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Summary

The integration of carbon emissions as a metric in machine learning is a relatively
new concept. Nowadays, a predominant focus in research lies in achieving high-
performance levels without taking computational efficiency into account. This
neglect could be attributed to the lack of familiarity with existing approaches to
evaluate energy consumption in this domain.
This thesis delves into the realm of sustainable artificial intelligence, with a specific
focus on deep learning algorithms. The primary goal is to identify key factors
contributing to environmental challenges within this context. Employing an empir-
ical approach, the study investigates the emissions patterns of various algorithms
when applied to different real-time-series datasets. Furthermore, the study explores
how manipulating training hyperparameters, model architecture design, and prob-
lem formulation can impact energy consumption without severely compromising
performance. Using a Python library to assess carbon emissions and leveraging
models designed for time-series data, such as Long Short Term Memory, alternative
configurations are proposed within the specific case study.
Overall, this research aims to provide insights into utilizing different hyperparame-
ters and configurations in deep learning algorithms to foster a more environmentally
conscious artificial intelligence ecosystem.
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Chapter 1

Introduction

The rationale behind assessing and mitigating the environmental impact of Artificial
Intelligence (AI) systems arises from the exponential growth in their usage. In
fact, the rapid and expansive growth of AI has led to big changes across various
sectors, reshaping how we live and work. The term “AI” encompasses a spectrum
of technologies designed to simulate human intelligence, enabling systems to learn,
analyze, and adapt to complex tasks. The recent explosion of AI is indeed largely
attributed to advancements in technology and the unprecedented availability of
data [1]. The exponential growth in computing power, particularly with the advent
of GPUs (Graphics Processing Units) and specialized hardware for AI tasks, has
significantly accelerated the training and deployment of complex AI models [2],
[3]. Moreover, the proliferation of digital data in various forms, including text,
images, videos, and sensor data, has provided the fuel necessary for training AI
algorithms. This abundance of labeled datasets has been also encouraged by the
rise of data-sharing platforms [4].
However, this accelerated development in AI technologies has cast a spotlight on
energy consumption and its environmental implications. The necessity to craft
AI systems that not only offer remarkable performance but also curtail their
carbon footprint has never been more crucial. Achieving this demands a thorough
exploration into energy-efficient Machine Learning (ML) algorithms [5]. This
exploration forms the basis of this thesis, which aims to advance sustainability in
AI through monitoring and analyzing carbon emissions from ML algorithms.

ML is closely related to the broader field of AI due to their overlapping capabil-
ities such as learning and decision making. In early research on computational
intelligence, ML was born as a subset within the domain of AI in the late 1970s
[6]. At this stage, the ML goal of developing systems that could learn and make
judgments in an automated fashion was seen as one of the main objectives under
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Introduction

the AI umbrella.
However, as ML progressed through empirical studies on algorithms derived from
data rather than symbolic representation, it started to differentiate and specialize
compared to logic-based AI approaches [7]. By the 1980s, ML began to establish it-
self as a distinct discipline focusing on creating systems that use statistical inference
to learn from examples, as opposed to expert systems designed using logic-based
rule sets [8]. Nowadays, ML has evolved into a distinct subject with its theoretical
foundations and tools, although it remains tied to AI through shared automation
objectives. ML represents how subfields can emerge within a broader research
domain and mature at different paces. ML is universally defined as a broad set of
algorithms and statistical techniques that enable computer systems to automatically
improve tasks through experience, without needing to be explicitly programmed [9].
At a high level, ML algorithms build mathematical models upon exposing large
amounts of data. ML’s data-centric paradigm now complements symbol-based AI
methods with the overarching goal of developing intelligent systems.

Figure 1.1: Machine Learning Types.

ML, the field centered around enabling systems to learn and improve from experi-
ence or data ([1, 3]), encompasses diverse techniques leading to different learning
paradigms, as shown in Fig 1.1. Among all, supervised learning involves training
models on labeled datasets, where each input data is associated not only with
features but also with a corresponding output or target label [10]. In this way, the
model learns to map inputs to outputs based on the provided examples [1]. This
learning paradigm is of two main types:
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• Classification: In classification tasks, the model learns to assign inputs to
predefined categories or classes [3]. For instance, in an image classification
task, the model is trained on images labeled with specific objects or classes
(like "cat" or "dog"). During the training phase, it learns how to identify and
classify new, unseen images into these categories based on learned patterns
from the labeled data.

• Regression: Regression tasks involve predicting a continuous numerical value
or quantity based on input features, also called predictors [1], as shown in
Fig. 1.2. For example, in predicting house prices, the model learns from
historical housing data with attributes such as square footage, number of
bedrooms, and location to estimate the selling price of a house [11].

Figure 1.2: Prediction of a target numeric value based on a single feature [9].

Unsupervised learning, on the other hand, delves into uncovering hidden structures
or patterns within unlabeled data [12]. Thus, the algorithm has to extract the
meaning of data without the labels’ help [1]. Key techniques in unsupervised
learning include:

• Clustering: Clustering algorithms group similar data points together based on
their features, but without prior knowledge of categories [9]. These algorithms
identify clusters or groups within the data, where data points within the same
cluster are more similar to each other than to those in other clusters. For
instance, the k-means algorithm defines the similarity based on the distance
between points [1].

Reinforcement learning introduces a dynamic aspect, where agents (i.e. the learning
methods) learn optimal decision-making through interactions with their environ-
ment [9]. These agents improve their policies by navigating through trial-and-error
experiences, aiming to maximize rewards in a given environment [13]. This paradigm
finds application in various domains, from robotics to game-playing algorithms
like AlphaGo, where the system learns to make strategic moves through repeated
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gameplay [3].

Representation learning emerges as a pivotal subset of methods within ML, allowing
systems to automatically extract meaningful features from raw data [14]. These
features are essential in tasks such as classification or detection. Overall, these
diverse techniques address distinct aspects of learning: supervised for labeled data,
unsupervised for hidden patterns, reinforcement for dynamic decision-making, and
representation for feature extraction.

Deep Learning (DL), a subset of ML, stands out as a pivotal technology driving
the evolution of AI. It harnesses artificial neural networks with multiple layers,
allowing for representation learning through hierarchies of abstraction [14]. These
deep neural networks can progressively derive higher-level representations by com-
posing simple transformations on lower-level inputs [15]. During the years, the
development of robust programming platforms such as TensorFlow and PyTorch
and the advancements in hardware capabilities have facilitated the creation of more
sophisticated deep models [16]. A recent study [2] examines how DL has been more
prevalent in papers presented at the prestigious AI conference ACL1 between 2010
and 2020: these days, deep networks serve as the backbone for all publications.

Nowadays, model training requires significant computational time and power. This
is due to the increasing models’ complexity, given by factors such as the number of
parameters. In fact, the easiest technique to get better performances is to increase
the size of the model when there is access to large-scale data sets [2]. As the
training duration grows, the required computational power increases accordingly [17].
Additionally, if the model performs continuous learning, the computing cost may
increase even further [18]. In this context, the realm of ML has largely centered
around the pursuit of highly accurate models without giving due consideration to
energy consumption as a significant factor [19]. Nevertheless, ML algorithms require
vast amounts of computational resources for model training on large datasets. This
data-intensive paradigm of learning also means that ML models demand high
power both for training iteratively over vast datasets as well as inference during
deployment at scale [20].

In classical computer science fields, algorithmic progress is rigorously tracked based
on asymptotic analysis of cost scaling with problem size. For example, quicksort [21]
has clearly more efficient O(n log n) runtime compared to O(n2) sorting algorithms.
However, DL tasks such as seeking approximate solutions, defining problem diffi-
culty and assessing progress pose unique challenges compared to optimal problems.
Improvements are reported primarily in accuracy metrics rather than cost-scaling,

1https://2023.aclweb.org/

4



Introduction

ignoring the computational expenses required to attain new state-of-the-art results
[22]. In DL the primary objective has been to develop more profound and precise
models without computational constraints [23]. These models entail substantial
computing requirements (typically in GigaFlops) and demand extensive memory
(often in millions of parameters or weights) [17]. During the training phase, these
algorithms necessitate substantial computing power as they grapple with large
volumes of data. Recent findings [24, 25] have highlighted that large language
models alone, such as GPT-3 [26], can account for emissions totaling more than
500 tonnes of CO2eq – that represents a power consumption of almost 1,300 MWh
of electricity – for the entire process (including equipment manufacturing and
energy-based operational consumption). Such models are further utilized multiple
times during deployment.
These results are directly correlated with energy consumption, and thus, with
the production of electricity. Since electricity generation currently stands as the
primary sector emitting fossil fuel CO2 [27], it is essential to incorporate metrics
that measure the energy consumption of algorithms alongside existing benchmarks.
Already in 2010, approximately 35% of human-caused greenhouse gas emissions
(GHG) originated from energy production [28]. Only by evaluating model per-
formance jointly with computational efficiency, the DL field can hope to align
developmental priorities with constraints imposed by hardware limits and climate
change realities.
Thus, incorporating resource utilization into evaluations of DL performance is an
essential step in moving the discipline away from an emphasis only on performance
metrics. This aligns with the classical concept of algorithmic efficiency, which
prioritizes optimal performance in both time and space complexities when solving
computational problems. Approaching DL development with the same considera-
tions of efficiency rather than isolated improvements in accuracy will encourage
the design of algorithms that achieve state-of-the-art results while minimizing the
expenditure of computational resources like energy and memory [29]. Defining
efficiency metrics for learning algorithms based on their joint time, space and energy
scaling would help steer progress toward more sustainable ML techniques capable
of both high-quality outputs and efficient usage of processing capabilities. This
in turn is vital for maintaining the momentum of the field within the constraints
of finite hardware availability and the need to avoid environmental damages from
rapidly growing computational demands.

For these reasons, the concept of sustainable AI has emerged. It refers to the
development and application of AI systems that are environmentally conscious,
economically viable, and socially beneficial. It represents a concerted effort to
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instigate transformation across every stage of the life cycle of AI products. This en-
compasses the inception of ideas, the training phase, adjustments, implementation,
and overarching governance, all geared towards enhancing ecological sustainability
and promoting social equity. Sustainable AI goes beyond the scope of AI applica-
tions; rather, it encapsulates the entire socio-technical framework of AI [30].
Energy-efficient AI, an integral component of sustainable AI, focuses on reducing
the energy consumption and carbon footprint of AI systems and infrastructure.
Recognizing the environmental implications of AI technologies, there exists a grow-
ing necessity to evaluate and comprehend the energy consumption and associated
carbon emissions of these systems.
Fischer et al. [31] proposed an approach to assess the efficiency of any ML ex-
periment by considering it as a composite entity comprising a configuration and
environment. The configuration involves the specifics related to the task at hand,
encompassing aspects such as the type of task (inference, training, robustness
testing), the dataset employed, the model used, and all associated hyperparame-
ters. On the other hand, the environment pertains to the hardware and software
utilized during the execution of the experiment. Patterson et al. [26] suggested

Figure 1.3: Overview of the energy mix by country in 2022 [32].

that accounting for carbon emissions within this framework could be achieved by
incorporating the local energy mix as a part of the environment. The concept of an
energy mix delineates the distribution of available production from energy resources
to fulfill the energy requirements within a specific geographic area [32], as depicted
in Fig. 1.3. Primary energy source encompasses fossil fuels such as oil, natural gas,
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Figure 1.4: Primary energy use worldwide starting in 1800 [32].

and coal, alongside nuclear energy, waste utilization, and a diverse array of renew-
able energy sources, including biomass, wind, geothermal, water, and solar power.
Fig. 1.4 shows the global primary energy use from 1800 to 2022. This adjustment
recognizes the impact of the energy sources used during the experiment execution
on carbon emissions. The properties utilized to gauge the efficiency of a task are
termed metrics, such as accuracy, model size, and power draw [33]. These metrics
are specific to the experiment configuration. By conducting experiments with
varying configurations under a fixed task and environment, researchers can compare
their efficiency. Additionally, exploring how a particular model performs across
different environments can also offer insights into its adaptability and efficiency.
However, it is important to note that certain configurations and environments
might not be feasible due to practical constraints. For instance, the choice of a
dataset might impose the usage only of certain models, and, at the same time,
specific models could necessitate particular software or hardware for execution.
This integration of the local energy mix within the environmental parameters
acknowledges its influence on the overall environmental footprint of the experiment.

1.1 Research Objectives and Novel Contributions
Since the computational demands of AI algorithms, particularly ML models, con-
tribute significantly to energy consumption and subsequently to carbon emissions,
formulating strategies to minimize environmental harm is essential. This thesis
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delves into the realm of sustainable AI, particularly focusing on the crucial aspect of
monitoring and analyzing the carbon emissions produced by specific ML algorithms.

The overarching goal of this thesis is to analyze a critical domain within the realm
of ML model training, specifically focusing on time-series datasets derived from
network data. Understanding how parameters impact carbon emissions during both
the training phases and potentially in the subsequent inference phase is crucial.
Obtaining a comprehensive overview of the parameters to monitor serves as an
example of initiating such an analysis in a similar context.
The novel contributions of this study are the demonstration of the following
statements:

• There usually exists a compromise between carbon emissions and the perfor-
mance of a model.

• The first step in evaluating carbon emissions should be to use already available
open-source resources.

• Specific training hyperparameters should be considered when the analyses
focus on energy efficiency.

• Adjustments in a model’s architecture can impact its carbon emissions pro-
duction during both training and test phases.

• Key considerations about the possible consumption should be made when
initially formulating the problem.

• Each setting can have a different impact in terms of emissions during the
training and inference phase.

By delving into these questions, this study aims to shed light on the factors
influencing carbon emissions mainly during the training of ML models, offering
insights into the manipulation of model architecture for reduced energy consumption.
Moreover, it endeavors to scrutinize the implications of the initial problem setup.
This exploration lays the foundation for understanding and potentially mitigating
the environmental impact of ML processes on a broader scale.

1.2 Structure of the Thesis
The thesis is organized to provide a comprehensive analysis of the carbon emissions
and environmental impact of DL models.
The Literature Review, delves into existing research, examining the environmental
repercussions of DL. Particularly, the focus is on specific models such as Recurrent
Neural Networks (RNNs), with a detailed exploration of Long Short-Term Memory
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(LSTM). Additionally, this section critically evaluates current approaches geared
towards enhancing energy efficiency in these models.
Following this, the study narrows its focus to the Problem Statement and Dataset
Description, where the specific problem addressed is detailed. The thesis employs
two primary datasets for analysis: the traffic data sourced from Italian Mobile
Network Operators and the PVWatts energy estimate data in Turin, providing the
empirical foundation for the research.
The Methodology section lays out the approach employed to analyze the envi-
ronmental impact. It encompasses various strategies, such as CO2 monitoring,
manipulation of training parameters (including Epochs and Nodes Ablation), ar-
chitectural model design through Layers Ablation, and a meticulous process for
data aggregation.
The subsequent segment, Experimental Results, details the environment used for
experimentation and offers a comprehensive presentation of the findings derived
from the conducted analyses.
Finally, the Conclusions and Future Works section synthesizes the insights obtained
from the research, underlining their implications and potential directions for future
research in the field of energy efficiency in DL models.

This structured approach enables a systematic exploration and detailed investigation
into the environmental impact and carbon emissions within the realm of DL
models, aiming to contribute substantially to the discourse on sustainable AI and
computational efficiency.

9



Chapter 2

Literature Review

The field of AI research relies on a dynamic and evolving landscape, marked by
significant progress in recent years and a wide range of applications across various
domains. Complex and large-scale DL models have played a crucial role in this
growth. However, this trend is driven by the strong focus of the AI community
on obtaining a system’s accuracy – or similar metrics – as great as possible, often
at the expense of energy efficiency considerations [19]. As AI systems become
integrated into our daily lives and industrial processes, parallel concerns about the
economic, environmental and social costs have gained importance. In particular,
despite the undeniable potential of AI, there is a growing realization that the
energy consumption and carbon footprint associated with ML algorithms represent
challenges to a sustainable future [20] [17]. In fact, these improvements in accuracy
are conditioned upon the availability of huge computational power, leading to an
equivalent energy consumption. Hence, these models are costly during both the
training and development phases. Financially, this comes from hardware costs
and the electricity or cloud computing time needed. Environmentally, the carbon
footprint associated with powering modern tensor processing hardware adds to the
overall expense [5].

