
POLITECNICO DI TORINO

Master’s Degree course in Computer Engineering

Master’s Degree Thesis

Kube: a cloud ERP system based on
microservices and serverless architecture

Supervisor
prof. Alessandro Fiori

Candidate
Thomas Cristofaro

Academic Year 2022-2023

A me e alla mia
determinazione

Summary

In the context of digital transformation, the necessity for agile, efficient, and scalable
corporate information systems is paramount, with Enterprise Resource Planning (ERP)
systems at the forefront of integrating and optimizing business processes. Confronted with
growing complexity and the demand for flexibility, traditional ERP architectures exhibit
considerable limitations. This thesis delves into the innovative realms of microservices
architecture and serverless technologies, such as Function-as-a-Service (FaaS) and cloud
services, proposing them as robust solutions to these challenges. An extensive analysis
and a real-world application case study form the core of this research, focusing on the
design and development of an ERP software platform tailored for small and medium-sized
enterprises (SMEs). This platform not only meets the specific requirements of SMEs
but also encapsulates modern concepts of distributed architecture and novel cloud-based
programming paradigms. Aiming to optimize cost-effectiveness for end-users, even with
a pricing model divergent from existing platforms, the study culminates in the creation
of a prototype ERP system. This is achieved by integrating various cloud services and
developing a cross-platform client front-end using Flutter, showcasing the viability and
advantages of the proposed architectural shift. The thesis also tackles the intricacies of this
technological evolution, discussing potential challenges and establishing best practices.
Ultimately, it provides practitioners and business decision-makers with comprehensive
insights and practical tools, supporting a successful transition to more resilient, agile, and
future-ready ERP systems.

4

Acknowledgements

I would like to extend my heartfelt thanks to all those who supported me throughout
my university journey. A special mention to my friends, with whom I shared countless
beautiful moments, enriching my experience.

I am deeply grateful to all my family, in particular to: Veronique, Roberto, and my
sister Erica, who have always believed in me. Their faith has been a constant source of
strength. To my little nephews, Leonardo and Alessandro, whose presence brings immense
joy to my life, thank you for brightening my days.

I am also immensely grateful to Angelica, whose unwavering support and continuous
encouragement have been crucial, especially during these last few challenging months of
thesis writing.

This accomplishment would not have been possible without their collective support.
Thank you all.

I extend my gratitude to my thesis advisor, Prof. Alessandro Fiori, for granting me
the opportunity to work on this intriguing project. Additionally, I am thankful to Horsa
Way Srl for allowing me to undertake this project alongside their team.

5

Contents

List of Tables 9

List of Figures 10

1 Introduction 13
1.1 Overview of the Thesis . 13

2 ERP: Enterprise resource planning 15
2.1 Reasons for Implementing ERP . 16
2.2 Disadvantages of ERP Systems . 18
2.3 Modules . 19
2.4 Technology . 21

2.4.1 Three-Tier Client-Server Architecture 21
2.4.2 Deployment . 22
2.4.3 Customization . 23

2.5 Market . 24
2.5.1 Cost . 25
2.5.2 Competitors . 27

3 Fundamentals 31
3.1 Cloud Computing . 31

3.1.1 Definition . 31
3.1.2 Service Models . 33
3.1.3 Deployment Models . 34
3.1.4 Benefits . 36
3.1.5 Market Overview . 37

3.2 Microservices . 38
3.2.1 Characteristics . 38
3.2.2 Benefits . 40
3.2.3 Challenges . 41
3.2.4 Comparison with Monolithic Architecture 42

3.3 How to Model Microservices . 43
3.3.1 Boundaries . 43
3.3.2 Domain-Driven Design . 46

6

3.3.3 Event-Driven Architecture . 48
3.3.4 Workflow Management . 52

3.4 Serverless . 57
3.4.1 Introduction . 57
3.4.2 Benefits . 59
3.4.3 Drawbacks . 60
3.4.4 Function-as-a-Service . 62
3.4.5 Market Overview . 65

4 Technologies 69
4.1 Amazon AWS Services . 69

4.1.1 Pros and cons . 70
4.1.2 Alternatives . 71
4.1.3 AWS API Gateway . 72
4.1.4 AWS Lambda . 72
4.1.5 AWS RDS . 73
4.1.6 AWS SQS . 73
4.1.7 AWS SNS . 74
4.1.8 AWS Cognito . 74

4.2 Firebase Cloud Messaging . 74
4.2.1 How it works . 75

4.3 GO Language . 76
4.3.1 GO CDK . 76
4.3.2 GORM . 77

4.4 Serverless framework . 78
4.4.1 Pros and cons . 78
4.4.2 Alternatives . 78

4.5 Flutter . 79
4.5.1 Pros and cons . 80
4.5.2 Architecture . 80
4.5.3 Alternatives . 81

5 Kube Platform 83
5.1 Requirements . 83

5.1.1 Stakeholders . 84
5.1.2 Functional and Non-functional . 84

5.2 Server application . 86
5.2.1 Final Architecture . 87
5.2.2 Code Structure . 90
5.2.3 Utility Microservice . 92
5.2.4 Sales Microservice . 93
5.2.5 Whse and Financial Microservice 93
5.2.6 Posting Order Saga . 94

5.3 Client Application . 96
5.3.1 State Management . 96

7

5.3.2 Authentication System . 98
5.3.3 Routing System . 99
5.3.4 Page Builder . 99
5.3.5 Notification System . 100

5.4 Use Case . 101
5.4.1 User interaction . 101
5.4.2 Posting order . 102

6 Conclusions and future works 105

8

List of Tables

2.1 Characteristics of ERP Vendor Tiers . 25
2.2 Example ERP Vendors in Tiers . 25
2.3 Pros and Cons of SAP Business One. 28
2.4 Pros and Cons of Microsoft Dynamics 365. 29
2.5 Pros and Cons of ODOO platform. 29
2.6 Pros and Cons of Oracle NetSuite. 30
3.1 Comparative overview of major cloud service providers[51]. 36
3.2 Comparison of Monolithic and Microservices architectures[13]. 43
3.3 Event-driven architecture components[41]. 50
3.4 Models of Event-Driven Architecture. 51
3.5 ACID properties of database transactions 52
3.6 Example of ERP usage . 67
5.1 Stakeholders of a Cloud ERP System. 84
5.2 Functional requirements for the platform. 85
5.3 Non-functional requirements for the platform. 86
5.4 Microservices components. 89
5.5 REST API for page. 91
5.6 Methods for page schema. 91
5.7 Methods for page buttons. 91
5.8 Functions of utility microservice. 93
5.9 Functions of sales microservice. 94
5.10 Functions of Whse. and Financial microservices. 94
5.11 Routes and pages. 99
5.12 User interaction scenario . 101
5.13 User interaction scenario . 103

9

List of Figures

2.1 ERP-Supported Business Processes . 15
2.2 Reasons for Implementing ERP . 16
2.3 Examples of ERP Modules for a manufacturing company 20
2.4 Web Application Architecture . 21
3.1 Cloud service models [35]. 33
3.2 Worldwide market share of leading cloud infrastructure service providers

in Q2 2023[57]. 35
3.3 U.S. cloud computing market[55]. 37
3.4 Netflix backend in AWS[61]. 39
3.5 Monolithic and Microservices architectures[33]. 42
3.6 The different types of coupling, from loose (low) to tight (high) 45
3.7 The Warehouse service internally has been split into Inventory and Shipping

microservices . 48
3.8 Example of an event-driven architecture[4]. 49
3.9 How event-driven architecture works[2]. 50
3.10 Example that show the difference between monolithic and microservices

transactions. 53
3.11 Example of the 2PC protocol process[63]. 54
3.12 From 2pc to Saga pattern[56]. 55
3.13 Choreography-based saga[42]. 56
3.14 Orchestration-based saga[42]. 57
3.15 Example of Serverless Architecture. 58
3.16 Evolution of architectures[18]. 62
3.17 Example of Function per microservice. 64
3.18 Example of Function per aggregate. 65
3.19 Serverless adoption among survey respondents’ organizations. 66
3.20 Success rating of serverless adoption among survey respondents, broken

down by serverless experience level. 66
4.1 Example of AWS services integration. 70
4.2 Cloud services comparison[17]. 71
4.3 Lambda invocation types. 72
4.4 FCM architecture. 75
4.5 Go CDK API architecture. 77
4.6 Serverless Framework alternatives. 79

