
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Academic Year 2022-2023

Master’s Thesis

Evaluation of SCION for User-driven
Path Control: a Usability Study

Supervisors Candidate
Prof. Paola GROSSO Antonio BATTIPAGLIA
Prof. Fulvio VALENZA
M.Sc. Leonardo BOLDRINI

«E allora prendi e parti,
insegui i sogni

spacca i mondi, lascia indietro la mania
lascia indietro la follia,

le vecchie bare ed i ricordi;
parti a caccia di farfalle da far nascere nel cuore,

cerca nuvole lontane
che dipingano l’amore.»

Table of Contents

List of Tables iv

List of Figures v

Acronyms viii

1 Introduction 1
1.1 INDIS 2023 . 2

2 Background 3
2.1 The UPIN Framework . 3

2.1.1 UPIN Framework Components 4
2.2 SCION . 5

2.2.1 Function Properties . 5
2.2.2 Scalability . 7
2.2.3 Security Properties . 7

2.3 Exploring the Challenge . 8
2.3.1 UPIN and SCION: Intersection 9
2.3.2 Performance Evaluation: Navigating Latency, Bandwidth,

and Data Loss . 9

3 Experimental Setup 11
3.1 SCIONLab: A Next-generation Testbed 11

3.1.1 Architecture . 12
3.1.2 Initialization and Configuration 13
3.1.3 Available Applications . 15

4 Software Architecture 17
4.1 Overview . 17
4.2 Technical Requirements . 18

4.2.1 Scalability . 19

ii

4.2.2 Fault Tolerance . 19
4.2.3 Portability . 20
4.2.4 Security . 20

4.3 Design Choices . 21
4.3.1 Database Design . 21
4.3.2 Technical Requirements Design 23

4.4 Implementation . 25
4.4.1 Test-Suite Units and Interactions 25

5 Path Selection 34
5.1 Path Analysis and Result Presentation 36

5.1.1 Latency Assessment . 36
5.1.2 Bandwidth Assessment . 42
5.1.3 Packet Loss Assessment . 45

5.2 Considerations . 47

6 Path Recommendation 48
6.1 Path Recommendation: Architecture 49

6.1.1 Technologies Involved . 50
6.2 Implementation . 52

6.2.1 Front-end components . 52
6.2.2 Back-end APIs . 60
6.2.3 Concluding Remarks . 65

7 Conclusion 66
7.1 Future Works . 67

A Experimental Setup 68

B Software Architecture 70

C Path Selection 74

D Path Recommendation 77

Bibliography 89

iii

List of Tables

2.1 UPIN components and their corresponding fulfillments.[3] 4

iv

List of Figures

3.1 SCIONLab Topology1: in light orange there are Core ASes; Non-Core
ASes are white colored; Attachment Points are green. 12

3.2 SCIONLab Partial Topology - Attachment Points Used 13
3.3 Partial Topology - Links with Degradation 14
3.4 Partial topology (ISD 17) with new attached ASes, blue-colored. . . 15

4.1 Overview of the software architecture: the client interacts with each
server to gather information about paths and then stores them in
the database . 18

4.2 SCIONLab Topology: in red all the available ASes which contain
servers that can be fully tested. Bold numbers over them state the
amount of servers housed by that AS. 22

4.3 Database Schema presenting, from left-to-right, collection of paths’
statistics, collection of each path for each server and servers consid-
ered for the assessment . 23

5.1 Tested Destinations in SCIONLab Topology. Selected servers are
marked with a blue star, while all the servers available are red colored. 35

5.2 Server Reachability from MY_AS#1. In blue is displayed the number
of destinations reachable requiring minimum a certain hop count. . 35

5.3 Whisker plot representation2 . 37
5.4 Average Latency Values measured for each path of destination

16-ffaa:0:1002,[172.31.43.7] (AWS - Ireland). Box plots are
split into 6 hops paths length, in red, and 7 hops paths length, in
purple. 38

5.5 Paths 1_10 and 1_15. Ohio (USA) AS 16-ffaa:0:1004 is high-
lighted with a red rectangle. 39

5.6 Paths 1_9 and 1_14. Singapore AS 16-ffaa:0:1007 is highlighted
with a red rectangle. 39

v

5.7 Average Latency Values measured for each path of destination
16-ffaa:0:1007,[171.31.19.144] (AWS - US N. Virginia). Box
plots are split into 7 hops paths length, in red, and 8 hops paths
length, in purple. 40

5.8 USA Map with Virginia and Oregon marked with a dotted red line. 40
5.9 Average latency for each ISD set grouped by hop count. On the left

side, the plot includes all the measurements. On the right side, long
distance paths have been excluded from the second ISDs set. 41

5.10 Average bandwidth values for each path, requiring a bandwidth of
12Mbps from and to a Germany Server (address on the top). On the
left side there are the upstream measurements, while on the right
side the downstream ones. 43

5.11 Average bandwidth values for each path, requiring a bandwidth of
12Mbps from and to a Korea Server (address on the top). On the
left side there are the upstream measurements, while on the right
side the downstream ones. 43

5.12 Average bandwidth values for each path, requiring a bandwidth of
150Mbps from and to a Germany Server (address on the top). On
the left side there are the upstream measurements, while on the
right side the downstream ones. 44

5.13 Average bandwidth values for each path, requiring a bandwidth of
150Mbps from and to a Korea Server (address on the top). On the
left side there are the upstream measurements, while on the right
side the downstream ones. 44

5.14 Average packet loss percentage for each path of AWS US N. Virginia
AS. Each dot color represents a path and its size the number of
measurements having the same loss ratio. Dots legend is on the
upper right corner. 46

5.15 Average packet loss percentage for each path of AWS Ireland AS.
Each dot color represents a path and its size the number of measure-
ments having the same loss ratio. Dots legend is on the upper right
corner. 47

6.1 Path Recommendation System Architecture: A 3-Tier Architec-
ture3where the client initiates a request, the server processes it by
interacting with a database, and provides the corresponding response. 50

6.2 The front-end view of the Path Recommendation System upon
opening, showcasing the initial list of paths retrieved from the
database before any filtering is applied. 53

6.3 Path Recommendation Form: A user interface enabling users to
filter the path list based on various criteria. 57

vi

6.4 Modal for copying traceroute command with path-specific details. 59

A.1 SCION Topology - Landscape version of 3.1 69

B.1 SCION Topology with Available Servers - Landscape version of 4.2 . 73

C.1 USA Map enhancing the distance between Virginia and Oregon,
both marked with a dotted red line. - Landscape version of 5.8 . . . 74

C.2 Average Latency Values measured for each path of destination 16-
ffaa:0:1007,[171.31.19.144] (AWS - US N. Virginia). - Landscape
version of 5.7 . 75

C.3 Comparison of Average Latency between ISD Sets, with and without
Long-Distance Paths. - Landscape version of 5.9 76

D.1 Front-end view of the Path Recommendation System upon opening,
displaying retrieved paths from the Database. - Landscape version
of 6.2 . 83

D.2 Path Recommendation Form: A user interface enabling users to
filter the path list based on: destination, latency, bandwidth, loss,
number of hops and ISDs to avoid. 84

D.3 Modal Window appearing in response to user interaction with a path.
It facilitates the copying of the traceroute command, complete with
pre-defined information specific to the selected path. - Landscape
version of 6.4 . 85

vii

Acronyms

AD
Autonomous Domain

AIP
Accountable IP

AP
Attachment Point

AS
Autonomous System

ASN
Autonomous System Number

DoS
Denial-of-Service

D-DoS
Distributed Denial-of-Service

ISD
Isolated Domain

ISP
Internet Service Provider

ML
Machine Learning

viii

PKC
Public Key Certificate

SCION
Scalability, Control, and Isolation On Next-Generation Networks

SCMP
SCION Control Message Protocol

TCB
Trusted Computing Base

TD
Trust Domains

UPIN
User-driven Path verification and control in Inter-domain Networks

VM
Virtual Machine

ix

Chapter 1

Introduction

Citizens and governments are increasingly reliant on digital technologies, which
have become deeply ingrained in the fabric of society [1]. These technologies,
being built on the conventional Internet architecture, inherit some of its inherent
limitations. These limitations encompass the lack of user control over the network
and, consequently, a diminishing trust in digital systems [2]. The Responsible
Internet paradigm strives to address these challenges by enhancing the transparency,
accountability, and controllability of the Internet [2].
The UPIN (User-driven Path verification and control in Inter-domain Networks)
project, rooted in the principles of the Responsible Internet, introduces a framework
that empowers users to manage network behavior [3]. This initiative aims to
seamlessly integrate with the existing Internet architecture while granting users a
degree of control over network traffic. Achieving user control over network traffic,
however, necessitates a fundamental shift in network architecture, distinct from
the conventional approaches in current use.
SCION [4] (Scalability, Control, and Isolation On Next-Generation Networks) is
an Internet architecture designed to address some of these issues by providing
end-to-end users with route control, failure isolation, and explicit trust information.
SCION mitigates the challenges that the Responsible Internet seeks to resolve and
inherently offers robust security and resilience due to its sound design principles.
SCION achieves this through the concept of Autonomous Systems (ASes) that are
divided into autonomous routing sub-planes known as trust domains. These trust
domains provide rich connectivity and ample choice of routes, thereby ensuring
natural isolation of routing failures and preventing manual misconfigurations.
Importantly, from our research perspective, trust domains empower end-users with
substantial control over inbound and outbound traffic, establish meaningful and
enforceable trust, and facilitate scalable routing updates.
This research endeavors to explore the potential and constraints of relying on a
SCION network to offer users control over how their traffic traverses the network.

1

Introduction

For user-driven path control to become a reality, understanding the characteristics
of underlying paths is imperative. We delve into aspects such as the impact of
user-selected paths with the lowest latency to a specific destination on available
bandwidth within a SCION network. This examination allows us to gauge the
performance implications of shifting network control from operators to end-users.
The research unfolds by providing an insight into an existing SCION network and
its capabilities, including the applications that run on it and how different paths
are influenced by latency, bandwidth, and packet loss. We subsequently introduce
the software that leverages these applications to assess the performance of available
paths within the SCION network. This data is then stored in a database that
can offer extensive insights into path characteristics. The database serves as a
resource to provide users with optimal path selections based on performance metrics,
geographical placement of network components, and the operators responsible
for them. Specifically, this goal is achieved by providing a user with a path-
recommendation system accessible through a UI.
The remaining part of this thesis is structured as follows. Chapter 2 elucidates the
concepts of SCION and the UPIN project, equipping the reader with a general
understanding of the state of the art. Furthermore, it offers an in-depth exploration
of the problem and the scope of this work. Chapter 3 provides an overview of the
experimental setup and its capabilities. In Chapter 4, we delve into the design
considerations and the software implementation, which subsequently pave the way
for a detailed exploration of the path selection process and performance analysis,
as expounded in Chapter 5. Chapter 6 discusses the path recommendation system,
and finally, Chapter 7 presents the conclusion of this work.

1.1 INDIS 2023
This work has been condensed in a research article accepted for the INDIS 2023
Workshop in Super Computing 2023 Conference held in Denver, Colorado. The
paper, presented on the 12th of November 2023 by Leonardo Boldrini, is a collabo-
rative effort by Antonio Battipaglia, Leonardo Boldrini, Ralph Konig, and Paola
Grosso. The paper can be accessed at: Evaluation of SCION for User-driven
Path Control: a Usability Study [5].

2

https://doi.org/10.1145/3624062.3624592
https://doi.org/10.1145/3624062.3624592

Chapter 2

Background

Before diving into the core of this work, we need to discuss the state-of-the-art, what
we relied on and what was the challenge to address. We begin with Responsible
Internet, a paradigm encapsulating the ethical side of internet infrastructure [2].
Transitioning to UPIN, a framework that aims to fulfill new trust requirements
for a Internet user [3]. We explore how it empowers users in determining data
paths across inter-domain networks. The architectural backbone of our exploration,
SCION [4], takes center stage. Its scalability, control, and isolation principles
redefine network dynamics. This chapter serves as a foundational tapestry, weaving
Responsible Internet, UPIN, and SCION into the fabric of our research narrative.

2.1 The UPIN Framework
To contextualize the UPIN framework, we mention the Responsible Internet
paradigm. This novel security framework is engineered to grant users unprece-
dented control over the network, encompassing metadata about the network’s
structure and operation, as well as the transportation of their data [2]. The existing
internet infrastructure, fraught with inherent problems and limitations, presents
challenges in transparency and control over data routing, rooted in its original
design. Significant research has aimed to transcend these constraints, yielding both
revolutionary approaches like RINA [6] and evolutionary solutions like SCION.
However, since revolutionary approaches demand a complete redesign of the network
architecture, their feasibility is hindered by the global dependence on the current
internet infrastructure.
In this context, the escalating demand for a trustworthy internet, especially to
support critical services such as smart energy grids and intelligent urban transport
systems, is the backdrop against which the UPIN framework emerges [3]. This
framework is a significant step forward, aiming to make inter-domain networks

3

Background

more transparent, accountable, and controllable. With the growing need for im-
proved internet security, UPIN brings a fresh approach to how users verify and
control paths in these networks. Unlike revolutionary approaches, UPIN charts a
feasible evolutionary path, presenting a framework that empowers users to define
network behavior. In UPIN, users become the drivers of communication, specifying
requirements ranging from simple Key Performance Indicators (KPIs) to advanced
scenarios such as avoiding specific regions or jurisdictions. Future internet applica-
tions, especially those in critical sectors like smart energy grids, demand heightened
levels of trust from the internet infrastructure.

2.1.1 UPIN Framework Components

The UPIN framework comprises several components, each tailored to meet specific
requirements related to transparency, accountability, and controllability. Table 2.1
provides a comprehensive overview of these key UPIN components, outlining their
distinct roles.

Component Transparency Accountability Controllability
Domain Explorer ✓ ✓ ✓
Path Controller × × ✓

Path Tracer ✓ ✓ ×
Path Verifier ✓ ✓ ×

Frontend ✓ ✓ ✓

Table 2.1: UPIN components and their corresponding fulfillments.[3]

The core concept of the UPIN architecture revolves around UPIN-enabled domains,
each implementing specific UPIN components: Domain Explorer, Path Controller,
Path Tracer, Path Verifier, and Frontend. The framework doesn’t mandate a
specific data plane technology, allowing flexibility in implementation, with domains
supporting different technologies such as Segment Routing or SCION. UPIN-enabled
domains can coexist seamlessly with non-UPIN domains, enabling operations only
within UPIN-enabled domains along the path.
The research described in this work will focus on the Path Controller component.
It takes on the responsibility of establishing the right forwarding rules according to
user preferences and dispatching them to all routers within its domain. It operates
locally, meaning it influences only the nodes within its own domain, not those
in other domains. In section 2.3 we will explore the research question that puts
together the UPIN framework and SCION architecture.

4

Background

2.2 SCION
SCION is a modern Internet architecture designed with a focus on giving end users
solid control over managing routes, handling failures, and understanding trust in
their end-to-end communications. This thoughtful design ensures that users have
significant influence over both incoming and outgoing traffic. Built to thrive in
challenging situations, SCION emphasizes reliability, transparent trust, and using
multiple routes across different domains. Its design inherently includes strong
resilience and security, following sound principles without relying on additional
security patches. Moreover, SCION operates on the idea that only a few top-tier
Internet service providers (ISPs) within a trusted domain are needed to ensure
reliable end-to-end communication. This approach leads to a minimal Trusted
Computing Base (TCB), a key strength of SCION. [5].

2.2.1 Function Properties
SCION operates on three foundational principles: isolating domains, allowing
mutual control over path selection for both endpoints and intermediate ISPs, and
establishing explicit trust for end-to-end communication [4]. Let’s explore them:

• Domain-based Isolation: The choice of dividing the control plane into
autonomous and independent domains ensures isolation, protecting routing
in one domain from malicious activities in others. This feature provides
security and scalability while maintaining reachability and path diversity
across domains.

• Mutually Controllable Path Selection: SCION enables joint path selec-
tion between source and destination, significantly enhancing the controllability
of routes from both the endpoints. This is done without creating conflicts
with routing policies of ISPs.

• Explicit Trust and Small TCB for End-to-End Communication:
Through the separation of mutually untrusting entities into different domains,
each of them gains the autonomy to designate a unified root of trust (for
instance, selecting from a subset of tier-1 ISPs) to foster trust among its
Autonomous Domains (ADs). This grants endpoints the authority to con-
sciously determine whom to trust for establishing dependable end-to-end
communication. Importantly, ADs lacking trust in other domains hold no
sway over an endpoint’s path discovery and route computation. This configu-
ration culminates in a compact TCB tailored for end-to-end communication
reliability.

