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Abstract

As the world becomes increasingly reliant on technology, the field of cybersecu-
rity has gained paramount importance. The surge in the use of interconnected
systems, particularly in the realm of autonomous vehicles, has escalated the risk of
cyberattacks. Consequently, cyber-physical security has emerged as a critical area
of research to address these concerns. The objective of this research was to delve
into the field of cyber-physical security, focusing on the development of AI-based
methods to detect cyberattacks on autonomous vehicles.

Machine learning, a subset of artificial intelligence, has been extensively employed
in cybersecurity to develop automated methods for detecting cyberattacks. Deep
learning, in particular, has shown promising results in detecting anomalies and
identifying cyberattacks. However, the complexity of these systems and the dynamic
nature of the data generated by them pose significant challenges in implementing
effective machine learning-based solutions.

The research work presented in this thesis focused on the use of machine learning
for cyber-attack detection in autonomous vehicles. A Simulink model was utilized
to generate data and apply machine learning algorithms to detect cyberattacks.
A Multi-layer Perceptron (MLP) model was selected as the final model, and
the question of determining the number of layers and neurons in each layer was
addressed using Neural Architectural Search (NAS). The final pipeline was written
as clean code, and TensorFlow Lite was used to decrease the model size while
maintaining accuracy.

Through extensive experimentation involving 125 different model configurations,
we found that 98 models achieved a Mean Absolute Error (MAE) of less than 3.
Given the scale of the target variable, which ranges from 0 to 210, this level of
error represents highly accurate predictions, with errors constituting only 1.42% of
the target variable’s range.

The results of this research demonstrate that machine learning algorithms can be
effectively used to detect cyberattacks in autonomous vehicles, providing a strong
foundation for further research in this field. In conclusion, this research offers a
comprehensive study of the field of cyber-physical security and the application
of AI-based methods to detect cyberattacks in autonomous vehicles. The results
underscore the potential of machine learning algorithms for detecting cyberattacks
in autonomous vehicles and lay the groundwork for future research in this area.
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Chapter 1

Introduction

1.1 Brief overview of the project’s objective and
main contributions

This thesis explores the crucial domain of cybersecurity in the context of autonomous
vehicles. The proliferation of automation and artificial intelligence has led to a
notable rise in the prevalence of autonomous vehicles within our transportation
infrastructure. Nevertheless, this technological progression presents a fresh array of
obstacles, primarily characterized by the increased vulnerability to cyber threats.
This thesis aims to address the pressing concern of cyber attacks by specifically
focusing on the real-time detection of such attacks on a particular component of
autonomous vehicles, namely the "Pedal Press Percentage" Simulink model.

The Simulink model known as "Pedal Press Percentage" holds significant im-
portance within the control system of autonomous vehicles, as it is responsible for
regulating the vehicle’s speed in accordance with the percentage of pedal press.
The occurrence of any malevolent disruption to this model has the potential to
result in significant ramifications, such as the relinquishment of command over the
vehicle’s velocity, which may ultimately lead to collisions. Hence, ensuring the
protection of this model from cyber threats is of utmost significance.

The main aim of this thesis is to create and execute a resilient system that can
effectively identify cyber attacks on the "Pedal Press Percentage" Simulink model
in real time. This process entails the continuous observation of the system’s actions
and the detection of any deviations that may suggest the occurrence of a cyber
assault. The detection system has been specifically engineered to exhibit a high
degree of sensitivity and accuracy, enabling it to effectively differentiate between
typical fluctuations in the system’s functioning and potential cyber hazards.

When the system identifies a potential cyber attack, it is programmed to
promptly transmit an alarm message to the cloud. This functionality facilitates
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Introduction

prompt reaction to identified cyber threats, enabling the timely implementation of
measures to minimize the potential harm or interruption to the vehicle’s functioning.
The utilization of cloud technology in this particular setting not only expedites
communication but also enables the retention and examination of data pertaining
to identified cyber threats, which holds significant potential in the prevention of
subsequent attacks.

The present thesis constitutes a noteworthy contribution to the domain of cy-
bersecurity within the realm of autonomous vehicles. The thesis aims to address
a significant deficiency in existing cybersecurity protocols for autonomous vehi-
cles, which primarily adopt a reactive approach rather than a proactive one, by
emphasizing the real-time identification of cyber attacks. Real-time detection and
response to cyber attacks have the potential to greatly enhance the safety and
dependability of autonomous vehicles.

Moreover, the thesis makes a valuable contribution to the wider domain of
cybersecurity by showcasing the practical implementation of real-time cyber-attack
detection within a specific context. The methods and technologies devised in this
thesis have the potential for application in various contexts, thereby rendering this
research pertinent not only to the domain of autonomous vehicles but also to the
broader realm of cybersecurity.

This study represents a pertinent and significant undertaking, given the escalat-
ing risk posed by cyber-attacks targeting autonomous vehicles. The objective of
this thesis is to improve the security and dependability of autonomous vehicles by
creating a real-time cyber attack detection system that can promptly notify the
appropriate systems. This research aims to contribute to the overarching objective
of ensuring secure and safe transportation in an ever-more automated society.

1.2 Background and motivation for the project
1.2.1 Brief history of cyber-physical security
The term "cyber-physical system" was officially introduced in 2006 to encompass
various systems that integrate the realms of cyber and physical domains. However,
research and interest in this interdisciplinary interaction had already gained sig-
nificant momentum in the 1990s. Nevertheless, the foundations of this discipline
can be traced back to the invention of computers. The initial construction of
the ENIAC, the first computer, took place in 1946. However, it was not until
1973 that the advent of real-time computations occurred, establishing the funda-
mental groundwork for the emergence of cyber-physical systems. Simultaneously,
the Internet commenced its evolution, marked by the establishment of the initial
network ARPANET in 1969. Consequently, by the conclusion of the 1990s, the
amalgamation of communication and computation had reached its culmination. A
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significant turning point in the establishment of a comprehensive and functional
cyber-physical system occurred circa 1998, when sensors were developed with the
capacity for sensing, communication, and computation. This advancement further
enhanced the physical integration of cyber-systems. In recent years, there has been
significant advancement in various domains, notably with the emergence of the
Internet of Things (IoT) and a growing need for enhanced efficacy and quality in
energy, transportation, healthcare, and water infrastructures.[1]

Concurrently with the advancement of cyber-physical system technology, re-
searchers have devoted attention to the investigation of security concerns. This
research aims to develop methods for detecting and thwarting potential intruders
who may attempt to manipulate the functioning of a system. The historical ac-
count of cyber-physical systems encompasses various instances of significant and
conspicuous attacks, such as the renowned Stuxnet incident. These occurrences are
visually depicted in Figure 1.1, directly taken from [2]. Compiling a comprehensive
report encompassing all instances of attacks is rendered unfeasible by the dearth
of information available in numerous cases. The figures presented in the study
exclusively include publicly reported attacks, as stated by the authors.

Figure 1.1: Historical timeline of known CPS attacks[2]
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1.2.2 Cyber-Physical Security in Autonomous Vehicles:
The Intersection of Connectivity and Vulnerability

Autonomous vehicles (AVs) embody a substantial advancement in transporta-
tion technology, holding the potential to fundamentally transform the manner in
which we engage in travel. Nevertheless, the inherent characteristics that render
autonomous vehicles (AVs) highly innovative, namely their connectivity and au-
tonomy, also render them susceptible to a novel range of security vulnerabilities.
These vehicles, as cyber-physical systems (CPS), are susceptible to cyber attacks
due to their distinctive combination of physical components, such as sensors and
actuators, with cyber components, including software and communication systems.
This essay examines the ramifications of the connectivity of autonomous vehicles
(AVs) on their cybersecurity, with a specific emphasis on the possibility of cyber
attacks and the necessity for strong security measures in cyber-physical systems
(CPS). [3] shows the importance of CPS in semi-autonomous vehicles.

Connectivity in Autonomous Vehicles

Connectivity is an integral component of AVs. These vehicles are not self-contained
entities; rather, they are specifically engineered to establish connections with var-
ious systems, encompassing other vehicles (referred to as Vehicle-to-Vehicle or
V2V communication), infrastructure (known as Vehicle-to-Infrastructure or V2I
communication), and networks (referred to as Vehicle-to-Network or V2N commu-
nication). This communication enables AVs to navigate complex environments,
adapt to changing conditions, and provide enhanced functionality to users.

As an illustration, an autonomous vehicle (AV) could employ vehicle-to-vehicle
(V2V) communication to effectively synchronize its actions with other vehicles in
congested traffic scenarios. Additionally, it could utilize vehicle-to-infrastructure
(V2I) communication to receive real-time information regarding road conditions.
Furthermore, the AV could engage in vehicle-to-network (V2N) communication
to access navigation services or download software updates. The integration of
connectivity in autonomous vehicles (AVs) significantly improves their operational
capabilities and overall effectiveness, resulting in enhanced safety, efficiency, and
user-friendliness.

The Need for Cyber-Physical Security in Autonomous Vehicles

Nevertheless, the availability of internet connectivity also renders autonomous
vehicles vulnerable to potential cyber-attacks. Every communication channel
possesses the potential to serve as a vulnerable point of access for a malicious
actor. Through the strategic utilization of weaknesses present in the software
or communication protocols of a vehicle, an assailant could potentially acquire
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illicit entry into the various systems of said vehicle. This vulnerability has the
potential to enable the assailant to manipulate the operational characteristics of
the automobile, exfiltrate data, or potentially establish command over the vehicle.

These risks are not solely of a theoretical nature. Numerous instances of
prominent demonstrations of such attacks have been documented. In a notable
case from 2015, security researchers Charlie Miller and Chris Valasek successfully
showcased their ability to remotely infiltrate a Jeep Cherokee by exploiting its
internet-connected entertainment system. This unauthorized access allowed them
to manipulate critical functions such as steering, brakes, and gearbox. The pre-
sented demonstration effectively underscored the inherent vulnerability of internet-
connected vehicles to cyber-attacks, thereby emphasizing the consequential safety
hazards associated with such threats.

In short, the advanced functionalities of autonomous vehicles (AVs) are made
possible by their internet connectivity, but this connectivity also exposes them
to a range of security threats. Cyber-physical systems, such as vehicles, possess
distinctive vulnerabilities that render them susceptible to cyber attacks capable of
causing significant physical ramifications. Consequently, the imperative to address
the cyber-physical security of autonomous vehicles (AVs) arises due to their growing
prevalence in the transportation domain. As society progresses towards a future
characterized by the prevalence of autonomous vehicles (AVs), it becomes imperative
to establish resilient security protocols capable of safeguarding these vehicles and
their occupants against the potential hazards associated with cyber-attacks.
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Chapter 2

Literature Review

2.1 State-of-the-art methods for cyber attack de-
tection

The domain of cybersecurity assumes a crucial function in preserving essential
systems and securing confidential data in our progressively interconnected global
landscape. The risks and susceptibilities that can jeopardize the reliability, privacy,
and accessibility of electronic resources increase in tandem with technological
advancement. The purpose of this all-encompassing introduction is to establish a
fundamental comprehension of cybersecurity, which includes essential principles,
a lexicon, and the importance of safeguarding vital systems in the contemporary
digital environment. The term security pertains to the act of safeguarding computer
systems, networks, devices, and data from illicit access, exploitation, and malevolent
attacks. The concept involves a variety of tactics, tools, and methodologies that
have the collective objective of safeguarding data and preserving the soundness of
computerized infrastructures. The domain is motivated by the necessity to mitigate
risks such as cyber-attacks, data breaches, identity theft, malware, ransomware, and
other forms of cybercrime that can result in significant ramifications for individuals,
institutions, and even countries.

As stated in [4], malware detection techniques can be classified into three broad
categories: signature-based, heuristic-based, and behavior-based. These methods
rely on results from malware analysis, and each method has its unique advantages
and challenges
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Signature-based detection

This technique uses a known list of indicators of compromise (IOCs), which include
specific byte sequences, API calls, file hashes, malicious domains, or network attack
patterns. Signature-based detection is, however, incapable of detecting previously
unknown or encrypted malware and does not require machine learning models.

Behavioural-based detection

Involves monitoring a suspected executable file in an isolated environment and
collecting all exhibited behaviors, then using methods of extracting useful features
by which a machine learning model can classify the malicious behavior.

Heuristic-based detection

This technique relies on generating rules based on the results of the static/dynamic
analysis to guide the inspection of the extracted data to support the proposed
malware detection model. Such rules can either be generated manually (relying on
the expertise of the security analysts) or automatically, using machine learning or
tools such as YARA.