This literature review follows an extensive analysis of the critical interaction
between AI and environmental sustainability. It begins with an outline of the
broader AI usage, which contributes to several sectors, such as medical, financial
and transportation. Specifically, the focus is on AI research that relies on DL
methods. Subsequently, the focus narrows to the energy consumption patterns of
these algorithms, thereby providing the starting point for understanding the core
issues addressed in this thesis. By evaluating existing methodologies, this review
aims to provide a holistic understanding of the interplay between DL and energy
consumption, setting the stage for a deeper investigation into efficient solutions.

10



Literature Review

2.1 Carbon Emissions and Global Warming
Over the past 50 years, the demand for resources and energy has incredibly increased
due to the growing global population, which has resulted in a significant rise in
carbon emissions [34], as shown in Fig. 2.1. Since 2000, the amount of carbon
dioxide (CO2) in the atmosphere has increased globally by around 20 parts per
million (ppm) per decade, which is up to ten times faster than the average rate of
continuous CO2 increase during the previous 800,000 years [35]. This exponential
acceleration underscores the unprecedented impact of recent human activities
on our planet’s carbon balance and climate dynamics. Thus, it is evident that
keeping global warming to no more than a 1.5°C rise above pre-industrial levels
necessitates collective efforts [36]. In particular, the response to this global challenge
materialized in the form of the Paris Agreement, a pivotal framework outlined
under the United Nations Framework Convention on Climate Change1 (UNFCCC)
in 2015 [37].

Figure 2.1: The increase in worldwide emissions from the middle of the 18th
century to 2021 [34].

The burning of non-renewable fossil fuels – coal, oil, and natural gas – remains a
primary contributor to the escalating levels of CO2 in the Earth’s atmosphere. This
surge in emissions stands as a consequence of unsustainable human activities that
perpetuate the combustion of finite resources formed over millions of years, unable
to replenish at the rate of consumption [38]. In addition, widespread deforestation

1https://unfccc.int/
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has further exacerbated the release of carbon emissions, disrupting the delicate
balance of the planet’s ecosystems. The repercussions of these actions are profound,
as the surge in GHG has intensified the process of global warming, triggering a
cascade of environmental changes that pose a significant threat to our planet’s
future. The impact is twofold: a surge in emissions directly linked to energy
consumption and the collateral damage from depleting natural ecosystems, both of
which pose dire threats to the planet’s future.

To comprehend the direct influence of human actions on the entire ecosystem, it is
crucial to begin by understanding one of the most widely recognized consequences:
global warming. When solar radiation reaches the Earth’s surface, some of it is
absorbed and re-emitted as infrared radiation. GHG, including CO2, methane
(CH4), and nitrous oxide (N2O), trap this heat within the atmosphere, preventing
it from escaping into space. This process maintains the Earth’s habitable tem-
perature, allowing life to thrive. However, the excessive accumulation of GHG,
primarily derived from human activities, has intensified the greenhouse effect,
resulting in a rapid increase in global temperatures. Thus, the correlation between
carbon emissions and global warming is inseparably tied to the GHG effect, the
natural mechanism regulating the Earth’s temperature. Undeniably, carbon dioxide
emissions are the foremost driver of global climate change [34].

The surge in carbon emissions has disrupted the delicate balance of the Earth’s
climate systems, leading to a myriad of consequences, not only global warming.
These include a surge in the frequency and intensity of extreme weather events
such as hurricanes, droughts, and heat waves, as confirmed also by the European
Commission2. Moreover, the rise in global temperatures has accelerated the melting
of polar ice caps and glaciers, contributing to the alarming rise in sea levels. All
these shifts in weather patterns have been led by the disruption of the delicate
equilibrium of ecosystems and this, in turn, is causing the extinction of numerous
plant and animal species. The repercussions of global warming and associated
weather changes are far-reaching, affecting not only the environment but also
human health, agriculture, and the economy. Recent records from the National
Center for Environmental Information in 2023 (as of November 8) underscore
the staggering toll of 25 confirmed weather and climate disaster events in the
United States, each causing losses surpassing $1 billion [39]. Moreover, the impact
of global warming transcends geographical boundaries, affecting both developed
and developing nations. The disproportionate burden of climate change is often
borne by marginalized communities and vulnerable populations, exacerbating social
inequalities and economic disparities. In regions prone to extreme weather events,

2https://climate.ec.europa.eu/climate-change/consequences-climate-change_en
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such as coastal areas and small island nations, the rise in sea levels poses an
imminent threat to livelihoods and infrastructure. Furthermore, the disruption of
agricultural patterns and water resources jeopardizes food security and exacerbates
the risk of famine in vulnerable regions.
The consequences of global warming extend beyond environmental and social
dimensions, influencing also the economic sectors and the geopolitical stability.
The increasing frequency of natural disasters places a significant strain on na-
tional economies and infrastructure, impeding long-term sustainable development.
Moreover, the geopolitical ramifications of climate-induced migration and resource
scarcity may exacerbate tensions and conflicts in regions already grappling with
political instability.
The interconnected nature of these challenges underscores the imperative for collec-
tive action to address the root causes of global warming and mitigate its far-reaching
impact. In general, the impact of human actions is profound, with the surge in
greenhouse gas emissions giving rise to a myriad of environmental changes that
pose a threat to the delicate balance of the planet in every aspect. The intercon-
nectedness of these effects underscores the urgency of addressing the root causes of
carbon emissions and implementing sustainable solutions to mitigate their impact.

After understanding the significance of carbon emissions in the Earth’s system, it
is crucial to delve into the analysis of the primary causes behind their production.
The primary sources of carbon emissions stem from the combustion of fossil fuels
for electricity generation, transportation, industrial processes, and residential
heating [27]. The burning of coal, oil, and natural gas releases large quantities
of CO2 into the atmosphere, constituting the largest proportion of anthropogenic
carbon emissions. In addition, deforestation and land-use changes contribute to the
release of CO2, as forests act as natural carbon sinks, absorbing and storing carbon
from the atmosphere. The rapid deforestation of vital ecosystems, such as the
Amazon rainforest, has significantly diminished the Earth’s capacity to sequester
carbon, exacerbating the impact of carbon emissions on global warming.
This study specifically targets carbon emissions generated in electricity generation,
given its direct correlation with the implementation of algorithms. This connection
lies in the computational demands associated with running algorithms. The
execution of complex algorithms, especially those used in machine learning and
data processing, often requires substantial computational power. This demand is
frequently met by data centers and computing facilities, which, in turn, rely on
electricity for their operation.

13



Literature Review

2.2 Deep Learning Models

In the realm of AI, the inception of DL often denoted as deep neural networks,
marked a departure from traditional problem-solving approaches. Initially, AI
excelled at tasks that, while intellectually challenging for humans, were concep-
tually straightforward for computers – problems articulated by a set of formal,
mathematical rules [40]. However, the true challenge for AI lies in tackling tasks
that are intuitive for humans like speech recognition, where formal descriptions
proved elusive.
The breakthrough in addressing these challenges came with the adoption of a new
paradigm: allowing computers to learn from experience and comprehend the world
through a hierarchy of concepts [41]. In this paradigm, each concept is defined
in relation to simpler ones, forming a hierarchical structure. By accumulating
knowledge from real-world experiences, this approach eliminates the necessity for
human operators to explicitly specify all the knowledge required by the computer.
The hierarchy of concepts empowers the computer to grasp intricate ideas by con-
structing them from simpler foundational ones. Visualized as a graph illustrating
the building blocks of these concepts, the structure is deep, comprising multiple
layers. This characteristic led to the nomenclature "deep learning" [1].

Thus, DL involves the training of multi-layered networks of nonlinear computational
units [14]. Each of these units operates by processing inputs transmitted via
weighted wires, resulting in a real number output derived from the weighted sum
of the input values. This output is achieved through the application of a non-linear
activation function, typically uniform across all gates within the network, although
the number of inputs to individual gates may vary. Each layer processes and
transmits information to the next layer, allowing the network to learn and make
decisions based on complex patterns in the data it is trained on [42].
Usually, during the training process, the objective is to determine a set of weights
for the wires that minimizes errors. The training of deep learning networks is
facilitated through techniques like stochastic gradient descent, often referred to
as backpropagation within the context of neural networks. During this process,
an error function is constructed, and the network’s weights are adjusted using the
derivative of the error function. Notably, overfitting is a significant concern in
DL, given that large networks can comprise hundreds of millions of weights [43].
On the other hand, the learning algorithm is unable to acquire certain properties,
including the number of layers and neurons, as well as other choices like learning
rate or activation function. These properties, known as hyperparameters, need
to be manually set or determined through an optimization routine and cannot be
learned during the training process [44]. These networks exhibit versatility in their
output, ranging from single real numbers for regression tasks, multiple numbers in

14



Literature Review

the context of multivariate regression, to probabilities across different classes for
both binary and multiclass classification scenarios. This adaptability underscores
the power of deep neural networks to handle complex input data and perform
diverse tasks with flexibility [11].

Figure 2.2: A neural network consisting of a single input, one output, and two
hidden layers, with each hidden layer comprising three hidden units.

The Fig. 2.2 illustrates the architecture of a deep neural network designed with a
specific configuration, featuring an input layer, two hidden layers, and an output
layer. Each layer contains a defined number of units or neurons, showcasing the
intricate connections that enable the network to learn and make predictions.
At the beginning of the network is the input layer. This layer represents the initial
information fed into the neural network. In the context of the example, it can be
imagined as the features of a dataset, where each feature corresponds to a specific
aspect of the input data.
Moving into the heart of the network, there are two hidden layers, each comprising
three hidden units. These hidden layers play a crucial role in learning complex
patterns from the input data. The connections between units in adjacent layers
are associated with weights, which are adjustable parameters learned during the
training process.
At each hidden unit, the network performs a two-step process. First, it calculates
the weighted sum of the inputs, considering the associated weights. This step
involves multiplying each input by its corresponding weight and summing up these
products. It reflects the network’s ability to assign importance to different features
based on their impact on the learning task. The second step involves applying a
non-linear activation function to the weighted sum. This introduces non-linearity
to the model, enabling the network to capture complex relationships in the data.
Common activation functions include sigmoid, tanh, or ReLU (Rectified Linear
Unit).
The final layer, known as the output layer, produces the network’s prediction or
output. The number of units in this layer depends on the nature of the task. For
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example, in a binary classification task, there might be one unit with a sigmoid
activation function, while a multiclass classification task could involve multiple
units with softmax activation.

In traditional ML modeling, feature extraction often relies on manual efforts,
requiring domain experts to identify and design relevant features for the model.
However, the landscape shifts in DL, where feature extraction takes on an automated
character [45]. The motivation for adopting DL, particularly in scenarios involving
data such as images represented by low-level features like pixel intensities, stems
from the pursuit of achieving a higher-level understanding of the data. Unlike
traditional ML, DL models leverage their architecture to automatically learn and
extract hierarchical representations of features from raw data, eliminating the need
for explicit manual feature engineering. This shift in paradigm allows DL models to
uncover complex patterns and representations in data, contributing to their efficacy
in various domains. On the other hand, this translates to a strong correlation
between data quantity and performance: the latter is often unsatisfactory when
dealing with limited volumes of data [14].
DL is also driven by the concept of multi-task learning, which posits that an
effective higher-level data representation should be applicable across various tasks
[1]. For this reason, DL models often share initial levels of the network among
different tasks. In a typical deep neural network architecture, layers of logical units
are interconnected. In a fully connected layer, the output of each unit within the
layer is linked to the input of every unit in the subsequent layer.

The ability to generate complex Neural Networks (NN), which needs the creation
of larger datasets, has been one of the main causes behind the incredible advances
in ML technology [4]. Representative NN today includes the Convolutional Neural
Network (CNN) [46] and the Recurrent Neural Network (RNN) [1]. This thesis
will concentrate on RNNs out of all the possible NNs. The choice is justified by
their prevalent use within this research context and their capacity to address the
specific requirements of this study.

2.2.1 Recurrent Neural Network
Human thinking does not reset every moment; instead, it relies on the ability
to consolidate information acquired at different time instants, emphasizing the
persistence of our thoughts. The term ‘recurring’ in RNNs, in fact, is attributed
to their capacity to execute a consistent operation for every element within a
sequence, with the resultant output contingent on preceding computations. They
have the unique ability to process sequences of information one element at a time.
At each temporal step, the network takes in a new input from the sequence while
maintaining an internal state representation that encodes the sequence seen so
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far [11]. This is achieved through the incorporation of a Hidden Layer within the
network, where the key feature lies in the RNN’s Hidden State – a ‘memory state’
retaining knowledge from previous inputs. This characteristic bears a striking
resemblance to RNNs, which, just like our cognitive processes, have the capability
to integrate information across different time instances. Thus, they represent a
significant advancement in NN architecture, offering a dynamic solution for handling
sequential data.
Fig. 2.3 shows the difference between an RNN and a feed-forward neural network:

Figure 2.3: Difference in information flow between an RNN and a feed-forward
neural network.

while traditional NNs maintain a unidirectional flow of activations from input to
output, RNNs introduce a unique feature by incorporating backward connections.
Feed-forward networks lack the capacity to retain previous input information,
limiting their predictive abilities. Since these networks solely process the current
input, they lack temporal sequencing. They have no inherent capability to recall
any prior events, except for what has been learned during their training.

Essentially, an RNN in its most elementary form, comprises a neuron that accepts
input, generates an output, and cycles that output back into itself – as depicted in
Fig. 2.4.

In this way, it has the ability to consider the context of previous inputs, which
gives the notion of dynamic change over time. The functioning of the network
starts when it processes the input X0 from the sequence, generating an output
denoted as L0. Subsequently, L0, along with X1, collectively serves as the input for
the ensuing step. This process continues iteratively, with each Lt derived from the
previous step and Xt+1 forming the input for the subsequent step. This sequential
progression allows the network to maintain context throughout the training process.
The expression representing the current state can be defined as:

Li = f(Li−1, Xi) (2.1)
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Figure 2.4: Basic instance of a RNN.

In this formula, Li is the current state, which is a function of the preceding state
Li − 1 and the input Xi.
A feed-forward neural network, similar to various deep learning algorithms, employs
a weight matrix for its inputs to generate an output. However, in contrast to
this, RNNs assign weights to both the present and preceding inputs. Moreover,
a recurrent neural network adjusts the weights for both gradient descent and
backpropagation across time.
Incorporating the activation function in the formula 2.1, the current hidden state
Li can be expressed as:

Li = tanh(Whh · Li−1 + Wxh · Xi) (2.2)

Here, W represents the weight, L signifies the single hidden vector, Whh denotes
the weight at the previous hidden state, Wxh is the weight associated with the
current input state, and tanh represents the activation function. This activation
function introduces non-linearity and effectively compresses the activations into
the range of [-1, 1].

Since RNNs exhibit the ability to remember and utilize preceding information,
where inputs and outputs are not independent, they emerge as the solution to
predict subsequent words in a sentence or sequence. Moreover, the utilization of
shared parameters across all inputs or hidden layers decreases complexity and the
number of parameters remains constant even as the number of time steps in the
sequence expands [3].
On the other hand, as data progresses through an RNN, certain information is
progressively eroded at each time step. Over time, the RNN’s state gradually
loses any trace of the initial inputs, functioning essentially as a short-term memory
network. This issue is primarily associated with the unstable gradient problem,
where the gradient diminishes as it traverses backward through layers, significantly
slowing down learning in earlier layers. In RNNs, this issue is exacerbated since
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the gradients not only flow backward through layers but also extend backward
through time. This prolonged network operation increases the instability of the
gradient, making it extremely intricate for effective learning [15]. To mitigate this
issue, long-term memory cells have been introduced to address the limitations
of conventional RNNs. These newer cell architectures have demonstrated such
effectiveness that the base cells are no longer in use.

Similar to many other deep learning algorithms, RNNs are relatively old. The
history of RNNs starts in the 1980s, but it is only in recent years, driven by increased
computational power and abundant data resources, that we have recognized their
remarkable potential. Furthermore, the introduction of Long Short-Term Memory
(LSTM) networks in the 1990s has pushed RNNs to the forefront of deep learning.
In particular, RNNs’ intrinsic memory enables precise prediction and understanding
of sequential data in various domains, including time series, speech, text, financial
data, audio, video, weather, and more. Their unique ability to understand temporal
dynamics surpasses the spatial content focus of other algorithms. In the words of
Lex Fridman from MIT, RNNs shine when ‘the temporal dynamics that connect
the data are more important than the spatial content of each individual frame’.