10

4.7 Flutter architecture. 81
5.1 Final architecture of the platform. 87
5.2 Microservices components. 88
5.3 Stack abstractions layer. 90
5.4 Sequence diagram of the posting order saga. 95
5.5 Client application architecture. 96
5.6 Client UI. 97
5.7 Provider package. 97
5.8 Authentication system. 98
5.9 Page builder workflow. 100
5.10 New button on customer list page. 102
5.11 Insert Customer from detailed page. 102
5.12 Posting order button on sales order card. 103
5.13 Posting order result notification. 104

11

12

Chapter 1

Introduction

In today’s era of digital transformation, there’s an urgent need for agile, efficient, and
scalable information systems in the corporate world, with Enterprise Resource Planning
(ERP) systems playing a critical role in integrating and optimizing business processes.
However, the increasing complexity and the requirement for flexibility highlight the lim-
itations of traditional ERP architectures. These platforms often rely on outdated tech-
nology, are built on monolithic architectures, and follow archaic pricing models. Many
such systems struggle with compatibility issues on modern operating systems, suffer from
obsolete graphical interfaces, and are not user-friendly.

The aim of this thesis, therefore, is to develop an ERP platform called Kube that en-
capsulates ERP functionalities within a modern technological framework. This includes
seamless cloud integration and an updated pricing model. The envisioned platform is
designed to be cross-platform compatible, ensuring accessibility across all current oper-
ating systems without the hassle of complex installations. This approach is intended to
address the shortcomings of traditional ERP systems by offering a solution that is both
technologically advanced and adaptable to the evolving digital landscape.

1.1 Overview of the Thesis
This document presents a thorough exploration of the key arguments and design choices
essential to achieving the set objectives. The thesis starts with the Chapter 2, an in-depth
look into Enterprise Resource Planning (ERP) systems. It starts with a discussion on the
motivations behind implementing ERP, highlighting the benefits and strategic advantages
they offer. The chapter then critically assesses the drawbacks of ERP systems, providing
a well-rounded perspective on their limitations and challenges. It also details the various
modules of ERP systems and illustrates how they collaborate to enhance business pro-
cesses. A significant portion of this chapter is dedicated to the technology underpinning
ERP systems, with a special focus on the Three-Tier Client-Server Architecture. Addi-
tionally, the market-related aspects of ERP systems are examined, including an analysis
of the costs involved in their implementation and maintenance, and a comparison of the

13

Introduction

competitive landscape.

Chapter 3 marks the beginning of our deep dive into the foundational narrative of our the-
sis. This chapter introduces the key design concepts and architectural principles behind
the Kube platform. It emphasizes cloud computing as the cornerstone of the platform’s
operating environment. The chapter also delves into the concept of microservices, an
architectural approach that segments applications into smaller, independently function-
ing services. A critical element of Kube’s architecture is its serverless framework, which
promotes scalability and operational efficiency. The implementation of sagas is discussed,
outlining their role in managing failures and maintaining data consistency across ser-
vices. The chapter concludes with an exploration of event-driven architecture, highlighting
its importance in enabling reactive programming and facilitating responsive interactions
within the platform. These elements collectively define the architectural design of Kube,
with a focus on flexibility, scalability, and seamless service integration.

Then, the Chapter 4 of the thesis transitions into the practical application, specifically
focusing on the technologies implemented in the Kube platform. Central to this are the
AWS services, which include Lambda for serverless computing, SQS and SNS for effective
messaging, and RDS for efficient database management. These services form a robust and
scalable infrastructure essential to Kube’s functionality. The platform also capitalizes on
serverless architecture to enhance resource efficiency and minimize operational costs. Ad-
ditionally, the Go programming language is employed for its effectiveness in constructing
high-performance applications. The user interface of Kube, designed using Flutter, offers
both versatility and aesthetic appeal, significantly improving the platform’s user experi-
ence. Collectively, these technologies are pivotal in ensuring Kube’s high performance and
user satisfaction.

Finally, in Chapter 5, the focus shifts to the actual implementation of the application. The
chapter begins by delineating the fundamental requirements that have guided the Kube
platform’s development, emphasizing strategic goals, technical necessities, and business
rationale. This sets the stage for a comprehensive exploration of the platform’s final ar-
chitecture, which is marked by a Microservices framework executed through a Function
as a Service (FaaS) model, utilizing AWS services. The narrative then moves to practical
use cases, showcasing how the platform functions in real-world scenarios. The chapter
concludes by examining the client application, specifically the development and design of
its user interface using Flutter. This not only augments the robustness of Kube’s back-
end but also significantly enhances user interaction. This chapter aims to demystify the
complexities of the Kube platform, underlining its significance as a revolutionary tool in
enterprise resource planning and its vast potential in the field.

14

Chapter 2

ERP: Enterprise resource
planning

Business systems known as enterprise resource planning (ERP) systems consolidate and
simplify data from several organizational departments into a single, comprehensive solu-
tion that satisfies the demands of the whole corporation. ERP systems function by seam-
lessly integrating and coordinating activities and tasks that were previously fragmented
and supported by older, stand-alone, and separate legacy systems. The basis of an ERP
system is a well-structured database that supports the operational and decision-making
requirements of end users across the company and generates information for external con-
stituencies, such as regulatory agencies and investors.

Figure 2.1. ERP-Supported Business Processes

15

ERP: Enterprise resource planning

ERP systems are regarded as cross-functional in nature, since they satisfy the informa-
tion needs of all end users, and also process-centered because they offer a clear, full,
logical, and precise view of the business processes of the firm, which are groups of inter-
connected tasks that bring value to the enterprise. Business operations frequently cross
departmental boundaries and, in many circumstances, cross organizational boundaries,
sharing data and information with external business partners like clients and suppliers,
making ERPs essential within a company. Some key business processes incorporated in
ERP systems are shown in Figure 2.1.

2.1 Reasons for Implementing ERP
Businesses that use ERP systems the most often have a lot of the same issues and frus-
trations. Figure 2.2 lists the primary justifications for ERP adoption by businesses. A
few of these reasons are explored below.

Figure 2.2. Reasons for Implementing ERP

Improve business performance

ERP improves business performance through the numerous best practices embedded
within the several business processes. A best practice is a business procedure that is
generally regarded as being more successful and/or efficient than others in a certain sector.
Companies that implement ERP will end up redesigning their previously disjointed, erro-
neous, slow, and ineffective processes to align with best practices in the software and can
decrease operational costs, such as lower inventory costs, production costs, or purchasing
costs, and increase revenue-generating processes, such as time to market, marketing and

16

2.1 – Reasons for Implementing ERP

sales, and customer service.
Each view of best practices distinguishes one ERP vendor’s software from another’s, thus
finding which ERP system’s best practices match a buyer’s demands is essential when
choosing an ERP vendor’s product since this fit influences the implementation’s final suc-
cess. In order to find best practices across different industries and implement them into
their solutions, the suppliers fund significant research and development (R&D) initiatives.
Additionally, it enables an ERP provider to provide niche versions of its software known
as vertical solutions, which are essential due to the unique characteristics that each
industrial sector has.

Desire for growth

Examples of growth strategies include market expansion and penetration, product diversi-
fication, and mergers and acquisitions (M&A). ERP systems help with market expansion
through demand forecasting, which generates predictions to estimate the future require-
ments for items. Advanced rule-based pricing is another feature of ERP software. This
capability enables businesses to comprehend the present patterns and trends of the sector,
consumers, and rivals before making any pricing modifications. Businesses may expand
their product lines and provide new items and features to their clients by diversifying their
product offerings. Data on which items are selling and to whom may be found in ERP
systems, as well as information on which products are just taking up space on the shelves.
Finally, an ERP may assist in standardizing procedures across organizations during an
M&A activity in order to integrate them into a common platform.