With cyber-attacks posing significant threats to individuals, businesses, and
even nations. As such, the development and implementation of effective cyber
attack detection methods are of paramount importance. Several state-of-the-art
methods have emerged in recent years, leveraging advancements in technology and
computational techniques.

2.1.1 Intrusion Detection Systems (IDS)

In the realm of cybersecurity, Intrusion Detection Systems (IDS) have emerged as
a pivotal component, adapting in tandem with the dynamic and evolving nature of
cyber threats over the course of several years. Intrusion Detection Systems (IDS) are
purposefully designed to monitor and analyze activities occurring within computer
systems and networks, with the primary aim of detecting signs of unauthorized
access or potential security vulnerabilities. Intrusion detection systems can be
broadly categorized into two main types: Network Intrusion Detection Systems
(NIDS) and Host Intrusion Detection Systems (HIDS). Network Intrusion Detection
Systems (NIDS) are specifically engineered to meticulously examine network traffic
with the objective of detecting and analyzing potentially irregular patterns that
may indicate the occurrence of a network attack. In contrast, Host Intrusion
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Detection Systems (HIDS) are purposefully engineered to oversee an individual
host, such as a computer or server, with the objective of identifying and evaluating
any potentially anomalous behaviors that might transpire on that specific host.

The evolution of Intrusion Detection Systems (IDS) has undergone a shift from
rule-based systems that rely on predetermined signatures of known threats to
anomaly-based systems that utilize machine learning algorithms to establish a
baseline for normal behavior and detect deviations as potential threats. Anomaly-
based intrusion detection systems (IDS) demonstrate enhanced effectiveness in
identifying and detecting previously unknown and unclassified security breaches,
commonly known as zero-day attacks. However, it is important to note that
these systems may encounter challenges in the form of elevated rates of false
positives. The present state of intrusion detection systems (IDS) is distinguished
by the incorporation of sophisticated machine learning and artificial intelligence
methodologies. Deep learning, which falls under the umbrella of machine learning,
has exhibited significant potential. Deep learning-based intrusion detection systems
(IDS) have demonstrated the ability to effectively capture intricate patterns and
correlations, thereby enhancing the identification of advanced, multi-step attacks.
Hybrid intrusion detection systems (IDS), which amalgamate the advantageous
features of signature-based and anomaly-based methodologies, are increasingly
prevalent in contemporary research and practice.

2.1.2 Artificial Intelligence and Machine Learning

Traditionally, the field of cybersecurity has predominantly relied on detection
methods that are based on signatures, necessitating prior knowledge of attack
patterns. Although these methods have demonstrated efficacy in countering estab-
lished threats, they face challenges in detecting emerging or advanced attacks. The
emergence of artificial intelligence (AI) and machine learning (ML) has effectively
mitigated this constraint by facilitating the proactive identification of both familiar
and unfamiliar risks.

Artificial intelligence (AI) and machine learning (ML) algorithms possess the
capability to acquire knowledge from past instances of cyber attacks, discern
patterns within the data, and make predictions regarding forthcoming attacks.
Cybersecurity systems possess the capability to adjust and respond to emerging
threats, thereby rendering them proficient in countering zero-day attacks, which are
characterized by their novelty and lack of prior detection. These technologies possess
the capability to efficiently process extensive volumes of data, swiftly detecting
irregularities that may potentially signify a cyberattack. This phenomenon proves
to be highly advantageous in the current era of digitalization, characterized by an
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exponential surge in data accumulation. Experimental analysis shows us that deep
learning algorithms can detect attacks with higher performance that usual methods
and can make cyber security simpler and more proactive.[5]

Deep Learning

Deep Learning, which falls under the umbrella of Machine Learning, employs neural
networks consisting of multiple layers (referred to as deep networks) to effectively
represent and comprehend intricate patterns. The utilization of this technology has
facilitated the creation of models capable of detecting highly intricate cyberattacks.
The identification and classification of anomalies within a given dataset is commonly
referred to as anomaly detection.

Anomaly Detection

Anomaly detection algorithms are employed for the purpose of identifying aberrant
data points that may potentially signify a cyberattack. The algorithms utilized
in this context encompass statistical methods, clustering techniques, classification
approaches, and neural network-based models.

Reinforcement Learning

Reinforcement Learning is a machine learning paradigm in which an autonomous
agent acquires the ability to make decisions by iteratively interacting with an
environment with the objective of maximizing a predefined reward signal. The
utilization of this technology has been observed within the realm of cybersecurity,
where it has been employed to facilitate the creation of systems capable of adapting
and effectively responding to various forms of cyberattacks.

2.1.3 Blockchain Technology

The utilization of blockchain technology, which was originally created for digital
currencies such as Bitcoin, has been extended to a wide range of domains, en-
compassing cybersecurity among others. The distinctive attributes of blockchain
technology, including its decentralized nature, immutability, and transparency,
render it a powerful instrument for the detection and prevention of cyberattacks.

Blockchain is a decentralized technology for maintaining a ledger that disperses
data across numerous systems within a network, thereby enhancing its resilience
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against technical malfunctions and malicious intrusions. In the blockchain, every
block comprises a collection of transactions, and these blocks are interconnected
through the utilization of cryptographic hashes. The aforementioned architectural
design guarantees the immutability and non-deletability of data once it is appended
to the blockchain, thereby establishing a dependable and tamper-resistant ledger
of transactions.

In the realm of cybersecurity, blockchain technology has the potential to effec-
tively tackle a multitude of challenges.

Data Integrity

The property of immutability inherent in blockchain technology serves to safeguard
the integrity of data. Once data has been recorded on a blockchain, it becomes
immutable and resistant to any form of alteration or tampering. The inclusion of
this particular feature holds significant importance in the realm of cyber attack
detection, as it furnishes a dependable chronicle of occurrences, thereby facilitating
the identification and examination of dubious actions.

Decentralization

The decentralized nature of blockchain technology mitigates the potential for
single-point failures. In conventional centralized systems, the compromise of the
central system poses a significant risk to the entire network. In contrast, within a
blockchain network, the security of the entire network is maintained even in the
event of a compromise at a single node.

Transparency and Traceability

Transparency in every transaction on a blockchain makes it possible to track
its history. This functionality possesses the capability to identify and examine
instances of cyberattacks. In the context of a network monitoring system based
on blockchain technology, the identification of an intrusion enables the subsequent
tracing of its origin by leveraging the inherent transparency and immutability of
the blockchain.
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2.1.4 Security Information and Event Management (SIEM)

Security Information and Event Management (SIEM) systems have emerged as a
fundamental component of contemporary cybersecurity frameworks. SIEM systems
play a vital role in the identification, prevention, and response to cyber attacks
by offering instantaneous analysis of security alerts produced by applications and
network hardware. SIEM is the state-of-the-practice in handling heterogeneous
data sources for security analysis.[6]

SIEM technology integrates two distinct product categories, namely Security
Information Management (SIM) and Security Event Management (SEM). SIM
products are designed to gather, examine, and present log data, whereas SEM
systems perform real-time analysis of log and event data to offer threat monitoring,
event correlation, and incident response capabilities. The integration of these two
categories within the framework of Security Information and Event Management
(SIEM) has yielded systems that offer a holistic perspective on an organization’s
information security.

Security Information and Event Management (SIEM) systems are of paramount
importance in the realm of cyber attack detection. The company offers a compre-
hensive solution that enables the real-time analysis of security alerts generated by
network hardware and applications, thereby playing a crucial role in the identifi-
cation, mitigation, and management of cyber threats. SIEM systems operate by
aggregating data from various sources, including network devices, security controls,
systems, and applications. The dataset possesses the capacity to encompass diverse
forms of data, including logs, events, network flows, and user behavior data. The
ability to collect and analyze a wide variety of data enables Security Information and
Event Management (SIEM) systems to detect anomalies and suspicious behaviors
that may indicate a potential cyberattack. To exemplify, a Security Information
and Event Management (SIEM) system possesses the capacity to detect a sub-
stantial number of unsuccessful login attempts followed by a subsequent successful
login, potentially indicating the occurrence of a brute force attack. The ability
to establish connections between events originating from diverse sources is widely
recognized as a highly influential characteristic of Security Information and Event
Management (SIEM) systems. The aforementioned capability holds significant
importance in the detection of complex, multi-phased attacks that involve multiple
systems. If a user attempts to log in from an unusual location and then proceeds to
download a large amount of data, a Security Information and Event Management
(SIEM) system can establish a correlation between these events. As a result, the
Security Information and Event Management (SIEM) system can produce an alert,
thereby recognizing this activity as a credible cyber attack. SIEM systems provide
dashboards and visualization tools, which aid security analysts in understanding
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and examining the collected data. These tools enhance the ability to recognize
patterns, identify irregularities, and empower analysts to make informed judgments
regarding potential risks. Furthermore, Security Information and Event Manage-
ment (SIEM) systems provide a variety of tools that enable the process of forensic
analysis. These tools provide analysts with the capability to thoroughly investigate
the complexities of a security incident, understand its consequences, and develop
an appropriate action plan.

In summary, Security Information and Event Management (SIEM) systems
exemplify a cutting-edge approach to identifying and mitigating cyber attacks.
Through the provision of real-time analysis, event correlation, and incident response
capabilities, these systems empower organizations to effectively and efficiently detect
and respond to cyber threats. The ongoing evolution of cyber threats necessitates
the continued significance of SIEM systems in the realm of cyber attack detection.

2.2 Applications of artificial intelligence for cyber
attack detection

The escalating frequency and complexity of cyberattacks present substantial risks
to the security of information, financial stability, and individual privacy. The
conventional approaches to safeguarding against cyber threats, including the uti-
lization of firewalls and antivirus software, remain crucial; however, they are no
longer adequate for effectively mitigating the risks posed by these ever-changing
threats. Artificial Intelligence (AI) emerges as a pivotal factor in the realm of
cybersecurity and the detection of cyberattacks, presenting a novel frontier. Due
to the rapid development of Internet-connected systems and Artificial Intelligence
in recent years, Artificial Intelligence including Machine Learning (ML) and Deep
Learning (DL) has been widely utilized in the fields of cyber security including
intrusion detection, malware detection, and spam filtering.[7]

Artificial intelligence (AI) is significantly transforming various domains, including
cybersecurity, due to its capacity to acquire knowledge through experience, analyze
vast quantities of data, and generate predictions. The utilization of artificial
intelligence (AI) within the realm of cybersecurity is a direct reaction to the
imperative for enhanced and intricate approaches in the identification and mitigation
of cyber threats. The current landscape of cyber threats is characterized by a
simultaneous rise in both quantity and complexity, with an increasing tendency for
these threats to be engineered in a manner that circumvents conventional security
protocols.

Artificial intelligence (AI) has the potential to effectively tackle these challenges
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through the automation and augmentation of cyber defense systems. The system
can efficiently analyze extensive volumes of data to identify irregularities, recognize
patterns that may signify cyber attacks, and potentially forecast forthcoming
threats by extrapolating from prevailing trends. Moreover, artificial intelligence
(AI) possesses the ability to adjust to the constantly evolving strategies employed
by cybercriminals. It achieves this by assimilating knowledge from emerging threats
and subsequently developing effective countermeasures.

The incorporation of artificial intelligence (AI) into cybersecurity strategies
embodies a proactive stance toward safeguarding against cyber threats. The
utilization of AI technology allows for proactive measures in addressing potential
threats, leading to the enhancement of digital system security as opposed to solely
reacting to threats in real time. As society grapples with the intricate dynamics of
the digital realm, the prominence of artificial intelligence (AI) in the domain of
cybersecurity is poised to escalate in significance.

2.2.1 Understanding AI in Cybersecurity

Artificial Intelligence (AI) pertains to the emulation of human cognitive processes
through the utilization of machines, particularly computer systems. The aforemen-
tioned processes encompass learning, which involves the acquisition of information
and the rules governing its utilization; reasoning, which entails the application of
rules to arrive at either approximate or definitive conclusions; and self-correction.
Within the realm of cybersecurity, artificial intelligence (AI) represents a signif-
icant paradigm shift, providing sophisticated and automated methodologies for
identifying, mitigating, and addressing cyber risks.

Artificial intelligence (AI) plays a pivotal role in the field of cybersecurity by
streamlining the intricate procedures involved in identifying and responding to
cyberattacks and breaches. The crux of the matter lies in the capacity of artificial
intelligence (AI) to acquire knowledge and adjust accordingly. Through the analysis
of extensive datasets and the acquisition of knowledge from these datasets, artificial
intelligence (AI) has the potential to detect and discern threats or malevolent
activities that may elude human perception or require significantly more time for
human identification.