5

Background

In the following paragraphs we will explore the fundamental functioning of SCION,
breaking down its two main plane: Control Plane and Data Plane.

Control Plane

In SCION, Autonomous Domains establish communication paths using up-paths
and down-paths for sending and receiving packets with Trust Domains (TD) Cores.
The construction mimics a path vector, starting with TD Core ADs transmitting
one-hop paths to their 1-hop customer ADs through path construction beacons.
Customer ADs add themselves to the path, forwarding it to their customers and
peers, creating a cascading effect. Endpoint ADs then choose from the paths
received from providers or peers to create their own K (preferably maximally
disjoint) up-paths towards the TD Core and down-paths for receiving packets.
Once the path construction has come to an end, the Lookup operation is involved.
Endpoint ADs share their chosen down-paths on the TD’s Path Server, a service
located in the TD Core. This server is queried by local and foreign ADs for
routing information. SCION employs Accountable IP (AIP) for host and AD
addressing, where each address corresponds to a public key. The TD Core issues a
TD membership certificate for each AD address. When performing a name lookup,
entering a human-readable destination name provides both the AIP address of the
destination host and AD, along with the down-paths specific to the destination
AD at the AD level [4].

Data Plane

In the process of forming a complete end-to-end communication path to a destination
in SCION, the source AD undertakes path selection. Initially, it selects one of its up-
paths to reach the TD Core and then queries the destination’s down-paths through a
name or address lookup. The source AD then picks one of the queried destination’s
down-paths to construct the entire communication path. For simplicity, the gateway
in an endpoint AD typically makes the default path selection decision on behalf of
the hosts in that AD, though a host can also negotiate with its provider AD for
customized path selection policies.
In route joining, the source AD examines the paths to identify common ancestor
ADs before combining one of its up-paths with one of the destination AD’s down-
paths. This process aims to find a “shortcut” path without traversing the TD core,
enhancing efficiency.
Subsequently, during forwarding, when the source AD constructs the complete
end-to-end communication path, each packet contains “opaque fields” generated
by the transit ADs during path construction. These fields encode forwarding path
information, specifying ingress and egress points at each transit AD along the
end-to-end path. Within each AD, any internal routing protocol can be used to

6

Background

determine a path from ingress to egress. The destination can either reverse the
embedded path or query the source AD’s Path Server for alternative paths to reach
the source. Consequently, in SCION, packet forwarding between ADs eliminates
the need for routing and forwarding tables [4].

2.2.2 Scalability
SCION attains routing scalability by confining route dissemination and computation
within each Trust Domain independently. Specifically, only the TD Core initiates
routing messages, namely the path construction beacons, and these messages
circulate solely within the boundaries of the TD. This is in contrast to path
vector or link-state protocols where any node in the network can generate routing
updates that propagate throughout the entire network. The approach of limiting
routing messages to the TD Core promotes scalability, permitting the TD Core
to proactively deploy frequent path construction beacons. This proactive strategy
ensures that each Autonomous Domain can acquire up-to-date path information
within the TD.

2.2.3 Security Properties
Given the interesting properties of SCION, we might be concerned about its security
features and how they are achieved. Hence, we will now discuss the most interesting
ones:

• Reflection DoS attacks: In reflection attacks, an attacker manipulates
return addresses to direct unwanted packets from one target (A) to another
(B). Systems like AIP, which allow verifying address ownership, can add a
protocol for authenticating return addresses, but this introduces complexity.
SCION offers inherent protection against reflection attacks by integrating
packet addressing with the traversal path. For instance, if a malicious AD (M)
tries to inject an attack packet to A with a spoofed return path to a legitimate
target AD (B), M would be on the return path itself, nullifying any advantage
gained from the attack.

• Data-Plane Attacks: Malicious routers pose a threat by manipulating or
discarding packets at the data plane, impacting both control messages like
routing updates and data packets. SCION addresses this by providing multiple
path choices to endpoint ADs, enabling them to avoid paths with detected
poor performance. Additionally, each transit AD digitally signs itself into the
path construction beacons, allowing the endpoint AD to identify every entity
on the forwarding path and hold them accountable for potential misbehavior.
Consequently, a malicious router dropping path construction beacons can

7

Background

only disrupt the specific path or link containing it, offering no advantage as
endpoints can choose alternative paths.

• SPOF Elimination: SCION’s use of multiple Trust Domains removes the
necessity for a single authority governing the entire Internet, mitigating
deployment challenges and avoiding a Single Point of Failure (SPOF). For
instance, DNSSec presently relies on a single root of trust for the entire
Internet, whereas SCION employs a distributed approach where each TD
maintains its own root-of-trust authority.

• Prefix (AID/EID) hijacking: SCION provides robust defense against
prefix (AID/EID) hijacking. Each endpoint AD or endhost employs AIP as a
self-certifying address, and their identities are isolated in different TDs, signed
by the respective TD Core. Even if a malicious endpoint in one TD claims the
same AID or EID as another in a different TD, the identifiers are scoped to
their respective TDs, preventing collisions. Additionally, since the malicious
endpoint lacks the private key for the public key used in deriving the AID, it
cannot sign any valid statements for the AD.

• Routing path falsification: In SCION’s path construction, each transit
AD commits to the path construction beacon, signing locally announced links
and preceding path information in an onion fashion. This design prevents a
malicious AD from dropping specific ADs to manipulate the path. Instead,
it can only discard the entire preceding path, prompting endhosts to choose
alternative paths. The use of onion signatures further ensures that a malicious
router cannot extract or splice segments from different paths and cannot
modify previous hops in the path.

To sum up, SCION emerges as a robust Internet architecture, empowering end users
with enhanced control over their communication paths. Its innovative design not
only prioritizes security and reliability but also provides scalability and resilience.
Its ability to offer diverse communication path sets and its strategic approach
to minimizing the Trusted Computing Base make it a promising solution for the
evolving needs of the internet landscape.

2.3 Exploring the Challenge
In our exploration we aim to bridge the aspirations of the UPIN framework with
the architectural principles of SCION. As discussed in section 2.1, the UPIN project
envisions a paradigm shift, putting users at the helm of controlling data paths
within inter-domain networks. This ambitious goal encounters its technological
frontier when interfacing with SCION, a network architecture renowned for its

8

Background

scalability, control, and isolation features.
The UPIN project envisions a simple but thoughtful idea: enabling users to control
how their data moves through inter-domain networks. This aims to establish
a user-focused model where preferences, ranging from basic Key Performance
Indicators (KPIs) to more detailed instructions like avoiding specific regions, direct
the communication paths. This shift marks a departure from conventional models,
putting end-users in the driver’s seat of network communication. Though, it does
not directly provide a specific technology to achieve the path control feature.

2.3.1 UPIN and SCION: Intersection
The intersection of the UPIN framework and the SCION architecture presents
intriguing opportunities. The UPIN components, especially the Path Controller,
are designed to operate within UPIN-enabled domains, steering data paths locally.
Simultaneously, SCION aims to provide the feature of Path Control into Isolated
Domains, prioritizing robust security measures. This intersection not only aligns
with the overarching goals of both UPIN and SCION but also sets the stage for
collaborative advancements in user-driven path control within secure, isolated
network domains. The intricacies of this harmonious integration form a focal point
for our exploration in the upcoming sections. Hence, the research question we want
to answer with the development of this work is:

Can the SCION architecture be suitable for UPIN users?

2.3.2 Performance Evaluation: Navigating Latency, Band-
width, and Data Loss

To answer the previous question, we focused on latency, bandwidth, and data
loss as critical metrics to define efficient paths. SCIONLab [7], an experimental
testbed of the SCION network, becomes our arena for this exploration. Gathering
data from multiple paths, our analysis aims to discern patterns, trade-offs, and
constraints that shape the landscape of user-driven path control in SCION. By
investigating the possibilities and limitations of SCION for user-driven path control,
we lay the foundation for our subsequent research. The research’s emphasis on
performance metrics, database storage of path data, and the query-driven path
selection process informs our approach. As we delve into the complexities of user-
driven path control within the SCION architecture, the synthesis of UPIN’s vision
and SCION’s principles emerges as a focal point of our investigation. Moreover, we
aim to provide a building block for the front-end component (look at table 2.1) of
UPIN framework, with a Path Recommendation System that relies on the data
obtained with the performance evaluation and, which is user accessible.

9

Background

In the next chapters, we will dig deeper into the methodologies, experiments, and
results that illuminate the challenge outlined here. Through this research, we aspire
to contribute not only to the realization of user-driven path control but also to
the broader discourse on the synergy between user-centric frameworks and robust
network architectures.

10

Chapter 3

Experimental Setup

Before diving into the description and analysis of the software architecture, which
characterizes the main component of this work, it is crucial to understand the
underlying environment on top of which all the experiments were conducted and
the software architecture is built.
The environment considered relies on SCIONLab [7], a next-generation testbed.

3.1 SCIONLab: A Next-generation Testbed

Network testbeds have been essential in advancing networking research and enabling
scientific breakthroughs. These ad hoc environments provide researchers with a
controlled platform to conduct experiments and evaluate novel network protocols,
algorithms, and technologies. They are crucial to understand the intricacies of
network behavior and exploring innovative solutions.
However, it is worth noting that the majority of existing testbeds is intended to
experiment current Internet. While this focus has undoubtedly yielded valuable
insights and advancements, there is a growing need to broaden the scope of testbeds
to encompass emerging network paradigms and technologies.
For instance, next-generation networks that support new networking approaches
like path-aware networking, multipath communication or novel security techniques,
require specifically designed testbeds.
As widely discussed in the previous chapter, the next-generation network under
evaluation is SCION [4]. Specifically, the idea is to explore its path-aware feature
and its limitations. For this purpose, SCIONLab has been developed to enlarge
research opportunities and experimentation with SCION.

11

Experimental Setup

3.1.1 Architecture
SCIONLab architecture is designed to provide a fully distributed SCION network
infrastructure, made up by different Autonomous Systems organized in isolated
domains. Users can define their own ASes and connect them to the SCION network,
for running experiments. This global topology’s main goal is to provide a variety
of paths between different ASes to support multipath operations.
It is worth noting that a SCIONLab AS network typically is made up by a single
host, unless differently specified. Simultaneously, it operates control plane services,
border routers, and end host applications, hence in this work we will interchangeably
use “ASes” and “hosts” to refer to network entities.

Figure 3.1: SCIONLab Topology1: in light orange there are Core ASes;
Non-Core ASes are white colored; Attachment Points are green.

Figure 3.1 depicts global SCIONLab topology currently available (we provide a
bigger and clearer picture, in landscape version, of this topology in the Appendix A,
figure A.1). Every node in this topology represents an AS. Each AS is assigned a
globally unique AS number (ASN) and a public/private key pair. This key pair is
certified through the issuance of a public key certificate (PKC).
There are three different types of ASes:

• Core ASes: in the previous picture they are light orange colored. A Core
AS is the root of trust inside the AS, which is the entity that signs PKC of
other ASes in the same ISD.

1Source: https://www.scionlab.org/topology

12

https://www.scionlab.org/topology

Experimental Setup

• Non-core ASes: these are standard components of the SCIONLab infras-
tructure, having no specific role. They are white colored in the picture.

• Attachment points (AP): these are the most interesting components of
SCIONLab because they allow users to attach their own ASes. In this way it is
possible to extend the global topology with the experimenters’ computational
resources. In the picture above 3.1, they are light green colored.

3.1.2 Initialization and Configuration
In order to start experimenting with SCIONLab, we had to define a couple of
ASes to attach at some specific endpoints. Precisely, two ASes were created
through SCIONLab web interface (https://www.scionlab.org/) and attached
to ETH-Hell-AP and ETHZ-AP.

Figure 3.2: SCIONLab Partial Topology - Attachment Points Used

The choice of these attachment points was carefully reasoned, taking into account

13

https://www.scionlab.org/

Experimental Setup

that ETH-HELL-AP provides different link degradation levels, as the figure 3.3
shows. Specifically, for this attachment point there are links with increased latency,
constrained bandwidth, and introduced packet loss. The other attachment point,
ETHZ-AP, was instead selected to test intra-domain communication with the other
AP.

Figure 3.3: Partial Topology - Links with Degradation

Once this configuration phase was completed, a unique ASN was issued, along
with cryptographic keys and public-key certificates. Subsequently, a Vagrant file

14

Experimental Setup

for each of the user controlled ASes was generated to instruct the configuration
of two Virtual Machines (VMs). This file made the setup process lightweight
by automating the installation of SCIONLAB services, relevant packages, and
necessary configurations.
Finally, two fully configured VMs belonging to the global SCIONLab topology were
ready to use.

Figure 3.4: Partial topology (ISD 17) with new attached ASes, blue-colored.

3.1.3 Available Applications
The VM configuration process also installs a predefined set of SCION applications
automatically. Additionally, specific ports are forwarded to the host system to
provide different services, e.g., allowing access to the SCIONLAB AS from an

15

Experimental Setup

external end-host. The SCION apps available are highly relevant to understand
what will be explained in the next chapter [4], therefore a subset of the most used
commands will be presented following:

• scion address: this command returns the relevant SCION address informa-
tion for the local host.

• scion showpaths: it lists available paths between the local and the specified
AS. By default, the list is set to display 10 paths only, it can be extended
using the -m option. Moreover, a really useful feature for this work, is the
–-extended option, which provides additional information for each path (e.g.
MTU, Path Status, Latency info).

• scion ping: it tests connectivity to a remote SCION host using SCMP echo
packets. When the –-count option is enabled, the ping command sends a
specific number of SCMP echo packets and provides a report with correspond-
ing statistics. Furthermore, the real innovation is the –-interactive mode
option, which displays all the available paths for the specified destination
allowing the user to select the desired traffic route.

• scion traceroute: it traces the SCION path to a remote AS using SCMP
traceroute packets. It is particularly useful to test how the latency is affected
link by link after every hop. Even this command makes interactive mode
available.

• scion-bwtestclient: it is the only application presented in this work that is
not installed by default in the VM. Bwtestclient is part of a bigger bandwidth
testing application named bwtester which allows a variety of bandwidth tests
on the SCION network. The application enables specification of the test
duration (up to 10 seconds), the packet size to be used (at least 4 bytes),
the total number of packets that will be sent, and the target bandwidth (e.g.
5,100,?,150Mbps specifies that the packet size is 100 bytes, sent over 5 seconds,
resulting in a bandwidth of 150Mbps. The question mark ? character can
be used as wildcard for any of these parameters, in this case the number of
packets sent. Its value is then computed according to the other parameters.
The parameters for the test in the client-to-server direction are specified with
-cs, and the server-to-client direction with -sc).

The usage of these scion commands will be further analyzed in the next chapter.

16

Chapter 4

Software Architecture

Following the exploration of the experimental setup, mainly of SCIONLab [7], it is
possible to appreciate the software architecture built upon it.
As mentioned in previous chapters, the idea of this work is to assess SCION
architecture’s [4] suitability for a UPIN user [8]. To accomplish this, the most
effective approach is to evaluate the SCION architecture in its designated testbed.
Hence, a test-suite relying upon SCION built-in commands was developed to
perform this evaluation. We will explore its design, implementation and assessment
in this chapter.

4.1 Overview
In the “Background” chapter (2) we have discussed SCION features, especially
in terms of path-awareness and path selection, as well as UPIN users’ use-cases.
With this software architecture we want to assess those aspects and test network
performances such as: latency, bandwidth and packet loss.
The software relies on a 3-tier architecture: there is a client-server interaction
model, along with a database where information are retrieved and stored by the
client. In more detail, the two previously configured ASes in the SCIONLab
network act as clients interacting with a pool of servers. These servers are globally
distributed around the network and belong to different ISDs. The interaction model
is really simple: a client which wants to test paths performances to reach different
destinations, performs the following actions by running the test-suite:

1. Paths Collection: the client needs to gather information about all the
possible paths to reach each destination, so in the first phase it will collect
the list of paths available and their known characteristics.

2. Paths Test Execution: the client has to test, for each of the retrieved paths,

17

Software Architecture

network performances in terms of latency, loss and bandwidth available.

3. Stats Storage: final step is the storage of the previous statistics. One entry
for each path is inserted in the database and contributes to provide samples
for path analysis and evaluation.

Figure 4.1 provides an overview of the software architecture and summarizes all
the steps described above.