Facilitate employees’ work

ERP systems are also recognized to make the duties of employees easier. ERP does this in
part by providing employees with real-time access to information; this feature significantly
enhances operations, corporate governance, and enterprise risk management, resulting in
a horizontally "connected up," process-centered organization. ERP systems also offer
an unified user interface and tool set that improves accuracy, encourages collaboration,
and reduces misunderstanding. Finally, ERP systems empower users by providing them
with access to data that was previously impossible to get due to fragmented procedures
supported by many older systems.

Lack of compliance

Government and institutional compliance requirements continue to grow and evolve. Nav-
igating through numerous legal, regulatory, and supply chain mandates has never been
tougher. ERP systems can help companies comply with these requirements, such as
GDPR, SOX or Food and Drug Administration.

Data integration

With ERP systems, data is better integrated since it is only gathered once and then
shared throughout the company, reducing the risk of inaccuracies and duplications and

17

ERP: Enterprise resource planning

eliminating time-consuming data checking, and reconciliation across systems. Because
all users have access to up-to-date, accurate, and comprehensive data, this feature is
advantageous to all of them. With ERP, since data is now kept in a single data repository,
the process of fixing errors is made simpler because they only need to be fixed once.
Processes are also better integrated because they are managed within one system, not
spread across multiple systems that have been cobbled together. When a corporation’s
systems are patched together from several sources, the scenario can cause problems on
the operations designed to keep the organization functioning efficiently.

Replacement an old ERP

Having multiple disparate systems or operating an out-of-date ERP system, that runs on
obsolete technology or that cannot support a company’s business processes, creates an IT
maintenance nightmare. These systems may be complicated to customize, and installing
fixes and upgrades can take up valuable time and resources. Additionally, because the
vendor could no longer be in operation, it might not be viable to upgrade these systems.

2.2 Disadvantages of ERP Systems
An ERP system implementation is significantly more involved than merely installing com-
mercially available software; it is a labor-intensive process that requires a variety of dif-
ferent tasks and, if managed incorrectly, might lead to the project’s failure. Companies
shouldn’t take the choice to deploy an ERP system lightly due of its importance. All
workers, from functional users to IT professionals to top management, must be aware of
the goals of the ERP project and collaborate to make the deployment successful. Compa-
nies that are thinking about implementing an ERP system should perform due diligence
in selecting the solution that best fits their needs and collaborating with experts who can
help with different implementation-related tasks.

People issues

Top management can be a major problem if they do not establish a convincing “tone at
the top” that the ERP system is a priority or if they don’t allocate adequate resources to
its deployment. Lack of support from the employees may also be a concern. The legacy
systems that employees have used for years may make them feel quite at ease. They could
oppose to the additional training, organizational adjustments, and modifications to busi-
ness processes that are unavoidable, or they can claim that the system is too challenging,
constrictive, or inflexible. Employees who are resistant to the ERP system may create
unproductive workarounds or create their own "shadow IT," such as spreadsheets or old
systems, as a result of which they fail to use the system as intended.

Software issues

Because ERP systems are sophisticated and intricate, installing them sometimes necessi-
tates paying high-priced system integrators. Companies frequently struggle to take control

18

2.3 – Modules

of technology and to use it to transform business processes in a quantifiable and sustain-
able way. A level of complexity that has not before been encountered and is difficult to
absorb may also be added by the various capabilities, options, and setup requirements for
businesses with relatively straightforward business requirements.

Price tag

ERP system deployments can cost millions of dollars and take years to complete, espe-
cially for big, international businesses. Additionally, once established, the ERP system
requires ongoing "care and feeding" to keep it current, stable, and compatible with a vari-
ety of constantly evolving software programs with which it may interact. Companies often
update and do larger improvements to the ERP system. This component of ERP might
wind up costing more overall than the initial software licensing and implementation fees
combined since maintenance charges are required annually.

Standardization

The above noted benefit of business process standardization may also be a drawback if the
rigidity is inconsistent with the firm’s culture or expectations. Additionally, a problem
that must be resolved for the ERP installation to be effective is that the current corpo-
rate culture may not promote information exchange among business units or divisions.
Vendors and system integrators actively advise businesses to adopt the best practices for
ERP systems rather than customizing the software to fit their unique workflows. An
exception, though, would be if businesses customized the software in accordance with a
special business strategy that set them apart from rivals. The general guideline is that
customizing the ERP software to get this capability is necessary if a certain procedure
makes a business competitive or is required for compliance with a legislation.

2.3 Modules
ERP systems are offered as modules, which are collections of connected software appli-
cations that handle key organizational tasks like accounting or production. Each module
is designed to support a particular business process. The main modules, that provide
basic functionalities for managing business processes, make up the Core of the ERP.
This includes financial management, supply chain, human resources, customer relation-
ship management, and other critical business processes. The "core" is the central and
fundamental part of the ERP system and provides an integrated solution for managing
company data. Here are some of the most common modules found in ERP systems:

• Financial Management: This module is responsible for managing financial trans-
actions, such as accounts payable and receivable, general ledger, and financial re-
porting.

• Accounting: This module includes sub-modules for cost accounting, payroll, fixed
asset management, and other accounting functions.

19

ERP: Enterprise resource planning

• Human Resources: This module manages employee information, benefits, payroll,
and other HR functions.

• Procurement: This module covers all aspects of procurement, including vendor
management, purchase order creation and management, and inventory management.

• Supply Chain Management: This module manages the flow of goods and services,
including procurement, production, and logistics.

• Production: This module helps manage the production process, including planning,
scheduling, and tracking.

• Sales and Marketing: This module supports sales and marketing activities, includ-
ing lead management, opportunity tracking, and customer relationship management.

• Customer Relationship Management (CRM): This module supports customer-
facing activities, such as marketing, sales, and customer service.

The specific modules included in a particular ERP system can vary based on the size of the
organization and its unique business requirements. Most ERP software is flexible enough
to allow businesses to purchase only the components they require “a la carte”, this allows
companies to have a solution “tailor-made” to its needs. Modular architecture has the
advantage of enabling ERP suppliers to create product solutions for specific industries.
Sometimes modules that support a major business area are called a suite which comprises
multiple sub-modules, or components. An example is shown in Figure 2.3, where ERP
modules for a manufacturing company are depicted.

Figure 2.3. Examples of ERP Modules for a manufacturing company

In summary, the various modules in an ERP system work together to provide a compre-
hensive solution for managing business processes and data. By integrating all business
functions into a single system, organizations can streamline processes, reduce data dupli-
cation, improve business analytics, and make more informed decisions.

20

2.4 – Technology

2.4 Technology
An ERP system has a far-reaching impact that affects users across an entire organization,
as well as its customers, suppliers, and other business partners. With the need to support
a large number of users who have different processing and reporting requirements, it is
important to have advanced and adaptable software that utilizes cutting-edge technology.
Given that the ERP system plays a crucial role in fulfilling an organization’s operational
and information needs, it is essential to have a thorough understanding of the technology
that supports the integrated system, and provide a robust, scalable, and user-friendly
solution for managing a wide range of business processes and data.

2.4.1 Three-Tier Client-Server Architecture
The client-server architecture[19] is widely used in modern computing, and is a fundamen-
tal aspect of many systems, including ERP systems. This architecture is a computing
model in which a server (Back-end application) provides services to clients (Front-
end application) over a network. The client requests a service or resource from the
server, and the server responds by providing the requested information or performing the
requested task. This architecture allows for efficient and scalable distribution of resources
and tasks, as the server can handle requests from multiple clients simultaneously.

In this context we can separate an application into three logical components (3-Tier
architecture), which are the client tier, the application tier, and the database tier. This
architecture provides a scalable, flexible, and secure solution for software applications. In
Figure 2.4 is showed a detailed explanation of each tier.

