it, in the figure above it is possible to see the orientation of the
axes. The X axis is also called the V-bar axis, it represents the along track direction
of motion or, simpler, the direction towards the satellite moves. The Z axis is also
called R-bar and the Y axis completes the reference system, representing the across
track orbital direction, it’s also called H-bar.

1.2 System Dynamics

The satellite’s dynamics is described with the Clohessy-Wiltshire equations, also
known as the Hill-Clohessy-Wiltshire equations or the Clohessy-Wiltshire-Hill equa-
tions, which are a set of linearized differential equations used to describe the relative
motion of two objects in space, typically a spacecraft (chaser) and a target object
(e.g., satellite or space station) in a near-circular orbit. These equations are widely
used in orbital mechanics and relative navigation for tasks like rendezvous and dock-
ing. They are derived from the linearization of the equations for the relative motion
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Figure 1.1: LVLH frame

of two objects in space. The equations are named after their developers:

• James R. Wertz - who is credited with the earliest work on these equations.

• George S. Clohessy - who, in 1960, published an important paper introducing
these equations.

• Robert S. Wiltshire - who, in 1960, also published a similar paper indepen-
dently from Clohessy, and his work is often combined with Clohessy’s when
referring to the equations.

The Clohessy-Wiltshire equations are a linear approximation that simplifies the
problem of relative motion in space. They are applicable when the relative distances
between the chaser and the target are small compared to the radius of their orbital
paths, and when both objects are in near-circular orbits. The equations describe how
the relative position and velocity of the chaser change with time as it manoeuvres
to reach or maintain a desired relative position with respect to the target.
These equations provide a valuable tool for mission planning and control in scenarios
where precise relative motion between two objects in orbit needs to be managed, such
as during rendezvous and docking operations, space inspections, or satellite servicing
missions. They are also foundational for the development of control algorithms for
automated systems used in space missions. The set of differential equations can be
expressed as follows[20]:

ẍ = 2nż +
Fx

mc

+ fx (1.1a)

ÿ = −n2ẏ +
Fy

mc

+ fy (1.1b)

z̈ = −2nẋ+ 3nz +
Fz

mc

+ fz (1.1c)

Where the ẍ, ÿ, z̈ are the acceleration in the LVLH frame, ẋ, ẏ, ż are the speed
and x,y,z are the position terms. The mass of the system is represented by mc and
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n is the orbital rate for circular orbits
√

µ
a3

. The F terms represents external forces
applied on the system, these include the thrusters’ actuation and the disturbs that
affect the satellite and its orbit, the f terms represents accelerations due to external
disturbances.
It shall be noted that the set of linear time varying differential equations in (1.1)
represents the general system suitable for ]any arbitrary relative trajectory between
a chaser spacecraft and a target spacecraft, both under the influence of a central
gravity field.
The motion represented by (1.1) can be actually split in two different dynamics: the
in-plane dynamics and the out-of-plane dynamics.
This is easy to notice when looking at (1.1a, 1.1c) and (1.1b) separately since the
latter just represents the differential equation describing the harmonic oscillator be-
haviour in the absence of a dumping term while along x and z axis the dynamics are
coupled, as they influence each other. If a constant input force is considered they
can be integrated to obtain a state transition matrix of the system (here assuming
no force applied for simplicity)[20]:

Φ(t) =


1 0 6(ωt− sin(ωt) −3t+ 4

ω
sin(ωt) 0 2

ω
(1− cos(ωt)

0 cos(ωt) 0 0 1
ω
sin(ωt) 0

0 0 6ω(1− cos(ωt) −3 + 4 cos(ωt) 0 2 sin(ωt)
0 −ω sin(ωt) 0 0 cos(ωt) 0
0 0 3ω sin(ωt) −2 sin(ωt) 0 cos(ωt)

 (1.2)

In the simulator, the system 1.1 have been implemented by assuming that the mass
is constant even if thrusters actuation would normally deprive the system of some
propellant mass. This is because the variation of mass taken into account when
dealing with the capability of the system to adapt to inertial variations is higher
than the one consumed in a single approach.

1.3 Satellite Model

To simulate a plausible system, the DEMETER satellite, from CNES, was taken
as reference. DEMETER (Detection of Electro-Magnetic Emissions Transmitted
from Earthquake Regions) is a satellite mission operated by CNES (Centre Na-
tional d’Études Spatiales), the French space agency. Launched on June 29, 2004. It
is a scientific satellite designed to study the electromagnetic and plasma phenomena
in Earth’s ionosphere and their possible connection to seismic activity and natural
phenomena on the Earth’s surface, particularly earthquakes. In this study, the sys-
tem will be assumed a micro-satellite of mass about 130kg [10], the chassis shape is
simple like the original, its dimensions are 60x85x110 cm.

The satellite’s propulsion system is composed by hydrazine fuelled on/off monodi-
rectional thrusters. Each thruster has a constant output and can only be activated
or deactivated, with no option for modulating the thrust. In other words, each
thruster can deliver either its full thrust capacity when turned on or produce no
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Figure 1.2: The DEMETER Satellite photo in flight [10]

force when turned off.
Usually, thruster’s location on the chassis influences the coupling between the posi-
tion dynamics and attitude dynamics. This is often an important design topic as it
includes some trade-offs, for the purpose of this study the thrusters will be assumed
installed in such location and manner that no resulting torque is produced during
an actuation and the whole system is able to provide accelerations in both directions
on every axis. To better visualize this, figure 2.31.3 shows an idea of how this can
be accomplished theoretically. Inside the simulator, a Pulse-Width Pulse-Frequency
(PWPF) modulator is implemented as a model for the thrusters, given the discon-
tinuous nature of their control action. Details about the parameters used can be
found in the appendix.