2.2.2 Long Short-Term Memory
LSTM [47] is a particular type of RNN, specifically designed to handle problems
involving sequential data, particularly those with long-term dependencies. Unlike
traditional RNNs, LSTMs excel in remembering important information over ex-
tended time periods, solving the vanishing gradient problem often encountered
in RNNs. The problem of vanishing gradients refers to the issue where, during
training, the gradients calculated for adjusting the weights of neural network layers
become exceedingly small as they backpropagate through the network during train-
ing. When gradients become very small, during the training process, the network’s
weights are updated very slowly or not at all, causing the network to learn slowly
or not effectively.

The core of an LSTM model is the “cell state”, which acts as a memory unit
preserving information through time. This component allows LSTMs to capture
dependencies between elements in a sequence, which is essential in understanding
the context of the data. It is visually depicted by the horizontal line in Fig. 2.5,
employing σ (Sigmoid) and tanh (Hyperbolic Tangent) layers. In the figure, ht−1
represents the output from the preceding LSTM unit, while ht is the current output.
Similarly, Ct−1 denotes the memory from the last cell unit, and Ct is the newly
updated memory. Finally, xt is the input vector to the LSTM unit. The cell state
runs is analogous to a conveyor belt: carrying and preserving information without
alteration. The architecture is made up of specialized “gates” – the forget gate ft,
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Figure 2.5: The memory element within the LSTM architecture.

input gate, and output gate. Each gate has its specific function in regulating the
flow of information within the cell state.
The forget gate decides what past information to discard, taking into account the
current input data xt and the previous hidden state ht−1. It filters out less relevant
information, allowing the LSTM to prioritize essential elements.
The input gate processes new input data xt and decides what new information is
essential to remember, creating a “new memory update vector” Ct. This vector is
then integrated into the cell state, modifying it according to the relevance of the
new information.
Lastly, the output gate generates the new hidden state ht by combining the updated
cell state, the current input data, and the previous hidden state.
This way, the LSTM network effectively manages the long-term memory and
short-term working memory, enabling it to process sequences by remembering
and selectively using information, by employing basic addition or multiplication.
For this reason, it offers an enhancement over the conventional RNN method and
can be used for sequence prediction tasks, language modeling, and time-series
analysis where understanding dependencies between elements over time is crucial.
Furthermore, these gating mechanisms help maintain the steepness of the gradients,
preventing them from diminishing significantly as they backpropagate through the
network. By doing so, LSTMs effectively address the vanishing gradient problem,
ensuring that the training remains effective and shorter and that the network
maintains high accuracy in learning temporal dependencies over long sequences.

2.3 Carbon Emissions in Deep Learning
In the rapidly evolving landscape of DL and computational systems, understanding
the intricate interplay between energy consumption and environmental impact is
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fundamental. This chapter embarks on an insightful exploration of energy modeling
and environmental impact assessment within DL frameworks. Through a series of
comprehensive subsections, this chapter delves into the theoretical foundations of
energy models, investigates the relationship between energy consumption and carbon
emissions in executing algorithms, and the tools used to calculate carbon emissions.
This chapter seeks to analyze and understand why DL has an environmental impact
and how it can be measured.

2.3.1 Theoretical Energy Models
In today’s digital world, understanding how our computers use energy holds
significant importance. This chapter is all about explaining two big concepts:
energy and power consumption. These notions will be explored to demonstrate
how programs consume energy during operation.

Understanding how ML tasks impact energy utilization is critical for reducing
carbon emissions. This description investigates theoretical energy models as a
first step toward measuring and comprehending the energy footprint of computing
operations. These models offer insights into estimating energy from a theoretical
standpoint, independent of programming languages or hardware platforms.

Defining Energy Consumption: Energy consumption represents the total power
consumed over a specific duration [48]. It is expressed as the integral of power with
respect to time:

E =
Ú T

0
P (t) dt (2.3)

where: E = Energy [J]
Correspondingly, power (Pavg) is delineated as the rate at which energy is utilized
within a given timeframe, calculated as the total energy consumed (E) divided by
the duration (T ):

Pavg = E

T
(2.4)

where: P = Power [W]
Static and Dynamic Power: Within computing systems, power is categorized
into static (leakage) and dynamic components. Static power refers to consumption
during inactivity, while dynamic power involves the energy dissipated by the circuit
during active operations [48]. Dynamic power (Pdynamic) is influenced by factors
such as activity factor (α), voltage (Vdd), capacitance (C), and clock frequency (f):

Pdynamic = α · C · V 2
dd · f (2.5)

where α will be zero if the circuit is off [49].
Dynamic power directly affects how much energy the processor uses.
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Program Energy Consumption: The energy consumed by a program is a
product of instructions count (IC), clock per instruction (CPI), and energy per
clock cycle (EPC):

E = IC · CPI · EPC (2.6)

The EPC defines the energy expended per instruction and exhibits a direct cor-
relation with C · V 2

dd. Diverse instructions possess distinct CPI values, signifying
varied energy usage. For instance, memory accesses, incur significantly higher
energy consumption than floating-point operations due to the multiple cycles and
access delays associated with memory operations [50].

2.3.2 Energy Consumption and CO2 relationship
The exploration of the intricate relationship between energy consumption and
carbon emissions in local computing systems is fundamental to understanding
the environmental impact of algorithm execution. As depicted in Fig. 2.6, this
section aims to unravel the complex interplay between the energy sources fuelling
computational processes and the resulting carbon emissions. It delves into the
energy flow within local computation, elucidating the process where traditional
fossil fuels like coal, oil, and natural gas undergo combustion in power plants
to generate electricity. This combustion emits GHG, including carbon dioxide,
contributing significantly to the carbon footprint.

The electrical grid, functioning as a distribution network for electrical power, relies
on power plants as primary sources. Fossil fuel power plants play a crucial role by
converting carbon-based fuels into energy through combustion, and heating water
to drive turbines that generate electricity. This is the process that emits GHG,
into the atmosphere. However, the landscape of energy sources extends beyond
these fossil fuels. The electrical grid harnesses power from diverse renewable or
low-carbon sources like hydroelectric and solar power, contributing to a varied
energy mix.
It is important to note that different power plants use varying fuel sources, resulting
in a combination of energy types within a geographical region. This mix (called
energy mix) might include a combination of fossil fuel power plants (coal-fired,
oil-burning, natural gas) alongside renewable energy plants [32]. The choice of
fuel significantly impacts the environmental footprint of a power plant. Coal-fired
plants, for instance, exhibit higher CO2 emissions per unit of power produced
compared to oil-burning and natural gas plants [51].

Considering this varied composition of power sources within the local electrical
grid, the carbon emissions footprint of an individual computational device becomes
contingent on these sources. Therefore, evaluating the environmental impact
necessitates a thorough understanding of the energy mix powering computational
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Figure 2.6: Overview of energy flow to power DL computations.

activities. Overall, the types of fuels employed by power plants within the grid
directly impact the carbon emissions associated with each computing device. This
underlines the criticality of comprehending and accounting for the diversity of
energy sources in assessing the environmental impact of local computation.

2.3.3 Carbon Emissions Calculation Tools
In the realm of carbon emissions calculation tools, a deep exploration reveals a
diverse landscape that matches different preferences and study requirements. The
first crucial distinction lies in the environment within which each tool operates:
whether integrated into a Python script or accessible online. A meticulously
organized Table 2.1 catalogs the surveyed tools, delineating them based on their
respective environments. The primary divergence stems from whether the analysis
is conducted in real-time, as is the case with Python libraries, or post-execution,
characteristic of online tools. Regardless of the programming language being used,
online tools may be utilized without changing the code. Python libraries provide
measurements of the consumption of various parts of the script but clearly can
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only be used in Python programming.
Despite these differences, a unifying factor among all these tools is their ability
to calculate emissions in terms of energy costs. This is paramount, considering
that current scientific metrics predominantly revolve around computational time.
However, this metric proves insufficient in providing a comprehensive overview
due to the variability in hardware components. In fact, the same code executed
on different machines can yield drastically divergent energy usage patterns. This
unpredictability underscores the necessity of integrating energy cost evaluations
within the framework of AI model development.
Moreover, the prevalent focus on inference and, occasionally, the training time of the
final model fails to encapsulate the complete energy footprint of the AI development
cycle [52]. The process of developing DL models for deployment consists of multiple
stages: model selection, training, and inference. Model selection, a crucial part
of the process, entails multiple iterations, diverse architectures, and extensive
hyperparameter tuning, collectively contributing to substantial energy expenditures.
Continuous learning paradigms exacerbate this issue by necessitating recurrent
retraining, entailing extended periods of model adjustments and consequent energy
consumption, aspects often sidelined in traditional evaluation metrics.
In order to fully assess the environmental impact of AI algorithms, it is necessary to
shift towards a more inclusive evaluation methodology. This entails accounting for
the full spectrum of energy costs, spanning not only inference and the final model
training but also encompassing the cumulative energy expenses incurred during
model selection, hyperparameter tuning, and continuous learning phases. Such
an encompassing approach is crucial to fostering conscientious AI development
that factors in both computational efficiency and environmental sustainability. In
recent years, several open-source platforms have aimed to improve transparency
by estimating energy usage and carbon emissions associated with DL experiments.
Rather than simply measure instantaneous resource usage, these tools aim to model
overall energy demands from code and dataset activity over time. This facilitates
more robust comparisons of sustainability across different modeling strategies
and infrastructures. The immediate and observable consequence of training and
deploying a model is the release of CO2 and other GHG resulting from heightened
power consumption, specifically the dynamic consumption, during operational
runtime of the equipment [53]. Among the significant tools studied are:

1. Green-Algorithms3 (GA) [54]: employs a user-centric approach to estimate
energy consumption focusing on both CPU and GPU usage. For CPU assess-
ment, users can input their CPU model, enabling GA to access the Thermal
Design Power (TDP) from its internal database. Alternatively, users can

3https://www.green-algorithms.org/
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Python Libraries Online Tools

CodeCarbon

Carbontracker Green Algorithms

Eco2AI

experiment-impact-tracker

Cumulator ML CO2 Impact

energyusage

Table 2.1: Commonly used carbon tracking tools available for online estimation
afterward or at runtime in Python scripting.

manually input the TDP if available. In the absence of user-provided TDP
data, GA defaults to an average approximation of 12 watts per core for power
consumption estimation.
When it comes to GPU analysis, GA employs a similar model-based strategy,
searching a predefined list for the corresponding TDP based on the GPU
model provided. Users also have the option to input the GPU’s TDP if it’s
not included in the database. In cases where the TDP remains unknown,
GA uses an average approximation of 200 watts for GPU power consumption
estimation [54].

2. ML CO2 Impact4 [55]: focuses solely on estimating the energy consumption
of GPU usage. Therefore, the tool does not provide insights into the energy
consumption of the CPU during the process. It offers users the ability to
input their hardware, runtime, and cloud provider details to calculate two key
metrics: raw carbon emissions produced and an estimated offset figure, which
is contingent upon the cloud provider’s grid specifications.
This tool operates by employing a model-based methodology to approximate
the TDP of the GPU based on a predefined list of GPU models and their
corresponding TDP values. However, if the provided GPU model isn’t included
in the database, MLCO2 cannot automatically retrieve the TDP value. To

4https://mlco2.github.io/impact/
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address this limitation, users are encouraged to contribute missing TDP values
by submitting a pull request for database updates [55].

3. CodeCarbon 5 [56]: provides insights into the energy consumed by CPUs
and GPUs during software execution. To measure CPU energy consumption,
CodeCarbon relies on RAPL (Running Average Power Limit) files or on Power
Gadget, specifically for INTEL CPUs, and requires root access. However, if
access is not available, CodeCarbon utilizes the model of the CPU in order
to find the TDP. In case the model is unknown, the tool uses a fixed value
of 85W. For GPU energy consumption estimation, CodeCarbon utilizes the
pynvml library, specifically designed for NVIDIA GPUs. Access to either the
RAPL files or NVIDIA GPUs is necessary for CodeCarbon to accurately track
and report energy consumption [56].

4. Carbontracker6 [57]: specializes in tracking the energy consumption of CPU
and NVIDIA GPUs during model training. It leverages RAPL files, specifi-
cally for INTEL CPUs with root access, to report CPU energy consumption.
However, without access to these files, CPU measurement becomes unavailable.
For NVIDIA GPUs, CarbonTracker utilizes the pynvml library to measure en-
ergy consumption, exclusively catering to NVIDIA GPUs and not supporting
non-NVIDIA ones [57].

5. Eco2AI7 [58]: offers a comprehensive approach to monitor energy consumption
of both CPU and NVIDIA GPUs. It calculates equivalent carbon emissions
by considering regional emission coefficients. For CPU energy consumption
estimation, Eco2AI utilizes a model-based approach, searching a predefined
list for the corresponding TDP. In cases where the TDP is unavailable, Eco2AI
employs an average approximation of 100 watts. When measuring GPU energy
consumption, Eco2AI relies on the pynvml library, specifically tailored for
NVIDIA GPUs, omitting measurement capabilities for non-NVIDIA GPUs [58].

6. experiment-impact-tracker8 (EIT) [59]: specializes in tracking CPU and
NVIDIA GPU energy consumption during computational tasks. For CPU
energy measurements, EIT relies on RAPL files, specifically accessible for
INTEL CPUs with root access and Linux operating systems. However, it
does not offer CPU energy consumption monitoring for non-INTEL CPUs or
non-Linux systems.

5https://codecarbon.io/
6https://github.com/lfwa/carbontracker
7https://github.com/sb-ai-lab/Eco2AI
8https://github.com/Breakend/experiment-impact-tracker
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When measuring NVIDIA GPU energy consumption, EIT uses the nvidia-smi
command line, tailored exclusively for NVIDIA GPUs. It doesn’t extend its
measurement capabilities to non-NVIDIA GPUs [59].

7. Cumulator9 [60]: measures CPU utilization by default. For CPU analysis, it
utilizes a model to identify the TDP by searching a predefined list, resorting
to an average of 250W in case the TDP is unknown.
Regarding GPU assessment, Cumulator employs a similar approach, using a
model to match the GPU model with its corresponding TDP. If the TDP is
unavailable, it defaults to an average of 250W, based on the Nvidia GeForce
GTX Titan X, a prevalent GPU model in the EPFL Machine Learning and
Optimization Laboratory’s IC cluster. Cumulator evaluates only one GPU or
one CPU.
Compatible with Linux, Windows, and MacOS systems, Cumulator offers also
a web application feature. This web-app automatically estimates accuracy
and power consumption for four distinct algorithms – Linear Regression,
Random Forest, Decision Tree, and Neural Network –based on the provided
dataset. Users can upload datasets and specify the target column, which
will be automatically excluded from the accuracy and power consumption
computations [60].

8. energyusage10: measures CPU power consumption by accessing the RAPL
interfaces present in Intel processors. In addition to CPU power, EnergyUsage
accounts for GPU power usage for systems equipped with Nvidia GPUs that
support the NVIDIA-smi program. However, it’s important to note that due
to the specific methods used for energy measurement – utilizing the Intel
RAPL interface and NVIDIA-smi – the package is compatible only with Linux
kernels.

The summarized characteristics of the carbon emission calculation tools provided
in Table 2.2 delineate their primary features regarding energy measurement, par-
ticularly concerning CPU and GPU assessments. Additionally, the table specifies
operating system requirements where pertinent for each tool. The definition of
energy measuring methodology and operating system compatibilities within these
tools serve as a critical reference to users looking to include carbon emission
estimates into their AI model-building process.

9https://pypi.org/project/cumulator/
10https://pypi.org/project/energyusage/
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Tool CPU Energy
CPU Model /

RAPL or Power Gadget
GPU Energy

GPU Model /

Power Tool
Required OS Compatibility

CodeCarbon Yes Yes / RAPL and Power Gadget Yes No / pynvml -
All CPUs

Nvidia GPUs only

Carbontracker Yes No / RAPL Yes No / pynvml Linux
Intel CPUs only

Nvidia GPUs only

Green Algorithms Yes Yes / No Yes Yes / - -
All CPUs

All GPUs

Eco2AI Yes Yes / No Yes No / pynvml -
All CPUs

Nvidia GPUs only

EIT Yes No / RAPL and Power Gadget Yes No / nvidia-smi -
Intel CPUs only

Nvidia GPUs only

Cumulator Yes Yes / No Yes Yes / - -
Intel CPUs only

Nvidia GPUs only

ML CO2 Impact No - Yes Yes / - -
No CPUs

All GPUs

energyusage Yes No / RAPL Yes No / nvidia-smi Linux
Intel CPUs only

Nvidia GPUs only

Table 2.2: Summary of the fundamental features of each tool for measuring energy
and CO2 equivalents.

