
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enhancing MUD policy management in a
Smart Home Gateway environment

Supervisors

Prof. Fulvio CORNO

Dott. Luca MANNELLA

Candidate

Emanuele LINTY BLANCHET

December 2023

To my family, for always being at the center of their concerns.
To my friends, for accompanying me in this beautiful journey.

To myself, for never giving up.

Alla mia famiglia, per essere sempre stato al centro delle loro preoccupazioni.
Ai miei amici, per avermi accompagnato in questa bellissima esperienza.

A me, per non aver mai mollato.

ii

Summary

The widespread use of Internet of Things (IoT) technology has brought unparalleled
ease and comfort, but it has also triggered significant worries about security and
privacy. The intricate and diversified nature of IoT ecosystems, encompassing
various device categories and manufacturers, necessitates the formation of proper
security measures to fend off potential threats.

One of the promising solutions to tackle this issue is the Manufacturer Usage
Description (MUD) standard. MUD enables manufacturers to specify the endpoints
that a MUD-enabled device can access, thus blocking all other unwanted connections.
Its implementation enhances security and privacy in IoT environments, ensuring
that devices only communicate with authorized endpoints.

This thesis aims to optimize a recently proposed approach to merge developer-
specified endpoints into a single gateway-level MUD file for devices and for software
plug-ins that lack inherent MUD support. With the ongoing expansion of IoT
ecosystems comes the possibility of overlapping rules and conflicts that need
addressing when merging several files. Our study tackles this challenge resolving
conflicts and optimizing the rules within the gateway-level MUD file.

Nonetheless, it is crucial that the rules are written accurately to enable the
MUD manager, which enforces the MUD policies, to process them without errors.
This requires a meticulous inspection to confirm that every policy adheres to a valid
structure while containing no forbidden elements according to MUD standards.
Ensuring the integrity of these policies is crucial for maintaining the security and
reliability of the IoT network.

The aim of this research is to produce a final MUD file that is conflict-free and
optimized to enhance rule application speed and efficiency. This thesis demonstrates
that, through optimization, the final number of rules is reduced, and with conflict
management, there are no rules that can be interpreted ambiguously, resulting in a
robust and secure framework for IoT device communication.

iii

Acknowledgements

And so, in the blink of an eye, five years have passed. It feels like yesterday when I
walked through the doors of Politecnico: the enthusiasm to learn was great,

accompanied by a slight fear of failure. Today, I can proudly say
that I have made it.

If I have reached this milestone, it is also thanks to those who have always
supported me. Dad, Grandma, Monica: you have been my everyday life, always

putting me first, and I will always be grateful to you.
A thank you also goes to all my friends, who have been an integral part of my
journey. You have always been there, and I will never forget all the beautiful

moments we spent together between Aosta and Turin.
I would also thank Professor Fulvio Corno and Doctor Luca Mannella for guiding

me in these final months and for always being available for me.
And finally, my thoughts go to the most beautiful star in the sky: Mom, you would

have been, and I am sure you are, proud of me.

iv

Acknowledgements

E così, in un batter d’occhio, sono trascorsi cinque anni. Mi sembra ieri quando
ho varcato le porte del Politecnico: la voglia di imparare era tanta, assieme però a

una leggera paura di non riuscirci. Invece oggi posso dire di avercela fatta.
Se ho raggiunto questo traguardo, è anche grazie a chi mi ha sempre sostenuto.

Papà, Nonna, Monica: siete stati la mia quotidianità, mi avete sempre messo in
primo piano e ve ne sarò sempre grato.

Un ringraziamento va anche a tutti i miei amici, parte integrante del mio percorso:
siete sempre stati presenti e mai dimenticherò tutti i bei momenti trascorsi con voi

tra Aosta e Torino.
Ringrazio poi il professor Fulvio Corno e il Dottor Luca Mannella, per avermi

guidato in questi mesi finali del mio percorso e per essere sempre stati disponibili
con me.

E infine i miei pensieri vanno alla stella più bella del firmamento: Mamma, saresti
stata, e sono sicuro che sei, fiera di me.

v

Table of Contents

List of Tables ix

List of Figures x

List of Listings xii

1 Introduction 1

2 Background 4
2.1 Policy-Based Management and Firewalls 4
2.2 Home Assistant . 9

2.2.1 Terminology . 9
2.2.2 Installation methods . 10

3 Introducing Manufacturer Usage Description (MUD) in Smart
Home Gateways 13
3.1 Manufacturer Usage Description . 13

3.1.1 Terminology . 14
3.1.2 MUD File Structure . 14
3.1.3 Functional Overview . 17

3.2 Extended MUD Architecture . 18
3.2.1 Workflow and main components 18
3.2.2 MUD Aggregator . 20
3.2.3 Limitations . 21

4 Proposed Approach 23
4.1 Validation . 23
4.2 Rule Relations . 28

4.2.1 Optimizations . 30
4.2.2 Conflicts . 35

vii

5 Experimental Results 43
5.1 Experimental setup . 43
5.2 Validation . 44
5.3 Optimizations . 51
5.4 Conflicts . 55
5.5 Discussion . 59

6 Conclusions 61

Bibliography 65

A Setup of MUD Aggregator 70

viii

List of Tables

2.1 Comparison between Home Assistant installation methods 12

5.1 Comparison results between mud.yang.go and
mud_json_validator.py: IoTOPIA files 44

5.2 Comparison results between mud.yang.go and
mud_json_validator.py: MUDGee files 47

5.3 Comparison time between mud.yang.go and
mud_json_validator.py: IoTOPIA files 49

5.4 Comparison time between mud.yang.go and
mud_json_validator.py: MUDGee files 51

5.5 Optimization results . 52
5.6 Conflict resolution results . 56

ix

List of Figures

1.1 Estimated annual revenue generated by IoT 1
1.2 Smart home network . 2

2.1 Flow of an ECA rule . 4
2.2 “Once” trigger type . 5
2.3 “Continuous” trigger type . 5
2.4 “Switched” trigger type . 6
2.5 Policy enforcement . 6

3.1 MUD functional overview . 18
3.2 Example of a possible Smart Home 19
3.3 Extended MUD-architecture . 20

4.1 Flowchart of the validation process 24
4.2 Rules “exactly matching” . 28
4.3 Rules “inclusively matching” . 28
4.4 Rules “partially matching” . 29
4.5 Rules “completely disjoint” . 29
4.6 Rules “correlated” . 29
4.7 Rules “inclusively matching” . 30
4.8 The smallest rule is removed . 31
4.9 Rules “exactly matching” . 31
4.10 One rule is removed . 32
4.11 Rules “partially matching” . 33
4.12 A unique rule remains . 33
4.13 Flowchart of rules anomalies resolution 36
4.14 Conflicted rules “partially matching” 37
4.15 Conflict resolved for rules “partially matching” (ATP and MSTP) . 39
4.16 Conflict resolved for rules “partially matching” (DTP and LSTP) . 40
4.17 Conflicted rules “inclusively matching” 42
4.18 Conflict resolved for rules “inclusively matching” (DTP and LSTP) 42

x

5.1 Two ACEs “exactly matching” . 55
5.2 “Exactly matching” conflict resolution 55
5.3 Conflicted rules . 59
5.4 Conflict resolved . 59

xi

List of Listings

3.1 Example of header fields of a MUD file 15
3.2 Example of from-device-policy 15
3.3 Example of to-device-policy . 16
3.4 Example of an Access Control Entry (ACE) 16
4.1 One field for each possible value type 25
4.2 Example of some fields that must be present in the MUD file 25
4.3 Defining operator enum . 26
4.4 Defining port field with a specified range 26
4.5 Defining destination-mac-address through regex 26
4.6 Example of control through regex 27
4.7 Example of two ACEs “partially matching” 34
4.8 Example of two ACEs “partially matching” optimized 35
4.9 Conflicted rules “partially matching” 37
4.10 Conflict resolved for rules “partially matching” (ATP and MSTP) . 39
4.11 Conflict resolved for rules “partially matching” (DTP and LSTP) . 40
5.1 from-ipv4-withingsbabymonitor-7 53
5.2 from-ipv4-withingssleepsensor-5 54
5.3 from-ipv4-blipcarebpmeter-3 . 57
5.4 from-ipv4-ihomepowerplug-2 . 57
A.1 Configuration code for integrating the MUD Aggregator in the

configuration.yaml file . 70
A.2 The __init__ method . 71
A.3 The update method . 71

xii

Chapter 1

Introduction

Year after year, the relevance of the Internet of Things (IoT) [1] continues to grow,
with significant implications for everyday use and the economy. It is estimated
that by 2030, the annual revenue generated by IoT will reach $621 billion, and this
market is projected to continue expanding [2] (see Figure 1.1).

Figure 1.1: Estimated annual revenue generated by IoT

As the name suggests, IoT refers to a network of connected devices that exchange
data and information over the internet. To be more specific, the IoT world can be
divided into 5 categories [3]: Internet of Things (IoT), Internet of Everything (IoE),
Internet of Nano Things (IoNT), Internet of Mission-Critical Things (IoMCT) and
Internet of Mobile Things (IoMT).

In all areas, security plays a critical role: if a device is compromised, the entire

1

Introduction

network in which it is located can be at risk, so it is necessary to pay attention to
this aspect in order to avoid loss of privacy and theft of personal information.

One possible way to protect internet-connected devices is by using the Man-
ufacturer Usage Description (MUD) standard [4]. This standard enables device
developers to specify the network endpoints, both local and global, with which
their products can interface and exchange data. The MUD approach utilizes white-
listing, wherein any communication that is not explicitly authorized is blocked.
Each MUD-enabled device has its own MUD file in which the manufacturer specifies
all network rules in JSON [5] format.

Given the assumption that we generally own and operate multiple electronic
devices, it is advantageous to have a unified method of managing them and
integrating their network policies.

To address the management challenge, a possible solution is Home Assistant [6].
Home Assistant is an open-source platform that enables users to manage all our
Internet of Things (IoT) devices through integrations. Integrations are software
components or plug-ins that act as a bridge from Home Assistant to the products.

Figure 1.2: Smart home network

To address the policies integration, we have utilized MUD Aggregator [7], a
custom integration designed for generating a gateway-level MUD file. This inte-
gration aggregates MUD snippets written by developers for integrations that do
not support MUD into a gateway-level MUD file. MUD snippets are a subset of
complete MUD files that follow the same syntax rules, but consist only of network
policies, excluding other fields.

2

Introduction

Merging MUD snippets into a single gateway-level MUD file can result in various
issues that this thesis aims to resolve:

• First of all, a MUD snippet or the generated MUD file may contain syntax
errors or values that are not permitted by the MUD standard.

• Then, since there are likely to be more MUD snippets, and thus more rules,
overlapping policies may occur.

The overlapping policies can be divided in two categories:

• They can take the same action by either allowing or denying the specified
network segment. Here, it is possible to perform optimization and to merge
them in a unique rule.

• Some of them permit connections, while others refuse them. Here, it is
necessary to resolve these conflicts, by choosing what is the action that the
user wants to take.

The objective of this thesis is to analyze the integration MUD Aggregator and
to modify it, by implementing the syntactical validation of MUD snippets and by
improving the aggregation of network rules.

The structure of this work is as follows:

• Chapter 2, “Background”: it highlights some preconceptions necessary to
better understand the following chapters. For instance this chapter discusses
the theory of policy management and the concept of smart home gateway,
with a particular focus on Home Assistant.

• Chapter 3, “Introducing Manufacturer Usage Description (MUD) in Smart
Home Gateways”: here, the MUD Standard is analyzed in depth, together
with how it’s integrated with Home Assistant.

• Chapter 4, “Proposed Approach”: in this chapter it is described how a MUD
snippet is validated and how we’ve improved the aggregation of the plug-ins’
policies, by optimizing and by resolving conflicts between those policies.

• Chapter 5, “Experimental Results”: here, all the results of the experiments
and the methods of achieving them are presented.

• Chapter 6, “Conclusions”: it wraps up this thesis, resuming the work done in
the previous chapters.

3

Chapter 2

Background

2.1 Policy-Based Management and Firewalls
Policy-Based Management (PBM) [8] is a comprehensive approach to managing and
enforcing rules, regulations, and best practices within an organization or system.
These policies serve as a set of of rules to administer, manage, and control access
to network resources.

The basic block of this system is the Policy Rule, that must be in Event Condition
Action (ECA) form [9]:

• on Event (a particular change in our system)

• if Condition (the necessary circumstances that define when the action should
be executed)

• do Action (the description of what is to be done)

Figure 2.1: Flow of an ECA rule

When an event occurs, the condition is triggered and this process can evolve in
three different ways:

4

Background

• Once (see Figure 2.2): the condition is evaluated continuously, until it is true,
then it is removed from the list of evaluations. The action is activated only
once, when the condition in true.

Figure 2.2: “Once” trigger type

• Continuous (see Figure 2.3): the condition is evaluated continuously and the
action is repeated until the condition in true.