1.4 Disturbances

This section explains about external factors that influences and can impact the rela-
tive motion of spacecraft during proximity operations. These disturbances can arise
from a multitude of sources, including gravitational variations, radiation pressure,
micrometeoroids, and other external forces. Managing these disturbances is a fun-
damental aspect of ensuring the safe and precise execution of rendezvous maneuvers,
as they can affect the spacecraft’s ability to attain and sustain the desired relative
position with respect to the target object. Consequently, a comprehensive under-
standing of disturbances and the development of effective strategies for their control
are pivotal for the success of rendezvous missions in space.
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Figure 1.3: Thrusters’ locations example

The fig.(1.4) represent the variation of the disturbance magnitude with the altitude
of the satellite. After the primary gravitational forces, the zonal harmonic potential
terms are the most dominant. The J2, or Earth’s oblateness, effects are approx-
imately three orders of magnitude smaller than the primary gravitational forces.
However, these effects still have a notable impact on the perigee and nodal positions
of an orbit. When it comes to planning operations in low Earth orbit (LEO), such
as rendezvous strategies, the influence of higher-order zonal harmonics is somewhat
less significant, but it can result in noticeable long-term variations in the orbital
elements [19].
The forces acting on a spacecraft due to its interaction with the Earth’s surface, such
as drag and solar radiation pressure (SRP), depend on the spacecraft’s area-to-mass
ratio. Additionally, it’s important to note that the behavior of the drag force is in-
fluenced by the level of solar activity. In this context, a moderate solar activity level
was chosen. However, it’s worth mentioning that, especially at altitudes around 500
km, the drag acceleration during periods of high solar activity can be up to an order
of magnitude greater than during solar minimum (see [1.4.1]). In this study, only
the atmospheric drag and the J2 effect where considered and implemented in the
simulator.

1.4.1 Atmospheric drag

Space is for definition something that stays outside the atmosphere but it is well
known that some remaining molecules still remains although very rarefied. Atmo-
spheric drag, primarily composed of interactions with this traces of particles and
gases, introduces resistance that can alter the trajectory and orbital parameters of
satellites and spacecraft. The drag disturbance can be represented by

FD =
1

2
ρV 2

x CDS

where the Vx = ωr is the orbital velocity, CD is a drag coefficient and S is the cross-
section area of the body. The accuracy of the atmospheric density (ρ) is the most
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Figure 1.4: Altitude vs. Disturbance Magnitude [19]

challenging aspect to determine in this equation. The density of the atmosphere
at a specific altitude is closely tied to the atmospheric temperature. On the Sun-
illuminated side, the atmosphere tends to expand, causing denser regions to ascend
to higher altitudes. As a result, the density at a given orbital height is not uniform. It
increases on the illuminated side of the orbit due to the ”solar bulge,” and conversely,
it decreases on the opposite side. However, the impact of the solar bulge on the
relative motion between the chaser and target spacecraft is relatively small, primarily
because both spacecraft are subject to the same effect.
Additionally, as this effect follows a periodic pattern with each orbit, for manoeuvres
with a transfer time spanning one orbit, the influence of the solar bulge is largely
averaged out, mitigating its impact. For the purposes of this study the atmospheric
density will be kept constant and with a value from [18]. The drag coefficient will
be taken constant [18] as well and the front section S of the satellite will be assumed
constant and determined.

1.4.2 J2 Pertubation

Another source of disturbance for objects in orbit is due to the Earth’s gravitational
field. Geopotential effects are a consequence of the planet’s non-spherical shape and
uneven mass distribution. The gravitational forces acting on objects in space are
not solely directed towards the center of Earth; they can have components both
within and outside the orbital plane. Consequently, these forces vary over one or-
bital revolution, leading to changes in the orbital parameters.
To model these gravitational forces, scientists approximate Earth’s gravitational
potential with a mathematical function that includes various terms. The key com-
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Figure 1.5: Density vs. altitude at various levels of solar flux

ponent is the Earth’s oblateness, primarily represented by the second harmonic of
the Earth potential, denoted as J2. The J2 coefficient is exceptionally significant, be-
ing over two orders of magnitude larger than all other coefficients. This pronounced
effect is often referred to as the J2 effect and plays a fundamental role in under-
standing and predicting the behaviour of objects in near-Earth orbits. While the
gravitational potential function is approximated using harmonic coefficients, such
as J2, and Legendre polynomials, more comprehensive models can incorporate addi-
tional terms like sectoral and tesseral, which depend on longitude and are generally
of lower importance, especially for shorter-duration rendezvous missions.
From [20]:

fx =
3µJ2R

2
e

2r4
(
3 sin2 i sin2(ω + θ)− 1

)
fy = −3µJ2R

2
e

2r4
sin 2i sin(ω + θ)

fz = −3µJ2R
2
e

2r4
sin2 i sin(2(ω + θ))

(1.3)

Where J2 is the module of the second geopotential harmonic, Re is the Earth Radius,
µ is Earth’s gravitatinal constant and r is the distance of the satellite from the center
of the planet. There are some other terms involving the true anomaly θ and the
orbital inclination i that makes the forces periodic and constantly varying. The
trigonometry terms can be considered higher order terms when the inclination is
small enough, so it is possible to neglect the R-bar and H-bar components, leading
to a constant force of disturb along the orbit motion.
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In this study the J2 effect will be assumed producing an acceleration like

Fx = −3µJ2
R2

e

r4
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Chapter 2

Optimization-Based Guidance
Algorithm

The guidance algorithm is developed and implemented based on the optimization.
It solves an optimal trajectory problem and generates a trajectory inside a time
range called horizon. The development of the guidance algorithm aimed to the
combination of some common ideas (see Introduction). In most of the formulations
revised in the literature, fixed time problems are formulated in a convex way with
a rendezvous time given a priori. In the aim to update this feature, the idea of dis-
cretizing the mission in multiple little horizons was tested. In this way, the system
gains autonomy and chooses its own pace to reach the target based on the optimal
trajectories generated. Another advantage of using horizons (which is a typical con-
cept of Model Predictive Control, MPC) is the reduction of computational effort
when more precision is required and a whole trajectory has to be computed, giving
higher reaction time to eventual obstacles or when in proximity of the target. The
formulation is a quadratic programming type. The cost function is quadratic and
represents a certain potential function for minimizing the algorithm. Although the
actual system is equipped with on/off thrusters, the formulation is relaxed and as-
sumes the input variables are bounded but continuous. This way, we can address the
problem without using the integer program and a more complex solution procedure.
The trajectory tracking task will be given to the controller, that also can take in
account system uncertainties and external disturbances unlike in the optimization
problem, saving unwanted and unnecessary complexities.