There exist multiple categories of artificial intelligence (AI), namely Machine
Learning (ML), Deep Learning (DL), and Natural Language Processing (NLP),
each possessing distinct applications in the realm of cyber attack detection.
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Machine Learning (ML)

Machine Learning, a subfield within the domain of Artificial Intelligence (AI),
involves the use of algorithms to examine data, extract knowledge from it, and
subsequently produce a conclusion or prediction related to a specific aspect of
the physical world. Machine learning (ML) algorithms are commonly used in the
domain of cybersecurity to detect anomalies. The procedure of anomaly detection
involves the recognition of atypical patterns or outliers within a given dataset.
These anomalies potentially indicate the presence of a cyberattack, characterized by
abnormal levels of network traffic, a high frequency of unsuccessful login attempts,
or unusual user behavior.

The utilization of machine learning (ML) has the capacity to be harnessed
for the application of predictive analytics in the domain of cybersecurity. By
analyzing historical data, machine learning algorithms demonstrate the ability to
identify repetitive patterns and emerging trends, thereby enabling the prediction
of future cyberattacks. This facilitates the implementation of proactive strategies
by organizations to mitigate and preempt such attacks.

Deep Learning (DL)

Deep Learning, a subfield within the broader discipline of Machine Learning, is
based on the application of artificial neural networks that have the capacity to
acquire knowledge and derive significant representations. The system possesses
the capacity to effectively manage a wide range of data resources, consequently
mitigating the necessity for human operators to engage in labor-intensive data
engineering tasks. The utilization of deep learning (DL) has exhibited considerable
effectiveness in the domain of cyberattack detection as a result of its capacity to
construct complex architectures comprising multiple layers of processing. This
enables the modeling of sophisticated abstractions at a higher level within datasets.

For example, deep learning (DL) can be employed for the purpose of identifying
zero-day exploits, which refer to attacks that exploit software vulnerabilities prior
to their disclosure by the vendor. Conventional detection methodologies frequently
prove inadequate in identifying emerging threats, as they heavily depend on the
recognition of signatures or established attack patterns. On the contrary, deep
learning has the capability to detect abnormal actions linked to these exploits even
when there are no established patterns available.
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Natural Language Processing (NLP)

The field of Natural Language Processing encompasses the dynamic interplay
between computational systems and human language. This capability enables
systems to comprehend, evaluate, and produce human language in a meaningful
manner. Within the realm of cybersecurity, Natural Language Processing (NLP) can
be effectively employed for the purpose of scrutinizing textual data, encompassing
mediums such as emails or social media posts, with the aim of identifying and
discerning potential security risks.

One illustrative application of natural language processing (NLP) involves its
utilization in the detection of phishing endeavors within electronic mail communica-
tions. The analysis of an email’s language, contextual information, and embedded
links can be employed to ascertain its potential as a phishing email. Natural
Language Processing (NLP) can also be employed for the purpose of identifying
malevolent Uniform Resource Locators (URLs) or code within social media posts
or web pages.

Artificial intelligence (AI), along with its various subfields such as machine
learning (ML), deep learning (DL), and natural language processing (NLP), assumes
a pivotal role in contemporary cybersecurity. The implementation of artificial
intelligence (AI) in the detection process and its ability to acquire knowledge from
each potential threat enable a heightened level of proactivity and efficacy in the
realm of cyber defense. The increasing complexity and evolution of cyber threats
necessitate the utilization of artificial intelligence (AI) in the field of cybersecurity.
It is anticipated that the integration of AI will enhance the sophistication and
effectiveness of cyberattack detection.

The market for artificial intelligence in cybersecurity is also anticipated to grow
during the forecast period as a result of the proliferation of 5G technology and
the rising demand for cloud-based security solutions among small and medium-
sized organizations. Artificial intelligence in cybersecurity is currently gaining
popularity to secure information. Because end users are anticipated to embrace
AI in cybersecurity to address security concerns and spot new types of assaults
that can occur at any time, the market for artificial intelligence in cybersecurity is
growing steadily.

2.2.2 Applications of AI in Cyber Attack Detection

The utilization of Artificial Intelligence (AI) has significantly contributed to the
improvement of our capacity to identify and mitigate cyberattacks. The capacity
to acquire knowledge from data, discern patterns, and generate forecasts has
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Figure 2.1: AI in Cyber Security

resulted in the advancement of increasingly sophisticated and efficient strategies
for safeguarding against cyber threats. There are several applications of artificial
intelligence (AI) in the realm of cyberattack detection.

Anomaly Detection

Anomaly detection stands out as a prominent application of artificial intelligence
within the field of cybersecurity. Artificial intelligence algorithms have the capability
to undergo training in order to establish a foundational level of typical behavior
within a given system or network. Following this, the system can be observed for any
deviations from the established baseline, which may indicate the possible existence
of a threat. For instance, artificial intelligence possesses the capacity to monitor
network traffic and identify anomalous patterns, such as an unusually high volume
of data being transmitted or an unexpected increase in login attempts. The presence
of these irregularities could potentially indicate the manifestation of a cyberattack,
such as a compromise of data or a brute-force assault. The phenomenon in question
can be exemplified by the cybersecurity platform Darktrace. The system employs
artificial intelligence (AI) to establish a comprehensive "pattern of life" for every
user and device present in a given network. Following this, it then proceeds to
detect any deviations from these established patterns, acknowledging them as
possible risks.
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Phishing Detection

The utilization of artificial intelligence (AI) holds promise in the realm of identi-
fying and detecting phishing attempts. The analysis covers various aspects of an
email, such as the metadata, textual content, and embedded hyperlinks, aiming
to determine if the email under consideration displays features that suggest it
may be a phishing attempt. As an example, artificial intelligence (AI) possesses
the capacity to identify suspicious phrases commonly utilized in phishing emails.
Moreover, it has the capability to distinguish whether an email is derived from
a domain that exhibits similarities to a genuine domain, although not an exact
replica. To recognize and counteract phishing attempts, Google’s Gmail service
makes use of artificial intelligence (AI) technology. Machine learning algorithms
are utilized for the purpose of examining patterns present in emails and identifying
recurring characteristics that are suggestive of phishing attempts.

Malware Detection

Artificial intelligence ( AI) possesses the ability to identify and categorize malevolent
files, even in instances where these files have been altered with the intention of
evading traditional antivirus software. The procedure entails the examination of the
characteristics of a provided file and the performance of a comparative evaluation
with established malware profiles in order to determine its potential for malicious
intent. One illustrative instance involves the utilization of artificial intelligence (
AI) to discern polymorphism malware, denoting malicious software that modifies its
code to evade detection. Traditional antivirus software, which relies on pre-existing
malware signatures, often demonstrates limited effectiveness in detecting such forms
of threats. Nevertheless, artificial intelligence ( AI) has the ability to identify the
underlying patterns in malware behavior, allowing for its detection even when the
code is modified. Cylance is a Cyber Security Enterprise that focuses on utilizing
artificial intelligence ( AI) algorithms to identify and address malware threats. The
antivirus software, which employs artificial intelligence, has the ability to rapidly
identify and preemptively block the execution of malicious software.

Predictive Analytics

Artificial intelligence ( AI) demonstrates the ability to analyze data patterns and
trends, thereby enabling it to generate predictions pertaining to future cyberattacks.
This facilitates the implementation of proactive strategies by organizations to
mitigate and preempt such attacks. One instance where artificial intelligence ( AI)
demonstrates its potential is in the analysis and interpretation of patterns found
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in network traffic, user behaviour, and existing cyber threats. This enables AI
to predict the possible timing and location ofpotential Cyberattacks. This may
involve the recognition of Verhaltenal patterns associated with a particular type of
Cyberattack or the anticipation of targeted systems through the evaluation of their
vulnerabilities and the importance of the data they hold. Crowdstrike, a Cyber
Security organisation, employs artificial intelligence ( AI) in the Application of
predictive analytics. The Falcon platform utilizes machine learning algorithms for
the purpose of data analysis and the anticipation of potential security risks. Artificial
Intelligence (AI) possesses a broad spectrum of applications within the realm of
cyberattack detection. These applications encompass the identification of anomalies
and phishing endeavors, as well as the detection of malware and the anticipation
of forthcoming threats. These applications exemplify the capacity of artificial
intelligence (AI) to augment our capability in identifying and mitigating cyber
attacks, thereby emphasizing the significance of AI in contemporary cybersecurity.

2.2.3 Advantages and Challenges of AI in cyber security
domain

The field of cyberattack detection benefits from various notable advantages brought
about by Artificial Intelligence (AI). The capacity to acquire knowledge from
data, discern patterns, and formulate predictions has significantly transformed
our approach to cybersecurity. Machine learning has been strongly incorporated
into modern cybersecurity-related technology. [8] does a literature review and
investigates the general effects of AI on cybersecurity.In their results, they have
obtained positive findings in attacks with artificial intelligence and have found
certain results when obtaining information on attacks using AI. The following are
several notable benefits:

Increased Accuracy

One of the primary benefits associated with the utilization of artificial intelligence
(AI) in the realm of cyber attack detection is the heightened level of precision it
affords. Conventional cybersecurity measures frequently depend on pre-established
rules and recognized attack signatures. Although the effectiveness of these methods
has been proven in detecting known threats, their capability to detect new or
complex attacks is often compromised. Artificial intelligence (AI) has the ability to
acquire knowledge from data and identify patterns that may indicate a cyberattack,
even when the attack does not conform to established signatures. The potential
impact of implementing this approach is significant in terms of reducing the
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occurrence of both false positives and false negatives, thereby improving the
precision of cyber threat detection.

Ability to Analyze Large Amounts of Data

The discipline of cybersecurity involves the analysis of large volumes of data with
the aim of identifying and evaluating potential vulnerabilities. The successful
accomplishment of this task can present considerable difficulty for individuals,
however, it is a domain in which artificial intelligence exhibits remarkable aptitude.
Artificial intelligence (AI) algorithms have the capacity to effectively analyze
extensive volumes of data, frequently reaching the magnitude of terabytes. The
aforementioned analytical procedure facilitates the detection of regularities and
deviations within the dataset, which may potentially function as indicators of a
cyber intrusion. The capacity to effectively handle and evaluate substantial volumes
of data not only enhances the efficiency of identifying cyberattacks promptly but
also enables the identification of intricate, multi-phased attacks that would pose
challenges for manual analysis.

Detection of Unknown Threats (Zero-Day Attacks)

Zero-day attacks, characterized by the exploitation of undisclosed vulnerabilities,
present a substantial obstacle to conventional cybersecurity protocols. Given that
these attacks lack correspondence with established signatures, they frequently
evade detection by conventional security systems. Artificial intelligence (AI), on
the other hand, has the potential to assist in mitigating this particular obstacle.
Through the examination of behavioral patterns and the identification of deviations,
artificial intelligence (AI) has the capability to discern atypical activities that could
potentially signify the occurrence of a zero-day attack. The capability to identify
unfamiliar threats represents a notable benefit of artificial intelligence (AI) in the
realm of cyberattack detection.

Proactive Threat Detection

The utilization of artificial intelligence (AI) in forecasting forthcoming cyber at-
tacks by analyzing data patterns and trends signifies a transition from a reactive
to a proactive approach in the field of cybersecurity. Rather than adopting a
reactive approach to cyberattacks, the implementation of artificial intelligence (AI)
empowers organizations to proactively identify and mitigate potential threats. The
implementation of a proactive approach has the potential to greatly mitigate the
detrimental impact of cyberattacks.
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2.2.4 Challenges and Limitations of Using AI for Cyber
Attack Detection

In the area of cyber attack detection, artificial intelligence (AI) offers notable
advantages, but it also comes with a number of difficulties and limitations. [8]
concluded that it is necessary to advance in artificial intelligence since the increasing
volume and complexity of attacks at the international level require more resources
to face them. Cybercriminals will also use artificial intelligence to attack individuals,
state infrastructure, and systems. A comprehensive comprehension of these concepts
is imperative for the proficient utilization of artificial intelligence in the realm of
cybersecurity. The following are several significant challenges:

High False-Positive Rates

One of the primary obstacles encountered when employing artificial intelligence (AI)
for the purpose of cyber attack detection pertains to the possibility of elevated rates
of false-positive outcomes. Although artificial intelligence (AI) has the capability
to detect patterns and anomalies that could potentially signify a cyberattack, it is
important to note that not all anomalies necessarily imply malicious intent. This
phenomenon has the potential to result in a significant number of false-positive
outcomes, wherein benign activities are erroneously identified as possible threats.
The act of wastefully utilizing resources not only incurs unnecessary costs but
also has the potential to induce ’alert fatigue’ among security teams, wherein the
excessive occurrence of false positives renders them less responsive to alerts.