Figure 2.3: “Continuous” trigger type

• Switched (see Figure 2.4): the condition is evaluated continuously and the
action is performed every time there is a switch between the condition true-false
and false-true.

These decisions mentioned before are enforced by the Policy Enforcement Point
(PEP) and they are taken by the Policy Decision Point (PDP) (see Figure 2.5),
which can be:

• An approach that focuses on evaluating the conditions of a policy rule from a
procedural perspective.

• An outcome-oriented approach that addresses the enforcement actions taken
when the conditions of a policy rule are met.

5

Background

Figure 2.4: “Switched” trigger type

Figure 2.5: Policy enforcement

To better understand the following chapters, it is important to analyze the filtering
policies, whose rules are composed of a condition (characterized by five network
fields: protocol type, source and destination IP [10] addresses, source and destination
ports) and an action (allow or deny).

The order of rules within a filtering policy is crucial. Rules are typically
processed from the top to the bottom, with the first matching rule taking precedence.
Therefore, the order of rules should be carefully arranged to ensure that the most

6

Background

specific or important rules are evaluated first. According to [11], we can have five
type of relationships between rules:

• They are “exactly matching” (EM): every field of Rx is the same of Ry.
Formally, RxREMRy iff

∀i : Rx[i] = Ry[i]
where i ∈ { protocol, src_ip, src_port, dst_ip, dst_port }

• They are “inclusively matching” (IM): they do not exactly match and every
field in Rx is a subset or equal to the corresponding field in Ry. Formally,
RxRIMRy iff

∀i : Rx[i] ⊆ Ry[i] and ∃j such that: Rx[j] /= Ry[j]
where i, j ∈ { protocol, src_ip, src_port, dst_ip, dst_port }

• They are “partially matching” (PM): at least one field in Rx is a subset or a
super-set or equal to the corresponding field in Ry and at least one field in Rx
is not a subset and not a super-set and not equal to the corresponding field in
Ry. Formally, RxRPMRy iff

∃i, j such that Rx[i] ▷◁ Rx[i] and Rx[j] /▷◁ Rx[j]
where ▷◁ ∈ {⊂, ⊃, =}, i, j ∈ { protocol, src_ip, src_port, dst_ip, dst_port },
i /= j

• They are “completely disjoint” (CD): every field of Rx is different to the one
in Ry. Formally, RxRCDRy iff

∀i : Rx[i] /▷◁ Ry[i]
where ▷◁ ∈ {⊂, ⊃, =}, i ∈ { protocol, src_ip, src_port, dst_ip, dst_port }

• They are “correlated” (C): some fields in Rx are subsets or equal to the
corresponding fields in Ry, and the rest of the fields in Rx are super-sets of
the corresponding fields in Ry. Formally, RxRCRy iff

∀i : Rx[i] ▷◁ Ry[i] and ∃j, k such that: Rx[j] ⊂ Ry[j] and Rx[k] ⊃ Ry[k]
where ▷◁ ∈ {⊂, ⊃, =}, i, j, k ∈ { protocol, src_ip, src_port, dst_ip,
dst_port }, j /= k

To address these ambiguities and ensure that each packet matches only one rule,
[12] suggests six different types of strategies:

• First Matching Rule (FMR): in an ordered list of rules, the action selected is
the first.

7

Background

• Last Matching Rule (LMR): in an ordered list of rules, the action selected is
the second.

• Allow Takes Precedence (ATP): in case of different actions, the allow rule is
preferred.

• Deny Takes Precedence (DTP): in case of different actions, the deny rule is
preferred.

• Most Specific Takes Precedence (MSTP): the most specific rule is selected,
the one that refers to the smaller number of ports.

• Least Specific Takes Precedence (LSTP): the least specific rule is selected, the
one that refers to the larger number of ports.

Filtering policies are an important part of firewall management, defining the
criteria that determine which network traffic is allowed or denied access to a network
or system. Firewalls act as the gatekeepers, implementing these policies to filter
incoming and outgoing data packets based on the condition mentioned before.
Filtering policies can be tailored to meet specific security objectives, whether it’s
restricting access to sensitive data, protecting against malware, or complying with
industry regulations. The key approaches that a firewall uses to protect a network
are [13]:

• Packet Filtering: packet filtering firewalls work at the IP level, examining
data packets as they pass through the firewall. This filtering method helps
prevent unauthorized access and mitigates certain attacks but may not offer a
robust defense against more sophisticated threats.

• Circuit Proxy: the second approach is to use a so-called circuit proxy. The
main difference between this approach and the packet filtering firewall is that
the former is the destination to which all communicators must address their
packets. Once access has been allowed, the circuit proxy replaces the original
address (its own) with the address of the intended recipient. The downside is
that it requires the processing resources needed to modify the header.

• Application Proxy: this approach involves the use of an application proxy
that understands the application protocol and data and is able to intercept
information. It also has the ability to authenticate users and determine what
type of data may pose a threat. The disadvantage is that users and client
need to be often reconfigured.

• Packet Inspection: it is a more advanced form of firewall inspection. It not
only examines packet headers but also analyzes the actual content of data
packets. This granular analysis allows firewalls to detect and prevent a wide
range of threats, such as malware and intrusion attempts.

8

Background

2.2 Home Assistant
Home Assistant [6] is an open-source home automation platform that allows to
control and automate various smart devices and services in our home. It serves as a
central hub for managing and integrating a wide range of Internet of Things (IoT)
devices, smart appliances, sensors, and software applications. The key features of
Home Assistant are:

• Device Compatibility: Home Assistant is designed to work with a wide variety
of smart devices, regardless of their brand or protocol. It supports popular
technologies like Zigbee [14], Z-Wave [15], Wi-Fi [16], Bluetooth [17], and
more.

• User-Friendly Interface: Home Assistant provides a web-based user interface
that makes it easy to set up and manage devices and automation rules.

• Customization: it allows for extensive customization, including the creation of
custom dashboards and user interfaces to suit our preferences and needs.

• Privacy and Local Control: Home Assistant emphasizes privacy and local
control. It aims to keep data within our own network and not rely on cloud
services for essential functions.

• Community and Development: Home Assistant has an active community
of developers and users. This community continually contributes to the
platform’s growth and offers support through forums, documentation, and
other resources.

2.2.1 Terminology
To better understand this chapter, here the most important parts of Home Assistant
are listed1:

• Dashboards: they are customizable pages where the information regarding
Home Assistant and regarding all our devices are displayed. There are two
default Dashboards: Overview and Energy. The former is one that we see
when we start Home Assistant and it gives the possibility to control the smart
home, the latter, as the name suggests, displays the energy consumption.

1https://www.home-assistant.io/getting-started/concepts-terminology/,
last visited on November 27th, 2023.

9

https://www.home-assistant.io/getting-started/concepts-terminology/

Background

• Integrations: pieces of software with which Home Assistant can integrate with
numerous third-party platforms and services, such as Amazon Alexa, Google
Assistant, IFTTT, and various cloud services. Once an integration has been
added, the hardware and/or the data are displayed in Home Assistant as
devices and entities.

• Add-Ons: add-ons are typically third-party applications that can run with
Home Assistant. Add-ons provide additional functionality, while integrations
connect Home Assistant to other applications.

• Devices and Entities: a device is usually a physical product that can be
controlled by Home Assistant through the corresponding integration. Entities
are functional components or attributes of a device and allow us to interact
with a specific feature of our product.

• Automations: they are a set of actions which can be set up to run automatically.
They are characterized by three elements: triggers (event that starts the
automations), conditions (that must occur so that the automations continue)
and actions (the real interaction with the device).

• Scripts: they are very similar to the automations, but they don’t have triggers,
so they can’t run unless they are used in automations.

• Scenes: they allow us to create predefined settings to apply to one ore more
devices simultaneously, without having to manually interact with each product.

2.2.2 Installation methods
Home Assistant offers to the user four installation methods2:

• Home Assistant Core: it is the most flexible installation, providing the basic
Home Assistant application without additional components or a supervisor. It
is designed for advanced users who prefer full control over system configuration
and do not require the additional services provided by the Supervisor. Users
who choose Home Assistant Core typically have a good understanding of
Python, virtual environments, and manual system configuration.

• Home Assistant Container: it allows users to run Home Assistant inside a
Docker container. It is fundamental that the Home Assistant Core is executed
inside a container. This type of installation provides a high level of flexibility
because Docker containers encapsulate the application and its dependencies,

2https://www.home-assistant.io/installation/, last visited on November 10th, 2023.

10

https://www.home-assistant.io/installation/

Background

making it easy to deploy across different systems. Users who choose this
method typically have experience with containerization technologies and pre-
fer the ability to manage Home Assistant independently of the underlying
operating system.

• Home Assistant Supervised: it is a middle-of-the-road option that combines
the flexibility of a containerized installation with additional supervisor features
for easier management. It runs Home Assistant inside a Docker container, but
includes a supervisor that simplifies the installation of add-ons and manages
system-related tasks. This type of installation is suitable for users who want
a balance between flexibility and a more user-friendly experience without the
constraints of a dedicated operating system.

• Home Assistant Operating System: it is a dedicated operating system designed
to run Home Assistant as the primary and only application on the hardware.
It provides a tight and secure environment that ensures Home Assistant has
direct access to the underlying system resources. This type of installation is
suitable for users who prefer a hands-off approach to system management, as
it provides a complete, integrated solution with less manual configuration.

In addition to these characteristics, the comparison between the installation methods
can be summarized as follows (see Table 2.1). From this table, it can be noticed
that the integrations are available for all installation types, while the add-ons are
only available for the Supervised installation method and for the HA Operating
System. This is the main reason why this thesis focuses only on integrations.

11

Background

Core Container Supervised HA OS

Automations ✓ ✓ ✓ ✓

Dashboards ✓ ✓ ✓ ✓

Integrations ✓ ✓ ✓ ✓

Blueprints ✓ ✓ ✓ ✓

Uses container × ✓ ✓ ✓

Supervisor × × ✓ ✓

Add-ons × × ✓ ✓

Backups ✓ ✓ ✓ ✓

Managed Restore × × ✓ ✓

Managed OS × × × ✓

Table 2.1: Comparison between Home Assistant installation methods

12

Chapter 3

Introducing Manufacturer
Usage Description (MUD) in
Smart Home Gateways

To improve the security of the Internet of Things (IoT), a promising standard is
the Manufacturer Usage Description (MUD). In this chapter, we present the main
features of this standard and its connection with the Smart Home Gateway that
we used in our approach, i.e., Home Assistant.

3.1 Manufacturer Usage Description
The Manufacturer Usage Description (MUD) [4] is a standard that has the goal of
improving the security of the Internet of Things (IoT), through the specification
of the part of the network with which each device can communicate. Any other
attempt at communication is blocked. In this chapter we will discuss that and we
will present the structure of a MUD file.

The main objectives of MUD are as follows:

• Reduce the threat surface, allowing only traffic explicitly permitted by the
manufacturer or by who writes the MUD file.

• Try to scale network policies to the increasing number of types of devices in
the network.

• Address some vulnerabilities faster than updating the system itself. This means
not replacing the update process, but adding an extra layer of protection.

13

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

• Define a standardized way for manufacturers to describe the intended commu-
nication behavior and requirements of their devices.

The MUD architecture consists of three blocks:

• A MUD URL useful for locating the product description.

• The MUD file description itself and how it can be interpreted.

• The network method to retrieve this description, i.e., the network protocol.

3.1.1 Terminology
In order to develop a more complete view of the standard MUD, in this section we
present some key words related to this topic.

• MUD file: a JSON [5] file containing YANG-modeled [18] rules to describe
the Thing network behavior.

• MUD file server: a web server where the MUD file is located.

• MUD manager: it has the task of retrieving the MUD file from the server and
of making changes to network elements, after having processed it.

• MUD URL: a URL [19] used by the MUD manager to retrieve the MUD file.

• Thing: the device that emits the URL.

• Manufacturer: who configures the Thing to emit the MUD URL and who
asserts a recommendation in a MUD file. The Manufacturer doesn’t correspond
always to who practically constructs the Thing, it can be a third party like a
systems integrator or a component provider.

3.1.2 MUD File Structure
The MUD file is a key element in this context, because it is the place where the
manufacturer, or who is in charge of doing that, specifies the network rules which
characterize the device. It is written in YANG-based JSON and the key fields are
listed in the following lines:

• mud-version: this field, as the name suggests, indicates the version of the
MUD specification (see Listing 3.1).

• last-update: it specifies the date and the time of when the MUD file was
generated or was modified for the last time (see Listing 3.1).

14

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

• cache-validity: this is the amount of time, in hours, that a network man-
agement station must wait since its last request before checking for an update
(see Listing 3.1).

• is-supported: it is a boolean that indicates whether the Thing is supported
or not. If it is not supported, it means that the manufacturer has no intention
of ever releasing an update to the MUD file (see Listing 3.1).

• mud-signature: it is the URL that points to the signature of the MUD file
(see Listing 3.1).

• systeminfo: it is a textual description of the device, useful for who doesn’t
know the product and wants a brief recap. It should not exceed 60 characters
(see Listing 3.1).