2.1 Problem Formulation

The problem is solved as a parameter optimization problem as this method keeps
getting more success in the recent research. This approach permits easier compre-
hension and visualization of the optimization problems, unlike the indirect methods.
The trajectory is discretized in the time, the number of steps and the step length
can be tuned, allowing to change the horizon length. The problem is formulated as
a quadratic programming, which brings assurances to the problem convergence and
global optimality. It also helps to reduce the computational effort and the erasing
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need for an initial guess. However, the formulation is easily convertible to a Second
Order Cone Programming, as in the ref.[24, 27].

min
s,u

J =
1

2

[
s
u

]T
H

[
s
u

]
(2.1)

s.t.

[
xi+1

ẋi+1

]
= Φ(∆t, 0)

[
xi

ẋi

]
+

∫ ∆t

0

Φ(∆t, τ)Buidτ, ∀i ∈ [0, N ] (2.2)

s0 = [xlive, ylive, zlive, ẋlive, ẏlive, żlive] (2.3)

|ui| ≤ Umax (2.4)

|ẋ|, |ẏ|, |ż| ≤ MaxSpeed (2.5)

where i ∈ [0, N ] and represents the current time step, N represent the total number
of time steps in the problem and si represents the state vector in a determined time
step i

s = [s0, s1, s2...sN−1, sN ]
T , si = [xi, yi, zi, ẋi, ẏi, żi]

T

so that 2.2 can be rewritten as

si+1 = Φ(∆t, 0)si +

∫ ∆t

0

Φ(∆t, τ)Buidτ, ∀i ∈ [0, N ] (2.6)

In 2.3, s0 represents the first state vector, which is to be equally constrained to the
current live position, the start of the generated trajectory. Here [xlive, ylive, zlive, ẋlive,
ẏlive, żlive] represents the current state vector passed to the guidance algorithm.
Finally, ui is used to indicate the control vector in a determined time step

u = [u1,u2...uN−1,uN ]T , ui = [uxi, uyi, uzi]
T

and so the vector

[
s
u

]
in 2.1 represent the whole design variables vector to be opti-

mized.
The last constraint (2.5) can be added arbitrarily inside a certain operative range,
in this case it actually limits the system speed when it is inside the cone of approach
range. As a matter of fact, using optimization allows to add constraints whenever
needed, so that the algorithm can be easily updated.

2.2 Cost Function

Despite the simple structure of the cost function a sort of weight scheduling can be
done by changing them according to the situation. The whole design is reduced to
the definition of the H matrix, if a diagonal matrix is considered, weights determi-
nation is a straightforward result of some tuning and intuition. Using this kind of
approach assures every variable can be minimised independently and versatility, and
different importance in the can be assessed as well. For example, it could be required
to allow more motion along a certain axis in the first seconds of the trajectory, but
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Figure 2.1: Cost function decision making example

then the system is asked to penalize that motion the more the end of the horizon is
near.

H = diag([kx1, ky1, kz1, kẋ1, kẏ1, kż1, kx2, ky2, kz2, kẋ2, kẏ2, kż2 . . . kxN , kyN , kzN , kẋN , kẏN , kżN ])

The weighting of the cost function is tuned and scheduled based on the current
distance from the target and considering the desired type of manoeuvre, the system
dynamics and actuation power. This means that according to the current situation
different behaviours will be adopted by the system to achieve the mission, using the
cost function as guide.
For example, if the system is near enough to must be inside the cone of approach, but
for any reason this is not the current situation, the cost function has been designed
to lead to the system inside the cone of approach before letting the system continue
the approach.
Some commonly used solvers assume a classical formulation (i.e., 1

2
xHTx + fTx),

requiring H and f as inputs. For simplicity, to overcome the limit of only having
the origin vector as the minimum point of the function and so as the target of the
algorithm, a simple method was applied to modify the desired ending states. It
is possible to traslate the state space as much as the desired final states for the
algorithm to generate a feasibile trajectory by solving the same problem.
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Figure 2.2: State space shifting example: the red is the target state, the blue dot is the
current one. If we traslate the current state of the exact target’s distance from the origin
the trajectory generated will be ending perfectly on the spot once shifted back

Once the problem has been solved the state space can be shifted back to obtain
the actual resulting trajectory. To help with the visualization of this, it is possible
to look at this method as an error based optimization, since now the design variables
are the error of the current states with respect to the desired ones.

2.3 Constraints

Since the algorithm is based on an optimization problem, it is also possible to plan
how and when the constraints are going to be active and so modify his behaviour
according to arbitrary requirements. The control variable is bound due to the limits
of the thrusters and this constraint is active throughout all the mission. Something
different can be done with constraints on the approaching speed, which can be added
when desired (e.g. inside a certain range) to assure safety and making the system
more easy to handle. This is exactly the case shown in the results, were the speed
of the system is restricted once the the system is in the cone of approach range.
A common way is also to add some conical constraints during the cone of approach
phase, this surely guarantees the computed trajectory to be feasible (if a correct
solution is found) but at the same time that introduce a quadratic constraint to the
formulation making it a little more complex than it was before.

||xi, yi, zi|| cos(αcone) ≤ [−1, 0, 0][xi, yi, zi]
T (2.7)

with αcone being the cone aperture and [−1, 0, 0] being here an example of semicone
axis versor, which in general is dipendent from the mission requirements and also
the coordinate rappresentation used.