Figure 2.4. Web Application Architecture

• Client Tier - Presentation layer: This tier is responsible for presenting the user
interface to the end-user. It provides the interface through which users interact with
the application. The client tier can be implemented as a standalone application or
as a web application accessed through a web browser.

• Application Tier - Business layer: This tier is responsible for processing the
user requests and returning the results to the client tier. It is responsible for han-
dling the business logic and data processing. The application server tier is typically

21

ERP: Enterprise resource planning

implemented as a web server.

• Database Tier - Data access layer: This tier is responsible for storing and man-
aging the vast amount of data generated by the application. It is a key component
of a web application that stores and manages information for a web app. You can
search, filter and sort information based on user request. It is typically implemented
using a robust database management system.

The three-tier architecture allows for a separation of concerns, with each tier having a
specific role and responsibility. This separation makes it easier to develop, maintain, and
upgrade the application, as changes can be made to one tier without affecting the others.
Additionally, by dividing the system into separate tiers, the performance and security are
improved. The client does not have direct access to the data, instead, all data passes
through the application server which controls and regulates access to the information.
This allows for more efficient and secure management of data. The ability to deploy
application servers on multiple machines provides higher scalability, better performance
and better re-use.
The Three-Tier Client-Server Architecture is a widely used architecture for ERP systems,
as it provides a scalable, flexible, and secure platform for managing complex business
processes and data.

2.4.2 Deployment
An ERP system can be deployed in two ways: On-premise or on Cloud, each with its
own advantages and disadvantages. The best deployment method depends on the specific
needs and requirements of the organization.

On-Premise

The conventional approach to ERP deployment is on-premise ERP. In this deployment
method, the ERP software is installed and run on computers within an organization’s
own physical facilities. This allows for complete control over the software and data, but
also requires the organization to provide the necessary hardware, storage, and technical
support. Companies choosing the “on-prem” option are usually larger companies with
bigger budgets, an existing IT infrastructure in place, and knowledgeable IT personnel to
support the software and infrastructure. Due to the large upfront cost required, which
often includes the cost of both hardware and software, on-premise ERP is typically seen
as a capital investment.

Cloud

Cloud ERP deployment is becoming increasingly popular, where the ERP system is
hosted by a vendor or third party on shared computing resources that can be accessed
through the internet. These resources are maintained in data centers dedicated to hosting
various applications on multiple platforms. This deployment method offers more scala-
bility and flexibility, as well as reduced hardware and technical support expenses, but

22

2.4 – Technology

it requires an organization to have trust in a third party with access to its data. Cus-
tomers have access to the ERP system as needed and pay for the software on a monthly
or yearly basis. This method of paying for ERP software on a subscription basis is called
software as a service (SaaS), an attractive option for businesses looking to reduce up-
front expenses and to budget for ERP long-term. Nowadays, nearly all ERP vendors offer
some form of cloud deployment because it has many advantages compared to on-premise
deployment.

Advantage

• One key advantage is that ERP cloud providers maintain, upgrades and handle
maintenance for the infrastructure of the ERP system.

• Cloud ERP is more scalable than on-premise, which is ideal for startups and fast-
growing businesses.

• Companies that choose cloud ERP over on-premise can now enjoy more peace of
mind that the cloud provider has up-to-date controls in place such as data backup,
dual factor authentication, encryption for confidential data, and a disaster recovery
plan.

Disadvantages

• Many vendors offering cloud solutions are primarily focused on just one particular
area. Very few cloud providers are offering a suite of products to meet the needs of
medium-to-large organizations.

• Many cloud ERP solutions are limited in what the customer can do in terms of
customization.

• Although cloud ERP is generally thought to be less expensive than on-premise,
research has shown that over a 10-year window, the total costs for each converge.
While expenses for cloud ERP are less upfront than on-premise, the costs catch
up over time. Thus, the costeffectiveness of cloud ERP is not as great as initially
thought.

2.4.3 Customization
It’s uncommon for an ERP system to fully meet a company’s needs, especially if the
company is a large, global organization. There are often problems that go beyond what
the ERP software can accommodate through configuration. Examples of these issues
include:

• Creating additional functionality not provided by the ERP system

• Establishing connections between the ERP system and third-party systems

• Adding extra fields to the ERP database

23

ERP: Enterprise resource planning

These types of problems usually require development and programming to enhance the
ERP system. This is known as customization, which involves adding custom code to
increase the capabilities and features of the ERP system. Customization is typically
performed when all efforts to find a solution through configuration have failed. As cus-
tomization requires time and money, companies should aim to minimize it.

2.5 Market
The ERP market is estimated at $43.72 billion in 2020, and is projected to reach $117.09
billion by 2030, at a compounded annual growth rate of 10.0%[52]. The increase in the
ERP market can be attributed to the growing interest from small and medium-sized busi-
nesses and the development of new ERP applications for both cloud and mobile platforms.
However, not all ERP vendors offer the same quality of software, which can be divided
into three categories based on specific criteria, as presented in a table 2.1.

• Tier I (Enterprise Class) is software designed for large, worldwide corporations
with significant market capitalization and annual revenues that exceed $750 million.
These solutions are very costly due to their extensive capabilities, including the abil-
ity to manage complex organizational structures and address international concerns,
like multiple currencies and varying accounting regulations. Only a few ERP vendors
have the necessary size, resources, and comprehensive functionality to support the
high volume of daily transactions that Tier I companies typically encounter.

• Tier II (the Mid-Market Class) category of ERP systems is intended for medium-
sized companies and can be further divided into upper and lower sub-categories.
Upper Tier II systems are for companies with annual revenues ranging from $250
million to $750 million. Lower Tier II systems typically are for companies with annual
revenues between $10 million and $250 million. These vendors offer software that is
designed for either single or multiple legal entities and locations, but with limited
functionalities compared to Tier I vendor solutions. As a result, these ERP systems
are less expensive than Tier I systems. Typically, they are easier to implement and
support and are designed specifically for only a few industries.

• Tier III (Small Business Class) ERP systems are made for smaller businesses with
annual revenue below $10 million, operating within a single country. They are the
most affordable among the different tiers of ERP systems. The market is saturated
with many software providers in this category, some of which offer robust point
solutions that can be utilized to enhance a Tier I or Tier II ERP system.

The ERP market is experiencing a trend where Tier II and Tier III vendors are aiming
to serve larger companies by improving their software’s capabilities and scalability, while
Tier I vendors are reaching smaller companies by offering simplified versions of their
software and acquiring cloud vendors. This is causing the boundaries between ERP tiers
to become less distinct as vendors strive to increase their market share. Table 2.2 presents
some example of ERP systems in tiers.

24

2.5 – Market

Tier I Tier II Tier III
High complexity Medium complexity Low complexity
Highest cost Medium cost Lowest cost
Many industry solutions Fewer industry solutions Fewest industry solutions
Large companies Mid-market companies Small companies
Support global functional-
ity

Operate in more than one
country

Does not support global
functionality

Table 2.1. Characteristics of ERP Vendor Tiers

Tier I Tier II Tier III
SAP S4/HANA Microsoft Dynamics 365 Sage
Oracle EBS NetSuite Aptean
Infor LN SAP Business All-in-One ASC
Infor M3 ODOO ECI

Table 2.2. Example ERP Vendors in Tiers

2.5.1 Cost
Numerous ERP projects run over budget, often as a result of unanticipated organizational
or technological problems, scope expansion, or an unrealistic project budget. Budgeting
for ERP can be difficult since some costs are difficult to predict at first. This section will
go into depth about every expense that goes into calculating the system’s total cost of
ownership total cost of ownership (TCO). Some of these costs will be one-time costs,
while others will be recurring[16].