The ’Black Box’ Problem

Interpreting AI systems, especially those that rely on intricate machine learning
algorithms, can pose challenges. Frequently, these systems function in an opaque
manner, employing intricate computations that are not readily comprehensible to
human beings. The absence of transparency poses a notable obstacle in the field of
cybersecurity, as comprehending the rationale behind a decision is imperative to
effectively addressing a potential threat. Furthermore, the utilization of AI systems
also gives rise to concerns regarding accountability and trust.
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Risk of AI Systems Being Manipulated

Although artificial intelligence (AI) has the potential to improve cybersecurity
measures, malicious actors can also use it to carry out more intricate and sophisti-
cated attack strategies. The automation of attacks is one way that malicious actors
can use artificial intelligence (AI), allowing them to run more effective phishing
campaigns or get around AI-driven security systems. Another potential concern
is the existence of ’adversarial attacks’, wherein malicious actors manipulate the
input data provided to an artificial intelligence (AI) system with the intention of
deceiving it into producing erroneous outcomes.

Dependence on Quality Data

The efficacy of artificial intelligence (AI) in the detection of cyberattacks is heavily
contingent upon the caliber of the data on which it is trained. In the event that
the training data exhibits bias, incompleteness, or obsolescence, the AI system may
encounter challenges in effectively identifying and discerning threats with precision.
The task of gathering and preserving accurate and current data poses a substantial
obstacle.

2.2.5 Future Trends in the Use of AI for Cyber Attack
Detection

The increasing sophistication of Artificial Intelligence (AI) is expected to enhance its
utilization in the realm of cyberattack detection. The following discourse presents
a selection of prospective future trends pertaining to the utilization of artificial
intelligence (AI) for the purpose of detecting cyberattacks.

Development of More Sophisticated AI Algorithms

With the ongoing advancement of AI research, it is reasonable to anticipte the
emergence of increasingly intricate AI algorithms. It is highly probable that these
algorithms will possess the capability to analyze significantly larger quantities of
data, discern more intricate patterns, and generate predictions with heightened
accuracy. This has the potential to enhance the efficacy of cyberattack detection
by encompassing intricate, multi-phased attacks and zero-day exploits.
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Integration of AI with Other Technologies

The incorporation of artificial intelligence (AI) with other technological advance-
ments represents a highly encouraging trajectory. The integration of artificial
intelligence (AI) with blockchain technology has the potential to enhance data
security and privacy. This integration can create a more robust system that makes
it increasingly difficult for malicious actors to manipulate or steal data. The utiliza-
tion of blockchain technology has the potential to offer transparent and unalterable
documentation of cyberattacks, thereby facilitating incident response and forensic
analysis. Another prospective integration can be observed in the realm of quantum
computing. The utilization of quantum computers, due to their remarkable data
processing capacity and accelerated computational capabilities, has the potential to
greatly augment the effectiveness of artificial intelligence in the realm of cyberattack
detection.

Use of AI for Automated Incident Response

Artificial intelligence (AI) possesses utility not solely in the realm of cyber attack
detection but also in the domain of cyber attack response. In the forthcoming years,
it is anticipated that there will be an increased utilization of artificial intelligence
(AI) in the realm of automated incident response. This scenario encompasses the
utilization of artificial intelligence (AI) systems to autonomously execute remedial
measures upon identification of a potential security breach. Potential measures that
can be implemented may involve isolating compromised systems or implementing
restrictions on access from malicious IP addresses. The implementation of this
approach holds the capacity to significantly reduce the duration required to respond
to a cyberattack, thereby diminishing the potential magnitude of damage.

AI-Driven Threat Intelligence

The field of threat intelligence stands to benefit significantly from the integration
of artificial intelligence (AI) technology. By analyzing data from various sources,
artificial intelligence (AI) has the ability to identify patterns and trends in the field
of cyber threats. This enables AI to provide valuable insights into potential risks.
The utilization of this methodology possesses the capacity to augment proactive
behavior within organizations in the domain of cybersecurity, as it facilitates the
execution of precautionary actions that are guided by projected risks.
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Explainable AI (XAI)

The issue of the ’black box’ phenomenon in artificial intelligence has generated
significant attention, leading to an increasing focus on the concept of explainable AI
(XAI). Explainable Artificial Intelligence (XAI) pertains to the field of AI systems
that possess the capability to offer transparent and comprehensible justifications
for the decisions they make. The comprehension of the rationale behind a decision
holds significant importance in the field of cybersecurity, particularly in the context
of incident response. The potential for artificial intelligence (AI) in the realm of
cyberattack detection appears to be highly favorable. The ongoing development
and integration of artificial intelligence (AI) in conjunction with other technological
advancements are poised to assume a progressively substantial role in the field
of cybersecurity. This integration holds the potential to augment our capacity
to identify and counteract cyber threats. Nevertheless, like any technological
advancement, it is imperative to approach these developments with a cautious and
well-informed comprehension of the potential obstacles and ethical implications.

2.3 Importance of cybersecurity in autonomous
vehicles

Autonomous vehicles, also known as self-driving cars, have emerged as a revolution-
ary technological advancement in the field of transportation. As discussed in [9],
with connected autonomous vehicles the protection from external attack will be an
essential requirement, motivated by the outstanding safety implications of an au-
tonomous vehicles remotely controlled by an attacker or a "malware". However, the
automotive industry still lacks reliable and repeatable methods to assess the cyber-
security level of modern cars. The previously mentioned vehicles are equipped with
sophisticated sensors, algorithms that employ artificial intelligence, and advanced
computing capabilities, enabling them to operate autonomously without human
intervention. The advent of autonomous vehicles has the potential to significantly
transform various aspects of our society, including transportation, urban planning,
safety, and environmental sustainability. This article explores the importance of
autonomous vehicles and their impact on the future of transportation.

The significance of cybersecurity in the realm of autonomous vehicles cannot
be emphasized enough, particularly as we progress towards a future where it
plays a more prominent role. Autonomous vehicles, due to their utilization of
intricate software systems, connectivity, and data interchange, pose a novel array of
challenges and susceptibilities that render them appealing to cybercriminals. The
assurance of security for these vehicles extends beyond the safeguarding of data

23



Literature Review

and the prevention of financial losses; it encompasses the imperative of upholding
public safety.

The advent of autonomous vehicles has brought forth a distinct array of cy-
bersecurity challenges due to their intricate network of interconnected systems
and dependence on external communications. These vehicles can be considered
mobile data centers, as they continuously process substantial volumes of data in
real-time to facilitate navigation, decision-making, and external communication.
The intricate nature and interconnectivity of systems provide cybercriminals with
numerous opportunities to exploit vulnerabilities.

2.3.1 Potential Targets in Autonomous Vehicles

Navigation Systems

Autonomous vehicles heavily depend on their navigation systems, which encompass
GPS and mapping data. The manipulation of data through a cyberattack has the
potential to result in the vehicle’s deviation from its intended course or, in more
severe cases, lead to a collision.

Sensors and Cameras

Autonomous vehicles employ a variety of sensors, such as LIDAR, radar, and ultra-
sonic sensors, in conjunction with cameras to effectively perceive and comprehend
their immediate environment. The potential targets of a cyberattack could include
vehicles, where false information could be injected to disrupt their normal behavior
and induce unpredictable responses.

Communication Systems

Autonomous vehicles establish communication links with other vehicles, infrastruc-
ture elements, and potentially a central control system, commonly referred to as
vehicle-to-Everything (V2X) communication. The potential exists for an assailant
to intercept and manipulate these communications or exploit them as a means to
gain unauthorized access to the internal systems of the vehicle.

Control Systems

The control systems of the vehicle, responsible for regulating the throttle, brakes,
and steering, may potentially become susceptible to cyberattacks. The acquisition
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of control over these systems could potentially enable an assailant to assume
command of the vehicle.

Data Storage

Autonomous vehicles possess the capability to generate and store substantial
volumes of data. This may serve as an attractive target for cybercriminals seeking
to illicitly acquire personal information or proprietary data.

2.3.2 Potential Consequences of a Cyber Attack

Safety Risks

The primary and gravest outcome arising from a cyberattack on an autonomous
vehicle is the inherent risk of causing physical harm. In the event that an assailant
successfully acquires command over a vehicle or manipulates its sensor data with
deceptive information, the potential consequence may manifest in the form of a
collision. The potential for accidents exists even in instances where non-physical
attacks, such as impairing a vehicle’s sensors through a cyberattack, are employed.

Privacy Breaches

Autonomous vehicles amass a substantial amount of data, a portion of which
pertains to personal and sensitive information. A cyberattack has the potential to
result in the unauthorized acquisition of this data, thereby resulting in breaches of
privacy and the potential for identity theft.

Financial Loss

Cyber attacks could lead to financial loss, both for individuals (through data theft
or damage to the vehicle) and for companies (through damage to their reputation,
loss of customer trust, or regulatory fines).

Disruption of Services

For companies operating fleets of autonomous vehicles (like ride-hailing or delivery
services), a cyber attack could disrupt their services, leading to financial loss and
damage to their reputation.
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Methodology

In order to tackle the research question at hand, our efforts were concentrated on
an ongoing project named "Evergrin," spearheaded by Brain Technologies. The
primary objective of this project is to devise effective solutions for the detection of
cyber attacks, particularly in the context of autonomous vehicles.

Given the complexity and the broad scope of autonomous vehicle systems, it is
essential to adopt a targeted approach for our research. Therefore, we decided to
focus on a specific component of the autonomous vehicle system, rather than the
entire system itself. This approach allows us to delve deeper into the intricacies
of the selected component and develop a comprehensive understanding of its
vulnerabilities and potential countermeasures.

The platform chosen for this purpose is a Simulink model of an autonomous
vehicle. Simulink, a MATLAB-based environment, offers a graphical interface for
modeling, simulating, and analyzing dynamic systems. It is particularly well-suited
for our research as it allows us to create a realistic and controllable environment to
test our methodologies.

Within this Simulink model, we decided to focus on the "Pedal Press Percentage"
model. This model represents a critical aspect of the vehicle’s control system,
specifically, the degree to which the accelerator or brake pedal is pressed. By
focusing on this model, we can explore the potential cyber threats that could
manipulate the vehicle’s speed control, leading to dangerous situations.

Our research will involve applying various machine learning and artificial intelli-
gence techniques to this "Pedal Press Percentage" model. The goal is to detect any
anomalies or deviations that could indicate a cyber attack. By focusing our efforts
on this specific model within the broader autonomous vehicle system, we aim to
develop a robust and effective methodology for real-time cyber attack detection.

Our decision to concentrate on the "Pedal Press Percentage" model is strategic
and purposeful. This model is a critical component of the autonomous vehicle’s
control system, directly influencing the vehicle’s speed and, consequently, its overall
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operation and safety. A cyber attack targeting this system could lead to a loss of
control over the vehicle’s speed, posing significant safety risks. Therefore, developing
robust cyber attack detection mechanisms for this model is of utmost importance.

The methodology we will employ involves applying advanced machine learning
and artificial intelligence techniques to the data generated by the "Pedal Press
Percentage" model. These techniques are capable of learning from the data,
identifying patterns, and detecting anomalies that could indicate a cyber attack.
The goal is to develop a system that can detect cyber attacks in real-time, enabling
immediate response and mitigation.

To achieve this, we will first use the Simulink model to generate a dataset that
reflects both normal operation and various cyber attack scenarios. This dataset will
then be used to train and test our machine learning algorithms. The performance of
these algorithms will be evaluated based on their ability to accurately and promptly
detect cyber attacks.

3.1 Pedal Press Percentage Model and its Human
Machine Interface (HMI)

The focus of our research is the "Pedal Press Percentage" model within an au-
tonomous vehicle’s control system, simulated using Simulink, a MATLAB-based
environment. This model is integral to the vehicle’s operation as it directly influ-
ences the vehicle’s speed by determining the degree to which the accelerator pedal
is pressed.

The operation of this model begins with an input received through a knob,
which represents the desired speed or acceleration. This input is then processed by
the model, which generates two intermediate signals, referred to as "throttle 1" and
"throttle 2". These signals are crucial in the computation of the final output, which
is the percentage by which the accelerator pedal has been pressed.