2.3.4 Deep Learning’s Environmental Implications
The integration of the digital landscape within modern society presents a signifi-
cant opportunity for advancing energy efficiency and monitoring carbon emissions,
particularly in ML algorithms. The exponential growth and reliance on internet-
enabled devices, coupled with widespread internet accessibility, have revolutionized
our understanding of online and offline realms. However, this digital revolution,
despite its potential for smarter energy usage and management, has posed substan-
tial challenges in terms of energy consumption [61]. In this context, Information
Technology (IT) companies play a pivotal role in steering the transition toward
a more sustainable, renewable energy-driven economy, crucial for reducing GHG
emissions and mitigating climate change impacts. Despite considerable strides in
enhancing energy efficiency, the surge in IT-related energy demand is remarkable,
encompassing the energy required not only to power the devices but also to sustain
data centers, communication networks, and the manufacturing processes of these
technological tools. The IT sector, primarily based in energy-intensive manufac-
turing hubs like China and, generally, in Asia, currently consumes a considerable
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amount of global electricity, as depicted in Fig. 2.7. This highlights the pressing
requirement for thorough monitoring and analysis to reduce carbon emissions in
ML algorithms, which is essential in managing the environmental impact of this
fast-growing technological field.

Figure 2.7: Comparison of Global Electricity Consumption in 2012 with the IT
Sector’s Energy Usage in billion kilowatt-hours (kWh) [62].

In the current domain of ML, DL emerged as a fundamental component, driving in-
novations across various applications that often demand extensive training, ongoing
data monitoring, and meticulous hyperparameter optimization [17]. However, this
trajectory is unsustainable from both environmental and economic perspectives.
Thus, shaping the ML’s energy impact associated with the extensive use of DL
models plays a crucial role. As a matter of fact, DL has rapidly progressed thanks
to factors such as larger datasets, advanced algorithms, and increased computa-
tional resources, leading to substantial performance improvements. The training of
increasingly complex neural architectures has been made easier by the advent of
powerful GPU and TPU accelerators, but this has resulted in an increasing demand
for processing power, which is directly correlated with the execution time [17, 20].
The compute demand for DL surged dramatically from 2012 to 2018, escalating
by 300,000 times [63]. As illustrated in another study [64], since 2012, DL models,
while achieving impressive capabilities in terms of accuracy, have been associated
with a training cost doubling every few months, leading to substantial environmen-
tal costs. Consequently, as the number of application domains and the complexity
of DL models continue to increase, the criticality in terms of consumption of both
data availability and extended training durations will be emphasized.
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Overall, this growth comes at a significant environmental cost, since the signifi-
cant upsurge in computational needs has led to a pronounced increase in energy
consumption. In fact, these recent developments – the possibility to obtain larger
amounts of data and the development of more complex model architectures – have
led to two main consequences: an increase in energy-intensive data storage solutions
due to the continuous need for data retrieval and transmission, data redundancy
and the maintenance of cooling systems in data centers, along with a heightened
need for computational power to sustain long training sessions.
Considering also that the energy sector stands as the primary source of worldwide
GHG emissions, it is evident the huge environmental impact deriving from these
advancements. Together, the aforementioned studies [63, 64] shed light on the
prohibitive expenses linked to this trend, which align with the ‘Red AI’ framework
– that focused on enhancing accuracy by leveraging extensive computational re-
sources, often overlooking the associated costs or environmental implications [64].
Additionally, since a large portion of the research community cannot afford the nec-
essary resources, the cumulative effect not only has an impact on the environment
but also creates barriers to the development of AI. While hardware improvements
have enabled training larger models with billions of parameters like GPT-3 [65, 66],
optimizing such networks requires immense computing resources that are difficult
and expensive to scale further [67]. This may suggest that the growth rate in DL’s
consumption of computational power may slow down [16]. Moreover, the limited
supply of specialized AI chips also imposes constraints.

Despite international agreements like the UNFCCC and the Kyoto Protocol [68],
GHG emissions surged at a faster rate from 2000 to 2010 compared to the preceding
decade. Specifically, the annual growth of GHG emissions in the global energy
supply sector increased from 1.7% per year between 1990 and 2000 to 3.1% per year
from 2000 to 2010 [27]. Thus, considering the conjunction of the general problem of
GHG emissions and the vast usage of DL methods, addressing the growing energy
demand within this field is even more crucial. Exploring avenues to enhance energy
efficiency in DL models is important in order to mitigate this global environmental
impact. Additionally, raising awareness among practitioners about the energy and
carbon footprint of these models could prompt proactive steps toward reducing
environmental implications.
For instance, in order to continue advancing capabilities while addressing these
sustainability concerns, researchers are exploring alternatives beyond the constant
upscaling of computing. Different works [33, 20] have found algorithmic efficiency
to be a promising avenue, showing reductions in operations needed to match
past baselines. Hardware optimizations also multiply efficiency gains significantly
over time. Researchers are likely to turn to problem-focused methods leveraging
these algorithmic innovations rather than relying primarily on "brute force" scaling
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through raw computation. Overall, a more balanced consideration of environmental
costs presents an opportunity to reorient DL progress onto a sustainable path.

2.3.4.1 Continuous Training’s Impact

In the landscape of AI, the notion of continuous training emerges as a critical
contributor to the escalating energy demands. Unlike traditional model development
processes, continuous training involves iterative refinement and constantly updating
models to adapt to evolving data patterns. This perpetual learning paradigm, while
enhancing predictive performance, amplifies the energy consumption of models.
Understanding the disproportionate environmental impact of continuous training
is paramount as it is pivotal in several application domains.

Among the domains most profoundly affected, Natural Language Processing (NLP)
stands out prominently. The field has witnessed the proliferation of state-of-the-art
DL models, particularly those excelling in diverse NLP tasks. The computational
intensity of these models, demanding specialized hardware like GPUs or TPUs,
raises accessibility concerns due to the associated financial costs ([5, 69]). The NLP
community has expressed concerns regarding the escalating energy consumption
and its repercussions on the environment and equitable access to research advance-
ments. Initiatives such as dedicated conference tracks focusing on sustainable
NLP methods11 underscore the imperative to address these energy concerns [52].
This increased emphasis extends to evaluating the environmental implications and
financial costs linked with both training and deploying large language models. The
development and training of new models, often necessitating specialized hardware,
amplify these energy costs, drawing attention to the carbon footprint and environ-
mental toll of heightened energy consumption. The trend toward larger language
models, with ever-increasing parameters and training data, presents a dual challenge
in terms of environmental risks and understanding the implications of their sheer
size. The proliferation of massive language models, such as BERT, GPT, and their
variants, prompts a pressing need to evaluate these models based on the resources
they consume and report on their associated costs. This is crucial because the envi-
ronmental and financial costs of such models disproportionately affect marginalized
communities, which are less likely to benefit from these advancements while being
most vulnerable to adverse environmental consequences. As models continue to
expand in size, so does the difficulty of comprehending the extensive training data,
creating added layers of complexity in understanding their environmental impact
and resource consumption. Therefore, the research community must prioritize
assessing and mitigating these environmental and financial costs while developing

11https://2021.eacl.org/news/green-and-sustainable-nlp
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strategies to understand and address these implications within the NLP field.

A recent study [25] investigates the carbon footprint of developing a NLP model
through its multi-stage training process. The researchers found that the total CO2
emissions from a model’s training iterations could be equivalent to what would
be produced by 5 cars over their usable lifetimes. It also equaled the emissions
from over 300 flights between two major cities. This highlights the environmental
impact of developing even a single sophisticated AI system. While the goal of AI
research is often to optimize for metrics like accuracy, this work underscores the
need to also consider sustainability.
Rohde et al.[70] have profiled the energy demands of tasks in computer vision,
speech recognition and gaming. Models that handle more complex problems require
much more intensive computations. The computing power is quantified in petaflop-
days, which refers to the floating point operations performed in a day at a scale of
tens of trillions. More intricate AI architectures directly translate to higher energy
usage, GHG emissions and resource expenditure.

Extending our lens beyond NLP, the domain of time-series forecasting stands as
another critical area with significant considerations. Here, continual training is
pivotal in enhancing models’ predictive abilities over time. However, the ramifi-
cations of energy-intensive training processes transcend mere model development,
encompassing broader environmental and financial implications. Notably, literature
lacks comprehensive studies addressing the energy consumption and emissions
produced by algorithms applied in this domain, signaling a gap in understanding
the environmental footprint of time-series forecasting models.

Collectively, these studies demonstrate the significance of evaluating new AI tech-
niques based on their carbon footprint in addition to their predictive capabilities.
Energy efficiency must be a priority as models continue increasing in scale and
sophistication.

2.4 Existing Energy-Efficient Approaches
This section provides a summary of recent ML research on energy and power
estimation during specific phases of computation (training and inference).

The primary goal of early attempts to optimize DL models was to decrease the
number of parameters or weights in neural networks. Techniques like pruning,
compression, and model compactness aimed at diminishing the number of weights
to curtail the memory accesses, which account for a significant fraction of energy
consumption, are studied in papers such as [71] and [72]. Overall, the goal was
to alleviate the energy burden by minimizing memory-related overheads while
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preserving model performance.

Then, application-specific accelerators and predictive energy modeling were intro-
duced by two main projects: Eyeriss [73] and NeuralPower [74], respectively.
Eyeriss emphasized energy efficiency by reconfiguring architecture, tailored for
deep CNNs, by incorporating compression techniques. Moreover, it employs a row
stationary (RS) dataflow to optimize data movement and reduce costly DRAM
accesses [73]. In this way, Eyeriss achieved notable gains in energy efficiency while
ensuring high throughput.
NeuralPower introduced layer-wise predictive models based on sparse polynomial
regression. These models accurately predict energy consumption across all layers of
CNNs deployed on GPU platforms. By providing insights into power and runtime
at each layer, NeuralPower aids in identifying energy bottlenecks and guiding
the selection of energy-efficient architectures. This predictive modeling approach,
as evidenced in [74], outperformed prior models by significantly improving pre-
diction accuracy, and enable ML researchers to make informed decisions about
energy-efficient architectures.

Other studies, such as DeLight, integrate energy awareness in the design and
training phases of DL models by modeling energy use concerning basic arithmetic
operations and communication of shared weights among different cores. It aimed
to optimize energy consumption during network training [75], promising potential
reductions in overall energy consumption.
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Problem Statement and
Dataset Description

An empirical approach centered on practical experiments formed the foundation of
this study. This research employed two separate real-world datasets that were both
significant and relevant in order to conduct a comparative analysis. These datasets,
while distinct in their nature and characteristics, were crucial for comparing and
contrasting different aspects of the research. The first dataset comprised Traffic
Data sourced from an Italian Mobile Network Operator, while the second dataset
involved PVWatts Energy Estimate Data from Turin. Both datasets shared a
common domain – time-series data. Initially, the study delved into unraveling the
intricate energy consumption patterns exhibited by prevailing DL algorithms when
applied to network data. Analyzing network data posed numerous challenges owing
to its real-time nature and inherent variability. This required adept handling of
streaming data while simultaneously addressing the periodicity in training models
to ensure relevance and accuracy. Subsequently, a similar in-depth analysis was
conducted on the solar panel production data. The primary distinguishing factor
between the two datasets, pivotal for this research, lay in the stability of the
data. The production data derived from photovoltaic (PV) panels demonstrated a
markedly more predictable trend compared to the inherently volatile nature of traffic
data in real-time scenarios. This dichotomy in data stability provided a crucial
contrast for understanding and delineating the nuances of energy consumption
patterns when considering these distinct problems that belong to the time-series
domain.
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3.1 Traffic Data from Italian MNO
The traffic dataset [76] used in this study is provided by an Italian Mobile Network
Operator (MNO) located in Milan and its surrounding area. This dataset provides
a comprehensive perspective on the network traffic conditions prevalent throughout
the region, as depicted in Fig. 3.1. The city has been divided into seven distinct
zones, each chosen for its unique characteristics and activities. The hourly traffic
volume has been collected from 1420 Base Stations (BSs) spanning a duration of
two months during the year 2015.

Figure 3.1: Examined regions with traffic volumes.

Zone Color in the map
Business dark green

Residential yellow
Train station purple

San Siro grey
Politecnico di Milano light green

Industrial magenta
Rho Fiere brown

Table 3.1: Zone and corresponding map colors.
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Table 3.1 displays the considered zones and their corresponding colors as represented
on the map. Each zone is associated with a specific color for visual identification
on the map. The zones serve as microcosms, representing the diverse areas found
within an urban environment. For instance, the Politecnico di Milano (Polimi)
area, marked by the light green square in the figure, denotes an area frequented by
students, experiencing heightened activity levels during specific times of the day.
In contrast, other zones represent a mix of business districts, residential streets,
train station areas, soccer stadiums, university campuses, industrial sectors, and
exhibition venues, each exhibiting its own traffic patterns and behaviors.

Figure 3.2: Average hourly distribution of traffic as a percentage of daily total.
Specifically considering the business area.

For example, the business district (dark green) witnesses traffic peaks during
core business hours, while the residential zone (yellow) observes increased traffic
in the evening. Similarly, the train station area (purple) reflects high activity,
primarily coinciding with the start and end of typical working hours. The San Siro
neighborhood (grey), home to the soccer stadium, presents sporadic and fluctuating
traffic volumes depending on event schedules.
The visualization in Fig. 3.2 depicts the proportional distribution of traffic across
individual hours, considering the entirety of a day within the business area. Each
data point represents the percentage of traffic observed during a specific hour
relative to the total traffic recorded throughout the day. This analysis offers insight
into the hourly traffic patterns within the business area: the data illustrates a

36



Problem Statement and Dataset Description

consistent increase in traffic volume from 8 am, reaching its peak around 1 pm,
followed by a gradual decline. This pattern corresponds with typical working hours,
depicting heightened activity during the morning and early afternoon, gradually
tapering off later in the day.

Within each zone, the presence of a macro BS along with 6 micro BSs are considered.
Both these types of stations are components of cellular networks, each serving
distinct coverage areas and functions within the network infrastructure:

• Macro base stations are large cell towers strategically positioned to cover larger
geographic areas (≤ 35 km), such as neighborhoods, towns, or urban areas [77].
They provide wide-area coverage and are usually installed at higher elevations
to maximize coverage range. These base stations handle high-capacity data
and voice traffic, serving a large number of mobile devices within their coverage
area.

• Micro base stations are smaller in size and cover more localized areas compared
to macro stations. They are deployed in areas with high user density or where
additional capacity is needed. Micro base stations have lower power and cover
shorter distances compared to macros – ranging from a few meters to one or
two kilometers [77].

They might be used concurrently in the same geographic area and they are both
integral to maintaining an efficient and reliable cellular network. Indeed, they work
together to provide seamless connectivity across different scales and user demands.
This configuration with one macro and more micro Bss, ensures that the service
area is effectively covered by one macro cell that overlaps with smaller cells, thus
enabling comprehensive network coverage across various zones.

The dataset organizes each BS’s data into a format that contains several metrics
for analysis that vary over time. Each entry in the dataset is associated with a
timestamp, that indicates the temporal sequence in Unix timestamp format, acting
as the temporal reference point for the recorded data. The level of granularity and
extensive temporal coverage (2 months) within the dataset enables multifaceted
analyses and comprehensive evaluations of user behavior and traffic dynamics across
the varied BS. Since the original data was stated in KBytes, the total network
traffic is determined using the information retrieved from the dataset and then
multiplied by 8000. The problem’s target is represented by this entire volume.