• documentation: here we can instead have all the information about the device,
it is an URL that points to the documentation related to the product and to
the MUD file (see Listing 3.1).

Listing 3.1: Example of header fields of a MUD file
1 "mud - version ":1,
2 "last -update":"2018 -12 -05 T19:42:01+00:00",
3 "cache - validity ":100,
4 "is - supported ":true,
5 "mud - signature ":
6 "https:// example .com/us/p/F7C029.p7s",
7 " systeminfo ":"This is an example device",
8 " documentation ":
9 "https:// example .com/doc/my - controller "

10

• from-device-policy: they describe the Access Lists (ACLs) present in the
MUD file for outgoing connections (see Listing 3.2).

Listing 3.2: Example of from-device-policy
1 "from -device -policy":{
2 "access -lists":{
3 "access -list":[
4 {
5 "name":"mud -87176 - v4fr"
6 }
7]
8 }

15

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

9 }
10

• to-device-policy: they describe the Access Lists (ACLs) present in the
MUD file for incoming connections (see Listing 3.3).

Listing 3.3: Example of to-device-policy
1 "to -device -policy":{
2 "access -lists":{
3 "access -list":[
4 {
5 "name":"mud -87176 - v4to"
6 }
7]
8 }
9 }

10

• Access Control Entry (ACEs): they are the key element of a MUD file. In
fact, they are the network rules to apply from the device to the rest of the
world and vice versa (see Listing 3.4).

Listing 3.4: Example of an Access Control Entry (ACE)
1 "ace":[
2 {
3 "name":"to -ipv4 -test -0",
4 " matches ":{
5 "ietf -mud:mud":{
6 "local - networks ":[
7 null
8]
9 },

10 "ipv4":{
11 " protocol ":17
12 },
13 "udp":{
14 "destination -port":{
15 " operator ":"eq",
16 "port":39402
17 }
18 }

16

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

19 },
20 " actions ":{
21 " forwarding ":"accept"
22 }
23 }
24]
25

3.1.3 Functional Overview

In the previous sections we have done a brief introduction of the Manufacturer
Usage Description (MUD) standard, highlighting some key terms and how a MUD
file is constructed. Now it is fundamental to understand how the entire process
works, how the rules are retrieved and how they are applied in our network.

Everything starts from the Thing, which exposes the MUD URL which points
to the MUD file related to the device, stored in a MUD server. To have a secure
communication and to retrieve correctly the file, the MUD URL must adhere to the
“HTTPS” [20] standard. There are three ways a device can broadcast the MUD
URL:

• DHCP [21] Option: The DHCP client sends a DHCP Request message includ-
ing the MUD URL.

• X.509 [22] Constraint: The MUD URL is embedded in an X.509 certificate. It
is an extension and it is non-critical. There are several ways to communicate
this certificate, one of which is the Tunnel Extensible Authentication Protocol
(TEAP) [23].

• Link Layer Discovery Protocol (LLDP) [24]: In this case, the MUD URL is
included in a LLDP frame.

At this point, the router collects the MUD URL and forwards it to the MUD
Manager, which can be part of the router or it can be an external entity. The
MUD Manager is in charge of contacting the MUD File Server and of retrieving the
MUD file. Finally, the device’s policies are enforced: there isn’t a default way to
do this, it isn’t specified in the standard. For example, the MUD Manager osMUD
[25] uses iptables [26], a powerful and flexible program used for configuring and
managing the packet filtering rules of the Linux kernel’s [27] built-in firewall.

17

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

Figure 3.1: MUD functional overview

3.2 Extended MUD Architecture
To make MUD as effective as possible, it is important that all connected Things
in a Smart Home follow the MUD standard. However, since currently not all
devices are MUD-enabled by default, a recent study proposed a way to extend this
capability for Smart Home Gateways. This section presents the characteristics of
this work, along with the main components involved in generating, obtaining, and
enforcing the rules described in a MUD file [28].

3.2.1 Workflow and main components
To extend the benefits of MUD to devices that are not MUD-enabled by default,
the proposed solution [7] attaches a MUD snippet to the device plug-ins. A MUD
snippet is written by plug-in developers and is a subset of the full MUD file: it
follows the same syntax and it contains only the lists of Access Control Entries
(ACEs), without the other keys associated with a full MUD file. In other words, it
contains only the rules related to the plug-in.

For this solution to be successful, it requires an architecture capable of dynami-
cally generating a MUD file from the MUD snippets of the plug-ins and enforcing
the specified rules. The main components are:

• OpenWrt [29], an open-source, Linux-based operating system primarily de-
signed for embedded devices, such as routers and access points.

• osMUD [25], an open-source MUD manager developed to be deployed on an

18

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

Figure 3.2: Example of a possible Smart Home

OpenWrt-based router.

• Home Assistant, an open-source Smart Home Gateway.

• MUD Aggregator1, a Home Assistant integration built to create and expose a
gateway-level MUD file.

• The gateway-level MUD file, a MUD file that contains all the rules included
in the different MUD snippets of the plug-ins.

• The MUD policies, the requirements specified by developers in the MUD
snippets.

Those components and their interactions are graphically described in figure 3.3.
When Home Assistant starts, it runs all installed integrations and looks for MUD
snippets associated with them. Each time a MUD snippet is found, its ACEs are
collected and aggregated into the gateway-level MUD file. When all integrations
are analyzed and the MUD file is complete, the MUD integration signs it with a
private key to guarantee that the file came from the Smart Home Gateway. The
aggregated MUD file is finally stored in a dedicated folder (step 1).

1https://github.com/LucaMannella/HomeAssistant-MUD-Aggregator,
last visited on November 29th, 2023.

19

https://github.com/LucaMannella/HomeAssistant-MUD-Aggregator

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

At this point the MUD file is ready to be exposed. This is done by the MUD
integration by sending a DHCP Request message containing the MUD URL to the
OpenWrt router where the osMUD MUD manager is running (currently osMUD
only supports DHCP among all notification methods). This URL points to a web
server able to expose the gateway-level MUD file (steps 2 and 3).

Finally, osMUD gets the MUD file (steps 4 and 5), verifies the signature and
starts enforcing all the policies written in it: this is done through iptables, the
default firewall of OpenWrt (step 6).

Every time that a new integration is added, the process should restart in order
to keep the aggregated MUD file updated (step 7).

Figure 3.3: Extended MUD-architecture

3.2.2 MUD Aggregator
The workflow of MUD Aggregator was described in 3.2.1. This section further
describes the software components of this integration, practically analyzing how it
works and how it is built:

• The __init__ function initializes the MUD Aggregator object. This initializa-
tion is based on some configuration parameters. Since Home Assistant has
different versions, some folder paths may be different.

• The generate_mud_file method is in charge of generating the gateway-level
MUD file. The root of this MUD file is the MUD draft (i.e., MUD skeleton),
which contains all the header fields of a valid MUD file (e.g., mud-version,
mud-url, cache-validity, is-supported, systeminfo, mfg-name, last-

20

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

update, documentation, and model-name), to which all the rules of the MUD
snippets are added.

– If a MUD file has already been created and the new one is different from
the previous one, the timestamp inside last-update is set to the new
value and the MUD file is signed again.

• The function _add_mud_rules adds the Access Control Lists (ACLs), which
are the containers of the policies, to the gateway-level MUD file.

• The methods _add_rules_from_manifest and _add_rules_from_folders
are in charge of searching and retrieving the MUD snippets. The former reads
the files manifest.json of every integration and looks if the presence of the
snippet is declared. The latter scans all custom and standard component
directories anyway.

• All rules found in the MUD snippets are added to the MUD draft using the
_add_rules_to_draft function. This method uses a couple of functions (e.g.,
_add_policies_if_not_exist and _add_acls_if_not_exist) to check if
the policies or ACLs to be added do not already exist in the MUD file.

• Finally, the gateway-level MUD is signed. The last step is to expose it. The
function responsible for this is expose_mud_file (here the method of the
exposure is selected).

3.2.3 Limitations
Currently the merging of different MUD snippets by the integration MUD Aggregator
has some limitations, which I addressed in this thesis.

First, because a MUD snippet is written by a developer, manually or with the
help of a tool (e.g., MUD Maker [30]), it may contain syntax or semantic errors. A
badly written MUD snippet is a JSON file that is incorrectly formatted or has a key
or value that is not allowed by the MUD standard. If a MUD file contains errors,
there could be problems enforcing the gateway-level MUD file, so it is essential to
validate the syntax and semantics of the file.

Second, some Access Control Entries (ACEs) might overlap, that is, they might
refer to the same endpoints. There could be two scenarios for this:

• The action specified by the ACEs may be the same. In this case, it is possible
to optimize the rules and merge them into one.

21

Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways

• The action specified by the ACEs could be different. Here, instead, it is
necessary to resolve this ambiguity and decide which action is chosen.

In Chapter 4, we describe how we addressed these three limitations, while
Chapter 5 presents the results of the experiments conducted on the proposed
approach.

22

Chapter 4

Proposed Approach

This chapter presents the proposed approach to address the three main problems
that this thesis aims to solve: the validation of the syntax and semantics of MUD
files and MUD snippets, the optimization between overlapping rules with the
same action, and the conflict resolution between overlapping rules with different
actions. For the first problem, mud_json_validator.py has been developed: it is
responsible for this and has been incorporated into the MUD Aggregator integration.
Instead, for the second and third problems, the MUD Aggregator integration itself
has been modified and improved.

4.1 Validation
Since the purpose of this thesis is to create a unique MUD file combining a series
of MUD snippets, a fundamental step is to check the syntax, the semantics, and
the content of each piece of code. The validation is applied to both MUD files and
MUD snippets, and depending on the type, a different type of check is done. This
control is performed at three different stages (see Figure 4.1):

• When the MUD draft (i.e., MUD skeleton) is loaded.

– It is the root of the generated MUD file and it is fundamental that is
written correctly: if there is an error, the gateway-level MUD file isn’t
generated and the process is stopped.

• When a MUD snippet is found.

– Here we have implemented two different strategies in case of an error, the
wrong MUD snipped can be skipped (and the gateway-level MUD file is
generated without including it), or the entire process is stopped (no MUD

23

Proposed Approach

file is exposed). This behavior is configurable through a parameter (0 for
the first option, 1 for the second).

• When the gateway-level MUD file is generated.

– To control if the integration has correctly merged the various MUD
snippets together with the MUD skeleton.

Figure 4.1: Flowchart of the validation process

In our implementation, the script responsible for the validation process is
mud_json_validator.py, which contains a JSON schema that is used to analyze
the structure of a given MUD snippet or MUD file: the only thing to do is to set
the parameter fileType to snippet for the first option, to file for the second.
In this way, it is possible to perform validation at all three mentioned steps using
the same piece of code.

Most of the schema is the same for both: a MUD snippet is, in fact, a subset
of a MUD file and it contains only the policies to be applied from the plug-in
and to the plug-in. The mudFileSchema, in addition to all the controls per-
formed by the mudSnippetSchema, checks the presence and analyze the values
of the following properties of the ietf-mud:mud object, which are the head-
ers of a MUD File: mud-version, mud-url, last-update, is-supported (that
are also mandatory), mud-signature, cache-validity, sys-teminfo, mfg-name,
documentation, firmware-rev, software-rev, model-name and extensions.

24

Proposed Approach

These fields are specified in the IETF-MUD YANG Module contained in the RFC
8520 [4], that describes the valid structure of a MUD file, by specifying which keys
are valid and which keys are mandatory or optional. In addition, the IETF-MUD
YANG Module specifies other rules and constraints, all of which are replicated in
our JSON schema.

It is also possible to decide if the schema must exclude the presence of addi-
tional keys if the parameter allowedAdditionalProperties is false: this type
of control, besides this function, is very useful to detect typography errors because,
if a property is badly written, it results as an extra one, not present in the MUD
schema.

The main tasks of the script mud_json_validator.py are:

• To check the type of each key in the MUD file or MUD snippet (see Listing
4.1): the possible values are five (array, number, string, boolean, and object).

Listing 4.1: One field for each possible value type
1 "ietf -acldns:dst - dnsname ":{
2 "type":"string"
3 },
4 " protocol ":{
5 "type":"number"
6 },
7 "access -list":{
8 "type":"array"
9 },

10 "is - supported ":{
11 "type":" boolean "
12 },
13 "ietf -mud:mud":{
14 "type":"object"
15 }
16

• To specify that some keys must be mandatory (see Listing 4.2): this is done
through the attribute required.

Listing 4.2: Example of some fields that must be present in the MUD file
1 " required ": ["name", " matches ", " actions "]
2

25

Proposed Approach

• To specify that some keys (e.g., the keys operator, ethertype, forwarding,
logging, and type) can assume only certain values, specified in an array
called enum (see Listing 4.3).

Listing 4.3: Defining operator enum
1 " operator ": {
2 "type": "string",
3 "enum": ["eq","lte","gte","neq","range"]
4 }
5

• For some keys of type number (e.g., port, lower-port, upper-port, port,
and cache-validity) it is possible to specify a range of possible values using
the attributes minimum and maximum (see Listing 4.4).

