
POLITECNICO DI TORINO

MASTER DEGREE IN
MECHATRONIC ENGINEERING

Collision-free path planning for
industrial robot applications

Supervisor:
Prof. Marina INDRI

Supervisors at COMAU:
Ing. Simone PANICUCCI
Ing. Antonio VENEZIA

Candidate:
Ivan AIZA

December 2023

A Stefano, mio padre
per sempre inciso nella mia anima

Abstract
Nowadays, robotics is growing rapidly thanks to its huge flexibility and po-
tential in many industrial applications. One of the recurring problems is the
collision-free path planning that allows the robot to move from an initial pose
to a final pose safely, avoiding all objects in the scene.
In COMAU, common planners belonging to the sampling-based category are
used for collision-free path planning. To do this, the MoveIt framework is used
in which is present the OMPL library that contains many of the sampling-
based planners. These planners are fast and effective even in complex en-
vironments, however they generate geometric paths that are not optimized
and do not consider kinematics constraints. Indeed a second step is needed,
performed by the C5G controller on board robot, which also considers kine-
matics constraints and adds a timing law to the collision-free geometric path
in order to obtain the final robot trajectory.
In this thesis work, many types of path planners present in the state of the
art are analyzed. Then it is decided to develop a comparison between the
performances of OMPL in MoveIt currently used in COMAU and TrajOpt
which is an innovative optimized-based planner already present in the Tesser-
act framework. TrajOpt plans collision-free trajectories with an optimized
path. In this way the final paths are much better and smooth, and already
respect the kinematics constraints. On the other hand, the higher computa-
tional complexity increases the planning times required.
Thanks to this thesis work, it is possible to enhance the comparisons about
the performances of TrajOpt and the OMPL planners in typical industrial
robotics scenarios.

Collision-free path planning for industrial robot applications 1/84

Contents

1 Introduction 5

2 Background on industrial robotics 7
2.1 General notions on kinematics 9
2.2 Direct kinematics . 11
2.3 Inverse kinematics . 12
2.4 Differential kinematics . 13

3 Motion Planning 15
3.1 Configuration space . 16
3.2 Collision-free motion planning 17

4 Motion planning algorithms 19
4.1 Graph search-based algorithms 20
4.2 Sampling-based algorithms . 22

4.2.1 RRT algorithm . 23
4.2.2 RRT connect and bi-directional RRT algorithms 25
4.2.3 PRM algorithm . 26
4.2.4 RRT* and PRM* algorithms 28
4.2.5 SBL algorithm . 29
4.2.6 Deterministic Chekhov algorithm 30

4.3 Optimized-based algorithms 31
4.3.1 CHOMP algorithm . 32
4.3.2 STOMP algorithm . 33
4.3.3 TrajOpt algorithm . 34
4.3.4 LCQP algorithm . 37
4.3.5 B-spline algorithm . 38

4.4 Post-processing algorithms . 39

5 Simulation framework 40
5.1 ROS . 40
5.2 ROS nodes and topics . 41

Collision-free path planning for industrial robot applications 2/84

CONTENTS

5.3 ROS services . 42
5.4 ROS actions . 43
5.5 ROS RViz . 44
5.6 Roboshop . 45

6 MoveIt 46
6.1 Motion planning . 48

6.1.1 OMPL . 48
6.2 Planning scene . 49

6.2.1 3D perception . 50
6.3 Collision checking . 50

7 Tesseract 51
7.1 Motion planning . 52
7.2 Planning scene . 52
7.3 Collision checking . 53

8 Experimental procedure 54
8.1 Racer5-0-80 . 55
8.2 MoveIt pipeline . 56
8.3 Tesseract pipeline . 58

8.3.1 Add_link service . 59
8.3.2 Tesseract_planning service 60

9 Benchmark 1: table avoidance 61
9.1 Results . 62

10 Benchmark 2: Pick & Place 63
10.1 Results . 64

11 Benchmark 3: Pick & Place with obstacle avoidance 66
11.1 Results . 67

12 Benchmark 4: TrajOpt safe distance 68
12.1 Results . 69

13 Gripper change management 70
13.1 NJ-370-2.7 . 70
13.2 Gripper change management pipeline 71

Collision-free path planning for industrial robot applications 3/84

CONTENTS

14 Conclusions 74

15 Future works 75

16 Acknowledgements 76

17 Acronyms 77

List of Figures 80

List of Tables 81

Bibliography 82

Collision-free path planning for industrial robot applications 4/84

Chapter 1

Introduction

This thesis work is developed within the Innovation Hub at COMAU SpA
in Turin and it deals with collision-free path planning which is a relevant
topic in industrial robotics. Collision-free path generation is a deeply studied
and analyzed branch worldwide. This is because robotics is growing in many
industrial and non-industrial fields and at present there are still no flawless
planners.
To understand better the relevance of robotics, think about how the pro-
duction lines are organized, where one or more robotic arms are involved in
the assembly of products (Figure 1.1), or in automated warehouses where
products are sorted by robots. Other industrial applications are robotic weld-
ing, quality inspection of production lines up to collaborative robotics where
robots and workers share the same workspace. Having said that, the impor-
tance of moving the robots safely, accurately and efficiently, thus avoiding any
kind of collision with objects in the environment (and, in the case of collabo-
rative robots, workers) becomes intuitive.

Figure 1.1: COMAU industrial robots working in a production line [35].

Collision-free path planning for industrial robot applications 5/84

CHAPTER 1. INTRODUCTION

As it will be discussed in Chapter 4 about the state of the art, there are
many types of motion planners. The most widespread are the sampling-based
planners that are fast and quite effective, but they generate only geometric and
not optimal paths. On the other hand, there are the optimized-based planners
that optimize the geometric path and are able to generate a trajectory, also
considering timing law and kinematics constraints, but with relatively long
planning times. Finally, there are the innovative trajectory post-processing
planners, which are a hybrid way of the two types explained above. The choice
of the appropriate planner depends on multiple factors. First selections can
be made based on the environment, which can be structured or unstructured,
static or quasi-static or dynamic. In addition, the planner can be used online
or offline.
The planners used in COMAU are sampling-based because of their short
planning time and high success rate in typical industrial robotics problems.
However, these planners do not provide optimized paths, thus resulting in
robot movements that are not always necessary. In particular, the MoveIt
environment is used to generate collision-free paths, thanks to the OMPL
library that contains various sampling-based planners.
In this thesis, a comparison is made between the performance of the newer
TrajOpt planner and the OMPLs currently used.
TrajOpt turns out to be an optimized-based planner that generates optimized
paths with high success rates, but at the expense of planning time, which
can be longer. For this reason, it is interesting to compare it with current
planners in typical industrial robotics environments in order to evaluate its
real performance.
Going into the details about the structure of this thesis, there is a first part
where an introduction to industrial robotics (Chapter 2) and motion planning
problems (Chapter 3) is provided. Chapter 4 reports an analysis of the current
state of the art regarding motion planning. In Chapters 5-7 there is an in-
depth look at the simulation environment used, particularly ROS, MoveIt,
and Tesseract. After such more theoretical part, there are the experimental
chapters, which illustrate the experimental procedure (Chapter 8) and also
the benchmarks and tests performed (Chapters 9-13). Finally, in Chapter 14
some conclusions are drawn from the data obtained in the experimental part
and then, in Chapter 15, possible future developments are proposed to further
investigate the comparison between OMPL and TrajOpt.

Collision-free path planning for industrial robot applications 6/84

Chapter 2

Background on industrial robotics

Industrial robotics is an important branch of robotics that deals with the
design, construction, and operation of robotic arms (called manipulators) in
the industrial setting. Industrial robots are usually designed to perform the
most repetitive and dangerous tasks in different fields such as manufacturing,
automotive, electronic manufacturing, and so on. The main goal of industrial
robotics is to increase the efficiency, precision, and safety of industrial pro-
cesses.
In detail, an industrial robot generally consists of the following parts:

• manipulator: it is the robotic arm that moves according to the instruc-
tions it receives.

• end-effector: it is the end of the manipulator or the gripper or the tool
that is mounted on it. In the case of motion planning, it is the point that
is considered for planning.

• sensors: these can be visual sensors, torque sensors, position sensors, etc.,
that allow the robot to sense the environment and adapt its movements
accordingly.

• control unit: this is the controller that processes instructions and controls
the movements of the robot. In the COMAU case, this is the C5G on
board robot controller.

• programming environment: industrial robots are programmed through
specific languages or through direct interfaces such as teach pendants. In
COMAU case, this is the TP5.

Collision-free path planning for industrial robot applications 7/84

CHAPTER 2. BACKGROUND ON INDUSTRIAL ROBOTICS

Focusing on the industrial manipulators, they are composed of a chain of
rigid bodies called links connected together by actuators called joints [25].
The robots are moved by mechanisms such as pneumatic systems or electric
motors placed on the joints. These joints can be of two types: prismatic joints
and revolute joints. The former allow only translation of the two connected
links, while the latter allow only rotation of the connected links. Each joint
corresponds to a degree of freedom (DOF) of the manipulator and this deter-
mines the robot’s dexterity.

Figure 2.1: Revolute joint (left) and prismatic joint (right) [25].

Industrial robots consist of an arm and a wrist: the arm is composed of the
first three links that are responsible for positioning the end-effector in the
workspace, while the wrist consists of the other links that are responsible for
the end-effector orientation. In this thesis, a 6 DOF robot is used: the arm is
composed of three revolute joints, while the wrist is of spherical type, i.e., it is
formed by three revolute joints in which the axes intersect at one point.

Figure 2.2: Sketch of an industrial robot with 6DOF and a spherical wrist [25].

Collision-free path planning for industrial robot applications 8/84

CHAPTER 2. BACKGROUND ON INDUSTRIAL ROBOTICS

2.1 General notions on kinematics

A manipulator can be mechanically represented as a kinematic chain of links
connected by prismatic or revolute joints. This implies that the motion of the
end-effector can be obtained as a composition of elementary motions of each
link with respect to the previous one.

Figure 2.3: Position and orientation of a rigid body [33].

To fully describe the pose of a rigid body, it is necessary to know its position
and orientation with respect to a reference frame [33]. Figure 2.3 represents
O-xyz as orthonormal reference frame with x, y and z as reference frame
axes, while O’-x’y’z’ is the orthonormal body frame with x’, y’ and z’ as
body frame axes. The position of the point O’ on the rigid body with respect
to the reference frame O-xyz is expressed by:

o′ = o′
x x + o′

y y + o′
z z (2.1)

In this equation o′
x, o′

y, o′
z are the components of the vector o’ along the

reference frame. It can be written compactly:

o’ =


o′

x

o′
y

o′
z


To describe the orientation of the rigid body, the O’-x’y’z’ body frame is used
with origin in O’ and x’, y’ and z’ are unit vectors of the body frame. These
vectors expressed in the reference frame become:

Collision-free path planning for industrial robot applications 9/84

CHAPTER 2. BACKGROUND ON INDUSTRIAL ROBOTICS

x′ = x′
x x + x′

y y + x′
z z (2.2)

y′ = y′
x x + y′

y y + y′
z z (2.3)

z′ = z′
x x + z′

y y + z′
z z (2.4)

From here it is possible to obtain the rotation matrix of the body frame with
respect to the reference frame:

R =
è
x’ y’ z’

é
=


x′

x y′
x z′

x

x′
y y′

y z′
y

x′
z y′

z z′
z


Rotation matrix R is essential for the kinematics of the robot as it represents
the orientation of the body frame with respect to the reference frame. The
columns of R are mutually orthogonal since they represent the unit vectors
of the orthonormal frame. It follows that its transpose matrix is equivalent to
the inverse matrix and thus the product between the transpose and rotation
matrix is equivalent to the identity one. The determinant of the rotation
matrix is 1 if the frame is right-handed, and -1 if it is left-handed.

RT R = I3 (2.5)

RT = R−1 (2.6)

It is possible to represent the rigid object pose by means of the single homo-
geneous transformation matrix T.

T0
1 =

R0
1 o0

1
0T 1



T0
1 is the homogeneous matrix that completely describes the pose of rigid

body 1 with respect to reference frame 0. R0
1 is the rotation matrix of frame

1 with respect to frame 0, o0
1 is the position of the origin of frame 1 with

respect to frame 0 and finally the last row is formed by a vector of three 0’s
below the rotation matrix and a 1 below the position vector.

Collision-free path planning for industrial robot applications 10/84

CHAPTER 2. BACKGROUND ON INDUSTRIAL ROBOTICS

2.2 Direct kinematics

Figure 2.4: Position and orientation of the end-effector frame with respect to the base frame [33].

A DOF is associated to each joint of the robot corresponding to a joint vari-
able. The goal of direct kinematics is to compute the pose of the robot’s
end-effector as a function of the joint variables [33]. Then by exploiting the
concept of homogeneous transformation matrix, introduced in the previous
section, a reference frame is fixed at the base of the robot, as in Figure 2.4,
and the pose of end-effector can be obtained as:

Tb
e (q) =

nb
e (q) sb

e (q) ab
e (q) pb

e (q)
0 0 0 1


In this matrix, q is the vector of joint variables (n x 1), ne, se,ae are the unit
vectors of the end-effector frame, and pe is the position of the end-effector
with respect to the base frame.
To simplify the direct kinematics problem is used the Denavit-Hartenberg
convention. Following this convention, homogeneous transformation matrices
between one link and the previous one are computed, and at the end through
the product of the n homogeneous matrices, the matrix describing the pose of
the end-effector can be obtained with respect to the base frame. For example
in a robot with 6 DOFs as in the case of this thesis work, the homogeneous
transformation matrix between the end-effector and the base frame is:

T0
6(q) = T0

1 T1
2 T2

3 T3
4 T4

5 T5
6 (2.7)

Collision-free path planning for industrial robot applications 11/84

CHAPTER 2. BACKGROUND ON INDUSTRIAL ROBOTICS

Figure 2.5: Denavit-Hartenberg convention [33].

