
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enhancing and testing smart home
security through a MUD-enabled

environment

Supervisors

Prof. Fulvio CORNO

Dott. Luca MANNELLA

Candidate

Fabio Orazio MIRTO

December 2023

To my parents, for their endless support.
To you, Deborah, for being fundamental in all the difficult moments of my life.

To the child who has always dreamed of this moment.
To me, for succeeding.

Ai miei genitori, per il loro interminabile sostegno.
A te, Deborah, per esser stata fondamentale in tutti momenti difficili della mia vita.

A quel bambino che ha sempre sognato questo momento.
A me, per esserci riuscito.

ii

Summary

The increasing number of Internet of Things (IoT) devices in smart homes now
offers a high level of efficiency and convenience that we have never seen before.
However, this rapid growth also introduces some new challenges related to the
security of these systems.

To address those challenges, IETF introduced Manufacturer Usage Description
(MUD). MUD is a standard that offers a way to specify the network behavior and
permissions of devices that are MUD-enabled. To achieve this goal, the MUD
standard uses a white-listing approach based on a set of rules (also called policies).
So, all traffic that is not expressly allowed by the manufacturer is blocked. These
rules are read from a file, called MUD File, and instantiated for allowing connections
between two end-points, for instance, using a firewall.

By offering better control over devices’ interactions inside the smart home
ecosystem, MUD provides a potential way to improve network security. This
potential is also recognized by ENISA and NIST.

The main contribution of this thesis is to build and test a MUD-enabled smart
home environment. In this scenario, there is a diverse set of IoT devices that should
be managed by a Smart Home Gateway (SHG), in our case Home Assistant. By
integrating the MUD standard inside the SHG, it is possible to achieve a higher level
of network security and reduce the surface of attacks (e.g., avoiding unauthorized
access or Denial of Service attacks).

In the context of IoT devices, the produced solution includes end-point identifi-
cation for the production of the rules for the different integrations. This is done
by performing a manual analysis of the traffic and source code of the integrations.
After the initial setup, the proposed solution increases the security of the smart
home without the need for further user action.

iii

Acknowledgements

I have been searching for some time for the right words to write these thank-you
notes. Now, having finished writing this paper, I think it is time to at least try.

Special thanks are due to Professor Fulvio Corno for his valuable advice and great
support.

Another thank you undoubtedly goes to Dr. Luca Mannella for his patience and
passion with which he followed this work, and for all the teachings given regarding

the thesis and beyond.
Those who know me know how complicated it is for me to accept my success, but

first, I would like to thank myself for never giving up all these years. It wasn’t
easy, but it was right to accomplish this goal.

That child, who already dreamt of a Master’s Degree in Computer Engineering in
primary school, can today say he succeeded. I hope he is happy about it.

My parents deserve my deepest appreciation. Their unwavering support and
constant encouragement have been the rock on which I have built my path. Without

them, nothing would have been possible.
A thank you also goes out to all the colleagues (many of whom have become friends
over the years) I have met along the way and to those who, five years ago now, set
out with me on this adventure. You have managed to dispel the loneliness that any

out-of-town student feels during these experiences.
And finally, my thanks go to the girl who has put up with and supported me all

these years, not only an engineering student (difficult as it is) but also a boyfriend
more than 1500 km away for five long years.

Thanks Deborah, I know it wasn’t easy, but watching the moon helped us.

iv

Acknowledgements

È un po di tempo che cerco le parole giuste per scrivere questi ringraziamenti. Ora,
dopo aver terminato la scrittura di questo elaborato, penso sia giunto il momento

di provarci.
Un ringraziamento speciale va fatto al Professor Fulvio Corno per i suoi preziosi

consigli e il grande supporto.
Un altro grazie va indubbiamente al dottor Luca Mannella per la pazienza e la

passione con il quale ha seguito questo lavoro, per tutti gli insegnamenti dati
riguardo la tesi e non solo.

Chi mi conosce sa quanto per me sia complicato accettare un mio successo, ma per
prima cosa vorrei ringraziare me stesso per non aver mai mollato in tutti questi

anni. Non è stato facile, ma era giusto portare a termine questo obiettivo.
Quel bambino, che già alle scuole elementari sognava una Laurea Magistrale in

Ingegneria Informatica, oggi può dire di esserci riuscito, spero ne sia felice.
Ai miei genitori va il mio più profondo apprezzamento. Il loro sostegno incrollabile
e l’incoraggiamento costante sono stati la roccia su cui ho costruito il mio percorso.

Senza di loro, nulla sarebbe stato possible.
Un ringraziamento va anche a tutti i colleghi (molti dei quali diventati amici

durante questi anni) che ho incontrato durante il percorso e a coloro che, ormai 5
anni fa, sono partiti con me per questa avventura. Siete riusciti ad allontanare la

solitudine che qualunque studente fuorisede prova durante queste esperienze.
E infine i miei ringraziamenti vanno alla ragazza che ha sopportato e supportato in

tutti questi anni, non solo uno studente di ingegneria (già difficile di suo), ma
anche un fidanzato distante più di 1500 km per 5 lunghi anni.

Grazie Deborah, so che non è stato facile, ma guardare la Luna ci ha aiutato.

v

Table of Contents

List of Tables ix

List of Figures x

List of Listings xi

1 Introduction 1

2 Background 4
2.1 Internet of Things and Smart Homes 4
2.2 Wireless IoT protocols . 5

2.2.1 KNX . 6
2.2.2 ZigBee . 6
2.2.3 Z-Wave . 7

2.3 Manufacturer Usage Description (MUD) 9
2.3.1 Terminology . 10
2.3.2 MUD File Structure . 11
2.3.3 Exposing MUD URL . 13

2.4 osMUD . 14
2.4.1 OpenWRT . 14

2.5 Smart Home Gateways . 15
2.5.1 OpenHAB . 17
2.5.2 WebThings . 19

2.6 Home Assistant . 22
2.6.1 Home Assistant Installation 23
2.6.2 Concepts and Terminology 25

3 MUD Aggregator 28
3.1 Extended MUD architecture . 28
3.2 Standard MUD integration . 30

3.2.1 Main software components 30

vii

3.3 MUD Aggregator with Notarization 33

4 Experimental Setup 35
4.1 Laboratory configuration and equipment 35
4.2 Methods for discovering integrations’ endpoints 37

4.2.1 Source code . 37
4.2.2 Network analysis . 38

4.3 Manage custom endpoints in MUD files 38
4.4 Reducing allowing communications 39
4.5 Working on osMUD . 39

4.5.1 Port Range . 40
4.5.2 Limited number of manageable rules 41
4.5.3 Compliance with RFC 8520 41

5 Experiment results 42
5.1 Experimental setup . 42
5.2 Security of software integrations . 43
5.3 Security of IP-based devices’ integrations 43
5.4 Security of non-IP-based devices’ integrations 44
5.5 Security of mixed devices’ integrations 45
5.6 Security of the SHG . 45
5.7 Testing the security of the SHG . 46
5.8 Common limitations . 47

6 Conclusion 50
6.1 Future work . 51

6.1.1 Different MUD Manager architectures 51
6.1.2 MUD Aggregator independent solution 51

Acronyms 54

Bibliography 56

viii

List of Tables

5.1 Tests description . 48
5.2 Reboot time of Home Assistant VM in different conditions 49
5.3 Reboot time of Home Assistant OS in different conditions 49

ix

List of Figures

1.1 IoT Connections Forecast 2021-2032 1

2.1 Stack of each protocol according to the TCP/IP Model 6
2.2 Network topologies: a) Star b) Fully connected 8
2.3 Network topologies: c) Mesh . 8
2.4 MUD architecture . 10
2.5 The User Interface of OpenHAB . 18
2.6 The User Interface of WebThings 20
2.7 Topografy WebThings . 21
2.8 History of devices WebThings . 22
2.9 Compare installation methods Home Assistant 24
2.10 Demo Dashboard Home Assistant 25
2.11 HACS dashboard . 27

3.1 MUD architecture . 29

4.1 Home Assistant Analytics . 36

x

List of Listings

2.1 MUD file example . 11
3.1 Sensor’s __init__ function . 30
3.2 Sensor’s update function . 30
3.3 generate_mud_file function . 31
3.4 _add_mud_rules function . 32
4.1 Example of MUD file with Range of Ports 40

xi

Chapter 1

Introduction

Nowadays, Internet of Things (IoT) devices are an important part of people’s daily
lives. According to Transforma Insight statistics [1], there will be around 17 billion
IoT-connected devices worldwide by 2024, and this number could double (around
34.7 billion) by 2032.

Figure 1.1: IoT Connections Forecast 2021-2032

1

Introduction

To better understand these numbers, we need to provide some context. IoT
devices refer to a vast network of interconnected physical devices and sensors to
share and collect data. These devices can be used for various purposes across
different domains. For example:

• Monitoring and Remote Control

• Data Collection and Analysis

• Automation and Efficiency

Based on the fact that the network is not always secure, all of these devices
that are connected to it are exposed to various forms of cyber attacks. In the
environment of IoT devices, it is possible to consider the fact that if some malicious
code infects one device of a smart home, this code can be spread to all other devices
connected to the same network. In the context of IoT devices, it is possible to
have different types of attacks. Some of these attacks target the devices inside the
network. Other attacks, instead, target remote endpoints. An example could be
the Mirai Botnet [2], which is a notorious example of an IoT botnet responsible for
one of the most significant DDoS attacks performed in 2016.

To address this challenge, IETF introduced Manufacturer Usage Description
(MUD), a standard that permits specifying the network behavior and permissions
of IoT devices.

Since it is possible to interconnect different IoT devices, it is easier to have
something that can manage all the IoT devices in one place, like a Smart Home
Gateway. A Smart Home Gateway is a central hub that connects and manages all
Internet of Things devices in a smart home. It enables communication between
devices and the internet, as well as with the user’s smartphone or computer.

This thesis implements and deeply tests a physical proof of concept of a recently
proposed architecture based on MUD and an SHG. The conducted tests demonstrate
the feasibility of the approach and the benefits that this architecture can bring to
smart home security.

In this thesis, we used an open-source home automation platform called Home
Assistant that allows us to control, manage, and automate different IoT devices
from different manufacturers and technologies through integrations.

Integrations are a fundamental part of Home Assistant, as they are used to
support different devices from a wide range of manufacturers, not only devices
that communicate via Wi-Fi but also devices that communicate via different IoT
protocols (e.g., Zigbee, Z-Wave, MQTT).

2

Introduction

By combining Home Assistant with the MUD standard, it was developed a
MUD Aggregator [3] that is responsible for aggregating and exposing the MUD
file, a file in which all the endpoints are needed for a specific (or for a group) IoT
device.

With this setup, it is possible to establish a setting where a singular device
can interact solely with trusted endpoints. This allows for preventing all feasible
malicious connections that could potentially infiltrate the network.

After we have built the setup and deeply tested it, it is possible to notice that
the experimental results obtained demonstrate the feasibility of the approach.

The chapters of this thesis are structured as follows:

• Chapter 2 - Background: in this chapter, there is a brief introduction to some
background concepts, such as MUD, osMUD, SHGs, Home Assistant, and
Wireless IoT Protocols.

• Chapter 3 - MUD integration: the description of a dedicated integration
for the Manufacturer Usage Description (MUD) standard within the home
automation platform, Home Assistant, is the main topic of discussion in this
chapter. It gives a comprehensive overview of the essential ideas, approaches,
and conclusions connected to this integration, emphasizing its role in enhancing
network security in a smart home setting.

• Chapter 4 - Experimental setup: this chapter begins with a description of the
experimental setup, followed by an exploration of the study’s goals and the
methodologies employed.

• Chapter 5 - Experiment results: in this chapter, it is possible to find the
results of the experimental tests that were performed on the system.

• Chapter 6 - Conclusion: it highlights the thesis’s contributions, the possible
limitations of this setup, and chances for additional advancement in this study
area.