The dataset provided comprises network traffic measurements recorded every 15
minutes. The aim is to forecast the network traffic at specific time intervals by
utilizing the information from previous time steps, such as in [76]. Thus, predicting
the total network traffic f of BS b at hour t of day d, leveraging historical traffic
data.
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Let Nb,d,t symbolize the total network traffic at BS b during hour t on day d. The
primary aim is to forecast Nb,d,t by leveraging the network traffic data from the
preceding k time steps. Given that the dataset is sampled every 15 minutes, the
objective is to predict the initial 4 values within an hour (t, t + 1, t + 2, t + 3) based
on the k preceding traffic measurements.

Let {Nb,d,t−i}k
i=1 denote the sequence of total network traffic samples at BS b for

the past k time steps. The prediction model aims to estimate N̂b,d,t, the predicted
total network traffic at hour t based on the previous k observations:

N̂b,d,t = f(Nb,d,t−1, Nb,d,t−2, . . . , Nb,d,t−k) (3.1)

Here, f represents the predictive model, which could be an ML algorithm or a
specific mathematical function. The function f is trained on historical data to
learn the relationship between past traffic observations and the subsequent value.
The primary objective is to minimize a loss function that quantifies the dissimilarity
between the predicted and actual total network traffic values. In general terms,
the objective is formulated as follows:

minimize
f

L(Nb,d,t, N̂b,d,t) (3.2)

The specific Mean Absolute Error (MAE) formulation used to quantify this dissim-
ilarity is given by:

LMAE(Nb,d,t, N̂b,d,t) = 1
n

nØ
i=1

|Nb,d,t+i − N̂b,d,t+i| (3.3)

This equation calculates the average absolute differences between the actual and
predicted values over n prediction steps, providing a measure of the model’s accuracy
in forecasting total network traffic at each time step.

3.2 PVWatts Energy Estimate Data in Turin
The second dataset utilized in this study originates from the PVWatts Calculator, an
innovative tool1 developed by the National Renewable Energy Laboratory2 (NREL)
to assist individuals in evaluating and planning solar panel installations. This tool
enables users to input site-specific data, providing energy-production estimates

1https://pvwatts.nrel.gov/
2https://www.nrel.gov/
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crucial for determining the most suitable size, placement, and configuration of
solar systems. NREL, a government-owned research facility based in Golden, CO
and funded by the US Department of Energy, specializes in renewable energy and
energy efficiency research, boasting over two decades of leadership in the sector.
The PVWatts Calculator was conceived as part of NREL’s collaboration with
the Environmental Protection Agency within the RE-Powering America’s Land
initiative [78].

The dataset plays a pivotal role in our research by offering crucial insights into
estimating solar energy production, with a specific focus on the Turin area. Its
significance lies in its ability to provide detailed and region-specific information that
aids in accurately predicting solar energy output. The data is based on realistic
solar irradiation patterns, representing the Typical Meteorological Year (TMY) in
the area with hourly granularity. A TMY refers to a standard collection of weather
data encompassing hourly values throughout a year at a specific geographical
spot [79]. These datasets are curated from long-term records, usually spanning a
decade or more. The selection process involves picking data for each month from the
year that best represents the typical weather patterns for that specific month. For
example, data for January might originate from 2013, while February’s data could
be sourced from 2020, and so forth. PVWatts utilizes weather information derived
from the NREL National Solar Radiation Database3 (NSRDB) where accessible,
supplemented by data gathered from various other sources to cover regions beyond
its availability.

In particular, the data incorporated into this study originates from the INTL
TORINO-CASELLE weather source, located approximately 8.3 miles from Turin
and marked by a latitude of 45.18° N and a longitude of 7.65° E. The training set
is 580 KB in size and contains 8,760 samples – the equivalent of one year of data.
The specifications used in the PVWatts Calculator for Turin include:

• System size: 1 kW direct current (DC). Therefore, the capacity of the system
is 1 kWp since the kWp (kilowatts-peak) refers to the maximum power output
the system can generate under standard test conditions.

• Module type: standard. Thus, it utilizes crystalline silicon cells.

• Array type: fixed with an open rack design. This setting assumes a static
placement of the PV modules without any tracking mechanisms that adjust
with the sun’s movement throughout the day.

• Estimated system losses: 14.08%, which accounts for performance losses

3https://nsrdb.nrel.gov/data-sets/tmy
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expected in a real system.

• Array tilt: 20°. It represents the inclination angle of the photovoltaic modules
concerning the horizontal plane. In the context of a fixed array, this angle
serves as the standard or default position.

• Array azimuth: 180°. It refers to the angle measured clockwise from true
north, indicating the direction in which the array is oriented. In the case of a
south-facing array, an azimuth angle of 180° is the default setting.

• Inverter efficiency: 96%. It represents the standard nominal efficiency for
converting DC (direct current) to AC (alternating current).

The decisions guiding the specifications for the dataset collection were rooted in
the necessity of establishing a generic dataset for calculating the emissions of an
algorithm applied within the domain of time-series solar energy prediction. Each
specification was intentionally kept general to generate a baseline dataset fitting
the overarching objectives of this research. For instance, opting for an open rack
design reflects a deliberate choice aimed at accommodating diverse installation
environments. This configuration, permitting unrestricted airflow around the PV
modules, suits generalized applications where the precise installation location,
whether ground-mounted or rooftop, remains unspecified. It’s a versatile setup
designed to facilitate efficient air circulation around the modules, aligning with the
broader scope of this research’s objectives in time-series prediction while ensuring
adaptability across various deployment scenarios.

The problem’s target and features were meticulously selected to capture key
variables influencing solar energy generation within the Turin area. The selected
features can be broadly categorized into three main groups, each representing a
distinct aspect of the solar energy generation environment.
These categories include:

1. Solar Radiation:

• Beam Irradiance (W/m2)

• Diffuse Irradiance (W/m2)

• Plane of Array Irradiance (W/m2)

2. Temperature Conditions:

• Ambient Temperature (◦C)

• Cell Temperature (◦C)

40



Problem Statement and Dataset Description

3. Wind Dynamics:

• Wind Speed (m/s)

Additionally, the temporal aspect is represented by a general feature:

• Temporal Feature:

– Month

This categorization provides a comprehensive view, distinguishing between solar
radiation, temperature conditions, wind dynamics, and the temporal influence
of the month, all crucial aspects in understanding the patterns of solar energy
generation in the Turin area. The target variable, “AC System Output (W)", was
the focal point, representing the actual power output generated by the system
under these varying meteorological conditions. This selection aimed to capture and
predict the system’s real-world performance, essential for evaluating the algorithm’s
predictive accuracy in forecasting solar energy production.

Figure 3.3: AC System Output in Watt obtained from the first week of January
of the PV panel production data.

In examining the dataset, an illustrative Fig 3.3, was extracted to showcase the
actual AC System outputs obtained from the initial week of January. This plot
directly represents the values retrieved from the dataset, offering a tangible repre-
sentation of real-time production estimated with the tool. As can be seen from
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this plot, the maximum output is approximately 300 W, which is a consistent
observation throughout most days. However, specific days exhibit notably lower
output levels, as exemplified on the second day in the figure, indicating potential
fluctuations attributed to varying weather conditions. Naturally, the graph demon-
strates a complete absence of production during nighttime hours, aligning with
the expected absence of solar energy generation during these periods. This picture
highlights the impact of weather dynamics on solar energy output by providing a
clear understanding of the daily changes and the order size of peaks.

Figure 3.4: Variation in PV production across months: average production days
per month highlighting shifts in active hours and maximum output between seasons.

In order to get a full understanding of the dataset, another plot was generated
showing the typical days for each month, as reported in Fig. 3.4. Each typical
day was derived by averaging the production values across all days within a
specific month. This representation aimed to elucidate how PV production varies
concerning distinct periods, considering both the duration of production hours
(active hours) and the maximum output during the day. Notably, this depiction
unveiled significant fluctuations in production characteristics. The plot highlighted
substantial shifts in production characteristics, varying from about 200 W to 500
W, more than doubling between seasons. Such fluctuations are expected due to
the substantial variation in solar intensity between winter and summer seasons.
Still comparing seasons, from summer to winter, also the active hours decreased
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by almost half. This reduction demonstrates the seasonal impact on the output:
production occurs solely during daylight hours.

Figure 3.5: Contrasting PV production in summer (July) and winter (January)
months by highlighting stark differences in solar output and active hours, repre-
senting seasonal variations.

To underscore these differences, another figure zoomed in on average days in July
and January, as depicted in Fig. 3.5. By highlighting these two distinct months,
typically representative of summer and winter, respectively, the plot accentuates the
stark difference in solar energy generation between these seasons. Furthermore, to
emphasize this disparity, the area between the curves representing July and January
was colored (green), aiding in visually highlighting the substantial differences in
solar energy production between these contrasting seasons.

The problem entails predicting the energy production at time t, leveraging the
given features as inputs. Let X represent the matrix of features, including “Month”,
“Day”, “Beam Irradiance”, “Diffuse Irradiance”, “Ambient Temperature”, “Wind
Speed”, “Plane of Array Irradiance”, and “Cell Temperature”. The target variable,
denoted as Y, is the “AC System Output”.

The parameter sl determines the sliding windows’ size, determining the historical
data used for prediction. This means that in order to predict the energy output at
time t, the model utilizes the feature values from t − sl to t − 1.
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Overall, given a dataset with N samples and M features, where X ∈ RN×M

represents the feature matrix and Y ∈ RN denotes the target vector, the goal can
be represented with a predictive model f(·) trained to estimate the energy output:

ŷt = f(Xt−sl:t−1) (3.4)

This formulation adopts a sequential approach, employing past data within the
sliding window to forecast the energy output at the current time t. The objective is
to minimize the discrepancy between the predicted values Ŷ and the actual energy
production values Y over the dataset by defining a loss function L:

minimize
f

L(Y, Ŷ) (3.5)

This optimization process aims to train the model f(·) to accurately predict the
energy production given historical feature data. The specific loss function could be
the MAE, Mean Squared Error (MSE), etc.
To comprehensively assess the model’s performance and facilitate result comparison,
the MAE is used as the evaluation metric. The MAE calculates the average absolute
differences between the predicted Ŷ and actual Y values over n data points, enabling
a robust estimation of the model’s predictive accuracy. The specific formulation is:

LMAE(Y, Ŷ) = 1
n

nØ
i=1

|Yi − Ŷi| (3.6)

In the context of forecasting network traffic Nb,t at a specific base station b, the
problem is univariate, focusing on predicting a single variable (traffic volume) over
future time steps based on its past values. This univariate approach simplifies
the prediction task, considering only one target variable without incorporating
relationships with other variables.
On the other hand, forecasting the energy production of a PV panel involves a
multivariate problem. It encompasses predicting the energy output considering
various influencing factors such as irradiance, temperature, wind speed, and others.
This multivariate nature involves analyzing and forecasting the relationship between
multiple input variables (features) and the target variable (energy production),
capturing the complex interplay between these factors to predict the panel’s
performance accurately.
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Methodology

This study aims to monitor the carbon emissions of NNs and evaluate how emissions
trends relate to accuracy variations. A critical first step is to establish a methodology
to reliably calculate the carbon footprint of model development. When quantifying
emissions, several factors must be considered, including the hardware platform,
training hyperparameters, and network architecture.
To monitor NN carbon emissions, this work utilizes CodeCarbon1 – an open-source
tool for calculating energy and emissions from code execution (refer to Section 2.3.3).
CodeCarbon samples the power draw of hardware during training and calculates
total energy based on high-frequency measurements. Standard emissions factors
then convert energy values into carbon equivalents.

Through this methodology, the study aims to identify how training hyperparameters
and architectural design patterns differentially impact accuracy and emissions levels.
A series of controlled experiments will vary the number of epochs, the size of both
training and test sets, the network depth and width, and other factors. Analyzing
their effects can provide insight into optimizing networks’ sustainability without
significantly sacrificing predictive capabilities. Repeated monitoring of emissions
improved model versions will quantify sustainability gains from various techniques.
The overall goal of this research is to formulate an approach for quantifying carbon
emissions from DL-based solutions and correlating trends to maintain high accuracy
through careful hyperparameters and design choices. It particularly focuses on the
proper handling of timeseries data with diverse characteristics.

1https://codecarbon.io/
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4.1 Monitoring Carbon Emissions
As already explained in Section 2, anthropogenic climate change poses a serious
global threat due to human-induced alterations to the carbon cycle through GHG
emissions such as CO2 [38]. According to the IPCC, excess CO2 in the atmosphere
absorbs and re-emits longwave radiation, increasing surface temperatures and shift-
ing climatic trends. In many countries, energy production is a primary contributor
to national CO2 emissions [80]. In the DL scenario, as in many other domains, the
global goal of lowering carbon emissions conflicts with the huge quantity of energy
required to develop complicated and well performing models [26].

To explore sustainable AI, this research employs an empirical approach based on
experiments. Firstly, to monitor and reduce carbon emissions in DL algorithms,
it is essential to understand the energy consumption patterns during the various
phases: the training and testing processes.
By finely instrumenting the training code, it is possible to attribute energy consump-
tion to certain elements such as architectural components and hyperparameters
by tracking emissions at the algorithmic level. This granular profiling can reveal
the most energy-intensive phases of model training. With this insight, it becomes
possible to optimize algorithm configurations and hyperparameter choices to reduce
carbon footprint without sacrificing performance.

Repeating the monitoring of optimized training versions allows quantifying emis-
sions savings from different techniques aimed at decreasing carbon emissions during
computationally intensive phases. Over time, this data-driven process helps estab-
lish best practices for developing carbon-efficient DL and guide technical advances
towards sustainability. With an enhanced understanding of algorithmic energy
consumption patterns and their drivers, the field can work to reduce anthropogenic
warming impacts through continuous optimization at all levels, from hardware to
hyperparameter choices.

4.1.1 CodeCarbon
CodeCarbon is a Python package that is designed to estimate the CO2 emissions
from code execution. It considers the computing resources used, whether on cloud
infrastructure or personal devices and it calculates energy usage by accessing the
RAPL files or by searching in a list the TDP associated with the CPU model [56].
Power usage is also incorporated for machines with Nvidia GPUs supporting the
NVIDIA System Management Interface. Consumption from the CPU package
domain(s) and any GPU power comprise the total measurement.
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To determine emissions, the tool uses the GeoJS API2 to get the user’s location
and corresponding energy mix to calculate a CO2 intensity in kg per kWh. If the
location is unknown, the tool defaults to world averages. For the US, state-level
eGRID3 data directly provides emissions rates. Internationally, the tool reverse-
engineers fuel-specific CO2 formulas from eGRID to apply each country’s energy
mix. This consistency improves accuracy for electricity domains. In order to reflect
also the energy lost to heat during usage, power supply efficiency is taken into
consideration. Users can specify efficiency if known, otherwise, the tool defaults to
the minimum 80% efficiency certified by the 80-Plus program.
The eGRID data provides state-level energy production and carbon emissions for
fuels like coal, oil, and natural gas. CodeCarbon’s goal is to calculate kg of CO2
emitted per MWh for each fuel. It converts emissions values from metric tons to
kg and divides by energy production values to determine emission intensities, using
the calculations:

metric tons CO2 × 1,000 = kg CO2 (4.1)

Emissions = kg CO2

MWh (4.2)

This allows for measuring international grid carbon footprints based on reliable
energy production values.

4.2 LSTM-Based Prediction
In addressing both network traffic prediction and PV panel energy forecasting,
the LSTM architecture emerges as a suitable choice because of its ability to
handle sequential data, making it particularly useful for timeseries forecasting
tasks. Despite the distinct characteristics of the problems – one being univariate,
focused on network-related predictions, and the other multivariate, concerning
photovoltaic panel energy forecasts – the shared temporal nature of the data aligns
seamlessly with the LSTM’s strengths. Its inherent ability to retain long-term
dependencies and model sequential information proves beneficial for capturing
patterns and relationships present in timeseries datasets, contributing significantly
to the accurate prediction of future values in both scenarios. This capability
aligns well with the characteristics of both datasets, where temporal patterns and
dependencies significantly impact future observations.