2.3.1 Dynamical constraints

The Clohessy-Wiltshire equations 1.1 are a set of linear differential equation, so
linear dynamical constraints can be derived instead of using some transcription
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method like trapezoidal rule or Simpson rule. Let’s consider the definition of the
state transition matrix (1.2) and the relationships

ΦB =

∫ ∆t

0

Φ(∆t, τ)Budτ (2.8)

x(t) = Φ(∆t, t0)x(t0) +

∫ ∆t

0

Φ(∆t, τ)Bu(τ)dτ (2.9)

if the control variable is assumed constant inside each time step duration we can
write

x(t) = Φ(∆t, t0)x(t0) + ΦBu (2.10)

and since the time is fixed the time steps duration ∆t is also fixed, the expression
in (2.10) can be converted to linear dynamical constraints for every time step, as in
(2.2). Finally, it also possible to have a matrix form of them and build a matrix and
a vector representing linear inequality constraints (as requested for quad write, see
next section) allowing for specialized solver to operate faster.

2.3.2 Final Horizon

When the system is near enough to the target position, a criterion is applied to
add an additional constraint and make sure the target position is reached. The
criterion is once again arbitrary in general, inside the simulation a simple one is
used considering the actual speed and the remaining distance was implemented in
such a way that if the system is near enough and fast enough the final point of
the computed trajectory is constrained to be the desired one. This is of course
more effective when the horizon is not so long and the situational awareness of the
system is restricted. When longer horizons are considered the algorithm has more
”time” to see in the future and realise a target or an object is near, making the right
adjustments.

2.4 Solving & Output

Once the optimization problem is solved the trajectory generated is discretized in
points in every time steps. Once the trajectory is generated, it must be passed to the
controller but the shape of the solution is not convenient. One way to solve this is
interpolating the points of the trajectory and passing it to the controller continously,
so that the update rate can be arbitrary and the whole process is not influenced.
In the simulator the interpolation is conducted using a spline algorithm built-in in
Simulink.
The solver’s choice can be really meaningful when dealing with optimization prob-
lems inside real and practical situations. The time needed, the computational burden
and the accuracy of the solution are all topics of reference. One of the main effort
of this study is to give extended tunability to the horizon length (and so number
of optimization variables) and the guidance update rate trying to allow the best
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Figure 2.3: Example of approach

practical resolution for the most of the cases.
In this study the quad wright script[13] was used and implemented inside the algo-
rithm. In the code, Wright’s method is used to solve the problem but doesn’t allow
for quadratic constraints to be applied. While it could be possible to surrogate some
sort of constraints using some linear relationships, the algorithm implemented and
presented does not include any conical constraint while still obtaining good results.
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Chapter 3

Adaptive Sliding Mode Control
Algorithm

The control algorithm implemented is the combination of two different concepts
belonging to the SMC theory and methodology. For the sake of comprehensive-
ness, in this chapter, the main principles of SMC and the basic concepts and ideas
behind these two different methods will be explored with an effort to reduce the
mathematical complexities when not extremely required.

3.1 Sliding Mode Control - General Overview

Since they were first introduced, sliding mode methods showed great robustness and
versatility for a wide range of applications while presenting some potential issues.
The main idea of the method is to have a control law capable of driving the system
towards a certain desired equilibrium (that could also be a trajectory), a sliding
surface, and then keeping it in such state until desired, without suffering of uncer-
tainties and disturbances. It is intuitive to deconstruct the whole control action in
two different moments, the first is the reaching phase, the system is driven towards
the sliding surface and it’s vulnerable to uncertainties and disturbs, the controller
drives the system until it reaches the sliding surface, where the second moments
starts, the sliding motion, the system is now now nonsensitive to uncertainties and
slides on the sliding surface. The ideal design is the one that can make the reaching
phase as shortest as possible.
Another common issue of this methods is the phenomenon of the “chattering”. Since
the system staying perfectly upon the sliding surface is ideal and almost not realis-
able in practical situations, what happens is that the system finds itself oscillating
back and forth with a certain frequency due to the discrete nature of the control law.
Even though this guarantees the system to stay near enough to sliding surface and
in the desired equilibrium, the “chattering” is often considered an issue, because it
leads to decreased control accuracy, fatigue of the moving mechanical parts involved
in the control action and high heat losses in power circuits.
The sliding surface is created by usually defining a sliding variable as a function of
the system output variables. For example, if σ is the sliding variable, λ is a constant
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and s, v are respectively the position and the velocity of a particle moving along a
certain axis, than if we define:

σ(x) = v + λs (3.1)

σ(x) = 0; (3.2)

The expression above is representing a surface (in this case a single line) in the state
space (s, v). When the system is exactly located on the surface the sliding variable
is a value of zero. To guarantee that the sliding motion will happen it is sufficient to
satisfy a condition [31], often called reachability condition, which can be expressed:

σσ̇ ≤ 0 (3.3)

This condition assures the stability of the system which will be driven towards the
surface during the reaching phase. This is intuitive since the surface must be at-
tractive for the trajectories to be directed towards it.
Here is an example of sliding surface, for simplicity of exposition, a single input
single output system will be considered, but the concepts provided in the following
lines don’t lose of generality when multiple variables are considered.
If a linear time invariant system with position represented by x and speed repre-
sented by ẋ is moving along the sliding surface

σ(x, ẋ) = ẋ+ λx = 0 with λ > 0 (3.4)

then it means the system undergoes a motion that satisfies a decreasing exponential
law that is the solution of the differential equation (3.4)

x(t) = e−λt (3.5)

which clearly identifies a motion asymptotically converging to the origin of the axis.
Eq.(3.5) represents the position evolution in time when the system undergoes the
sliding motion, it is typically said the sliding motion reduce the system dynamics
by one order [31].
The same process can be repeated considering the errors from some desired states

e = x− xd ė = ẋ− ẋd

σ(e, ė) = ė+ λe

if σ(e, ė) than e(t) = e−λt

(3.6)

so that now the errors from desired position x and speed ẋ are asymptotically driven
towards specified values.
The most classical version of the sliding mode control has a discontinue control law

u(x, ẋ) = −k sgn(σ(x, ẋ)) = (3.7)

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(3.8)
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Figure 3.1: Sign function

The control input is function of the sliding variable which is some sort of function
of the system states, so when in proximity of the sliding surface, as the reachabil-
ity conditions guarantees, this control law will maintain the system on the sliding
surface ideally. If from one side this solution let us have strong guaranties that the
system will be staying in the immediate surroundings of the sliding surface, it is
appropriate to remember the presence of the discontinuity in the control represents
the most prominent source of the chattering phenomenon.