3

Chapter 2

Background

To better understand the content of this thesis, it is important to introduce some
background concepts. Firstly, we introduce the context of IoT devices and some
protocols they use, such as Z-Wave [4], ZigBee [5], and KNX [6]. Then, we continue
with the core of our research: Manufacturer Usage Description (MUD), the standard
that we follow to enhance the security of our “smart home” created in the laboratory.
Then, we briefly discuss osMUD, the MUD Manager (a component that retrieves
the MUD specifications of a particular device) that we use to instantiate the rules
starting from a file containing the rules, and OpenWRT, an open-source project
that provides a Linux-based operating system and firmware for embedded devices,
particularly routers and other networking equipment that work with osMUD. After
this, we introduce the Smart Home Gateways, particularly Home Assistant, which
can manage different IoT devices through its integrations.

2.1 Internet of Things and Smart Homes

Internet of Things, or IoT, is a fast-expanding subject that has the potential to
transform a wide range of businesses completely. One of the most potential uses of
IoT is in smart homes.

The IoT is a group of physical items that can collect and share data because
they are integrated with sensors, software, and network connections. Smart homes,
industrial automation, transportation, and healthcare are just a few industries that
employ IoT devices.

The primary IoT domains are:

• Consumer: applications like wearables, linked cars, and smart homes fall
under this category.

4

Background

• Industrial: this domain covers supply chain management, predictive mainte-
nance, and manufacturing automation applications.

• Transportation: this area covers applications including smart parking, traffic
control, and driverless cars.

• Applications: including medical gadgets, tailored treatment, and remote
patient monitoring, are under the healthcare domain.

IoT devices are used in "smart homes" to automate processes and improve
comfort, efficiency, and security. Several well-known examples of smart home
technology include thermostats, security cameras, smart locks, and smart bulbs.

The following are a few advantages of smart homes:

• Enhanced comfort: amart homes may be configured to change lighting,
temperature, and other settings on their own to make a more pleasant space.

• Enhanced efficiency: by automatically shutting off lights and appliances
when not in use, smart homes can contribute to lower energy use.

• Enhanced security: to assist in warding off attackers, smart homes may be
outfitted with security features like motion sensors, cameras, and door locks.

2.2 Wireless IoT protocols

In the smart home context, the connection and management of smart devices rely
heavily on wireless communication protocols. Three well-known protocols: Z-Wave
[4], Zigbee [5], and KNX [6]. Each with its distinctive characteristics, benefits, and
use cases—will be examined in this chapter.

The Figure 2.1 shows the different TCP/IP stacks for the different protocols.

5

Background

Figure 2.1: Stack of each protocol according to the TCP/IP Model

2.2.1 KNX
KNX [6], developed in 1991, is one of the main protocols in the Heating, Ventilation,
and Air Conditioning (HVAC) industry, with a vast selection of compatible devices
available. It was adopted as an open standard in 2006 by the ISO/IEC 14543-3
specification. KNX is based on the OSI [7] model and covers the data link, network,
and transport layers.

The wireless transmission band is in the industrial, scientific, and medical (ISM)
bands, specifically at 868 MHz and 2.4 GHz, with a maximum range of up to 150
meters. The maximum data rate transmission is up to 16.385 kbps. KNX nodes
are connected in tree topologies: line, tree, and star (as Figure 2.2a). A KNX
network is based on areas and lines. Each area can include up to 15 lines, where
devices are connected as end nodes. The maximum number of addressable devices
is 65,000, which can communicate with each other without a master device because
KNX is a peer-to-peer system.

2.2.2 ZigBee
Zigbee [5] is a wireless communication protocol developed in 2001 and updated in
2007 with the Zigbee PRO specification, which is fully backward compatible and

6

Background

includes improvements such as better security. It is unique in that it implements
concrete specifications for different scenarios. Two examples are Zigbee LightLink,
widely used in smart lighting systems (e.g., Philips Hue), and Zigbee Green Power,
which can work with battery-less devices similarly to EnOcean. Zigbee supports
three different topologies: star (as Figure 2.2a), tree, and mesh (as Figure 2.3).
It supports up to 65,000 nodes and operates in the “Industrial, Scientific, and
Medical” (ISM) bands at 913 MHz, 868 MHz, and 2.4 GHz. The range of Zigbee
devices is 10-100 meters, and the maximum data rate is 20 kbps for the 913 MHz
and 868 MHz bands and 250 kbps for the 2.4 GHz band.

Zigbee uses the IEEE 802.15.4 standard [8] for the physical and data link
layers. Zigbee is built on top of IEEE 802.15.4 and inherits some of its security
vulnerabilities. Zigbee’s security measures are implemented at the network (NKW)
and application (APS) layers. Zigbee uses AES-CCM [9] for encryption and
authentication, which is currently considered secure. Zigbee uses a message integrity
code (MIC) and a frame counter for integrity and replay protection.

2.2.3 Z-Wave

Z-Wave [4] is a wireless communication protocol developed in 2001 for lightweight
and low-latency data transmission. The latest version, called Z-Wave Plus [10],
was released in 2013 and offers improved battery life and wireless range. Z-Wave
is a mesh network protocol (as Figure 2.3), meaning that each device can act as
a repeater to extend the range of the network. It supports up to 232 connected
devices. This protocol uses the 828 MHz frequency in the European Union and the
908 MHz frequency in the United States and other markets. It has a maximum
data rate of 100 kbps.

Z-Wave is not a standard, but its development is controlled by the Z-Wave
Alliance 1, which includes over 600 companies, including major IoT players like
Siemens and Huawei. Z-Wave provides confidentiality, authentication, and replay
attack protection using a dedicated Security Layer within its Security Command
Classes.

1https://z-wavealliance.org/, last visited on November 10th, 2023.

7

https://z-wavealliance.org/

Background

Figure 2.2: Network topologies: a) Star b) Fully connected

Figure 2.3: Network topologies: c) Mesh

8

Background

2.3 Manufacturer Usage Description (MUD)

In the modern world, where everything is connected through networks, ensuring
security has become a top priority for individuals, businesses, and organizations.
The introduction of Internet of Things (IoT) devices has brought new challenges
in managing and securing networks, making it more difficult to safeguard against
potential threats. Manufacturer Usage Description (MUD) [11] appears to be a
potentially effective approach to handling some of these difficulties. This chapter
discusses the idea of MUD and how it might improve network security.

First of all, it is important to summarize the primary object of MUD:

• Minimize Device Exposure: By allowing only communications consistent
with the manufacturer’s intended usage, MUD aims to decrease the exposure
of IoT devices to potential risks.

• Scalability: It offers a scalable approach to handle the increasing diversity
of devices within a network, facilitating effective policy administration for
different device kinds.

• Cost-Efficiency: MUD aims to keep the cost of implementing such a system
as low as possible, guaranteeing its applicability to manufacturers and network
administrators.

MUD is composed of three key architectural elements:

• URL: A Uniform Resource Locators (URL) [12] is a reference point for locating
the device description.

• Description: The device’s intended behavior inside the network is specified
in this description. It provides comprehensive information about the device
and how it should be interpreted.

• Access Method: A means that allows local network management systems to
retrieve the device.

These components cooperate to create the MUD architecture, which enables the
secure and controllable integration of IoT devices inside networked environments.

9

Background

Figure 2.4: MUD architecture

2.3.1 Terminology
Understanding key terms and their definitions is essential to comprehending the
Manufacturer Usage Description (MUD) structure and its components.

• MUD File: The file is a YANG-modeled [13] JSON [14] that describes an
IoT device and provides network behavior recommendations.

• MUD File Server: A web server that stores and makes available MUD files

• MUD Manager: It is a software system that communicates with MUD
servers to fetch and retrieve MUD files. Once the MUD file is processed, the
MUD Manager can modify relevant network components to enforce the desired
network behavior.

• MUD URL: A URL that the MUD manager uses as an address to get the
MUD file linked to a certain Thing (IoT device).

• Thing: The IoT device that emits a MUD URL.

• Manufacturer: The organization configures the Thing to emit the MUD
URL and assert advice in a MUD file. It’s important to note that the company
responsible for building the Thing may not always be the manufacturer. For
example, it may be a supplier of components or a systems integrator.

10

Background

2.3.2 MUD File Structure
The behavior and network needs of an Internet of Things (IoT) device are primarily
described by a Manufacturer Usage Description (MUD) file, which is an essential
part of the MUD standard. A specific IoT device, its manufacturer, and how it
should operate while connected to a network are all covered in detail by the MUD
file, which is a file containing YANG-based JSON. Inside the MUD file, it is possible
to find some key elements:

1. MUD Version: The MUD specification being utilized is indicated by a
version number frequently appearing at the start of a file.

2. Device Specifications:

• Device Name: The IoT device’s name or unique identification.
• Model Name: The device’s model name or number.
• Manufacturer: The company that makes or sells the device.
• Documentation: Links to the device’s support and/or documentation

materials
• System Info: The user should be presented with a summary of this so

they may decide whether to approve Thing’s presence on the network

3. Access Control Lists (ACLs): ACLs are user-ordered rule sets applied to
networking devices to filter traffic. An Access Control Entry (ACE) represents
each regulation.

4. Access Control Entry (ACEs): ACEs are entries or rules that specify how
a network should regulate and handle network traffic to and from a particular
Internet of Things (IoT) device. These entries are an important part of the
MUD file and are essential for the device’s ability to enforce network security
standards.

All the elements described are present inside the example of the MUD file present
in the listing 2.1.

1 {
2 "ietf -mud:mud": {
3 "mud - version ": 1,
4 "cache - validity ": 24,
5 "is - supported ": true,
6 " systeminfo ": "This MUD file is generated by

Home Assistant MUD Aggregator integration ",

11

Background

7 "mfg -name": "e-Lite, PoliTo ’s Research Group
",

8 " documentation ": "https:// github.com/
lucaMannella / HomeAssistant -MUD - Aggregator ",

9 "model -name": "home - assistant ",
10 "from -device -policy": {
11 "access -lists": {
12 "access -list": [
13 {
14 "name": "hass -mud -v4fr"
15 }
16]
17 }
18 },
19 "to -device -policy": {
20 "access -lists": {
21 "access -list": [
22 {
23 "name": "hass -mud -v4to"
24 }
25]
26 }
27 }
28 },
29 "ietf -access -control -list:acls": {
30 "acl": [
31 {
32 "name": "hass -mud -v4to",
33 "type": "ipv4 -acl -type",
34 "aces": {
35 "ace": [
36 {
37 "name": "hass -cl0 -todev",
38 " matches ": {
39 "ipv4": {
40 "ietf -acldns:src - dnsname ": "

home - assistant .io"
41 }
42 },
43 " actions ": {
44 " forwarding ": "accept"

12

Background

45 }
46 }
47]
48 }
49 },
50 {
51 "name": "hass -mud -v4fr",
52 "type": "ipv4 -acl -type",
53 "aces": {
54 "ace": [
55 {
56 "name": "hass0 -cl0 -frdev",
57 " matches ": {
58 "ipv4": {
59 "ietf -acldns:dst - dnsname ": "

home - assistant .io"
60 }
61 },
62 " actions ": {
63 " forwarding ": "accept"
64 }
65 }
66]
67 }
68 }
69]
70 }
71 }
72

Listing 2.1: MUD file example

2.3.3 Exposing MUD URL
A device emitting a URL [12] is the first step in the process of using MUD URLs in
our work. This URL provides access to a policy file that is related to that device.

To enable secure communication and the retrieval of policy information, MUD
URLs must adhere to the Hypertext Transfer Protocol Secure (HTTPS) standard
[15]. HTTPS is a secure version of HTTP [16]. It uses Transport Layer Security
(TLS) [17] to guarantee encryption between a web server and a web browser. This
means that your data is scrambled and cannot be read by anyone who intercepts it.

13

Background

Different methods exist to expose the MUD file, such as:

• DHCP [18] Option: Devices can broadcast the MUD URL using a DHCP
option (number 161 - name “OPTION_MUD_URL_V4”). The DHCP client
sends the DHCP server this URL so it may act more, e.g., passing the MUD
URL to the MUD manager to instantiate policies.

• X.509 [19] Constraint: It offers a certificate-based method for communicat-
ing device attributes based on IEEE 802.1AR [20].