Figure 4.1: Overview of the software architecture: the client interacts with each
server to gather information about paths and then stores them in the database

4.2 Technical Requirements
The first step in the development of software was to identify the main technical
requirements in order to properly design the application. Certainly, these require-
ments have been examined considering the software running over a SCION network,
that means a network over which it is possible to perform path selection. In this
section the identified constraints are presented, followed by an explanation of design
choices made to fulfill them.

18

Software Architecture

4.2.1 Scalability
Since the test-suite is based on testing network performances, one of the most
important requirements is scalability, which means the system’s capability to adapt
to a larger workload or user base without compromising performance, responsiveness,
or reliability. In this particular case, scalability is a fundamental aspect that
revolves around the test-suite’s ability to handle a large and ever-growing quantity
of data while maintaining optimal performance and responsiveness. As the test-
suite is designed to constantly perform network measurements and evaluations, it
inevitably generates a significant amount of data. This data includes information
about path performances, network statistics, and other relevant metrics collected
from a multitude of test runs.
The amount of data generated can grow in two different cases:

1. Increasing the number of tests performed per destination: this is the
case in which we run our tests a higher number of times to enlarge the data
set with more samples. Naturally, this is generally performed to improve the
quality of data and perform a better analysis.

2. Increasing the number of destinations under test: we can increase the
number of servers considered during the assessment. This leads to enlarge the
number of paths under test and, subsequently, the amount of data produced
grows with them.

By proactively considering scalability in the test-suite’s design and implementation,
it can confidently handle the dynamic nature of the SCION network, support
ongoing performance evaluations, and accommodate future growth, providing
valuable insights and analysis.

4.2.2 Fault Tolerance
Another aspect to take into account is fault tolerance, that is the ability of the
software to continue functioning properly in the presence of faults or failures. In
our case, we can identify many types of failure:

• Data Loss: since the application is based on retrieving and storing data in a
database, and it relies on a dynamic network, sometimes it may happen that
some data gets lost due to a malfunction in the network or in the software.
The right approach is to try limiting this amount of data.

• Server Failure: as our source is not the only actor in this architecture, it
is not the single point of failure. Destinations can be up or down and in
some cases they could not answer at our requests. They are not under our

19

Software Architecture

control but, on our side, we have to manage missing answers properly, to avoid
deadlocks in our software.

• Error Messages: it can also happen that a server is not down but it provides
a bad response. As in the previous case, we should handle also this kind of
responses.

Fault tolerance is a key point of this architecture since, continuous measurements
require continuous functioning.

4.2.3 Portability
Portability is a feature of a software application that describes how easily it can be
transferred or adapted to different computing environments or platforms without
requiring significant modifications. Our application is intended to be working on
all the SCION-based networks, with minimal modifications required. Portability
problems that may arise are:

• Different Commands Specification: the whole software architecture relies
on the latest SCION built-in commands available in SCIONLab, hence, there
might be updates or previous versions of SCION that may not recognize the
commands used.

• Flexibility to changes in metrics: in the future, a user could desire to
add more metrics for the assessment of a path. These metrics must be easy to
integrate in the software.

Make a software portable is essential to speed its adoption and improvements, but
also to provide a plug-and-play system that requires at most minor changes.

4.2.4 Security
Security plays a crucial role in this architecture, given the multitude of interactions
that could potentially introduce vulnerabilities. Ensuring data integrity and
authentication, managing database access, and safeguarding against Denial-Of-
Service attacks are the baseline for a secure test-suite.
Let us now proceed to a more in-depth examination of these properties:

• Data Authentication and Integrity: As the software conducts measure-
ments across the network and store them in a database, it is crucial to establish
the legitimacy of data and verify whether any tampering has occurred. Up-
holding data authentication and integrity means to address this requirement.

20

Software Architecture

• Database Access Management: Once data authenticity and integrity are
established, it is equally important to perform access control to store, read
and modify them. Only authorized users, following an authentication process,
should be granted these privileges.

• Denial-Of-Service Attacks: The threat of DoS attacks looms large over
systems that require continuous operation, as such attacks have the potential
to disrupt services for considerable periods. The development of a resilient
architecture capable of mitigating these attacks becomes indispensable.

We must consider security into every phase of the development process, starting
from the design stage to avoid undesired consequences and future complications.

4.3 Design Choices
After a deep examination of main technical constraints, we can now delve into
design choices taken to address them. A complete description regarding different
component design and how to achieve properties previously described, will be
discussed in this section.

4.3.1 Database Design
Since the software is based on retrieving and store data efficiently, the first thing
to design was the database and take all the decisions needed to achieve good
performance. At this purpose, the choice fell on a non-relational database (DB)
because of two considerations:

• Massive dataset organization: a non-relational database can easily store
huge quantities of data and query them, since it uses horizontal scaling and
distributed architecture to handle large datasets efficiently. Scale and speed
are crucial advantages of non-relational databases and can be strongly useful
in testing systems, like the one considered here, since the amount of data
produced is massive.

• Flexible database expansion: data is something that can dynamically
change, a non-relational DB can absorb new data points, enrich the existing
database with new levels of granularity and extend previous data. Since the
test-suite is thought to be extensible and metrics to evaluate can change over
time, a non-relational database is the right choice once again.

Among non-relational DBs, MongoDB has been selected for its usability and
performances.

21

Software Architecture

For the sake of clarity, groups of data logically recalling the same concept are named
collections, they hold the same role of tables in a relational database, though in
MongoDB, data structures belonging to the same collection can be heterogeneous.
An entry in a collection, is instead called document.
The designed database is composed of the following collections:

• availableServers: it stores information about servers with which the test-
suite can connect and perform performance tests. This collection was needed in
the SCIONLab topology to exceed the limitation that not all the performances
can be tested for each node. The problem is that it is possible to test bandwidth
only over a subset of the ASes available. Hence, for completeness of testing,
only those destinations for which it was possible to retrieve latency, bandwidth
and loss were considered. Figure 4.2 illustrates the displacement of destination
subsets within our topology (landscape picture in Appendix B, figure B.1).
Notably, as we indicated earlier in subsection 3.1.1, the norm is for each AS
to house only one host. However, in this specific case, certain ASes contain
multiple servers.

Figure 4.2: SCIONLab Topology: in red all the available ASes which contain
servers that can be fully tested. Bold numbers over them state the amount of

servers housed by that AS.

• paths: this collection holds the information gathered for each path to each
destination in availableServers, it includes list of hops but also known charac-
teristics.

• paths_stats: it collects all the statistics gained after the test-suite run but
also further information related to the path (e.g. ISDs traversed, number of
hops..., we will provide further details in the next sections).

22

Software Architecture

The database schema, along with documents’ structure, is provided below (4.3).

Figure 4.3: Database Schema presenting, from left-to-right, collection of paths’
statistics, collection of each path for each server and servers considered for the

assessment

Looking at the previous picture (4.3), it is possible to identify the described
collections. “AvailableServers” collection has 2 fields: server’s source IP address,
along with an id. This identifier is a progressive integer and in our case it can be a
number between 1 and 21, since we only have 21 destinations fully testable in our
topology (4.2). Each “paths” document, instead, has its own identifier (_id), that
is built by combining the server id and a progressive number for the path (e.g. a
path whose id is 2_15 identifies the path 15 of the destination 2). Other fields are
used to describe some known properties about the path. Finally, each document of
“paths_stats” collection has its own identifier built by combining the path identifier
with a timestamp, in order to identify the measurement in time over a specific
path for a specific destination. Other fields are performances related, such as:
average latency, average loss or average bandwidth in upstream and downstream,
considering packets of only 64 bytes or packets of MTU size.

4.3.2 Technical Requirements Design
Some actions have been taken to achieve scalability, fault tolerance, portability,
and security properties. As previously described, the choice of a non-relational
DB can strongly improve scalability in querying and storing operations as well as
in distributing data automatically. In addition, another solution was to reduce
I/O operations’ overhead by preferring multiple insertions of path statistics to
single ones. Naturally, there is a trade-off between fault tolerance and scalability
in terms of insertions. Preferring multiple insertions means also that if a crash
happens all the statistics are lost and not saved. On the other hand saving one

23

Software Architecture

measurement at time decreases performances dramatically and makes the system
less scalable. We decided to insert all the measurements after testing once all the
paths for that destination. In this way, a loss of data can be negligible since one
sample for each path would be lost without unbalancing the number of samples
for each path; this leads to a growth in fault tolerance. At the same time, this
reduces I/O overhead and allows the system to manage an increasing amount of
data, making it resilient to potential overload. Moreover, since nodes can be up
and down and sometimes they might be unreachable, the software architecture was
provided with error handling to reduce crashes and keep the system working with
a dynamic and fallible network.
Regarding portability, the software uses commands available in SCIONLab, there-
fore its usage over a different SCION based network may require a few adjustments
to adapt them, though the whole architecture would mostly be the same. Further-
more, the choice of MongoDB enables effortless modification or addition of metrics,
resulting in a highly extensible and portable system.
In terms of security, many solutions have been designed, though, they are not
implemented yet. The primary focus has been given to:

• Database Access Management: the first thing to constraint is database
access, particularly during the statistics’ saving operation. Restriction is
needed to avoid fake performances injection that may alter analysis and
provide misleading results. A possible way of doing this is the usage of public
key certificates to get write access to the DB.
At the moment of this writing, this feature has not been implemented yet to
make the interactions lightweight. The adoption of a Public Key Infrastructure
(PKI) for db access management is a plan for the future.

• Statistics Authentication and Integrity: similarly, also produced mea-
surements should be authenticated with a PKC to provide data integrity and
authentication. This step is crucial in preventing the possibility of receiving
counterfeit data, even if the database accesses are under control. Since our
architecture relies on SCIONLab commands, we will assume that tampering
protection and data authentication have been managed in those application
development.

• Denial-Of-Service: DoS attacks can be really hard to manage. Fortunately,
SCION’s inherent properties offer some relief by minimizing the likelihood
of DoS attacks. Its separation of control and data planes, along with mes-
sage authentication with asymmetric cryptography, allow rejecting unverified
incoming packets, thwarting DoS attacks effectively.

These solutions, just described, make the system nearly fully compliant to the
specified requirements. Hence, the test-suite is scalable and can easily adapt to

24

Software Architecture

a growing workload in terms of users or data. It guarantees a good level of fault
tolerance, enabling the system to be resilient to server side errors (e.g. servers
overload or malfunction) and limiting data loss. In terms of portability, our
architecture requires minor changes to fully adapt to other SCION networks and is
open to future improvements. Finally, security has been considered during all the
steps of development and by virtue of SCION architecture it is already partially
achieved. On this side, we will work to achieve a higher level that can fully satisfy
our requirements.

4.4 Implementation
With a grasp of the fundamental aspects of the architecture, including its require-
ments and design choices, we have gained the foundational knowledge necessary to
examine its implementation. In this section, we will focus on how the choices taken
in the design phase reflect in the code, hence the most interesting code snippets
will be analyzed. We will get a full understanding of the test-suite fundamental
units and their mutual interaction to achieve the desired functioning.
The described implementation is publicly available at: https://github.com/
MrR0b0t14/SCION-Test-Suite.

4.4.1 Test-Suite Units and Interactions
The test-suite is mainly composed of three components: a shell script and two
python scripts. For the sake of clarity, a shell is a command-line interface that
allows a user to interact with an operating system by typing in commands. A shell
script, on the other hand, is a file containing a series of commands written in a shell
scripting language, which is then executed by the shell interpreter. Shell scripts are
used to automate tasks, perform system operations, and manipulate files and data
using command-line utilities. They are especially useful for automating repetitive
tasks, creating custom workflows, and managing system configurations. These
are the main reasons for which a shell script is suitable for testing purposes and
we have adopted it in our architecture. Precisely, the shell script that we used is
written in Bash (Bourne Again Shell), which is the default shell for most Unix-like
systems, including Linux. Bash scripts are versatile and widely used for various
automation tasks. Similarly, python scripts consist of sequences of instructions or
commands written in the python language. Python is a versatile and widely used
programming language known for its readability and high-level libraries that can
simplify and help in the development process. Hence, a best practice is to write
the main logic of a scripting application in python scripts and execute them from a
shell script.
In summary, our test-suite leverages the combined strengths of shell and Python

25

https://github.com/MrR0b0t14/SCION-Test-Suite
https://github.com/MrR0b0t14/SCION-Test-Suite

Software Architecture

scripting to achieve efficient and flexible testing processes. In the next paragraphs
we will delve deeper in each of these units.

Bash Script

Summing up what we previously explained, the bash script can be seen as a
container or wrapper of the python scripts. It provides a command line interface
(CLI) to the user and execute other units to test each path and store the result.
From the CLI, the user specifies the execution parameters and options necessary
to define the behavior of the application at run-time.
We can observe three main parameters:

• <iterations>: it is an integer that specifies the number of times that tests
must be executed for each path. Differently from the other arguments, this one
is required and must be defined at execution time. This value is propagated
to the run_tests.py script.

• –-skip: this is an optional argument and can be specified to bypass the
collection of paths to each destination and speed up the test execution. Its
usage is meaningful only under two conditions: first, paths must have been
collected at least once, and second, they must remain unchanged since the last
collection. Its specification without meeting both of these conditions leads to
either no results or inconsistent measurements, along with potential errors for
those paths that have been disused.

• –-some_only: it is another parameter useful to accelerate testing. Its appli-
cation constraints the test execution to only the first destination. Therefore,
all the paths of the first destination in the availableServers collection will
be tested <iterations> times.

• -h, –-help: as in any CLI it displays the “help message”, explaining briefly
all the parameters and the available options. By specifying this option, the
application will not run and will discard all the other parameters and options.

This script, known as test_suite.sh, is located in the root directory of our
repository (�). An example of its usage could be the following:

./ test_suite .sh 100 --skip

The result will be the execution of the tests, for each path available, 100 times and
skipping the path collection phase.
For a deeper comprehension, let’s briefly examine how the shell script works.
The initial step involves checking for the presence of the help option, given its
higher priority. Next, we need to account for all potential combinations (e.g.,

26

https://github.com/MrR0b0t14/SCION-Test-Suite

Software Architecture

both –-skip and –-some_only, only one of them, or none). This is achieved
using a series of if statements that covers all possible scenarios. In each case, two
primary actions are executed: first, the collection of paths through the invocation
of the collect_paths.py script, followed by the execution of tests using the
run_tests.py script.
Below, we provide a listing of the entire code already explained.

1 #!/ bin/bash
2 iterations =$1
3 args="$@"
4

5 display_help_info () {
6 echo "Help information :"
7 echo "Usage: ./ test_suite .sh <iterations > [options]"
8 echo " Arguments :"
9 echo " -h, --help: Display help information "

10 echo " <iterations >: Number of iterations to run
the test suite"

11 echo " --skip: Skip the path collection and run the
test suite (optional but if present , MUST BE after <
iterations >)"

12 echo " --some_only : With this , the test suite will
be run for maximum 2 paths for each destination (
optional but if present , MUST BE after <iterations >)"

13 }
14

15 # Iterate through the arguments
16 for arg in $args; do
17 # Check if the argument is ‘--help ’
18 if [["$arg" == "--help" || "$arg" == "-h"]]; then
19 # Display help information
20 display_help_info
21 exit 0
22 fi
23 done
24 if ! [[$1 =~ ^[0 -9]+$]]; then
25 echo " Invalid iterations argument . Argument is not a

digit."
26 display_help_info
27 else
28 if [-z " $iterations "]; then

27

Software Architecture

29 echo "Please provide the iterations number as an
argument ."