3.2 Chattering reduction methods

In literature there are several methods that try to reduce the chattering. In the
following section some of them will be briefly explored and than some focus will be
given to the super twisting algorithm, implemented during this work.

3.2.1 Removing the discontinuity

In certain applications, when dealing with the control of electrical motors or power
converters, the control action required has a discontinuous nature so the sliding
mode technique offers very good performance. When the high frequency effects of
the chattering must be avoid, one straightforward and simple manner to reduce the
chattering is of course removing the source itself. The sign function can indeed be
substituted with some continuos approximation but at some loss, the sliding motion
will be no longer guaranteed.
Without going in the mathematical details, what is crucial to know is that there
is a condition that guarantees the reaching phase will be ending in a limited and
defined time. This condition is met no more when a different function is substituted
to the sign function,for example a continuous one, and the control law will drive the
system only asymptotically into the sliding surface, meaning it is theoretically never
reached.
In literature this is often referred as pseudo-sliding motion and solution as Boundary
layer sliding modes have been explored. ”Boundary layer” comes from the intuitive
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idea that now the system will be staying in the neighbourhood of the sliding surface,
which acts as an attractive layer of a finite thickness, instead of a simple surface (or
line). The sliding motion is no longer guaranteed but it is possible to prove that the
controller is capable of driving the system near enough the sliding surface in finite
time.

One option for approximating the sign function is the hyperbolic tangent (3.9).
When inside the hyperbolic tangent a coefficient is applied (α), it is possible to
change the approximation fidelity, as the coefficient gets higher the function gets
sharper and the approximation is better.

u = −k tanh(ασ) (3.9)

Figure 3.2: Hyperbolic tangent function with α = 10

Some goes with another common solution, usually referred as sigmoid function
(3.10), here the ϵ plays a really similar role to α in the previous example but in
the opposite way, yielding a better approximation when being lower.

Sσ(σ) =
σ

|σ|+ ϵ
(3.10)

Figure 3.3: Sigmoid function with ϵ = 0.1
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3.2.2 Super Twisting Algorithm

The Super Twisting Algorithm (STA) is an advanced control technique that ad-
dresses some limitations of traditional sliding mode controllers. It is an algorithm
that realizes higher order sliding modes (HOSM) [23]. STA significantly reduces
the rapid and high-frequency switching between control modes, leading to smoother
control signals and less mechanical wear also allowing more precision and tracking
accuracy. Unlike traditional SMCs, which achieve asymptotic convergence, STA
guarantees that the system reaches the desired state in a finite amount of time,
regardless of initial conditions. The control law presents a term that is integrated,
hence removing the discontinuity, while only preserving the need of knowledge of
the sliding variable derivative only [28].
The control law implemented inside the algorithm is the following

u =
√

|σ| tanh(kσσ) + ν + kvẋ (3.11)

ν̇ =

{
−k tanh(kσσ) if u ≤ Umax

u if u > Umax

(3.12)

with kσ = 15.
It is possible to recognise the implementation of a super twisting algorithm with an
additional term where ẋ represents the speed and kv is a constant coefficient. This
terms is purely meant as a sort of dumping term or as the derivative term of PID
controller.

3.3 Time variant sliding surface

The SMCs algorithms are known for their robustness against uncertainties, but this
is only valid when the reaching phase is ended, and the system slides on the sliding
surface. This means, shortening or erasing the reaching phase can virtually lead
to a controller capable of making the system totally invulnerable to uncertainties.
Some work has been done previously to build an adaptive SMC algorithm, often
proposing to use classic adaption mechanisms like parameter estimation or fuzzy
logics to modify the control gains as the system is being driven. Successively the
focus has moved to the sliding surface, the reaching phase lasts the time needed to
the controller to drive the system on the sliding surface, where the sliding motion
activates.
Some published solutions start from a sliding surface that includes initial condi-
tions and slowly transpose or rotate it towards the desired one, with the system
never experiencing a reaching phase and its downsides. Most of these solutions
utilize polynomial time laws [5, 11, 29] where the coeffients are derived with meth-
ods based on parameter estimation and mission requirements. Other works propose
the sliding surfaces coefficients to computed by some optimization framework which
takes in account the system and mission requirements to determine them[8].
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Figure 3.4: Example of a fixed and adaptive sliding surfaces in the state space [17]

In the references [25, 21], a time varying sliding surface rotates in the state space
according to a law that takes in account the sliding variable and the states error
as well, the proof of the stability of this law can be found in [25]. The sliding sur-
face here applied guarantees the reduction of the reaching phase and improving of
the tracking performance. This mechanism has been implemented, presented and
proven twice in the mentioned previous studies, in this work an adapted version for
the position dynamics is proposed.