• Link Layer Discovery Protocol (LLDP) [21]: It describes the usage of
an LLDP frame as a method for devices to broadcast the MUD URL. As a
result, devices can transmit their MUD URL information inside LLDP frames.

2.4 osMUD
The open-source Manufacturer Usage Description project [22], simply called osMUD,
is a MUD Manager that aims to increase the security of networks and related
devices. osMUD is presently made to work with dnsmasq and the OpenWRT
firewall and operate on OpenWRT [23].

Its main role is implementing security regulations for IoT devices based on MUD
files. A linked IoT device’s MUD profile is first forwarded to the MUD Manager. It
retrieves the MUD file where the device’s network behavior is described, including
which network resources and services the device should have access to and which it
should not.

The MUD Manager analyzes the file after getting the device’s MUD profile and
knowing its identification. It examines the data included in the profile to establish
what network activities the device is permitted to carry out. This comprises:

• Authorized Services: The MUD Manager lists the network services and
assets, such as particular ports, protocols, or domains, that the device is
permitted to access.

• Limitations: It also looks for any constraints the MUD profile may have set.
To avoid security threats, it may, for instance, limit a device from accessing
particular ports or services.

2.4.1 OpenWRT
OpenWrt [23] is an open-source operating system based on Linux created specifically
for embedded devices, including wireless routers and networking devices. Its

14

Background

distinguishing quality is its adaptability, acting as a customizable and extendable
platform. Utilizing the built-in stability and security of the Linux kernel [24], this
router gives users improved control over their networking equipment, allowing them
to customize their routers and network devices to match their specific requirements.
It has a very important role in this case since osMUD is developed to work according
to this firmware. Additionally, OpenWrt depends on a dedicated and engaged
community of programmers and users, assuring ongoing development, support, and
the accessibility of a constantly growing range of features and functions.

The documentation states that customers install OpenWrt because they think it
performs better than the vendor’s default firmware 2. They discover it to be more
reliable, more feature-rich, secure, and with superior support.

2.5 Smart Home Gateways
A SHG is a device or software solution that acts as a central hub for connecting and
controlling smart home devices. It typically connects to the Internet and allows
users to remotely control their smart home devices via a smartphone app or web
interface. Smart home gateways also play an important role in automating smart
home devices and managing their data.

Smart home gateways typically perform the following functions:

• Connection: Smart home gateways provide a central hub for connecting and
controlling smart home devices. They support a variety of wireless protocols,
such as Wi-Fi, Zigbee [5], and Z-Wave [4], allowing them to connect to a wide
range of smart home devices from different manufacturers.

• Control: Through a web interface or smartphone app, SHGs enable consumers
to remotely operate their smart home appliances. This allows users to turn
lights on and off, adjust thermostats, lock and unlock doors, and more, even
when they are not at home.

• Automation: Smart home gateways can be used to automate smart home
devices. This allows users to create rules and schedules for their smart home
devices to follow. For example, a user could create a rule to turn on the lights
when they enter their home or to turn off the thermostat when they go to bed.

• Data management: Smart home gateways collect and manage data from
smart home devices. This data can be used to track energy usage, identify
patterns in device usage, and troubleshoot problems.

2https://openwrt.org/#why_use_openwrt, last visited on November 12th, 2023.

15

https://openwrt.org/#why_use_openwrt

Background

SHGs are an important component of smart home systems, but they also
introduce new security and privacy risks.

To mitigate these risks, it is important to choose a smart home gateway from
a reputable manufacturer and to keep the gateway’s firmware up to date. Users
should also be careful about what information they share with their smart home
gateway and only install apps and plug-ins from trusted sources.

Smart home gateways can be used in various ways to improve home security,
convenience, and energy efficiency. Here are a few examples:

• Home security: Smart home gateways can be used to create a comprehensive
home security system. Users can connect smart door locks, security cameras,
and motion sensors to their smart home gateway and receive alerts when there
is suspicious activity in their home.

• Convenience: Smart home gateways can be used to automate smart home
devices, saving users time and effort. For example, users can create a rule that
turns on the lights when they get home or turns off the thermostat when they
go to bed.

• Energy efficiency: Smart home gateways can be used to monitor and manage
energy use in the home. Users can track which devices use the most energy
and adjust their settings accordingly.

Smart home gateways are an essential part of modern smart home systems. As
smart home technology continues to develop, smart home gateways are likely to
become more powerful and sophisticated. For example, smart home gateways are
expected to play an important role in the development of smart cities and the
Internet of Things (IoT).

Smart home gateways are versatile devices that can be used to improve home
security, convenience, and energy efficiency. However, it is important to be aware
of the security and privacy risks associated with smart home gateways and to take
steps to mitigate these risks.

In this chapter, we present the characteristics, strengths, and weaknesses of
some of the most popular SHGs: OpenHAB and WebThings. Home Assistant will
be introduced and presented in the next chapter since, after a deep analysis of the
SHGs, we chose to use it for our environment.

16

Background

2.5.1 OpenHAB

OpenHAB [25] is a free and open-source home automation platform that allows
users to connect, control, and automate smart home devices from a variety of
manufacturers. OpenHAB is a Java-based application that runs on a variety of
platforms, including Raspberry Pi, Linux, and Windows.

OpenHAB is a popular choice for home automation enthusiasts because it is
highly flexible and customizable. OpenHAB supports a wide range of smart home
devices and protocols and can be used to create complex automation rules. In
addition, OpenHAB is an open-source project, which means that there is a large
community of users and developers contributing to the platform.

OpenHAB offers a wide range of home automation features, including:

• Device support: OpenHAB supports a wide range of smart home devices
from different manufacturers. This includes devices such as lights, thermostats,
locks, sensors, and more.

• Protocol support: OpenHAB supports a wide range of smart home protocols,
including Zigbee [5], Z-Wave [4], and KNX [6]. This allows users to connect
a wide range of smart home devices to OpenHAB, even if the devices use
different protocols.

• Automation: OpenHAB allows users to create complex automation rules
for their smart home devices. This allows users to automate their homes in a
variety of ways, such as turning on the lights when they enter their homes or
turning off the thermostat when they go to bed.

• User Interface (UI): OpenHAB provides a web-based user interface for
controlling and managing smart home devices. There are also some third-
party mobile apps available for OpenHAB. In Figure 2.5, it is possible to see a
custom page of OpenHAB of the web app. In this page, there are different IoT
devices that can be managed (such as a smart light and a smart thermostat).
It also shows the weather forecast.

17

Background

Figure 2.5: The User Interface of OpenHAB

• Integration: OpenHAB can be integrated with a number of other smart home
platforms and services, such as Amazon Alexa, Google Assistant, and IFTTT.
This allows users to control their OpenHAB devices using voice commands or
other third-party apps.

OpenHAB can be used for a variety of home automation tasks, including

• Lighting control: OpenHAB can be used to control lights throughout the
home. Users can create rules to turn lights on and off automatically or
manually control lights using the OpenHAB user interface or mobile app.

• Climate control: OpenHAB can be used to control thermostats, fans, and
other Heating, Ventilation, and Air Conditioning (HVAC) devices. Users can

18

Background

create rules to adjust the temperature in their home automatically, or they
can manually adjust the temperature using the OpenHAB user interface or
mobile app.

• Safety and security: OpenHAB can be used to improve security and safety
in the home. Users can connect smart locks, security cameras, and motion
sensors to OpenHAB and receive alerts when there is suspicious activity in
their homes.

• Energy management: OpenHAB can be used to monitor and manage energy
consumption in the home. Users can track which devices are using the most
energy and adjust their settings accordingly.

2.5.2 WebThings
WebThings [26] is a lightweight, open-source IoT platform that enables developers to
build and deploy connected devices and applications. It is based on web standards
and offers a number of features that make it ideal for developing IoT applications,
including:

• Security: WebThings provides a range of security features to protect con-
nected devices and applications, including encryption, authentication, and
authorization.

• Scalability: WebThings is designed to scale to support large numbers of
connected devices and applications.

• Interoperability: WebThings is interoperable with other IoT platforms and
applications, making it easy to connect devices and applications from different
vendors.

WebThings provides a number of features for developing IoT applications,
including:

• Device discovery and management: WebThings provides an easy and
efficient way to discover and manage connected devices.

• Data streaming and analytics: WebThings provides a way to stream data
from connected devices and perform real-time analytics.

• Event handling: WebThings provides a way to handle events generated by
connected devices.

• Rules engine: WebThings provides a rules engine that can be used to
automate connected devices and applications.

19

Background

• User Interface (UI): WebThings provides a web-based user interface for
managing connected devices and applications. In Figure 2.6 it is possible to
see the dashboard of WebThings, it shows different IoT devices that can be
managed by this page.

Figure 2.6: The User Interface of WebThings

• APIs: WebThings provides a set of APIs for developing custom IoT applica-
tions.

WebThings can be used for a variety of IoT applications, including:

• Smart Home Automation: WebThings can be used to develop smart
home automation applications, such as turning lights on and off, controlling
thermostats, and locking and unlocking doors.

• Industrial automation: WebThings can be used to develop industrial
automation applications, such as monitoring and controlling industrial equip-
ment.

• Asset tracking: WebThings can be used to develop asset-tracking applica-
tions, such as tracking the location of vehicles or shipping containers.

20

Background

• Environmental monitoring: WebThings can be used to develop envi-
ronmental monitoring applications, such as monitoring air quality or water
quality.

Figure 2.7 represents the topography of a smart home. Through this section
of the SHG, it is possible to see the state of the devices in each room. From
this Figure, it is possible to monitor all the devices in different rooms.

Figure 2.7: Topografy WebThings

Figure 2.8 shows all the changes in the status of different IoT devices, for
example, a sensor (Hall Motion) that indicates if there is movement in a
particular moment.

21

Background

Figure 2.8: History of devices WebThings

WebThings is a powerful and flexible IoT platform that can be used to develop a
wide range of IoT applications. It is a good choice for developers looking to build
secure, scalable, and interoperable IoT applications.

2.6 Home Assistant
Home Assistant is an open-source home automation platform that offers a way to
manage different IoT devices inside a smart home. Its strength points are:

• Speed: This is made possible by the fact that it works directly inside the
home network and does not rely on external servers, as is common in cloud-
based systems. This independence from external servers increases the system’s
stability while also enabling quick response times;

• Consistency: With this local focus, the smart home ecosystem’s device
interactions and automation are carried out with absolute precision, resulting
in a user experience that is dependable and trustworthy;

• Security: Home Assistant is notable for its data integrity, which is especially
valuable in light of increasing worries regarding data privacy and cyber risks.

22

Background

In order to safeguard against external attackers, the policy of keeping data
within the local network is stringently enforced.

The success of open-source solutions is based on these principles, each of which
has a distinctive but interconnected significance.

• Transparency: The codebase of open-source software is transparent. This
implies that anyone can check the code to make sure it lacks backdoors or
hidden flaws. Users who are worried about the security of their smart home
systems become more trustworthy as a result of this transparency.

• Community Collaboration: Open source initiatives like Home Assistant
profit from a community of users and developers that work together to advance
the project. This teamwork produces quick issue patches, feature upgrades,
and general system stability.

• Customization: Open source software enables users to alter the code to suit
their unique requirements. This implies that users of Home Assistant can
develop customized integrations, automation, and add-ons that are suited to
their particular smart home settings.

2.6.1 Home Assistant Installation
Home Assistant installation options offer users the flexibility to meet a range of
needs. The Home Assistant Operating System and Home Assistant Container
are the most popular and highly recommended options. The selection between
these two alternatives depends on the specific use case and the required level of
functionality.

• Home Assistant Operating System: this is the best option when a
complete configuration is desired. Along with the essential Home Assistant
program, this installation package also contains the useful Home Assistant
Supervisor. The Home Assistant Supervisor is part of the Home Assistant
ecosystem and is in charge of several tasks to guarantee the efficient man-
agement and functioning of the Home Assistant instance (e.g., Add-On and
System Management, Backup and Restore, and Security).

• Home Assistant Container: it indicates a preference for a more simplified
deployment within a container environment, which is frequently made possible
by solutions like Docker. In some situations, this compact and versatile design
might be especially helpful. There is a cost associated with it, though. Certain
features, like the use of add-ons and the accessibility of the Home Assistant
Supervisor, are either restricted or inaccessible when using this version.