30 # Display help information
31 display_help_info
32 exit 1
33 fi
34

35 for arg in $args; do
36 # Check if the argument is ‘--skip ’
37 if [["$arg" == "--skip"]]; then
38 echo " Skipping the path collection ..."
39 for arg in $args; do
40 # Check if the argument is ‘--some_only ’
41 if [["$arg" == "--some_only "]]; then
42 echo " Running the test suite for

maximum 2 paths for each destination ..."
43 python3 Tests/ run_test .py -n $1 --

some_only
44 exit 0
45 fi
46 done
47 echo " Running the test suite ..."
48 python3 Tests/ run_test .py -n $1
49 exit 0
50 fi
51 done
52

53 # Collect the paths
54 echo " Collecting all the paths ..."
55 python3 collect_paths .py
56

57 for arg in $args; do
58 # Check if the argument is ‘--some_only ’
59 if [["$arg" == "--some_only "]]; then
60 echo " Running the test suite for only 1

destination ..."
61 python3 Tests/ run_test .py -n $1 --some_only
62 exit 0
63 fi
64 done
65

28

Software Architecture

66 echo " Running the test suite ..."
67 python3 Tests/ run_test .py -n $1
68 exit 0
69 fi

Paths Collection Script

One of the two sub-units of the bash script is the collect_paths.py component.
It serves as the first internal script with the purpose of gathering information
about all the paths available to reach each destination. The user does not interface
directly with it, since the only part visible is the external wrapper. Even if its main
role is to discover paths, it also performs other operations like data pre-processing,
data insertion and deletion. Let’s discuss these elements:

• Paths Collection: clearly, the main goal of this script is to discover and
retrieve paths information to reach the desired destinations stored in the
availableServers collection. Hence, the initial step involves querying the
database and collect the set of destinations to test. For each of them the
application spawns a sub-process that runs the SCION command:

scion showpaths ---extended -m 40

This command provides a maximum of 40 paths for each destination, ranked
by hop count, along with all their details: hops predicates, MTU, path status
and minimum latency expected over the path. From this output, we have
decided to retain only paths with a number of hops at most equal to the
minimum required plus one. This selection strategy is aimed at conserving
time by excluding paths that are overly lengthy and fail to meet our latency
criteria, we will deeply discuss latency in sub-section 5.1.1.
The following snippet of code is a portion of the script, it describes the
sub-process execution and the path filtering, a full version of this function is
provided in the Appendix B with the listing B.1.

1 def path_info_building (server):
2 # execute scion showpaths command
3 cmd = f"scion showpaths {

server_destination_address_sp } --extended -m 40"
4

5 proc = subprocess .Popen(cmd , shell=True , stdout =
subprocess .PIPE , stdin= subprocess .PIPE)

6

7 # Read the output of the command and store it in
a list

29

Software Architecture

8 output = []
9 dirty_path_info = []

10 hops_number = 0
11

12 min_hops = 2000
13 while True:
14 line = proc.stdout. readline ()
15 paths = re.match(r"\d+ Hops:", line.decode(’

utf -8’).rstrip ())
16 if paths:
17 hops_number = paths.group ().split(" ")[0]
18 if int(hops_number) < min_hops :
19 min_hops = min(min_hops , int(

hops_number))
20 print(" Minimum Hops: " + str(min_hops

))
21 paths = False
22 if not line or int(hops_number) > min_hops +1:
23 break
24 output.append(line.decode(’utf -8’).rstrip ())
25

• Data Pre-processing: this step is crucial to clean data and change their
format to a suitable one. The output of the showpaths differs from what is
expected as input for the testing commands. Precisely, the syntax of hop
predicates interfaces varies, requiring a parsing operation before storing the
paths in the db. For better comprehension, consider the following example of
hop predicates from the output of scion showpaths:

17- ffaa :1:1063 1 >518 17- ffaa :0:1107 1>4 17- ffaa :0:1102 2>3
17- ffaa :0:1108 12>7 16- ffaa :0:1001 5>3 16- ffaa :0:1004 6>4
16- ffaa :0:1002

In that format, egress interface is specified before the ‘>’ symbol, while the
ingress of the following hop after it. The data pre-processing maps the same
predicates in the following sequence:

17- ffaa :1:1063#0 ,1 17- ffaa :0:1107#518 ,1 17- ffaa :0:1102#4 ,2
17- ffaa :0:1108#3 ,12 16- ffaa :0:1001#7 ,5 16- ffaa :0:1004#3 ,6
16- ffaa :0:1002#4

In this expression, interfaces are placed after the hop to which they refer to,
separated by a comma.

30

Software Architecture

• Data Storage: once data have been correctly pre-processed, a set of paths
for each destination is ready to be stored. The storage operation involves two
steps: first, the insertion of paths just gathered, second, the deletion of the
ones no longer available.

After these steps, the paths collection (figure 4.3) is fully populated and we can
now start the real testing phase with the last script.

Tests Execution Script

This last script, known as run_test.py1, represents the core of the whole applica-
tion. As with the paths collection script, also in this case the user does not interact
directly with it, but the iterations parameter and eventually the –-some_only
option, are propagated from the bash script.
The structure of this script is quite simple, there are 3 nested for loops used to
run tests over each path, for each destination, “iterations” number of times. To
promote better insight, this is the structure of the script:

1 for i in range(iterations):
2 # ... some lines here
3 for server in available_servers :
4 #for each path in paths where path.

destination_address == server. source_address
5 for path in paths:
6 if(path[" destination_address "] == server["

source_address "]):
7 #... continues here ...

The code inside this structure is executed for each path of each destination, one
or many times, according the parameter specified by the user. In this block three
functions are invoked, each of them generates a sub-process which tests one or
more metrics of the path by running some SCION commands.
Specifically, the three sub-processes perform the following actions:

• Latency and Loss Measurement: this operation is performed by the first
sub-process which executes the following command:

scion ping { server_address } -c 30 --sequence
‘{ hop_predicates }’ --interval 0.1s

1Can be found under the Test folder in the root directory.

31

Software Architecture

Basically, it ‘pings’ the destination using SCMP packets, measuring the latency
and the packet loss. We set the interval between each packet to 0.1s and
we send 30 packets (3s of measurement). The destination address and the
sequence of hops determining the path to test, are dynamically set at each
iteration of the three nested loops. The output values of the ping command,
are: the average latency measured by the 30 packets sent (in milliseconds)
and the packet loss percentage. These values are used, along with the next
measurements, to build a paths_stats entry (figure 4.3).

• Bandwidth Measurement with 64 bytes Packets: this is the subsequent
operation performed by the second sub-process which executes the following
command:

scion - bwtestclient -s { server_address } -cs
3 ,64 ,? ,12 Mbps -sequence ‘{ hop_predicates }’

This is the bandwidth tester application available in SCIONLab. Also in this
case we are dynamically specifying server address and hop predicates, but
we are also adding, in this order, the time interval for which the bandwidth
needs to be achieved (3s), the packet size to send over the path (64 bytes), a
wildcard for the number of packets automatically computed by the application,
and the desired bandwidth to achieve (in this case 12Mbps). We defined these
parameters for the client-server measurement only and, by default, they are
used for the server-client too.
At the end of its execution we will get the average bandwidth client-server
sending 64 bytes sized packets and the average bandwidth server-client with
the same packets.

• Bandwidth Measurement with MTU bytes Packets: this is the last
operation performed by the third sub-process before the storage of the mea-
surements. It executes the following command:

scion - bwtestclient -s { server_address } -cs
3,MTU ,? ,12 Mbps -sequence ‘{ hop_predicates }’

As in the previous measurement, it performs the same operation but sending
packets with the size of maximum transmission unit, resulting in two more
measurements: average bandwidth client-server and server-client, with MTU
sized packets.

After that all the measurements have been performed, it is useful to provide another
information before the storage, it is the set of ISDs crossed by the packets. It can
be interesting to enlarge the context of measurements with the ISDs and see if they
influence somehow the performance. To get this set, the following function has
been defined:

32

Software Architecture

1 # function that gets the ISDs from the hop predicates
2 def getISD(hop_predicates):
3 hops = hop_predicates .split(" ")
4 isds = []
5 for hop in hops:
6 if hop.split("-")[0] not in isds:
7 isds.append(hop.split("-")[0])
8 return isds

We have now gained all the desired information about our path, including latency,
loss, bandwidth, and the set of traversed ISDs. The final step involves storing
this data. This operation takes place after each path has been tested for a
specific destination. As previously discussed in the Technical Requirements Design
subsection (4.3.2), this storage approach enhances fault tolerance and reduces
overhead in I/O operations.
In summary, the test-suite relies on SCION applications: ping and bandwidth
tester. The software comprises three main components: a shell script that acts
as a wrapper, and two Python scripts. The first Python script is responsible for
collecting the paths to each destination and storing this information in the paths
collection within our database. The second Python script exploits the collected
information to test each available path in terms of latency, bandwidth, and packet
loss. The results of these tests are then stored in the paths_stats collection.
With all the statistics now at our disposal, we can proceed to evaluate the results
and draw our conclusions.

33

Chapter 5

Path Selection

Path selection is a crucial aspect for network users as it combines several significant
concepts in networking. Firstly, an informed path selection helps users to avoid
routes that may be congested or underperforming, contributing to overall network
stability. Moreover, by having insight into available paths and their characteristics
users can make informed decisions about which routes to select, potentially avoiding
paths that might raise security concerns or involve untrusted nodes. Path selection
also empowers users to optimize their network experience, since the selection
of paths with favorable latency, bandwidth, and low packet loss leads to the
satisfaction of their specific needs. Chapter 4 provides a detailed description of
how the test-suite works and is structured. In this chapter we will delve into the
application of the test-suite to assess the SCIONLab [7] network and perform results
analysis. The objective of this analysis is to empower users with a comprehensive
understanding of the provided tools, enabling them to make informed decisions
regarding path selection.
Before diving into the path analysis, we need to understand on which nodes the
experiments were conducted and which assumptions we made.
Firstly, we chose to perform the tests only from “MY_AS#1” (fig. 3.4). Although
“MY_AS#2” has many links with different degradation levels (fig. 3.3) that might be
interesting, these links were flattening the measurements over different destinations,
since all the paths from that AS have in common the same initial hops. Hence, we
opted for a source with a lower correlation among paths. Moreover, we picked a
subset of 5 destinations from the 21 available in SCIONLab (figure 4.2). In the
figure 5.1 they are marked with a blue star.

34

Path Selection

Figure 5.1: Tested Destinations in SCIONLab Topology. Selected servers are
marked with a blue star, while all the servers available are red colored.

These servers were accurately selected from different geographical locations and,
possibly, from different ISDs. The idea is to assess how much the geographical
position and the belonging to a specific ISD can influence performance. Hence,
the picked servers are placed in the following countries: Germany, Ireland, North
Virginia, Singapore and Korea.
Even though the tests have been performed on this subset, we decided to perform
a preliminary analysis about the reachability on the full server set. The picture 5.2
can be used to enrich the servers topology (4.2).

Figure 5.2: Server Reachability from MY_AS#1. In blue is displayed the number
of destinations reachable requiring minimum a certain hop count.

35

Path Selection

Essentially, the illustration depicts the number of destinations that require a
minimum number of hops to be reached. It offers valuable information regarding
the average path length and the distribution of servers across the network. Notably,
the average path length is 5.66 hops and about 70% of paths can be reached within
6 hops. This two data highlight the central position of our AS within the server
distribution. This insight can easily be confirmed by looking again at the topology
(4.2) displaying both our AS and all the servers.
In the next section we will look at performances details of the 5 destinations subset.

5.1 Path Analysis and Result Presentation
In the course of this analysis, the test-suite gathered a substantial dataset comprising
approximately three thousand samples. This wide volume of data provides a robust
foundation for our subsequent analysis, offering meaningful insights into path
performance.
The visual representations, or plots, were generated using the capabilities of a
Jupyter Notebook, formerly known as IPython Notebook [9], which is a versatile and
interactive computational environment used for code execution, data visualization,
and result presentation. To shape these plots, we exploited the Seaborn library [10],
a Python data visualization library built on top of Matplotlib [11]. Additionally,
we employed Pandas [12], a popular data manipulation library, to efficiently
handle, clean, and transform the collected data, ensuring a smooth and accurate
analytical process. Pandas supplies an abstraction for data manipulation with an
integrated indexing: the DataFrame object. It is strongly useful for structured data
management, efficient indexing and flexible data operations.
Following, we will provide multiple graphs about latency, bandwidth and packet loss
and we will discuss their most interesting elements. This dissertation is essential to
deeply understand why this test-suite is powerful in a path aware network.

5.1.1 Latency Assessment
The first property that we will assess is path latency. Latency refers to the time
delay between sending a data packet from a source host to a destination one, and
receiving a response. It measures the round-trip time for data to travel between two
locations in a network. For instance, low latency is crucial for real-time applications
like video conferencing and online gaming.
In a latency assessment, several key metrics are considered to provide a compre-
hensive understanding of the network performance. These metrics include variance,
which indicates the degree of spread in latency values; outliers, representing unusu-
ally high or low latency values that can impact user experience; the average value,
giving an overall measure of latency; and the median, which offers a representative

36

Path Selection

value that is less sensitive to extreme values. Examining these metrics collectively
provides insights into the stability and consistency of latency in the network. At
this purpose, we chose whisker plots to visually represent the distribution of latency
values and highlight key statistical measures in a concise manner. A whisker plot is
graphical representation useful to display the distribution of a dataset along with
its central tendency and variability. Basically, the key components of a whisker
plot are:

• Box: The box in the plot represents the interquartile range (IQR), which
spans the middle 50% of the data. It is drawn between the first quartile (Q1)
and the third quartile (Q3). The length of the box indicates the spread of the
central portion of the dataset.

• Whiskers: The whiskers extend from the box and represent the range of the
data outside the IQR. They typically extend up to a certain factor (usually
1.5 times) of the IQR. Data points beyond the whiskers are often considered
potential outliers.

• Median Line: A horizontal line inside the box represents the median (Q2),
which divides the data into two halves. It provides a measure of central
tendency that is less affected by extreme values compared to the mean.

• Outliers: Individual data points outside the whiskers are plotted as separate
points. They are potential anomalies that fall significantly beyond the typical
range of the dataset.

Figure 5.3: Whisker plot representation1

1Source: https://datavizcatalogue.com/methods/box_plot.html

37

https://datavizcatalogue.com/methods/box_plot.html

Path Selection

Firstly, our assessment focused on the evaluation of average latency values for
each path leading to the five destinations. Figure 5.4 illustrates the whisker plots
of latency values for each path of destination 16-ffaa:0:1002,[172.31.43.7],
which stands for the Ireland AS (top left AS in figure 5.1). On the x-axis, there
are the path identifiers of routes having a number of hops less than or equal to
the minimum plus one; while, on the y-axis, there are the average latency values.
Hence, paths are categorized into two groups: 6 hops paths (in red) and 7 hops
paths (in purple).

Figure 5.4: Average Latency Values measured for each path of destination
16-ffaa:0:1002,[172.31.43.7] (AWS - Ireland). Box plots are split into 6 hops

paths length, in red, and 7 hops paths length, in purple.

38

Path Selection

The most interesting aspect in this graph (5.4) is the clear separation of latency
values into three main layers, each with nearly the same average values. From an
accurate analysis of paths “10” and “15” we have observed that the second-last
hop of both paths is placed in Ohio, USA (AS 16-ffaa:0:1004 in topology 5.1).

Figure 5.5: Paths 1_10 and 1_15. Ohio (USA) AS 16-ffaa:0:1004 is
highlighted with a red rectangle.

Moreover, if we consider paths “9” and “14” they both deviate towards an AS in
Singapore (16-ffaa:0:1007 in topology 5.1).

Figure 5.6: Paths 1_9 and 1_14. Singapore AS 16-ffaa:0:1007 is highlighted
with a red rectangle.

This observation suggests that paths with geographically diverse hops have a more

39

Path Selection

significant impact on latency than the sheer number of hops.
This pattern holds true for other destinations as well, such as the one in North
Virginia (16-ffaa:0:1007,[171.31.19.144]) in figure 5.7. Here, the main clus-
ters are two and the one with paths having higher latency (“2_6”, “2_13”, “2_16”,
“2_21”, “2_29” and “2_31”) consists only of paths passing through Oregon, USA
(16-ffaa:0:1005 in figure 5.1), regardless of the number of hops.

Figure 5.7: Average Latency Values measured for each path of destination
16-ffaa:0:1007,[171.31.19.144] (AWS - US N. Virginia). Box plots are split

into 7 hops paths length, in red, and 8 hops paths length, in purple.

Also in this case, there is a noticeable geographical separation between Northern
Virginia and Oregon. As illustrated in figure 5.8 the distance between these two
locations highlights the considerable geographical gap. Opting for paths connecting
these regions involves traversing a more extended route, which translates to a longer
physical distance, especially considering that our source is located in Switzerland.

Figure 5.8: USA Map with Virginia and Oregon marked with a dotted red line.

40

Path Selection

The relation between hops location and latency is very useful to determine which
paths should be discarded in a path selection based on low latency routes.
As a complement of our guess, we performed another analysis on latency by
grouping, for each destination, paths traversing the same set of isolated domains
and having the same hop count. Figure 5.9 shows a graph describing this analysis.
The x-axis provides the different sets of ISDs traversed to reach the destination
(AWS Ireland 16-ffaa:0:1002,[172.31.43.7], visible on the top). Once again,
the interesting insight here is that only the hops number is not enough to determine
the latency variance or increment. Indeed, by looking at the graph on the left side,
in which the only difference between the two whiskers is in the number of hops
and not in the set of ISDs considered, we can see a huge variance in latency values
for the purple column. This may lead us to think that latency is affected also by
the number of hops. Though, if we take out long distance paths like those passing
through Singapore or Ohio (which are geographically far from the destination in
Ireland) we can observe a smaller variance and comparable values, as observable
from the right side of figure 5.9 (landscape version at Appendix C figure C.3).