Since the main task is tracking the trajectory generated and provided by the guid-
ance algorithm, it was chosen to implement three different sliding surfaces (lines),
one for each axis of motion, treating them as they were three different single input
single output systems.
The sliding surfaces have been defined as

σx(x, t) = ėx + λ(t)ex (3.13)

σy(y, t) = ėy + λ(t)ey (3.14)

σz(z, t) = ėz + λ(t)ez (3.15)

with ė representing the velocity error and e the position error. The λ coefficient is
no longer constant now, but changes with time according to

λ̇ = proj[λ,λ](λ, h), λ ∈ [λ, λ] (3.16)

proj[λ,λ] =


max{0, h} if λ = λ

h if λ ≤ λ ≤ λ

min{0, h} if λ = λ
(3.17)

The proj function is designed to not let the coefficient λ outside the interval [λ, λ].
The parameter h is also variable and it is function of the state error and the sliding
variable

h = Gζσ̄(σ) sign(e1)− c(λ− λ̄), (3.18)

G =
c(λ− λ)

σ
< 0 (3.19)

ζσ̄ =

{
0 if |σ| ≥ σ
σ if |σ| < σ

(3.20)
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Where σ is the thickness of the boundary layer around the sliding surface inside
which we want to maintain our system.
Finally, for this mechanism to work a condition shall be met regarding the highest
admissible deviation from the desired position(or speed), the highest λ coefficient
possible and the boundary layer thickness[25]

λ =
σ

E
(3.21)

where E is the deviation.
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Chapter 4

Results

In this chapter the most significant results will be discussed along with the sensi-
tivity analysis of the main parameters and their influence on the final results. The
parameters used in the simulation can be found in the appendix when they are not
specified.

4.1 Complete Rendezvous

One of the main focuses of this work is to allow a satellite to be able to reach
every eventual target during a multiple rendezvous mission while sustaining mass
variations due to the mission purpose (debris removal, on orbit servicing). During
every simulation the system is place in an arbitrary initial position with the ending
point set about 4 meters away from the target’s position. The guide block has also
been designed to let the system reach the beginning of the final cone before starting
with the approach, in this way it is easier to accomplish the rendezvous without
violating the approach cone. The nominal mass of the DEMETER is about 130kg,
during this work variations up to 50% have been considered, making 65kg the lighter
configuration and 195kg the heavier configuration. The results will be shown looking
at the LVLH plane, with the V-bar as horizontal axis and R-bar as the vertical one,
the R-bar axis has been reversed for better visualization.
Manoeuvres originating from distant initial positions have been tested and are now
presented. The selected starting positions are intended to identify limit situations,
as the system will be placed just within the range of validity for (1.1) and the LVLH
frame. These results aim to validate the system’s capability to successfully execute
rendezvous operations, even when provided with the farthest initial positions.

In the figures (4.1,4.2,4.3) a manoeuvre starting from a lower altitude is showed,
each one of them presents a different system weight during the simulation. The
system completes the approach sufficiently well in each of the cases, showing some
minor issues during the final stop when it is lighter. This is probably due to the
thrusters, now providing more acceleration, and a more responsive dynamics be-
cause of the less amount of inertia. This of course reflects also on the shape of the
trajectory in the LVLH frame, the trajectory is sharper when the system is lighter,
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Figure 4.1: Rendezvous starting from lower altitude with lighter configuration. Complete
manoeuvre(left),Cone of approach(right)

Figure 4.2: Rendezvous starting from lower altitude with nominal configuration. Complete
manoeuvre(left),Cone of approach(right)
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Figure 4.3: Rendezvous starting from lower altitude with heavier configuration. Complete
manoeuvre(left),Cone of approach(right)

(there is more control authority and less inertia), and on the also on the amount of
propellant consumed, which is higher when the system is heavier, as expected.
The guidance algorithm is not designed to adapt to the system weight, despite that,
it manages to create admissible and successful trajectories for the system as we can
see there is no difficulty for the controller to track the trajectory in any configuration
presented. The time needed to complete the rendezvous safely was around 5200 and
5400 seconds, less than an orbital period.
In the figures (4.4,4.5,4.6) an higher altitude starting point is considered. The

results again show the system is successful with a very smooth trajectory when the
weight configuration is lighter. The heavier configuration managed to complete the
rendez-vous but it was the one who took the most time, not only because of the less
acceleration provided but also becacuse of some adjustment that was required when
first approached to the target orbit. In any case the system was able to complete
the mission in less than two hours, with a range of 5800 seconds to 6400 seconds
respectively considering the lighter and the heavier configuration.

32



Figure 4.4: Rendezvous starting from higher altitude with lighter configuration. Complete
manoeuvre(left),Cone of approach(right)

Figure 4.5: Rendezvous starting from higher altitude with nominal configuration. Com-
plete manoeuvre(left),Cone of approach(right)
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Figure 4.6: Rendezvous starting from higher altitude with nominal configuration. Com-
plete manoeuvre(left),Cone of approach(right)

4.2 Actual Control vs Optimal Control

Figure 4.7: Section of GNC flowchart,from left there is navigation/system dynamics out-
put, forward right there is the actual thrusters force.

Keeping in mind that the guidance algorithm does not have any adaptation
mechanism to respond to weight variations, it is possible to make a confrontation
between the controller output and the control variable the guidance algorithm com-
putes for the optimal trajectory. The two results are often really similar even though
no information about the control is exchanged between the two blocks (see fig.4.7);
the first one is what the control algorithm determines to be the fittest control to
follow the current desired trajectory, the second one is the result of the optimization
process needed to compute that trajectory itself.
The manoeuvres represented in fig.(4.8) starts from , 200 meters, and with a 100
meters altitude less than the target, only the first 600 seconds are represented. The
control sequence in fig.(4.94.10) is along the R-bar axis. The first manoeuvre is
performed with nominal weight and fully operational thrusters, the second one is
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Figure 4.8: Manoeuvre considered for the study

performed with the thrust along the R-bar axis halved due to an hypothetical mal-
function. The same has been done for the V-bar axis, the results can be found in
the fig.(4.114.12).
To better visualize this, the controller output has been filtered with a simple low
pass filter and reported in the graph along with its unfiltered version and the guid-
ance optimal control. In this way the ”noise” due to the sliding mode method is
evened out (in a very similar fashion to SMC expositions when trying to visualize
the equivalent control[31]) and allows to better visualize the confront. The results
with the nominal configuration show great similarities between the plots and, when
the high frequency variations are even out for sliding mode output, this is even more
clear. When the configuration with halved is considered, the two plots retain a sim-
ilar shapes but the values are slightly different. This can of course be attributed to
the adaptive nature of the controller, whose action is here clearly visible.
It is worth remembering that the final control input the system will receive is given
by the thrusters which have limited magnitude of thrust and on/off actuation. This
means the actual control input received by the system will also be discontinue even
though inside the guidance algorithm the control variable is bounded but continue
and constant during each time step. Here the control provided by thrusters have
been omitted for a cleaner visualization of the graphs since their model is composed
by PWPF modulator. The time step length for the trajectory computation in the
guidance block is set to 2 seconds and it small enough to provide a good approxi-
mation of an optimal control sequence when long enough horizons are considered.
This also proves the choice to assume constant the thrust during each time step
more reasonable, while maintaining a great simplification in the problem formula-
tion. Further details about this can be found in the next section, where the effects
of increasing the time step duration are investigated.
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Figure 4.9: Confront between the guidance output and the controller output in a nominal
configuration.