Software License Costs

Typically, an ERP system’s price tag depends on the:

• Number of employees that will be using the system

• Vendor tier being deployed, Tier 1 software is more expensive than Tier 2, while Tier
3 would be the least expensive

• Number of modules purchased

The vast majority of ERP software licenses are supplied using a perpetual licensing
model, which requires paying an upfront licensing price before the vendor grants access
to the program for an endless amount of time. Additionally, customers must pay annual
maintenance costs in order to get support, updates, and future software upgrades. For
on-premise implementations, perpetual licensing is standard. With perpetual licensing, a
couple of license methods are used:

25

ERP: Enterprise resource planning

• Named user licensing. A company determines how many unique users will use the
ERP system and pays a licensing charge for each of them. Numerous ERP vendors
provide different named user categories, such as heavy user licensing, for users who
utilize more system capability and are thus paid a larger license fee, or casual user
licensing, for users who just read reports or lists.

• Concurrent user licensing. A perpetual license type enables an unlimited number
of designated users and accounts, but restricts the number of individuals who can
actively use the software at one time. Concurrent user licensing is often cheaper
than named user licensing as it only requires payment for the estimated number
of simultaneous users. However, it’s essential to accurately predict the number of
concurrent users, otherwise, employees may experience difficulties logging on and
using the software.

Third-Party Software License Costs

In some cases, a company has specific requirements that cannot be fulfilled by the ERP
system they have purchased, and modifying the ERP to meet those requirements is too
costly. To address this, third-party software known as "bolt-ons" can be used. These
provide additional functionality or logic to help solve specific business needs. To ensure
seamless integration with the ERP system, it is advisable to get recommendations from
the ERP vendor or system integrator on which bolt-on solution will work best.

Hardware and IT Infrastructure Costs

The implementation of an ERP system requires a strong and up-to-date IT setup. If
the ERP is run on-site, a company will need to invest in IT hardware such as servers,
routers, backup, storage devices, desktops, laptops, tablets, and printers. They will also
need to consider measures for failover, network access, power supply, and security. This
may involve hiring additional staff and increasing data center space, with costs ranging
from one-time expenses like purchasing servers to ongoing expenses like utility bills and
salaries.

Database License Costs

The cost of the database in an ERP project can range from a few thousand dollars to
hundreds of thousands of dollars, depending on several factors such as the type of database,
the size of the data being stored, and the number of users accessing the database. ERP
vendors will provide the specifications for the type of database needed.

Implementation Costs

The expenses related to the implementation of ERP software are among the most pricey
parts of the total cost of ownership (TCO). The cost of functional and technical consul-
tants, who play a key role in the implementation, can be a major part of these expenses,

26

2.5 – Market

depending on how much a company is going to rely on the system integrator. The com-
plexity of the project and consultants from different geographical locations may also affect
the hourly rate charged.

Maintenance and Support Costs

The cost of an ERP system doesn’t end once the software is up and running. To ensure the
system continues to run smoothly, companies need to have a plan for ongoing maintenance
and support, also known as application management services (AMS). This includes
functional and technical support, updating and patching, monitoring the software, and
backup and recovery. Some companies can handle these tasks in-house, while others may
hire a third-party company to provide these services. The cost of maintenance typically
ranges from 18% to 25% of the original software license cost and can be paid directly to
the ERP vendor or to the third-party company managing the system.
For software support, various levels are available, with the higher levels offering more
services at a higher cost. Premium support could include having a representative from
the ERP vendor on-site during the project implementation and for a period of time post-
implementation, as well as prioritized access to help tickets. Basic support might only
provide access to a help portal where customers can log tickets and get answers to ques-
tions.

Cloud

The Total Cost of Ownership (TCO) in a cloud context is the same as what we previously
discussed, but often, all of the costs are included in a single subscription-based licens-
ing. Customers subscribing to this model are granted program access for a set duration,
such as monthly or annually, which covers not only the use of the software but also main-
tenance, support, scheduled updates, and upgrades provided by the cloud vendor. This
comprehensive subscription often includes a basic database offering, with the flexibility to
expand storage for an additional fee.

Predominantly, ERP applications are marketed as Software as a Service (SaaS), a
cloud-based delivery model wherein the vendor shoulders the responsibility for the under-
lying infrastructure, including hosting, maintenance, and support. This implies that the
costs for IT infrastructure, when the ERP system is hosted by the vendor or a third-party
provider, are bundled into the monthly subscription fee. Companies utilizing public cloud
platforms like Microsoft Azure would typically pay a recurring fee for the infrastructure
lease in addition to the software licensing fees due to the ERP vendor.

2.5.2 Competitors
The ERP (Enterprise Resource Planning) market is experiencing a significant shift with
the emergence of smaller, more agile players. These smaller vendors are challenging the
traditional dominance of larger, established companies like SAP, Oracle, and Microsoft.
Characterized by their innovative, cloud-native solutions, these emerging players focus on

27

ERP: Enterprise resource planning

delivering specialized and industry-specific ERP systems. This approach contrasts with
the one-size-fits-all, monolithic systems traditionally offered by the larger vendors[45].

This trend towards smaller, more nimble ERP vendors is driven by the increasing popu-
larity of cloud-based solutions. These solutions offer benefits such as lower costs, greater
scalability, and flexibility, making them particularly appealing to small and medium-sized
enterprises. The pandemic has further accelerated this shift, as businesses seek solutions
that support remote work and offer greater operational agility. As a result, the ERP
market is becoming more fragmented and competitive, providing businesses with a wider
array of choices to suit their specific needs[38].

This section provides an overview of the key features of some cloud ERP products based
on research from the ERP Research comparison platform[53]. These features are critical
for businesses to consider when choosing an ERP system, as they directly impact usability,
scalability, and overall business efficiency.

SAP Business One

PROS CONS

• A complete business management
solution for SMEs.

• Exceptional performance in han-
dling business functions.

• Simple user interface and internal
controls.

• Can be highly customized to adapt
to business needs.

• Mature product with major func-
tionalities supported.

• Deployment flexibility for On-
Prem, SaaS or Private Cloud.

• Limited Human Capital and Manu-
facturing functionalities supported.

• The limitation to customize the
dashboards and cockpit feature.

• The Firefox web browser is cur-
rently the only web browser sup-
ported.

• Heavy reliance on partner addons
for deeper and wider functionality.

• Requires heavy customization
which can lead to IT debt.

Table 2.3. Pros and Cons of SAP Business One.

28

2.5 – Market

Microsoft Dynamics 365

PROS CONS

• Good integration with other soft-
ware and technologies.

• User friendly, easy to train users.

• Secure and permission-based ac-
count setup.

• Flexible and customizable for all
company needs.

• Extensive filtering capabilities.

• Difficult migration from old ERP.

• Some functions could be more user
friendly and intuitive.

• User documentation needs im-
provement.

• Can be expensive due to high level
of customization.

Table 2.4. Pros and Cons of Microsoft Dynamics 365.

ODOO

PROS CONS

• Low-cost when investing in a small
number of modules.

• Free "Community" version avail-
able.

• Offers a comprehensive selection
of Odoo apps and integrates with
many thirdparty add-on software
apps.

• Uses Open Source software which
can be easily customized.

• Requires IT knowledge to install
and maintain, this is not a "plug
and play" solution.

• Steep learning curve on initial im-
plementation.

• Costs may rise with the use of nu-
merous Odoo Modules and third-
party apps.

• Has a shorter history compared to
other established ERP players.

Table 2.5. Pros and Cons of ODOO platform.

29

ERP: Enterprise resource planning

Oracle NetSuite

PROS CONS

• Wide and deep functionality across
several key business areas.

• True SaaS Cloud ERP offering.

• Largest Cloud ERP customer base
and ecosystem.

• Strong localization capabilities for
international businesses.

• Strong consultant market and
availability.

• License pricing is complex and can
produce hidden costs.

• Some localisations and functional-
ity is not provided out of the box
put as part of partner extensions.

• Many acquisitions have led to the
solution being more loosely con-
nected instead of a cohesive, inte-
grated suite.

• Strong consultant market and
availability.

Table 2.6. Pros and Cons of Oracle NetSuite.