2.3 Inverse kinematics

The problem of inverse kinematics is to find the values of the joint variables
knowing the pose of the end-effector [33]. This problem is crucial, since it
allows to transform the motion planning assigned to the pose of the end-
effector in the operational space into values for the joint variables in the joint
space.
While direct kinematics is a relatively simple problem with a unique solution,
this one is much more complex. In fact, inverse kinematics usually requires
solving nonlinear equations, so it is not always possible to find closed-form
solutions. There could be infinite solutions, multiple admissible solutions or
even no solution. The existence of the solution is guaranteed only if the given
end-effector pose belongs to the manipulator’s dexterous workspace. In the
simplest cases the problem can be solved by algebraic or geometric intuitions,
in others numerical techniques are used, which can be applied in any kinematic
structures but do not compute all possible solutions.
In Figure 2.6 it is possible to see an example in which for the same end-effector
pose there are two admissible joint poses.

Collision-free path planning for industrial robot applications 12/84

CHAPTER 2. BACKGROUND ON INDUSTRIAL ROBOTICS

Figure 2.6: Two admissible solutions for the inverse kinematics problem for a two-link planar arm [33].

2.4 Differential kinematics

Differential kinematics characterises the mapping between joint velocities and
the corresponding end-effector linear and angular velocities [33]. This map-
ping is described by a matrix called Jacobian. There are two types of Jaco-
bians: if the end-effector pose is expressed by a homogeneous transformation
matrix, it is used the so-called geometric Jacobian; while if the end-effector
pose is expressed by a minimal representation (by the position-orientation
vector), it is used the analytical one.
In the first case, the initial homogeneous transformation matrix is:

T(q) =
R(q) p(q)

0T 1


It is possible to compute the end-effector velocities from the joint velocities
thanks to the geometric Jacobian of the manipulator:

v =
ṗ
ω

 =
Jp(q) q̇
Jo(q) q̇

 = J(q) q̇

where Jp is the (3 x n) matrix that refers to how joint velocities affect the
linear velocities of the end-effector, while Jo is the (3 x n) matrix that refers
to how joint velocities affect the angular velocities of end-effector.

Collision-free path planning for industrial robot applications 13/84

CHAPTER 2. BACKGROUND ON INDUSTRIAL ROBOTICS

Instead, in the second case in which is present a minimal representation of
the end-effector pose:

x =
p(q)
ϕ(q)


the speed of the end-effector is obtained through the analytical Jacobian ma-
trix:

ẋ =
ṗ
ϕ̇

 =
δp

δq q̇
δϕ
δq q̇

 =
Jp(q) q̇
Jϕ(q) q̇

 = JA(q) q̇

In general, the derivative of ϕ with respect to time does not coincide with
ω defined previously. In any case, it is possible to compute the relationship
between the geometric Jacobian and the analytic one that depends on the
configuration.

Collision-free path planning for industrial robot applications 14/84

Chapter 3

Motion Planning

Motion planning is a branch of robotics that deals with collision-free path
planning starting from an initial state and a defined goal state. For this rea-
son, the main goal of the planner is to generate paths that safely avoid the
obstacles present. Important parameters in the generated paths are the plan-
ning time, the path length and the path smoothness. Usually, very good path
lengths and smoothness coincide with long planning times, so an appropriate
trade-off is required.
Before going into more detail with current planners, it is important to make a
distinction between the concepts of path and trajectory [33]. In fact, the path
is the geometric locus of points from the initial state to the final state. Tra-
jectory, on the other hand, is composed of both the geometric path generated
and the timing law required to execute it, while respecting all the constraints
of velocity, acceleration, jerk, and torque.
In the state of the art, there are many types of planners, each with its advan-
tages and disadvantages, which will be discussed in the subsequent chapters.
The main issue in each planner is the trade-off between computational com-
plexity and the quality of the final path. The more precise the paths and with
higher quality, the greater their computational complexity and consequently
the time required to generate them. An important parameter in this regard
is the resolution of the initial scene: the more accurate the scene, the heavier
will be the computation of the collision-free path.
Motion planning can be divided into two macro-categories: offline motion
planning and online motion planning [26].
In offline motion planning, the planner does not consider dynamic changes in
the environment during the execution of the path. As a first step, it detects
the scene and obstacles by loading CAD models or by visual sensors that usu-
ally generate point clouds or depth images and then they are converted into
octomaps. Then the collision-free path is planned considering the scene and

Collision-free path planning for industrial robot applications 15/84

CHAPTER 3. MOTION PLANNING

collision objects, and it is executed. This way of proceeding is also called scan-
plan-execute, since the executed path considers only the environment scanned
in the first step. Possible changes in the scene that occur after the path has
been planned, will not be taken into account, causing possible collisions. In-
tuitively, they are suitable planners for static or quasi-static environments, as
the scene is no longer updated after the initial scan.
On the other hand, in online planners, the scene is scanned continuously at ev-
ery step during the path execution. This is a significant advantage where the
scene is dynamic, since the planner can update the path in each scan. How-
ever, this procedure is computationally heavy, since at each step the planner
has to remake all the computations thus causing significantly longer planning
times. To reduce them, it is possible to update the scene at multiple one-step
intervals, losing in path update rate but gaining in computation time.
Another common distinction in the motion planning world is between de-
terministic and nondeterministic planners. The former generate the path
uniquely, so given the same initial input conditions (initial state, goal state,
and collision objects in the scene) the planned path will always be the same.
The latter generate it randomly, so the planned paths may differ even with
the same input.

3.1 Configuration space

Configuration space is a fundamental concept in the world of motion planning.
It represents the set of all possible configurations or poses that the robot can
assume in the workspace [26], [33].
The dimension of the configuration space is given by the number of degrees
of freedom of the system or the minimum number of parameters required to
specify the configuration. It follows that if a robotic arm is moving in a two-
dimensional plane then the configuration space dimension is two, if it is in a
three-dimensional space then it is three, and so on.
The use of configuration space greatly simplifies the problem of planning a
collision-free path; in fact, it reduces the complexity of the problem as only
this space is considered during planning instead of the entire geometry of the
workspace.
Generalized coordinates are used to identify the robot’s pose in the config-
uration space: six coordinates in which the first three represent the body’s

Collision-free path planning for industrial robot applications 16/84

CHAPTER 3. MOTION PLANNING

position in space and they are called cartesian coordinates, while the second
three are angular coordinates and represent the body’s orientation. These
six coordinates together completely and uniquely define the robot’s pose in
space.

Figure 3.1: Configuration space of a two-joint manipulator: on the left a representation topologically correct
as a torus 2D, on the right a representation locally valid as subset R2 [26].

3.2 Collision-free motion planning

The configuration space can be subdivided into two additional complementary
spaces essential for motion planning: the free space Cfree and the obstacle
space Cobst [22], [26], [33].
The first, Cfree, is the set of all points in the configuration space that are
not in collision with the environment, so it is a subspace of the configuration
space in which all points are collision-free. The second, instead, is the set of
all points in collision, so it represents the union of obstacles and bodies in the
scene. The two sub-spaces are complementary and together form the entire
configuration space.
Considering the configuration space of robot A, where A(q) corresponds to
A with the configuration of robot q and B to the geometric representation of
obstacles in the scene:

Cfree = {q : A(q) ∩ B = ∅} (3.1)

Cobst = {q : A(q) ∩ B ̸= ∅} (3.2)

Having defined these sub-spaces in the configuration space, it is possible to
define the goal of the motion planner as finding a path that joins the initial
state and the goal state in the absence of collisions, that is, finding a path
such that all its points belong to the free space Cfree.

Collision-free path planning for industrial robot applications 17/84

CHAPTER 3. MOTION PLANNING

As can be seen from Figure 3.2, mapping the obstacles from the workspace to
the configuration space is a non-trivial operation, particularly in cases where
are present high-dimensional state space or when the obstacles cannot be
reconducted to simple shapes.

Figure 3.2: The right figure shows the configuration space corresponding to the workspace on the left. A
two-link robot is used and each obstacle has a different colour to simplify the mapping [22].

Collision-free path planning for industrial robot applications 18/84

Chapter 4

Motion planning algorithms

In the state of the art are present multiple types of motion planning algo-
rithms. Focusing on the logic by which the planner researches for the collision-
free path, the main subdivision is among graph search-based, sampling-based
and optimized-based planners. The first two planners generate a collision-free
path without considering kinematic constraints such as path smoothness or
velocity, acceleration and jerk profiles [8]. In other words, they plan a path
without a time dependence, so they require a second step in which is defined a
timing law and so the final trajectory. In the case of COMAU it is defined by
the C5G controller on board of the robot. Although this controller is highly
optimized, this procedure could generate kinematic profiles with unnecessary
components, so at the end the collision-free paths are still non-optimal. This
is due to the fact that the timing law is optimized by the controller, but the
initial path generated by the planner is not.
On the other hand, optimized-based algorithms plan also the timing law of the
final trajectory, optimizing its kinematic parameters. This causes the trajec-
tory to have the main parameters considered optimal (path length, execution
time, smoothness, kinematics profiles, so on) with, however, generally higher
computational costs and failure rates [24].
Furthermore, in recent years much research and efforts have focused on post-
processing type algorithms: these algorithms provide a hybrid solution be-
tween sampling-based and optimized-based algorithms. In this type of plan-
ner, there is the generation of an initial collision-free path by a sampling-based
planner and then the path is optimized thanks to an optimized-based planner.
In this way, optimal collision-free trajectories can be obtained, improving some
of the main disadvantages of optimized-based planners such as high failure
rate [18].

Collision-free path planning for industrial robot applications 19/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

Another important parameter for a motion planner algorithm is completeness
[26]. An algorithm is considered complete if it is guaranteed to find a solution
for every instance of the problem (if it exists). This means that if there is at
least one path that satisfies the constraints of the problem, the algorithm will
find it.
There are cases in which the algorithm is called probabilistically complete:
this happens when the probability of finding the solution tends to one if
the planning time tends to infinity. This situation is typical of sampling-
based algorithms, in which there is random sampling of the configuration
space. Probabilistic completeness can be a guarantee of completeness, but
of course it depends on the amount of time required: this time depends on
both the computational complexity of the algorithm and the complexity of the
environment (e.g., number and shape of obstacles, dynamic obstacles, tight
spaces, resolution used and so on).

4.1 Graph search-based algorithms

Graph search-based planning uses graph search algorithms to compute dis-
crete paths in the robot’s state space [26].
This type of planning can be divided into two different main problems: the
first is how to transform the initial problem into a graph, the second is how
to find the graph corresponding to the best possible solution. In order to
represent the space of states with a graph, all possible states are discretized,
so that there is a finite number of poses in which it could stay.
Graph search algorithms have been extensively studied and vary from the sim-
plest and most classical ones, to more complex and with better performance.
In the latter, a cost is associated to each node and each arc of the search tree,
then based on this cost it is decided whether (and how) to expand the tree or
whether it is better to stop and then find the optimal path. An example of
this is Dijkstra’s algorithm, which associates a cost with each node based on
its distance from the final or initial node (depending on whether the backward
or forward variant of the algorithm is used).
Furthermore, there are two macro-categories of graph search-based planners:
depth-first searches and breadth-first searches. The former start at the root,
choose a child node and continue to deepen it. If they encounter a leaf, they
go back one level and restart with an unvisited child. On the other hand,

Collision-free path planning for industrial robot applications 20/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

the second ones start from the root node as before and next they visit all the
children. Once all the children have been visited, the algorithm proceeds by
delving into all the grandchildren. The latter is more complex, but it also
generates the shortest path between the start node and the goal node.

Figure 4.1: Comparison of depth-first (left) and breadth-first (right) planners. The number near the nodes is
the order in the expansion of the tree [26].

The main advantage of these planners is completeness. If the graph represent-
ing the space of states is constructed correctly, then these planners are able
to find a solution, assuming it exists. Moreover, among the various solutions
found, the final one is also the optimal one based on the path length.
On the other hand, the discretization of the space limits its final accuracy and
thus even the path considered optimal by the planner may be too approxi-
mate.
Moreover, having to transform the entire space of states into a graph in order
to find the best solution, the algorithm is computationally heavy, particularly
in environments that are complex or that require a large number of graph
nodes. This results in high and, especially, unnecessary computation time:
these planners build the graph over the entire space of states, thus also in
areas that are not needed for path planning purposes. This results in a waste
of planning time for the purposes of the required problem.
The lost and unnecessary computational cost is the main difference with
sampling-based planners. The latter in fact randomly sample the space of
states, so they lose in the completeness of the solution (they still guarantee
probabilistic completeness), but greatly shorten the planning time by be-
ing computationally significantly lighter. For this reason, graph search-based
planners are no longer used in industrial robotics in favour of sampling-based
planners.

Collision-free path planning for industrial robot applications 21/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.2 Sampling-based algorithms

Sampling-based planners are the most common planners, because they are
very quick and quite effective even in complex environments [3], [8], [26], [33].
In this type of algorithm, the configuration space is randomly sampled (i.e.,
following a certain probability distribution, such as Gaussian). For each sam-
pling point, it is checked whether the robot’s configuration is collision-free;
if it is, it adds this configuration to the graph of possible configurations and
connects it, if possible, to other configurations already in the graph. Once
the graph is constructed, the algorithm determines a collision-free path that
connects the initial pose to the final one.
This way of proceeding is probabilistically complete: in fact, if it is assumed
that is present a number of configurations in the graph tending to infinity
(and thus also the time it takes to find them); if a collision-free solution ex-
ists, it surely belongs to the constructed graph.
Sampling-based planners turn out to be fast even in high-dimensional config-
uration space. In fact, unlike graph search-based, their computational cost
does not depend exponentially on the size of the state space. The success
rate of these planners depends strongly on the complexity of the scene and
the maximum planning time set. Since they are probabilistically complete
planners, in some cases they may not have time to find the collision-free path,
even if it exists. This speed of computation combined with a good success rate
even in complex environments has made them currently the most popular in
the industrial world.
An important distinction of this type of random-sampling planners is the one
between single-query planners and multiple-query planners.
In single-query planners, the important concept is the speed in computing a
single path to be executed. If another path is then to be planned, it restarts
from the beginning and it is necessary to re-initialize everything, since noth-
ing is stored of the previously planned paths.
In multiple-query planners, on the other hand, it is assumed in principle that
there will be many motion planning problems to be solved in the same en-
vironment, so it is essential to save the information of each path in order to
speed up subsequent computations, having no need to re-initialize the algo-
rithm.