23

Background

It’s important to remember that a Virtual Machine Image is another solution for
utilizing the advantages of both Home Assistant versions. By using this method,
the complete Home Assistant environment may be accessed from a single device,
usually our computer. This results in the creation of a central hub where you
can control and manage different IoT devices inside your smart home (through
integration), and it is possible to have access to the add-ons. For users that demand
both the span of the Home Assistant Operating System and the adaptability of
containerization, this solution offers flexibility and scalability. This SHG can be
installed on some physical devices such as Raspberry Pi or NUC. Home Assistant
also provides some ready-to-go solutions like Home Assistant Yellow [27] or Green
[28]. Both of them are pre-assembled Raspberry Pi with Home Assistant already
installed in them.

In conclusion, Home Assistant provides users with the freedom to adapt their
setup according to their requirements with various installation options, such as the
comprehensive Home Assistant Operating System, the efficient Home Assistant
Container, or a smart combination of both. This enables users to establish a secure
and productive smart home environment.

Figure 2.9: Compare installation methods Home Assistant

24

Background

2.6.2 Concepts and Terminology
Following a brief introduction to Home Assistant, it is now to understand a few
fundamental concepts3.

• Dashboard: It is a customizable part of the system, and it displays some
pieces of information about the status of all the available devices. It is divided
into two different parts: Overview and Energy, The Overview dashboard is
the default landing page and gives a high-level overview of the key data and
controls in your smart home. The Energy dashboard, on the other hand,
is made to give customers information about their energy usage, enabling
improved management and optimization of energy use in their smart homes.

Figure 2.10: Demo Dashboard Home Assistant

• Integrations: As they allow the system to connect with and control a variety
of smart devices, services, and platforms, Home Assistant integrations are an
essential component of the Home Assistant platform. Home Assistant can
interact and control a variety of IoT devices due to these integrations. Once
an integration has been added, Home Assistant displays the hardware and/or
data as devices and entities.

• Devices and Entities: In Home Assistant, a "device" commonly refers to a
physical hardware unit (e.g., a smart light or a smart thermostat) that can be

3https://www.homeassistant.io/getting-started/concepts-terminology/,
last visited on October 16th, 2023.

25

https://www.homeassistant.io/getting-started/concepts-terminology/

Background

controlled and/or monitored from the dashboard. It is possible to initialize
and then use these devices inside Home Assistant through the integrations. A
component or feature of a device is referred to as an "entity". They are used
to interact with and control the device’s features. Entities can represent a
device’s numerous characteristics, like its temperature, humidity, power usage,
on/off status, and more.

• Automations: With the help of Home Assistant Automations, it is possible
to design unique rules and scenarios for your smart home. They enable you
to automate actions and reactions based on specific triggers and conditions.
In Home Assistant, an automation is a collection of rules that indicate what
should happen in a certain situation. A trigger, conditions (if any), and actions
normally make up an automation.

• Scripts: In Home Assistant, a script is similar to automation; repeating
actions are a group of tasks that can all be carried out in response to a single
command or trigger. It enables you to specify a series of steps that will be
taken in response to different events or manually started activities. Scripts are
collections of operations or service calls that communicate with your smart
devices and services. Within a script, you can activate or deactivate devices,
change their settings, and send notifications.

• Scenes: It is possible to easily create predefined configurations or "scenes" for
the smart home using the feature called Home Assistant Scenes, which enables
you to simultaneously capture and restore the states of several smart devices.
Through the use of scenes, it is possibel to change the home’s atmosphere,
mood, or functionality with only one command or trigger.

• Add-ons: It is possible to add third-party add-ons with the complete instal-
lation of Home Assistant. These add-ons, typically, can be run inside Home
Assistant and can be installed, configured, and run simply. These add-ons give
Home Assistant additional features, utilities, and services, which increases its
capabilities.

• HACS: Home Assistant Community Store (HACS) is a custom integration for
Home Assistant. HACS allows users to install and manage custom integrations
for Home Assistant easily, which are add-ons that extend the functionality of
Home Assistant by adding support for new devices, protocols, and services.
HACS is a valuable tool for Home Assistant users, as it allows them to access a
wide range of custom integrations without manually installing and configuring
them. It also provides some features that make it easy to manage custom
integrations, such as the ability to automatically update integrations, disable
integrations, and restore integrations to a previous version. The following

26

Background

picture represents the list of some custom integrations that can be added to
Home Assistant from HACS.

Figure 2.11: HACS dashboard

27

Chapter 3

MUD Aggregator

Recently, an extended MUD architecture was proposed by the e-Lite research group
[3]. This architecture is based on a SHG able to produce and expose a MUD
file for all the plug-ins that the SHG manages. This architecture protects both
software functionalities and physical devices with the MUD standard. This chapter
describes this solution, as the SHG previously used does not support the MUD
standard. With this approach, developers producing the integration for physical
or virtual "devices" must also specify the necessary endpoints for enabling the
correct communications. This also allows for safeguarding devices that are not
MUD-enabled and all integrations on Home Assistant. In the following sections,
we present two variations of the MUD integration. The first version is the one used
to present this extended architecture. This has a problem since it does not check
the integrity of the MUD snippet present in each folder of the integrations. For
this reason, the second version is improved to perform the integrity check by the
developer of the integration for the integrity of the folder.

3.1 Extended MUD architecture
The MUD standard aims to improve the security of IoT devices. This chapter
presents the Extended MUD Architecture, which enables a single IoT device to
expose its MUD file and allows an SHG to manage and enforce different rules for
all the different plug-ins within a single MUD file. Various significant components
exist within this architecture, beginning with OpenWRT, an open-source Linux
system designed for routers, and osMUD, an open-source MUD manager integrated
within the router. Additionally, osMUD supports the DHCP method for exposing
the MUD file.

In this solution, Home Assistant played a crucial role as an SHG. Its responsibility,

28

MUD Aggregator

facilitated by the MUD integration, was to manage and assemble the MUD snippet
of all integrations and expose the merged MUD file. The file is then stored within
the web server of Home Assistant and sent to the router through a DHCP request
within the MUD URL.

Once the router receives the DHCP request and the MUD manager verifies the
signature, policy enforcement can begin. The acquisition of a fresh MUD file is
triggered by a periodic check performed by the MUD Aggregator.

The employed OpenWRT firewall relies on iptables, and updates to the MUD
file are performed for any currently available MUD-enabled integrations whenever
users add new integrations to Home Assistant. The MUD Manager removes the
previous file upon receiving the new one.

Cooperation among developers is crucial in the context of this MUD design
based on a gateway architecture. For every integration they construct, developers
need to establish MUD-compliant files, identify the required endpoints, and comply
with the MUD standard.

Figure 3.1: MUD architecture

It’s worth noting that this design assumes that every smart home gateway
plug-in, even if it only incorporates software functions, can benefit from MUD.
This architecture enhances not only the security of the SHG but also the overall
security of the smart home system, and the number of MUD-compliant devices
may increase.

29

MUD Aggregator

3.2 Standard MUD integration
Home Assistant does not come with built-in MUD compatibility. However, an
integration called MUD Aggregator was created to overcome this shortcoming.
Starting from a draft, the MUD Aggregator integration enables the creation of a
MUD file. It searched through different folder integrations to find certain MUD
"snippets" related to each. In each folder, it is possible to find a unique JSON file.
Using a specified template, the MUD integration gathers these files and merges
them into a local MUD file. The private key of the smart home gateway is then
used to sign the created MUD file. When a file is signed, the MUD Aggregator
alerts the MUD manager and puts it in a specified folder that is accessible via the
Home Assistant web server.

3.2.1 Main software components
The MUD integration consists of several important parts. First, it scans all the
integration folders available in the Home Assistant (custom and default integrations).
Each folder contains the integration code and a file called “mud_gen.json”, which
describes the requirements for each plug-in. This is a JSON file written using the
YAML standard and is called “MUD snippet”. This file has all the properties of a
simple MUD file.

From the Home Assistant point of view, this integration is a sensor that pe-
riodically scans all the folders searching for a MUD snippet. When it scans all
of them and merges all the rules, it exposes the merged MUD file to our MUD
manager using the DHCP method. In Listing 3.1, it is possible to see the __init__
function of the sensor. The function generate_mud_file and expose_mud_file
are contained in the MUDAggregator.py file (Section 3.2.1).

1 c l a s s MUDAggregatorSensor (SensorEnt i ty) :
2 " " " This s enso r can r e c r e a t e and expose the MUD f i l e . " " "
3

4 de f __init__(s e l f , params) :
5 s e l f . _mud_gen . generate_mud_file ()
6 s e l f . _mud_gen . expose_mud_file (s e l f . _ in t e r f a c e)

Listing 3.1: Sensor’s __init__ function

In the method “update”, the MUD file is periodically re-aggregated, and after
the generation of the merged MUD file, it is exposed through the DHCP protocol.

1 de f update (s e l f) −> None :
2 " " " Update method r e c r e a t e the MUD p e r i o d i c a l l y . " " "
3 s e l f . _mud_gen . generate_mud_file ()
4 s e l f . _mud_gen . expose_mud_file (s e l f . _ in t e r f a c e)

30

MUD Aggregator

5 _LOGGER. i n f o (" Automatica l ly updating the MUD f i l e ! ")

Listing 3.2: Sensor’s update function

MUDAggregator.py functions

In this section, there is the analysis of some functions present inside the “MUDAg-
gregator.py” file.

The __init__ function initializes the MUD Aggregator object, loading the
correct variable inside the self instance. This load is based on the environment in
which the system is running. Since Home Assistant has different versions (Container
or Operative System), some folder paths can be different.

In the _generate_mud_file function, the MUD file is generated starting from
the mud_draft file that is a template. It has as input the integration_list (a
dictionary containing the list of all integrations present inside Home Assistant). If
the MUD file is changed, the timestamp inside it is changed, and the file will be
signed with the certificate of the SHG using the _write_mud_file function.

1 de f generate_mud_file (
2 s e l f , s e v e r i t y , s e cu r i t y , i n t e g r a t i o n _ l i s t , s i gn
3) −> None :
4 " " " This func t i on gene ra t e s a MUD f i l e s t a r t i n g from a

template " " "
5 s e l f . s e c u r i t y = s e c u r i t y
6 s e l f . _mud_draft = s e l f . _load_mud_draft ()
7 # (Re) load ing o r i g i n a l d r a f t
8

9 mud_file_path = s e l f ._LOCAL_EXTENTION_PATH + _MUD_FILENAME
10 i f not os . path . e x i s t s (mud_file_path) :
11 mud_changed = True
12 e l s e :
13 with open (mud_file_path , " r ") as i n p u t f i l e :
14 old_mud = json . load (i n p u t f i l e)
15 i f " l a s t −update " in old_mud [" i e t f −mud:mud"] :
16 # removing l a s t −update timestamp i f e x i s t s
17 de l old_mud [" i e t f −mud:mud"] [" l a s t −update "]
18

19 i f s e l f . _mud_draft == old_mud :
20 mud_changed = False
21 e l s e :
22 mud_changed = True
23

24 i f mud_changed :

31

MUD Aggregator

25 current_time = datet ime . now () . i s o f o rmat (t imespec=" seconds
")

26 s e l f . _mud_draft [" i e t f −mud:mud"] [" l a s t −update "] =
current_time

27 s e l f . _write_mud_file (s i gn)
28 e l s e :
29 _LOGGER. debug ("MUD f i l e was not changed ! ")

Listing 3.3: generate_mud_file function

The method _add_mud_rules is used to add the Access Control Lists (ACLs)
to the MUD object to merge all the MUD snippets. It has also a counter that tells
the user how many ACLs will be added to the MUD file.

In this version of the MUD integration, retrieving the MUD file by declaring its
presence in the manifest.json file is possible.