Listing 4.4: Defining port field with a specified range
1 "port": {
2 "type": "number",
3 " minimum ": 0," maximum ": 65535
4 }
5

• For the extension array, to check its size and to give a minimum and a
maximum length through the attributes minItems and maxItems (see Listing
4.5).

Listing 4.5: Defining destination-mac-address through regex
1 "type": "array",
2 "items": {"type": "string"},
3 " minItems ": 1, " maxItems ": 40
4

• Using regular expressions (regex), to verify if destination-ipv4-network and
source-ipv4-network are IPv4 addresses, if destination-ipv6-network
and source-ipv6-network are IPv6 addresses, if mud-url, mud-signature,
and documentation are URLs, and if the key destination-mac-address is
a MAC [31] address (see Listing 4.6).

26

Proposed Approach

Listing 4.6: Example of control through regex
1 "destination -mac - address ": {
2 "type": "string",
3 " pattern ":
4 "^[0-9a-fA -F]{2}(:[0-9a-fA -F]{2}){5}$"
5 }
6

• As regards ports, to control the value of the key operator. If it is range
the script verifies the presence of the keys upper-port and lower-port and
excludes the presence of the key port, otherwise, if it is eq (equal), lte (lower
than or equal), gte (greater than or equal) or neq (not equal) it verifies the
opposite check.

• To control if the name of every Access Control List (ACL) contained in the
objects from-device-policy and to-device-policy is then present and is
the same to the name of one of the aces (Access Control Entries).

During the implementation of this schema, I came across a tool named mud.yang
.go [32] that has the task of analyzing and validating MUD files against the YANG
specification for MUDs. This tool has so the same purpose of the JSON schema
presented in this work, but it presents the problem that it performs some wrong
controls, leading to unexpected outcomes, e.g. it doesn’t accept range as valid value
for enum field Operator. In addition, since mud_json_validator.py is written in
Python [33] and mud.yang.go is written in Go [34], the former guarantees better
compatibility with the MUD Aggregator integration and better performance in
terms of speed.

Then, the other difference between mud.yang.go and the JSON schema is that
the former only allows the latest version of the MUD RFC, the latter also accepts
earlier versions [35], since a significant number of MUD files are compatible with
them, so:

• I allowed the possibility of naming the part of the MUD file where there
are the Access Control Lists (ACLs) in two different and equivalent ways:
ietf-access-control-list:acls and ietf-access-control-list:
access-lists, mud.yang.go allowed only the former.

• I allowed the possibility of naming the ethernet Access List (ACL) type in
two different and equivalent ways: eth-acl-type and ethernet-acl-type,
the tool allowed only eth-acl-type.

27

Proposed Approach

• I allowed the possibility of writing the ethertype in decimal and in hexadeci-
mal, the tool allowed only decimal values.

4.2 Rule Relations
In the context of firewall, as mentioned in Section 2.1, the relations among rules
can assume five different forms and they are represented using Euler-Venn [36]
diagrams from figure 4.2 to 4.6:

• They are “exactly matching” (EM): every field of Rx is the same of Ry (see
Figure 4.2).

Figure 4.2: Rules “exactly matching”

• They are “inclusively matching” (IM): they do not exactly match and every
field in Rx is a subset or equal to the corresponding field in Ry (see Figure
4.3).

Figure 4.3: Rules “inclusively matching”

• They are “partially matching” (PM): at least one field in Rx is a subset or a
super-set or equal to the corresponding field in Ry and at least one field in Rx
is not a subset and not a super-set and not equal to the corresponding field in
Ry (see Figure 4.4).

28

Proposed Approach

Figure 4.4: Rules “partially matching”

• They are “completely disjoint” (CD): every field of Rx is different to the one
in Ry (see Figure 4.5).

Figure 4.5: Rules “completely disjoint”

• They are “correlated” (C): some fields in Rx are subsets or equal to the
corresponding fields in Ry, and the rest of the fields in Rx are super-sets of
the corresponding fields in Ry (see Figure 4.6).

Figure 4.6: Rules “correlated”

Talking about MUD and reasoning about possible optimizations and conflicts, only
the first three relations can happen. If they are “completely disjoint”, since that
every field is different, there isn’t the necessity to optimize or to resolve conflicts.
The last option instead can happen only when we specify an address range and a
port range, but since in the MUD rules is not possible to specify an address range,
this case is not taken into account.

29

Proposed Approach

Since that the MUD rules are usually translated in firewall rules and given the
theorem 1 of [11] that says, “Any two k-tuple filters in a firewall policy are related
by one and only one of the defined relations”, we can affirm that only one of the
previously described option can occur, regardless of the order of the couple. This
is an important condition to guarantee that the algorithm always acts in the same
way.

4.2.1 Optimizations
The optimization is evident and relevant in two cases:

• When the policies parameters are the same, i.e., both rules specify the same
IP [10] version (e.g., IPv4) with the same endpoint (an IP address or a URL)
and both specify the same transport protocol [37] (e.g., TCP [38]) with a
specified port value.

• When both rules specify the same IP version (e.g., IPv4) with the same
endpoint, but only one rule specifies the transport protocol (e.g., UDP [39])
with a specified port value.

In the second case, we have two rules “inclusively matching”: the address is the
same, but the transport protocol for R1 (the one in blue) is “ANY” with port
“ANY”, for R2 (the one in red) is “TCP” with ports from X to Y (see Figure 4.7).
It is a demonstrable fact that R1 is a super-set (see Section 4.2) of R2 and that
the packets that match R2 will always match also R1, so in this case R2 can be
removed (see Figure 4.8).

0 5k 10k 20k X 30k 40k 50k Y 65535
Port numbers

UDP
TCP

IPv4 | foo.com | UDP

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.7: Rules “inclusively matching”

30

Proposed Approach

0 5k 10k 20k 30k 40k 50k 65535
Port numbers

UDP
TCP

IPv4 | foo.com | UDP

IPv4 | foo.com | TCP

Figure 4.8: The smallest rule is removed

In the first case, that is when both rules specify the same IP version with the
same endpoint and same transport protocol with a specified port value, we can
have two rules “exactly matching”, “inclusively matching” or “partially matching”.

• In the first instance, all the parameters are equal and all the packets that
match R1 (the one in red) they match also R2 (the one in blue) and vice versa:
the IP protocols, the endpoints, the transport protocols and the port numbers
are all the same (see Figure 4.9). So, one rule can be removed (see Figure
4.10).

0 5k 10k 20k X 30k 40k 50k Y 65535
Port numbers

UDP
TCP

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.9: Rules “exactly matching”

31

Proposed Approach

0 5k 10k 20k X 30k 40k 50k Y 65535
Port numbers

UDP
TCP

IPv4 | foo.com | TCP

Figure 4.10: One rule is removed

• In the other instances, we can perform an optimization only if the port numbers
are related: it means that some ports need to be in common, because in a
MUD policy it is possible to specify only one interval of ports and it is not
correct to merge different disjoint ranges in a unique rule.
Assuming that R1 and R2 have the same endpoint, the same transport protocol,
and that R1 (the one in red) covers the ports from W to Y and R2 (the one in
blue) from X to Z, with W<X<Y<Z, we can demonstrate that some packets
match only R1, some packets only R2, and some packets both rules (see Figure
4.11 and Listing 4.7). Given that the decision to take is the same, it is possible
to merge R1 and R2 in a unique rule, named R3 (the one in green) that has
the same endpoint, the same transport protocol, and that covers the ports
from W to Z. All and only the packets belonging to R1 and R2 will match
this rule (see Figure 4.12 and Listing 4.8).

Now it’s time to go into more detail about how the algorithm works and what
kinds of operations it performs.

The MUD snippets of the integrations, standard or custom, are retrieved and
analyzed one by one: each Access List (ACL) found is taken and appended to the
MUD draft (i.e., MUD skeleton), the starting point of the gateway-level MUD file.

This is where the optimization process begins: starting with the second Access
Control Entry (ACE), each ACE is compared to all previous ACEs. For each
comparison, if the two rules don’t match “exactly”, “inclusively”, or “partially”, it
means that no optimization could be performed, so the iteration continues: when
all the rules have been compared and none of them matches any of these three

32

Proposed Approach

0 5k 10k W 20k X 30k Y 40k 50k Z 65535
Port numbers

UDP
TCP

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.11: Rules “partially matching”

0 5k 10k W 20k X 30k Y 40k 50k Z 65535
Port numbers

UDP
TCP

IPv4 | foo.com | TCP

Figure 4.12: A unique rule remains

relationships, the ACE in question is preserved and control passes to the next ACE.

Instead, whenever there is an opportunity to work on the two rules, as shown
in Figures 4.7, 4.9, and 4.11, the algorithm performs the optimization process:
as can be seen in all three figures, when there is a matching relation, only one
ACE is kept. The conserved ACE may be the original ACE if the relation is
“exactly matching” or “inclusively matching”, or it may be modified if the relation
is “partially matching”. In the first two cases, the remaining rule includes all ports
of the other rule, so it remains intact. Instead, in the latter case (see Listing 4.7),
we have to create a new ACE that includes the ports of both ACEs: the strategy
that I have implemented consists in modifying the preserved ACE by including all
the necessary ports and reporting it in the name of the ACE with the prefix opt-
(see Listing 4.8).

33

Proposed Approach

Listing 4.7: Example of two ACEs “partially matching”
1 {
2 "name":"from -ipv4 -test -0",
3 " matches ":{
4 "ipv4":{
5 " protocol ":6,
6 "ietf -acldns:dst - dnsname ":"foo.com"
7 },
8 "tcp":{
9 "destination -port":{

10 " operator ":"range",
11 "lower -port":15000,
12 "upper -port":35000
13 }
14 }
15 },
16 " actions ":{
17 " forwarding ":"accept"
18 }
19 },
20 {
21 "name":"from -ipv4 -test -1",
22 " matches ":{
23 "ipv4":{
24 " protocol ":6,
25 "ietf -acldns:dst - dnsname ":"foo.com"
26 },
27 "tcp":{
28 "destination -port":{
29 " operator ":"range",
30 "lower -port":25000,
31 "upper -port":55000
32 }
33 }
34 },
35 " actions ":{
36 " forwarding ":"accept"
37 }
38 }
39

34

Proposed Approach

Listing 4.8: Example of two ACEs “partially matching” optimized
1 {
2 "name":"opt -from -ipv4 -test -0",
3 " matches ":{
4 "ipv4":{
5 " protocol ":6,
6 "ietf -acldns:dst - dnsname ":"foo.com"
7 },
8 "tcp":{
9 "destination -port":{

10 " operator ":"range",
11 "lower -port":15000,
12 "upper -port":55000
13 }
14 }
15 },
16 " actions ":{
17 " forwarding ":"accept"
18 }
19

The discarded ACE could be the ACE previously inserted or the ACE currently
being compared with the old ACEs. In order not to change the behavior of the
algorithm depending on whether the first or the second ACE is kept, after each
optimization the process is restarted and all ACEs are compared again.

4.2.2 Conflicts
After having optimized all the rules of the gateway-level MUD file, next step to
perform is to resolve conflicts. Conflicts can happen when one of the first three
conditions in Section 4.2 is verified and the decision to take (allow or deny) is
different.

A crucial point is to ensure the determinism of the output, so that in any order
the rules are processed the generated MUD file will be the same. In my algorithm,
this is done sorting the rules, according to the port range, before starting the
conflict resolution process. The user can specify four different strategies:

• Allow Takes Precedence (ATP): in case of contradicting actions that are
simultaneously activated the algorithm enforces the Allow rule over the Deny
one.

• Deny Takes Precedence (DTP): in case of contradicting actions that are

35

Proposed Approach

simultaneously activated the algorithm enforces the Deny rule over the Allow
one.

• Most Specific Takes Precedence (MSTP): in case two conflicting rules are
applied, the most specific rule is the one that takes precedence.

• Least Specific Takes Precedence (LSTP): in case two conflicting rules are
applied, the less specific rule is the one that takes precedence.

In the first three cases, the policies are sorted from the ones with the smaller port
range to the ones with the highest range. For the “Least Specific Takes Precedence”
option the order is reversed because the relevance is given to the widest rules. Every
time a conflict is resolved, the rules are ordered again and the conflict resolution
process restarts. When the process is complete and at least one conflict has been
resolved, the algorithm repeats the optimization and conflict resolution until no
more conflicts are found (see Figure 4.13).

Figure 4.13: Flowchart of rules anomalies resolution

When a conflict is found, the resolution is applied only to the part of the rule
where there is an overlap. The rule modified it is now recognizable through the
prefix conf-. For example, if two rules are “inclusively matching”, the rule that
represents the super set is divided in two or three parts. The Figure 4.14 and the
Listing 4.9 illustrate an example of a potential conflict.