Figure 5.9: Average latency for each ISD set grouped by hop count. On the left
side, the plot includes all the measurements. On the right side, long distance paths

have been excluded from the second ISDs set.

Hence, the physical distance between hops confirms to be the predominant compo-
nent in the latency assessment. Moreover, it is worth noting that removing long
distance paths we do not only get a latency reduction but also a more compact

41

Path Selection

box plot. Therefore, it seems that ASes 16-ffaa:0:1007 and 16-ffaa:0:1004
introduce a wide jitter other than high latency peeks. This assessment helps us to
exclude routes passing through these ASes for streaming audio and video services,
as well as VoIP calls, in which latency consistency is more important than low
latency values.

5.1.2 Bandwidth Assessment
The second parameter to evaluate for a conscious path selection is bandwidth. It is
the maximum amount of data that can be transmitted through a communication
channel or network connection in a given period. It represents the capacity or
throughput of the channel and is typically measured in bits per second (bps), or
its multiples like kilobits per second (kbps), megabit per second (Mbps) and so
on. Bandwidth determines how quickly data can be transferred between devices or
systems. A higher bandwidth indicates a larger data-carrying capacity, allowing
more data to be transmitted in a shorter amount of time. It’s essential for various
network activities, such as web browsing, video streaming, file downloads, online
gaming, and more. Higher bandwidth connections generally result in smoother and
faster user experiences, particularly for applications that require the rapid transfer
of large amounts of data. For this assessment, we will use again the whisker plots
since they provide a full description of measurements.
In Section 4.4, we explained the kind of information gathered by the bandwidth
tester in the path collection script. Essentially, we conducted two distinct tests:
one with a lower bandwidth requirement of 12Mbps, and another requiring for
150Mbps. Each evaluation involved two scenarios: utilizing packets of both MTU
size and 64 bytes size, and examining interactions from both client to server and
server to client. The aim of this approach was to comprehensively assess network
behavior from various angles, including upstream and downstream perspectives,
as well as under different conditions such as high bandwidth demands, small
packet transmission, and average usage at 12Mbps. Considering the first test
at 12Mbps, we achieved a consistent trend across all five destinations. Figures
5.10 and 5.11 depict the average bandwidth values tested for two destinations:
Magdeburg AP in Germany (AS 19-ffaa:0:1303,[141.44.25.144] in topology
5.1) and KISTI Daejeon in Korea (AS 20-ffaa:0:1401,[134.75.250.114] in
topology 5.1). These graphs illustrate the distribution of bandwidth for each
path (measured in Mbps), showcasing downstream measurements on the right and
upstream measurements on the left. Additionally, each path is represented by
two whiskers: the yellow whisker corresponds to bandwidth values obtained using
MTU-sized packets, while the blue whisker represents values obtained with 64-byte
packets. Regardless of a bigger variance for Korea destination in both upstream and
downstream plots, we can see that all the paths act similarly for both destinations.

42

Path Selection

Figure 5.10: Average bandwidth values for each path, requiring a bandwidth of
12Mbps from and to a Germany Server (address on the top). On the left side there

are the upstream measurements, while on the right side the downstream ones.

Figure 5.11: Average bandwidth values for each path, requiring a bandwidth of
12Mbps from and to a Korea Server (address on the top). On the left side there
are the upstream measurements, while on the right side the downstream ones.

As we would expect, in upstream they achieve a lower bandwidth compared to the
downstream counterpart. This phenomenon is in line with the internet’s inherent
asymmetry, where user data consumption typically exceeds data upload. Moreover,
all the paths get a lower bandwidth by sending 64-byte packets compared to the
MTU packets. This is an expected outcome, as using smaller packets increases
the total packet count, subsequently amplifying the overhead of packet headers.
Basically, the behavior of our network can be summed up with this: we achieve a
higher bandwidth in downstream sending bigger packets, regardless the path we

43

Path Selection

take.
This trend reverses when we require a higher bandwidth such as 150Mbps, high-
lighting the limitations of bandwidth in SCIONLab network. Indeed, looking at
pictures 5.12 and 5.13, showing the average bandwidth for the same destinations
but with a requirement of 150Mbps, we can clearly see that the trend is not the
same anymore.

Figure 5.12: Average bandwidth values for each path, requiring a bandwidth of
150Mbps from and to a Germany Server (address on the top). On the left side
there are the upstream measurements, while on the right side the downstream

ones.

Figure 5.13: Average bandwidth values for each path, requiring a bandwidth of
150Mbps from and to a Korea Server (address on the top). On the left side there

are the upstream measurements, while on the right side the downstream ones.

44

Path Selection

In the figure above (5.12 and 5.13), we observe an higher achieved bandwidth
by sending smaller packets instead of bigger ones. This looks counter-intuitive
because of the overhead of packet headers. Hence, our guess is that the network
may not have sufficient capacity to handle the desired 150Mbps bandwidth for
MTU-sized packets. Even though MTU-sized packets are more efficient in terms of
payload-to-overhead ratio, the network may be congested or have limited capacity,
causing packet drops and resulting in a lower achieved bandwidth. Indeed, dropping
64 bytes packets does not decrease the achieved bandwidth as dropping MTU-sized
packets. This is an insight that requires further analysis even though it is suggested
by all the destinations involved.

5.1.3 Packet Loss Assessment

The last but not the least assessment regards the packet loss ratio. Packet loss in
networking refers to the situation where data packets transmitted over a network
fail to reach their intended destination. It is a common occurrence in network
communication and can be caused by various factors such as network congestion,
hardware failures, signal interference, or software errors.
When a data packet is sent from a source to a destination, it traverses various
network devices and links. If any of these devices or links are overloaded, faulty,
or experiencing high traffic, they might drop or discard some packets to alleviate
the congestion. This results in packet loss. Packet loss can have significant
implications on network performance and the quality of user experience. It can lead
to re-transmissions, delayed data delivery, and reduced throughput. In real-time
applications like video conferencing or online gaming, even a small amount of
packet loss can result in noticeable disruptions, such as frozen video frames or
audio glitches. Monitoring and managing packet loss is essential for maintaining
network reliability and performance. Hence, we want to assess this phenomenon
to prevent a user by choosing routes with a high packet loss ratio. Figure 5.14
shows the average packet loss percentage for each path available to reach AWS
destination in Northern Virginia, USA (AS 16-ffaa:0:1003,[172.31.19.144] in
topology 5.1). In the graph each path is represented with a different colored dot2.
The dot size stands for the number of measurements having the same packet loss
ratio.

2After an interval of 9 paths, colors are re-used.

45

Path Selection

Figure 5.14: Average packet loss percentage for each path of AWS US N.
Virginia AS. Each dot color represents a path and its size the number of

measurements having the same loss ratio. Dots legend is on the upper right corner.

In Figure 5.14, we consistently observe that the majority of paths exhibits a loss
ratio of 0%, with a few instances occasionally reaching almost the 10% mark.
However, within this context, there are particular paths that notably register a
complete 100% loss rate, as evidenced by paths 2_16, 2_17, 2_18, 2_19, 2_22, and
2_23. These instances of complete loss merit our attention, warranting exploration
into potential factors at play, such as network congestion. By looking at the
sequence of hops for each of these paths, a commonality emerges: the shared nodes
are only those concentrated in the first half of the path. Moreover, since these
measurements were carried out in succession (due to the consecutive nature of the
paths), our hypothesis is that one or more of these common nodes experienced a
period of congestion.
This distinct pattern repeats itself in Figure 5.15 as well. Here, the most of
measurements similarly exhibits a 0% loss rate, with a few noteworthy exceptions.
These consecutive isolated cases reinforce the notion of an uncommon network
behavior deserving of further investigation.

46

Path Selection

Figure 5.15: Average packet loss percentage for each path of AWS Ireland AS.
Each dot color represents a path and its size the number of measurements having

the same loss ratio. Dots legend is on the upper right corner.

5.2 Considerations
This path analysis concludes with several interesting insights, showcasing the role
that the test-suite can play in fostering informed and thoughtful path selections.
In terms of latency, we have experienced that the most effective element is the
physical distance among the nodes building the path and that the number of hops
or the ISDs set alone are not enough to determine a latency variation. We have
then observed the bandwidth limitations of the SCIONLab network, that according
to our hypothesis is due to an insufficient capacity. About packet loss, the network
results to be stable with sporadic events of complete loss.
In a nutshell, the path selection feature of SCION, when coupled with a robust
test-suite and data analysis techniques, blend into a powerful tool that helps to
fulfill the controllability requirement of a UPIN user. Our goal is to satisfy this
mandate not only through the implementation of a test-suite, but also by providing
a user interface. Hence, the next chapter will discuss the details of the path
recommendation system that has been developed using the collected paths data.

47

Chapter 6

Path Recommendation

The test-suite, detailed in Chapter 4, and the comprehensive analysis presented in
Chapter 5, collectively offer a practical guide for users to make informed decisions
when selecting the optimal path that aligns with their specific requirements.
However, it’s important to note that, currently, SCION [4] allows users to choose
paths without providing detailed information about their characteristics. Users are
often left to make path selections based solely on destinations. This can lead to
sub-optimal choices and a lack of awareness regarding the network’s performance
along those paths.
This is where the test-suite comes into play. It acts as a data-gathering tool,
providing in-depth insights into the characteristics of the available paths, including
factors such as latency, bandwidth, and packet loss. Though, to truly empower
users, these insights need to be presented in a user-friendly and accessible manner.
The path recommendation system acts as a bridge between the wealth of data
collected by the test-suite and the end users. With its user-friendly interface, it
allows users to aggregate, navigate, and, most importantly, understand this data.
It transforms raw statistics into actionable information, making it easier for users
to make choices that align with their specific needs and preferences.
In this chapter, we will delve into the architecture and functionality of the path
recommendation system. We will explore how it takes the complex data about path
characteristics and distills it into a user-friendly format. This system represents
the final piece in the puzzle, ensuring that users can harness the full potential of
SCION to create a more efficient and responsive network experience.

48

Path Recommendation

6.1 Path Recommendation: Architecture

The path recommendation system has been developed as a web application, a
choice made to ensure its broad accessibility to users and make the service platform
independent. As for the path selection testing suite, it follows a 3-tier architecture
but with different interactions compared to the ones described in Figure 4.1. There
are three main components interacting:

• Client or Front-end: This is the user-facing part of the system, providing
a straightforward and intuitive interface for users to interact with. Users
can easily make requests and receive path recommendations through this
component.

• Server or Back-end: The server plays a central role in the system’s operation.
It is responsible for handling user requests, querying the database for path
information, and ensuring overall system efficiency, even under high traffic
loads. The server’s performance optimizations allow for a seamless and
responsive user experience.

• NoSQL Cloud-based Database: This component represents the cloud-
based NoSQL database, specifically MongoDB Atlas in our case. It serves as
the repository for a comprehensive set of information about available paths
and performances, retrieved through the usage of the test-suite discussed in
Chapter 4. Its adoption enables efficient data storage and retrieval for the
path recommendation system. The cloud-based nature ensures scalability,
accessibility, and reliability of the database.

By dividing the system into these three distinct components, we’ve created a flexible
and accessible tool that can effectively cater to a wide range of users’ path selection
needs. The client offers user-friendly interactions, while the server manages the
underlying data efficiently, enabling the application to perform well even during
periods of high demand. Moreover, the choice of a cloud-based database ensures
that the system’s data is stored securely in a remote database, facilitating data
management, scalability, and accessibility.

The interaction among these components is illustrated in Figure 6.1. A user,
engaging with the front-end, functions as a client, sending requests to the server.
The server acts as a logic tier, querying the database to generate a response delivered
back to the client.

49

Path Recommendation

Figure 6.1: Path Recommendation System Architecture: A 3-Tier
Architecture1where the client initiates a request, the server processes it by

interacting with a database, and provides the corresponding response.

6.1.1 Technologies Involved
In order to ensure the intended functionality on both client and server, delivering
the promised features, the path recommendation system employs an advanced
technology stack. We will now dive into this stack for both client and server
components.

Client Side

Client-side technologies predominantly focus on the user interface as they define
the interface directly accessible to users. In the context of this application, we have
embraced the following technologies:

• React: It is also known as React.js, stands as an open-source JavaScript
library originating from Facebook [13]. It is particularly renowned for its
application in crafting user interfaces (UIs) for web applications, especially in
the context of single-page and mobile applications. React’s reputation rests
on its efficiency, simplicity, and its capability to produce highly responsive and
interactive user interfaces. The decision to employ React in this application
was driven by its key functionalities, which include:

1Source: https://docs.aws.amazon.com/

50

https://docs.aws.amazon.com/

Path Recommendation

 Component-Based Architecture: React revolves around the concept
of components. These components are independent, reusable building
blocks of the user interface. Each component can represent a specific UI
element, be it a button, form, or even an entire section of a web page.
The strength of React lies in its capacity to seamlessly combine these
components to create intricate and multifaceted user interfaces.

 Virtual DOM (Document Object Model): React employs a virtual
representation of the DOM. Rather than directly manipulating the real
DOM, React updates only those components affected by changes in data.
This approach offers a substantial improvement over updating the entire
real DOM, which can be comparatively slower and less efficient.

 Efficient Updates: React incorporates a diffing algorithm that calcu-
lates the disparity between the previous virtual DOM and the new one.
Subsequently, it updates solely the portions of the UI that have undergone
alterations. This strategy effectively minimizes the workload imposed on
the browser, leading to swifter updates and a more responsive UI.

• Material UI: Material-UI [14], often abbreviated as MUI, is a popular
open-source user interface (UI) framework for building web applications. It
provides a set of reusable, customizable, and well-designed UI components
that follow the Material Design guidelines, a design language developed by
Google. Material Design is known for its clean, modern, and visually appealing
design principles. Among its key features, we can highlight that is React-
based (it is a set of React components), it also enhances accessibility which
is an important consideration for modern web applications and it is highly
customizable, leading to the creation of a smooth and personalized application.

Server Side

The server-side is powered by a set of technologies that work together to ensure
the system operates efficiently and smoothly:

• JavaScript and Node: JavaScript and Node.js form the foundation of the
server-side. Node.js, a runtime environment, is particularly adept at handling
server operations and facilitates the seamless communication between the
client and the database.

• MongoClient Library: The server interfaces with MongoDB Atlas, a popular
cloud-based database service. This interaction is made possible through the
use of the MongoClient library, which acts as the bridge between the server and
MongoDB. This enables the efficient retrieval and storage of data, a critical
function in the system.

51

Path Recommendation

• Express Framework: To further enhance routing and service management,
we’ve implemented the Express framework. Express is known for streamlining
server responsibilities, providing a well-organized and efficient environment.
It ensures that user requests are handled with precision, database interactions
are optimized, and the overall system performs smoothly, even during peak
usage periods.

These technologies, both on the client and server sides, work cohesively to deliver a
robust and user-friendly path recommendation system. The client’s REACT-based
interface ensures that users can easily interact with the system, while the server,
powered by JavaScript, Node.js, MongoClient, and Express, efficiently manages
user requests, database interactions, and overall system performance, even during
peak usage.

6.2 Implementation
In this section we will explore the implementation details of the path recommenda-
tion system, diving deep into both Front-end components and Back-end API. We
will examine some code snippets and provide the page rendering.

6.2.1 Front-end components
The path recommendation system has been implemented as a single-page appli-
cation, adopting a bottom-up approach. Leveraging React’s component-oriented
nature, we defined small, modular components that were seamlessly combined to
achieve the desired behavior.
Before delving into a detailed analysis of each component, let’s take an overview of
the key elements:

• Navbar: The navbar serves as a central control hub, providing users with
the functionality to access the menu. Its extensibility allows for the smooth
addition of future features, ensuring adaptability as the system evolves.

• Path Recommendation Form: Accessible from the navbar, the path recom-
mendation form empowers users to define specific requirements for the desired
path. This component acts as a user-friendly interface, facilitating the input
of criteria that guide the system in generating tailored path recommendations.