1 de f _add_mud_rules (s e l f , i n t e g r a t i o n _ l i s t : d i c t = None) −> i n t :
2 " " " Adding the ACLs to the MUD ob j e c t . " " "
3 i n s e r t e d _ r u l e s = 0
4 i f i n t e g r a t i o n _ l i s t :
5 i n s e r t e d _ r u l e s += s e l f . _add_rules_from_manifest (

i n t e g r a t i o n _ l i s t)
6 i n s e r t e d _ r u l e s += s e l f . _add_rules_from_folders ()
7 _LOGGER. i n f o (" Total r u l e s i n s e r t e d in the MUD f i l e : %d" ,

i n s e r t e d _ r u l e s)
8 re turn i n s e r t e d _ r u l e s

Listing 3.4: _add_mud_rules function

In this case, the _add_rules_from_manifest method adds the MUD snippet
without searching it with a scan of the folder, but knowing a priori that the relative
integration has it.

On the other hand, with the _add_rules_from_folders, all the MUD snippets
present in Home Assistant are retrieved by scanning custom and default component
directories. This method is designed for integrations that use the default name of
the snippet. Whereas the previous method was added to allow developers to give
whatever name they wanted to their snippet.

All the rules found in the MUD snippet are added to the MUD draft in
the function _add_rules_to_draft. This method uses different functions (e.g.
_add_policies_if_not_exist or/and _add_acls_if_not_exist) to check that
the policies or the ACLs that want to add are not already present inside the MUD
file.

32

MUD Aggregator

After the file is signed, some other functions are responsible for exposing the
MUD file. The most important one is expose_mud_file. This function, it is
possible to select how to expose the MUD file. There are three possibilities: DHCP,
LLDP, and 802.1AR. In our case, it is possible to expose it just with DHCP since
our MUD manager does not support other methods.

3.3 MUD Aggregator with Notarization
The previous architecture had a limitation since the MUD snippet has no integrity
checks. For this reason, a malicious user can modify it without anyone noticing. To
reduce the attack surface, a solution was proposed that provided an authentication
mechanism by performing the integration notarization process using the CodeNotary
CAS service. This architecture ensures that the MUD integration uses all the
trusted and authenticated MUD snippets to produce the gateway-level MUD file.

Before explaining the functioning of this solution, it is important to introduce
CodeNotary CAS [29] and the notarization mechanism.

It is a blockchain-based [30] service used to guarantee the authenticity and
integrity of software and/or digital content. It assisted in identifying any unautho-
rized alterations or modifications to the content by building a secure, time-stamped
record of the digital content on the blockchain. The process that builds a record
within the blockchain is called notarization.

Combining the MUD integration with the notarization is the main upgrade of
this solution, proposed in the master thesis of Daniele Di Battista [31], since, with
the previous approach, we do not have any guarantee about the integrity of the
MUD snippets.

The notarization process of integration should be done by who developed the
integration and the relative MUD snippet. This process has to follow different
steps:

• The integration developer must first register into the CAS service to obtain
the API-KEY and then log in.

• If he wants to notarize its integration, he should submit the source code of it
and its MUD snippet to the CodeNotary CAS service.

• The CAS service, after calculating the cryptographic hash value of the sub-
mitted code, links this generated value with the integration to identify it.

After this process, it is comprehensible that someone modified the code if there
is a mismatch between the integration’s original hash value and the integration’s
hash value inside Home Assistant.

33

MUD Aggregator

So, inside the MUD integration, there is this authenticity check on all the
integrations in Home Assistant.

Since not all users have the same preferences, it presents a parameter that allows
them to customize this security mechanism’s severity level. It is possible to choose
three different levels of severity.

• High: If the authenticity check fails, the integration is turned off inside Home
Assistant, and its MUD snippet is not considered valid, so the rules are not
merged inside the MUD file.

• Medium: If the authenticity check fails, the integration is not turned off
inside Home Assistant, but its MUD snippet is not considered valid, so the
rules are not merged inside the MUD file.

• Low: If the authenticity check fails, the integration is not disabled inside
Home Assistant, and its MUD snippet is considered valid, so the rules are
merged inside the MUD file.

34

Chapter 4

Experimental Setup

This chapter will discuss how the environment was built and the main activities
performed to produce a secure testbed that can be compared with a real smart home.
After the SHG and OpenWRT initialization combined with the MUD manager
(osMUD), we installed different integrations. A MUD snippet was produced to
define the permitted communications for each of those integrations.

4.1 Laboratory configuration and equipment
For building the experimental setup, we follow the extended MUD architecture.
As described in the section 3.1, this solution allows a SHG to expose a single MUD
file that contains inside all the MUD snippets for all the integrations present in
Home Assistant.

First of all, we installed, on a Raspberry Pi Model 3 v1.21, OpenWRT [23]
version 17.01.6 (described in section 2.4.1). osMUD [22] version 0.2.0, the MUD
manager, was installed on it.

In the section 4.5, we will discuss how the MUD manager was modified to fix
some bugs and to adapt to our use case.

On the second Raspberry Pi (same model as the previous one), there is the SHG,
in our case, Home Assistant. Since we want to perform all the tests needed on the
complete version of this SHG, we choose to install Home Assistant OS, described
in Section 2.6.

It is composed by:

1https://www.raspberrypi.com/products/raspberry-pi-3-model-b/,
last visited on October 10th, 2023.

35

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

Experimental Setup

• Home Assistant OS 10.3

• Home Assistant Core 2023.7.5

• Home Assistant Supervisor 2023.07.3

It also features a community store (HACS) in which every developer can upload
its custom integration that other users can use.

This installation of Home Assistant permits to manage different standard devices
(through standard integrations), install some integration from HACS (described
in section 2.6.2, and also some add-ons that extend the functionalities of Home
Assistant.

Following the analytics of Home Assistant [32], we aim to build a testbed that
can be as similar as possible to a real smart world.

For this reason, we installed inside Home Assistant different integrations:

• 23 standard integrations: present on the core of Home Assistant

• 4 custom integrations: developed by myself in order to test some particular
cases

• 5 integrations downloaded from HACS

Figure 4.1: Home Assistant Analytics

36

Experimental Setup

Here is the list of some of the integrations and add-ons present in Home Assistant:

• Bluetooth [33]

• CO2 Signal [34]

• Dipartimento Protezione Civile
[35]

• File Editor [36]

• Github [37]

• Google Photos [38]

• Google Translate text-to-
speech [39]

• HACS [40]

• HAM Radio Propagation [41]

• Home Assistant Supervisor [42]

• INGV Earthquakes [43]

• Input Boolean [44]

• Meteorologisk institutt
(Met.no) [45]

• Mobile App [46]

• OpenAI Conversation [47]

• OpenWeatherMap [48]

• Philips Hue [49]

• Radio Browser [50]

• SSH & Web Terminal [51]

• Sun [52]

• Team Tracker [53]

• Timer [54]

• World’s Air Quality Index [55]

• WorldTidesInfoCustom [56]

• Z-Wave [57]

4.2 Methods for discovering integrations’ end-
points

In order to write the MUD skeleton (the file where it is possible to find all the
endpoints needed by Home Assistant for its start-up) and the MUD snippet, it
was necessary to analyze the source code to find all the endpoints. After that, we
performed manual network analysis, to confirm what was found inside the code
and to verify that the endpoints are accessed at runtime.

In the following section, it is possible to find how this was done and the challenges
found.

4.2.1 Source code
After the starting period, in which we focused on building an environment inside the
laboratory, the second step was to write the MUD snippets for all the integrations

37

Experimental Setup

that we previously installed in Home Assistant. We focused our attention on the
source code present inside the Home Assistant Core repository on Github [58].

For example, for the CO2Signal integration, we found it inside the source code,
and by looking at the documentation, we see that it queries the Electricity Maps
API to retrieve all the data needed for the CO2 intensity in a specific place.

The API URL is inside the source code, so it was added to the MUD snippet of
this integration.

This is an interesting case since the integration name is CO2signal, but the API
used refers to another website. Through network analysis alone, it would have been
not easy to notice this.

4.2.2 Network analysis
By doing some research, we found a tool [59], developed by NIST, that, starting
from the capture file, generates the corresponding MUD file. As described by the
authors, this tool is intended to assist the developers in the generation of MUD
files to reduce the barrier to creating accurate files.

After some tests on this tool, we noticed that it works well with a capture file
containing only a single device’s traffic. Since our case is slightly different, it makes
some errors during the generation. It cannot distinguish between two different
integrations since it communicates with the internet through the same IP address
(of the SHG).

For this reason, using automatic tools to discover the endpoints was not the
best choice. The manual network analysis was first applied to the basic version of
Home Assistant (without any integrations). Using tcpdump [60], a command-line
tool used for packet analysis, it was performed a network traffic capture during
the standard boot of Home Assistant, during its shutdown, and during the reboot.
In addition, we left Home Assistant running for a long period and captured the
packets sent. This allows us to analyze an important amount of data (about 500,000
packets) to discover the correct endpoints.

After this, it was necessary to write correctly the different MUD snippets. For
this reason, we perform the network analysis on the SHG with all the integrations
active simultaneously. In this way, collecting all the data needed to identify the
correct endpoints for each integration was possible.

4.3 Manage custom endpoints in MUD files
Inside our testbed, we do not have only software integrations, but we also have
some integrations that are used to manage a physical device.

38

Experimental Setup

A lot of IoT devices are connected to the network, so they have an IP address
that can be public or local.

Since our main objective is to build a solution that is as replicable as possible,
we need a way to standardize the MUD snippets with custom IP addresses.

We put a placeholder inside the MUD snippet of each of those integrations. The
MUD Aggregator recognizes this placeholder and inserts all the endpoints that
need to be replaced inside a JSON file.

In this case, the user must insert all the custom IP addresses of their physical
devices during the initialization of the MUD integration.

The new endpoints inserted by the user will not modify the MUD snippet in
the folder integration. However, the MUD integration inserts these IP addresses
directly inside the gateway-level MUD file.

This is done to avoid invalidating the integrity check of the solution with
Notarization described in Section 3.3. Indeed, any modification to a MUD snippet
would invalidate the integrity verification process.

4.4 Reducing allowing communications
The MUD standard was proposed with the goal of blocking all communications
that are not explicitly authorized. Since in our case, the MUD manager uses a
standard firewall, for each device, a firewall rule is needed that “drop” all the
communication between this particular device and the rest of the network.

Our use case is slightly different since the SHG exposes a single MUD file for all
the possible integrations inside it.

For the integrations that manage a device with an IP address, it is necessary to
add this rule to protect the device correctly. We are adding a protection mechanism
that is consistent with what is specified in the MUD standard.

This is done using the JSON file that is filled, by the user, with all the custom
IP addresses. In this way, we have a general solution that protects Home Assistant,
its integrations, and all the physical devices.

4.5 Working on osMUD
The MUD manager used for building this environment was osMUD (described in
the section 2.4). In order to adapt the existing code to our use case, we needed
to improve something in the source code. For this reason, we changed the limited
number of MUD files that the MUD manager can manage. Then, to fix some
bugs already present in the source code, we correct the wrong translation of rules

39

Experimental Setup

that contain the definition of a port range, and we also change an attribute to be
compliant with the MUD RFC.

4.5.1 Port Range
During some tests on the instantiation of the firewall rules, we noticed that the
firewall cannot translate correctly all the rules that contain a port range inside the
MUD snippet.

In the following code, a part of a MUD snippet contains the key used to define
a port range.

1 "aces": {
2 "ace": [
3 {
4 {
5 "name": "from -ipv4 -switch -0",
6 " matches ": {
7 "ipv4": {
8 " protocol ": 6,
9 "ietf -acldns:dst - dnsname ": "dcape -na.

amazon.com"
10 },
11 "tcp": {
12 "destination -port": {
13 " operator ": "range",
14 "lower -port": 300,
15 "upper -port": 500
16 }
17 }
18 },
19 " actions ": {
20 " forwarding ": "accept"
21 }
22 }
23 }
24]
25 }

Listing 4.1: Example of MUD file with Range of Ports

In the previous code, the range of the port is indicated in this way:

40

Experimental Setup

1 " lowerPort : upperPort "

This is a problem since, according to the documentation 2, the right definition
of port ranges is the following:

1 " lowerPort−upperPort "

4.5.2 Limited number of manageable rules
Since there is a significant number of integrations in our SHG, the constant number
of MUD files supported is not enough. In the previous version of osMUD, the
maximum number of ACLs supported is 10, so, if in each file there are 2 ACLs (to
and from), there are only 5 MUD files supported.