Collision-free path planning for industrial robot applications 22/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

In the sampling-based planners, the main disadvantage is the non-optimality
of the planned path: in fact, they do not generate also a timing law, but only
a collision-free geometric path. This means that in these planners there is no
optimization either on the smoothness of the path or on the kinematic profiles
of velocity, acceleration and final jerk. This results in higher consumption for
the robot since, as also highlighted for the graph search-based planners, there
are usually unnecessary kinematic profiles present. In addition, the final path
may have abrupt changes in direction (because it is not smooth) that are not
safe for the robot and the environment around it, and generally resulting in
higher energy consumption.
All these problems are avoided in optimized-based planners, as they opti-
mize the trajectory in terms of length, execution time, smoothness during
its planning and they also consider the kinematic constraints about velocity,
accelerations and jerk, thus obtaining smoother trajectories free (or almost
free) of unnecessary movements and actions.

Figure 4.2: General structure of a sampling-based planner: the inputs are the initial state, the final state and
the configuration space. Thanks to the sample procedure and the collision checks, it looks for a collision-free

path. [8].

4.2.1 RRT algorithm

Rapidly-Random Tree (RRT) is one of the first single-query sampling-based
planners with simple logic that is effective even in complex environments [2],
[3], [8], [12], [21], [26]. In this planner, a tree is constructed so that it is
expanded from the initial point of the path until the required end point is
reached.

Collision-free path planning for industrial robot applications 23/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

In more detail, the steps to obtain the final collision-free path are:

• the initial point of the path qstart coincides with the initial configuration
of the algorithm.

• a random state is selected from the configuration space following the
sample procedure.

• a collision check is performed. If the state is in collision it is discarded
and restarted from the previous step.

• On the other hand if the state is not in collision, using the Nearest Neigh-
bor (NN) it is found the qnear according to metric.

• qrand and qnear are connected thus giving a new configuration to the tree
within a certain distance δ from qnear. If it does not meet the requirement,
qnew is discarded.

• another collision check is performed at the path between qnear and qnew.
If it is not satisfied, qnew is discarded and the procedure is restarted.

• everything is repeated in a loop until qnew corresponds to the final state
of the path qgoal.

The overall logic of the RRT algorithm is quite simple; moreover, it turns
out to be probabilistically complete. In fact, if ideally the planning time
is infinite, it would surely find the solution, assuming it exists. However,
as mentioned before, being a sampling-based planner it does not consider
kinematic constraints and therefore the final path is not optimized neither
as smoothness nor as velocity, acceleration and jerk profiles (since only the
geometric profile is planned without the corresponding timing law).
This is one of the earliest designed planners, at the state of the art there are
several improvements of it such as RRT* or RRT connect [6] which use this
planner as a basement and then they optimize the steps to achieve better
final planned path performance (as will be explained in more detail in the
next sections).

Collision-free path planning for industrial robot applications 24/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

(a) Starting the tree from qstart.

(b) Expanding the tree to reach qgoal.

(c) The path joining qstart and qgoal exist and it is found.

Figure 4.3: Planning the collision-free path through RRT algorithm [21].

4.2.2 RRT connect and bi-directional RRT algorithms

RRT connect represents one of the enhancements made to the simpler RRT
algorithm to speed up its path generation time [3], [6], [14].
In this algorithm two trees are constructed instead of one: the first starts
from the initial state qstart, while the second starts from the final state qgoal

of the path. Then the two trees are expanded simultaneously with the goal
of finding a common state in order to connect and find a collision-free path.

Collision-free path planning for industrial robot applications 25/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

During the expansion the steps are the same as in the RRT algorithm, so
there are collision checks performed step-by-step.
This algorithm retains the advantages of the simpler RRT, indeed it exploits
the same tree development logic (so it is still probabilistically complete, com-
putationally quick and quite effective even in complex environments). The
notable advantage is that by developing two trees in parallel, the planning
time is significantly reduced.
Another variant of the RRT, very similar to the RRT connect, is the bi-
directional RRT [26], [33], [36]. Again two trees are developed simultaneously,
one starting from the initial state qstart and one starting from the final one
qgoal of the required path. The main difference is that while in the connect
RRT the two trees interact with each other and each step seeks to join, in the
bi-directional RRT the two trees are totally independent while seeking for a
common configuration.

Figure 4.4: Two trees development in the bi-directional RRT algorithm [36].

4.2.3 PRM algorithm

The Probabilistic Roadmap Method (PRM), unlike the RRT algorithm, is a
multiple-query sampling-based motion planner [2], [3], [8], [12], [13], [21], [26],
[33].
For this reason, the main advantages of the PRM planner are present when
there are multiple paths to be generated in the same scene. In fact, since it is
a multiple-query planner, the data of the planned paths will be stored from
time to time, thus resulting in reduced planning times for subsequent paths,
since the computations already performed do not have to be repeated.

Collision-free path planning for industrial robot applications 26/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

In the PRM planner, the configuration space is randomly sampled in order to
build a roadmap of the free space Cfree and then a collision-free path can be
found within it.
More in deep, the steps to build the roadmap for this algorithm are:

• following the sample procedure, a qrand is selected in the configuration
space.

• a collision check on qrand is done. If the configuration is collision-free,
it is added to the roadmap, otherwise it is discarded and the algorithm
goes back to the previous step.

• if qrand is collision-free, then all the possible configurations q in a specific
range δ from qrand are searched.

• all these new configurations are connected to qrand and then a collision
check is done to each one. The colliding paths are disconnected from
qrand, while the collision-free ones are maintained into the roadmap.

• the iteration goes on until a satisfactory number of points in the roadmap
is reached. The more points, the better the planner’s performance.

Once the initial roadmap is generated, the shortest collision-free path can be
found between the initial pose qstart and the final pose qgoal using a graph-
search algorithm.
Since it is a multiple-query planner, the roadmap is computed initially and
then maintained for all the paths to be planned later. This results in a
significant reduction of planning time in subsequent paths.
The PRM planner has a good behaviour also in high dimensional state spaces,
it turns out to be probabilistically complete and its accuracy will depend on
the amount of configurations that are present in the roadmap. Since this
planner is a sampling-based one, it does not plan the trajectory in dependence
of time, but only as a geometric path. The denser the initial roadmap, the
shorter but also computationally heavier this path will tend to be.

Collision-free path planning for industrial robot applications 27/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

(a) Initial roadmap in the configuration space.

(b) After creating the roadmap, the PRM planner finds the collision-free path.

Figure 4.5: Collision-free path planning using PRM planner [21].

4.2.4 RRT* and PRM* algorithms

The RRT and PRM algorithms have proven to be effective and with good per-
formances in even complex environments. In fact, even in complicated scenes
the success rate and planning time have generally satisfactory values. The
drawback is the non-optimality of the planned path and the lack of a timing
law, so it is needed a second step to obtain the final trajectory in dependence
of time. Both planners also turn out to be probabilistically complete.
To overcome these limitations, there are a variety of innovative algorithms in
the state of the art. Looking always in the class of probabilistically complete
algorithms, the most widely used are RRT* and PRM*, which compared to
RRT and PRM also guarantee asymptotic optimality [6], [8], [12].
In RRT*, the underlying procedure is the same as in RRT. The main differ-
ence is that each node is associated with a cost to be minimized. This makes
the planned path much smoother and converges asymptotically to the optimal
solution. On the other hand, there is a significant increase in computational
times since the weight of each node must also be considered.

Collision-free path planning for industrial robot applications 28/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

Another improvement over RRT is the possibility of tree rewiring. This causes
a higher number of collision checks, from which comes an increase in compu-
tational cost [11].
Also PRM* provides enhancements with respect to the basic PRM algorithm.
In this case, the radius by which the initial roadmap is created is made vari-
able and the logic by which nodes are added to it is also changed. These
variations result in much denser initial roadmaps, providing much more ac-
curate solutions that tend to be optimal as the number of nodes increases.
Again, the sharp increase in planner performance causes a lengthening of path
planning time.

4.2.5 SBL algorithm

The Single-query Bi-directional probabilistic roadmap planner with Lazy col-
lision checking (SBL) is another improvement widely used of the bi-directional
RRT and PRM algorithms [1], [26].
In the SBL planner, there are two trees that are built in the free space Cfree

in order to find the collision-free path from the initial configuration qstart to
the final qgoal. Step by step, the planner auto-regulates the size of the radius
δ based on the area of free space Cfree in which it is located. In the areas that
are safer, δ has a higher value so that it is computationally faster. In areas
closer to obstacles and thus risky, there is a greater need for precision and
accuracy and thus the value of δ is lower.
Compared to the PRM algorithm, collision checks are minimized by perform-
ing "lazy collision checking". This means that collision checks are postponed
until they are absolutely necessary, usually meaning that they are performed
once a path connecting the two trees is found. Where colliding paths are
found, they are recomputed only in that local area in order to avoid the ob-
stacle. This modification is developed because it is seen that in the PRM
most of the time is spent performing collision checks, as they are performed
at each step during the planning path. This is done even though there are
regions of the path where they are practically useless, as they are definitely
in free space.
Operating with this logic, it is seen that the generated paths are geometri-
cally similar to those of the PRM planner (comparing parameters such as
path lengths and failure rates), with lower planning times.

Collision-free path planning for industrial robot applications 29/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.2.6 Deterministic Chekhov algorithm

The deterministic Chekhov algorithm [9] is a sampling-based planner that
uses a graph-based representation called Tube-based Roadmap (TRM) to
find a collision-free path. In this graph, there are nodes representing the
pre-grasping poses required during the task and random collision-free poses
to avoid obstacles. The arcs of the graph are not single trajectories, as in
typical roadmap-based planners, but are flow tubes, i.e., families of possible
paths. The set of these trajectories is called Quality Control Plan (QCP) and
it considers also the control policies and dynamic constraints. These QCPs
are very complex and computationally heavy; for these reasons, they are com-
puted offline initially and stored. Subsequently, an All-Pairs Shortest Path
(APSP) algorithm based on the QCP computed previously is used to calcu-
late the collision-free path.
Thanks to this structure, these planners are fast and efficient even in complex
environments, and they are also reactive and robust in the case of both strong
disturbances (e.g. dynamic environments or goal state changes) and soft dis-
turbances, such as noisy sensor inputs. However, since these algorithms are
based on a roadmap that is obtained by sampling the configuration space,
the final trajectory is not optimal. Furthermore, this planner requires consid-
erable initial computational effort to generate QCPs and it is also complex
to implement in planning frameworks such as MoveIt, due to its integrated
architecture and sophisticated control policies.
In recent years, many enhancements have been made to this planner, in partic-
ular the probabilistic Chekhov [4], an optimized-based planner that is based
on the deterministic Chekhov algorithm. It presents a second step where
it optimizes the generated collision-free path based on collision probabilities
with both static and dynamic objects in the scene. Moreover, it tries to max-
imize offline computations in order to result in a planner that is as reactive
to changes as possible.

Collision-free path planning for industrial robot applications 30/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.3 Optimized-based algorithms

Sampling-based planners are fast and quite effective even in complex environ-
ments. However, they have major limitations on the final smoothness of the
paths and their optimality regarding kinematic constraints such as velocities,
accelerations, and jerks. This means the final trajectories that will be exe-
cuted by the robot are worse, in the sense that they will be longer, less safe
and usually with higher execution times. In addition, there is a possibility
that there may be unnecessary and abrupt robot movements, thus being less
safe and with generally higher energy consumption.
For these reasons, algorithms have been developed that compute the final tra-
jectory as the solution of an optimization problem, considering a cost function
with various constraints (e.g., maximize the distance to obstacles in the envi-
ronment, consider limits in the velocity, acceleration and jerk profiles, and so
on).
The main disadvantage in optimized-based planners turns out to be the com-
putational complexity. It grows considerably compared to sampling-based
planners, thus resulting in longer planning times and making them unsuitable
for online planning. Another major disadvantage present in most optimized-
based planners is the dependence on initial conditions. This leads them to
trap into local minima rather than global minima, thus causing an increase
in failure rates compared to sampling-based planners.
The next sections discuss the two optimized-based motion planners that are
discovered first and studied for several years and thus also more widely used
(CHOMP and STOMP) and also other recently developed solutions. The
latter have provided a significant upgrade to the state of the art in terms of
trade-offs path optimality, planning times and failure rates in collision-free
path planning. In particular, it is present a complete description of TrajOpt
which is an innovative optimized-based planner highly studied in recent years.
It is used in this thesis work to develop a comparison with the performance
of the current planners used in typical industrial robotics scenes.

Collision-free path planning for industrial robot applications 31/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.3.1 CHOMP algorithm

The Covariant Hamiltonian Optimization Motion Planner (CHOMP) opti-
mizes the trajectory using a functional gradient-descend technique [24].
In this logic, the trajectory is updated step-by-step taking into account the
gradient value of the cost function Fcost:

τ i+1 = τ i − 1
η

A−1∇Fcost[τ i] (4.1)

in which η > 0 is the step size, A = DT D where D is the finite differentiation
matrix, ∇Fcost[τ i] is the gradient of the cost function and τ i is the trajectory
after i iterations.
This cost function Fcost to be minimized is given by the sum of two distinct
parts:

Fcost = Fsmooth + Fobst (4.2)

• Fsmooth is the smoothness functional that is used to penalize too high
values of velocity and acceleration. In this way, the final path is smoother.