• Path List: The path list component acts as a wrapper for smaller components
and is responsible for displaying every path that meets the requirements
specified and submitted through the Path Recommendation Form. Its modular
design allows for flexibility and scalability in presenting a comprehensive view
of the available paths.

52

Path Recommendation

– Single Path Component: Each path within the path list is represented
by an individual component. This component not only displays the
relevant details of the path but also incorporates a command line block
featuring a copy button. This feature proves handy for users who wish to
employ a specific path in SCIONLab.

Figure 5.1 illustrates the appearance of the page upon initial opening (landscape
version of this picture is available at Appendix D, figure D.1).

Figure 6.2: The front-end view of the Path Recommendation System upon
opening, showcasing the initial list of paths retrieved from the database before any

filtering is applied.

Navbar Component

On top of the front-end page (6.2), we introduce the Navbar component. As of the
current implementation, its primary purpose is to facilitate access to the left-side
menu. The Navbar component is defined in the following code snippet:

1 function MyNavbar (props){
2 const setMenuShow = props. setMenuShow ;
3 const menuShow = props. menuShow ;
4 const form = props.form;
5 const setForm = props. setForm ;
6 const pathsList = props. pathsList ;
7 const setPathsList = props. setPathsList ;

53

Path Recommendation

8

9 return (
10 <Container className =’p-0’ fluid >
11 <AppBar position ="sticky">
12 <Toolbar variant ="dense">
13 <div style ={{ marginRight : "27.5%"}}

className =’mr -5 d-flex justify -content -center align -
items -center ’>

14 /* Additional components or
functionalities may be added here */

15 <FormDrawer unfinished ={ props.
unfinished } setUnfinished ={ props. setUnfinished }
destinationsList ={ props. destinationsList }
setDestinationsList ={ props. setDestinationsList }
selectedDestination ={ props. selectedDestination }
setSelectedDestination ={ props. setSelectedDestination }

pathsList ={ pathsList } setPathsList ={ setPathsList }
form ={ form} setForm ={ setForm } menuShow ={ menuShow }
setMenuShow ={ setMenuShow }/>

16 <Typography variant ="button"
color=" secondary " component ="div">

17 Path - Recommendation
System < RouteIcon />

18 </Typography >
19 </div >
20 </Toolbar >
21 </AppBar >
22 </Container >
23);
24 }

The component introduced above integrates essential features, notably the Form-
Drawer. This internal component, custom-designed by us, serves to smoothly reveal
the form (detailed in 6.2.1) as a drawer from the left side of the page and facilitates
interactions with form elements. To enhance styling and achieve a unified and
visually engaging user interface, the component leverages the AppBar and Toolbar
components from the Material-UI library [14]. The underlying code structure is
organized around the effective use of props, enabling streamlined state management
and seamless data exchange across various components. This approach contributes
to the overall modularity and maintainability of the codebase.

54

Path Recommendation

Path Recommendation Form Component

The PathRecommendationForm function is a crucial component equipped with
functionalities that enable users to customize and filter paths. This form leverages
React’s state management and integrates with the overall system through props.
Here’s a brief breakdown:

• Form Handling: The form manages various parameters such as latency,
bandwidth, and other criteria relevant to path selection.

• Filtering Mechanism: Upon submission, the form triggers an asynchronous
function (handleSubmit) that communicates with the server API to fetch
paths based on the specified criteria. The form’s dynamic nature allows users
to input different values (e.g. minimum and maximum latency, bandwidth,
loss...) influencing the filtering process. It’s noteworthy that the available
filters include the option to specify a set of Isolated Domains to avoid. This
functionality empowers users to filter paths, excluding those associated with
specific domains deemed untrustworthy.

• Dropdown Menu: The form includes a dropdown menu (CustomizedMenus)
that facilitates the selection of a destination, enhancing user interaction and
providing a user-friendly experience.

• Event Handling: Event handlers, such as onChange for text fields and the
form submission (onSubmit), are incorporated to ensure a responsive and
interactive form.

• Modular Structure: The code embraces modularity, utilizing props to
manage state and communicate with parent components. This enhances
maintainability and flexibility in adapting to future modifications.

This design emphasizes a user-centric approach, aiming to provide an intuitive and
efficient means for users to tailor their path preferences. The following code snippet
presents a condensed version of the original component to lighten the reading, while
maintaining its core functionality.

1 function PathRecommendationForm (props){
2 const form = props.form;
3 const setForm = props. setForm ;
4 const setPathsList = props. setPathsList ;
5 const setUnfinished = props. setUnfinished ;
6

7 async function handleSubmit (event) {
8 event. preventDefault ();

55

Path Recommendation

9 try {
10 setUnfinished (true);
11 const paths = await API. loadFilteredPaths (

form);
12 setPathsList (paths);
13 setUnfinished (false);
14 props. setMenuShow (false);
15 } catch (error) {
16 console .log(error);
17 }
18 }
19

20 return(
21 <>
22 <Box onSubmit ={(event) => handleSubmit (event)} className

=’mt -5’ sx ={{ ’& .MuiTextField -root ’: { m: 2, width:
’25ch’ }, }} component =’form ’>

23 <div className =’px -3 mb -3 d-flex flex -column justify
-content -center ’>

24 <Typography className =’mx -5 text -center ’ sx ={{
fontSize : 24 }} variant ="button" color=’secondary ’
display ="block" gutterBottom >

25 Filter Your Paths
26 </Typography >
27 <CustomizedMenus value ={ form. minLatency }

onChange ={(e) => setForm ({... form , destination : e.
target.value })} form ={ form} setForm ={ setForm }
destinationsList ={ props. destinationsList }
setDestinationsList ={ props. setDestinationsList }
selectedDestination ={ props. selectedDestination }
setSelectedDestination ={ props. setSelectedDestination
}/>

28 </div >
29 <Divider className =’mx -5’ role=" presentation " light >
30 <Chip variant =’outlined ’ color=’secondary ’ sx ={{

fontWeight : ’bold ’ }} label=" Latency " className =’
font -weight -bold ’ />

31 </Divider >
32 <div className =’px -3 d-flex justify -content -around ’>

56

Path Recommendation

33 <TextField value ={ form. minLatency } onChange ={(e)
=> setForm ({... form , minLatency : e.target.value })}

color=’secondary ’ id="outlined -basic" label="min.
Latency " variant =" outlined " />

34 <TextField value ={ form. maxLatency } onChange ={(e)
=> setForm ({... form , maxLatency : e.target.value })}

color=’secondary ’ id="outlined -basic" label="max.
Latency " variant =" outlined "/>

35 </div >
36 // ... Other params to submit
37 <div className =’px -3 d-flex justify -content -center ’>
38 <Button type=’submit ’ color=’secondary ’ variant =

" outlined " endIcon ={< TuneIcon />}>Filter </ Button >
39 </div >
40 </Box >
41 </>
42)
43 }

When rendered, this component presents the following representation:

Figure 6.3: Path Recommendation Form: A user interface enabling users to filter
the path list based on various criteria.

57

Path Recommendation

A wider and clearer version of the above picture has been provided in the Appendix
D, with the figure D.2.

Path List Component

The PathsList component serves as the visual representation of a comprehensive
table showcasing available paths. Its dynamic population of table rows encapsulates
crucial details like Path ID, Destination, Average Latency, and all the other
parameters defining a path. This table operates as a container for individual
PathRows, internal components defining the rendering of each row. The PathRow
itself acts as a wrapper for PathData objects, responsible for modeling the content
of each cell within the table.
During the path-fetching process, the component incorporates a loading spinner,
contributing to a more responsive user interface. The table’s design emphasizes
responsiveness and expansiveness, facilitating a user-friendly exploration of the
available paths.
Following is presented a code snippet modelling the PathList.

1 function PathsList (props){
2 return <>
3 <Row >
4 <Col ><h4 >Paths Available </h4 ></Col >
5 </Row >
6 {props. unfinished ? <Box className =’mt -5 w -100 h -100

justify -content -center ’ sx ={{ display : ’flex ’ }}>
7 <CircularProgress sx ={{ color:"#AB47BC"}}

size=’10% ’/>
8 </Box > :
9 <Table className =’table - responsive m-auto mb -2 table

- expandable ’ striped bordered hover variant ="dark"
style ={{ maxWidth : "75%", margin: 0}}>

10 <thead >
11 <tr >
12 <th >Path ID </th >
13 <th >Destination </th >
14 <th >Avg. Latency </th >
15 <th >Avg. Bandwidth Upstream </th >
16 <th >Avg. Bandwidth Downstream </th >
17 <th >Avg. Loss </th >
18 <th >Hop Sequence </th >
19 <th >ISDs Traversed </th >
20 <th >Hops Number </th >

58

Path Recommendation

21 <th >Actions </th >
22 </tr >
23 </thead >
24 <tbody >
25 {
26

27 props. pathsList .map ((p) =>
28 <PathRow destinationsList ={ props.

destinationsList } setDestinationsList ={ props.
setDestinationsList } selectedCodeBlock ={ props.
selectedCodeBlock } setSelectedCodeBlock ={ props.
setSelectedCodeBlock } showCode ={ props. showCode }
setShowCode ={ props. setShowCode } color=’primary ’ key ={
p.id} path ={p}/>)

29 }
30 </tbody >
31 </Table >}
32 <BasicModal selectedCodeBlock ={ props.

selectedCodeBlock } setSelectedCodeBlock ={ props.
setSelectedCodeBlock } showCode ={ props. showCode }
setShowCode ={ props. setShowCode }/>

33 </>;
34 }

Furthermore, the component integrates a modal window (BasicModal) that enables
additional actions on selected paths. Essentially, it provides users with a bash
command that can be copied and executed directly within SCIONLab to perform
a traceroute on the defined destination using the chosen path.
Figures 6.2 and D.1 display the table rendering, while the modal window is presented
below in figure 6.4 and in the Appendix D with the landscape picture D.3.

Figure 6.4: Modal for copying traceroute command with path-specific details.

59

Path Recommendation

6.2.2 Back-end APIs

As we delve into the backend of our path recommendation system, understanding
the role of APIs in powering the visual and interactive components is crucial. These
APIs serve as the communication bridge between the client and server, constituting
the backbone of the application.
When the application initiates or the user triggers an operation requiring a server
response, the client’s API is invoked, responsible for reaching the appropriate
server-side endpoint. Subsequently, the server undertakes computational tasks,
processing the user-defined constraints by querying a MongoDB database in the
cloud. Specifically, MongoDB Atlas is our cloud-based NoSQL database. It houses
extensive information about available paths. Server-side queries play a pivotal
role, managing operations like path filtering, detailed information retrieval, and
performance metric calculations. The RESTful API endpoints establish routes for
diverse operations, ensuring seamless communication between the front-end and
back-end.
As an illustrative example, we will explore a single API connected to a server-side
endpoint, aiming to provide a concise overview of the data flow.

API 1: Loading the list of Paths

The loadPathsList() function is an asynchronous operation initiated by the
PathList component when the associated page is accessed, to load all the paths
available on the database. It sends a request to the server-side endpoint, specifically
targeting the http://localhost:3001/api/paths/ route.
Upon receiving a successful response (HTTP status 200), the function processes the
data, transforming it into a collection of “Path” objects. These objects encapsulate
essential information needed to represent each path in the table. In the event of an
unsuccessful response, an error is thrown, providing insights into the encountered
issue. The following code provides the function described:

1 async function loadPathsList () {
2 const url = SERVER_URL + ’/paths/’;
3 try {
4 let response ;
5 response = await fetch(url);
6

7 if (response .ok) {
8 const arr = await response .json ()
9 const pathList = arr.map ((p) =>

60

Path Recommendation

10 new Path(p.id , p.destination , p.avgLatency ,
p. avgBandwidthCs64 , p. avgBandwidthSc64 , p.
avgBandwidthCsMTU , p. avgBandwidthScMTU , p.avgLoss , p.
timestamp , p.hopsNumber , p.hopsSequence , p.
isolatedDomains));

11 return pathList ;
12 }
13 else {
14 const text = await response .text ();
15 throw new TypeError (text);
16 }
17 } catch(err){
18 throw err
19 }
20 }

Upon execution, the server processes the request through the specified endpoint:

1 app.get(’/api/paths/’, async (_req , res) => {
2 const destination = null;
3

4 /* Invoking the database function to retrieve
5 * paths based on the provided constraints
6 */
7 db. getPaths (destination , null)
8 .then ((paths) => {
9 /* Responding with a JSON object containing

10 * the retrieved paths on success
11 */
12 return res.status (200).json(paths);
13 })
14 .catch ((err) => {
15 /* Responding with a JSON object containing the
16 * encountered error on failure
17 */
18 return res.status (500).json(err);
19 });
20 });

This endpoint is tailored for handling GET requests, retrieving paths from the
database based on specified constraints. In this specific case, both the destination
and other filters are set to null, indicating that all paths are requested without

61

Path Recommendation

any filtering, and that all available destinations are acceptable. Upon successful
retrieval, the paths are returned as a JSON object with a status code of 200. In
case of an error during the database query, an error object with a status code of
500 is returned.
The getPaths function, referred to in this endpoint, is designed to retrieve all
paths from the database and their associated statistics. Following, we provide a
compact version of this function, describing the defined scenario, which means path
retrieval without any filtering. The detailed listing of this function, which includes
operations for various filtering scenarios, is available in Appendix D, listing D.1.

1 /* This function retrieve all Paths from the DB
2 and their stats */
3 const getPaths = async (dest , filters) => {
4 const pathsList = [];
5 const regexPattern = dest ? "\\b${dest }#\\d+$" : "\\

b.*#\\d+$";
6 let pipeline = [];
7

8 if(filters !== null){
9 // Check the Appendix

10 }else{
11 pipeline = [
12 {
13 $match: {
14 hops: {$regex: new RegExp(regexPattern)},
15 avg_bandwidth_sc_MTU : { $ne: " Information

not available " },
16 avg_latency : {$ne : "0ms"}
17 }
18 },
19 {
20 $addFields : {
21 idWithoutTimestamp : { $substr : ["$_id", 0, {

$subtract : [{ $strLenCP : "$_id" }, 27] }] },
22 pathNum : {$toInt: { $substr : ["$_id", 2, {

$subtract : [{ $strLenCP : "$_id" }, 29] }] }},
23 destNum : {$toInt: { $substr : ["$_id", 0, 1

]}}
24 }
25 },
26 {

62

Path Recommendation

27 $addFields : {
28 avg_latency_number : { $toDouble : { $substr : [

" $avg_latency ", 0, { $subtract : [{ $strLenCP : "
$avg_latency " }, 2] }] }},

29 avg_loss_number : { $toDouble : { $arrayElemAt
: [{ $split: [" $avg_loss ", "%"] }, 0] } },

30 avg_bandwidth_sc_MTU_number : { $toDouble : {
$arrayElemAt : [{ $split: [" $avg_bandwidth_sc_MTU ", "
Mbps"] }, 0] } },

31 avg_bandwidth_cs_MTU_number : { $toDouble : {
$arrayElemAt : [{ $split: [" $avg_bandwidth_cs_MTU ", "
Mbps"] }, 0] } },

32 }
33 },
34 {
35 $group: {
36 _id: " $idWithoutTimestamp ",
37 avg_latency : { $avg: " $avg_latency_number "

},
38 avg_bandwidth_sc_MTU : { $avg: "

$avg_bandwidth_sc_MTU_number " },
39 avg_bandwidth_cs_MTU : { $avg: "

$avg_bandwidth_cs_MTU_number " },
40 avg_loss : { $avg: " $avg_loss_number " },
41 hops: { $first: "$hops" },
42 hops_number : { $first: " $hops_number " },
43 isolated_domains : { $first: "

$isolated_domains " },
44 pathNum : {$first: " $pathNum "},
45 destNum : {$first: " $destNum "}
46 }
47 },
48 {
49 $sort: {
50 destNum :1,
51 pathNum : 1
52 }
53 },
54 {
55 $project : {
56 _id: 1,

63

Path Recommendation

57 avg_latency : { $concat : [{ $toString : "
$avg_latency "},"ms"]},

58 avg_bandwidth_sc_MTU : { $concat : [{
$toString : " $avg_bandwidth_sc_MTU "},"Mbps"]},

59 avg_bandwidth_cs_MTU : { $concat : [{
$toString : " $avg_bandwidth_cs_MTU "},"Mbps"]},

60 avg_loss : { $concat : [{ $toString : "
$avg_loss "},"%"]},

61 hops_number : 1,
62 hops: 1,
63 isolated_domains : 1,
64 }
65 }
66];
67 }
68

69 try {
70 const db = await connectToDatabase ();
71 const collection = db. collection (" paths_stats ");
72 const paths = await collection . aggregate (

pipeline). toArray ();
73

74 for(const path of paths){
75 const hops = path.hops.split(" ")
76 const destination = hops[hops.length - 1].

split("#")[0];
77 pathsList .push(new Path(path._id ,

destination , path.avg_latency , null , null , path.
avg_bandwidth_cs_MTU , path. avg_bandwidth_sc_MTU , path
.avg_loss , null , path.hops_number , path.hops , path.
isolated_domains));

78 }
79

80 return pathsList ;
81 } catch (error) {
82 throw error;
83 }
84 }

The function employs a MongoDB aggregation pipeline to process the data. The

64

Path Recommendation

pipeline includes operations such as matching the regex pattern for paths, calculat-
ing average metrics, sorting, and projecting the necessary fields.