This is not enough since we have about 30 different MUD snippets for a total of
60 ACLs. Looking at the real world, some houses have hundreds of integrations,
and in order for this proposed approach to work in real life, this change needs to be
made to the official MUD Manager source code as well. We opened an issue to try
and understand why this number was so low, which we did not get an answer to,
and experimentally tried increasing it and found that it did not cause any problems
for the MUD manager.

4.5.3 Compliance with RFC 8520
Another change made to the source code of osMUD was done to make the code
compliant with the RFC of MUD[11].

The MUD standard should only include three different actions:

• Accept

• Reject

• Drop

In the original version of osMUD, the third option was “deny” and not “drop”.
This is not compliant with both the MUD standard [11] and the documentation of
OpenWRT [61].

2https://openwrt.org/docs/guide-user/firewall/firewall_configuration#rules/,
last visited on October 15th, 2023.

41

https://openwrt.org/docs/guide-user/firewall/firewall_configuration#rules/

Chapter 5

Experiment results

This chapter presents the experiments conducted with our testbed. To build an
environment as similar as possible to real installation, we consider all possible
categories of integrations. Specifically, we identified the following four types of
integrations:

• Software integrations

• IP-based devices’ integrations

• Non-IP-based devices’ integrations

• Mixed devices’ integrations

In the first case, certain integrations can operate without a physical device. An
example is the “MetNo integrations” [45]. It works because it obtains the weather
forecast from a cloud.

The second example could be a smart light that may be turned on or off by
speaking directly with the SHG via an IP address.

The ZWave integration is an example of the Non-IP-based integration. It
communicates with devices via a wireless protocol, enabling easy integration
without requiring an IP address. However, MUD is not a suitable technique to
safeguard communications without an IP-based connection.

In the context of IoT devices, finding something that cannot be categorized in
the previous categories is also possible. This is the case of the Philips Hue Bridge
and Philips Hue smart light, which will be analyzed in section 5.5.

5.1 Experimental setup
In this section, it is possible to find the description of the environment produced
in the Politecnico di Torino laboratory. The testbed is composed of two different

42

Experiment results

Raspberry Pi 3 Model B v1.21.
The first Raspberry was equipped with OpenWRT (version 17.01.6) and a

customized version 0.2.0 of osMUD. Our osMUD was modified to manage a higher
number of MUD snippets and to correctly manage the range ports option in the
MUD file.

The second Raspberry contains a Home Assistant installation composed by:

• Home Assistant OS 10.3

• Home Assistant Core 2023.7.5

• Home Assistant Supervisor 2023.07.3

Inside Home Assistant, the following integrations were installed and configured:

• 23 standard integrations: present on the core of Home Assistant

• 4 custom integrations: developed by myself in order to test some particular
cases

• 5 integrations downloaded from HACS

More details about all the integrations involved in the experimental setup were
presented in Section 4.1.

5.2 Security of software integrations
Software integrations cover a range of functionalities, from the weather forecast
to the “World Air Quality Index” to the “Team Tracker”. As expected, various
endpoints are required for each of these integrations to function.

In order to identify the endpoints required for the construction of the MUD
snippets, an in-depth manual analysis of the traffic and source code of the integra-
tions was conducted. After this network traffic analysis, it was possible to recognize
different endpoints for each integration and build different MUD snippets.

5.3 Security of IP-based devices’ integrations
An example of a device that is commonly IP-based is a smart light. This bulb
has its IP address so the SHG can communicate directly with it to turn the light

1https://www.raspberrypi.com/products/raspberry-pi-3-model-b/,
last visited on November 20th, 2023.

43

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

Experiment results

on/off, manage the brightness, and create some automation. When we write the
MUD snippet, it is important to ensure that the light can communicate only with
the SHG to reduce the attack surface and avoid unauthorized access.

Since our main objective is to produce a general MUD snippet, a limitation
comes out. The IP address of a smart light is not the same in all the world’s houses.
So, the MUD snippet cannot be the same. In those cases, developers must insert a
placeholder in the MUD snippet. During the initialization of the MUD integration,
it requests the user to insert the IP address for all the physical devices.

These IP addresses are not directly inserted inside the MUD snippet since we
will lose the integrity of it, but are inserted in the generated MUD file that is signed
after all the custom IP addresses are communicated by the user.

With this approach, there is a possible limitation. The IP address of a smart
device can change if it is rebooted due to the DHCP. In this case, the user has to
update the related IP address.

To reduce the attack surface, blocking all possible connections between different
devices and the external world is important. For this reason, all connections from
the device to the internet (and vice versa) are blocked by a special rule.

Since the presence of placeholders would make the generated MUD file semanti-
cally incorrect, we allowed the user to decide whether to instantiate a partial MUD
file or wait for the user to insert all custom IP addresses.

So, we implemented a parameter to select the level of protection that a user
wants to achieve. With the highest security level, the MUD file is enforced, even if
it is partial. With the lowest security level, the MUD file is generated and exposed
only when the user fulfills all the placeholders.

Another limitation could be that, with this MUD Manager, all the devices
inside the local network can still communicate with each other due to the fact that
osMUD uses a firewall that blocks the traffic inside and outside the network and
not inside the network.

5.4 Security of non-IP-based devices’ integra-
tions

In this scenario, it is possible to group all those integrations that communicate
through all IoT protocols other than IP. This is the case of integrations that rely
on devices based on different protocols like ZWave, Zigbee, and KNX. Since there
is no connection based on IP, we cannot use the firewall as we intended. Therefore,
the MUD can not be applied in this case.

44

Experiment results

5.5 Security of mixed devices’ integrations
Inside our testbed, some devices are adopting a mixed approach. Specifically, they
are a Philips Hue bridge and the associated smart light.

These devices have a mixed behavior since the bridge has an IP address, so it is
reachable inside the network, while the smart light does not have an IP address
and communicates with the bridge through the Zigbee protocol.

As described in Chapter 2, Zigbee is well-suited for IoT applications since it offers
different advantages. In the particular case of the Philips Hue, the main advantage
is that Zigbee supports mesh networking. A mesh network permits all the devices
to communicate with each other directly, and they can also route data through
other devices inside the network. This makes the Zigbee protocol very scalable and
resilient to interference. From the security point of view, this protocol provides
network security by protecting communications with AES-128-CCM encryption.
Since it is designed for short-range communication, the mesh network is isolated
from the internet and operates independently.

Since the communication between the smart light and the bridge is not IP-based,
this part cannot be protected with the MUD standard. Meanwhile, with its IP
address, the bridge is protected by enforcing the rules inside its MUD snippet.

5.6 Security of the SHG
The main objective of this thesis is to build an environment focused on the security
of a SHG using the MUD standard. Since the architecture of our solution is different
from the one presented in the RFC of the MUD, we notice that there is a time
window in which there is no protection on the SHG.

During this window, from the boot of Home Assistant to the execution of the
MUD integration, the protection given by the MUD is not yet enabled, so it is
possible to connect without restriction to/from the internet. To reduce the window
of exposure, we implement some setup rules directly on the router.

When the users want to execute the MUD manager, before turning on the SHG,
they have to run a bash script that enforces all the necessary rules for the boot of
Home Assistant (those rules are the same present in the MUD skeleton produced
for Home Assistant, already described in Section 4.2) and starts the MUD manager.

Now, it is possible to turn on Home Assistant in a secure way. From some tests
performed both with Home Assistant OS on a Virtual Machine and on a Raspberry
Pi, when we enforce the rules before the boot, the start-up time is comparable
with the start-up time without the rules. So, the MUD skeleton relative to Home
Assistant permits the boot without slowing it down.

45

Experiment results

The only limitation of this solution is that all the integrations inside the SHG
will not be started up during the first boot due to the firewall rules that we put
in the router. Home Assistant will reload these integrations after enforcing the
rules in the merged MUD file and after a timeout has elapsed. It is also possible to
reboot the SHG after exposing the MUD file to speed up the process.

5.7 Testing the security of the SHG
In order to verify the security of the smart home gateway, we perform different
tests on different areas of the environment. Table 5.1 summarizes all these tests
and the expected outcome.

The tests are focused firstly on Home Assistant and the MUD integration for
checking the correct management, assembly, and exposure of the gateway-level
MUD file. It is possible to split two different categories of tests:

• Generation and update of the MUD file

• Correct behavior of the network

For the first category, we check the MUD integration’s ability to generate a correct
MUD file. It can correctly assemble a MUD file starting from different MUD
snippets and expose it to the MUD manager. If a new integration’s MUD snippet
is added, the MUD integration will regenerate the MUD file after the configured
time interval.

Discussing the tests performed about the correct behavior of the network, in our
testbed, we have a smart light connected directly with its public IP address with
Home Assistant through the manufacturer’s integration. In order to work, in the
MUD snippet of this integration, there is only the IP address of the light. During
the test, we put, on purpose, a wrong IP address inside the MUD snippet, and we
noticed how the SHG could not manage the smart light since the firewall blocks
the connection between these two hosts. We also checked the correct functioning
of the SHG and the correctness of the MUD skeleton. In the same way as the
previous test, we put the wrong endpoints in the MUD skeleton. By measuring the
boot time of Home Assistant, we noticed that the inability to access the correct
endpoint will slow down the system boot, and some functionalities inside Home
Assistant are unavailable.

Table 5.2 and 5.3 present the reboot times, the average time, and the standard
deviation for our SHG under various conditions. The “Disabled” case refers to
situations where the MUD integration is disabled, so no rules are present in the
firewall. This is useful to compare the impact of this solution on the architecture.
The “Setup” label indicates the reboot time when only the MUD skeleton rules are

46

Experiment results

enforced. The “Complete” label represents the reboot time when the entire MUD
file is integrated into the firewall after the user inserts its custom IP addresses.

It is possible to notice that the “Setup” average time is higher than the “Complete”
average time. This is due to the fact that during the “Setup” phase, the Home
Assistant (including all the integrations inside it) tries to boot itself, but in the
firewall rules, there are only the endpoints needed by the SHG and not by the
integrations. So, the integrations cannot access the endpoints they need and go
into a timeout. The time is higher in the case of the Home Assistant OS because
there are about 30 different integrations in it, whereas there are only 6 in the Home
Assistant VM.

After that, another area of interest in our tests is the MUD Manager and the
router. This helps us to verify the correct translation of the MUD file in firewall
rules and the correct instantiation of the rules inside the firewall.

When the MUD integration exposed the MUD file, we checked the firewall inside
the router and saw that the MUD Manager correctly translated and instantiated
all the rules present in the generated MUD file.

In the case that the MUD file is changed, osMUD will remove the rules already
present inside the firewall (without committing it), and only when it instantiates
the new rules, if the process ends correctly, will it commit. Otherwise, it will roll
back to the previous rules. With this behavior, we have a reduced window of
exposure since the rules present in the firewall are only deleted after the correct
installation of the new rules.

5.8 Common limitations
All the types of integrations have a common limitation. Since all those integrations
have the same IP address (which is the address of the SHG), there is a possibility
that an endpoint required by an integration also becomes accessible to others. This
is because the requests for data are made directly from the IP address of the SHG,
as these integrations are part of it.

47

Experiment results

Category Test Summary Expected Outcome
Home Assistant
and the MUD in-
tegration

The MUD integration is
used to generate a gateway-
level MUD file starting from
all the MUD snippets of
the integration installed in
Home Assistant

It is expected that the MUD
file presents all the snippets

Home Assistant
and the MUD in-
tegration

The MUD integration is also
used to expose the MUD
file to the MUD Manager
through a DHCP request

It is expected that the router
receives the DHCP request
correctly with the MUD
URL

Home Assistant
and the MUD in-
tegration

A new integration is added
to the SHG

In this case, the MUD in-
tegration has to regenerate
and re-expose the MUD file
after a configured time inter-
val

Home Assistant
and the MUD in-
tegration

The wrong IP address of a
smart light is put inside the
relative MUD snippet

The wrong MUD snippet
does not permit the user to
manage this device since it
cannot reach the correct end-
point needed for the correct
functioning

Home Assistant
and the MUD in-
tegration

Some wrong endpoints are
present inside the MUD
skeleton

Home Assistant during its
boot cannot find the correct
endpoints, so some function-
alities cannot be used

MUD Manager After the generation of a
gateway-level MUD file, the
MUD integration exposes it
to the MUD Manager

osMUD receives and instan-
tiates correctly all the rules
present inside the file

MUD Manager If the MUD file is changed
due to the addition of a new
integration, for example, the
MUD Manager has to up-
date the firewall with new
rules.