2https://www.geojs.io/
3https://www.epa.gov/egrid
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In PV panel forecasts, solar energy production is influenced by daily and seasonal
patterns. The amount of sunlight received, which directly impacts energy generation,
varies throughout the day and across seasons. Therefore, understanding these
temporal patterns, such as the diurnal variations or seasonal changes in solar
radiation, becomes crucial for accurate predictions.
Similarly, in network traffic predictions, the behavior of network usage exhibits
temporal dependencies. The volume of traffic passing through a network at any
given time is influenced by recurring patterns, such as peak usage hours during
the day, fluctuations based on weekdays versus weekends, or periodic events that
trigger increased traffic (like promotions, holidays, or scheduled updates). These
patterns create dependencies where the current state of the network traffic is closely
linked to its previous states, making past observations crucial for predicting future
network utilization accurately.
In both cases, these dependencies arise from the inherent characteristics of time
series data, where each observation is not only influenced by its immediate past but
also by its historical trends. Capturing and understanding these temporal patterns
is vital for predictive models to extrapolate future behavior accurately. Therefore,
the adaptability of LSTM models, with their ability to capture and learn from
temporal dependencies, is well-suited for handling such datasets.

Specifically, the Adam [81] optimizer is chosen in order to leverage its efficiency in
handling extensive NNs, crucial for fast convergence across diverse datasets. In
terms of parameter initialization, the Glorot uniform initializer (Xavier initialization)
was utilized for kernels, ensuring stability, while biases were set to a constant value
of zero. The Glorot uniform initializer4,5 computes the bounds of the uniform
distribution for initializing weights based on the number of input and output
neurons in a given layer. By maintaining a controlled variance in weights, it aids in
stabilizing the learning process, allowing gradients to propagate effectively through
the network during backpropagation. This initialization method aims to tackle the
vanishing or exploding gradient problem often encountered during training.
The inclusion of a Dense layer with a linear activation function for the final output
aligns with the regression nature of the task, ensuring continuous predictions.
Employing the MAE as the loss function offers a robust measure of prediction
error, well-suited for regression problems. Additionally, incorporating accuracy as a
metric provides a holistic evaluation of the model’s performance. Each architectural
decision was made with the intent to optimize adaptability, convergence speed,
stability, and evaluation accuracy in the predictions, considering the forthcoming
experiment specifications.

4https://pytorch.org/docs/stable/nn.init.html
5https://keras.io/api/layers/initializers/
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4.2.1 Python libraries comparison
Following the initial model setup, a critical analysis centered around the LSTM
architecture is conducted. This exploration aims to compare the environmental
impact, specifically in terms of emissions, arising from the same architecture devel-
oped using two distinct Python libraries: Keras6 and PyTorch7. The underlying
motivation for this comparative study is the critical necessity to make sure that the
library selection used to build the model does not substantially influence or bias the
results of any further analysis or conclusions that are reached. By establishing this
comparative study, the purpose was to determine whether any observed disparities
or trends in emissions were primarily attributed to the inherent design or configu-
ration differences between the libraries rather than the fundamental architectural
choices within the model. This comparative approach was adopted as a crucial
step toward ensuring the robustness and reliability of the subsequent analyses and
findings related to energy consumption and emissions.

4.3 Handling Negative Predictions in PV Panel
Dataset

In the context of the PV Panel dataset, a post-processing step is introduced
to enhance the practicality and reliability of the predictions generated by the
LSTM network. The nature of energy production outputs from photovoltaic panels
makes negative predictions unrealistic and impractical. To address this issue, a
manual adjustment is implemented during post-processing, where any negative
values predicted by the model are rectified to zero. This corrective step aligns the
predictions with the physical constraints of the domain, ensuring that the model’s
outputs remain within the bounds of feasibility. By explicitly setting negative
predictions to zero, the post-processing technique enhances the interpretability and
applicability of the model’s results in the context of solar energy production.

4.4 Manipulating Training Hyperparameters
In the initial phase of this methodology, the strategic manipulation of training
hyperparameters emerged as the easiest, but effective, approach. Hyperparameters
are important configuration settings influencing the learning process of the model,
both in terms of time and performance.

6https://keras.io/
7https://pytorch.org/
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Firstly, the focus revolves around elucidating the impact of hyperparameters
on energy consumption and, consequently, the resulting carbon emissions. By
recognizing that certain hyperparameters exhibit a strong correlation with the
duration of model training, this methodology targeted these variables as potential
levers to influence overall consumption. In fact, this study is anchored in the premise
that a direct correlation exists between carbon emissions and computational time,
an association inherently linked with energy consumption. This rationale is deeply
rooted in the understanding that changes in the computational demands directly
impact the amount of energy used (energy is dependent on both power and time,
see Section 2.3.1), a relationship that also affects the carbon emissions left behind
in the environment (explained to Section 2.3.2). Therefore, in order to test the
validity of these hypotheses, hyperparameters were carefully adjusted. By changing
hyperparameters, such as the training set size, the study aimed to identify trends
in energy use and carbon emissions.

Secondly, the investigation involves a comparative analysis between carbon emissions
and the performance output of the models. The goal is to identify particular
scenarios in which the increase in carbon emissions was disproportionately greater
than the improvements in performance indicators. By conducting this comparison,
the study sought to identify critical junctures in the model’s development where
the pursuit of better performance significantly amplified carbon emissions. This
approach aimed to highlight trade-offs in the model’s advancement, emphasizing
situations where optimizing for superior performance led to an unsustainable
ecological impact. Overall, this comparison will guide the formulation of strategies
that balance performance gains with environmental considerations more effectively.

The whole investigation seeks to decode the intricate interplays of different factors
in order to facilitate the optimization of DL models not just in terms of performance
metrics but also in tandem with carbon emissions reduction.

4.4.1 Epochs and Input Sequence Length Ablation

This subsection delves into the intricate relationship between training hyperpa-
rameters, specifically epochs and input sequence length, and the emissions of
model training. The number of epochs, representing how many times the learning
algorithm will run through the whole training dataset, directly influences the
convergence and refinement of the model. By definition, a single epoch gives every
sample in the training dataset the ability to change its internal model parameters
(weights). A higher number of epochs often leads to increased model accuracy but
comes at the cost of longer training times.
Conversely, the input sequence length, depicting the temporal context provided to
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the model, significantly impacts the network’s ability to capture long-range depen-
dencies within the data. Modifying this parameter affects the amount of historical
information fed into the model, subsequently affecting the model’s capability to
learn complex patterns. The investigation’s focus first centers on adjusting the
input sequence length by initially altering the training set size while keeping the test
set size constant. Subsequently, variations in the test set size have been introduced,
consequently impacting the training set size as well. In the first scenario, the
primary emphasis is on adjusting the amount of historical data available for the
model to learn from. By varying the training set size, the model’s exposure to
historical patterns is manipulated, influencing its ability to comprehend complex
temporal dependencies. Conversely, in the second scenario, modifications are in-
troduced to the test set size, consequently impacting the training set size. Here,
the focus extends beyond solely adjusting the historical data available for training.
It involves altering the partitioning between training and testing datasets, which
affects the model’s understanding of unseen data. This shift can provide insights
into how variations in the testing dataset influence the generalization ability of the
model, consequently influencing the temporal aspects of model training and its
corresponding emissions.

These hyperparameters have been scrutinized, emphasizing their intrinsic relation-
ship with the duration required for model training, and therefore, their emissions.
This correlation is carried on through a meticulous exploration of varying these
hyperparameters across a spectrum of values. By delving into a broad range of
parameter values, the objective is to extract a clear trend highlighting how changes
in epochs and input sequence length directly influence the temporal aspect of model
training, and thus, the associated carbon emissions.

4.5 Architectural Model Design
The second principle guiding our analysis was centered on the implementation
of sustainable model architecture as an additional strategy for reducing carbon
emissions. This revolved around the modification of critical components influencing
the structure of the LSTM model. Specifically, the focus is on the manipulation of
two key elements: the number of layers within the network architecture and the
quantity of nodes within each layer. These architectural elements play a pivotal role
in determining the model’s complexity and capacity to capture intricate temporal
patterns. By altering the number of layers, we concurrently explore how the
depth of the network influences its capacity to understand temporal dependencies
across various hierarchical levels, examining its impact on both model performance
and the corresponding trend in carbon emissions. Additionally, adjusting the
nodes within each layer sought to explore the impact of local feature extraction
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and abstraction within the temporal context. A larger number of nodes within
a layer can potentially enable the model to detect more nuanced and intricate
patterns within the sequential data. This is due to the increased capacity of the
network to process and extract diverse features at a more granular level, allowing
for finer distinctions and more detailed representations of the underlying data.
This exploration was undertaken to comprehend the trade-offs between model
complexity and computational efficiency in terms of energy consumption.

By designing models that are computationally efficient and require fewer resources,
we can significantly lower carbon emissions. It seems reasonable to analyze layer size
and quantity variations and find optimal configurations that balance performance
and sustainability.

4.5.1 Layers and Nodes Ablation

In the context of optimizing for reduced carbon emissions, a critical aspect under
examination involves investigating the impacts of altering the number of layers
and nodes within the LSTM architecture. These hyperparameters were selected
based on their fundamental role in shaping the model’s complexity and capabil-
ity to capture intricate temporal patterns, which directly relate to the energy
consumption of the system. The number of layers determines the depth of the
network, influencing its ability to understand temporal dependencies at multiple
hierarchical levels. Similarly, the quantity of nodes within each layer directly
affects the model’s capacity for local feature extraction and abstraction within the
temporal context. By investigating these specific hyperparameters, the objective is
to discern their individual effects on model performance and corresponding trends
in energy consumption. The analysis conducted is strategically designed to discern
the individual impacts of varying the number of layers and nodes within the LSTM
architecture. In fact, to accurately attribute the influence of each parameter, the
investigation was performed separately for these two hyperparameters. In one
scenario, while exploring the impact of altering the number of layers, the number
of nodes within each layer was kept constant. Conversely, when examining the
effects of adjusting the number of nodes, the number of layers remained fixed. This
segregation allowed for a focused evaluation, aiming to isolate and understand the
direct energy consumption.
Overall, this exploration aims to identify optimal configurations that strike a balance
between model efficiency, performance, and sustainability, ultimately contributing
to a reduction in carbon emissions.
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4.6 Tailored Problem Formulations
The preprocessing and structuring of data play a pivotal role in shaping the
efficiency and effectiveness of predictive models, particularly in the realm of min-
imizing computational resources for training and keeping baseline performances.
This section delves into the preprocessing strategies tailored for distinct datasets,
where the techniques adopted are tailored to the specific nuances of each problem,
exemplifying the importance of data structuring in achieving optimal modeling
outcomes.

Network Data Problem: Data Aggregation
In addressing the network data-related issue, where the emphasis lies on univariate
predictions for individual base stations within specific zones, the approach begins by
acknowledging the initial formulation of the problem. Originally, the problem was
defined by considering data acquired from each base station separately, resulting in
the creation of a distinct model for each station. While this approach yielded high
accuracy, it posed potential inefficiencies in terms of emissions due to the creation
of numerous models. Recognizing this, the solution incorporates a strategic shift
towards data aggregation. The concept of data aggregation involves combining
information retrieved from multiple base stations within the same zone before
constructing the LSTM networks. This aggregation aims to merge the data from
various stations within a specific area, effectively simplifying the input dataset for
the LSTM model. The underlying objective is to condense the number of models
to be built, streamlining computational resources, and redirecting focus toward
zone-specific patterns rather than station-level intricacies. This shift in approach
is motivated by the aspiration to enhance the efficiency of the models in terms of
emissions while maintaining a reasonable level of accuracy.

PV Panel Problem: Feature Selection and Historical Data Consideration
In the case of the PV panel problem, characterized by multivariate predictions
based on various available features, the emphasis shifts toward feature selection.
Here, the forecast relies on multiple input features, and the objective is to identify
and select the most relevant ones for prediction. The strategy involves a meticulous
examination and selection of features deemed crucial in determining solar energy
output. Feature selection is supposed to be a valuable strategy for reducing
emissions produced during the training of the model. By focusing on a subset
of the most relevant features, the model is provided with a streamlined set of
information, potentially leading to more efficient training processes and consequently
lower emissions. Additionally, the impact of feature selection on accuracy is a
crucial consideration. While reducing the number of features, there is even the
possibility that the model’s performance might be enhanced. This is because the
selected features are anticipated to capture the essential patterns and characteristics
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influencing solar energy output, potentially resulting in a more refined and accurate
predictive model. Thus, feature selection not only offers a pathway for emission
reduction but also holds the potential to improve the overall accuracy of the
predictive model.
Specifically, this feature selection process is conducted within the framework of the
three distinct categories into which the features are subdivided: solar radiation,
temperature conditions, and wind dynamics. By isolating and incorporating only
the most pertinent features from these categories, this approach aims to refine the
predictive model, concentrating computational resources on the most influential
factors governing energy production. This strategic selection process ensures that
the predictive model focuses specifically on the key aspects within each category,
contributing to a more nuanced and accurate representation of the intricate interplay
between solar radiation, temperature conditions, and wind dynamics in determining
solar energy generation.

In the context of the PV panel dataset, where data stability is notably consistent,
a second modification in the problem formulation involves manipulating the sliding
window configuration. This approach serves as an alternative study with respect to
the initial feature selection strategy. The objective here is to scrutinize the relation-
ship between accuracy and emissions by varying the historical data considered by
the model. By adjusting the sliding window, the amount of historical information
provided to the model is modified, potentially influencing its understanding of
temporal patterns.

In both scenarios, the adjustment in the problem formulation aids in simplifying
the model structure, focusing computational resources on the most critical aspects
of the prediction tasks, and ultimately contributing to a more emissions-efficient
modeling approach.
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Experimental results

5.1 Experimental Setup
The LSTM neural network architecture is used for modeling both the network
dataset and the PV panel dataset. The experimentation initially involves assessing
the impact of utilizing different programming environments for model implementa-
tion, specifically between Keras and PyTorch. Subsequently, Keras is selected for
all experiments, but it is worth noting that both Keras and PyTorch exhibited equal
applicability for the task. The computations pertaining to carbon emissions are
carried out using the CodeCarbon python library, enabling accurate quantification
of emissions resulting from the computational processes involved in model training
and inference. Italy is selected as specific location when running the tracker.
Every experiment and computation is performed on a personal computer equipped
with an 11th generation Intel Core i7-1165G7 CPU operating at 2.80GHz constant
consumption mode, with 16 GB of available memory. Contrarily, the GPU is not
present and therefore not tracked. All the specifications are reported in Table 5.1.

Component Model TDP
CPU 11th Gen Intel Core i7-1165G7 @ 2.80GHz 28 W
GPU Not Found -

Table 5.1: CPU and GPU specifications.

The following experimental configurations are exclusively dependent on the two
distinct datasets: network data and PV panel data. Each dataset represents a
unique problem domain, thus necessitating specific setups and baseline settings for
the LSTM models employed in these experiments.
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Network Data Configuration
Regarding the network data, the baseline LSTM structure, drawn from a referenced
paper [76], involves deploying an LSTM model for each base station. Each model
consists of 5 LSTM layers and a final Dense layer. The predictions made for the
forthcoming 4 samples, which encapsulate an hour’s worth of data, are based on
insights drawn from the 10 preceding samples – considering the definition given in
Section 3.1 this means k = 10. These 10 samples cover a temporal span of 2.5 hours,
acting as the input window that the model utilizes to forecast the subsequent hour’s
data. The testing period is fixed at 14 days (14 · 24 · 4 = 1344 rows, considering
that each dataset row represents 15 minutes), while the training period spanned
46 days (corresponding to 4416 rows). The number of epochs is set to 500 as an
additional training hyperparameter, and 64 nodes per layer are also taken into
consideration for the architectural design. Lastly, 0.001 is chosen as the Adam
optimizer’s learning rate.

In the following experiments, the pre-established baseline configuration is systemat-
ically changed in order to understand the effect of changing hyperparameters and
design characteristics.
In the pursuit of manipulating training hyperparameters, a series of experiments
unfolds with distinct variations:

• Epochs Variation: A range of epochs [50, 100, 250, 500, 1000] constitutes
the focal point of the initial experiment. The objective here is to observe
the model’s performance and emissions concerning different epoch counts
while keeping the other specifications constant in each trial, adhering to the
baseline’s settings (for instance the training and testing days are steadfastly
set to 46 and 14, respectively).

• Testing Days Variation: A range of testing days [7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20] becomes the subject of the second experiment. This analysis
delves into varying the testing duration while adapting the training days
accordingly to encompass the entire dataset. The adjustment in testing days
is paired with a corresponding change in training days to maintain the entire
dataset’s inclusion in the training process. This approach ensures that the
model considers the entirety of the available data, enabling a comprehensive
assessment of its adaptability and accuracy across varied temporal scopes. All
other specifications remain constant, aligned with the baseline setup.