6.2.3 Concluding Remarks
To encapsulate the knowledge gained in this chapter, let’s revisit the foundational
components and interactions that define the Path Recommendation System. The
user journey commences with interactions on the user-friendly front-end, crafted
with React.js, where constraints for path selection are defined. These constraints
are then transmitted to the server via well-defined APIs. Utilizing Node.js and
Express, the server processes these requests by querying a MongoDB Atlas database
for pertinent path information. Subsequently, the server furnishes the client with
computed paths, elegantly displayed in a tabular format on the front-end. This
streamlined process ensures a responsive experience, enabling users to effortlessly
filter paths based on diverse criteria.
This chapter aims to provide a holistic understanding of the system’s robustness
and its capability to deliver precise and relevant path recommendations. With
the comprehensive details now at our disposal, the next chapter is poised to
encapsulate our conclusions, offering a synthesized perspective on the entirety of
the work presented thus far.

65

Chapter 7

Conclusion

In addressing the overarching question of how to empower users to control the
paths of their data in a network, the UPIN project [8] delves into the potential and
limitations of SCION for user-driven path control. This research explores various
facets of SCION’s performance, with a keen focus on latency, bandwidth, and data
loss in SCIONLab, an experimental testbed.

Our findings confirm that latency in SCIONLab is predominantly influenced by the
physical distance between nodes, surpassing the impact of factors like the number
of hops or the ISDs traversed. Additionally, we’ve uncovered intriguing insights
into the bandwidth limitations of the SCIONLab network, revealing a decrease in
capacity when targeting higher bandwidth paths, a phenomenon warranting further
investigation. Despite variations, packet loss remains relatively stable in most cases.

The software architecture, underpinned by a database housing data on numerous
paths, plays a crucial role in our investigation, showcasing the implications of
shifting control from network operators to end users on network performance.

While the current SCION path selection paradigm often leaves users reliant on
endpoint destinations without detailed information on path characteristics, the in-
troduced test-suite addresses this gap. Offering insights into factors such as latency,
bandwidth, and packet loss. Then, the integration of a Path Recommendation
System signifies a substantial advancement. It acts as a bridge, presenting this
detailed data in a user-friendly and accessible manner. With its intuitive interface,
the system allows users to aggregate, navigate, and comprehend this information,
transforming raw statistics into actionable insights that align with users’ specific
needs and preferences.

66

Conclusion

Finally, the integration of a path selection feature in SCION, complemented by a
robust test-suite and data analysis techniques, emerges as a powerful tool for ful-
filling the controllability requirements of a UPIN user. Beyond the implementation
of a test-suite, the introduction of a sophisticated Path Recommendation System
marks a significant leap forward. This system not only empowers users to make
informed choices based on network performance but also serves as a key avenue for
future research.

7.1 Future Works
As we chart the course for future developments, several avenues present themselves
to enhance and expand upon the existing capabilities of the Path Recommendation
System. One prominent direction involves the integration of advanced Machine
Learning (ML) techniques. By leveraging ML algorithms, we can analyze historical
usage patterns, user preferences, and real-time network conditions to dynamically
recommend the most optimal paths. This infusion of intelligence would contribute
to a more adaptive and responsive system. Another critical focus for future
enhancements centers on refining the user interface. Introducing a mapping feature
that visually represents a partial network topology would empower users with a more
intuitive understanding of the underlying network structure. Interactive elements,
such as the ability to click on specific nodes, could significantly improve the user
experience, making path selection more transparent and user-friendly. To streamline
the user experience even further, we envisage integrating a Secure Shell (SSH)
connection directly into the system. This feature would allow users to execute
the application with the recommended path seamlessly. By facilitating direct
interactions with the network, this integration aims to enhance the efficiency of
network diagnostics and testing. Looking towards broader integration possibilities,
we plan to extend the availability of the path recommendation system by providing
it as an Application Programming Interface (API). This move would empower
developers to seamlessly integrate path recommendations into their own tools and
systems. By encapsulating the functionality within an API, we aspire to extend
the utility of the system, making it a versatile tool for diverse applications beyond
its standalone interface.
In summary, these envisioned future works underscore our commitment to advancing
user-driven path control. By integrating machine learning, refining the user interface,
introducing SSH connections, and providing API accessibility, we aim to evolve the
Path Recommendation System into a more intelligent, user-friendly, and versatile
tool.

67

Appendix A

Experimental Setup

Appendix A serves as a supplementary resource to enrich the content discussed in
Chapter 3. Here, we offer more extensive details and additional visuals, enhancing
your grasp of the experimental setup intricacies.

Figure A.1 is a landscape version of 3.1. We want to provide further details about
it reiterating that the orange colored nodes represent the Core ASes which are
the root of trust of other ASes within the same ISD. It is worth mentioning that
in this topology, some ISDs have only Core ASes, like: ISD 16 AWS and ISD 26
KREONET2. This highlights their key role as bridges with other ISDs, rather than
conventional clusters of ASes catering to end-users. Moreover, the green colored
nodes are the Attachment Points of each ISD, used to allow users attaching their
own ASes and contribute to the global topology with experimenters’ computational
resources.
The attachement points available for SCIONLab are:

• Magdebourg AP: this Access Point is placed in Germany, indeed it is within
the ISD of Europe. Its SCION address is: 19-ffaa:0:1303.

• ETH-Hell-AP: this Access Point is placed in Switzerland, within the ISD 17,
and refers to the ETH University. Its SCION address is: 17-ffaa:0:1107.

• ETHZ-AP: it is the second access point of the ETH and it is the one where
we attached our AS to perform all the experiments. Its SCION address is:
17-ffaa:0:1113.

• CMU AP: it is placed in North America, in ISD 18. Its SCION address is:
18-ffaa:0:1206.

• KU AP: this Access Point is hosted in Korea, within the ISD 20. Its SCION
address is: 20-ffaa:0:1404.

68

Experimental Setup

Figure A.1: SCION Topology - Landscape version of 3.1

69

Appendix B

Software Architecture

This appendix extends the insights presented in Chapter 4 by providing additional
details and code listings. Here, we delve deeper into the intricacies of the software
architecture, unraveling specific code snippets that were condensed for clarity in
the main chapter. This supplementary section aims to offer a more comprehensive
reference for those seeking a detailed exploration of the system’s software founda-
tions.

Listing B.1: Listing of function path_info_building(server).
Extended version of listing 4.4.1.

1 def path_info_building (server):
2 paths_to_be_inserted = []
3 scion_addr_cmd = "scion address "
4 scion_addr_proc = subprocess .Popen(scion_addr_cmd ,

shell=True , stdout= subprocess .PIPE , stdin= subprocess .
PIPE)

5 source_addr = scion_addr_proc .stdout. readline ()
6 source_addr = source_addr .decode(’utf -8’).rstrip ()
7

8 server_destination_address_sp = server["
source_address "]. split(",")[0]

9

10 # execute scion showpaths command
11 cmd = f"scion showpaths {

server_destination_address_sp } --extended -m 40"
12

13 proc = subprocess .Popen(cmd , shell=True , stdout=
subprocess .PIPE , stdin= subprocess .PIPE)

14

70

Software Architecture

15 # Read the output of the command and store it in a
list

16 output = []
17 dirty_path_info = []
18 hops_number = 0
19

20 min_hops = 2000
21 while True:
22 line = proc.stdout. readline ()
23 paths = re.match(r"\d+ Hops:", line.decode(’utf

-8’).rstrip ())
24 if paths:
25 hops_number = paths.group ().split(" ")[0]
26 if int(hops_number) < min_hops :
27 min_hops = min(min_hops , int(hops_number

))
28 print(" Minimum Hops: " + str(min_hops))
29 paths = False
30 if not line or int(hops_number) > min_hops +1:
31 break
32 output.append(line.decode(’utf -8’).rstrip ())
33

34 # Join the lines into a single string
35 output_text = ’\n’.join(output)
36

37 pattern = r"\[?(\d+)\] Hops: \[([^]]+) \]\s+MTU: (\d
+)\s+ NextHop : ([^\s]+)\s+ Expires : ([^\n]+)\s+ Latency :

([^\n]+)\s+Status: ([^\n]+)\s+ LocalIP : ([^\n]+)"
38 matches = re. findall (pattern , output_text)
39 #Almost good path info but I need to change the

format of the hops field
40 for match in matches :
41 path_info = {
42 " Path_ID ": match [0],
43 "Hops": match [1],
44 "MTU": match [2],
45 " Latency ": match [5],
46 "Status": True if match [6] == ’alive ’ else

False ,
47 }
48 dirty_path_info .append(path_info)

71

Software Architecture

49

50 # Now I need to change the format of the hops field
51 for path in dirty_path_info :
52 old_hop_field = path["Hops"]
53 new_hop_field = convert_hop_predicates (

old_hop_field .split(" "))
54

55 new_path = {
56 "_id": str(server[’_id ’]) + "_" + str(path["

Path_ID "]),
57 " hop_predicates ": new_hop_field ,
58 "MTU": path["MTU"],
59 " expected_min_latency ": path[" Latency "],
60 "active": path["Status"],
61 " destination_address ": server["

source_address "],
62 " source_address ": source_addr ,
63 }
64

65 paths_to_be_inserted .append(new_path)
66

67 return paths_to_be_inserted

72

Software Architecture

Figure B.1: SCION Topology with Available Servers - Landscape version of 4.2

73

Appendix C

Path Selection

Appendix C supplies additional information regarding the analysis of Path Selection
feature, discussed in Chapter 5.

Figure C.1: USA Map enhancing the distance between Virginia and Oregon,
both marked with a dotted red line. - Landscape version of 5.8

74

Path Selection

Figure C.2: Average Latency Values measured for each path of destination
16-ffaa:0:1007,[171.31.19.144] (AWS - US N. Virginia). - Landscape version of 5.7

75

Path Selection

Figure C.3: Comparison of Average Latency between ISD Sets, with and without
Long-Distance Paths. - Landscape version of 5.9

76

Appendix D

Path Recommendation

Appendix D complements the insights presented in Chapter 6 by offering additional
details about the Path Recommendation System and its front-end. This section
unveils intriguing code listings that were abbreviated for enhanced readability.
Moreover, it features landscape images strategically placed to deepen your under-
standing of previously introduced concepts. This appendix is designed to provide
a comprehensive reference for those seeking a more in-depth exploration of the
system’s intricacies.

Listing D.1: Listing of function getPaths(destination, filters).
Extended version of listing 6.2.2.

1 /* This function retrieve all Paths from the DB
2 and their stats */
3 const getPaths = async (dest , filters) => {
4 const pathsList = [];
5 const regexPattern = dest ? ‘\\b${dest }#\\d+$‘ : ‘\\

b.*#\\d+$‘;
6 let pipeline = [];
7

8 if(filters !== null){
9 const minLatency = filters . minLatency === ’’ ? 0 :

parseFloat (filters . minLatency);
10 const maxLatency = filters . maxLatency === ’’ ?

Number. MAX_VALUE : parseFloat (filters . maxLatency);
11 const minBandwidthUpstream = filters .

minBandwidthUpstream === ’’ ? 0 : parseFloat (filters .
minBandwidthUpstream);

77

Path Recommendation

12 const maxBandwidthUpstream = filters .
maxBandwidthUpstream === ’’ ? Number. MAX_VALUE :
parseFloat (filters . maxBandwidthUpstream);

13 const minBandwidthDownstream = filters .
minBandwidthDownstream === ’’ ? 0 : parseFloat (
filters . minBandwidthDownstream);

14 const maxBandwidthDownstream = filters .
maxBandwidthDownstream === ’’ ? Number. MAX_VALUE :
parseFloat (filters . maxBandwidthDownstream);

15 const minPacketLoss = filters . minPacketLoss === ’’
? 0 : parseFloat (filters . minPacketLoss);

16 const maxPacketLoss = filters . maxPacketLoss === ’’
? Number. MAX_VALUE : parseFloat (filters .

maxPacketLoss);
17 const maxNumberOfHops = filters . maxNumberOfHops

=== ’’ ? Number. MAX_VALUE : parseInt (filters .
maxNumberOfHops);

18 const isdsToAvoid = filters . isdsToAvoid === ’’ ?
[] : filters . isdsToAvoid .split(’,’);

19 const f = {
20 $match: {
21 avg_latency : {$gte : minLatency , $lte :

maxLatency },
22 avg_bandwidth_sc_MTU : {$gte :

minBandwidthUpstream , $lte : maxBandwidthUpstream },
23 avg_bandwidth_cs_MTU : {$gte :

minBandwidthDownstream , $lte : maxBandwidthDownstream
},

24 avg_loss : {$gte : minPacketLoss , $lte :
maxPacketLoss },

25 hops_number : {$lte : maxNumberOfHops },
26 isolated_domains : {$nin : isdsToAvoid }
27 }
28 };
29 pipeline = [
30 {
31 $match: {
32 hops: {$regex: new RegExp(regexPattern)},
33 avg_bandwidth_sc_MTU : { $ne: " Information

not available " },
34 avg_latency : {$ne : "0ms"}

78

Path Recommendation

35 }
36 },
37 {
38 $addFields : {
39 idWithoutTimestamp : { $substr : ["$_id", 0, {

$subtract : [{ $strLenCP : "$_id" }, 27] }] },
40 pathNum : {$toInt: { $substr : ["$_id", 2, {

$subtract : [{ $strLenCP : "$_id" }, 29] }] }},
41 destNum : {$toInt: { $substr : ["$_id", 0, 1

]}}
42 }
43 },
44 {
45 $addFields : {
46 avg_latency_number : { $toDouble : { $substr : [

" $avg_latency ", 0, { $subtract : [{ $strLenCP : "
$avg_latency " }, 2] }] }},

47 avg_loss_number : { $toDouble : { $arrayElemAt
: [{ $split: [" $avg_loss ", "%"] }, 0] } },

48 avg_bandwidth_sc_MTU_number : { $toDouble : {
$arrayElemAt : [{ $split: [" $avg_bandwidth_sc_MTU ", "
Mbps"] }, 0] } },

49 avg_bandwidth_cs_MTU_number : { $toDouble : {
$arrayElemAt : [{ $split: [" $avg_bandwidth_cs_MTU ", "
Mbps"] }, 0] } },

50 }
51 },
52 {
53 $group: {
54 _id: " $idWithoutTimestamp ",
55 avg_latency : { $avg: " $avg_latency_number "

},
56 avg_bandwidth_sc_MTU : { $avg: "

$avg_bandwidth_sc_MTU_number " },
57 avg_bandwidth_cs_MTU : { $avg: "

$avg_bandwidth_cs_MTU_number " },
58 avg_loss : { $avg: " $avg_loss_number " },
59 hops: { $first: "$hops" },
60 hops_number : { $first: " $hops_number " },
61 isolated_domains : { $first: "

$isolated_domains " },

79

Path Recommendation

62 pathNum : {$first: " $pathNum "},
63 destNum : {$first: " $destNum "}
64 }
65 },
66 f,
67 {
68 $sort: {
69 destNum :1,
70 pathNum : 1
71 }
72 },
73 {
74 $project : {
75 _id: 1,
76 avg_latency : { $concat : [{ $toString : "

$avg_latency "},"ms"]},
77 avg_bandwidth_sc_MTU : { $concat : [{

$toString : " $avg_bandwidth_sc_MTU "},"Mbps"]},
78 avg_bandwidth_cs_MTU : { $concat : [{

$toString : " $avg_bandwidth_cs_MTU "},"Mbps"]},
79 avg_loss : { $concat : [{ $toString : "