In case of an error during
this process or if the MUD
file contains some errors, the
MUD Manager has to roll
back to the previous state.
Instead, if the MUD file is
correct and there are no er-
rors during the instantiation
of the rules, those are com-
mitted to the firewall.

Table 5.1: Tests description
48

Experiment results

Firewall Rules Fastest Slowest Average Std.Dev.
Disabled 02:15 02:20 02:22 02:29 02:40 02:25 8.65 s
Setup 02:38 02:45 02:53 02:57 03:15 02:53 12.54 s
Complete 02:30 02:35 02:37 02:50 02:58 02:42 10.37 s

Table 5.2: Reboot time of Home Assistant VM in different conditions

Firewall Rules Fastest Slowest Average Std.Dev.
Disabled 04:32 04:34 04:49 04:52 05:32 04:50 21.77 s
Setup 09:15 09:45 10:27 10:58 12:53 10:33 169.26 s
Complete 04:26 04:28 04:57 05:29 06:01 05:01 37.33 s

Table 5.3: Reboot time of Home Assistant OS in different conditions

49

Chapter 6

Conclusion

This thesis implements and deeply tests a physical proof of concept of a recently
proposed architecture based on MUD and an SHG. The testbed includes of two
Raspberry Pi devices: the first running OpenWRT and osMUD (an open-source
MUD manager), and the second running Home Assistant.

Within Home Assistant, I configured several integrations with some smart home
devices. For each integration, we wrote a MUD snippet (containing the endpoints
required for the integration) to describe the correct network behavior that the
integration should have.

After processing the MUD snippets, the MUD Aggregator creates a gateway-level
MUD file merging together the MUD snippets of all the integrations. In this case,
there are no differences between software functionalities and physical devices since
both are managed by Home Assistant through the use of integrations.

Since in the testbed there are also non-MUD-enabled physical devices, once
the developer has created the snippet, we take care of protecting them with our
solution. This is related to custom IP addresses, which are highly likely in a real
smart home with different IP-based IoT devices. Using this architecture is the SHG
that exposes the MUD file to the MUD Manager, so it was necessary to protect the
physical devices (that have their IP addresses) from unauthorized communications.

In addition to the above, we investigated other aspects of the MUD, such as
its performance and scalability. We conducted several experiments to measure the
time required to process MUD snippets and generate the gateway-level MUD file.
We also tested the enhanced version of the MUD manager to re-process the ability
of the MUD manager to handle a large number of concurrent network requests.

Our results showed that MUD is a lightweight, scalable solution for securing
smart home networks.

Thanks to the experimental testbed, we have demonstrated the feasibility of
using MUD to secure smart home networks and smart home gateways. MUD
snippets can be processed quickly, and the gateway-level MUD file can be generated

50

Conclusion

efficiently.

6.1 Future work

6.1.1 Different MUD Manager architectures
The MUD manager adopted in this master thesis is osMUD. It is possible to notice
that in the literature, other MUD Managers have different features and are based
on different architectures:

• Cisco MUD Manager [62]: A RADIUS server uses the MUD Manager to
convert a MUD URL into access control rules. After receiving REST APIs
with the MUD URL (as well as perhaps other data), the MUD Manager
provides RADIUS characteristics that may be transmitted to an Ethernet
switch or other Network Access Device (NAD). By installing the policy on
the access port, the NAD limits the device supplying the MUD URL to only
the necessary network access.

• NIST MUD Manager [63]: In this case, OpenDaylight is used as the SDN
controller for implementing MUD on switches that support SDN.

6.1.2 MUD Aggregator independent solution
As discussed in section 2.5, various Smart Home Gateways (SHGs) can be employed
to facilitate communication between smart home devices. Within the scope of this
master’s thesis, we utilize Home Assistant to establish and evaluate an experimental
setup, leveraging an existing plug-in known as MUD Aggregator. It facilitates
the generation of MUD files. This approach provides a foundation for future
advancements, potentially leading to developing an SHG-independent solution.

Home Assistant, a widely adopted open-source home automation platform,
offers a versatile framework for building and testing smart home systems. Its
extensive integration capabilities enable seamless interaction with various smart
devices, protocols, and services. This makes it an ideal choice for implementing
our experimental setup.

While the current setup relies on Home Assistant, future developments may
lead to the creation of an SHG-independent solution. This would broaden the
applicability of our approach beyond Home Assistant, allowing integration with
other SHG platforms.

The potential benefits of an SHG-independent solution are that it would enhance
the flexibility of our experimental setup, enabling compatibility with a wider range
of SHGs.

51

Conclusion

The prospect of developing an SHG-independent solution can enhance the
flexibility, interoperability, and adaptability of smart home systems.

52

Acronyms

API Application Programming Interface

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DoS Denial of Service

ENISA European Union Agency for Cybersecurity

HACS Home Assistant Community Store

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LLDP Link Layer Discovery Protocol

MUD Manufacturer Usage Description

NIST National Institute of Standards and Technology

OS Operating System

RADIUS Remote Authentication Dial-In User Service

RFC Request for Comments

SDN Software-Defined Networking

54

Acronyms

SHG Smart Home Gateway

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

55

Bibliography

[1] Transforma Insight. IoT Connections Forecast 2021-2032. url: https://
transformainsights.com/research/forecast/highlights (visited on
Sept. 17, 2023) (cit. on p. 1).

[2] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey
Voas. «DDoS in the IoT: Mirai and other botnets». In: Computer 50.7 (2017),
pp. 80–84 (cit. on p. 2).

[3] Fulvio Corno and Luca Mannella. «A Gateway-based MUD Architecture
to Enhance Smart Home Security». In: 2023 8th International Conference
on Smart and Sustainable Technologies (SpliTech). 2023, pp. 1–6. doi: 10.
23919/SpliTech58164.2023.10193747 (cit. on pp. 3, 28).

[4] Z-Wave Alliance. Z-Wave. url: https://www.z- wave.com/ (visited on
Nov. 5, 2023) (cit. on pp. 4, 5, 7, 15, 17).

[5] Connectivity Standards Alliance. Zigbee. url: https://csa-iot.org/all-
solutions/zigbee/ (visited on Nov. 5, 2023) (cit. on pp. 4–6, 15, 17).

[6] KNX.org. KNX. url: https://www.knx.org/knx-en/for-professionals/
index.php (visited on Nov. 5, 2023) (cit. on pp. 4–6, 17).

[7] Open Systems Interconnection (OSI). url: https://www.iso.org/ics/35.
100/x/ (visited on Nov. 2, 2023) (cit. on p. 6).

[8] «IEEE Standard for Low-Rate Wireless Networks». In: IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011) (2016), pp. 1–709. doi: 10.1109/
IEEESTD.2016.7460875 (cit. on p. 7).

[9] David McGrew and Daniel Bailey. AES-CCM Cipher Suites for Transport
Layer Security (TLS). RFC 6655. July 2012. doi: 10.17487/RFC6655. url:
https://www.rfc-editor.org/info/rfc6655 (cit. on p. 7).

[10] Silicon Labs. Z-Wave Specificationl. url: https://docs.silabs.com/z-
wave/latest/z-wave-docs/zwave-specification (visited on Nov. 7, 2023)
(cit. on p. 7).

56

https://transformainsights.com/research/forecast/highlights
https://transformainsights.com/research/forecast/highlights
https://doi.org/10.23919/SpliTech58164.2023.10193747
https://doi.org/10.23919/SpliTech58164.2023.10193747
https://www.z-wave.com/
https://csa-iot.org/all-solutions/zigbee/
https://csa-iot.org/all-solutions/zigbee/
https://www.knx.org/knx-en/for-professionals/index.php
https://www.knx.org/knx-en/for-professionals/index.php
https://www.iso.org/ics/35.100/x/
https://www.iso.org/ics/35.100/x/
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.17487/RFC6655
https://www.rfc-editor.org/info/rfc6655
https://docs.silabs.com/z-wave/latest/z-wave-docs/zwave-specification
https://docs.silabs.com/z-wave/latest/z-wave-docs/zwave-specification

BIBLIOGRAPHY

[11] Ralph Droms Eliot Lear and Dan Romascanu. Manufacturer Usage Description
Specification. March 2019. url: https : / / www . rfc - editor . org / rfc /
rfc8520 (cit. on pp. 9, 41).

[12] Larry M Masinter Tim Berners-Lee and Mark P. McCahill. Uniform Resource
Locators (URL). December 1994. url: https://datatracker.ietf.org/
doc/html/rfc1738 (cit. on pp. 9, 13).

[13] Martin Björklund. The YANG 1.1 Data Modeling Language. RFC 7950. Aug.
2016. doi: 10.17487/RFC7950. url: https://www.rfc-editor.org/info/
rfc7950 (cit. on p. 10).

[14] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259. Dec. 2017. doi: 10.17487/RFC8259. url: https://www.rfc-
editor.org/info/rfc8259 (cit. on p. 10).

[15] Eric Rescorla. HTTP Over TLS. RFC 2818. May 2000. doi: 10.17487/
RFC2818. url: https://www.rfc- editor.org/info/rfc2818 (cit. on
p. 13).

[16] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys,
Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616. June 1999. doi: 10.17487/RFC2616. url: https://www.rfc-
editor.org/info/rfc2616 (cit. on p. 13).

[17] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. Aug. 2008. doi: 10.17487/RFC5246. url: https:
//www.rfc-editor.org/info/rfc5246 (cit. on p. 13).

[18] Droms Ralph. Dynamic Host Configuration Protocol. RFC 2131. March 1997.
url: https://datatracker.ietf.org/doc/html/rfc2131 (cit. on p. 14).

[19] Boeyen Sharon, Santesson Stefan, Polk Tim, Housley Russ, Farrell Stephen,
and Cooper David. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. May 2008. url: https://
datatracker.ietf.org/doc/html/rfc5280 (cit. on p. 14).

[20] «IEEE Standard for Local and Metropolitan Area Networks - Secure Device
Identity». In: IEEE Std 802.1AR-2018 (Revision of IEEE Std 802.1AR-2009)
(2018), pp. 1–73. doi: 10.1109/IEEESTD.2018.8423794 (cit. on p. 14).

[21] «IEEE Standard for Local and Metropolitan Area Networks–Port-Based
Network Access Control». In: IEEE Std 802.1X-2020 (Revision of IEEE Std
802.1X-2010 Incorporating IEEE Std 802.1Xbx-2014 and IEEE Std 802.1Xck-
2018) (2020), pp. 1–146. doi: 10.1109/IEEESTD.2020.9018454 (cit. on
p. 14).

57

https://www.rfc-editor.org/rfc/rfc8520
https://www.rfc-editor.org/rfc/rfc8520
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1738
https://doi.org/10.17487/RFC7950
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC2818
https://www.rfc-editor.org/info/rfc2818
https://doi.org/10.17487/RFC2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://doi.org/10.1109/IEEESTD.2018.8423794
https://doi.org/10.1109/IEEESTD.2020.9018454

BIBLIOGRAPHY

[22] Yeich Kevin and Weller Daniel. Open Source Manufacture Usage Description.
[Online] Available. 2022. url: https://osmud.org (visited on Nov. 1, 2023)
(cit. on pp. 14, 35).

[23] OpenWRT. Documentation. October 2023. url: https://openwrt.org/
(visited on Nov. 7, 2023) (cit. on pp. 14, 35).

[24] The linux kernel. url: https://docs.kernel.org/security/self-protec
tion.html (visited on Nov. 7, 2023) (cit. on p. 15).