Figure 4.10: Confront between the guidance output and the controller output with halved
thrust provided by the the reaction control system.
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Figure 4.11: Confront between the guidance output and the controller output in a nominal
configuration.

Figure 4.12: Confront between the guidance output and the controller output with halved
thrust provided by the the reaction control system.
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4.3 Horizon time influence

4.3.1 Number of steps variation

The final task to be verified is the guidance ability to allow autonomy to the system
in terms of time of approach. In the work [27] a 10 minutes approach starting from a
100 meters distance is considered and then investigated about topics like propellant
consumption and starting position. In any case presented, this is the time required
for the approach since inside that framework it is implicitly defined a priori. This
is because even though the definition of the number of steps and the step length is
carried in the same way, the ending point for the computed trajectory are always
imposed as constraint, computing a whole trajectory from start to end every itera-
tion.
The guidance algorithm implemented provides the possibility to change the number
of steps and their duration inside the optimization process, furthermore the update
rate of the guidance block can be varied as well. In the following section, we ex-
plore the impact of varying the horizon length. This investigation involves keeping
the update rate and step length constant while manipulating the number of steps,
and conversely, keeping the number of steps constant while adjusting the time step
length. It’s important to note that the update rate itself does not directly affect the
horizon length, its significance becomes more apparent in terms of computational
effort and computational time. The system performs a manoeuvre starting from 100
meters of distance from the target along the orbit considered, all results from the
simulations are reported in a single graph having time as horizontal axis and the
distance along V-bar in vertical axis.

(a) Complete (b) Zoom

Figure 4.13: Approach time when the number of steps varies

As it is possible to see in fig.(4.13), there’s seem to be a bond between the number of
steps and the time required to approach the target. The higher the number of steps
considered the more it takes for the system to reach the final position. This can be
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Figure 4.14: Linear fitting of the propellant consumed to accomplish the rendezvous while
varying number of steps.

Figure 4.15: Linear fitting of the time required to accomplish the rendezvous while varying
number of steps.

easily interpreted and explained if the very nature of an optimization process is at-
tentioned. If the horizon time is thought as the amount of time that the optimization
algorithm has to optimize the cost function, when the number of steps is lower, the
process has less time to optimize the current position of the system, additionally the
number of control variables is generally less than the states variable inside the the
design variable vector. The result is that with this setup the optimization process
prefer faster and sharper trajectories. When the number of step becomes higher this
is no more valid, more time spent in idling and free-drifting is possible while waiting
for the dynamics’ outcome. This can also be found in fig.(4.14), which shows that
the propellant consumption is not influenced so much and almost remain constant
despite the more time spent to reach the target. The system is not manoeuvring
more but smarter, slower and more efficiently.

39



4.3.2 ∆t variation

Figure (4.16) shows the results if the time-step duration is varied. It is possible

(a) Complete (b) Zoom

Figure 4.16: Approach time when ∆t varies.

to see that quite the opposite of earlier happens. The systems seems to become
faster as the horizon time becomes longer due to longer time-steps. If the value of
is allowed to increase furthermore, something different can be observed.
As shown in fig.(4.18), making the horizon longer allows the system to be faster
until a certain point beyond which returns to be slower. The difference is that even
though the time available is longer the system is faster and this is due to the fact
that the number of variable is now fixed, since the number of steps doesn’t change,
so here a longer horizon seems to be of real benefit.
Nevertheless, when the step duration increase too far a certain point it is no longer
beneficial, instead it makes the system less responsive and less agile, making it
slower. This also is in line with the fact the a too wide step duration would make
a poor continuous approximation of a control sequence. In this case the propellant
consumption seems again to be not influenced by the horizon parameters, this is also
due to the fact that, despite the changes, the system is consistent in its paths, that
remain similar, and so almost the same amount of propellant is always used. At the
same time it must be remembered that every trajectory followed by the system is
an optimal one and since no cost function parameters were changed, it makes sense
the resulting propellant consumption to be consistent as well.
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Figure 4.17: Linear fitting of the propellant consumed to accomplish the rendezvous while
varying the time step duration.

Figure 4.18: Quadratic fitting of the time required to accomplish the rendezvous while
varying the time step duration.
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Conclusions