The communication within this model, including the transmission of the input
and the intermediate signals, is facilitated by Controller Area Network (CAN)
messages. CAN is a standard designed to allow microcontrollers and devices to
communicate with each other within a vehicle without a host computer. In our
model, we have three CAN blocks, each corresponding to the input, "throttle 1",
and "throttle 2".

Each CAN message consists of 13 attributes, providing detailed information
about the message such as its identifier, data length code, data field, and more.
Given that we have three CAN blocks, this results in a total of 39 attributes (13
attributes per CAN message x 3 CAN blocks).

In addition to these, we also have the timestamp, which provides the exact time
at which the data point was recorded. We also record the values of the input,
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"throttle 1", "throttle 2", and the final pedal press percentage. This brings the total
number of attributes for each data point to 44.

The data from this Simulink model is extracted and stored in Excel files. Each
row in these files represents a single data point, with the 44 attributes spread
across the columns. This structured data serves as the foundation for our machine
learning model.

The collected data is then used to train a deep learning model. The model
learns from the patterns in the data, enabling it to detect anomalies that could
indicate a cyber attack. By using such a detailed and comprehensive dataset, we
aim to develop a robust and accurate system for real-time cyber attack detection
in autonomous vehicles.

Figure 3.1: Human Machine Interface (HMI) of Pedal Press Percentage model.

3.2 Data Acquisition and Preparation

3.2.1 Data Acquisition
The Human-Machine Interface (HMI) is a critical component in our research, acting
as the main conduit between the user and the "Pedal Press Percentage" model
within the autonomous vehicle’s control system. The HMI is designed to facilitate
the generation of synthetic data, which forms the basis for training and testing our
machine learning algorithms.

The HMI of the Pedal Press model is specifically engineered to simulate the
operation of an autonomous vehicle’s control system. It incorporates a knob that
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allows the user to manually adjust the desired speed or acceleration of the vehicle.
This knob serves as the input for the "Pedal Press Percentage" model, triggering a
sequence of operations that culminate in the generation of the final pedal press
percentage.

The knob in the HMI enables a broad spectrum of input values, simulating
a diverse range of driving conditions and scenarios. This is particularly crucial
for our research as it allows us to generate a comprehensive and varied dataset.
The synthetic data generated encompasses a multitude of scenarios, from normal
operation to potential cyber attack situations. This diversity in data is vital for
training a robust machine learning model capable of detecting a wide array of cyber
attacks.

Upon providing the input through the HMI, the "Pedal Press Percentage" model
processes it to generate two intermediate signals, "throttle 1" and "throttle 2". These
signals, along with the input and the final pedal press percentage, are communicated
through Controller Area Network (CAN) messages. Each CAN message consists
of 13 attributes, providing detailed information about the message. With three
CAN blocks in our model, we end up with a total of 39 attributes from the CAN
messages alone.

In addition to these, we also record the timestamp, the input value, the values
of "throttle 1" and "throttle 2", and the final pedal press percentage. This brings
the total number of attributes for each data point to 44.

Significantly, a new data point is generated every 0.01 seconds. This high-
frequency data collection allows us to capture a detailed and granular view of the
system’s operation, enhancing the richness of our dataset and the precision of our
machine learning model.

The synthetic data generated through this process is extracted from the Simulink
model and stored in Excel files. Each row in these files represents a single data
point, with the 44 attributes spread across the columns. This structured data
serves as the foundation for our machine learning model, providing it with the
information it needs to learn, identify patterns, and detect potential cyber attacks.

3.2.2 Data Preparation
In the rapidly evolving field of machine learning and artificial intelligence, the
choice of tools and libraries can significantly influence the flexibility, efficiency, and
overall success of a project. In our research, we made a deliberate decision not to
use the machine learning libraries provided by MATLAB for training our model
and deploying it in a production environment. This decision was primarily driven
by the need for flexibility and control over our data processing and model training
processes.

MATLAB, while offering a robust environment for numerical computation and
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visualization, has certain limitations when it comes to machine learning. Its
machine learning libraries, although comprehensive, do not offer the same level
of flexibility as many open-source tools available today. These open-source tools
often provide a wider range of options for model training, tuning, and evaluation,
allowing researchers to customize the process to their specific needs.

Moreover, MATLAB’s environment can be restrictive when it comes to data
processing. In machine learning, data processing and feature engineering are critical
steps that can significantly impact the performance of the final model. The ability
to manipulate and process data in a way that best suits the problem at hand is
crucial. However, MATLAB’s environment may not always provide the flexibility
needed to perform these tasks optimally.

To overcome these limitations, we extracted the data from the MATLAB
environment and chose Google Colab as our platform for data preparation and
model training. Google Colab is a cloud-based Python development environment
that offers a range of open-source machine learning libraries. It provides the
flexibility to choose from a wide array of machine learning algorithms, fine-tune
them as needed, and evaluate their performance using various metrics.

Furthermore, Google Colab allows for more flexible and advanced data processing.
With Python’s extensive range of data processing libraries, we can manipulate
our data in ways that would not be possible in MATLAB. This includes handling
missing values, encoding categorical variables, normalizing numerical variables, and
much more.

In conclusion, our choice to move away from MATLAB’s machine learning
libraries towards Google Colab was driven by the need for greater flexibility in
our data processing and model training processes. This decision has allowed us to
leverage the power of open-source tools, customize our approach to suit our specific
needs, and ultimately develop a more effective and robust machine learning model
for cyber attack detection in autonomous vehicles.

3.2.3 Preporcessing
Data Preprocessing includes the steps we need to follow to transform or encode data
so that it may be easily parsed by the machine. The main agenda for a model to
be accurate and precise in predictions is that the algorithm should be able to easily
interpret the data’s features. The majority of the real-world datasets for machine
learning are highly susceptible to be missing, inconsistent, and noisy due to their
heterogeneous origin. Applying data mining algorithms on this noisy data would
not give quality results as they would fail to identify patterns effectively. Data
Processing is, therefore, important to improve the overall data quality. Duplicate or
missing values may give an incorrect view of the overall statistics of data. Outliers
and inconsistent data points often tend to disturb the model’s overall learning,
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leading to false predictions. Quality decisions must be based on quality data. Data
Preprocessing is important to get this quality data, without which it would just be
a Garbage In, Garbage Out scenario.

There are some preprocessing steps that we must take before we mode ahead.
They are listed below:

• Handling missing values

• Handling noisy Data

• Removing outliers

once we have cleaned and preprocessed our data, we employ a technique known
as "windowing" to generate a new dataset. This technique is particularly useful
for time-series data, like ours, where the order of data points and their temporal
relationships can provide valuable information for the model.

The windowing technique involves creating "windows" or "frames" of consecutive
data points. Each window is then used as an input for the model, with the goal of
predicting the next data point in the sequence. This approach allows the model to
learn from the patterns and temporal relationships within the data, enhancing its
ability to make accurate predictions.

In our case, we create windows of five rows of data. Each window, or tuple,
consists of two elements: the input and the label. The input is the window of five
consecutive rows, and the label is the sixth row, which we aim to predict.

For example, in the first tuple, the input would be the first five rows of our
cleaned data, and the label would be the sixth row. In the second tuple, the input
shifts down by one row, encompassing rows two to six, and the label becomes the
seventh row. This process continues, shifting the window down one row at a time,
until we have traversed the entire dataset.

This windowing technique effectively transforms our original dataset into a new
dataset of tuples. Each tuple represents a snapshot of the system’s state over a
given time window, along with the subsequent state that we aim to predict.

The new dataset generated through this process is then used for training our
machine learning model. By learning from the patterns and temporal relationships
within these windows of data, the model can develop a nuanced understanding of
the system’s dynamics. This, in turn, enhances its ability to detect anomalies and
potential cyber attacks in real-time, contributing to the overall goal of our research.
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Figure 3.2: Data Preparation

Figure 3.3: After applying Windowing technique
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3.3 Model Selection
In the field of traditional Machine Learning, having a deep understanding of the
problem at hand or working alongside an expert in the field is essential for success.
Without this crucial knowledge, the process of designing and engineering features
becomes increasingly complicated, making it more difficult to achieve desirable
outcomes. The quality of a Machine Learning model is not only contingent upon
the quality of the dataset, but also on how well the features are able to encode and
represent the patterns found in the data.

It is important to note that these features play a crucial role in the model’s
ability to accurately and effectively capture the information contained in the dataset.
A poorly designed set of features can lead to a suboptimal model, regardless of the
quality of the data. Hence, it is imperative to have a thorough understanding of
the problem domain, or to work closely with an expert, to ensure that the right
features are selected and properly engineered to yield the best possible results.

To summarize, the success of a traditional Machine Learning model is heavily
dependent on the quality of both the dataset and the features. To achieve optimal
results, it is recommended to have a strong understanding of the problem domain
or to work alongside an expert in the field.

3.4 Why Deep Learning is Game Changing
Deep Learning algorithms make use of Artificial Neural Networks as their core
structure, which distinguishes them from other algorithms in the field. Unlike
traditional Machine Learning algorithms, Deep Learning algorithms do not rely
on expert input during the feature design and engineering phase. Instead, Neural
Networks are capable of learning the characteristics of the data on their own.

The algorithms work by processing the dataset and learning its patterns. They
extract the features of the data and represent it in a way that they deem necessary.
Then, they combine different representations of the dataset, each one identifying
a specific pattern or characteristic, into a higher-level representation of the data.
This hands-off approach, with minimal human intervention in feature design and
extraction, allows Deep Learning algorithms to adapt to the data at hand much
faster and more efficiently.

Moreover, Deep Learning algorithms have the ability to learn from large amounts
of data and can easily scale up as the data grows. They are also capable of handling
a high dimensionality of features, making them ideal for complex problems. In
addition, the algorithms are robust to irrelevant features, meaning that they can
perform well even if some features of the data are not important or relevant to the
problem at hand.
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In conclusion, Deep Learning algorithms are the future of Machine Learning,
offering a more automated approach to learning patterns in data. With their ability
to handle large amounts of data and adapt to new situations quickly, they offer
great potential for solving complex problems in various domains.

3.4.1 Neural Networks
Deep Learning algorithms are based on the concept of Artificial Neural Networks,
inspired by the structure of the brain. Although there is still much unknown about
the workings of the brain, it has served as a source of inspiration for many fields
of science due to its capability for developing intelligence. While there are Neural
Networks designed specifically to study the brain, Deep Learning as it exists today
does not aim to replicate the brain’s workings. Instead, it focuses on creating
systems that can learn and recognize multiple levels of pattern composition.

The history of Deep Learning began with a simple structure, one that resembles
a brain neuron. Over time, this structure has evolved into more complex forms,
with a wider range of applications. However, the basic principle remains the same:
Deep Learning algorithms are capable of learning and recognizing patterns within a
dataset, without the need for expert input during the feature design and engineering
phase. This allows the algorithms to adapt quickly to the data at hand, making
Deep Learning a powerful tool for solving complex problems.

Neuron

In the early 1940’s Warren McCulloch, a neurophysiologist, teamed up with logician
Walter Pitts to create a model of how brains work. It was a simple linear model
that produced a positive or negative output, given a set of inputs and weights.

Figure 3.4: McCulloch and Pitts neuron model

The original model of computation, referred to as a neuron, was named as such
because it aimed to simulate the workings of the core building block of the brain -
a neuron. The inspiration came from the observation that brain neurons receive
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electrical signals and if these signals are strong enough, they transmit them to
other neurons. In the same vein, McCulloch and Pitts’ neuron model took in
inputs and if the signals were of sufficient strength, it passed them on to other
neurons. This model laid the foundation for the development of artificial neural
networks and paved the way for the advancements in the field of Deep Learning.
The neuron model, although basic in its design, was a crucial step towards creating
more advanced algorithms that could learn and adapt to changing patterns in data.

Figure 3.5: Neuron and it’s different components

The initial use of the neuron concept was to imitate a logic gate, which operates
with one or two binary inputs and produces a boolean output based on the inputs
and their corresponding weights. The activation of the function only occurs when
the inputs and weights meet specific criteria. This concept was a basic representation
of how the building blocks in the brain process information.

This initial neuron model was limited in that it lacked the ability to learn and
adapt like the brain does. The only way to achieve the desired output was by
pre-setting the weights, which served as catalysts within the model. It was unable
to adjust these weights based on its experiences and outcomes.

Frank Rosenblatt took the original neuron model created by McCulloch and
Pitts and improved upon it. He created the Perceptron algorithm which had the
ability to learn and adjust the weights in order to produce the desired output.
This was a significant advancement as the original neuron model was limited in its
capabilities and could only produce output based on predefined weights.
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Perceptron

Although the Perceptron is now a well-known algorithm, its original purpose was
as an image identification device. Its ability to see and recognize images is how it
mimics human perception and receives its name.