[25] openHAB Foundation e.V. openHAB documentation. url: https://www.
openhab.org/docs/ (visited on Nov. 5, 2023) (cit. on p. 17).

[26] Krellian Ltd. WebThings documentation. url: https://webthings.io/docs/
(visited on Nov. 5, 2023) (cit. on p. 19).

[27] Home Assistant. Home assistant yellow. url: https://www.home-assistant.
io/yellow (visited on Nov. 7, 2023) (cit. on p. 24).

[28] Home Assistant. Home assistant green. url: https://www.home-assistant.
io/green (visited on Nov. 7, 2023) (cit. on p. 24).

[29] CodeNotary. CAS. url: https://github.com/codenotary/cas (visited on
Sept. 7, 2023) (cit. on p. 33).

[30] Pinyaphat Tasatanattakool and Chian Techapanupreeda. «Blockchain: Chal-
lenges and applications». In: 2018 International Conference on Information
Networking (ICOIN). 2018, pp. 473–475. doi: 10.1109/ICOIN.2018.8343163
(cit. on p. 33).

[31] Di Battista Daniele. Ensuring integrity of MUD-enabled plug-ins for Smart
Home Gateways. Master’s thesis, Politecnico di Torino. 2023. url: https:
//webthesis.biblio.polito.it/28006/ (cit. on p. 33).

[32] Home Assistant. Analytics. November 2023. url: https://analytics.home-
assistant.io/statistics/ (visited on Nov. 25, 2023) (cit. on p. 36).

[33] Home Assistant. Bluetooth integration. url: https://www.home-assistant.
io/integrations/bluetooth (visited on Nov. 7, 2023) (cit. on p. 37).

[34] Electricity Maps. Co2Signal integration. url: https://www.home-assistant.
io/integrations/co2signal/ (visited on Nov. 7, 2023) (cit. on p. 37).

[35] Protezione Civile. DPC integration. url: https://github.com/caiosweet/
Home-Assistant-custom-components-DPC-Alert (visited on Nov. 7, 2023)
(cit. on p. 37).

[36] Home Assistant. File Editor add-on. url: https://github.com/home-
assistant/addons/tree/master/configurator (visited on Nov. 7, 2023)
(cit. on p. 37).

58

https://osmud.org
https://openwrt.org/
https://docs.kernel.org/security/self-protection.html
https://docs.kernel.org/security/self-protection.html
https://www.openhab.org/docs/
https://www.openhab.org/docs/
https://webthings.io/docs/
https://www.home-assistant.io/yellow
https://www.home-assistant.io/yellow
https://www.home-assistant.io/green
https://www.home-assistant.io/green
https://github.com/codenotary/cas
https://doi.org/10.1109/ICOIN.2018.8343163
https://webthesis.biblio.polito.it/28006/
https://webthesis.biblio.polito.it/28006/
https://analytics.home-assistant.io/statistics/
https://analytics.home-assistant.io/statistics/
https://www.home-assistant.io/integrations/bluetooth
https://www.home-assistant.io/integrations/bluetooth
https://www.home-assistant.io/integrations/co2signal/
https://www.home-assistant.io/integrations/co2signal/
https://github.com/caiosweet/Home-Assistant-custom-components-DPC-Alert
https://github.com/caiosweet/Home-Assistant-custom-components-DPC-Alert
https://github.com/home-assistant/addons/tree/master/configurator
https://github.com/home-assistant/addons/tree/master/configurator

BIBLIOGRAPHY

[37] Home Assistant. GitHub integration. url: https://www.home-assistant.
io/integrations/github/ (visited on Nov. 7, 2023) (cit. on p. 37).

[38] Daan Sieben. Google Photos HACS integration. url: https://github.com/
Daanoz/ha-google-photos (visited on Nov. 7, 2023) (cit. on p. 37).

[39] Home Assistant. Google Translate text-to-speech integration. url: https:
//www.home-assistant.io/integrations/google_translate (visited on
Nov. 7, 2023) (cit. on p. 37).

[40] Home Assistant Community Store. HACS. url: https://github.com/hacs/
integration (visited on Nov. 7, 2023) (cit. on p. 37).

[41] Emiliano M. HAM Radio Propagation HACS integration. url: https://
github.com/emics/ham_radio_propagation (visited on Nov. 7, 2023) (cit.
on p. 37).

[42] Home Assistant. Home Assistant Supervisor integration. url: https://www.
home-assistant.io/integrations/hassio (visited on Nov. 7, 2023) (cit.
on p. 37).

[43] INGV. INGV HACS integration. url: https://github.com/caiosweet/
Home-Assistant-custom-components-INGV (visited on Nov. 7, 2023) (cit.
on p. 37).

[44] Home Assistant. Input Boolean integration. url: https://www.home-assis
tant.io/integrations/input_boolean (visited on Nov. 7, 2023) (cit. on
p. 37).

[45] Home Assistant. Meteorologisk institutt (Met.no) integration. url: https:
//www.home-assistant.io/integrations/met (visited on Nov. 7, 2023)
(cit. on pp. 37, 42).

[46] Home Assistant. Mobile App integration. url: https://www.home-assistan
t.io/integrations/mobile_app (visited on Nov. 7, 2023) (cit. on p. 37).

[47] Home Assistant. OpenAI Conversations integration. url: https://www.home-
assistant.io/integrations/openai_conversation/ (visited on Nov. 7,
2023) (cit. on p. 37).

[48] Home Assistant. OpenWeatherMap integration. url: https://www.home-
assistant.io/integrations/openweathermap/ (visited on Nov. 7, 2023)
(cit. on p. 37).

[49] Home Assistant. Philips Hue integration. url: https://www.home-assista
nt.io/integrations/hue/ (visited on Nov. 7, 2023) (cit. on p. 37).

[50] Home Assistant. Radio Browser integration. url: https://www.home-assis
tant.io/integrations/radio_browser (visited on Nov. 7, 2023) (cit. on
p. 37).

59

https://www.home-assistant.io/integrations/github/
https://www.home-assistant.io/integrations/github/
https://github.com/Daanoz/ha-google-photos
https://github.com/Daanoz/ha-google-photos
https://www.home-assistant.io/integrations/google_translate
https://www.home-assistant.io/integrations/google_translate
https://github.com/hacs/integration
https://github.com/hacs/integration
https://github.com/emics/ham_radio_propagation
https://github.com/emics/ham_radio_propagation
https://www.home-assistant.io/integrations/hassio
https://www.home-assistant.io/integrations/hassio
https://github.com/caiosweet/Home-Assistant-custom-components-INGV
https://github.com/caiosweet/Home-Assistant-custom-components-INGV
https://www.home-assistant.io/integrations/input_boolean
https://www.home-assistant.io/integrations/input_boolean
https://www.home-assistant.io/integrations/met
https://www.home-assistant.io/integrations/met
https://www.home-assistant.io/integrations/mobile_app
https://www.home-assistant.io/integrations/mobile_app
https://www.home-assistant.io/integrations/openai_conversation/
https://www.home-assistant.io/integrations/openai_conversation/
https://www.home-assistant.io/integrations/openweathermap/
https://www.home-assistant.io/integrations/openweathermap/
https://www.home-assistant.io/integrations/hue/
https://www.home-assistant.io/integrations/hue/
https://www.home-assistant.io/integrations/radio_browser
https://www.home-assistant.io/integrations/radio_browser

BIBLIOGRAPHY

[51] Franck Nijhof. SSH & Web Terminal. url: https://github.com/hassio-
addons/repository/blob/master/ssh/DOCS.md (visited on Nov. 7, 2023)
(cit. on p. 37).

[52] Home Assistant. Sun integration. url: https://www.home-assistant.io/
integrations/sun (visited on Nov. 7, 2023) (cit. on p. 37).

[53] TeamTracker. Team Tracker HACS integration. url: https://github.com/
vasqued2/ha-teamtracker (visited on Nov. 7, 2023) (cit. on p. 37).

[54] Home Assistant. Timer integration. url: https://www.home-assistant.
io/integrations/timer (visited on Nov. 7, 2023) (cit. on p. 37).

[55] Home Assistant. World Air Quality Index (WAQI). url: https://www.home-
assistant.io/integrations/waqi/ (visited on Nov. 7, 2023) (cit. on p. 37).

[56] WorldTidesInfoCustom. WorldTidesInfoCustom HACS integration. url: htt
ps://github.com/jugla/worldtidesinfocustom (visited on Nov. 7, 2023)
(cit. on p. 37).

[57] Home Assistant. Z-Wave integration. url: https://www.home-assistant.
io/integrations/zwave_js (visited on Nov. 7, 2023) (cit. on p. 37).

[58] Home Assistant. Core. October 2023. url: https://github.com/home-
assistant/core (cit. on p. 38).

[59] Watrobski P. and Klosterman J. MUD-PD. December 2021. url: https:
//github/ustnistgov/MUD-PD (visited on Nov. 21, 2023) (cit. on p. 38).

[60] Jacobson Van, Leres Craig, and McCanne Steven. tcpdump. url: https:
//www.tcpdump.org/ (visited on Oct. 11, 2023) (cit. on p. 38).

[61] OpenWRT. Documentation. October 2023. url: https://openwrt.org/
docs/guide- user/firewall/firewall_configuration#rules (cit. on
p. 41).

[62] CiscoDevNet. MUD-Manager. July 2021. url: https://developer.cisco.
com/codeexchange/github/repo/CiscoDevNet/MUD-Manager/ (visited on
Nov. 18, 2023) (cit. on p. 51).

[63] Nist. MUD-Manager. May 2020. url: https://github.com/usnistgov/
nist-mud (visited on Nov. 18, 2023) (cit. on p. 51).

60

https://github.com/hassio-addons/repository/blob/master/ssh/DOCS.md
https://github.com/hassio-addons/repository/blob/master/ssh/DOCS.md
https://www.home-assistant.io/integrations/sun
https://www.home-assistant.io/integrations/sun
https://github.com/vasqued2/ha-teamtracker
https://github.com/vasqued2/ha-teamtracker
https://www.home-assistant.io/integrations/timer
https://www.home-assistant.io/integrations/timer
https://www.home-assistant.io/integrations/waqi/
https://www.home-assistant.io/integrations/waqi/
https://github.com/jugla/worldtidesinfocustom
https://github.com/jugla/worldtidesinfocustom
https://www.home-assistant.io/integrations/zwave_js
https://www.home-assistant.io/integrations/zwave_js
https://github.com/home-assistant/core
https://github.com/home-assistant/core
https://github/ustnistgov/MUD-PD
https://github/ustnistgov/MUD-PD
https://www.tcpdump.org/
https://www.tcpdump.org/
https://openwrt.org/docs/guide-user/firewall/firewall_configuration#rules
https://openwrt.org/docs/guide-user/firewall/firewall_configuration#rules
https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/MUD-Manager/
https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/MUD-Manager/
https://github.com/usnistgov/nist-mud
https://github.com/usnistgov/nist-mud

	List of Tables
	List of Figures
	List of Listings
	Introduction
	Background
	Internet of Things and Smart Homes
	Wireless IoT protocols
	KNX
	ZigBee
	Z-Wave

	Manufacturer Usage Description (MUD)
	Terminology
	MUD File Structure
	Exposing MUD URL

	osMUD
	OpenWRT

	Smart Home Gateways
	OpenHAB
	WebThings

	Home Assistant
	Home Assistant Installation
	Concepts and Terminology

	MUD Aggregator
	Extended MUD architecture
	Standard MUD integration
	Main software components

	MUD Aggregator with Notarization

	Experimental Setup
	Laboratory configuration and equipment
	Methods for discovering integrations' endpoints
	Source code
	Network analysis

	Manage custom endpoints in MUD files
	Reducing allowing communications
	Working on osMUD
	Port Range
	Limited number of manageable rules
	Compliance with RFC 8520

	Experiment results
	Experimental setup
	Security of software integrations
	Security of IP-based devices' integrations
	Security of non-IP-based devices' integrations
	Security of mixed devices' integrations
	Security of the SHG
	Testing the security of the SHG
	Common limitations

	Conclusion
	Future work
	Different MUD Manager architectures
	MUD Aggregator independent solution

	Acronyms
	Bibliography