• Fobst is the obstacle functional which is used to penalize points close
to obstacles. For this reason, a threshold distance ϵ is fixed and this
guarantees to stay sufficiently far away from them.

This algorithm depends on the gradient of the cost function Fcost, due to this
the final trajectory is very sensitive to the initial conditions of the problem
and it can trap in local minima causing an increase in the failure rates.
For this reason, it is usually used as path post-processing [16]: by optimizing
an initial collision-free geometric path computed by a sampling-based planner,
the probability of falling into local minima is greatly reduced thus achieving
better performance. This provides optimal trajectories as path length, con-
sidering also the kinematic constraints and with lower failure rates. All at the
expense of planning time, since there is a cascade of 2 planners.

Collision-free path planning for industrial robot applications 32/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.3.2 STOMP algorithm

The Stochastic Trajectory Optimization Motion Planner (STOMP) is an
optimized-based motion planner that uses a stochastic trajectory optimiza-
tion framework [7], [10].
This algorithm starts from an initial trajectory, even not collision-free, and at
each step generates N noisy trajectories, as seen in Figure 4.6.

Figure 4.6: Noisy trajectories around an obstacle starting from an arbitrary initial one (in red) [7].

At each iteration, a cost function based on an obstacle cost, smoothness cost
and control cost, is minimized, in which θ̃ = N (θ, Σ) is a noisy parameter
vector with mean θ and variance Σ, and q(θ̃i) is an arbitrary state-dependent
cost function which can include costs, joint constraints and torques.

min
θ̃

 NØ
i=1

q(θ̃i) + 1
2 θ̃T Rθ̃

 (4.3)

This part is very similar to the one already seen previously for the CHOMP
planner, with the crucial difference that here it is not gradient-based, so there
is no risk to trap in local minima.
Iterations go on until the cost function q(θ̃) converges to a minimum value
Q. This procedure explores the space around the initial trajectory looking
for the collision-free one among the N generated. All these generated noisy
trajectories are called rollouts and the chosen one is the collision-free rollout
that minimizes the cost function.
In the case where none of the noisy trajectories are collision-free, the algo-
rithm restarts from the trajectory that minimizes the cost function and then
generates additional N noisy trajectories starting from the latter. It proceeds
until an optimized collision-free one is obtained, as seen in Figure 4.7.

Collision-free path planning for industrial robot applications 33/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

Figure 4.7: Final optimized collision-free trajectory (in blue) starting an arbitrary initial one (in red) [7].

This type of planner has longer planning times and lower precision than
CHOMP, especially in cases where there is high noise variance. However,
it has higher success rates, thanks to the fact that it is not a gradient-based
algorithm.
In recent years, improvements to STOMP planners have also been developed,
such as Cartesian Constrained STOMP [16]. In this newer algorithm, it is
possible to add constraints in the cartesian space and not only in the joint
space as is the case of STOMP. To obtain this flexibility, the algorithm re-
lies on innovative methods with regard to noise generation and cost function
computation.

4.3.3 TrajOpt algorithm

The TrajOpt planner is a novel approach for robotic motion planning among
obstacles. The core of this algorithm is a Sequential Quadratic Program
(SQP), a convex optimization procedure which penalizes collisions with a
hinge loss and uses an efficient formulation of the collision-free constraints.
This procedure allows also continuous-time safety and enables the algorithm
to reliably solve problems involving thin, complex and dynamic obstacles [5],
[31], [32].

Collision-free path planning for industrial robot applications 34/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

There are two key concepts to optimize collision-free path planning.
The first is the numerical optimization method. TrajOpt uses a sequential con-
vex optimization, with ℓ1 penalties for equalities and inequalities constraints.
This solves a series of convex optimization problems that approximate the
cost and constraint of the true problem, which is highly non-convex. Among
the constraints of the optimization problems, in addition to kinematics con-
straints such as joint limits, speed limits, end-effector initial and target poses,
it is also possible to consider the dynamics of the problem, e.g., joint torques
and contact forces. Moreover, there is the safe distance, dsafe, defined by
the user and entered as a hard constraint; it is the minimum distance that is
maintained from any object in the scene. To speed up the algorithm, a sec-
ond distance called dcheck greater than dsafe is defined. The collision checker
is activated only when objects are at a distance lower than dcheck. Thanks
to this logic, no time is wasted in useless computations, because the robot
configuration is surely safe (d>dcheck>dsafe). Thanks to the SQP, the algo-
rithm is not gradient-based, resulting in higher success rates. Furthermore,
fewer iterations are needed to converge to an optimal solution. On the other
hand, however, solving this type of problem results in more time-consuming
computations in each iteration.
The second key concept is the collision checking method. To do this, the
planner relies on the signed distance, which is computed using convex-convex
collision detection. As can be seen in Figure 4.8a, if the signed distance is
greater than zero (T>0), the configuration is collision-free; otherwise, the con-
figuration is in collision. With this method, it is also possible to ensure the
continuous-time safety of a path by considering the swept-out volume (Figure
4.8b). In this case, the swept-out volume of the dynamic object A is composed
(i.e., the volume between two poses A(t) and A(t+1)) and then it is taken
into account in the computations of the signed distance with object B. Convex
collision checking compared to distance fields, which is used in planners such
as CHOMP, guarantees greater accuracy and precision in the computations.
Indeed, in the distance field, each link of the robot is approximated as a union
of spheres. In this way, collision checking between links and obstacles does
not depend on the complexity of the environment, but results in less accurate
calculations.

Collision-free path planning for industrial robot applications 35/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

(a) Collision checking between A and B: T>0 means
collision-free configuration, while T<0 means that collision

happen.

(b) Continuous-time collision checking: A is a dynamic
object, so it is computed the swept-out volume. Then it is

checked the signed distance with B (static).

Figure 4.8: Concepts of signed distance and swept-out volume between two objects A and B [31].

The combination of an SQP optimization problem and convex-convex colli-
sion detection results in an algorithm that requires more computation per
iteration, but with fewer iterations. The final solutions are optimal and ef-
fective even in complex environments, albeit in some cases can trap in local
minima. On the other hand, due to the convex-convex collision checking,
planning times are closely related to the complexity of the scene.
Finally, it is important to point out that this type of planner is already im-
plemented in the Tesseract framework. Tesseract is an open-source planning
framework that is very common in the industrial robotics field and will be
explained deeply in Chapter 7. This implementation provides a number of
advantages, including flexible scene management and the possibility to achieve
multiple target poses sequentially in the same path.

Collision-free path planning for industrial robot applications 36/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.3.4 LCQP algorithm

The Linear Constraint Quadratic Program (LCQP) algorithm solves the prob-
lem of collision-free path planning setting it as an optimization one in a similar
way to TrajOpt [17].
LCQP planner is usually used to post-process an initial collision-free path,
since it presents a first part where it is able to remove the redundant mo-
tions and then optimize it. This does not exclude that it can be used as an
optimized-based planner, by avoiding the first part.
Assuming the robot has n joints, the configuration space is C ⊂ Rn. Then
if the number of path points in the trajectory is m, the trajectory can be
expressed as ξ ∈ Rmn.
This algorithm treats collision avoidance and task constraints as hard con-
straints rather than optimization terms. For this reason, the cost function
only contains the smooth term fsmooth(ξ) to measure dynamical quantities
across the trajectory. fsmooth(ξ) can be computed as a sum of squared deriva-
tives. The problem is then set as:

min
∆ξ

1
2∆ξT M∆ξ + gT ∆ξ

C∆ξ ≥ 0

S∆ξ = 0

in which the linear constraints take into account collision avoidance thanks
to the matrix C and the start and final points of the trajectory thanks to
the matrix S. It is possible to obtain linear constraints for collision avoid-
ance thanks to a collision backtrack, which converts the collisions into linear
constraints in order to ensure that there will be no more collisions at those
points.
This optimized-based planner achieves excellent results in terms of trajec-
tory quality based on execution time, final smoothness and task constraints.
However, it has significantly longer planning times due to the numerous hard
constraints.

Collision-free path planning for industrial robot applications 37/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.3.5 B-spline algorithm

The B-spline planner [15] is an effective trajectory generation algorithm to
shorten and smooth initial jerky paths. The initial path can be anyone, either
one in collision with the environment or one already collision-free generated
by a sampling-based algorithm.
This planner is divided into two core parts: a two-layer local adjustment of the
initial path and a fast trajectory pruning. First of all, several control points
are selected on the initial path. If there is a colliding segment between two
control points, the two-layer local adjustment is used. In the first layer, the
local path is adjusted to obtain a collision-free one. To do this, it is possible
to apply a fast "optimist" strategy but not entirely reliable, or a "pessimist"
strategy that is reliable but increases the trajectory’s roughness. In simple
environments, it is recommended to use the former to achieve the best pos-
sible smoothness, while in complex environments the latter to ensure greater
safety. If this first layer fails to find a local collision-free path, the second
layer is used. This second layer allows a split and merge strategy between the
control points. By adjusting the control points suitably, collision-free paths
can be found. Finally, once the collision-free path has been obtained, there
is the final part in which there is a pruning method in order to remove the
remaining redundant motions.
This algorithm allows the generation of optimized collision-free trajectories,
which respect kinematic constraints and guarantee excellent smoothness. In-
deed, thanks to the method of optimization, the final path belongs to the
continuity class C2, i.e., paths with velocity and acceleration profiles that are
continuous. Furthermore, this algorithm does not depend on gradients, so
it does not trap in local minima. However, the two-layer structure followed
by a pruning method, makes the algorithm complex and therefore increases
considerably the planning times and it is closely related to the complexity of
the scene. These last features do not allow dynamic scene management and
online motion planning.

Collision-free path planning for industrial robot applications 38/84

CHAPTER 4. MOTION PLANNING ALGORITHMS

4.4 Post-processing algorithms

Post-processing algorithms are hybrid planners with the purpose of combining
the advantages of sampling-based and optimized-based planners, reducing the
weight of defects [16], [18].
In these algorithms there is the generation of an initial collision-free path by
a sampling-based planner. This collision-free path is then used as the initial
condition in an optimized-based planner in order to obtain the final optimized
trajectory.
With this procedure, it is possible to plan a final optimized trajectory thanks
to the optimized-based planner. Moreover, the success rates of the post-
processing algorithms are higher with respect to the optimized-based ones,
since the initial input is generated by a sampling-based planner. This input is
already collision-free so it is closer to the final optimized trajectory. Thanks
to this property, the probability to trap in local minima drops and so the
success rates are higher.
Computational times generally turn out to be quite high, since there are two
planners in cascade, however with the proper combination of planners they
are not too large. This is because the first sampling-based step is usually fast,
while the second step takes a shorter time with respect to the single optimized-
based, since it starts from an input that is closer to the final optimal solution.

Figure 4.9: Structure of a post-processing planner: cascade of two motion planners (left) [16]; final
optimized-trajectory starting from collision-free inputs (right) [18].

Collision-free path planning for industrial robot applications 39/84

Chapter 5

Simulation framework

Each of the collision-free motion planning algorithms explained in Chapter
4 requires a planning framework. This planning framework is responsible to
execute the algorithm and generate the collision-free path. In this thesis,
the focus is on the MoveIt and Tesseract planning frameworks. The former
is currently used in COMAU and contains a library called OMPL, in which
the main sampling-based planners can be executed. This planning framework
turns out to be one of the most widespread in the industrial robotics fields
thanks to the features that will be illustrated in Chapter 6. The latter has
been considered as the TrajOpt planner is already implemented in this plan-
ning framework. This planner is highly innovative and, for this reason, it
is decided to develop a comparison between the performance of the current
planners used and this one in typical industrial robotics scenes.
Furthermore, it must be underlined that both planning frameworks are ROS-
based. The next sections explain in detail what is ROS, how it is structured
and why its features make it widely used in robotics.
Then the following chapters are devoted more specifically to the MoveIt and
Tesseract planning frameworks and to the experimental part for comparing
the planners with the chosen benchmarks.

5.1 ROS

Robot Operating System (ROS) is an open-source framework widely used for
the development of robotic applications [27]. Although it contains "operating
system" in its name, it is not a traditional operating system but is rather a
set of libraries, tools and conventions that optimize communication and coop-
eration between elements of a complex system such as a robotic system.

Collision-free path planning for industrial robot applications 40/84

CHAPTER 5. SIMULATION FRAMEWORK

ROS provides a communication middleware that allows nodes (independent
execution units) to exchange data synchronously or asynchronously through
publisher/subscriber type mechanisms.
Thanks to this structure ROS has a variety of advantages:

• modularity: each node is launched and executed independently of the
others. Thanks to this structure, it is possible to design, develop and
test individual nodes. This makes them reusable for other purposes since
each node has a specific function.

• portability: this is another inherent feature due to the structure of in-
dependent nodes. Each node performing a function on its own can be
carried and used for other purposes.

• effective communication: the messaging system of ROS is simple and
scalable. Nodes can communicate with each other via topics or services,
thus enabling the transmission of sensors, status, control or any other
type of information.

• flexibility: this is both a consequence of the previous features and the
fact that it supports a variety of programming languages, including the
most common Python and C++.

• graphics: ROS supports simulation of environments such as RViz or
Gazebo, thus also enabling graphical simulation by loading models such
as URDFs (Unified Robot Description Format) that describe the geome-
try and kinematics of the robot.

5.2 ROS nodes and topics

Nodes are the main core of ROS. As explained earlier, they are launched and
executed independently of the rest of the system and they can be written in
various programming languages including Python and C++. Each node has
its own source file where it is defined what it has to do, its publishers and
its subscribers. Then there is a launch file that is responsible for executing
one or more nodes. Indeed there is the possibility of launching multiple nodes
with the same launch file in order to simplify the execution and to speed up
time.