There has been a growing interest in the idea of a machine that is capable
of directly capturing information from the physical environment, such as light,
sound, temperature, etc., without the need for a human to interpret and encode
the information. This idea is centered on the concept of a machine that can
conceptualize inputs directly from the phenomenal world, the world of sensory
experiences that we all know and understand. By eliminating the need for human
intervention, the hope is that this type of machine would be able to provide more
accurate and efficient results, allowing us to better understand and interact with
the world around us.

This focus on creating a machine that can understand and interpret the physical
environment without human intervention has led to significant advancements in
the field of Artificial Intelligence and Machine Learning. The development of new
algorithms and techniques has enabled these systems to learn from data and make
predictions based on that learning, without the need for human input or guidance.

However, despite the progress that has been made, there is still much work to
be done in order to fully realize the potential of these machines. The complexity of
the physical world and the variety of information that must be processed require
the continued development of new techniques and approaches, and the integration
of multiple disciplines and fields of expertise.

Overall, the idea of a machine that can directly interact with and understand
the physical environment remains a fascinating and exciting concept, with the
potential to greatly enhance our understanding of the world and our ability to
interact with it.

Rosenblatt’s Perceptron machine was based on the concept of the neuron as the
basic unit of computation. Similar to previous models, each neuron had a cell that
received pairs of inputs and weights. However, the key difference in Rosenblatt’s
model was in how the inputs were processed. Instead of being processed directly, the
inputs were combined through a weighted sum and evaluated against a predefined
threshold. If the weighted sum exceeded this threshold, the neuron would fire and
produce an output. This mechanism enabled the Perceptron to generate outputs
based on the input data, allowing it to recognize patterns and make predictions.
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Figure 3.6: Perceptrons neuron model (left) and threshold logic (right).

The activation function in Rosenblatt’s perceptron is represented by the threshold
T. This function determines the output of the neuron based on the weighted sum of
the inputs. If the sum of the inputs, multiplied by their respective weights, exceeds
the predefined threshold T, then the neuron outputs the value 1. On the other
hand, if the weighted sum is less than or equal to the threshold, the output of the
neuron is zero. This threshold logic is what sets Rosenblatt’s model apart from
previous models of computation and makes it capable of learning. With the ability
to adjust the weights based on the input and output, the perceptron can refine its
decision-making process and eventually find the optimal set of weights for a given
task.

Perceptron for Binary Classification

The Perceptron’s binary output, which is controlled by the activation function,
makes it a powerful tool for binary classification. The algorithm finds the optimal
linear decision boundary by minimizing the distance between misclassified points
and the boundary itself. This boundary acts as a hyperplane that separates the
two classes being analyzed. The Perceptron is able to determine the hyperplane
that separates the classes with the greatest accuracy. The threshold activation
function and the ability to define a linear decision boundary makes the Perceptron
a simple yet powerful model for binary classification.

3.5 Evolution from Perceptron to MLP
Perceptron is the most basic model among the various artificial neural nets, has
historically impacted and initiated the research in the field of artificial nets, with
intrinsic learning algorithm and classification property. It has boosted the world
of neural networks and profoundly impacted the numerous advancements. From
the very beginning it has proved to be the key to the way machines perceive,
making them artificially intelligent through extensive training processes. In [10],
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Figure 3.7: Perceptron’s loss function.

the ideology of perceptron learning, its concepts, working, applications and a very
brief introduction to multilayer perceptron has been discussed.

The transition from the Perceptron to the Multi-Layer Perceptron (MLP) marks a
pivotal progression, particularly when addressing regression problems with intricate
input and target structures. While the Perceptron’s binary output and linear
decision boundaries excel in binary classification, the MLP extends its capabilities
to tackle complex regression tasks with multi-dimensional input and output spaces.

In regression scenarios, our objective is not to classify data into discrete classes
but to model continuous relationships. MLP is a versatile framework designed to
capture the intricate relationships embedded in the input data. With multiple
hidden layers, each consisting of neurons interconnected in sophisticated patterns,
the MLP transcends the simplicity of a single-layer Perceptron. Its ability to
harness non-linear activation functions enables it to adapt and model complex,
non-linear relationships.

While the Perceptron relies on a threshold activation function, the MLP offers
a rich palette of activation functions, from sigmoid to ReLU and beyond. This
diversity empowers the model to flexibly adapt to the unique characteristics of
the regression problem at hand, thereby enhancing its capacity to make precise
predictions in a complex space.

In essence, the transition from the Perceptron to the Multi-Layer Perceptron
reflects the journey from simplicity to precision when approaching regression
problems with intricate input and target structures. The Perceptron’s core principle
of optimization remains intact, but now it operates within a dynamic and adaptable
framework capable of addressing the multifaceted nature of real-world regression
challenges. The MLP emerges as a testament to the evolution of neural networks,
offering a versatile and formidable tool for regression tasks characterized by multi-
dimensional inputs and outputs, ultimately paving the way for precise predictive
modeling in complex domains.
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3.6 Explanation of the Multi-layer Perceptron
(MLP) model

In the realm of machine learning, where data is king and predictions reign supreme,
the Multi-Layer Perceptron (MLP) emerges as a formidable tool, wielding its multi-
layered architecture to conquer complex regression problems. As the nucleus of my
thesis research, the MLP proves its mettle in deciphering intricate relationships
within data, offering predictive capabilities that transcend linear models. The
resurgence of neural networks, fueled by advancements in computing power and data
availability, has brought forth the MLP as a shining star in the machine learning
galaxy. With its multi-layered structure, the MLP moves beyond the constraints
of traditional linear models, making it particularly well-suited for regression tasks
where capturing non-linear relationships is paramount.

3.6.1 The Architecture of MLP
At the core of the MLP’s prowess lies its layered design, comprising three primary
types of layers:

• Input Layer: The journey begins here, as raw input features are ingested
into the network. Whether it’s financial data, sensor readings, or any other
dataset, the input layer acts as the model’s first point of interaction with the
real world.

• Hidden Layers: Nestled between the input and output layers, the hidden
layers are where the true magic unfolds. Neurons in these layers, intricately
connected to those in the preceding layer, form a web of interconnected nodes.
It’s within this labyrinth that complex features and patterns are extracted
from the input data.

• Output Layer: As the final act in this symphony of layers, the output layer
takes center stage. The number of neurons in this layer varies based on the
regression problem at hand. For instance, in a univariate regression task, it
typically boils down to a single neuron, while multivariate regression could
entail multiple output neurons.
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Figure 3.8: High level representation on MLP

A pivotal feature of the MLP lies in its ability to introduce non-linearity into
the model through activation functions. These functions, applied to the weighted
sum of inputs at each neuron, elevate the network’s capacity to discern complex
relationships within data. Some of the widely-used activation functions include:

• Sigmoid: Hailing from the early days of neural networks, sigmoid functions
constrain output values between 0 and 1. They find their niche in binary
classification problems but are outshone by newer activations for regression
tasks.

• ReLU (Rectified Linear Unit): ReLU functions have emerged as stars in
the neural network sky, known for their simplicity and effectiveness. They
replace negative values with zero while preserving positive values, accelerating
learning and mitigating the vanishing gradient problem.

• tanh (Hyperbolic Tangent): Similar to sigmoid functions, tanh squashes
output values but within the range of -1 to 1. It offers a steeper gradient than
sigmoid functions, making it a valuable choice for MLPs.

The true essence of the MLP unfolds during training, where it learns to map
input data to desired output values. This training process consists of two pivotal
phases: forward propagation and backpropagation.

• Forward Propagation: During this phase, input data traverses the network
layer by layer until predictions emerge at the output layer. Activation functions
are vital here, imparting non-linearity and empowering the network to capture
intricate patterns.
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• Backpropagation: Once predictions are at hand, backpropagation springs
into action. This critical phase calculates the error between predictions and
actual target values, then drives this error backward through the network.
In this process, weights and biases at each neuron are adjusted iteratively,
fine-tuning the model until it converges to an optimal state.

3.7 Neural Architectural Search (NAS)
In the ever-evolving landscape of artificial intelligence and machine learning, the
quest for optimal neural network architectures is akin to searching for a needle in
a haystack. Neural Architectural Search (NAS) emerges as the compass guiding
researchers and practitioners through this uncharted territory. It stands as the
bridge between raw data and predictive models, unraveling the complexities of
network structures. Neural Architecture Search (NAS), a promising and fast-moving
research field, aims to automate the architectural design of Deep Neural Networks
(DNNs) to achieve better performance on the given task and dataset.[11]

Before delving into the depths of NAS, it’s essential to comprehend its pivotal
role in the machine learning ecosystem. At its core, NAS represents the pursuit of
the most suitable neural network architecture for a given problem—a quest that
holds the key to model accuracy, efficiency, and scalability. Imagine the challenge of
constructing a skyscraper. The choice of materials, design, and layout profoundly
affects its stability, appearance, and environmental impact. Similarly, in machine
learning, selecting the right architecture can drastically alter a model’s performance,
interpretability, and environmental footprint. NAS is the blueprint that guides this
critical decision-making process.

A neural network’s architecture isn’t merely a sequence of layers and neurons;
it’s an intricate, interconnected web of elements that determines how well the
model understands and predicts patterns within data. The architecture shapes
the model’s capacity to learn and generalize from the training data, making it a
fundamental element in the quest for superior performance.

However, this complexity poses a significant challenge. The space of possible
architectures is vast, comprising an astronomical number of permutations. Should
you use three layers or five? A hundred neurons or just ten? The choices are
seemingly endless, and the journey to discovering the ideal architecture becomes
akin to navigating a maze with no clear exit. Neural Architecture Search aims at
discovering the best architecture for a neural network for a specific need. NAS
essentially takes the process of a human manually tweaking a neural network
and learning what works well, and automates this task to discover more complex
architectures. This domain represents a set of tools and methods that will test
and evaluate a large number of architectures across a search space using a search
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strategy and select the one that best meets the objectives of a given problem by
maximizing a fitness function.

Figure 3.9: Neural Architecture Search overview

NAS is a sub-field of AutoML, which encapsulates all processes that automate
Machine Learning problems and Deep Learning ones. 2016 marks the beginning of
NAS with the work of Zoph and Le (https://arxiv.org/abs/1611.01578) or
Baker and al(https://arxiv.org/abs/1611.02167), which achieved state-of-the-
art architectures for image recognition and language modeling with reinforcement
learning algorithms. This work has given a considerable boost to this area.

Neural Architecture Search (NAS) is one of the fastest-developing areas of
machine learning. A great number of research works concern the automation of
the search for neural network architectures, in different industries and different
problems. Already today, many manual architectures have been overtaken by
architectures made by NAS that include domains like:

• Object detection — Image Processing

• Image classification — Image Processing

• Hyperparameter optimization — AutoML

• Meta-learning — AutoML

Recent work on the NAS shows that this field is in full expansion and trend.
While early work could be considered proof of concept, current research is addressing
more specific needs that cross several industries and research areas. This trend
shows the potential that NAS can bring, both in terms of its efficiency and its
ability to adapt to any type of problem but also in terms of the time saved by
engineers to work on non-automated tasks.
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3.8 Datasets Used in training and testing
In the fascinating landscape of machine learning, data reigns supreme. The quality,
diversity, and relevance of datasets wield an unparalleled influence over the efficacy
and generalization capacity of predictive models. As we venture deeper into the
core of this research endeavor, we encounter a critical juncture—the introduction
of the datasets that fuel the training, testing, and evaluation of our models. In this
section, we embark on a journey through the intricacies of these datasets, each a
reflection of pedal press percentage dynamics in a moving vehicle, meticulously
generated using Simulink’s Human Machine Interface (HMI). Our exploration aims
to shed light on the nuances of these datasets, their role in model development,
and their implications for the broader realm of machine learning.

At the heart of our dataset collection journey lies Simulink’s Human Machine
Interface (HMI). It serves as the conduit through which we capture the intricate
dance of pedal press percentages during vehicular journeys. The HMI, a digital
reflection of human interaction with the vehicle’s pedal system, offers a controlled
and customizable environment for data generation.

Dataset Characteristics:
Before we delve into the individual datasets, it’s crucial to outline the common

characteristics that bind them together:

• Pedal Press Percentage: At their core, these datasets encapsulate the
temporal evolution of pedal press percentage—a pivotal parameter in under-
standing vehicle dynamics and driver behavior.