• Training Days Variation: In the third experiment, the focus lies on a range of
training durations [7, 14, 21, 28, 35, 42, 46]. This analysis examines how the
model’s learning capacity and stability evolve across varied training durations
while maintaining a consistent testing period, as set in the baseline. Notably,
when using less than 46 days for training, the model operates on a subset of
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the available dataset, producing a temporal gap between training and test
data. The testing duration remains unaltered, ensuring a fixed evaluation
period across all training durations, allowing a focused exploration of the
model’s learning behavior and performance stability. All other specifications
align with the settings defined in the baseline.

Other experiments are taken into consideration in the context of modifying the
architectural model design:

• Layers Number Variation: The number of layers undergoes variation across a
spectrum of values [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] in the first experiment. This
exploration aims to discern the impact of different layer counts on model
accuracy and emissions.

• Node Count Variation: The second experiment concentrates on varying the
number of nodes within each layer, spanning values of [16, 32, 64, 128, 256].
Here, a single layer is maintained to delve deeper into the specific influence of
node count variation on the model’s performance and emissions.

In the final experiment, the approach shifts from creating an individual LSTM
model for each base station to consolidating data from multiple stations within
the same zone. This consolidation aims to generalize the problem by designing a
single model for each zone, reducing the model’s specificity. The experimentation
involves also modifying the architecture by reducing the number of layers from 6
to 1 and adjusting the training epochs from 500 to 100. The decision to alter the
architecture by reducing the layer count and adjusting the training epochs stems
from the findings derived from earlier experiments and a careful evaluation of model
performance and emission outcomes. This change in approach permits a broader
analysis by shifting the focus from specific base stations to zones, potentially
allowing for a reduction of computational resources.

PV Panels Configuration
Regarding the PV panels dataset, the baseline settings are determined through a
grid search methodology. The test set size is 25% of the whole dataset. Given that
the dataset spans 365 days and that each sample lasts for one hour, the test set
comprises 25% of the dataset (25 · 8760 ÷ 100 = 2.190 samples), with the remaining
samples (6570 samples) making up the training set. A 24-hour sliding window is
established by selecting a sequence length of 24-time steps while considering hourly
measurements. The number of epochs is set to 250. Design-wise, in the LSTM
architecture, the number of layers is fixed at 3, and the number of nodes at 256.
Similarly to the previous dataset, the learning rate for the Adam optimizer remains
constant at 0.001.

During the experimental phase, these baseline settings are varied to understand
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their impact. The following tests are conducted in order to modify the training
hyperparameters:

• Epochs Variation: The number of epochs is experimented within the range
[10, 50, 100, 150, 200, 250]. Like the network dataset scenario, all other
configurations remain consistent with the established baseline settings to
isolate the specific influence of the epochs’ variation on model performance
and emissions.

• Testing Size Variation: The size is varied as a percentage of the total dataset,
exploring [5%, 10%, 20%, 25%, 30%, 40%]. As the test set size changes, the
training set size is derived as the difference between the total dataset and the
test set size.

• Training Size Variation: In the third experiment, while maintaining a fixed test
set size at 25%, the training set size is explored across [25%, 35%, 45%, 55%,
65%, 75%] to understand its influence on model performance and emissions.

Furthermore, a number of trials are carried out to investigate the complex aspects
of architectural design using LSTM models, within the framework of the PV panels
dataset:

• Layers Number Variation: The architecture is investigated by changing the
depth of the LSTM network. The number of layers is systematically adjusted,
spanning a range [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], while keeping all other model
configurations consistent with the baseline setup.

• Node Count Variation: The number of nodes is varied across the range [32,
64, 128, 256, 512, 1024], focusing on a single LSTM layer for this experiment.
This experiment concentrates on exploring the effect of node density within a
single layer.

The investigation into the impact of historical data is executed by manipulating the
sliding window configuration across a range of values: [2, 8, 16, 24, 48, 72, 96]. This
deliberate variation in the sliding window alters the temporal context provided to
the model, influencing the depth of historical data considered during predictions.
Each value within this range corresponds to a distinct temporal span, allowing
for a comprehensive evaluation of how different amounts of historical information
affect both the model’s predictive accuracy and its associated carbon emissions.
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5.2 Results

5.2.1 Different Environments
The initial analysis focuses on the experimental environment by comparing the
two primary Python libraries for developing neural networks. This comparative
study is exclusively conducted for the Business zone of the network traffic data,
operating under the assumption that consistent outputs are achievable regardless
of the specific dataset employed. Within this scope, the implementation of the
LSTM network is done using both Keras and PyTorch frameworks and following
the baseline settings. To provide a comprehensive perspective, a detailed Table 5.2
offers insights into emissions and durations during both the training and testing
phases. This focused examination within a singular zone aims to establish a robust
comparison between Keras and PyTorch in terms of their impact on emissions
when implementing the LSTM network. From the results, it is evident that the
training phase is notably longer, leading to higher emissions when employing the
PyTorch library compared to Keras. Conversely, during the testing phase, the
trend reverses. Since the model is evaluated at each epoch, the divergence in
training times between the two libraries might stem from variations in metric
computation, which is integrated into the training process itself. This difference
in metric implementation could result in significantly different training durations.
On the other hand, during the testing phase, where only prediction occurs, the
significant differences in timing could be attributed to the standard functions used
by each library to execute predictions. Consequently, for all subsequent analyses,
Keras is consistently utilized. The focus remains on emissions during the training
phase, where this library demonstrates significantly lower energy consumption.

Python Library Phase Emissions (gCO2eq) Duration (seconds)

Keras
Training 0.2961 254.62

Testing 0.0187 15.85

PyTorch
Training 4.5206 3858.17

Testing 0.0002 0.05

Table 5.2: Comparative analysis of accuracy and emissions during training and
testing phases using Keras and PyTorch libraries, focusing on the Business zone
within the network traffic dataset.
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5.2.2 Baseline Results
The baseline configuration yields diverse outcomes across various metrics for both
network traffic data and PV panel data. A comprehensive table showcases various
critical measures, including accuracy, emissions, and duration during both the
training and testing phases.

Specifically, for the network data, each experiment’s result is calculated across
all the zones studied, as shown in Table 5.3. This detailed examination under
the baseline settings provides a holistic view of the model’s performance and the
environmental impact. The initial observation reveals a direct correlation between
duration and the associated emissions. An examination of the outcomes concerning
duration and emissions during the training and testing phases highlights their
parallel growth. As the duration extends, a synchronous increase in emissions
is notable: this is emphasized by the fact that the training phase’s duration is
approximately ten times longer than the testing phase. This discrepancy in time
directly influences emissions, with the prolonged training duration significantly
contributing to a noticeable rise in emitted carbon. Furthermore, the evaluation of
accuracy, computed for both the training and testing phases, indicates a consistent
trend. The observed accuracy values hover around 0.3 for all zones in both the
training and testing phases. This suggests a balanced model performance without
significant signs of overfitting or underfitting across the examined zones.

Figure 5.1: Graph depicting the comparative analysis between predicted and
actual PV panel system outputs, showcasing the model’s performance in forecasting
photovoltaic energy generation against the ground truth measurements.

The outcomes for the PV panel dataset are showcased in another detailed Table 5.4,
presenting the metrics acquired during the baseline configuration experiments.
Additionally, to provide a visual understanding of the prediction accuracy, Fig. 5.1
displays the actual and predicted values. This representation visually demonstrates
how closely the predicted trend aligns with the actual data. Furthermore, a
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Zone Phase Accuracy
Emissions

(gCO2eq)

Duration

(seconds)

Business
Training 0.304 0.296 254.6

Testing 0.291 0.019 15.9

Industrial
Training 0.318 0.274 235.3

Testing 0.300 0.013 11.0

San Siro
Training 0.309 0.262 225.1

Testing 0.293 0.012 10.5

Rho Fiere
Training 0.312 0.276 236.9

Testing 0.300 0.013 11.0

Residential
Training 0.317 0.291 250.6

Testing 0.306 0.019 15.7

Train Station
Training 0.310 0.294 252.6

Testing 0.300 0.018 15.1

Polimi
Training 0.312 0.418 359.2

Testing 0.297 0.025 21.0

Table 5.3: Accuracy, emissions, and duration during both training and testing
phases across all zones under the baseline setup, concerning the network traffic
data.

zoomed-in figure specifically focuses on the initial two days of the dataset (Fig. 5.2),
offering a more precise view of the predictions’ alignment with the true trend.
This remarkable precision in prediction is attributable to the dataset’s stability,
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Phase Accuracy Emissions (gCO2eq) Duration (seconds)

Training 0.481 8.427 2314.6

Testing 0.615 0.002 1.8

Table 5.4: Accuracy, emissions, and duration during both training and testing
phases, considering the PV panel data and the baseline settings.

Figure 5.2: Close-up view detailing the initial two days’ predictions and actual
values of the PV panels system output, offering a more detailed insight into the
model’s performance within this specific timeframe.

facilitating a more straightforward prediction process due to its consistency.

5.2.3 Manipulating Training Hyperparameters
This section delves into a comprehensive exploration of the impacts of varying
training hyperparameters on performance and emissions, with a primary focus on
the number of epochs, test set size, and train set size. This multifaceted analysis
aims to unravel the intricate interplay between these critical factors and their
influence on two distinct datasets: the PV panel dataset and the network traffic
dataset, with a specific emphasis on the Train Station zone for the latter.

The initial segment of this investigation centers around the manipulation of the
number of epochs. To discern the nuanced effects on model performance, both
test accuracy and training emissions are meticulously scrutinized. A detailed
visual representation of the outcomes is encapsulated in Fig. 5.3, where the x-axis
delineates the total number of performed epochs.
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(a) Accuracy and Emissions Variation with Epochs for Train Station Zone in
Network Traffic Dataset

(b) Accuracy and Emissions Variation with Epochs for PV Panel Dataset.

Figure 5.3: Comparison of Accuracy and Emissions Across Different Datasets
Varying with Number of Epochs.
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Fig. 5.3a encapsulates the findings for the network traffic data, focusing solely on the
Train Station zone for the sake of simplicity, while Fig. 5.3b encapsulates the results
for the PV panel dataset. This visual comparison serves as a foundational overview,
setting the stage for a deeper exploration of the observed distinctions between the
two datasets. In both datasets, emissions demonstrate a linear increase with the
rising number of epochs. However, the behavior of accuracy varies notably. In the
PV panel dataset, accuracy remains almost constant, whereas in the network traffic
data, it consistently improves, although with occasional oscillations. Consequently,
establishing a balance between accuracy and emissions proves challenging in the
latter case. On the other hand, a significant finding is revealed in the PV panel
dataset. The difference in accuracy varying the number of epochs is considerably
smaller compared to the difference in emissions. This suggests that extended model
training leads to higher emissions, without enhancing the performance. This implies
that reducing the number of epochs could result in substantial emission reduction
with only a slight compromise in accuracy.
In summary, while emissions show a linear growth with increasing epochs in
both cases, accuracy exhibits diverse patterns. The network traffic data lacks a
discernible balance between accuracy and emissions, whereas for the PV panel
dataset, reducing epochs could significantly cut emissions with minimal impact on
accuracy.

After comparing the results obtained for the two distinct datasets by varying the
number of epochs and analyzing the relationship between accuracy and emissions,
a different type of visualization is proposed in order to visually find different model
behavioral patterns with respect to the number of epochs. In this alternative
visualization, depicted in Fig. 5.4, emissions are plotted on the y-axis, while
accuracy is plotted on the x-axis. Each specific number of total epochs tested
during experiments is represented by plotting the results obtained for each base
station. Two different figures are created for this purpose: Fig. 5.4a and Fig. 5.4b.
Fig. 5.4a, employs color differentiation according to zone names, directing attention
towards scrutinizing the enhancement within each specific zone rather than the
dataset as a whole. On the other hand, in Fig. 5.4b the points are colored based on
the number of epochs, allowing for a clear observation that even though accuracy
continues to increase, the absolute improvement is significantly smaller compared
to the growth in emissions. Hence, even when considering this dataset, it appears
plausible to use a reduced number of epochs compared to the one used by the
baseline method, i.e., 500 epochs. Moreover, by combining the insights coming from
both visualizations, deeper considerations can be made. Firstly, the experiments
using a lower number of epochs, i.e., 50 epochs, reveal a higher variance in accuracy
between the zones, while for a total number of epochs equal to or greater than 100,
the variance noticeably decreases.
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(a) Number of epochs variation by aggregating per zone.

(b) Number of epochs variation by aggregating per epochs.

Figure 5.4: Comparison of accuracy and emissions variations for different epoch
aggregations.
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(a) Accuracy and Emissions Variation with Number of Testing Days for Train
Station Zone in Network Traffic Dataset

(b) Accuracy and Emissions Variation with Test Size for PV Panel Dataset.

Figure 5.5: Comparison of Accuracy and Emissions Across Different Datasets
Varying with Size of Test Set.
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This observation led to another important finding: the difference in accuracy
improvement between 50 and 100 total epochs varies significantly depending on the
zone being considered. This indicates that the same hyperparameter settings may
need to be adjusted differently across different zones, providing valuable insights
for further investigation. Expanding the exploration of hyperparameter values
relevance, an examination of the impact of test set size and train set size becomes
crucial. In the initial analysis, focusing on the test size, notable oscillations are
observed in both accuracy and emissions when considering the traffic dataset,
specifically within the Train Station zone – as shown in Fig. 5.5a. Despite the
frequent fluctuations, there is a decremental trend in both accuracy and emissions.
Anyway, it is hard to confirm this behavior since the ranges within which these
metrics vary are remarkably narrow. Conversely, when scrutinizing the PV panel
dataset, a distinct pattern emerges, as represented in Fig. 5.5b. In this case, both
emissions and accuracy exhibit a nearly linear decrease in correlation with the size
of the test set. This trend is rationalized by the reciprocal relationship between
the test and train sizes: as the test set size expands, the train set size contracts
proportionately, contributing to the overall decline observed in both accuracy and
emissions.

In the subsequent investigation, the focus shifts to the impact of varying training
set sizes while maintaining a fixed test set size. These results are reported in
Fig. 5.6a and Fig. 5.6b. The findings from both datasets reveal a consistent trend
where both accuracy and emissions exhibit an upward trajectory as the training size
increases, aligning with the initial hypothesis. This reaffirms and accentuates the
results observed in the previous test size ablation, shedding light on the heightened
significance of this relationship. The increased emphasis may be attributed to the
creation of a temporal gap between the training and test phases when reducing the
training size. Indeed, the temporal link within the data emerges as a pivotal aspect,
especially in the context of time series analysis. In the realm of time series, the
chronological order of data points is fundamental for capturing patterns and trends
inherent in temporal sequences. When varying the training size and introducing a
potential temporal gap between the training and test phases, the intricate temporal
connections within the data may be compromised. The essence of time series
analysis lies in comprehending how past events influence future occurrences. In
the context of machine learning models, maintaining a robust temporal link during
training becomes imperative to enable the model to glean meaningful insights
from historical data and generalize effectively to unseen future instances. The
observed increase in both accuracy and emissions with an expanding training size
underscores the significance of preserving this temporal continuity, highlighting the
nuanced relationship between the temporal structure of data and the performance
of machine learning models, particularly in time series scenarios.
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(a) Accuracy and Emissions Variation with Number of Training Days for Train
Station Zone in Network Traffic Dataset

(b) Accuracy and Emissions Variation with Train Size for PV Panel Dataset.

Figure 5.6: Comparison of Accuracy and Emissions Across Different Datasets
Varying with Size of Train Set.
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This temporal gap potentially disrupts the coherent evolution of the model, accen-
tuating the importance of maintaining both a sufficient training size and a temporal
continuity of the data used during these critical phases.

5.2.4 Architectural Model Design
The exploration of architectural model design involves modifying two crucial aspects:
the number of LSTM layers and the number of nodes within a single LSTM-layer
network, impacting both the network traffic and PV panel datasets. Assessing
training emissions and test accuracy provides insights into the model’s behavior
under these variations.