Collision-free path planning for industrial robot applications 41/84

CHAPTER 5. SIMULATION FRAMEWORK

Nodes can communicate with each other using publisher-subscriber protocol
logic. To do this, a topic is instantiated among the nodes that contain the
data to be transferred [30]. The nodes connected to the topic can be of
two types: publishers that send messages/data on the topic and subscribers
that receive messages/data from the topic. The final structure of the ROS
environment thus consists of nodes communicating with each other through
topics, as reported in Figure 5.1.
This structure is effective when the environment is relatively small and simple.
If the system grows in complexity, services and actions are frequently used to
carry out communication between nodes.

Figure 5.1: ROS topic structure: communication between a publisher node and a subscriber node [30].

5.3 ROS services

Communication by topic, thus with a publisher/subscriber structure, is very
flexible and allows many-to-many communication. However, it has the limita-
tion of being a one-way communication, since the nodes that send or receive
the message are defined in principle at the very beginning.
This way of communication is not always suitable, so there is the possibility
of using other communication routes such as services.
Services use a request/reply type of communication between a client and
server node and it is based on a message pair [29]. A ROS node offers a ser-
vice under a string name, another node, denoted as a client, calls the service
by sending it a request message and then it waits for a reply message from
the service.

Collision-free path planning for industrial robot applications 42/84

CHAPTER 5. SIMULATION FRAMEWORK

This service-client procedure is a synchronous type of communication: the
client node makes the service request and then it waits until it receives a
response. During this waiting time the node is stationary and it cannot per-
form other tasks. This makes this type of communication suitable only for
occasional tasks, otherwise there is a risk of slowing down the system consid-
erably.

Figure 5.2: ROS service structure: communication between a service client node and a service server node
[29].

5.4 ROS actions

ROS actions are server-client messages that function much like services: an
action client sends a request message to the server for a particular action and
it waits for a second response message [28]. The key difference from services
is that the actions are asynchronous. This means that once the request is sent
to the action server, the client node continues to work and in parallel it waits
for the server’s response that will arrive in a second time (asynchronous).
The messages that are used in actions have all the same structure:

• goal: it is the initial message that sends the action client to the action
server. It contains information about the request goal.

• feedback: they are various messages that the action server sends to the
action client to update it on the progress regarding the achievement of
the goal.

• result: it is the final message that the action server sends to the action
client once the goal is completed.

Collision-free path planning for industrial robot applications 43/84

CHAPTER 5. SIMULATION FRAMEWORK

Figure 5.3: ROS action structure: communication between an action client node and an action server node
[28].

5.5 ROS RViz

The ROS visualization tool RViz is a graphical user interface that allows the
user to visualize information about the robot and the evolution of the envi-
ronment around it.
In this thesis work RViz is subscribed by the topic that contains the values
of the robot’s joints (called joint_states) so as to visualize its pose at every
instant. In addition, the user can see the evolution of the scene if it is ac-
quired by visual sensors and thus also keep track of the dynamic changes by
appropriate octomaps.

Figure 5.4: ROS RViz graphical interface.

Collision-free path planning for industrial robot applications 44/84

CHAPTER 5. SIMULATION FRAMEWORK

5.6 Roboshop

Roboshop is an internal COMAU software for simulating the C5G controller
of COMAU robots.
There is a graphical interface that simulates the movements of the robot and
the virtual TP5 that simulates the actual teach pendant that is present to
control each robot.
Thanks to Roboshop, it is then possible to realistically simulate the interface
with the robot. For example, the user can plan paths on MoveIt and simulate
them on Roboshop before utilizing the real robot. Being the simulator of the
C5G controller hardware on board the robot, with Roboshop it is possible
to derive much more accurate values regarding path execution times, veloc-
ities, accelerations, and jerks of the robot, since it takes into account more
real-world factors than the simpler simulations on MoveIt or Tesseract envi-
ronments.
On Roboshop it is possible also to control the input and output signals from
the robot, so for example it can be assigned true/false values to the digital
inputs and/or outputs. These digital outputs are the basis of the change
gripper management developed and which will be discussed more in deep in
Chapter 13.
In Figure 5.5 it can be seen the virtual interface that faithfully simulates the
teach pendant used to control COMAU robots, more in detail it is shown a
Racer3-0-63.

Figure 5.5: Racer3-0-63 Roboshop graphical interface.

Collision-free path planning for industrial robot applications 45/84

Chapter 6

MoveIt

MoveIt [19] is the most widely used software for manipulation in industrial
robotics and it has been used over 150 robots. Furthermore, it is open-source
for industrial and research use. MoveIt is recognized as the state of the art
platform for mobile manipulation thanks to its main features:

• motion planning: it can generate high degrees of freedom paths through
cluttered environments. It is also able to avoid local minimums.

• manipulation: it can analyze and interact with the environment thanks
to grasp generation.

• inverse kinematics: it can solve for joint positions for a given pose. It
works also for over-actuated arms.

• control: it can execute time-parameterized joint paths to low-level hard-
ware controllers through common interfaces.

• 3D perception: it is able to connect the depth sensors and point clouds
thanks to octomaps.

• collision checking: it can avoid obstacles using geometric primitives,
meshes or point cloud data.

The main tool in this framework is the MoveIt Setup Assistant. Thanks to
the MoveIt Setup Assistant, it is possible to configure the robot and then plan
and execute the desired paths.
To get started, is needed to upload the robot model via URDF (Unified Robot
Description Format). Then the user has to generate the collision matrix,
which is the matrix that considers all possible collisions in the loaded URDF.
Next, it is possible to specify the robot’s virtual/fixed joints, planning groups,
specific poses for the robot’s use and other information useful for 3D percep-
tion.

Collision-free path planning for industrial robot applications 46/84

CHAPTER 6. MOVEIT

Once all the information about the robot has been entered, the MoveIt Setup
Assistant generates the SRDF (Semantic Robot Description Format) file and
other configuration files that are used in the MoveIt pipeline.

Figure 6.1: MoveIt general system architecture [19].

The primary node provided by MoveIt is the move_group. The high-level sys-
tem architecture for this node is shown in Figure 6.1, while the node structure
is shown in Figure 6.2.

Figure 6.2: MoveIt move_group architecture [19].

Collision-free path planning for industrial robot applications 47/84

CHAPTER 6. MOVEIT

This node serves as an integrator: pulling all the individual components to-
gether to provide a set of ROS actions and services for users to use.
For the user it is very easy to access the actions and services provided by
move_group, since it can be configured using the ROS param server. From
this server, the move_group ROS node gets three pieces of information:

• URDF: the robot description parameters.

• SRDF: the robot description semantic parameters. As already said, the
SRDF is generated thanks to the MoveIt Setup Assistant.

• MoveIt configuration: other data as joint limits, kinematics, motion plan-
ning and perceptions. Also these config files are automatically generated
by the MoveIt Setup Assistant and stored in the proper directories.

The move_group node talks to the robot through ROS topics and actions.
Thanks to them, it is able to get all the current state informations: the joint
positions, the point clouds of the scene, the data coming from the other sensors
and from the controllers on the robot, and so on.

6.1 Motion planning

MoveIt can communicate with many motion planners from different libraries
thanks to a plugin interface. This interface to the motion planners is through
a ROS action or service offered by the move_group node. The interface is
initially configured by the MoveIt Setup Assistant automatically.
The motion planners that are available on MoveIt are those belonging to the
OMPL library, the Pilz industrial motion planner and CHOMP.

6.1.1 OMPL

OMPL (Open Motion Planning Library) is an open-source library containing
many types of randomized motion planners, so basically those planners belong
to the category of sampling-based motion planners. MoveIt integrates directly
with OMPL and all motion planners that belong to this library are set as
planners by default. OMPL is abstract, meaning that the planners in this
library have no concept of robot description. When MoveIt integrates with
OMPL, it configures the library and provides OMPL with the back-end to
work with robotics problems.

Collision-free path planning for industrial robot applications 48/84

CHAPTER 6. MOVEIT

6.2 Planning scene

The planning scene stores the current state of the robot and the world around
it. It is stored inside the move_group node, more specifically by the planning
scene monitor.
The architecture of this node is shown in Figure 6.3, particularly the planning
scene monitor listens to:

• state information: stored on the joint_states topic.

• sensor information: thanks to the world geometry monitor. It builds the
world geometry using the occupancy map monitor and then it saves a 3D
representation of the scene on the planning_scene topic.

• world geometry information: directly from the user on the planning_scene
topic.

Figure 6.3: Planning scene monitor [19].

Specifically, the planning scene can be built in different ways: it is possible
to upload the 3D CAD model of the object or through the 3D perception
supported by vision sensors. In this second way, the sensors generate a point
cloud or a depth image and then MoveIt converts it into a 3D occupancy grid
mapping by using octomap.

Collision-free path planning for industrial robot applications 49/84

CHAPTER 6. MOVEIT

6.2.1 3D perception

3D perception in MoveIt is handled by the occupancy map monitor. This
occupancy map monitor can manage different types of sensor inputs thanks
to its plugin architecture. It is possible to add manually any type of updaters
for the occupancy map monitor. The two main kinds of inputs are the point
clouds and the depth images, which are already built and supported in MoveIt.
Finally, these inputs are converted into octomaps thanks to a dedicated ROS
node.

6.3 Collision checking

Collision checking is the most expensive part during the path generation,
which accounts for almost 90% of the planning time. Fortunately, MoveIt is
setup in order to do it automatically, so the user never really has to worry
about how it is happening.
To speed up the collision checking, it is present the ACM (Allowed Collision
Matrix). In this matrix are written all the allowed collisions between two
bodies, so the ones in which the check is not needed.
The collision check is done using the FCL (Flexible Collision Library) package.
This package supports different types of objects including:

• meshes: the ones added through 3D CAD model.

• primitives shapes: e.g. boxes, cylinders, spheres, cones, and so on.

• octomaps: obtained after conversion from the sensors (e.g. from point
clouds or depth images).

Collision-free path planning for industrial robot applications 50/84

Chapter 7

Tesseract

Tesseract [34] is another common open-source software in the industrial robotics
field used for manipulating robots.
Its operations and architecture are very similar to that of MoveIt, but with
some differences present within it. As MoveIt has the MoveIt Setup Assis-
tant to automatically generate all the packages needed to solve problems with
the related robot, here there is the Tesseract Setup Wizard. Starting with
the URDF model of the robot, the user can set the Allowed Collision Matrix
(ACM), kinematics groups, virtual/fixed joints and then generate the SRDF
model and other packages needed into the Tesseract pipeline.
In Tesseract there are basically the same features as in MoveIt (motion plan-
ning, scene planning, collision checking, and so on), but structured in a dif-
ferent way. The next sections will explain such differences with respect to the
MoveIt environment in more detail, analyzing their possible advantages and
disadvantages.

Figure 7.1: Tesseract general system architecture [34].

Collision-free path planning for industrial robot applications 51/84

CHAPTER 7. TESSERACT

7.1 Motion planning

In the open-source Tesseract framework, it is possible to use all the motion
planners belonging to the OMPL library that are available on MoveIt. In
addition there are also the Descartes, STOMP and TrajOpt planners. In
particular, TrajOpt has several advantages over the simpler sampling-based
planners belonging to OMPL. In Tesseract it is possible to cascade motion
planners to achieve path post-processing. In this case there is some wasted
time due to switching between planners, so the planning time gets longer.
The fact that TrajOpt is already integrated within Tesseract is what prompted
the development of this thesis work, so as to compare its performance with
popular OMPL planners and understand its merits and shortcomings.

7.2 Planning scene

Scene management in Tesseract is more flexible than in MoveIt, this is due
to the presence of the Command History (Figure 7.1). This makes possible
to modify almost the entire scene, thus adding complexity to the framework.
In particular, this eliminates the major constraint present in MoveIt: in this
platform everything depends on the initial URDF and SRDF and they are
loaded only once at the beginning of the problem. This does not allow subse-
quent modification in quick and flexible ways. On Tesseract, instead, URDF
and SRDF are stored in the Command History and then the scene can be
modified more easily (Figure 7.2).

Figure 7.2: Tesseract scene handler [34].

Collision-free path planning for industrial robot applications 52/84

CHAPTER 7. TESSERACT

7.3 Collision checking

As already explained in the chapters about the MoveIt framework, collision
checking is the computationally heaviest and most time-consuming part in
the problem. In Tesseract, the FCL library is not used as it is on MoveIt and
the collision checking can be done both continuously and discretely thanks
to the signed distance and the convex-convex collision detection used (more
details are available in subsection 4.3.3). Even here it is possible to speed up
the checking using the ACM.

Collision-free path planning for industrial robot applications 53/84

Chapter 8

Experimental procedure

The objective of the experimental part developed during this thesis work is
the comparison between the performance of the OMPL library on MoveIt
currently in use at COMAU and TrajOpt in the Tesseract framework.
To do this each benchmark is tested 40 times: in this way all the data ob-
tained equals the average of the values obtained in the 40 simulations in order
to be more reliable.
Initially, the objective of the experimental procedure was to compare the
OMPL library planners with TrajOpt in both cases using the Tesseract plat-
form. Immediately it was seen that the OMPL library does not perform
satisfactorily on Tesseract, probably because it is less optimized with respect
to the one on MoveIt that is used in COMAU. To compare the performances
of OMPL on MoveIt and Tesseract, it is used a simple scene shown in Figure
8.1. With this scene ten attempts are launched for both frameworks and the
data obtained are shown in Table 8.1.

Figure 8.1: Box avoidance to compare OMPL performances on MoveIt and Tesseract. Both the initial and
final poses of the Racer5-0-80 are shown.