30

Chapter 3

Fundamentals

In this chapter, we embark on a journey to construct the narrative foundation that under-
pins our thesis. Here, we will introduce the essential design concepts and the architectural
principles that have been employed in the creation of the platform known as Kube. Cen-
tral to this discussion is cloud computing, which serves as the bedrock for the platform’s
operational environment. We then navigate through the intricacies of microservices, an
architectural style that breaks down applications into smaller, independently deployable
services. A pivotal aspect of Kube’s architecture is its serverless framework, which fa-
cilitates greater scalability and efficiency. Complementing this is the implementation of
sagas, a sequence of transactions that manage failures and ensure data consistency across
services. Lastly, the event-driven architecture of Kube plays a crucial role, enabling re-
active programming and responsive interactions within the platform. Together, these
concepts embody the architectural design of Kube, prioritizing flexibility, scalability, and
robust service integration.

3.1 Cloud Computing

The advent of cloud computing has revolutionized the way we approach computing and
data management. This section of the thesis will explore the paradigm of cloud com-
puting, which has emerged as a transformative force in the technological landscape. We
will examine the fundamental aspects of cloud computing, including its service models,
deployment strategies, and the pivotal role it plays in modern IT infrastructure.

3.1.1 Definition

The United States National Institute of Standards and Technology’s definition of cloud
computing is[49]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

31

Fundamentals

network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action. This cloud model is composed of five essential characteristics, three
service models, and four deployment models.

Cloud computing offers a highly flexible service delivery model, enabling on-demand
access to various resources, such as storage, processing power, and applications, via the
internet. This eliminates the need for local servers, shifting data handling to online
remote servers and offering a cost-effective, pay-for-what-you-use pricing model. Services
like Amazon Web Services (AWS) provide the technology infrastructure, allowing users
to scale operations with ease. Additionally, this model promotes economic efficiency,
as organizations pay only for resources they consume, supporting a scalable and agile
approach to resource management. The network, often the internet, serves as a conduit
between users and cloud services, ensuring data is managed with strong security measures.

Essential Characteristics

Five essential characteristics of cloud computing are[49]:

• On-Demand Self-Service: Users can independently set up and manage their com-
puting needs, such as server time and network storage, automatically, eliminating
the need for direct interaction with service providers.

• Broad Network Access: Services are accessible over the internet using standard
methods that support a diverse range of devices, including smartphones, tablets,
laptops, and desktops.

• Resource Pooling: The provider’s computing resources are aggregated to serve
various customers under a multi-tenant model. Resources are dynamically allocated
and reallocated based on user demand, with the user typically not knowing or con-
trolling the exact physical location of the resources but may be able to designate a
location at a broader level (such as country, state, or data center).

• Rapid Elasticity: Services can be quickly scaled up or down to match demand, with
the scaling process sometimes occurring automatically. From the user’s perspective,
the supply of available resources often seems boundless and can be acquired in any
volume at any time.

• Measured Service: Cloud platforms automatically monitor, control, and report
resource usage with a metering function that operates at an appropriate level of
detail, depending on the type of service, such as storage space, processing power,
bandwidth, or active user numbers. This metering provides clear visibility into the
usage of services for both the provider and the consumer.

32

3.1 – Cloud Computing

3.1.2 Service Models
Cloud computing has revolutionized the way businesses approach technology, offering
a spectrum of services that cater to varying requirements for control, flexibility, and
management. As organizations transition to cloud-based solutions, understanding the
different service models becomes crucial for leveraging the full potential of the cloud.

The figure 3.1 shows the three primary cloud service models, forming what is often
referred to as the cloud computing "stack," include Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). These service models are
designed to build upon one another, offering layers of abstraction and increasing levels of
managed services[3].

Figure 3.1. Cloud service models [35].

Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) is a transformative approach to managing IT resources,
offering flexible and on-demand access to essential infrastructure services through the in-
ternet. This includes virtual machines, storage, and networking that can be customized
and billed based on actual usage. IaaS grants organizations unprecedented control over
their IT resources, closely resembling traditional on-premises infrastructure. It allows for
easy scalability without the need for costly upfront investments in hardware. IaaS empow-
ers consumers with the ability to provision processing, storage, and networking resources,
deploying and running various software, including operating systems and applications.
This level of customization enables organizations to tailor their IT environment to their
specific needs, ensuring a seamless and efficient operation in the cloud.

Platform as a Service (PaaS)

Platform as a Service (PaaS) is a significant innovation in cloud computing, offering
comprehensive hardware and software resources for cloud-based application development.

33

Fundamentals

Leading PaaS providers simplify development by effectively managing the underlying in-
frastructure, allowing a laser focus on application creation. With PaaS, you’re free from
infrastructure oversight, enabling dedicated attention to application deployment and man-
agement, improving operational efficiency by eliminating resource provisioning, capacity
planning, and maintenance. PaaS provides an environment for building, testing, and
managing software applications without the need to manage the underlying cloud infras-
tructure. As a user, you control your applications and their hosting settings, simplifying
the development process by allowing you to focus solely on creating and deploying your
applications.

Software as a Service (SaaS)

Software as a Service (SaaS) is a cloud computing model that delivers software applications
over the internet on a subscription basis. In this approach, cloud providers manage and
host the applications, ensuring their availability, performance, and security. Well-known
examples of SaaS offerings include Google Workspace, Microsoft Office 365, and Salesforce.
SaaS provides a complete software solution over the internet, including the application and
its underlying infrastructure, which is fully maintained by the cloud service provider. This
approach spares users from managing the infrastructure, as the provider handles software
updates and security measures. Users can access these applications through different
devices and web browsers, enjoying an accessible and simplified experience. SaaS enables
users to efficiently utilize applications hosted on the cloud, focusing solely on using the
software rather than its maintenance.

3.1.3 Deployment Models
Cloud computing, a key driver in modern IT resource management, offers various deploy-
ment models tailored to different business needs, security requirements, and scalability
demands. This exploration focuses on Public, Private, Hybrid, and Community Cloud
models, discussing their unique features, benefits, and considerations.

Community Cloud

Community-dedicated cloud infrastructure is exclusively used by a specific community of
organizations with shared interests, including mission objectives, security requirements,
policies, and compliance regulations. This infrastructure can be managed by one or more
organizations within the community, external providers, or a combination of both, and it
can be located on-premises or off-premises to accommodate community preferences[49].

Private Cloud

A private cloud is a form of cloud computing providing exclusive resources and services via
a private network, dedicated solely to one organization. It offers enhanced security and
data isolation, with the ability to tailor infrastructure and software to specific needs and
workflows. While offering robust security and control, private clouds can be costlier due
to the organization’s responsibility for infrastructure management and scaling. These can

34

3.1 – Cloud Computing

be deployed on-site or hosted by third-party providers, catering specifically to businesses
requiring high security and compliance standards. The combination of cloud comput-
ing benefits with heightened data security and customization makes private clouds an
attractive option for businesses handling sensitive data.

Public Cloud

In public cloud computing, a third-party service provider manages all the level of in-
frastructure, including servers, storage, and computing resources. Clients access these
resources via the internet and are billed based on their actual usage, creating a cost-
effective and flexible pay-as-you-go model. These cloud environments eliminate the need
for substantial investments in expensive infrastructure, democratizing access to cloud com-
puting. It’s important to note that public clouds operate on shared infrastructure, which
offers cost efficiencies but raises concerns about data isolation and privacy, as multiple
customers’ data and applications coexist on the same infrastructure.

Figure 3.2. Worldwide market share of leading cloud infrastructure
service providers in Q2 2023[57].

The figure 3.2 show how the public cloud marketplace consists of numerous cloud
providers. Amazon, Microsoft and Google account for 65% of the total 2023 cloud market.
The remaining public cloud market is divided among IBM, Alibaba, Oracle and several
smaller players. The table 3.1 make a comparison between the major cloud providers.