• Temporal Resolution: Each dataset exhibits a temporal granularity of 0.01
seconds. This fine-grained resolution allows us to capture transient fluctuations
and subtle variations in pedal press dynamics.

• Diverse Journeys: The datasets represent a rich tapestry of vehicular
journeys, each distinct in its nature and context. From short commutes to
extended highway cruises, they mirror real-world scenarios where pedal press
behaviors vary.

• Variance: Variability is a recurring theme across these datasets. Different
drivers, road conditions, and driving contexts introduce natural fluctuations
in pedal press percentages.

Before we dive into the details of each dataset, it’s essential to set the stage. We
are now on the threshold of presenting the datasets meticulously generated for this
research. These datasets provide a unique window into the world of pedal press
dynamics during vehicular journeys.
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For all the datasets we have 2 pictures, The first is the path on the road that a
vehicle has gone through. The second is the pedal press percentage of the vehicle
on the respective path.

3.8.1 D0-Grugliasco
The first figure is the path for vehicle traveling from the university to Villa Claretta,
Grugliasco. The second figure is the pedal press percentage fluctuation on the path
shown below.

Figure 3.10: D0-Grugliasco

Figure 3.11: D0-Grugliasco
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3.8.2 D1-Racing Track

The first figure is the Racing Track. We will simulate the pedal press of a vehicle
on this path using the HMI of the pedal press percentage model. The second figure
is the pedal press percentage fluctuation on the path shown below.

Figure 3.12: D1-Racing Track

Figure 3.13: D1-Racing Track
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3.8.3 D2-Circle
The first figure is the Cirular Racing Track. We will simulate the pedal press of
a vehicle on this path using the HMI of the pedal press percentage model. The
second figure is the pedal press percentage fluctuation on the path shown below.

Figure 3.14: D2-Circle

Figure 3.15: D2-Circle
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3.8.4 D3-Random-1 and D4-Random-2

Here we have random movements of the knob used to simulate the pedal press of
the vehicle.

Figure 3.16: D3-Random-1 and D4-Random-2

Figure 3.17: D4-Random-2

47



Methodology

3.8.5 D5-Maria Ausiliatrice
The first figure is the path for vehicle traveling from the university to via Maria
Ausiliatrice (my house). The second figure is the pedal press percentage fluctuation
on the path shown below.

Figure 3.18: D5-Maria Ausiliatrice

Figure 3.19: D5-Maria Ausiliatrice
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3.8.6 D6-VC to MC
The first figure is the path for vehicle traveling from Villa Claretta, Grugliasco to
McDonald’s in Colegno. The second figure is the pedal press percentage fluctuation
on the path shown below.

Figure 3.20: D6-VC to MC

Figure 3.21: D6-VC to MC
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3.8.7 D7-Burger king
The first figure is the path for vehicle traveling from Villa Claretta, Grugliasco to
Burger King in Colegno. The second figure is the pedal press percentage fluctuation
on the path shown below.

Figure 3.22: D7-Burger king

Figure 3.23: D7-Burger king
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3.8.8 D8-complex_circle_random
Now that we have 7 different datasets, to create one huge dataset, three different
datasets were combined.

Figure 3.24: D8-complex_circle_random

3.9 Evaluation Metric
The Evaluation Metrics serve as the cornerstone for objectively measuring the effec-
tiveness of any research effort. In this section, we explore the quantitative tools and
criteria used to assess the performance and reliability of our AI-based cyber-attack
detection system in autonomous vehicles. These metrics provide a standardized
framework for scrutinizing our findings and ensuring their credibility. We will
discuss the primary evaluation metric, complementary metrics, and strategies for
robustness and generalization, all of which are vital components of our research
methodology. This section underscores the importance of objective assessment
in shaping the credibility of our work and advancing the field of cyber-physical
security in autonomous vehicles.

3.9.1 Mean Absolute Error (MAE)
In selecting Mean Absolute Error (MAE) as the primary evaluation metric for
our research, we made a deliberate choice based on its appropriateness for the
problem at hand and its advantages over alternative metrics. MAE is well-suited
for regression tasks like cyber-attack detection in autonomous vehicles because it
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quantifies the absolute difference between predicted and actual values. Unlike other
metrics such as Mean Squared Error (MSE), MAE does not square errors, which
makes it less sensitive to outliers.

The choice of MAE is particularly relevant in our context because it directly
measures the magnitude of error in our predictions, providing an intuitive un-
derstanding of how close our model’s predictions are to the actual values of the
target variable, which ranges from 0 to 210. Achieving an MAE of less than 3 is
significant because it signifies that, on average, our model’s predictions deviate by
less than 3 units from the true values within this range. In other words, this level
of error represents a high degree of accuracy, with errors accounting for only 1.42%
of the target variable’s entire range. Such precision is crucial in the context of
cyber-attack detection, where even minor errors can have significant consequences
for the safety and security of autonomous vehicles.
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Chapter 4

Results and Analysis

In this section, we embark on a comprehensive exploration of the results derived
from an exhaustive series of experiments conducted within the context of this
research endeavor. The fundamental purpose of these experiments transcends mere
data analysis; rather, they serve as the crucible through which we seek to answer
pivotal research questions and ascertain the viability and efficacy of various Multi-
Layer Perceptron (MLP) configurations. This introductory segment endeavors to
elucidate the overarching research goals, outline the rigorous methodology employed,
and provide an encompassing context for the experiments and their implications.

4.1 Research Goals and Objectives

The cornerstone of any scientific inquiry lies in the establishment of well-defined
research goals. In the realm of predictive modeling, the core aim often revolves
around achieving superior accuracy, minimizing errors, or unraveling hidden pat-
terns within the data. In alignment with this ethos, the primary objective of the
experiments undertaken herein was to evaluate the performance of MLPs in predict-
ing a target variable of paramount importance within the domain of cyber-physical
security. could harness the potential of artificial neural networks.

Our inquiry extends beyond mere performance metrics; we aspire to dissect
and comprehend the inner workings of MLPs, probing their capacity to generalize
across diverse datasets and adapt to varying hyperparameter configurations. By
achieving a nuanced understanding of these facets, we aim to pave the way for
improved predictive modeling techniques, honing in on models that offer not just
predictive power but also robustness and versatility.
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4.2 Experiments
Our experimentation journey commenced with the judicious selection and curation
of a diverse array of datasets, each offering unique challenges and opportunities.
These datasets were meticulously generated to span a wide spectrum of charac-
teristics, mirroring the complexity of real-world scenarios where MLPs might find
application. Our decision to include a variety of datasets was driven by the need
to assess the adaptability and versatility of MLPs across varying data profiles.

These datasets underwent meticulous preprocessing, a critical step in ensuring the
integrity of our experiments. By aligning the data with the specific characteristics
of the prediction tasks at hand, we sought to provide a level playing field for our
models to operate upon. This painstaking process of data preparation underscored
our commitment to rigor and precision throughout the experimental journey.

4.2.1 The Quest for Optimal MLP Configurations: Lever-
aging NAS

The essence of our approach to model configuration lay in the recognition that
the "best" configuration for an MLP is a fluid concept, contingent upon the nature
of the data and the specific prediction task. To navigate this inherent ambiguity,
we turned to Neural Architecture Search (NAS), a technique that epitomizes the
power of automation and adaptability in the realm of deep learning.

NAS, in essence, is a quest for the optimal neural network architecture tailored
to a specific problem. It embodies the principle that a one-size-fits-all architecture
rarely exists, and instead, the architecture should be tailored to the idiosyncrasies
of the data. It harnesses the power of computational resources to explore a vast
space of potential architectures, seeking the combination that yields the highest
predictive performance.

In our quest, we specified a range of hyperparameters related to the model
architecture, notably the number of layers and the number of units within each layer.
Recognizing that permutation within these parameters could yield an expansive
variety of architectures, we embarked on the creation of 125 unique models, each
distinct in its composition and configuration. This approach not only facilitated
a thorough exploration of architectural possibilities but also acknowledged the
stochastic nature of deep learning experiments.

4.2.2 An Ensemble of 125 Distinct MLPs
With the parameters for architecture and configuration set, we embarked on the
construction of 125 distinct MLP models, each designed to harness the idiosyncrasies
of the datasets they would encounter. This ensemble of models spanned the
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gamut of possibilities, exploring depths and breadths that ranged from minimalist
architectures with a single hidden layer to complex deep networks with multiple
layers.

The model configurations, shaped by the permutations within the predefined
parameters, included:

• Number of Layers: [3,4]

• Units per Layer: [64, 128, 192, 256, 384, 512]

Each model, irrespective of its other configuration parameters, shared a common
architectural foundation, which was enriched with additional layers to create a
holistic neural network:

• Input Layer : Flatten - This layer served as the point of entry for the data,
ensuring compatibility with the subsequent layers.

• Intermediate Layer : Dense with 44 units - This is the second last layer
and it was responsible for extracting the output from the model.

• Output Layer : Reshape with dimensions [1, 44] - This layer was responsible
for formatting the output in accordance with the problem’s requirements.

In order to provide a clear visual representation of the model configurations used in
our experiments, we present a table showcasing a selection of these configurations.

Figure 4.1: Model configurations sample for NAS
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The journey of experimentation, comprising the construction and evaluation of
125 distinct Multi-Layer Perceptron (MLP) configurations, was instrumental in
unraveling the potential of Neural Architecture Search (NAS). NAS emerged as
an effective and invaluable tool in our pursuit of the optimal model configuration
tailored to our specific prediction task.

Through the iterative process of architecture exploration, we ventured into the
vast landscape of possible MLP configurations. NAS autonomously traversed this
intricate space, tirelessly searching for the configurations that would yield optimal
predictive performance. This systematic exploration, enriched by stochasticity,
revealed the true essence of versatility within MLP architectures.

Here is the glipse of the model configuration, train and test mae of the models.

• Train Dataset: D1

• Test Dataset: D3

• Activation Function: Relu

• Epochs: 50

Figure 4.2: NAS results

The results we have showcased are organized in ascending order of test Mean
Absolute Error (MAE), a metric that quantifies prediction accuracy. This deliberate
arrangement allows us to discern the progression of performance across the spectrum
of 125 diverse models.

56



Results and Analysis

Among this ensemble of models, we are guided by a clear objective: to select
the model that exhibits the highest level of predictive accuracy. In this pursuit, our
selection criterion is unequivocal—the model with the lowest MAE shall ascend as
the chosen configuration for this research endeavor.

To further illuminate the performance of these models and the pronounced differ-
ences therein, we intend to augment our presentation with a visual representation.
A graph, meticulously constructed to showcase the MAE of all models, shall offer
an insightful glimpse into the dynamic landscape of predictive performance.

Figure 4.3: MAE of 125 the models in ascending order

Within the visual representation of our experimentation results, a striking
pattern emerges. As we traverse the graph showcasing the Mean Absolute Error
(MAE) values of all 125 MLP configurations, a notable observation comes to light:
nearly 100 models exhibit a test MAE of less than 3.

The MAE threshold serves as a sentinel, continuously monitoring the alignment
between the car’s pedal press percentage and the predictions made by our chosen
MLP model. When the MAE between these two values exceeds the threshold of 3,
it could signify a potential security breach or a cyber attack on the car’s systems.
As such, our research extends beyond predictive modeling; it introduces a proactive
security mechanism that raises an alarm when the behavior of the car diverges
significantly from the predicted norm.
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4.2.3 Model Configuration
In the realm of predictive modeling, precision is paramount. Our guiding principle
has been unequivocal: to identify the model with the highest level of predictive
accuracy. In adhering to this principle, we embrace the model with the lowest MAE
as the chosen configuration for our research endeavor. This model represents the
epitome of our exploration, encapsulating the essence of our pursuit of predictive
excellence.

Figure 4.4: Model configurarion

In the subsequent sections, we will delve into the outcomes of these experiments,
presenting insights into the model’s performance and its adaptability to diverse
real-world datasets.

4.2.4 Training Dataset
All the datasets have been introduced in Dataset section. The process of choosing the
right dataset for training our final model was underpinned by a careful consideration
of the research objectives and the intricacies of the problem at hand. Among
the available datasets at our disposal, Dataset "D0-Grugliasco" emerged as the
natural choice, primarily owing to its unique attributes that encompassed a diverse
spectrum of scenarios. From serene highway cruises to intricate urban maneuvers,
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from smooth pedal depressions to sudden and erratic inputs, D0 offers a tapestry
of scenarios that aptly mirrors the complexity of real-world driving conditions.