Collision-free path planning for industrial robot applications 54/84

CHAPTER 8. EXPERIMENTAL PROCEDURE

OMPL (MoveIt) OMPL (Tesseract)
Planning time 1 [s] 0.189 6.320
Planning time 2 [s] 0.113 6.467
Planning time 3 [s] 0.087 8.826
Planning time 4 [s] 0.112 7.678
Planning time 5 [s] 0.124 7.128
Planning time 6 [s] 0.244 8.730
Planning time 7 [s] 0.221 7.820
Planning time 8 [s] 0.100 7.787
Planning time 9 [s] 0.078 6.273
Planning time 10 [s] 0.136 7.935

Table 8.1: Box avoidance: OMPL on MoveIt and Tesseract comparisons.

In the Tesseract framework there are significantly longer planning times than
in MoveIt and that is why the comparison between TrajOpt on Tesseract and
OMPL on MoveIt is chosen. In fact, the main goal is to understand the poten-
tial of TrajOpt compared to the current state of the art, so it would not have
made sense to compare it with planners that have much worse performance
than those currently in use.
The benchmarks are chosen in order to analyse the advantages and disadvan-
tages of TrajOpt compared to OMPL planners on MoveIt. To do this, scenes
are created with various features: paths with a single goal state, paths having
multiple goal states to be reached sequentially and finally the handling of a
gripper change.
For each benchmark the data considered to make the comparison are the suc-
cess rate and the minimum, average and maximum of both planning time and
joint path length. In this way, it is possible to compare not only the planning
time required but also the optimality of the final path.

8.1 Racer5-0-80

The COMAU Racer5-0-80 robot is used in the benchmarks created for this
thesis work [23].
This robot weights about 32 kg and it has 6 working axes. The wrist load
capacity is 5 kg and the maximum horizontal is 809 mm; these are the two
values from which the robot derives its name. It has an excellent repeatability
being only 0.03 mm and it has IP54 certified protection.

Collision-free path planning for industrial robot applications 55/84

CHAPTER 8. EXPERIMENTAL PROCEDURE

Figure 8.2: Robot Racer5-0-80 COMAU [23].

8.2 MoveIt pipeline

The pipeline used in the MoveIt framework is divided into 3 main steps.
First a ROS launch file called dexter_ros_startup.launch is started and then,
through the ros_handler service, the robot model is decided and whether
to use it in simulation or not. This takes the decided robot model (in this
case the Racer5-0-80), it initializes the whole MoveIt platform (especially the
move_group which is the key part) and it also starts the RViz in order to show
the robot and the scene around it. In the ros_handler service there is also a
boolean parameter called simulation and a possible IP_address. If in simu-
lation is inserted the boolean value 1, it means that all paths are generated
and only simulated on the RViz graphical interface. This is what happens in
the case of the benchmarks used to compare OMPL with TrajOpt. On the
other hand, if in simulation is inserted the value 0, it means that the paths
are also executed either by the real robot or by the COMAU Roboshop robot
simulator. In this case, it is also necessary to specify the IP_address of the
robot (it can be easily found in the robot’s teach pendant). This is what is
done in the case of gripper change management, since for its simulation it is
necessary to connect with the robot or Roboshop to obtain the values of the
digital outputs (details are available in Chapter 13).

Collision-free path planning for industrial robot applications 56/84

CHAPTER 8. EXPERIMENTAL PROCEDURE

Once the robot model, the MoveIt environment and RViz have been initial-
ized (and, if it is needed, connected to Roboshop or the real robot), the next
step is to send the target to be reached so that the planner can look for a
collision-free path, if it exists. To carry out this step, there are two different
actions: the move_topose action and the move_tojoints action.
In the first case the final pose expressed by the generalized coordinates in the
robot space is sent, so the action sends the three cartesian coordinates plus
the three angular coordinates in order to uniquely define the final pose. In
the second case, the six final values of the robot’s joints are sent. In this
project the move_topose action is used, since in these cases it is more prac-
tical to work with the final pose in the workspace of the robot. For example,
in the Pick & Place problem explained in Chapter 10, it is well defined the
final position in which to place the object, so it is very immediate to know
the final generalized coordinates of the robot. If the move_tojoints action is
used, the place position should be converted into joint values, so it presents
an additional step. Through these actions, the user can also decide which
motion planner to use and whether to execute or just simulate the generated
path. Specifically for this thesis, the SBL planner is chosen, as it turns out
to be the best-performing planner in the OMPL library for these applications
in industrial robotics.

Figure 8.3: MoveIt pipeline: the framework is waiting for the goal state in order to plan the collision-free
path.

Collision-free path planning for industrial robot applications 57/84

CHAPTER 8. EXPERIMENTAL PROCEDURE

Once the path is generated and executed, the three parameters that are used
for the comparisons are obtained from the terminal:

• execution completed: this is the succeeded/failed response to find the
collision-free path from the starting pose to the target pose. After the 40
launches, it is possible to compute the success rate:

Success rate = succeeded

succeeded + failed
(8.1)

• time elapsed: this is the time occurred to plan the path. It is computed
thanks to a time-watch.

• path length: this is the path length of the joint path. It is computed as
the Euclidean length into the joint path space.

∆θ =

öõõõôN−1Ø
i=1

(θi+1 − θi)2 (8.2)

The value ∆θ is relative to a single joint; it is then necessary to compute
the total joint path length as:

path length =
6Ø

j=1
∆θj (8.3)

8.3 Tesseract pipeline

In the Tesseract framework, the pipeline is much more flexible than the one
explained in the previous section regarding the MoveIt environment. The
first step is always to execute the launch file, in this case it is called co-
mau_picker.launch. Then the procedure depends on how the code of this
launch file is structured. In fact, it is possible to insert directly into the code
the objects in the scene, the initial pose and the target pose, the choice of
the motion planner to be used, and, in case the TrajOpt planner is used, the
value of the safe distance. This is convenient when everything is kept the same
and nothing needs to be changed between simulation launches. On the other
hand, where more flexibility is required for the environment and the path, two
proper services are created. The first one is the add_link service, which is
very useful for managing the scene around the robot, while the second one is

Collision-free path planning for industrial robot applications 58/84

CHAPTER 8. EXPERIMENTAL PROCEDURE

the tesseract_planning service, which is useful to set the start state, the goal
state and to choose the motion planner to be used among the possible ones (so
OMPL, Descartes, TrajOpt planners and, if desired, a path post-processing).
These services are explained in more detail in the following two subsections.
Once the path has been generated, as it happens in the MoveIt pipeline, the
user can get the data useful for path comparison from the terminal: the suc-
ceeded/failed response in order to find the success rate, the planning time
through the time-watch and finally the joint path length.

8.3.1 Add_link service

The add_link service is a service that is used to manage the scene around the
robot as shown in Figure 8.4.

Figure 8.4: Add_link service structure.

This service allows four types of objects to be added to the scene:

• box: it adds a box to the scene by specifying the dimensions of the three
sides (width, height, length).

• cylinder: it adds a cylinder to the scene by specifying its radius and
length.

• sphere: it adds a sphere to the scene by specifying its radius.

• mesh: it adds a mesh to the scene by specifying the path in which the
desired CAD model is located. In addition to the object mesh, the colli-
sion mesh must also be entered: this is usually a simpler mesh in which
the actual model is enlarged. In this way the computations for collision
checking are faster and they are safely approximated by enlarging the
dimensions of the real object.

Collision-free path planning for industrial robot applications 59/84

CHAPTER 8. EXPERIMENTAL PROCEDURE

For each object, in addition to the needed dimensions already explained, the
pose in space must be inserted: it is necessary to specify which is the reference
system and, with respect to it, the values of the generalized coordinates.

8.3.2 Tesseract_planning service

The tesseract_planning service is needed when the user needs more flexibility
in the choice of start pose, target pose and motion planner.

Figure 8.5: Tesseract_planning service structure.

For the start state and the goal state it is required to put the six values needed
to define them completely:

• start state: in this case the values of the six joints are entered. This
choice is made in order to simplify the entry of the initial pose being
always (0 0 -1.57 0 0 0) radiants in joint space, while it is more complex
in cartesian space.

• target state: in the goal state instead the six values of generalized co-
ordinates are inserted since it is easier to obtain the goal state into the
robot space.

For the choice of the motion planner (called pipeline in Figure 8.5), the user
needs to just enter the name of the desired one. In case the OMPL is entered,
all planners belonging to the library are launched in parallel and then the
final result is taken from the best resulting one.
As anticipated at the beginning of the chapter, in this thesis only TrajOpt
is used as the motion planner in the Tesseract planning framework. This is
because the OMPL library has poor results compared to the same library in
the MoveIt environment.

Collision-free path planning for industrial robot applications 60/84

Chapter 9

Benchmark 1: table avoidance

(a) Racer5-0-80 initial pose over the table. (b) Racer5-0-80 final pose under the table.

Figure 9.1: Start and goal states for the table avoidance.

In this first benchmark, the task required to the robot is to move from above
to below the table while avoiding collisions with it (Figure 9.1).
In this test, both add_link and tesseract_planning services in the Tesseract
framework are exploited. More in detail, to add the table to the scene, both
the CAD model of the object and a more simplified collision CAD are inserted
to compute its collisions. In this way the part concerning collision checking
is sped up.

Collision-free path planning for industrial robot applications 61/84

CHAPTER 9. BENCHMARK 1: TABLE AVOIDANCE

9.1 Results

OMPL (MoveIt) TrajOpt (Tesseract)
Success Rate [%] 100 100

Minimum Planning Time [s] 0.111 21.612
Average Planning Time [s] 0.378 22.090

Maximum Planning Time [s] 1.953 22.576
Minimum Path Length [m] 2.886 2.216
Average Path Length [m] 4.928 2.241

Maximum Path Length [m] 8.554 2.244
Table 9.1: Table avoidance: OMPL and TrajOpt comparisons.

As shown in Table 9.1, in both frameworks the success rate is 100%, i.e., no
failures in the 40 launches performed.
It is important to note that in the case of the TrajOpt planner the times are
substantially longer; this is due to the table mesh, which increases the load
during the research and optimization of the collision-free path. On the other
hand it can be seen, as expected, that the joint path is optimized and so it is
shorter with respect to the one obtained with OMPL. Another consideration
that can be made by looking at the table is the variability of the data obtained.
Indeed, in the case of TrajOpt the path found is practically always the same,
with joint path length and planning time very similar. In the case of OMPL
on MoveIt these data change a lot, since the path is generated randomly and
it is not optimized.
In conclusion TrajOpt finds much better paths, however with much longer
times. This makes it severely limited in uses like this where there is only one
target point and with a quite complex scene.

Collision-free path planning for industrial robot applications 62/84

Chapter 10

Benchmark 2: Pick & Place

Figure 10.1: Initial pose. Figure 10.2: Pick pose.

Figure 10.3: Pose 0.01m above the final one. Figure 10.4: Final pose or Place pose.

Figure 10.5: Four main Racer5-0-80 poses for the Pick & Place.

Collision-free path planning for industrial robot applications 63/84

CHAPTER 10. BENCHMARK 2: PICK & PLACE

In this benchmark there is a typical Pick & Place scene. In this case the
Racer5-0-80 starts from the initial pose reported in Figure 10.1. Then it goes
and it picks up a cylindrical object in the box to the left of the figure at the
position defined as "Pick" (Figure 10.2), next it goes to the position 0.01m
above the final position of the place (Figure 10.3). Finally, it descends ver-
tically and it goes to place the object in the final support defined as "Place"
position (Figure 10.4). Pick & Place is a real and very typical scene in the
world of industrial robotics, this is why this scene is chosen for the com-
parison between TrajOpt on Tesseract and OMPL on MoveIt. To take full
advantage of the potential of TrajOpt, it is decided to send the three target
points directly from code. In this way, the planner reaches them sequentially
generating a collision-free path.
For simplicity, the cylinder to be picked up in the box and placed in the final
support is connected to the robot’s gripper at the beginning of the scene. In
reality, this is not present initially and it is taken into the box, so it is only
present after reaching the target in Figure 10.2.

10.1 Results

OMPL (MoveIt) TrajOpt (Tesseract)
Success Rate [%] 100 100

Minimum Planning Time [s] 0.112 0.923
Average Planning Time [s] 0.274 0.975

Maximum Planning Time [s] 0.409 1.038
Minimum Path Length [m] 4.437 4.250
Average Path Length [m] 4.895 4.250

Maximum Path Length [m] 6.381 4.250
Table 10.1: Pick&Place: OMPL and TrajOpt comparisons.

As in the first benchmark, the success rates are 100% in both cases confirming
how effective both planners are in these types of problems.
In this benchmark the planning times using TrajOpt are highly competitive:
they are roughly four times longer than OMPL ones, however they have the
huge advantage of being computed once. In fact, in the case of TrajOpt the
user executes the code containing all the targets in the scene and the planner
reaches them sequentially, resulting in the time that one reads in Table 10.1
with a single launch. In the case of OMPL on MoveIt, that time is equivalent

Collision-free path planning for industrial robot applications 64/84

CHAPTER 10. BENCHMARK 2: PICK & PLACE

to the sum of the generation of three separate paths. The first to reach the
Pick pose, the second to stand over the Place pose and finally the third to go
into the final pose. After all, the sum of these three planning times is shorter
than the planning time using TrajOpt, but it has to be considered the need to
perform a computation for each target, since it is not possible to reach them
sequentially as in the previous case.
Moreover, even in this case the joint path turns out to be optimized and
therefore shorter and constant, instead in the OMPL case it turns out to be
longer and variable.
In conclusion, it can be seen that TrajOpt in this type of scenes provides
numerous advantages: the collision-free path turns out to be effective and
optimized with only one planning for all the desired target points in the scene
to be reached.

Collision-free path planning for industrial robot applications 65/84

Chapter 11

Benchmark 3: Pick & Place with ob-
stacle avoidance

Figure 11.1: Initial pose. Figure 11.2: Pick pose.

Figure 11.3: Pose 0.01m above the final one. Figure 11.4: Final pose or Place pose.