35

Fundamentals

Name Cost/hour Pros Cons
Amazon AWS $0.0255 Reliability, Quality,

Professional Support
Expensive despite reg-
ular lowering of price

Google GCP $0.0475 Reliability, Affordable Limited features and
services

Microsoft Azure $0.043 Best infrastructure
configuration

Unsatisfactory cus-
tomer experience and
technical support

IBM Cloud $0.04 Flexibility, Speed, In-
teroperability

Complicated pricing
model and platform
can be slow

Table 3.1. Comparative overview of major cloud service providers[51].

Hybrid Cloud

The hybrid cloud is an advanced cloud computing model that blends public and private
clouds, giving organizations the flexibility to distribute their applications and workloads as
needed. This setup allows for greater control and scalability than using only public clouds,
letting businesses keep sensitive data secure while still enjoying public cloud efficiency. It’s
ideal for companies that need both strong security and the ability to quickly adapt and
scale. The hybrid cloud offers a versatile IT infrastructure that adjusts to the complex
needs of modern businesses, improving security, compliance, and overall efficiency. This
makes it a valuable asset for companies navigating the rapidly changing digital world.

3.1.4 Benefits
Cloud computing is a big shift from the traditional way businesses think about IT re-
sources. Here are seven common reasons organizations are turning to cloud computing
services[40]:

• Cost: Cloud computing reduces the capital expense of buying hardware and soft-
ware, setting up and running on-site datacenters, which can quickly add up.

• Speed: Cloud services are typically on-demand, allowing vast amounts of comput-
ing resources to be provisioned in minutes, offering businesses flexibility and easing
capacity planning.

• Global Scale: It includes the ability to elastically scale IT resources, providing the
right amount of computing power, storage, and bandwidth when and where needed.

• Productivity: Cloud computing eliminates many time-consuming tasks associated
with managing on-site datacenters, allowing IT teams to focus on more important
business goals.

36

3.1 – Cloud Computing

• Performance: Cloud services run on a worldwide network of secure datacenters,
regularly upgraded to the latest generation of fast and efficient computing hardware,
offering benefits like reduced network latency and greater economies of scale.

• Reliability: Data backup, disaster recovery, and business continuity are easier and
less costly, as data can be mirrored at multiple redundant sites on the cloud provider’s
network.

• Security: Cloud providers typically offer a broad set of policies, technologies,
and controls to strengthen security, protecting data, apps, and infrastructure from
threats.

3.1.5 Market Overview
The global cloud computing market, valued at USD 483.98 billion in 2022, is expected to
exhibit a robust compound annual growth rate (CAGR) of 14.1% from 2023 to 2030[55].
This remarkable growth is attributed to the cloud’s capacity to significantly enhance
business performance in large enterprises, the increasing demand for hybrid and Omni-
cloud systems, and the adoption of pay-as-you-go models. Cloud services have gained
popularity in developing countries, thanks in part to government initiatives aimed at
safeguarding data integrity and security. The COVID-19 pandemic has expedited the
adoption of cloud computing, driven by the shift towards hybrid work models. While
data privacy and security concerns remain, large enterprises are increasingly turning to
cloud-based technologies to optimize costs. Moreover, cloud adoption is on the rise among
small and medium-sized organizations, and governments in developing nations are making
substantial investments in cloud delivery models to enhance productivity. The Figure 3.3
illustrates the growth of the U.S. cloud computing market.

Figure 3.3. U.S. cloud computing market[55].

37

Fundamentals

3.2 Microservices
This section of the thesis is dedicated to a comprehensive exploration of microservices as
an architectural choice that has seen an increasingly popularity over the past half-decade.
It aims to unpack the intricacies of microservices, given a broad overview of the core ideas
behind this technology and some reasons why these architectures are used so widely.

3.2.1 Characteristics
Microservices architecture is a modular approach to software development, breaking com-
plex applications into smaller, independent components—microservices—tailored to spe-
cific business domains like inventory management or order processing. These microser-
vices, with well-defined interfaces, can be developed and deployed independently, ensuring
flexibility and the evolution of each component without affecting others. This architecture
supports a service-oriented approach, emphasizing independent deployability and technol-
ogy neutrality, suitable for diverse technical challenges[44].

Internally, microservices encapsulate their functionality, operating via network endpoints
and hiding implementation details like programming languages or data storage. This
ensures effective complexity management, with each service maintaining its own data
storage, avoiding shared database issues.

Externally, microservices act as ’black boxes,’ offering functionality without exposing in-
ternal processes. This approach protects against impacts from internal changes, as long as
interfaces remain compatible. It enables seamless updates and maintenance, supporting
independent development and continuous integration.

Key characteristics of microservices include loose coupling for flexibility and high cohe-
sion for maintainability. They allow targeted scalability, parallel team work, and robust
security, with each service secured separately. This makes microservices ideal for creating
adaptable, scalable, and sustainable software in rapidly evolving business and technology
environments.

Microservices in the Context of Cloud Computing

The integration of microservices and cloud computing marks a significant progression in
software architecture, fostering dynamic, scalable, and resilient systems. The decentral-
ized nature of microservices aligns seamlessly with cloud environments, providing agility
and scalable infrastructure to meet varying service demands. Cloud platforms enhance re-
source optimization, ensuring efficient and cost-effective operations. This synergy enables
organizations to exploit cloud computing’s robustness, supporting microservices’ complex
interactions for heightened scalability and resilience. It allows for continuous integra-
tion and deployment, promoting rapid innovation. Additionally, strategic distribution of
microservices across various regions in the cloud enhances fault tolerance and ensures a
consistent user experience globally.

38

3.2 – Microservices

Example of a Microservice Architecture

A prime example of microservices in action is the streaming giant Netflix, which has
become synonymous with the successful implementation of this architectural style. The
backend architecture of Netflix, a detailed account of which is provided in an article on
DEV.to[46], is a testament to the company’s innovative engineering approach.

Figure 3.4. Netflix backend in AWS[61].

How we can see in Figure 3.4, Netflix’s backend is a conglomeration of microservices
that operate on Amazon Web Services (AWS), enabling them to serve a staggering amount
of content globally with high availability and resilience. Each microservice is designed to
perform a specific function, such as handling login requests, processing user recommenda-
tions, or managing customer support interactions. This division of responsibilities allows
for independent scaling and development of services, which is crucial given the diver-
sity of Netflix’s content and the variability in demand. The microservices architecture is
not only a core component of their backend system but also underpins their Open Con-
nect content delivery network (CDN), ensuring optimal streaming performance by placing
servers within Internet Service Provider (ISP) networks around the world. This architec-
ture facilitates rapid and reliable delivery of complex applications at scale, illustrating the
microservices model’s capacity to support large-scale enterprise systems efficiently and
effectively.

39

Fundamentals

3.2.2 Benefits
This section delves into the multifaceted advantages of adopting microservices. From
enhanced scalability to independent deployment cycles, microservices promise a range of
benefits that cater to both technical and business needs. By dissecting these advantages,
this section aims to elucidate why microservices are becoming the architectural choice
for many modern enterprises, providing them with the flexibility and agility required to
thrive in a competitive market[26].

Scalability

Microservices excel in scalability due to their ability to be scaled individually. This gran-
ular scalability allows for precise allocation of resources to different components based
on fluctuating demands, leading to enhanced efficiency in resource utilization. Unlike
monolithic architectures, where scaling often requires scaling the entire application, mi-
croservices operate independently. This independence facilitates the seamless addition,
removal, updating, or scaling of each service without causing interruptions to the rest
of the system. Organizations benefit from this by being able to dynamically allocate re-
sources to microservices experiencing spikes in demand—such as during peak shopping
seasons—and similarly, scale them down when demand wanes, thereby optimizing the use
of resources and computing power across the service landscape.

Robustness

Microservices architecture enhances the robustness of software applications by leveraging
its inherent decoupling. Individual services can fail without precipitating a system-wide
shutdown, thereby preventing a single point of failure from causing cascading breakdowns.
In comparison, monolithic architectures are susceptible to the domino effect, where a single
component’s failure can paralyze the whole application. Microservices inherently design
for failure, allowing the system to degrade gracefully and maintain functionality even
when certain services are down. However, network and machine failures are inevitable,
and strategies must be in place to handle these incidents without significantly affecting
the user experience.