36

Proposed Approach

0 5k 10k W 20k X 30k Y 40k 50k Z 65535
Port numbers

UDP
TCP

1 2 3

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.14: Conflicted rules “partially matching”

Listing 4.9: Conflicted rules “partially matching”
1 {
2 "name":"from -ipv4 -test -0",
3 " matches ":{
4 "ipv4":{
5 " protocol ":6,
6 "ietf -acldns:dst - dnsname ":"foo.com"
7 },
8 "tcp":{
9 "destination -port":{

10 " operator ":"range",
11 "lower -port":15000,
12 "upper -port":35000
13 }
14 }
15 },
16 " actions ":{
17 " forwarding ":"accept"
18 }
19 },
20 {
21 "name":"from -ipv4 -test -1",
22 " matches ":{
23 "ipv4":{
24 " protocol ":6,
25 "ietf -acldns:dst - dnsname ":"foo.com"

37

Proposed Approach

26 },
27 "tcp":{
28 "destination -port":{
29 " operator ":"range",
30 "lower -port":25000,
31 "upper -port":55000
32 }
33 }
34 },
35 " actions ":{
36 " forwarding ":"reject"
37 }
38 }
39

The parts of the first rule that aren’t in common with the second rule remain intact
(segments 1 and 3); the other part (segment 2) is subject to the conflict resolution
process, depending on the option chosen by the user. The segments 1 and 3 are
not changed and, assuming that the rule in red has the “accept” action and that
the blue has the “deny” action, the segment 2 could become:

• If the option chosen is ATP, it becomes part of the red rule, because this rule
is the permissive one (see Figure 4.15 and Listing 4.10).

• If the option chosen is DTP, it becomes part of the blue rule, because this
rule is the prohibitive one (see Figure 4.16 and Listing 4.11).

• If the option chosen is MSTP, it becomes part of the red rule, because this
rule is the smallest (see Figure 4.15 and Listing 4.10).

• If the option chosen is LSTP, it becomes part of the blue rule, because this
rule is the widest (see Figure 4.16 and Listing 4.11).

In this way, we interact only with the parts of the rules subject to a conflict. For
the other parts, as can be seen in Figures 4.15 and 4.16, the segments not involved
in the conflict resolution process are not modified, and the network accessible before
and after this operation is the same.

38

Proposed Approach

0 5k 10k W 20k X 30k Y 40k 50k Z 65535
Port numbers

UDP
TCP

1+2 3

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.15: Conflict resolved for rules “partially matching” (ATP and MSTP)

Listing 4.10: Conflict resolved for rules “partially matching” (ATP and MSTP)
1 {
2 "name":"from -ipv4 -test -0",
3 " matches ":{
4 "ipv4":{
5 " protocol ":6,
6 "ietf -acldns:dst - dnsname ":"foo.com"
7 },
8 "tcp":{
9 "destination -port":{

10 " operator ":"range",
11 "lower -port":15000,
12 "upper -port":35000
13 }
14 }
15 },
16 " actions ":{
17 " forwarding ":"accept"
18 }
19 },
20 {
21 "name":"conf -from -ipv4 -test -1",
22 " matches ":{
23 "ipv4":{
24 " protocol ":6,
25 "ietf -acldns:dst - dnsname ":"foo.com"

39

Proposed Approach

26 },
27 "tcp":{
28 "destination -port":{
29 " operator ":"range",
30 "lower -port":35000,
31 "upper -port":55000
32 }
33 }
34 },
35 " actions ":{
36 " forwarding ":"reject"
37 }
38 }
39

0 5k 10k W 20k X 30k Y 40k 50k Z 65535
Port numbers

UDP
TCP

1 2+3

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.16: Conflict resolved for rules “partially matching” (DTP and LSTP)

Listing 4.11: Conflict resolved for rules “partially matching” (DTP and LSTP)
1 {
2 "name":"conf -from -ipv4 -test -0",
3 " matches ":{
4 "ipv4":{
5 " protocol ":6,
6 "ietf -acldns:dst - dnsname ":"foo.com"
7 },
8 "tcp":{
9 "destination -port":{

10 " operator ":"range",

40

Proposed Approach

11 "lower -port":15000,
12 "upper -port":25000
13 }
14 }
15 },
16 " actions ":{
17 " forwarding ":"accept"
18 }
19 },
20 {
21 "name":"from -ipv4 -test -1",
22 " matches ":{
23 "ipv4":{
24 " protocol ":6,
25 "ietf -acldns:dst - dnsname ":"foo.com"
26 },
27 "tcp":{
28 "destination -port":{
29 " operator ":"range",
30 "lower -port":25000,
31 "upper -port":55000
32 }
33 }
34 },
35 " actions ":{
36 " forwarding ":"reject"
37 }
38 }
39

It is important to note that there is only one case in which the number of rules
can increase during the conflict resolution process. This happens when two rules
are “inclusively matching” and the winning rule is the smaller one (see Figure 4.17).
In this case, the largest rule is split into two parts (the ones not involved in the
conflict), increasing the number of rules (see Figure 4.18). In all other situations,
the number of rules remains the same.

41

Proposed Approach

0 5k 10k W 20k X 30k Y 40k 50k Z 65535
Port numbers

UDP
TCP

1 2 3

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.17: Conflicted rules “inclusively matching”

0 5k 10k W 20k X 30k Y 40k 50k Z 65535
Port numbers

UDP
TCP

1 2 3

IPv4 | foo.com | TCP
IPv4 | foo.com | TCP

Figure 4.18: Conflict resolved for rules “inclusively matching” (DTP and LSTP)

42

Chapter 5

Experimental Results

This chapter presents the results of the analysis and of the management of MUD
(Manufacturer Usage Description) files. The syntactic validation of MUD snip-
pets, and the complex task of optimizing and resolving conflicts between rules,
are explored in this study. The purpose of this chapter is to demonstrate the
improvements that have resulted from this work.

Our approaches were carefully designed and executed to validate the solution
presented, ensuring practicality and effectiveness.

In the forthcoming sections, we shall examine our experimental methodology,
the obtained results, and the potential implications of our findings, presenting a
comprehensive overview of the contributions made to the MUD ecosystem.

5.1 Experimental setup
In this section, the experimental setup configured in the laboratory of “Politecnico
di Torino” is described. The setup consists of two Raspberry Pi 3 Model B v1.21:

• The first is equipped with OpenWRT (version 17.01.6) and osMUD; specifically
a customized version created starting from version 0.2.0: it has the ability to
handle a larger number of MUD snippets and to accept the range port option
in MUD files.

• The second board is equipped with Home Assistant; specifically with Home As-
sistant OS 10.3, Home Assistant Core 2023.7.5 and Home Assistant Supervisor
2023.07.3.

1https://www.raspberrypi.com/products/raspberry-pi-3-model-b/,
last visited on November 27th, 2023.

43

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

Experimental Results

5.2 Validation
A crucial point of this thesis is the validation of the syntax and structure of a MUD
file or MUD snippet. To prove my work, I have analyzed a large set of MUD files
retrieved on the Internet and I have compared the results of my script and the
results obtained with the tool mud.yang.go. These MUD files (more than 60) have
been taken from two different sources:

• The first is the repository2 of MUD Visualizer [40], where there is a group
of files generated by MUDgee [41], a tool that can generate MUD files using
PCAP [42], which is an interface for capturing network traffic.

• The second is IoTOPIA3, a platform where device manufacturers can publish,
in a unique location, the MUD file associated with their products.

The comparison results are available in Table 5.1 and Table 5.2. The former
includes MUD files obtained from the first source, MUD Visualizer, while the latter
includes MUD files obtained from IoTOPIA.

In order to focus on different types of errors, I have modified the MUD files,
by inserting and correcting the keys ietf-access-control-list:access-lists,
ethernet-acl-type and the ethertype values: as mentioned in Section 4.1, mud
.yang.go only allows the latest version of the MUD RFC, instead mud_json_vali-
dator.py accepts previous versions as well, since most of the retrieved MUD files
are compliant with them.

Since the shutdown of IoTOPIA on August 8th, 2023, the MUD files coming
from this platform have been stored in this repository4, along with the MUD files
coming from MUD visualizer, modified as described above.

Table 5.1: Comparison results between mud.yang.go and
mud_json_validator.py: IoTOPIA files

IoTOPIA mud_json_validator.py mud.yang.go
withingsbaby

Valid ValidmonitorMud_2020
1203151125.json

2https://github.com/iot-onboarding/mud-visualizer/tree/master/sample_mud_
files/mudgee_mudfiles, last visited on November 27th, 2023.

3https://mudfileservice.globalplatform.org, last visited on August 2nd, 2023.
4https://github.com/emalinty/mud_files, last visited on November 27th, 2023.

44

https://github.com/iot-onboarding/mud-visualizer/tree/master/sample_mud_files/mudgee_mudfiles
https://github.com/iot-onboarding/mud-visualizer/tree/master/sample_mud_files/mudgee_mudfiles
https://mudfileservice.globalplatform.org
https://github.com/emalinty/mud_files

Experimental Results

IoTOPIA mud_json_validator.py mud.yang.go
fe-same NOT valid: invalid URL Valid BUT

manufacturer- + “mud-75085-v4to” “mud-75085-v4to”
from2_2020 NOT present NOT present

1203150834.json in target node in target node
F7C029_ Valid Valid20201203150644.json

NetatmoWeatherStation Valid ValidMud_20201203150842.json
nestsmoke

Valid Validsensor_2020
1203150910.json

fe-same NOT valid: invalid URL Valid BUT
manufacturer- + “mud-75085-v4to” “mud-75085-v4to”
from2_202012 NOT present NOT present
03151059.json in target node in target node
is_imilab_

Valid ValidcameraMud_20
210328050145.json

NOT valid: invalid URL NOT valid:
Securelock_2020 + “my-controller” “my-controller”
1207153351.json isn’t isn’t

an array an array
fe-localnetwork_ Valid Valid20201203150917.json
ciscopi21_2020 NOT valid: Valid1203150829.json invalid URL

mud_crm_ver1_20 NOT valid: Valid221110065713.json invalid URL
lightbulb2020_202 Valid Valid01203151105.json

amazonEchoMud_2 Valid Valid0201203150838.json
lightbulb2020_20 Valid Valid201102124202.json

cr-5b.json NOT valid: Validinvalid URL
fjdskfsdlfkjd_20 NOT valid: Valid210121113559.json invalid URL

45

Experimental Results

IoTOPIA mud_json_validator.py mud.yang.go
WSP080_ Valid Valid20201203150703.json

ringdoorbellMud_20 Valid Valid210227203739.json
withingsbabymonitorMud_ Valid Valid20210322143827.json

amazonEchoMud_ Valid Valid20201203151116.json

cr-5b_20201218205035.json NOT valid: Validinvalid URL

cr-5b_20201203151111.json NOT valid: Validinvalid URL
ACME1_ NOT valid: Valid20201203150723.json invalid URL
WSP080_ NOT valid: Valid20201218203803.json invalid URL
ciscopi2_ NOT valid: Valid20201216162818.json invalid URL

ch_imilab_cameraMud_ Valid Valid20210328050015.json
withingsbabymonitorMud_ Valid Valid20201203151134.json

repeater2b_2020 Valid Valid1218202321.json

cr-5b_20201203151049.json NOT valid: Validinvalid URL
HueBulbMud_2021 Valid Valid0301152627.json

lightbulb2020_20201203151 Valid Valid152_20230221143921.json
coffee_multiple_20 Valid Valid221108110209.json
repeater2b_2020 Valid Valid1218202339.json

withingsbabymonitorMud_ Valid Valid20201203150905.json
withingssleepsensorMud_ Valid Valid20210227204045.json

46

Experimental Results

IoTOPIA mud_json_validator.py mud.yang.go

cr-5b_20201203151130.json NOT valid: Validinvalid URL
WSP080_ NOT valid: Valid20201203150540.json invalid URL

mud_crm_ver1_20 NOT valid: Valid221110070753.json invalid URL
Securelock_2020 NOT valid: Valid1203150815.json invalid URL

Table 5.2: Comparison results between mud.yang.go and
mud_json_validator.py: MUDGee files

MUDGee mud_json_validator.py mud.yang.go
hellobarbieMud.json Valid Valid

pixstarphotoframeMud.json Valid Valid

tplinkcameraMud.json Valid
NOT valid:

operator
“range” not valid

withingssleepsensorMud.json Valid Valid
NetatmoCameraMud.json Valid Valid

lifxbulbMud.json Valid Valid

hpprinterMud.json Valid

NOT valid:
source and

destination ipv6
network do not

match the pattern
NetatmoWeather Valid ValidStationMud.json

chromecastUltraMud.json Valid Valid
dropcamMud.json Valid Valid

blipcareBPmeterMud.json Valid Valid
HueBulbMud.json Valid Valid

withingsbaby Valid ValidmonitorMud.json
wemomotionMud.json Valid Valid
wemoswitchMud.json Valid Valid
ringdoorbellMud.json Valid Valid

awairAirQualityMud.json Valid Valid

47

Experimental Results

MUDGee mud_json_validator.py mud.yang.go
belkincameraMud.json Valid Valid

ihomepowerplugMud.json Valid Valid
amazonEchoMud.json Valid Valid
tplinkplugMud.json Valid Valid

SmartThingsMud.json Valid Valid
nestsmokesensorMud.json Valid Valid

tribyspeakerMud.json Valid Valid
withingscardioMud.json Valid Valid

NOT valid:
“192.168.1.1”
isn’t an ipv6
address and

augustdoorbell NOT valid: “192.168.1.1” source and
camMud.json isn’t an ipv6 address destination

ipv6
network

do not match
the pattern

NOT valid: NOT valid:
problems with problems with

samsungsmart upper-port and upper-port and
camMud.json lower-port lower-port

with with
operator “eq” operator “eq”

The results are quite similar, most of the MUD files results valid and most errors
are the same: the files with the same output are 46 (68%). However, according to
the conducted tests, our proposed solution better analyzes 21 files (32%) and has
the following pros:

• It detects badly formatted URLs, e.g., “https://oururl/serialnumber” or
“https://https://www.cisco.com/us/p/P-WSP080//ciscopi2.p7s”

• It recognizes range as a valid value for the port numbers.