Figure 11.5: Four main Racer5-0-80 poses for the Pick & Place with obstacle avoidance.

Collision-free path planning for industrial robot applications 66/84

CHAPTER 11. BENCHMARK 3: PICK & PLACE WITH OBSTACLE
AVOIDANCE

Here it is used the same Pick & Place scene as in the previous benchmark,
but with a "wall" obstacle to avoid in the middle between the Pick pose and
the Place pose. This is also a common scene in industrial robotics, so it is
interesting to analyse the behaviour in both cases for further comparisons.
For convenience, the collision object in the middle is added from the code
and not with the add_link service. This is because the target points are
inserted from the code in order to reach them in only one launch, so it is more
convenient to insert also the scene from the code rather than via service.

11.1 Results

OMPL (MoveIt) TrajOpt (Tesseract)
Success Rate [%] 100 100

Minimum Planning Time [s] 0.261 2.926
Average Planning Time [s] 0.499 3.033

Maximum Planning Time [s] 0.923 3.214
Minimum Path Length [m] 4.721 4.595
Average Path Length [m] 5.278 4.595

Maximum Path Length [m] 5.889 4.595
Table 11.1: Pick&Place with obstacle avoidance: OMPL and TrajOpt comparisons.

The considerations that can arise from this benchmark are very similar to the
previous ones.
Again both solutions prove the effectiveness of the planners, with success
rates of 100%. The planning times using TrajOpt are proportionally longer
than those using OMPL. While the former are more or less tripled, the latter
are doubled. This is mainly due to the fact that the scene is more complex
than the previous one and, as already mentioned, the TrajOpt performance is
highly dependent on the complexity of the problem. The joint path lengths
always turn out to be fixed and optimized. Again there is the advantage of
using TrajOpt in the Tesseract platform to launch once to reach all three
target points sequentially.

Collision-free path planning for industrial robot applications 67/84

Chapter 12

Benchmark 4: TrajOpt safe distance

In this last developed benchmark, the same scene as Pick & Place with ob-
stacle avoidance is tested. Here instead of focusing on an OMPL-TrajOpt
comparison, it is analyzed how the safe distance on TrajOpt affects the final
collision-free path.
As already explained in subsection 4.3.3, there are two main parameters re-
garding the distances in the TrajOpt planner. The first is the safe distance
dsafe, i.e., the minimum guaranteed distance to each object in the scene. The
second is the check distance dcheck, greater than the previous one, from which
the collision checking is activated in order to guarantee the safe distance con-
straint definitely. Thanks to this procedure, the algorithm does not waste
time in computations where the objects are for sure safe, since in these situ-
ations the distance is such that d > dcheck > dsafe.
Higher safe distances mean longer planning times since the constraints are
more strict. In other words, the larger these values are, the more poses the
robot cannot reach to guarantee the safe distance constraint. However, higher
safe distances also correspond to greater safety as the risk of collision with
objects in the scene is reduced. In conclusion, the user must be careful not
to exceed it on both sides, finding the proper trade-off between constraint
stiffness and safety.

Collision-free path planning for industrial robot applications 68/84

CHAPTER 12. BENCHMARK 4: TRAJOPT SAFE DISTANCE

12.1 Results

TrajOpt (Tesseract) TrajOpt (Tesseract)
Safe Distance [m] 0.01 0.001
Success Rate [%] 100 100

Minimum Planning Time [s] 2.926 1.903
Average Planning Time [s] 3.033 2.048

Maximum Planning Time [s] 3.214 2.282
Minimum Path Length [m] 4.595 4.490
Average Path Length [m] 4.595 4.490

Maximum Path Length [m] 4.595 4.490
Table 12.1: TrajOpt safe distances comparison.

As can be seen, in Table 12.1 a comparison is made between a safe distance of
0.01m and 0.001m. The check distance is twice the safe distance at all times.
As expected, with a smaller safe distance (and hence also a smaller check
distance) the performance is definitely better both as time planning required
and as joint path length. Obviously this also means less safety, as it can also
be seen in Figure 12.1, in which with a safe distance of 0.001m the robot’s
arm passes significantly closer to the obstacle, with has higher probability to
collide with the object.

(a) Safe distance 0.01m. (b) Safe distance 0.001m.

Figure 12.1: Safe distances comparison.

Collision-free path planning for industrial robot applications 69/84

Chapter 13

Gripper change management

The gripper change management is a typical problem in industrial robotics
where great flexibility in scene management is required. In this thesis work,
a ROS node is developed for gripper change management in an NJ-370-2.7
robot on the MoveIt framework.

13.1 NJ-370-2.7

In the last work developed in this thesis, the gripper change management,
the robot used is no longer the Racer5-0-80 explained in Section 8.1, but it
is the NJ-370-2.7 [20]. This robot is used for gripper change management
because it already has an industrial application with 3 grippers, specifically
in COMAU’s Flex-BD project.
This robot has a weight of about 2100 kg and it has 6 working axes. The
wrist load capacity is 370 kg and the maximum horizontal is 2703 mm; these
are the two values from which the robot derives its name. It also supports an
additional forearm load of 50 kg. Being a significantly larger robot than the
Racer5-0-80 it has a worse repeatability, more precisely 0.15 mm, and it has
IP65/IP67 certified protection.

Collision-free path planning for industrial robot applications 70/84

CHAPTER 13. GRIPPER CHANGE MANAGEMENT

Figure 13.1: Robot NJ-370-2.7 COMAU [20].

13.2 Gripper change management pipeline

The robot considered, NJ-370-2.7 [20], for the required application has three
different grippers: each of them has a specific task and, when required, a
gripper change is needed to be handled in simulation as well.
In the MoveIt environment, all the objects in the scene must be initially
loaded into the URDF of the robot. This forces the user to manage the
gripper change in a rough way: all three grippers are loaded into the scene at
the very beginning and placed in a position far away from the robot, thus they
are not seen in the simulation environment. When the robot uses a gripper,
in the simulation the position of that gripper is changed in order to attach it
to the flange of the robot resulting in a working position. In this way, only
the proper gripper is shown in the scene attached to the robot when it is used,
while the others remain far away so it is not possible to see them in the actual
scene.

Collision-free path planning for industrial robot applications 71/84

CHAPTER 13. GRIPPER CHANGE MANAGEMENT

To do this, the created node is subscribed by the topic joint_states and the
digital outputs of the robot, and it goes to publish on a new topic called
joint_states_arm. More in detail, the topic joint_states contains the values
of the six joints of the robot. The digital outputs of the robot are boolean
values that in this case are 0 if the gripper is not present, and 1 otherwise. So,
since there are three possible grippers, if the first gripper is present, the first
digital output has the value 1 while the others are 0; if the second gripper is
present, the second digital output has the value 1 while the others are 0; if
the third gripper is present, the third digital output has the value 1 while the
others are 0; otherwise, all the digital outputs values are 0. Finally, the topic
joint_states_arm consists of nine values: the six values of the robot joints
taken from the topic joint_states and the three values of the positions of the
three grippers with respect to the flange of the robot. These three values are
huge if the gripper is not present (in this way the gripper results far away, so
it is not possible to see it in the scene), while zero if the gripper is used and so
it is attached to the flange of the robot. During the execution of the gripper
change management node, it is implemented a check that there are not two
or more digital outputs set to 1, otherwise, it would mean that there is more
than one active gripper on the robot and this is an evident error.
As it can be guessed, in the MoveIt framework gripper change management
is not trivial and in any case it is not even accurate, since the user has to
load all three grippers into the scene even though this is not what happens
in reality. On Tesseract this operation is much quicker and more flexible.
Indeed in this framework it is possible to load only the URDF of the robot
at the beginning and then, when requested, it can be added and removed a
gripper from the scene. This way of proceeding is cleaner and more realistic,
as inactive grippers are not present into the scene. Practical issues are also
present on Tesseract, in fact in the case of complex grippers CAD models, the
final planning time is much higher as the problem becomes much heavier.

Collision-free path planning for industrial robot applications 72/84

CHAPTER 13. GRIPPER CHANGE MANAGEMENT

Figure 13.2: Robot digital outputs and relative gripper change management.

Collision-free path planning for industrial robot applications 73/84

Chapter 14

Conclusions

Thanks to the scenes created and the several tests performed, very useful
considerations can be drawn.
First of all, it can be said that TrajOpt is generally slower than the sampling-
based planners, even if with optimized collision-free paths and therefore shorter
and smoother ones. This does not make it applicable in cases where online
path planning is used, because it is too slow, but it is suitable for situations
in which it is necessary to have an optimal and precise path.
Moreover, it is important to note that TrajOpt, being an optimized-based
planner, obtains an optimal path and therefore, launching the same problem
several times, the collision-free path generated is practically always the same.
This is not the case of the planners in the OMPL library; indeed, they gen-
erate the collision-free path by random sampling the configuration space, so
they are not deterministic, and the final paths have a higher variability.
Other important factors to be considered in the analysis of the performance
of TrajOpt are the complexity of the scene, its management, and the number
of target goals required. The performance of TrajOpt turns out to be strictly
correlated to the complexity of the scene. In the table avoidance benchmark
with a heavy mesh (Chapter 9), the TrajOpt planning algorithm is slowed
down a lot. On the other hand, however, TrajOpt in the Tesseract framework
allows a much more flexible scene management, thus making it usable in cases
like gripper change management (Chapter 13). In problems such as Pick &
Place, where there are multiple targets to be reached (Chapters 10 and 11),
the ability to reach them sequentially with a single launch results in a consid-
erable advantage over planners belonging to the OMPL library on MoveIt.
Finally, it arises that the safe distance parameter is very important to be
tuned properly. Indeed, with lower safe distances the TrajOpt performances
increase a lot, but the probability of collisions is much higher. In this sense,
a suitable trade-off must be found for each situation (Chapter 12).

Collision-free path planning for industrial robot applications 74/84

Chapter 15

Future works

Thanks to this thesis work, good progress has been made in the analysis of the
performance of the TrajOpt planner in typical industrial robotics problems.
Obviously, there are still many improvements that can be made to enhance
this analysis.
First, it would be very useful to implement a hardware interface between the
Tesseract framework and the COMAU robot. This interface is already created
for the MoveIt environment and allows the robot to execute the generated
collision-free paths. This would make it possible to compare not only the
success rates, planning times and joint path lengths, but also the execution
times of the path and the energy consumption of the robot.
It would be also interesting to expand the comparison to other planners. Now
the comparison is between the TrajOpt planner and the sampling-based in the
OMPL library. It could be added the performance of some innovative post-
processing planners, as it is done in paper [5], where the authors focus on the
deterministic Chekhov+TrajOpt planner.
Finally, it is possible to test a couple of potentially very useful properties
present in Tesseract, such as collision checks performed on the continuous
paths, instead on the discrete points (exploiting the concept of swept-out
volume reported in subsection 4.3.3) and the dynamic scene management.
For this last point, it would be useful to implement also a ROS package that
acquires the scene through a laser scanner.

Collision-free path planning for industrial robot applications 75/84

Chapter 16

Acknowledgements

Questo elaborato sancisce la fine del percorso di laurea magistrale e, comp-
lessivamnete, del mio percorso accademico. Per questo mi sembra doveroso
ringraziare chi c’è stato.

In primis un grazie va alla mia relatrice Prof. Marina Indri e ai miei tutor
aziendali Ing. Simone Panicucci e Ing. Antonio Venezia per avermi seguito
ed indirizzato durante il lavoro di tesi. Ringrazio anche la COMAU e tutti i
colleghi conosciuti durante questo periodo di tesi in azienda per ogni momento
condiviso.

Un enorme grazie va a tutta la mia famiglia per non avermi mai fatto mancare
nulla ed avermi sempre supportato nei miei piani. In particolare ai miei
genitori Eva e Stefano, a mia sorella Sara, ai nonni, allo zio Loris e agli zii
Federico e Lina.

Un grazie di cuore ai miei amici del Friuli e di Torino che mi son stati vicino in
questi due anni piuttosto difficili per me. Una menzione speciale è per Enrico,
Mirko, Giada e Davide che son stati delle spalle importanti su cui poggiarmi
per raggiungere questo traguardo.

Da sempre, ogni volta che si parlava di questo momento, al papà ed ai nonni
si illuminavano gli occhi di gioia e iniziavano a raccontare della festa grande
che si sarebbe fatta. Ora non siete qui, ma son sicuro che mi state vedendo e
state festeggiando con noi questo traguardo che vi stava così a cuore.