Initially, by varying the number of layers, visual representations are generated
for both datasets to allow for direct comparisons, as shown in Fig. 5.7. These
figures present accuracy and emissions on the y-axis against the number of layers
on the x-axis. Interestingly, a distinctive pattern emerges: while emissions exhibit a
consistent linear growth with the number of layers for both datasets, the behavior of
accuracy diverges notably. Focusing on the network dataset, outcomes for the Train
Station zone are exclusively detailed. As can be seen in Fig. 5.7a, the accuracy of
this zone’s base stations exhibits a non-linear trend that clearly declines as the
number of layers rises over five. On the other hand, accuracy in the PV panel
dataset shows an increasing trend up to three layers, at which point it plateaus, as
shown in Fig. 5.7b.

This behavior in accuracy might be attributed to the complexity and granularity
of the datasets. In the network dataset, the increment in layers might introduce
architectural over-complexity, leading to an intricate model that struggles to
generalize well to unseen data, resulting in decreased accuracy. A surplus of layers
seems to affect the model’s ability to generalize, which means that it can potentially
lead to either overfitting or an intricate model unable to adapt to diverse data
patterns. On the other hand, in the case of the PV panel dataset, the model
may initially benefit from additional layers by capturing more intricate patterns,
but then a plateau in the accuracy trend is reached. This suggests that further
increasing layers may not significantly contribute to improving accuracy due to
model saturation. Therefore, the initial rise in accuracy followed by a plateau
indicates that the model has reached its capacity to learn from the data.

In conclusion, when aiming to strike a balance between accuracy and emissions,
opting for a restrained number of layers appears advantageous in both datasets.
In fact, choosing a reduced number of layers is beneficial as it potentially reduces
computational demands, consequently curbing emissions. For the network dataset,
the recommendation is to opt for the smallest feasible number of layers.
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(a) Accuracy and Emissions Variation with Number of Layers for Train Station
Zone in Network Traffic Dataset

(b) Accuracy and Emissions Variation with Number of Layers for PV Panel
Dataset.

Figure 5.7: Comparison of Accuracy and Emissions Across Different Datasets
Varying with Number of LSTM Layers.
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(a) Accuracy and Emissions Variation with Number of Nodes for Train Station
Zone in Network Traffic Dataset

(b) Accuracy and Emissions Variation with Number of Nodes for PV Panel
Dataset.

Figure 5.8: Comparison of Accuracy and Emissions Across Different Datasets
Varying with Number of Nodes, when Considering only One LSTM Layer.
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Conversely, in the case of the PV panel dataset, selecting the initial value that
corresponds to the onset of the plateau proves advantageous, steering towards a
configuration where additional layers do not significantly contribute to accuracy
but may contribute to emissions.

Continuing with the analysis of architectural model design, another explored aspect
is varying the number of nodes in a single-layer LSTM model for both datasets.
Visualizing the outcomes through Fig. 5.8 reveals interesting trends. Across both
datasets, increasing the number of nodes within the LSTM model initially boosts
accuracy, showing a positive correlation. However, this improvement in accuracy
plateaus after a certain amount of LSTM units, while the environmental cost –
measured in terms of emissions – continues to rise steadily. This illustrates a trade-
off in which additional accuracy improvements come with a disproportionately
larger environmental cost. The marginal improvements in accuracy beyond a certain
threshold do not justify the exponential increase in emissions. Hence, pursuing
maximum accuracy without an equivalent rise in emissions is not justified. If the
increase in emissions does not correspond to substantial accuracy improvements, it
is unreasonable to sacrifice environmental impact for marginal gains in accuracy.

5.2.5 Tailored Problem Formulations
Targeted exploration of the problem formulations tailored to reduce emissions
of the models across the two datasets is then taken into consideration. Since
each dataset has its own characteristics, distinct strategies are employed. In the
first case (regarding the network dataset), a comprehensive approach involves the
aggregation of data originating from various sources, aiming to reduce the number
of built models. Conversely, in the second case, related to PV panel dataset, two
different analyses are conducted, proposing techniques concentrated on diverse
characteristics of the problem. This includes both a meticulous investigation into
feature selection, highlighting the critical variables that significantly impact model
outcomes, and a nuanced exploration of sliding window variations, designed to
adapt the model to evolving temporal patterns.

Network Data Problem: Data Aggregation
In order to mitigate potential environmental impact, a strategic aggregation tech-
nique is implemented for the network dataset. This approach aims to merge data
from various base stations, thereby reducing the overall number of models. Indeed,
instead of creating a model for each individual base station, a single model is
crafted for each zone. This not only significantly decreases training time but
also carries the hypothesis of reducing associated emissions. Building on insights
from prior experiments, adjustments are made to both training hyperparameters
and the architectural model design. These settings are applied uniformly to both
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the aggregated and non-aggregated configurations to ensure comparable results.
Notably, the number of epochs is curtailed to 100 from the previous 500, as the
marginal gain in accuracy doesn’t justify the heightened emissions. Additionally,
the number of layers is streamlined from 4 to 1, given that, in the corresponding
earlier analysis, increasing layers not only fails to improve accuracy but actually
hampers it, while emissions exhibit a linear growth. After modifying the values for
the number of epochs and layers, the metrics obtained for the modified setup are
comprehensively presented in Table 5.5.

This table includes crucial performance indicators such as accuracy, emissions, and
duration for both the training and testing phases. To facilitate a more nuanced
understanding of the gains achieved with this modified configuration, any reduction
in terms of emissions is reported in green within brackets, highlighting positive
advancements. Conversely, in emissions instances where a loss is observed, it
is denoted in red within brackets. Moreover, the color scheme is employed also
to highlight gains and losses in the case of accuracy, but clearly with opposite
meanings: the color green signifies an increase, while the color red denotes a
decrease. This color-coded approach aims to accentuate the impact of improvements,
particularly in terms of emissions, providing a visual cue for the reader to discern the
magnitude and direction of the changes in the two considered metrics. The presented
results unequivocally demonstrate the effectiveness of the modified configuration
in substantially lowering emissions across all zones, thanks to the reduction in
both epochs and layers. While there is a slight dip in accuracy, it is crucial
to emphasize that this decline is relatively minor in magnitude. This nuanced
trade-off underscores the success of the streamlined configuration in prioritizing
environmental sustainability without compromising accuracy to a significant extent.

After showcasing the favorable outcomes resulting from adjustments in the num-
ber of epochs and layers, two histograms presented in Fig. 5.9 encapsulate the
comparison between aggregated and non-aggregated values, showcasing the stark
differences in accuracy and emissions. While accuracy, shown in Fig. 5.9a remains
consistently comparable across all zones, emissions undergo a drastic reduction,
exceeding a sixfold decrease in the aggregated approach, underscoring the efficacy
of this tailored aggregation strategy, as depicted in Fig. 5.9b. The effectiveness is
derived not only from maintaining accuracy but also from substantial mitigation of
the environmental impact achieved through the significant reduction of emissions.
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Zone Phase Accuracy
Emissions

(gCO2eq)

Duration

(seconds)

Business
Training 0.246 (-0.058) 0.021 (-0.275) 18.8

Testing 0.282 (-0.009) 0.005 (-0.014) 4.3

Industrial
Training 0.259 (-0.059) 0.021 (-0.253) 19.2

Testing 0.278 (-0.022) 0.006 (-0.007) 4.8

San Siro
Training 0.248 (-0.061) 0.021 (-0.241) 19.0

Testing 0.267 (-0.026) 0.006 (-0.006) 5.3

Rho Fiere
Training 0.244 (-0.068) 0.021 (-0.255) 19.9

Testing 0.257 (-0.043) 0.005 (-0.008) 4.3

Residential
Training 0.256 (-0.061) 0.023 (-0.268) 20.4

Testing 0.279 (-0.027) 0.005 (-0.014) 4.2

Train Station
Training 0.250 (-0.060) 0.022 (-0.272) 20.0

Testing 0.273 (-0.027) 0.005 (-0.013) 4.5

Polimi
Training 0.258 (-0.054) 0.022 (-0.396) 20.2

Testing 0.292 (-0.005) 0.005 (-0.020) 4.5

Table 5.5: Accuracy, emissions, and duration during both training and testing
phases across all zones under the modified setup, concerning the network traffic
data. Discrepancies from the original baseline are emphasized in green if they
represent improvements and in red if they indicate deterioration.
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(a) Accuracy comparison between aggregated and separated base station configura-
tion.

(b) Emissions comparison between aggregated and separated base station configu-
ration.

Figure 5.9: Comparison between aggregated and non-aggregated values for
accuracy (Fig. 5.9a) and emissions (Fig. 5.9b). The histograms illustrate the stark
differences in accuracy and the drastic reduction in emissions achieved through the
tailored aggregation strategy.
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PV Panel Problem: Feature Selection and Historical Data Consideration
Following the thorough exploration of training hyperparameters and architectural
model design, modified settings – with respect to those of the baseline – have been
adopted for the subsequent analyses. Specifically, the number of training epochs
has been reduced from 250 to 50, driven by the observation that the difference
in accuracies between these configurations is negligible, while the divergence in
emissions is noteworthy.

The outcomes of these adjustments are presented in Table 5.6, employing a consis-
tent color-coded visual representation, mirroring the approach used in Table 5.5
for the modified baseline metrics related to the network dataset. This impersonal
presentation enhances the clarity of comparative impacts on both accuracy and
emissions across varied configurations, aiding in the objective interpretation of the
results. The outcomes underly the impact of the number of epochs specifically on
the emissions during the training phase, while there is no impact on the inference
phase since the structure of the model is not affected by this hyperparameter.

In the subsequent analysis, we introduce the results of the feature selection strategy
after adopting the modified value of epochs for all the following configurations
to ensure comparability. The feature selection strategy involves removing, at
each experiment, one specific category of features (solar radiation, temperature
conditions, and wind dynamics). The results are reported in Table 5.7, where
the values of training emissions and test accuracy for all the different trials are
compared.

Phase Accuracy Emissions (gCO2eq) Duration (seconds)

Training 0.476 (-0.005) 0.569 (-7.858) 477.4

Testing 0.612 (-0.003) 0.005 (+0.003) 3.9

Table 5.6: Accuracy, emissions, and duration during both training and testing
phases, considering the modified settings with respect to the baseline of PV panel
data. Discrepancies from the original baseline are emphasized in green if they
represent improvements and in red if they indicate deterioration.

The results obtained from feature selection provide valuable insights into the trade-
offs between model performance and environmental impact. Notably, when wind
dynamics-related features are excluded, the model demonstrates even superior
accuracy than that obtained with the baseline. This outcome aligns with the
concept that reducing the number of features allows the model to focus on the

76



Experimental results

Configuration Accuracy Emissions (gCO2eq)

Baseline 0.612 0.559

w/o Solar Radiation 0.604 0.521

w/o Temperature Conditions 0.610 0.542

w/o Wind Dynamics 0.614 0.542

Table 5.7: Comparison between values of training emissions and test accuracy of
the feature selection strategy after adopting the modified number of epochs (50).
Each experiment involves the removal of one specific category of features – solar
radiation, temperature conditions, or wind dynamics.

most influential factors, resulting in a more refined and accurate prediction. On
the other hand, the observed reduction in emissions across all three experiments
underscores the environmental advantages of feature selection. By deliberately
choosing a subset of relevant features, the model is trained with less data, leading
to lower emissions during the training process. This reduction in emissions is a
direct consequence of the streamlined input data, reinforcing the idea that a more
focused model not only may enhance accuracy but also contributes to a more
environmentally sustainable machine learning approach.

Following the exploration of strategies to enhance the performance and sustainability
of the PV panel dataset, a pivotal consideration is given to the implementation of
sliding windows. This approach investigates the correlation between the quantity of
historical data provided to the model and the delicate trade-off between accuracy
and emissions. As depicted in Fig. 5.10, the accuracy curve (in blue) exhibits a
fluctuating pattern, while emissions (in green) linearly rise. Regarding accuracy,
the results suggest the existence of specific production trends within distinct
time frames. For instance, it seems reasonable to believe that a comprehensive
understanding of the PV panels’ production trend requires a 24-hour window.
Indeed, in correspondence with a 24-hour window, the accuracy greatly increases.
Notably, the figure reveals that even with a reduced timeframe, such as 8 hours, the
model achieves high accuracy. This can be attributed to the periodic nature of solar
light presence within this timeframe. The same does not happen when considering
a 16-hour window, since probably it does not reflect any specific behavior.

The overarching insight gleaned from the analysis is that identifying and leveraging
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Figure 5.10: Accuracy and Emissions Variation with Sliding Window Configura-
tion for PV Panel Dataset.

specific patterns associated with distinct time intervals can provide a means to
optimize accuracy while minimizing emissions. By recognizing the periodicity of
certain production trends and their correlation with time intervals, it becomes
possible to pinpoint the minimum duration necessary to attain nearly maximum
accuracy. This strategic alignment of temporal patterns and emission considerations
opens avenues for designing more resource-efficient models without compromising
predictive performance.
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Chapter 6

Conclusions and Future
Works

This research unfolds a nuanced understanding of the intricate interplay between
DL model performance and carbon emissions, unveiling several novel insights that
significantly contribute to the discourse on sustainable AI. A series of comprehensive
experiments was meticulously conducted, shedding light on a delicate balance that
exists when seeking high performance while simultaneously minimizing carbon
emissions. The findings underscore that the pursuit of high performance should
be carefully weighed against the associated increase in emissions, emphasizing the
importance of a judicious trade-off.

This study emphasizes the pragmatic use of existing open-source resources for the
evaluation of emissions, advocating for the adoption of standardized and reliable
tools, according to the specific hardware settings that have to be monitored in each
case study. Using standardized tools for assessing emissions is crucial to ensure the
comparability of different research studies. This enables the research community
to evaluate and compare emissions on a common scale by establishing a reliable
benchmark. Overall, this consistency fosters a more robust understanding of the
environmental impact of DL applications, facilitating a clearer comparison between
different models, techniques, or datasets. By endorsing this approach, the research
not only provides a practical guide for researchers about already available tools but
also contributes to the establishment of a more comparable framework for assessing
carbon emissions in DL applications.

Within the realm of training hyperparameters, this study illuminates their pivotal
role in achieving energy efficiency. The correlation between these hyperparameters,
the subsequent training duration, and, consequently, emissions, is accentuated. This
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insight offers a valuable perspective for practitioners, indicating that thoughtful
consideration of training hyperparameters can influence not only the model’s
accuracy but also its environmental impact.

Moreover, the impact of architectural model design is also considered, revealing that
adjustments can significantly affect a model’s carbon emissions production. The
complexity of a model emerges as a crucial factor, influencing learning time, power
requirements, and ultimately, emissions. Additionally, architectural choices in model
design extend their influence beyond emissions during the training phase, paralleling
the significance attributed to training hyperparameters. Their impact is equally
pronounced in the subsequent inference phase, thus imparting a long-term effect on
emissions over an extended operational lifecycle. This comprehensive consideration
of emissions, encompassing both training and inference, gains paramount importance
in real-world scenarios where models are intended for continuous and prolonged
deployment. The examination of emissions across these phases assumes a pivotal
role in understanding and optimizing the environmental footprint of these models,
ensuring sustained efficiency and eco-friendly operations throughout their practical
deployment lifespan.

Importantly, this research highlights a holistic approach to problem formulation,
asserting that early considerations of potential energy consumption can guide the
development of more energy-efficient solutions. This aligns with the overarching
theme of promoting sustainability throughout the entire ML lifecycle, from problem
definition to model deployment.
By integrating carbon emissions as a metric in ML algorithms, we can foster an
environment that prioritizes both performance and sustainability. With dedicated
research and implementation of sustainable AI practices, we can mitigate the
environmental impact of AI and contribute to a greener world.

In future investigations, expanding the scope of this research entails the inclusion
of a broader spectrum of models and datasets. An interesting avenue involves
replicating this exploration using hardware configurations equipped with GPUs or
employing computer clusters. This expansion seeks to ascertain the generalizability
of the findings across diverse hardware scenarios. Assessing whether similar trends
in emissions prevail under varied computational setups will offer invaluable insights
into the reproducibility and applicability of the identified emission patterns.
Another fascinating possibility for future exploration is to observe how a model
affects the environment when it is used in the real world. This pragmatic approach
aims to bridge the gap between theoretical analyses and practical implications,
providing researchers and industries with tangible insights into the actual envi-
ronmental ramifications of employing ML models. Understanding the real-time
impact of model deployment offers an invaluable opportunity to gauge the ecological
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footprint and ascertain the practical implications of employing these models in
day-to-day operational scenarios.
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