• The tool mud.yang.go sometimes raises an exception of “invalid address” even
if an IPv6 address is correct.

• It is faster: mud_json_validator.py results about 90% quicker, from an
average of 4.7s to an average of 0.35s.

48

Experimental Results

Regarding the last point, the results of the comparison time between mud.yang.go
and mud_json_validator.py are presented in Table 5.3 and in Table 5.4. It is
evident that mud_json_validator.py is faster: it takes, more or less, one-fourth
the time of mud.yang.go

Table 5.3: Comparison time between mud.yang.go and mud_json_validator.py:
IoTOPIA files

IoTOPIA mud.yang.go mud_json_validator.py
time time

WSP080_20201203150540.json 6.08s 0.35s
WSP080_20201203150703.json 4.27s 0.34s

withingsbabymonitorMud_ 4.95s 0.38s20201203151125.json
fe-samemanufacturer- 7.78s 0.33sfrom2_20201203150834.json

nestsmokesensor_ 6.72s 0.35s20201203150910.json
fe-samemanufacturer-from2_ 5.80s 0.34s20201203151059.json

is_imilab_cameraMud_ 4.55s 0.34s20210328050145.json
Securelock_ 4.49s 0.39s20201207153351.json

fe-localnetwork_ 4.38s 0.37s20201203150917.json
ciscopi21_20201203150829.json 6.80s 0.36s

mud_crm_ver1_ 4.45s 0.34s20221110065713.json
lightbulb2020_ 4.33s 0.33s20201203151105.json

amazonEchoMud_ 4.28s 0.45s20201203150838.json
lightbulb2020_ 4.32s 0.34s20201102124202.json

NetatmoWeatherStationMud_ 4.53s 0.36s20201203150842.json
cr-5b.json 4.58s 0.37s

fjdskfsdlfkjd_ 4.38s 0.36s20210121113559.json

49

Experimental Results

IoTOPIA mud.yang.go mud_json_validator.py
time time

ringdoorbellMud_ 4.65s 0.44s20210227203739.json
withingsbabymonitorMud_ 5.87s 0.35s20210322143827.json

F7C029_20201203150644.json 4.33s 0.35s
cr-5b_20201218205035.json 4.62s 0.34s

amazonEchoMud_ 5.60s 0.36s20201203151116.json
cr-5b_20201203151111.json 4.63s 0.36s

ACME1_20201203150723.json 4.73s 0.35s
ch_imilab_cameraMud_ 4.85s 0.35s20210328050015.json

WSP080_20201218203803.json 4.31s 0.36s
ciscopi2_20201216162818.json 4.60s 0.44s

repeater2b_ 4.78s 0.34s20201218202321.json
withingsbabymonitorMud_ 4.78s 0.37s20201203151134.json
cr-5b_20201203151049.json 5.46s 0.43s

HueBulbMud_ 5.17s 0.35s20210301152627.json
lightbulb2020_20201203151 4.37s 0.34s152_20230221143921.json

coffee_multiple_ 4.69s 0.38s20221108110209.json
cr-5b_20201203151130.json 4.98s 0.43s

repeater2b_ 4.48s 0.32s20201218202339.json
mud_crm_ver1_ 4.71s 0.33s20221110070753.json

withingsbabymonitorMud_ 4.69s 0.36s20201203150905.json
withingssleepsensorMud_ 4.58s 0.33s20210227204045.json

Securelock_ 4.45s 0.40s20201203150815.json

50

Experimental Results

Table 5.4: Comparison time between mud.yang.go and
mud_json_validator.py: MUDGee files

MUDGee mud.yang.go mud_json_validator.py
time time

hellobarbieMud.json 6.08s 0.34s
pixstarphotoframeMud.json 4.69s 0.34s

tplinkcameraMud.json 4.87s 0.43s
withingssleepsensorMud.json 4.63s 0.34s

NetatmoCameraMud.json 5.81s 0.35s
lifxbulbMud.json 4.67s 0.34s

hpprinterMud.json 5.56s 0.36s
chromecastUltraMud.json 8.79s 0.33s

dropcamMud.json 9.68s 0.35s
blipcareBPmeterMud.json 4.45s 0.45s

HueBulbMud.json 9.89s 0.34s
withingsbabymonitorMud.json 4.69s 0.34s

wemomotionMud.json 5.01s 0.35s
wemoswitchMud.json 4.98s 0.33s
ringdoorbellMud.json 4.94s 0.32s

awairAirQualityMud.json 4.89s 0.46s
belkincameraMud.json 5.25s 0.35s

ihomepowerplugMud.json 4.66s 0.35s
amazonEchoMud.json 5.54s 0.34s

augustdoorbellcamMud.json 6.14s 0.43s
tplinkplugMud.json 6.02s 0.36s

SmartThingsMud.json 4.71s 0.36s
nestsmokesensorMud.json 6.65s 0.34s

tribyspeakerMud.json 6.90s 0.34s
withingscardioMud.json 4.57s 0.44s

samsungsmartcamMud.json 5.16s 0.33s
NetatmoWeather 4.52s 0.35sStationMud.json

5.3 Optimizations
In order to validate the proposed approach presented for the optimization process,
I have defined four sets of MUD snippets. The MUD snippets were retrieved from
the corresponding MUD files generated by the tool MUDGee. This tool generates
MUD files using PCAP, an interface for capturing network traffic.

51

Experimental Results

Therefore, if we remove the headers related to a complete MUD file, we can
assume that they are comparable to MUD snippets written by developers and used
for a potential respective integration in Home Assistant.

These sets are composed by MUD snippets derived from the MUD Visualizer
repository and have four different characteristics to differentiate the possible case
studies:

• “Set 1” is composed by MUD snippets coming from the same manufacturer
(Withings [43]): withingsbabymonitorMud.json, withingscardioMud.json,
and withingssleepsensorMud.json.

• “Set 2” is composed by two couples of MUD snippets coming from two different
manufacturers (Netatmo [44] and TP-Link [45]): NetatmoCameraMud.json,
NetatmoWeatherStationMud.json, tplinkcameraMud.json, and tplink-
plugMud.json.

• “Set 3” is composed by a couple of MUD snippets coming from the same
manufacturer (Wemo by Belkin [46]), and other two snippets coming from two
different manufacturers (Awair [47] and Pix-Star [48]): wemomotionMud.json,
wemoswitchMud.json, awairAirQualityMud.json, and pixstarphotofra-
meMud.json.

• “Set 4” is composed by all the MUD snippets mentioned in the previous three
sets.

All of these sets are available and accessible in this repository5. The time elapsed
described in Table 5.5 is related to validation and optimization.

Set number Rules pre and post optimization Reduction Time elapsed
Set 1 39−→ 29 26% 0.72s
Set 2 122 −→ 94 23% 0.79s
Set 3 96 −→ 55 43% 0.75s
Set 4 257 −→ 165 36% 0.89s

Table 5.5: Optimization results

As shown in the Table 5.5, the visible result is a reduction in the number of
Access Control Entries (ACEs) by around 30%, while maintaining the same allowed
traffic space. In this way, it is possible to achieve a higher speed of rule enforcement.
Assuming that a rule is repeated, if the analyzed packet doesn’t match the first

5https://github.com/emalinty/mud_files, last visited on November 27th, 2023.

52

https://github.com/emalinty/mud_files

Experimental Results

rule, it won’t even match the second rule. The repetition is therefore unnecessary
and a waste of time for the user who is waiting for the rules to be enforced when
Home Assistant starts.

To provide an example, Listing 5.1 and Listing 5.2 contain two different overlap-
ping rules that can be optimized. The first ACE, named from-ipv4-withingsba-
bymonitor-7 and available in 5.1, is from withingsbabymonitorMud.json. The
second instead, named from-ipv4-withingssleepsensor-5 and available in 5.2,
is from withingssleepsensorMud.json.

Listing 5.1: from-ipv4-withingsbabymonitor-7
1 {
2 "name":"from -ipv4 - withingsbabymonitor -7",
3 " matches ":{
4 "ietf -mud:mud":{
5 "local - networks ":[
6 null
7]
8 },
9 "ipv4":{

10 " protocol ":17,
11 "destination -ipv4 - network ":
12 "224.0.0.251/32"
13 },
14 "udp":{
15 "destination -port":{
16 " operator ":"eq",
17 "port":5353
18 }
19 }
20 },
21 " actions ":{
22 " forwarding ":"accept"
23 }
24 }
25

53

Experimental Results

Listing 5.2: from-ipv4-withingssleepsensor-5
1 {
2 "name":"from -ipv4 - withingssleepsensor -5",
3 " matches ":{
4 "ietf -mud:mud":{
5 "local - networks ":[
6 null
7]
8 },
9 "ipv4":{

10 " protocol ":17,
11 "destination -ipv4 - network ":
12 "224.0.0.251/32"
13 },
14 "udp":{
15 "destination -port":{
16 " operator ":"eq",
17 "port":5353
18 }
19 }
20 },
21 " actions ":{
22 " forwarding ":"accept"
23 }
24 }
25

In both ACEs, permission is granted to communicate within the local network
using the multicast address 224.0.0.251/32, using Internet Protocol version 4
and using the UDP transport protocol on port 5353. We can say that the two rules
are “exactly matching” (see Figure 5.1).

Since these rules are “exactly matching”, it is possible to keep only one rule.
This optimization will reduce the final number of rules. The allowed traffic (the
packets going to 224.0.0.251/32 on port 5353 using UDP) remains intact and is
still allowed after the optimization. In addition, this operation does not add any
other endpoint or port that could lead to unexpected results (see Figure 5.2).

54

Experimental Results

0 5353 20k 30k 40k 50k 65535
Port numbers

UDP
TCP

withingsbabymonitor-7 224.0.0.251/32

withingssleepsensor-5 224.0.0.251/32

Figure 5.1: Two ACEs “exactly matching”

0 5353 20k 30k 40k 50k 65535
Port numbers

UDP
TCP

withingssleepsensor-5 224.0.0.251/32

Figure 5.2: “Exactly matching” conflict resolution

5.4 Conflicts
Regarding the conflict resolution process, since the standard MUD by default blocks
the traffic that is not explicitly allowed, it is rare to find Access Control Entries
(ACEs) that deny the specified traffic. However, the specifications allow to set
the forwarding action even to “drop” or “reject”, so it is necessary to develop a
strategy for handling potential conflicts.

To demonstrate the correct implementation of the conflict resolution process,
I created three sets of MUD snippets, starting from MUD files retrieved from
IoTOPIA and the MUD Visualizer repository (see Section 5.3). I then slightly
modified these snippets to create some potential conflicts and demonstrate the
correct resolution. The sets are composed as follows:

55

Experimental Results

• “Set α” consists of mod_ihomeplug.json, mod_blipcareMud.json, and mod_
hellobarMud.json.

• “Set β” consists of mod_lifxbulb.json, mod_SmartThings.json, and mod_
ringdoorbell.json.

• “Set γ” consists of mod_cr-5b.json, mod_ciscopi2.json, and
mod_coffee_mult.json.

• “Set δ” consists of all the MUD snippets mentioned in the previous three sets.

All of these sets are available and accessible in this repository6. The time elapsed
described in Table 5.6 is related to validation and conflict resolution.

Set number
Number of rules Overlapping rules

Time elapsedpre and post pre and post
conflict resolution conflict resolution

Set α 30 −→ 33 8 −→ 0 0.90s
Set β 35 −→ 37 10 −→ 0 0.96s
Set γ 23 −→ 24 8 −→ 0 0.84s
Set δ 64 −→ 66 20 −→ 0 1.03s

Table 5.6: Conflict resolution results

As can be seen in Table 5.6, there are no more overlapping and conflicting rules
after this process. All potential ambiguities are resolved, and each packet now
matches only one rule.

To provide an example, as done in Section 5.3, Listing 5.3 and Listing 5.4 contain
two different overlapping rules that present a conflict. The first ACE, named
from-ipv4-blipcarebpmeter-3 and available in Listing 5.3, is from mod_blipca-
reBPmeterMud.json. The second instead, named from-ipv4-ihomepowerplug-2
and available in Listing 5.4, is from mod_ihomepowerplugMud.json.