Collision-free path planning for industrial robot applications 76/84

Chapter 17

Acronyms

ACM - Allowed Collision Matrix
APSP - All-Pairs Shortest Path
CAD - Computer Aided Design
CHOMP - Covariant Hamiltonian Optimization Motion Planner
DOF - Degree Of Freedom
FCL - Flexible Collision Library
LCQP - Linear Constraint Quadratic Programme
OMPL - Open Motion Planning Library
NN - Nearest Neighbor
PRM - Probabilistic Roadmap Method
QCP - Quality Control Plan
ROS - Robot Operating System
RRT - Rapidly-Random Tree
SBL - Single-query Bi-directional probabilistic roadmap planner with Lazy
collision checking
SQP - Sequential Quadratic Program
SRDF - Semantic Robot Description Format
STOMP - Stochastic Trajectory Optimization Motion Planner
TRM - Tube-based RoadMap
URDF - Unified Robot Description Format

Collision-free path planning for industrial robot applications 77/84

List of Figures

1.1 COMAU industrial robots working in a production line [35]. . 5

2.1 Revolute joint (left) and prismatic joint (right) [25]. 8
2.2 Sketch of an industrial robot with 6DOF and a spherical wrist

[25]. 8
2.3 Position and orientation of a rigid body [33]. 9
2.4 Position and orientation of the end-effector frame with respect

to the base frame [33]. 11
2.5 Denavit-Hartenberg convention [33]. 12
2.6 Two admissible solutions for the inverse kinematics problem for

a two-link planar arm [33]. 13

3.1 Configuration space of a two-joint manipulator: on the left a
representation topologically correct as a torus 2D, on the right
a representation locally valid as subset R2 [26]. 17

3.2 The right figure shows the configuration space corresponding
to the workspace on the left. A two-link robot is used and each
obstacle has a different colour to simplify the mapping [22]. . . 18

4.1 Comparison of depth-first (left) and breadth-first (right) plan-
ners. The number near the nodes is the order in the expansion
of the tree [26]. 21

4.2 General structure of a sampling-based planner: the inputs are
the initial state, the final state and the configuration space.
Thanks to the sample procedure and the collision checks, it
looks for a collision-free path. [8]. 23

4.3 Planning the collision-free path through RRT algorithm [21]. . 25
4.4 Two trees development in the bi-directional RRT algorithm [36]. 26
4.5 Collision-free path planning using PRM planner [21]. 28
4.6 Noisy trajectories around an obstacle starting from an arbitrary

initial one (in red) [7]. 33
4.7 Final optimized collision-free trajectory (in blue) starting an

arbitrary initial one (in red) [7]. 34

Collision-free path planning for industrial robot applications 78/84

LIST OF FIGURES

4.8 Concepts of signed distance and swept-out volume between two
objects A and B [31]. 36

4.9 Structure of a post-processing planner: cascade of two motion
planners (left) [16]; final optimized-trajectory starting from
collision-free inputs (right) [18]. 39

5.1 ROS topic structure: communication between a publisher node
and a subscriber node [30]. 42

5.2 ROS service structure: communication between a service client
node and a service server node [29]. 43

5.3 ROS action structure: communication between an action client
node and an action server node [28]. 44

5.4 ROS RViz graphical interface. 44
5.5 Racer3-0-63 Roboshop graphical interface. 45

6.1 MoveIt general system architecture [19]. 47
6.2 MoveIt move_group architecture [19]. 47
6.3 Planning scene monitor [19]. 49

7.1 Tesseract general system architecture [34]. 51
7.2 Tesseract scene handler [34]. 52

8.1 Box avoidance to compare OMPL performances on MoveIt and
Tesseract. Both the initial and final poses of the Racer5-0-80
are shown. 54

8.2 Robot Racer5-0-80 COMAU [23]. 56
8.3 MoveIt pipeline: the framework is waiting for the goal state in

order to plan the collision-free path. 57
8.4 Add_link service structure. 59
8.5 Tesseract_planning service structure. 60

9.1 Start and goal states for the table avoidance. 61

10.1 Initial pose. 63
10.2 Pick pose. 63
10.3 Pose 0.01m above the final one. 63
10.4 Final pose or Place pose. 63
10.5 Four main Racer5-0-80 poses for the Pick & Place. 63

Collision-free path planning for industrial robot applications 79/84

LIST OF FIGURES

11.1 Initial pose. 66
11.2 Pick pose. 66
11.3 Pose 0.01m above the final one. 66
11.4 Final pose or Place pose. 66
11.5 Four main Racer5-0-80 poses for the Pick & Place with obstacle

avoidance. 66

12.1 Safe distances comparison. 69

13.1 Robot NJ-370-2.7 COMAU [20]. 71
13.2 Robot digital outputs and relative gripper change management. 73

Collision-free path planning for industrial robot applications 80/84

List of Tables

8.1 Box avoidance: OMPL on MoveIt and Tesseract comparisons. 55

9.1 Table avoidance: OMPL and TrajOpt comparisons. 62

10.1 Pick&Place: OMPL and TrajOpt comparisons. 64

11.1 Pick&Place with obstacle avoidance: OMPL and TrajOpt com-
parisons. 67

12.1 TrajOpt safe distances comparison. 69

Collision-free path planning for industrial robot applications 81/84

Bibliography

[1] R. Bohlin and L.E Kavraki. “Path Planning Using Lazy PRM”. In:
IEEE, International Conference on Robotics and Automation (2000)
(cit. on p. 29).

[2] H. Choset and et al. "Probabilistic Roadmap Path Planning". url: http:
//www.cs.columbia.edu/~allen/F15/NOTES/Probabilisticpath.
pdf (cit. on pp. 23, 26).

[3] H. Choset and et al. "Robotic Motion Planning: Sample-Based Mo-
tion Planning". url: https://www.cs.cmu.edu/~motionplanning/
lecture/Chap7-Prob-Planning_howie.pdf (cit. on pp. 22, 23, 25, 26).

[4] S. Dai and et al. “Fast-reactive probabilistic motion planning for high-
dimensional robots”. In: SAGE (2019) (cit. on p. 30).

[5] S. Dai and et al. “Improving Trajectory Optimization Using a Roadmap
Framework”. In: MIT Open Access Articles (2018) (cit. on pp. 34, 75).

[6] J. Ding and et al. “An improved RRT* algorithm for robot path planning
based on path expansion heuristic sampling”. In: Elsevier (2023) (cit. on
pp. 24, 25, 28).

[7] M. Dobis and et al. “Cartesian Constrained Stochastic Trajectory Opti-
mization for Motion Planning”. In: Applied Sciences, MDPI (2021) (cit.
on pp. 33, 34).

[8] M. Elbanhawi and M. Simic. “Sampling-Based Robot Motion Planning:
A Review”. In: IEEE Access, practical innovations (2014) (cit. on pp. 19,
22, 23, 26, 28).

[9] A. Hofmann and et al. “Reactive Integrated Motion Planning and Ex-
ecution”. In: MIT Open Access Articles, AAAI Press (2015) (cit. on
p. 30).

[10] M. Kalakrishnan and et al. “STOMP: Stochastic Trajectory Opti-
mization for Motion Planning”. In: IEEE International Conference on
Robotics and Automation (2011) (cit. on p. 33).

[11] S. Karaman and et al. “Anytime Motion Planning using the RRT*”. In:
MIT Open Access Articles (2011) (cit. on p. 29).

Collision-free path planning for industrial robot applications 82/84

http://www.cs.columbia.edu/~allen/F15/NOTES/Probabilisticpath.pdf
http://www.cs.columbia.edu/~allen/F15/NOTES/Probabilisticpath.pdf
http://www.cs.columbia.edu/~allen/F15/NOTES/Probabilisticpath.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Chap7-Prob-Planning_howie.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Chap7-Prob-Planning_howie.pdf

BIBLIOGRAPHY

[12] S. Karaman and E. Frazzoli. “Sampling-based algorithms for optimal
motion planning”. In: ijrr, The International Journal of Robotics Re-
search (2011) (cit. on pp. 23, 26, 28).

[13] L.E. Kavraki and et al. “Probabilistic Roadmaps for Path Planning in
High-Dimensional Configurational Spaces”. In: IEEE, Transactions on
Robotics and Automation (1996) (cit. on p. 26).

[14] J. Kuffner and S. LaValle. “RRT-connect: An Efficient Approach to
Single-Query Path Planning”. In: IEEE, International Conference on
Robotics and Automation (2000) (cit. on p. 25).

[15] X. Li and et al. “Smooth and collision-free trajectory generation in clut-
tered environments using cubic B-spline form”. In: Elsevier (2022) (cit.
on p. 38).

[16] S. Liu and et al. “Benchmarking and optimization of robot motion plan-
ning with motion planning pipeline”. In: The International Journal of
Advanced Manufacturing Technology (2022) (cit. on pp. 32, 34, 39).

[17] Y. Liu and et al. “Creating Better Collision-Free Trajectory for Robot
Motion Planning by Linearly Constrained Quadratic Programming”. In:
frontiers in Neurorobotics (2021) (cit. on p. 37).

[18] R. Luna and et al. “Anytime Solution Optimization for Sampling-Based
Motion Planning”. In: IEEE International Conference on Robotics and
Automation (2013) (cit. on pp. 19, 39).

[19] MoveIt! https://moveit.ros.org/ (cit. on pp. 46, 47, 49).
[20] NJ-370-2.7 COMAU. https://www.comau.com/it/competencies/

robotics-automation/robot-team/nj-370-2-7/ (cit. on pp. 70, 71).
[21] “Open Motion Planning Library: A Primer”. In: Kavraki Lab, Rice Uni-

versity (2021) (cit. on pp. 23, 25, 26, 28).
[22] J. Pan and D. Manocha. “Efficient Configuration Space Construction

and Optimization for Motion Planning”. In: Engineering, Volume 1
(2015) (cit. on pp. 17, 18).

[23] Racer5-0-80 COMAU. https://www.comau.com/it/competencies/
robotics-automation/robot-team/racer-5-0-80/ (cit. on pp. 55,
56).

[24] N. Ratliff and et al. “CHOMP: Gradient Optimization Techniques for Ef-
ficient Motion Planning”. In: IEEE International Conference on Robotics
and Automation (2009) (cit. on pp. 19, 32).

Collision-free path planning for industrial robot applications 83/84

https://moveit.ros.org/
https://www.comau.com/it/competencies/robotics-automation/robot-team/nj-370-2-7/
https://www.comau.com/it/competencies/robotics-automation/robot-team/nj-370-2-7/
https://www.comau.com/it/competencies/robotics-automation/robot-team/racer-5-0-80/
https://www.comau.com/it/competencies/robotics-automation/robot-team/racer-5-0-80/

BIBLIOGRAPHY

[25] A. Rizzo. “Kinematic chains”. In: Robotics course, Mechatronics Engi-
neering, Politecnico di Torino (2021/2022) (cit. on p. 8).

[26] C. Ronald. "Principles of Robot Motion". The MIT Press, Cambridge,
Massachusetts, 2005 (cit. on pp. 15–17, 20–23, 26, 29).

[27] ROS. https://www.ros.org/ (cit. on p. 40).
[28] ROS Action. https://foxglove.dev/blog/creating-ros1-actions

(cit. on pp. 43, 44).
[29] ROS Service. https://automaticaddison.com/how-to-create-a-

service-in-ros-noetic/ (cit. on pp. 42, 43).
[30] ROS Topic. https : / / automaticaddison . com / create - a - hello -

world-project-in-ros/ (cit. on p. 42).
[31] J. Schulman and et al. “Finding Locally Optimal, Collision-Free Tra-

jectories with Sequential Convex Optimization”. In: The International
Journal of Advanced Manufacturing Technology (2013) (cit. on pp. 34,
36).

[32] J. Schulman and et al. “Motion planning with sequential convex opti-
mization and convex collision checking”. In: UC Berkeley and the Inter-
national Journal of Robotics Research, 33(9) (2014) (cit. on p. 34).

[33] B. Siciliano and et al. "Robotics: Modelling, Planning and Control".
Springer, 2009 (cit. on pp. 9, 11–13, 15–17, 22, 26).

[34] Tesseract. https://tesseract-docs.readthedocs.io/_/downloads/
en/latest/pdf/ (cit. on pp. 51, 52).

[35] F. Villon. "I robot Comau quali acceleratori di competitività presso Mod-
ula". url: https://www.tecnelab.it/approfondimenti/speciali/
i-robot-comau-quali-acceleratori-di-competitivita-presso-
modula (cit. on p. 5).

[36] B. Wang, J. Li, and M. Meng. “Kinematic Constrained Bi-directional
RRT with Efficient Branch Pruning for robot path planning”. In: Else-
vier (2021) (cit. on p. 26).

Collision-free path planning for industrial robot applications 84/84

https://www.ros.org/
https://foxglove.dev/blog/creating-ros1-actions
https://automaticaddison.com/how-to-create-a-service-in-ros-noetic/
https://automaticaddison.com/how-to-create-a-service-in-ros-noetic/
https://automaticaddison.com/create-a-hello-world-project-in-ros/
https://automaticaddison.com/create-a-hello-world-project-in-ros/
https://tesseract-docs.readthedocs.io/_/downloads/en/latest/pdf/
https://tesseract-docs.readthedocs.io/_/downloads/en/latest/pdf/
https://www.tecnelab.it/approfondimenti/speciali/i-robot-comau-quali-acceleratori-di-competitivita-presso-modula
https://www.tecnelab.it/approfondimenti/speciali/i-robot-comau-quali-acceleratori-di-competitivita-presso-modula
https://www.tecnelab.it/approfondimenti/speciali/i-robot-comau-quali-acceleratori-di-competitivita-presso-modula

	Introduction
	Background on industrial robotics
	General notions on kinematics
	Direct kinematics
	Inverse kinematics
	Differential kinematics

	Motion Planning
	Configuration space
	Collision-free motion planning

	Motion planning algorithms
	Graph search-based algorithms
	Sampling-based algorithms
	RRT algorithm
	RRT connect and bi-directional RRT algorithms
	PRM algorithm
	RRT* and PRM* algorithms
	SBL algorithm
	Deterministic Chekhov algorithm

	Optimized-based algorithms
	CHOMP algorithm
	STOMP algorithm
	TrajOpt algorithm
	LCQP algorithm
	B-spline algorithm

	Post-processing algorithms

	Simulation framework
	ROS
	ROS nodes and topics
	ROS services
	ROS actions
	ROS RViz
	Roboshop

	MoveIt
	Motion planning
	OMPL

	Planning scene
	3D perception

	Collision checking

	Tesseract
	Motion planning
	Planning scene
	Collision checking

	Experimental procedure
	Racer5-0-80
	MoveIt pipeline
	Tesseract pipeline
	Add_link service
	Tesseract_planning service

	Benchmark 1: table avoidance
	Results

	Benchmark 2: Pick & Place
	Results

	Benchmark 3: Pick & Place with obstacle avoidance
	Results

	Benchmark 4: TrajOpt safe distance
	Results

	Gripper change management
	NJ-370-2.7
	Gripper change management pipeline

	Conclusions
	Future works
	Acknowledgements
	Acronyms
	List of Figures
	List of Tables
	Bibliography