The work presented in this thesis is meant to address the practical challenges related
to debris removal and on orbit servicing missions inside the scenario of a multi-target
rendezvous mission. The inevitable change of inertial properties inside a mission of
this kind have been fronted developing a guidance algorithm and an adaptive control
algorithm for a linearized relative motion dynamic.
The devised guidance algorithm is meant for on-board trajectory planning, employ-
ing convex optimization with quadratic programming for parameter optimization,
solved through Wright’s method. The optimization procedure operates within tem-
poral frames or horizons, where a trajectory is generated and then tracked until the
subsequent update. This methodology presents an innovative approach, differing
from the conventional method that generates a trajectory from start to end in a
singular process. The generated trajectory is then interpolated and transmitted to
the controller for effective tracking.
The control algorithm is designed to be able to track the generated trajectory adapt-
ing to widest range possible of different conditions. To do so, a sliding mode con-
troller has been used. The control law implemented is inspired to Super-Twisting
algorithms and it works alongside a time varying sliding surface, which rotates in the
state space according to an adaptive mechanism that takes in account the state error
and the sliding variable. The first feature helps mitigating chattering and addresses
issues associated with the typical control discontinuity often observed in Sliding
Mode Control (SMC) methods. By doing so, it contributes to the overall stability
and smoothness of the control process. The second feature is needed to minimize
the reaching phase, the period during which the system is not fully capitalizing on
the sliding motion and is particularly susceptible to uncertainties. This dual-feature
approach enhances the robustness and efficiency of the control algorithm, making it
able to adapt to different conditions.
The synergic action of guidance and control algorithm has demonstrated to be suc-
cessful within the scope of assumptions outlined throughout the entire study. The
results show the system was successfully driven to the desired destination and suc-
cessively kept the position even when different weights have been used to run the
simulations. A further investigation showed an example of how the controller acts
to compensate for the different weight/thrust conditions of the system when the
guidance is operating assuming the nominal configuration.
The investigation into the influence of horizon time length involved systematically
varying the step time length and step time number. The results reveal that larger
horizons generally enable faster trajectories, given that the vector of parameter vari-
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ables remains constant (i.e., the number of steps remains fixed). However, when this
is not the case, enlarging the horizon time tends to result in the system taking more
time to manoeuvre.
Throughout this investigation, propellant consumption remained nearly constant.
This observation proves the algorithm’s capability to consistently compute optimal
trajectories, irrespective of changes in horizon configurations. This adaptability al-
lows the system to modify its maneuvering approach without significantly altering
the overall effort, showcasing the algorithm’s robustness and reliability.
There are few ideas for future expansions of this work, the first one being the real-
isation of the same work for attitude guidance and tracking. Deeper investigations
can be done by analysing the horizon influence in a broader number of scenarios
with the objective of refining the algorithm and make it the most versatile possible.
Alongside these investigations, it can be important to determine the true potentials
and limitations of this framework, working on the efficiency of the code and the
solving methods. Some real hardware test can be part of this process, observing
how much long and detailed (e.g. more steps inside a certain time frame) can the
horizon become without exceeding computational time requirements. Throughout
this refining process, a concerted effort should be made to relax the strongest as-
sumptions made during this work. This approach aims to achieve higher fidelity
results, ensuring the algorithm’s applicability in real-world scenarios.
The other main perspectives that has driven the basis of this work is the obstacle
detection and avoidance applications objective. The use of limited temporal frame
to compute the trajectory faster and on board and is also meant as a starting tool
to give awareness to the system about potential obstacles before being dangerously
near to them, taking advantage of the fact that the trajectory is constantly updating
and there is no need to know about the obstacle from the start of the mission. In
this way, the system could be able to avoid collisions with any obstacle detected in-
side certain ranges by simply generating a new trajectory to follow once the obstacle
information is inserted inside the optimization process. The convex programming
approach allows for multiple solutions to be explored, starting from the insertion of
additional constraints inside the problem formulation when appropriate to design-
ing a quadratric barrier/penalty element inside the cost function to discourage the
system to move inside certain restricted spaces.
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Appendix A

Simulation parameters

NOTE: All the simulations are run using the ode4 solver with a step of 0.01s.

Table A.1: Script Parameters

Parameter Value
µ 3.986 012× 1014 m3 s−2

rE 6378.145× 103 m
Altitude 715× 103 m

Table A.2: Thrusters and Controller Parameters

Parameter Value
KF 12.5
τ 1
Uon 0.75
Uoff 0.2
Umax 2

λ 0.2
λ 0.0001
σ0 5× 10−4

c 1× 10−4

G 1× 10−4

kx 2
ky 0.2
kz 2
Kv 20
αx 2
αy 0.05
αz 2
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Table A.3: Aerodynamic Drag Parameters

Parameter Value
ρ 4× 10−13 kgm−3

CD 2.2

Table A.4: Horizon Guidance Parameters

Parameter Value
f Zero vector of size 9N − 3
H Diagonal matrix with objectives for inside cone
Hout Diagonal matrix with objectives for outside cone
Hfar altitude Diagonal matrix with objectives for lower altitude maneuvers
Hfar altitude off Diagonal matrix with objectives for higher altitude maneuvers
Hfar distance Diagonal matrix with objectives for same altitude maneuvers

Table A.5: Horizon Guidance Matrices

Matrix Expression
H diag ([repmat([0 0 1e3 1e2 1e2 1e1]′, N − 1, 1); [1 1e1 1e3 1e3 1e2 1e1]′; ones(3(N − 1), 1)])
Hout diag ([repmat([0 0 1e1 1 5e3 1e4]′, N − 1, 1); [0 5e1 1e1 1 5e3 1e4]′; 1e2 ones(3(N − 1), 1)])
Hfar altitude diag ([repmat([1e− 1 0 5e1 1e4 0 5e5]′, N − 1, 1); [1 0 1e2 1e4 0 1e6]′; 1e4 ones(3(N − 1), 1)])
Hfar altitude off diag ([repmat([1e− 1 0 1e1 1e4 0 1e6]′, N − 1, 1); [1 0 1e3 1e4 0 1e6]′; 1e3 ones(3(N − 1), 1)])
Hfar distance diag ([repmat([0 1 1e3 1e3 1e3 7.5e2]′, N − 1, 1); [1 1e1 1e3 2e3 1e3 1e3]′; 1e3 ones(3(N − 1), 1)])

Table A.6: List of Symbols

Symbol Explanation
µ Earth gravitational parameter
rE Earth Radius
N Optimization problem, number of discretization steps
KF Filter gain for thrusters
τ Filter time constant for thrusters
Uon Trigger upper threshold for thrusters
Uoff Trigger lower threshold for thrusters
Umax Maximum control input for thrusters

λ λ Upper bound for λ variable

λ λ Lower bound for λ variable
σ0 Boundary layer thickness
c Controller parameter
G Controller parameter

kx, ky, kz Control law coefficients
Kv Dumping term coefficient

αx, αy, αz Integrated term in control law coefficients
ρ Air density for aerodynamic drag

CD Drag coefficient for satellite
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