$avg_loss "},"%"]},
80 hops_number : 1,
81 hops: 1,
82 isolated_domains : 1,
83 }
84 }
85];
86 }else{
87 pipeline = [
88 {
89 $match: {
90 hops: {$regex: new RegExp(regexPattern)},
91 avg_bandwidth_sc_MTU : { $ne: " Information

not available " },
92 avg_latency : {$ne : "0ms"}
93 }
94 },
95 {
96 $addFields : {

80

Path Recommendation

97 idWithoutTimestamp : { $substr : ["$_id", 0, {
$subtract : [{ $strLenCP : "$_id" }, 27] }] },

98 pathNum : {$toInt: { $substr : ["$_id", 2, {
$subtract : [{ $strLenCP : "$_id" }, 29] }] }},

99 destNum : {$toInt: { $substr : ["$_id", 0, 1
]}}

100 }
101 },
102 {
103 $addFields : {
104 avg_latency_number : { $toDouble : { $substr : [

" $avg_latency ", 0, { $subtract : [{ $strLenCP : "
$avg_latency " }, 2] }] }},

105 avg_loss_number : { $toDouble : { $arrayElemAt
: [{ $split: [" $avg_loss ", "%"] }, 0] } },

106 avg_bandwidth_sc_MTU_number : { $toDouble : {
$arrayElemAt : [{ $split: [" $avg_bandwidth_sc_MTU ", "
Mbps"] }, 0] } },

107 avg_bandwidth_cs_MTU_number : { $toDouble : {
$arrayElemAt : [{ $split: [" $avg_bandwidth_cs_MTU ", "
Mbps"] }, 0] } },

108 }
109 },
110 {
111 $group: {
112 _id: " $idWithoutTimestamp ",
113 avg_latency : { $avg: " $avg_latency_number "

},
114 avg_bandwidth_sc_MTU : { $avg: "

$avg_bandwidth_sc_MTU_number " },
115 avg_bandwidth_cs_MTU : { $avg: "

$avg_bandwidth_cs_MTU_number " },
116 avg_loss : { $avg: " $avg_loss_number " },
117 hops: { $first: "$hops" },
118 hops_number : { $first: " $hops_number " },
119 isolated_domains : { $first: "

$isolated_domains " },
120 pathNum : {$first: " $pathNum "},
121 destNum : {$first: " $destNum "}
122 }
123 },

81

Path Recommendation

124 {
125 $sort: {
126 destNum :1,
127 pathNum : 1
128 }
129 },
130 {
131 $project : {
132 _id: 1,
133 avg_latency : { $concat : [{ $toString : "

$avg_latency "},"ms"]},
134 avg_bandwidth_sc_MTU : { $concat : [{

$toString : " $avg_bandwidth_sc_MTU "},"Mbps"]},
135 avg_bandwidth_cs_MTU : { $concat : [{

$toString : " $avg_bandwidth_cs_MTU "},"Mbps"]},
136 avg_loss : { $concat : [{ $toString : "

$avg_loss "},"%"]},
137 hops_number : 1,
138 hops: 1,
139 isolated_domains : 1,
140 }
141 }
142];
143 }
144 try {
145 const db = await connectToDatabase ();
146 const collection = db. collection (" paths_stats ");
147 const paths = await collection . aggregate (

pipeline). toArray ();
148

149 for(const path of paths){
150 const hops = path.hops.split(" ")
151 const destination = hops[hops.length - 1].

split("#")[0];
152 pathsList .push(new Path(path._id ,

destination , path.avg_latency , null , null , path.
avg_bandwidth_cs_MTU , path. avg_bandwidth_sc_MTU , path
.avg_loss , null , path.hops_number , path.hops , path.
isolated_domains));

153 }
154

82

Path Recommendation

155 return pathsList ;
156 } catch (error) {
157 throw error;
158 }
159 }

Figure D.1: Front-end view of the Path Recommendation System upon opening,
displaying retrieved paths from the Database. - Landscape version of 6.2

83

Path Recommendation

Figure D.2: Path Recommendation Form: A user interface enabling users to
filter the path list based on: destination, latency, bandwidth, loss, number of hops

and ISDs to avoid.

84

Path Recommendation

Figure D.3: Modal Window appearing in response to user interaction with a
path. It facilitates the copying of the traceroute command, complete with

pre-defined information specific to the selected path. - Landscape version of 6.4
85

Acknowledgements

Ho riservato questo spazio per ringraziare coloro che hanno fatto parte, in un modo
o in un altro, di questo percorso. Mettetevi comodi, sarò prolisso.

Un primo e doveroso ringrazimento va fatto senz’altro, al mio relatore, il Prof.
Valenza. Dal primo giorno ha saputo supportarmi al meglio, mostrandosi sempre
disponibile e dimostrandomi sostegno e fiducia durante tutto il percorso di tesi. Se
oggi sono qui, a raccogliere i frutti di questo lavoro, è anche grazie a lei.

Ringrazio Paola e Leonardo, coloro che mi hanno accolto, supervisionato e aiutato
durante il mio soggiorno ad Amsterdam. Dal primo giorno mi hanno fatto sentire
a casa. Mi hanno spronato a portare avanti un lavoro che fosse frutto di una mia
ricerca, spesso rivolgendosi a me come ad un collega più che ad uno studente,
credendoci più di quanto non facessi io stesso. Da questa collaborazione ho avuto
anche la possibilità di vedere pubblicato ciò per cui ho lavorato 5 mesi. Non
smetterò mai di ringraziarvi abbastanza per questa opportunità.

Ringrazio la mia mamma e il mio papà: Teresa e Francesco, travi portanti della
mia vita. Giorno dopo giorno, avete contribuito con un mattoncino a rendermi
la persona che sono oggi. Avete festeggiato i miei traguardi e mi avete aiutato a
rialzarmi dopo una caduta. Grazie a voi ho sperimentato cosa significa donare
totalmente sé stessi a qualcuno. Vi devo ogni cosa.

Ringrazio mio fratello, Alessandro, per essere diventato parte centrale della mia
vita, rendendosi la persona su cui fare affidamento senza mai dubitarne. La tua
fiducia nei miei confronti e il tuo chiedere un mio consiglio anche quando non ne so
nulla a riguardo, mi spronano a fare meglio nell’aiutarti a raggiungere ogni cosa
che possa renderti felice in questa vita.

Ringrazio i miei nonni: Nino, Antonietta, Lucio e Rina. Siete stati i miei capi
ultras negli ultimi 24 anni, gioendo per ogni evento della mia vita ed esaltando le

86

Acknowledgements

mie capacità ben oltre la realtà. Il vostro sostegno è stato la mia forza.

Ringrazio mia zia Manuela per essermi stata accanto nonostante la distanza,
non facendomi mai mancare affetto o un appoggio a cui affidarsi. Mi hai trattato
da adulto sin da quando adulto non lo ero affatto, aiutandomi a crescere e ad
affermarmi nel “mondo dei grandi”.

Ringrazio mio zio Mario, la persona che ha creduto nel mio percorso e nelle
mie scelte durante tutto il tragitto. Le sue parole di saggezza, il suo impegno e
l’interesse che ha messo nel cercare di aiutarmi e di non farmi mai mancare nulla,
mi hanno aiutato a raggiungere questo obiettivo.

Ringrazio la persona con cui condivido la “cella” da cinque anni e mezzo: Federica.
I ringraziamenti per lei potrebbero sostituire il contenuto di questa tesi. Sei in
grado di emozionarti e commuoverti per i miei traguardi più di quanto io possa mai
fare. L’amore, la pazienza e la gentilezza che mi dimostri ogni giorno mi rendono
una persona migliore.

Ringrazio i miei cugini: Lucio ed Emanuele. Negli ultimi anni ho particolarmente
sentito l’affetto che mi avete dato e la voglia di starmi accanto. In maniera diversa
siete stati un modello da seguire per me.

Ringrazio Jacopo, per aver condiviso questo percorso con me. L’ansia di un esame,
o per l’attesa di un voto, la fatica per eccellere in qualcosa e la felicità per aver
raggiunto un traguardo, sono tutte esperienze che abbiamo fatto insieme. In quanto
amico, mi hai aiutato ogni volta che sono stato in difficoltà, non solo accademica,
sacrificando il tuo tempo per farmi superare un ostacolo. In quanto ingegnere,
l’impegno che metti in un lavoro e la meticolosità con cui lo svolgi sono stati fonte
di ispirazione per me, mi hai reso un ingegnere migliore.

Ringrazio Lele, per la sua incrollabile stima nei miei riguardi. Nella nostra amicizia
hai saputo ricoprire ogni ruolo, dalla spalla su cui piangere per una delusione,
all’amico di sempre, quello che puoi chiamare alle 4 del mattino e con cui puoi
ridere fino a smettere di respirare. Nonostante i tuoi mille impegni, hai sempre
trovato il modo per alleggerire un po’ il mio zaino, durante questa camminata.

Ringrazio Donato, per la sua innata dote all’ascolto. Hai sempre dato ampio
spazio alle mie parole, porgendomi le giuste domande e donandomi preziosi consigli.
Hai dato valore alla mia breve esperienza in questa vita, chiedendomi ugualmente
un parere anche quando il tuo sguardo poteva arrivare al di là del mio. Il rapporto
di condivisione che abbiamo costruito mi aiuta a migliorare e crescere ogni giorno.

87

Acknowledgements

Ringrazio Benny e Stefano, per essere stati miei “compagni di viaggio” per un
po’. Anche se le nostre strade accademiche si sono separate due anni fa, abbiamo
continuato a vivere l’amicizia, condividendo insieme momenti di felicità ma anche
di tristezza. Avervi accanto nonostante la distanza fisica mi ha fatto vivere questa
esperienza con più serenità, con la consapevolezza che le nostre strade avranno
sempre modo di ricongiungersi.

Ringrazio Michele e Rocco, per continuare a far ancora parte della mia vita
dopo 12 anni, sebbene la distanza. In maniera diversa, condividiamo moltissime
cose ed obiettivi. Nel corso degli anni abbiamo continuato a motivarci e spingerci
oltre l’obiettivo, forse a volte dimenticandoci di fermarci a festeggiare. A voi devo
proprio questo tipo di sostegno, mi spronato ad inseguire i miei sogni.

Ringrazio “gli amici del quarto piano” : Akhil, Caterina, Davide, Jabroot e
Luana. Siete riusciti ad alleggerire la distanza da casa, rendendo quel piccolo
angolo di Torino un luogo accogliente in cui è bello stare. Le cene insieme, le arance
lanciate e le porte scassinate, le porterò sempre con me.

Infine, ringrazio ogni altra persona con cui ho avuto modo di confrontarmi lungo
questo cammino, ogni altro amico che mi è stato accanto. Negli ultimi otto mesi
ho vissuto in quattro città diverse, in tre stati diversi ed ho cambiato otto volte
casa in meno di sei mesi. Non avrei mai potuto farcela senza avere accanto tutti
coloro che mi hanno sostenuto.

Se mi facessero la solita e famosa domanda: “Cos’è più importante: il viaggio o la
destinazione?”, mi sentirei di rispondere, senza alcun dubbio: “La compagnia”.

Grazie ancora per essere stati la mia.

88

Bibliography

[1] Tomi Dufva and Mikko Dufva. «Grasping the future of the digital society».
In: Futures 107 (2019), pp. 17–28 (cit. on p. 1).

[2] Cristian Hesselman et al. «A responsible internet to increase trust in the
digital world». In: Journal of Network and Systems Management 28.4 (2020),
pp. 882–922 (cit. on pp. 1, 3).

[3] Rodrigo Bazo, Leonardo Boldrini, Cristian Hesselman, and Paola Grosso.
«Increasing the Transparency, Accountability and Controllability of multi-
domain networks with the UPIN framework». In: Proceedings of the ACM
SIGCOMM 2021 Workshop on Technologies, Applications, and Uses of a
Responsible Internet. 2021, pp. 8–13 (cit. on pp. 1, 3, 4).

[4] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,
and David G. Andersen. «SCION: Scalability, Control, and Isolation on Next-
Generation Networks». In: 2011 IEEE Symposium on Security and Privacy.
2011, pp. 212–227. doi: 10.1109/SP.2011.45 (cit. on pp. 1, 3, 5–7, 11, 17,
48).

[5] Antonio Battipaglia, Leonardo Boldrini, Ralph Koning, and Paola Grosso.
«Evaluation of SCION for User-Driven Path Control: A Usability Study».
In: Proceedings of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis. SC-W ’23.
Denver, CO, USA: Association for Computing Machinery, 2023, pp. 785–
794. isbn: 9798400707858. doi: 10.1145/3624062.3624592. url: https:
//doi.org/10.1145/3624062.3624592 (cit. on pp. 2, 5).

[6] Vincenzo Maffione, Francesco Salvestrini, Eduard Gras, Leonardo Bergesio,
and Miquel Tarzan. «A Software Development Kit to exploit RINA pro-
grammability». In: May 2016. doi: 10.1109/ICC.2016.7510711 (cit. on
p. 3).

[7] Jonghoon Kwon, Juan A. García-Pardo, Markus Legner, François Wirz,
Matthias Frei, David Hausheer, and Adrian Perrig. «SCIONLAB: A Next-
Generation Internet Testbed». In: 2020 IEEE 28th International Conference

89

https://doi.org/10.1109/SP.2011.45
https://doi.org/10.1145/3624062.3624592
https://doi.org/10.1145/3624062.3624592
https://doi.org/10.1145/3624062.3624592
https://doi.org/10.1109/ICC.2016.7510711

BIBLIOGRAPHY

on Network Protocols (ICNP). 2020, pp. 1–12. doi: 10.1109/ICNP49622.
2020.9259355 (cit. on pp. 9, 11, 17, 34).

[8] Leonardo Boldrini, Rodrigo Bazo, Cristian E.W. Hesselman, and Paola Grosso.
«UPIN - A shift in network control from operator to end user». English. In:
ICT Open 2021, ICT.OPEN2021 ; Conference date: 10-02-2021 Through
11-02-2021. 2021. url: https://www.ictopen.nl/ (cit. on pp. 17, 66).

[9] Fernando Pérez and Brian E. Granger. «IPython: a System for Interactive
Scientific Computing». In: Computing in Science and Engineering 9.3 (May
2007), pp. 21–29. issn: 1521-9615. doi: 10 . 1109 / MCSE . 2007 . 53. url:
https://ipython.org (cit. on p. 36).

[10] Michael L. Waskom. «seaborn: statistical data visualization». In: Journal of
Open Source Software 6.60 (2021), p. 3021. doi: 10.21105/joss.03021. url:
https://doi.org/10.21105/joss.03021 (cit. on p. 36).

[11] J. D. Hunter. «Matplotlib: A 2D graphics environment». In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55
(cit. on p. 36).

[12] The pandas development team. pandas-dev/pandas: Pandas. Version latest.
Feb. 2020. doi: 10.5281/zenodo.3509134. url: https://doi.org/10.
5281/zenodo.3509134 (cit. on p. 36).

[13] Accomazzo Anthony, Murray Nathaniel, and Lerner Ari. Fullstack React: The
Complete Guide to ReactJS and Friends. Fullstack.io, 2017. isbn: 0991344626
(cit. on p. 50).

[14] Material-UI Developers. Material-UI. 2023. url: https://mui.com/ (cit. on
pp. 51, 54).

90

https://doi.org/10.1109/ICNP49622.2020.9259355
https://doi.org/10.1109/ICNP49622.2020.9259355
https://www.ictopen.nl/
https://doi.org/10.1109/MCSE.2007.53
https://ipython.org
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://mui.com/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	INDIS 2023

	Background
	The UPIN Framework
	UPIN Framework Components

	SCION
	Function Properties
	Scalability
	Security Properties

	Exploring the Challenge
	UPIN and SCION: Intersection
	Performance Evaluation: Navigating Latency, Bandwidth, and Data Loss

	Experimental Setup
	SCIONLab: A Next-generation Testbed
	Architecture
	Initialization and Configuration
	Available Applications

	Software Architecture
	Overview
	Technical Requirements
	Scalability
	Fault Tolerance
	Portability
	Security

	Design Choices
	Database Design
	Technical Requirements Design

	Implementation
	Test-Suite Units and Interactions

	Path Selection
	Path Analysis and Result Presentation
	Latency Assessment
	Bandwidth Assessment
	Packet Loss Assessment

	Considerations

	Path Recommendation
	Path Recommendation: Architecture
	Technologies Involved

	Implementation
	Front-end components
	Back-end APIs
	Concluding Remarks

	Conclusion
	Future Works

	Experimental Setup (1)
	Software Architecture (1)
	Path Selection (1)
	Path Recommendation (1)
	Bibliography