6https://github.com/emalinty/mud_files, last visited on November 27th, 2023.

56

https://github.com/emalinty/mud_files

Experimental Results

Listing 5.3: from-ipv4-blipcarebpmeter-3
1 {
2 "name":"from -ipv4 - blipcarebpmeter -3",
3 " matches ":{
4 "ietf -mud:mud":{
5 "local - networks ":[
6 null
7]
8 },
9 "ipv4":{

10 " protocol ":17,
11 "destination -ipv4 - network ":
12 "255.255.255.255/32"
13 },
14 "udp":{
15 "destination -port":{
16 " operator ":"gte",
17 "port":50
18 }
19 },
20 "eth":{
21 "destination -mac - address ":
22 "ff:ff:ff:ff:ff:ff",
23 " ethertype ":2048
24 }
25 },
26 " actions ":{
27 " forwarding ":"reject"
28 }
29 }
30

Listing 5.4: from-ipv4-ihomepowerplug-2
1 {
2 "name":"from -ipv4 - ihomepowerplug -2",
3 " matches ":{
4 "ietf -mud:mud":{
5 "local - networks ":[
6 null
7]

57

Experimental Results

8 },
9 "ipv4":{

10 " protocol ":17,
11 "destination -ipv4 - network ":
12 "255.255.255.255/32"
13 },
14 "udp":{
15 "destination -port":{
16 " operator ":"lte",
17 "port":70
18 }
19 },
20 "eth":{
21 "destination -mac - address ":
22 "ff:ff:ff:ff:ff:ff",
23 " ethertype ":2048
24 }
25 },
26 " actions ":{
27 " forwarding ":"accept"
28 }
29 }
30

In both ACEs, permission is granted to communicate within the local network
using the local broadcast address (255.255.255.255/32), using Internet Protocol
version 4 and using the UDP transport protocol. The first ace however rejects the
traffic for ports greater or equal to 50, the second ace allows the traffic for ports
lower or equal to 70. Therefore, the two rules are “partially matching”.

Since these rules are “partially matching”, it is possible to divide them in three
parts (see Figure 5.3):

• Segment 1, from port 0 to port 49, isn’t subject to conflict resolution and
remains "allow".

• Segment 2, from 50 to 70, is subject to conflict resolution depending on the
option chosen by the user.

• Segment 3, from port 71 to port 65535, isn’t subject to conflict resolution and
remains "reject".

58

Experimental Results

0 50 70 100 . . . 65535
Port numbers

UDP
TCP

21 3

255.255.255.255/32

255.255.255.255/32
blipcarebpmeter-3
ihomepowerplug-2

Figure 5.3: Conflicted rules

In this case, considering the Allow Takes Precedence (ATP) strategy, Segment 2
remains only in the permissive rule, creating Segment 1+2, and is eliminated from
the prohibitive rule. The other parts remain intact, and here it is guaranteed that
the behavior of the network will not change (see Figure 5.4).

0 50 70 100 . . . 65535
Port numbers

UDP
TCP

1+2 3

255.255.255.255/32

255.255.255.255/32
blipcarebpmeter-3
ihomepowerplug-2

Figure 5.4: Conflict resolved

5.5 Discussion
The previous chapters have described the improvement and enhancement of the
recent research study that led to the creation of the MUD Aggregator integration
for Home Assistant. Thanks to this work, developers can independently specify

59

Experimental Results

MUD policies for their plug-ins, adding an extra layer of protection to their Smart
Home Gateway. The approach proposed in [7], giving the possibility of storing this
consolidated gateway-level MUD file locally, can ensure MUD policy enforcement
even if the manufacturer’s servers are not available.

The approach proposed in this thesis aims to make more effective what is
described above.

First, it is an effective support for developers regarding the creation of MUD
snippets. These files can be generated with the help of specific tools or manually:
in both cases, but especially in the second one, it is very useful and it produces very
precise results, avoiding unexpected outcomes and unwanted exceptions regarding
the JSON structure. Although the structure of a MUD rule is relatively simple,
the MUD snippets are often very long and it is likely that an error could be found.
Thanks to this work, the location and the reason of the error are signaled, making
the correction operation quicker and simpler.

Second, this study aims to remove and resolve any type of ambiguity that may
arise from merging different MUD snippets.

In terms of optimization, the reduction in the number of rules is a significant
result: it allows policies to be enforced in less time, with all the benefits that this
brings.

Instead, in terms of conflict resolution, the relevant result is that there are
no more overlapping rules with different decisions: after the process described in
Section 4.2.2, each packet will match only one rule. The relative limitation is that
the result of the allowed address space may be altered.

As an example, supposing that the rule Rx is permissive, the rule Ry is prohibitive,
and that the two rules are “exactly matching”, if no operation of conflict resolution
is performed, and Rx is before Ry, the packets matching these rules are allowed.
If the conflicts are resolved and the user chooses Deny Takes Precedence (DTP),
the packets are now dropped. The result is clearly different, and it is a direct
consequence of the need to resolve conflicts between rules. In this work, it seemed
more important to give priority to eliminating the ambiguities that can arise when
merging the MUD snippets, so that the user can be aware that there are no
overlapping rules in the final gateway-level MUD file.

60

Chapter 6

Conclusions

This thesis is based on a recent research proposal that improves IoT security in
Smart Home Gateways through the introduction of Manufacturer Usage Description
(MUD) standards into Smart Home plug-ins, allowing developers to specify the
requirements of their plug-ins in a MUD-compliant way. The study focuses on
validating the syntax of rules specified by developers for smart home plug-ins,
resolving potential conflicts, and optimizing rules during the merging process into
a unified gateway-level MUD file.

The proposed approach consists of an in-depth validation process in three stages:
when the MUD draft is loaded, when a MUD snippet is found, and when the
gateway-level MUD file is generated. The validation involves a JSON schema
analysis based on RFC 8520, which ensures the correctness of the structure and
fields of MUD files and snippets.

Rule optimization and conflict resolution are crucial aspects addressed in this
research. The optimization process involves merging rules with identical actions,
resulting in a significant reduction in the number of rules while maintaining the
same allowed traffic space. Conflict resolution strategies such as Allow Takes
Precedence (ATP), Deny Takes Precedence (DTP), Least Specific Takes Precedence
(LSTP), and Most Specific Takes Precedence (MSTP) are used to handle conflicting
rules with different actions, ensuring consistent and unambiguous rule enforcement.

Experimental results demonstrate the effectiveness of the proposed solution in
all three aspects treated. The validation of MUD files outperforms an existing tool
in terms of accuracy and comprehensiveness. The optimization process successfully
reduces the number of rules, improving the speed of rule enforcement, while
conflict resolution eliminates overlapping rules, providing consistency in policy

61

Conclusions

implementation.

In summary, this research contributes to improving the security of Smart Home
Gateways by providing a validated, optimized, and conflict-free gateway-level MUD
file, thus supporting the overall goal of establishing robust IoT security practices
in Smart Home environments.

62

Acronyms

ACE Access Control Entry.

ACL Access Control List.

ATP Allow Takes Precedence.

C Correlated.

CD Completely Disjoint.

DHCP Dynamic Host Configuration Protocol.

DTP Deny Takes Precedence.

ECA Event Condition Action.

EM Exactly Matching.

FMR First Matching Rule.

HA Home Assistant.

HTTP Hypertext Transfer Protocol.

IETF Internet Engineering Task Force.

IM Inclusively Matching.

IoT Internet of Things.

IP Internet Protocol.

JSON JavaScript Object Notation.

LLDP Link Layer Discovery Protocol.

63

Acronyms

LMR Last Matching Rule.

LSTP Least Specific Takes Precedence.

MAC Media Access Control.

MSTP Most Specific Takes Precedence.

MUD Manufacturer Usage Description.

OS Operating System.

PM Partially Matching.

PBM Policy-Based Management.

PCAP Packet Capture.

PDP Policy Decision Point.

PEP Policy Enforcement Point.

RFC Request for Comments.

SHG Smart Home Gateway.

TCP Transmission Control Protocol.

TEAP Tunnel Extensible Authentication Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

URL Uniform Resource Locator.

YANG Yet Another Next Generation.

64

Bibliography

[1] Karen Rose, Scott Eldridge, and Lyman Chapin. «The internet of things: An
overview». In: The internet society (ISOC) 80 (2015), pp. 1–50 (cit. on p. 1).

[2] Lionel Sujay Vailshery. Internet of Things (IoT) total annual revenue world-
wide from 2020 to 2030. url: https://www.statista.com/statistics/
1194709/iot-revenue-worldwide/ (visited on Nov. 29, 2023) (cit. on p. 1).

[3] CR Srinivasan, B Rajesh, P Saikalyan, K Premsagar, and Eadala Sarath
Yadav. «A review on the different types of Internet of Things (IoT)». In:
Journal of Advanced Research in Dynamical and Control Systems 11.1 (2019),
pp. 154–158 (cit. on p. 1).

[4] Eliot Lear, Ralph Droms, and Dan Romascanu. Manufacturer Usage De-
scription Specification. RFC 8520. Mar. 2019. doi: 10.17487/RFC8520. url:
https://www.rfc-editor.org/info/rfc8520 (cit. on pp. 2, 13, 25).

[5] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259. Dec. 2017. doi: 10.17487/RFC8259. url: https://www.rfc-
editor.org/info/rfc8259 (cit. on pp. 2, 14).

[6] Paulus Schoutsen. Home Assistant. Sept. 2018. url: https://www.home-
assistant.io/ (visited on Nov. 29, 2023) (cit. on pp. 2, 9).

[7] Fulvio Corno and Luca Mannella. «A Gateway-based MUD Architecture
to Enhance Smart Home Security». In: 2023 8th International Conference
on Smart and Sustainable Technologies (SpliTech). 2023, pp. 1–6. doi: 10.
23919/SpliTech58164.2023.10193747 (cit. on pp. 2, 18, 60).

[8] Steven Waldbusser et al. Terminology for Policy-Based Management. RFC
3198. Nov. 2001. doi: 10.17487/RFC3198. url: https://www.rfc-editor.
org/info/rfc3198 (cit. on p. 4).

[9] U Dayal, B Blaustein, A Buchmann, U Chakravathy, M Hsu, R Ledin, D
McCarthy, A Rosenthal, and S Sarin. «HiPAC: a research project in active,
time-constrained database management». In: Interim Report (1988) (cit. on
p. 4).

65

https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
https://doi.org/10.17487/RFC8520
https://www.rfc-editor.org/info/rfc8520
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.home-assistant.io/
https://www.home-assistant.io/
https://doi.org/10.23919/SpliTech58164.2023.10193747
https://doi.org/10.23919/SpliTech58164.2023.10193747
https://doi.org/10.17487/RFC3198
https://www.rfc-editor.org/info/rfc3198
https://www.rfc-editor.org/info/rfc3198

BIBLIOGRAPHY

[10] Internet Protocol. RFC 791. Sept. 1981. doi: 10 . 17487 / RFC0791. url:
https://www.rfc-editor.org/info/rfc791 (cit. on pp. 6, 30).

[11] Ehab S Al-Shaer and Hazem H Hamed. «Modeling and Management of Fire-
wall Policies». In: IEEE Transactions on Network and Service Management
1.1 (2004), pp. 2–10. doi: 10.1109/TNSM.2004.4623689 (cit. on pp. 7, 30).

[12] F. Valenza and M. Cheminod. «An optimized firewall anomaly resolution». In:
JOURNAL OF INTERNET SERVICES AND INFORMATION SECURITY
10.1 (2020), pp. 22–37. doi: 10 . 22667 / JISIS . 2020 . 02 . 29 . 022. url:
http://isyou.info/jisis/vol10/no1/jisis-2020-vol10-no1-02.pdf
(cit. on p. 7).

[13] Habtamu Abie. «An Overview of Firewall Technologies». In: (Dec. 2000). url:
https://www.researchgate.net/publication/2371491_An_Overview_
of_Firewall_Technologies (cit. on p. 8).

[14] C Muthu Ramya, Madasamy Shanmugaraj, and R Prabakaran. «Study on
ZigBee technology». In: 2011 3rd international conference on electronics
computer technology. Vol. 6. IEEE. 2011, pp. 297–301 (cit. on p. 9).

[15] Behrang Fouladi and Sahand Ghanoun. «Security evaluation of the Z-Wave
wireless protocol». In: Black hat USA 24 (2013), pp. 1–2 (cit. on p. 9).

[16] Shailandra Kaushik. «An overview of technical aspect for WiFi networks
technology». In: International Journal of Electronics and Computer Science
Engineering (IJECSE, ISSN: 2277-1956) 1.01 (2012), pp. 28–34 (cit. on p. 9).

[17] Chatschik Bisdikian. «An overview of the Bluetooth wireless technology». In:
IEEE Communications magazine 39.12 (2001), pp. 86–94 (cit. on p. 9).