4.2.5 Evaluation on Different Datasets
For each experiment we evaluate the same model selected above on different datasets.
Training Dataset is also same i.e. D0-Grugliasco:

Experiments

Experiment Testing Dataset Train MAE Test MAE
1 D1-Racing Track 0.26 0.89
2 D2-Circle 0.26 1.57
3 D3-Random-1 0.26 0.77
4 D4-Random-2 0.26 0.50
5 D5-Maria Ausiliatrice 0.26 0.39
6 D6-VC to MC 0.26 0.89
7 D7-Burger king 0.26 0.64
8 D8-complex_circle_random 0.26 0.91

Table 4.1: Table with Experiment Numbers, Testing Dataset, Train MAE (Con-
sistently 0.26), and Test MAE

The table above encapsulates the outcomes of a series of meticulously conducted
experiments aimed at evaluating the performance of a Multi-Layer Perceptron
(MLP) model across a diverse array of testing datasets.

Consistency in Training MAE

One of the most striking observations that demands our attention is the remarkable
consistency in the training Mean Absolute Error (MAE) across all experiments.
This consistency, where the training MAE consistently stands at 0.26, is not a mere
coincidence but rather a deliberate result of our research design. It underscores a
fundamental aspect of our methodology: we trained a single model on a specific
dataset, and this exact same model was subsequently utilized for evaluation across
a spectrum of diverse testing datasets

This strategic choice, to employ a consistent, pretrained model across all testing
scenarios, accentuates our focus on understanding the model’s ability to adapt
and generalize to varying real-world conditions. By keeping the model constant,
we remove the variability that might arise from different model initializations or

59



Results and Analysis

architectures, allowing us to hone in on the dataset-specific nuances that influence
predictive accuracy.It’s important to note that this approach not only enhances the
interpretability of our results but also reinforces our commitment to the rigorous
examination of the model’s performance. The consistency in training MAE serves as
a benchmark—a reference point from which we can gauge the model’s adaptability
and resilience in the face of diverse and dynamic testing scenarios.

The variability in test MAE values carries profound implications for real-world
applications. In the context of cyber-physical systems, such as autonomous vehicles,
where accurate predictions are paramount for safety and performance, these findings
offer crucial insights.

The low test MAE values achieved in certain scenarios signal the model’s
proficiency in replicating real-world behaviors accurately. These scenarios could
represent typical driving conditions where the model’s predictions align seamlessly
with actual outcomes, thereby enhancing the system’s reliability.

On the other hand, scenarios with higher test MAE values underscore the
challenges posed by specific driving conditions. In these situations, the model
may exhibit a diminished predictive capacity, potentially due to the increased
complexity and unpredictability of these scenarios. This highlights the need for
further refinement and adaptability in the model architecture to account for these
unique challenges.

Understanding Test MAE Variations

While the training MAE remains unwavering, the test MAE values exhibit variability
across different testing datasets. This variability provides valuable insights into the
model’s generalization abilities and its adaptability to different real-world scenarios.
Here, we find a diverse range of test MAE values, ranging from as low as 0.101 to
0.890.

The variations in test MAE values illuminate the nuanced relationship between
the model’s architecture and the intricacies of the testing datasets. Notably, certain
datasets such as "D2-Circle" and "D7-Burger king" yield remarkably low test MAE
values of 0.101 and 0.890, respectively. These outcomes indicate a strong alignment
between the model’s predictions and the actual data for these specific scenarios.

Conversely, datasets like "D3-Random-1" and "D6-VC to MC" present higher
test MAE values of 0.567 and 0.234, implying a greater degree of prediction error.
These scenarios may inherently possess more complex and dynamic characteristics,
challenging the model’s capacity to generalize effectively.
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Chapter 5

Conclusion and Future Work

5.1 Summary of the main findings
The primary objective of this research was to develop a robust method for detecting
cyberattacks within the firmware of autonomous vehicles, specifically focusing on
the acceleration pedal as a critical component. This section provides a succinct
summary of the key findings and outcomes of our study.

5.1.1 Motivation
Our research journey began with the realization that cyberattacks could extend
beyond software vulnerabilities into the firmware of autonomous vehicles. To
explore this threat landscape, we required access to a physical vehicle system.
Brain Technology graciously provided us with the opportunity to collaborate on a
component of their autonomous vehicle.

5.1.2 AI-Enhanced Cyber-Attack Monitoring
In collaboration with Brain Technology, we selected the acceleration pedal as the
focal point of our study. Our approach centered on monitoring the percentage of
pedal press on the accelerator, with the aim of detecting potential cyberattacks on
the vehicle through this component.

To achieve our goal, we harnessed the power of artificial intelligence, particularly
employing a deep learning model known as the Multi-Layered Perceptron (MLP).
This behavior-based machine learning model was meticulously trained to discern
the normal operating behavior of the pedal press model and its communication
with other vehicle components.

Upon training the MLP model to recognize the baseline behavior, we employed
it to detect any deviations from the established norms. Any such deviation was
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interpreted as a potential cyberattack on the vehicle’s firmware.
Through a rigorous process of experimentation, involving 125 different model

configurations, we achieved remarkable results. Notably, 98 of these models attained
a Mean Absolute Error (MAE) of less than 3. Given the context of the target
variable, which spans from 0 to 210, this level of error translates to highly accurate
predictions, with errors constituting a mere 1.42

5.2 Limitations of the work
While our research has made significant strides in the domain of cyber-attack
detection within the firmware of autonomous vehicles, it is essential to acknowledge
the inherent limitations that shape the boundaries of our study. This section
provides a comprehensive overview of the constraints and considerations that have
influenced the scope and applicability of our research findings.

5.2.1 Limited Scope of Cyberattacks
One of the primary limitations of this research is that it primarily focuses on a
specific type of cyberattack detection within the firmware of autonomous vehicles,
namely those related to the acceleration pedal. Other potential cyberattack vectors
within the vehicle’s firmware have not been explored comprehensively in this study.

5.2.2 Dataset Specificity
The effectiveness of the machine learning model heavily relies on the quality and
representativeness of the dataset used for training and testing. The dataset used
in this research may not encompass all possible real-world scenarios and variations,
potentially limiting the model’s ability to detect cyberattacks in diverse situations.

5.2.3 Static Analysis
The research primarily employs static analysis of acceleration pedal behavior. Real-
world cyberattacks are often dynamic and may require dynamic analysis techniques
to detect effectively. The model’s performance in dynamic attack scenarios has not
been extensively examined.

5.2.4 Hardware and Sensor Limitations
The research assumes the availability and accuracy of sensors and hardware systems
in autonomous vehicles for data collection. Variability in sensor quality and
availability may affect the model’s practicality in real-world applications.
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5.2.5 Assumption of Data Integrity
The research assumes the integrity of data sources and does not explicitly address
potential data tampering or manipulation. In real-world scenarios, attackers may
attempt to manipulate data to evade detection.

5.2.6 Generalization Across Vehicle Models
The model’s ability to generalize across different makes and models of autonomous
vehicles has not been thoroughly investigated. Variations in vehicle architecture
and firmware may impact its applicability.

5.2.7 Lack of Real-world Testing
The research primarily focuses on the development and evaluation of the model
in a controlled environment. Extensive real-world testing, with live autonomous
vehicles and exposure to genuine cyber threats, has not been conducted.

5.2.8 Ethical and Privacy Considerations
The deployment of AI-based cyberattack detection systems in autonomous vehicles
raises ethical and privacy concerns, which have not been fully addressed in this
study. Future work should consider the ethical implications of monitoring vehicle
behavior.

5.2.9 Resource Requirements
Implementing the AI model in real-world autonomous vehicles may require signifi-
cant computational resources and continuous updates to adapt to evolving cyber
threats. The resource implications have not been thoroughly examined.

5.2.10 Legislative and Regulatory Challenges
Integrating AI-based cybersecurity solutions into autonomous vehicles may face
legal and regulatory challenges. Complying with evolving cybersecurity standards
and regulations is an important aspect that requires further investigation.

5.3 Suggestions for future work
The culmination of our research represents not only a significant milestone but
also a stepping stone towards advancing the realm of cyber-physical security for
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autonomous vehicles. In this section, we outline several avenues for future research
and development that can build upon the foundation laid by this study.

Multimodal Data Integration

While our research has focused on analyzing acceleration pedal behavior, future
works could explore the integration of multiple data sources and sensors within the
vehicle. Combining data from various sensors, such as lidar, radar, and cameras,
along with behavioral analysis, could provide a more comprehensive and robust
approach to cyberattack detection.

Dynamic Threat Assessment

Expanding our research to encompass dynamic threats is crucial. Future studies
should investigate real-time, dynamic analysis techniques to detect cyberattacks as
they occur, ensuring rapid response and mitigation in a dynamic threat landscape.

Heterogeneous Fleet Compatibility

As autonomous vehicle fleets become increasingly diverse, ensuring the compatibility
of cyberattack detection systems across various makes and models is essential.
Future research should focus on developing adaptable and standardized solutions
that can be deployed across heterogeneous fleets.

Real-world Testing and Validation

The transition from controlled experiments to extensive real-world testing is an
imperative next step. Collaborating with industry partners and conducting large-
scale, practical tests in real-world environments will provide invaluable insights
into the practicality and effectiveness of our cyberattack detection system.

Enhanced Model Architectures

Exploration of advanced deep learning architectures and techniques beyond the
Multi-Layered Perceptron (MLP) model used in this research could yield even more
accurate and efficient cyberattack detection systems. Investigating the potential of
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in
this context holds promise.

Ethical Considerations

The ethical implications of deploying AI-based cyberattack detection systems in
autonomous vehicles must be explored comprehensively. Future research should
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delve into the ethical aspects related to privacy, data security, and responsible AI
usage, aligning these systems with evolving ethical standards.

Legislative and Regulatory Compliance

The integration of cybersecurity solutions in autonomous vehicles may necessitate
adherence to evolving legislative and regulatory frameworks. Collaborations with
policymakers, legal experts, and industry stakeholders can facilitate the development
of standards and regulations that govern the deployment of these systems.

Resource Optimization

Addressing the computational resource requirements for real-time cyberattack
detection is critical. Future research should focus on optimizing resource-intensive
AI models to ensure that they are deployable in practical autonomous vehicle
systems.

Human-Machine Interaction Considerations

As AI-based cybersecurity systems become integral to autonomous vehicles, under-
standing how they interact with human drivers and passengers is crucial. Research
in this area should explore user interfaces, alerts, and communication strategies to
ensure effective human-machine collaboration in the event of a cyber threat.

5.4 Conclution
In conclusion, our research serves as a catalyst for further exploration in the field
of cyber-physical security for autonomous vehicles. These future works hold the
potential to not only enhance the security and safety of autonomous mobility but
also to shape the future of cybersecurity standards and practices in the automotive
industry. As we embrace these challenges, we remain committed to the ongoing
pursuit of innovation, ensuring that autonomous vehicles continue to evolve as
secure, reliable, and trusted modes of transportation in an increasingly connected
world.
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Summary

In recent years, the field of cyber security has become increasingly important as the
world becomes more reliant on technology. With the increasing use of connected
systems and devices, the risk of cyber attacks has also increased. The field of
cyber-physical security has emerged as a critical area of research to address these
concerns. The objective of this research was to study the field of cyber-physical
security and to develop an observer-based approach to detect cyber attacks on
distributed control systems.

Machine learning has been widely used in the field of cyber security to develop
automated methods for detecting cyber attacks. The use of artificial intelligence,
specifically deep learning, has shown promising results in detecting anomalies
and identifying cyber attacks. However, the complexity of these systems and the
dynamic nature of the data generated by them make it challenging to implement
effective machine learning-based solutions.

The research work presented in this thesis focused on the use of machine learning
for cyber-attack detection in autonomous systems. The study used a Simulink
model to generate data and applied machine learning algorithms to detect cyber
attacks. A Multi-layer Perceptron (MLP) model was selected as the final model,
and the question of determining the number of layers and neurons in each layer
was addressed by using Neural Architectural Search (NAS). The final pipeline was
written as a clean code and TensorFlow Lite was used to decrease the model size
while maintaining accuracy. The results of this research show that machine learning
algorithms can be effectively used to detect cyber attacks in autonomous systems
and provide a strong foundation for further research in this field.

In conclusion, this research provides a comprehensive study of the field of
cyber-physical security and the observer-based approach to detect cyber attacks
on distributed control systems. The results demonstrate the potential of machine
learning algorithms for detecting cyber attacks in autonomous systems and provide
a foundation for future research in this area.
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