[18] Martin Björklund. The YANG 1.1 Data Modeling Language. RFC 7950. Aug.
2016. doi: 10.17487/RFC7950. url: https://www.rfc-editor.org/info/
rfc7950 (cit. on p. 14).

[19] Tim Berners-Lee, Larry M Masinter, and Mark P. McCahill. Uniform Resource
Locators (URL). RFC 1738. Dec. 1994. doi: 10.17487/RFC1738. url: https:
//www.rfc-editor.org/info/rfc1738 (cit. on p. 14).

[20] Eric Rescorla. HTTP Over TLS. RFC 2818. May 2000. doi: 10.17487/
RFC2818. url: https://www.rfc- editor.org/info/rfc2818 (cit. on
p. 17).

[21] Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131. Mar. 1997.
doi: 10.17487/RFC2131. url: https://www.rfc- editor.org/info/
rfc2131 (cit. on p. 17).

66

https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://doi.org/10.1109/TNSM.2004.4623689
https://doi.org/10.22667/JISIS.2020.02.29.022
http://isyou.info/jisis/vol10/no1/jisis-2020-vol10-no1-02.pdf
https://www.researchgate.net/publication/2371491_An_Overview_of_Firewall_Technologies
https://www.researchgate.net/publication/2371491_An_Overview_of_Firewall_Technologies
https://doi.org/10.17487/RFC7950
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://doi.org/10.17487/RFC1738
https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc1738
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC2818
https://www.rfc-editor.org/info/rfc2818
https://doi.org/10.17487/RFC2131
https://www.rfc-editor.org/info/rfc2131
https://www.rfc-editor.org/info/rfc2131

BIBLIOGRAPHY

[22] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell,
and David Cooper. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 5280. May 2008. doi:
10.17487/RFC5280. url: https://www.rfc-editor.org/info/rfc5280
(cit. on p. 17).

[23] Hao Zhou, Nancy Cam-Winget, Joseph A. Salowey, and Steve Hanna. Tunnel
Extensible Authentication Protocol (TEAP) Version 1. RFC 7170. May 2014.
doi: 10.17487/RFC7170. url: https://www.rfc- editor.org/info/
rfc7170 (cit. on p. 17).

[24] «IEEE Standard for Local and metropolitan area networks – Station and
Media Access Control Connectivity Discovery». In: IEEE Std 802.1AB-2005
(2005), pp. 1–176. doi: 10.1109/IEEESTD.2005.96285 (cit. on p. 17).

[25] Kevin Yeich and Daniel Weller. Open Source Manufacture Usage Description.
2018. url: https://osmud.org (visited on Nov. 29, 2023) (cit. on pp. 17,
18).

[26] Pablo Neira Ayuso, Jozsef Kadlecsik, Eric Leblond, Florian Westphal, Arturo
Borrero González, and Phil Sutter. The netfilter.org "iptables" project. 1998.
url: https://www.netfilter.org/projects/iptables/index.html
(visited on Nov. 29, 2023) (cit. on p. 17).

[27] The linux kernel. url: https://docs.kernel.org/security/self-protec
tion.html (cit. on p. 17).

[28] José L. Hernández-Ramos, Sara N. Matheu, Angelo Feraudo, Gianmarco
Baldini, Jorge Bernal Bernabe, Poonam Yadav, Antonio Skarmeta, and Paolo
Bellavista. «Defining the Behavior of IoT Devices Through the MUD Standard:
Review, Challenges, and Research Directions». In: IEEE Access 9 (2021),
pp. 126265–126285. doi: 10.1109/ACCESS.2021.3111477 (cit. on p. 18).

[29] OpenWRT. Documentation. 2023. url: https://openwrt.org/ (cit. on
p. 18).

[30] Eliot Lear and Vafa Andalibi. MUD Maker. url: https://mudmaker.org
(visited on Nov. 29, 2023) (cit. on p. 21).

[31] Ajay Chandra V Gummalla and John O Limb. «Wireless medium access
control protocols». In: IEEE Communications Surveys & Tutorials 3.2 (2000),
pp. 2–15 (cit. on p. 26).

[32] Herman Slatman. mud.yang.go. Oct. 2016. url: https://github.com/
hslatman/mud.yang.go (visited on Nov. 29, 2023) (cit. on p. 27).

[33] Guido Van Rossum et al. «Python Programming Language.» In: USENIX
annual technical conference. Vol. 41. 1. Santa Clara, CA. 2007, pp. 1–36
(cit. on p. 27).

67

https://doi.org/10.17487/RFC5280
https://www.rfc-editor.org/info/rfc5280
https://doi.org/10.17487/RFC7170
https://www.rfc-editor.org/info/rfc7170
https://www.rfc-editor.org/info/rfc7170
https://doi.org/10.1109/IEEESTD.2005.96285
https://osmud.org
https://www.netfilter.org/projects/iptables/index.html
https://docs.kernel.org/security/self-protection.html
https://docs.kernel.org/security/self-protection.html
https://doi.org/10.1109/ACCESS.2021.3111477
https://openwrt.org/
https://mudmaker.org
https://github.com/hslatman/mud.yang.go
https://github.com/hslatman/mud.yang.go

BIBLIOGRAPHY

[34] Alan AA Donovan and Brian W Kernighan. The Go programming language.
Addison-Wesley Professional, 2015 (cit. on p. 27).

[35] Eliot Lear, Ralph Droms, and Dan Romascanu. Manufacturer Usage De-
scription Specification. Internet-Draft draft-ietf-opsawg-mud-21. Work in
Progress. Internet Engineering Task Force, May 2018. 60 pp. url: https:
//datatracker.ietf.org/doc/draft- ietf- opsawg- mud/21/ (cit. on
p. 27).

[36] Florence Benoy and Peter Rodgers. «Evaluating the comprehension of Euler
diagrams». In: 2007 11th International Conference Information Visualization
(IV’07). IEEE. 2007, pp. 771–780 (cit. on p. 28).

[37] Giorgos Papastergiou et al. «De-Ossifying the Internet Transport Layer:
A Survey and Future Perspectives». In: IEEE Communications Surveys &
Tutorials 19.1 (2017), pp. 619–639. doi: 10.1109/COMST.2016.2626780
(cit. on p. 30).

[38] Transmission Control Protocol. RFC 793. Sept. 1981. doi: 10.17487/RFC0793.
url: https://www.rfc-editor.org/info/rfc793 (cit. on p. 30).

[39] User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/RFC0768. url:
https://www.rfc-editor.org/info/rfc768 (cit. on p. 30).

[40] Vafa Andalibi, Jayati Dev, DongInn Kim, Eliot Lear, and L. Jean Camp.
«Is Visualization Enough? Evaluating the Efficacy of MUD-Visualizer in
Enabling Ease of Deployment for Manufacturer Usage Description (MUD)».
In: Annual Computer Security Applications Conference. ACSAC ’21. Virtual
Event, USA: Association for Computing Machinery, 2021, pp. 337–348. isbn:
9781450385794. doi: 10.1145/3485832.3485879. url: https://doi.org/
10.1145/3485832.3485879 (cit. on p. 44).

[41] Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi Gharakheili, Matthew
Roughan, and Vijay Sivaraman. «Clear as MUD: Generating, Validating and
Applying IoT Behavioral Profiles». In: Proceedings of the 2018 Workshop on
IoT Security and Privacy. IoT S&P ’18. Budapest, Hungary: Association for
Computing Machinery, 2018, pp. 8–14. isbn: 9781450359054. doi: 10.1145/
3229565.3229566. url: https://doi.org/10.1145/3229565.3229566
(cit. on p. 44).

[42] Guy Harris and Michael Richardson. PCAP Capture File Format. Internet-
Draft draft-ietf-opsawg-pcap-03. Work in Progress. Internet Engineering Task
Force, July 2023. 10 pp. url: https://datatracker.ietf.org/doc/draft-
ietf-opsawg-pcap/03/ (cit. on p. 44).

[43] Withings. url: https://www.withings.com/ (visited on Nov. 29, 2023)
(cit. on p. 52).

68

https://datatracker.ietf.org/doc/draft-ietf-opsawg-mud/21/
https://datatracker.ietf.org/doc/draft-ietf-opsawg-mud/21/
https://doi.org/10.1109/COMST.2016.2626780
https://doi.org/10.17487/RFC0793
https://www.rfc-editor.org/info/rfc793
https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://doi.org/10.1145/3485832.3485879
https://doi.org/10.1145/3485832.3485879
https://doi.org/10.1145/3485832.3485879
https://doi.org/10.1145/3229565.3229566
https://doi.org/10.1145/3229565.3229566
https://doi.org/10.1145/3229565.3229566
https://datatracker.ietf.org/doc/draft-ietf-opsawg-pcap/03/
https://datatracker.ietf.org/doc/draft-ietf-opsawg-pcap/03/
https://www.withings.com/

BIBLIOGRAPHY

[44] Netatmo. url: https://www.netatmo.com/ (visited on Nov. 29, 2023) (cit.
on p. 52).

[45] TP-Link. url: https://www.tp- link.com/ (visited on Nov. 29, 2023)
(cit. on p. 52).

[46] Belkin. url: https://www.belkin.com/ (visited on Nov. 29, 2023) (cit. on
p. 52).

[47] Awair. url: https://www.getawair.com/ (visited on Nov. 29, 2023) (cit. on
p. 52).

[48] Pix-Star. url: https://www.pix-star.com/ (visited on Nov. 29, 2023)
(cit. on p. 52).

69

https://www.netatmo.com/
https://www.tp-link.com/
https://www.belkin.com/
https://www.getawair.com/
https://www.pix-star.com/

Appendix A

Setup of MUD Aggregator

This appendix explains how to install and correctly set up in Home Assistant the
extended version of the MUD Aggregator integration presented in this thesis.

The integration can be found and downloaded at this link: https://github.
com/LucaMannella/HomeAssistant-MUD-Aggregator.

The user must create a folder named custom_components under the folder
config if it doesn’t already exist. As the name suggests, custom_components
contains all non-default integrations (i.e., all the integrations not maintained by
Home Assistant core team). Here the user has to insert the downloaded folder of
MUD Aggregator.

Now the installation is almost finished. The last step to be completed is to set
the configuration parameters for specifying the validation strategy for the MUD
snippets and for the solving the conflicts.

To do this, the user must edit the configuration.yaml file in the config folder
(see A.1).

Listing A.1: Configuration code for integrating the MUD Aggregator in the
configuration.yaml file

1 s enso r :
2 − plat form : mud_aggregator
3 v a l i d a t i o n : 1
4 pol i cy_opt ion : 3

Regarding validation, the user can choose between two options in case of an
error:

• 0, the badly-written MUD snippet is skipped and the relative rules are not
inserted in the gateway-level MUD file.

• 1, the entire process is stopped.

70

https://github.com/LucaMannella/HomeAssistant-MUD-Aggregator
https://github.com/LucaMannella/HomeAssistant-MUD-Aggregator

Setup of MUD Aggregator

In both cases, Home Assistant will display a notification indicating the problematic
file and the type of error.

Instead, regarding the conflict resolution process, the user can choose between
four possible options (see Section 2.1):

• 1, Allow Takes Precedence (ATP).

• 2, Deny Takes Precedence (DTP).

• 3, Most Specific Takes Precedence (MSTP).

• 4, Least Specific Takes Precedence (LSTP).

The constructor method of this sensor is the __init__ method, which creates
the gateway-level MUD file at the launch of the integration.

Listing A.2: The __init__ method
1 de f __init__(s e l f , params) :
2 s e l f . _mud_gen = MUDAggregator ()
3 s e l f . _mud_gen . generate_mud_file ()
4 s e l f . _mud_gen . expose_mud_file (s e l f . _ in t e r f a c e)

Since the integration MUD Aggregator is a sensor, Home Assistant periodically
generates the gateway-level MUD file thanks to the update method, called by
default every 30 seconds (see Listing A.3).

Listing A.3: The update method
1 de f update (s e l f) −> None :
2 i n t e g r a t i o n _ l i s t = s e l f . hass . data [" i n t e g r a t i o n s "]
3 s e l f . _mud_gen . generate_mud_file (i n t e g r a t i o n _ l i s t)
4 s e l f . _mud_gen . expose_mud_file (s e l f . _ in t e r f a c e)

In order to debug the integration and see the creation of the gateway-level MUD
file when the user wants, it is possible to configure the integration as a button.
When the button is pressed, the whole process starts. This is how the experiments
were done in this thesis.

71

	List of Tables
	List of Figures
	List of Listings
	Introduction
	Background
	Policy-Based Management and Firewalls
	Home Assistant
	Terminology
	Installation methods

	Introducing Manufacturer Usage Description (MUD) in Smart Home Gateways
	Manufacturer Usage Description
	Terminology
	MUD File Structure
	Functional Overview

	Extended MUD Architecture
	Workflow and main components
	MUD Aggregator
	Limitations

	Proposed Approach
	Validation
	Rule Relations
	Optimizations
	Conflicts

	Experimental Results
	Experimental setup
	Validation
	Optimizations
	Conflicts
	Discussion

	Conclusions
	Bibliography
	Setup of MUD Aggregator