Technology agnostic

Microservices architecture stands out for its technological flexibility, granting teams the
liberty to select the most suitable technology stack for each distinct service. This technology-
agnostic approach decouples services from any singular, early-stage technology decisions
that often constrain entire projects. Within this paradigm, each microservice can be de-
veloped using different programming languages and data storage solutions, according to
what best serves its purpose. This not only streamlines development by aligning with
teams’ existing proficiencies but also avoids the overhead of learning new languages un-
necessarily. For instance, organizations like Netflix and Twitter predominantly utilize the
Java Virtual Machine (JVM) as their operational platform [44]. Their choice is driven by
a deep familiarity with this technology.

40

3.2 – Microservices

Distributed Development

Microservices architecture allows development teams to independently build, deploy, and
manage their services, speeding up updates and feature additions with minimal disrup-
tion to the overall system. This facilitates swift adaptation to changing business needs.
Unlike monolithic applications, which require large-scale deployments for minor updates,
microservices support targeted, independent changes to specific services. This reduces
deployment risks, enables quick error recovery, and hastens the delivery of new features to
customers. Companies like Amazon and Netflix leverage microservices to bypass obstacles
in software delivery, ensuring rapid and reliable service to their users[44].

Team optimization

Microservices architecture enhances team productivity by adhering to the "two-pizza rule,"
where smaller teams—ideally just large enough to be fed with two pizzas—tend to pro-
duce higher quality outcomes due to improved focus and manageability. This approach,
pioneered by Amazon, ensures that each team works on a discrete codebase, fostering effi-
ciency and faster achievement of goals. The flexibility inherent in microservices also allows
for easy reassignment of service ownership, facilitating a seamless adaptation of the ar-
chitecture to align with evolving organizational structures, thereby maintaining efficiency
and effectiveness in the long term.

3.2.3 Challenges

While the microservices architecture offers numerous benefits such as enhanced scalability
and improved team productivity, it also introduces a set of challenges that can compli-
cate system design and maintenance: the complexity of orchestrating numerous services,
maintaining data consistency across distributed systems and managing inter-service com-
munication efficiently. Addressing these challenges is essential for a smooth microservices
architecture.

Complexity

The decentralized approach of microservices inherently leads to systems with a high de-
gree of complexity. As the number of services increases, the overall system can become
more challenging to oversee and manage. Debugging exemplifies this complexity; with
each microservice generating its logs, pinpointing the source of an issue can become a
substantial challenge. This complexity requires robust logging and monitoring solutions
that can aggregate and correlate logs from across services, providing a cohesive view of the
system’s health and facilitating faster problem resolution. Additionally, the complexity
demands that developers and operators have a clear understanding of the system’s archi-
tecture and communication patterns, ensuring they can effectively trace and troubleshoot
issues as they arise.

41

Fundamentals

Data Consistency

Ensuring data consistency across microservices poses significant challenges due to their
distributed design. Unlike monolithic systems that rely on a single database, microservices
often use separate databases, making traditional transaction-based consistency difficult to
maintain. As a result, developers need to shift toward patterns like sagas and embrace
eventual consistency, which can be a major paradigm shift, especially when adapting
existing systems. It’s crucial to decompose applications incrementally, allowing for careful
evaluation of each change’s impact on the system’s data integrity.

Inter-service Communication

In microservices architecture, especially in cloud environments, inter-service communica-
tion adds complexity due to distributed network use. Each microservice’s unique API
requires careful management to ensure compatibility, a significant task when hundreds
or thousands of APIs are involved. Disaggregating processes into multiple network-
dependent services increases serialization, transmission, and deserialization, potentially
adding to latency. This impact on performance, hard to predict in design or development,
highlights the need for a gradual transition to microservices, allowing for an assessment
of changes on system latency.

3.2.4 Comparison with Monolithic Architecture

Figure 3.5. Monolithic and Microservices architectures[33].

In Figure 3.5, the distinction between a microservices approach and monolithic archi-
tecture is illustrated. The latter is characterized by tightly coupled and interdependent

42

3.3 – How to Model Microservices

software components, any changes require building and deploying the entire stack, which
can be slow and error-prone. Microservices are designed to overcome these limitations by
decomposing functionality into separate services, each with a specific role, thus provid-
ing a more flexible and scalable architecture. The table 3.2 contains an overview of the
differences between the two approaches.

Monolithic Microservices
Deployment Simple and fast deployment of

the entire system
Requires distinct resources,
making orchestrating the de-
ployment complicated

Scalability It is hard to maintain and han-
dle new changes; the whole
system needs to be redeployed

Each element can be scaled
independently without down-
time

Agility Not flexible and impossible to
adopt new tech, languages, or
frameworks

Integrate with new technolo-
gies to solve business purposes

Resiliency One bug or issue can affect the
whole system

A failure in one microservice
does not affect other services

Testing End-to-end testing Independent components need
to be tested individually

Security Communication within a sin-
gle unit makes data processing
secure

Interprocess communication
requires API gateways raising
security issues

Development Impossible to distribute the
team’s efforts due to the huge
indivisible database

A team of developers can work
independently on each compo-
nent

Table 3.2. Comparison of Monolithic and Microservices architectures[13].

3.3 How to Model Microservices
This section is dedicated to exploring key principles such as information hiding, coupling,
and cohesion, which are crucial in shaping our approach to defining the limits of our
microservices. We will place a particular focus on domain-driven design, a highly effective
strategy that plays a crucial role in establishing the boundaries of your microservices.
This approach not only maximizes their advantages but also effectively reduces potential
risks.

3.3.1 Boundaries
Our goal is to design microservices that can be independently modified, deployed, and
have their features released to users without relying on others. The ability to update a
single microservice independently from the others is crucial. At their core, microservices

43

Fundamentals

represent a type of modular decomposition, but with network interactions between mod-
ules. This means we can rely on a lot of prior art in the space of modular software to
assist in defining our boundaries. Bearing this in mind, we will delve into three essen-
tial concepts crucial for identifying effective microservice boundaries: information hiding,
cohesion, and coupling[44].

Information Hiding

Information hiding is a concept developed by David Parnas to look at the most effective
way to define module boundaries[47]. Information hiding aims to conceal as much detail
as possible within a microservice boundary. Parnas write[48]:

The connections between modules are the assumptions which the modules make
about each other.

Reducing assumptions between modules in microservices simplifies their connections,
making it easier to modify one module without affecting others. This approach also allows
developers to make safer changes, as they understand how their module is used by others,
preventing the need for changes in upstream components. Additionally, in microservices,
such modifications can be deployed independently, enhancing the benefits outlined by
Parnas: faster development, better comprehensibility, and increased flexibility.

Coupling and Cohesion

The concepts of coupling and cohesion are integral to the structure and stability of mi-
croservice architectures. Understanding their interplay helps in designing systems that
are both stable and efficient. Achieving the right balance between these two aspects is
crucial for the effective functioning of microservices.

• Cohesion: Cohesion in microservices is about strategically grouping related business
functionalities to reduce the need for changes across multiple areas. It emphasizes
consolidating similar behaviors in a single location, which streamlines the process of
modification and deployment. This approach leads to strong cohesion, where closely
related functionalities are contained within a single microservice, thereby enabling
faster and more secure updates and changes.

• Coupling: Coupling in the context of microservices involves designing services in a
way that changes in one do not require modifications in others. This design principle
promotes minimal inter-service knowledge, thereby reducing dependencies between
different services. The ideal state of loose coupling is achieved when services have
minimal interactions with each other, maintaining their independence. This ap-
proach significantly reduces the risks associated with tightly interconnected systems,
ensuring more robust and flexible service architecture.

This balance is not only about the technical aspects but also about making pragmatic
decisions that fit the specific context and challenges of the project.

44

3.3 – How to Model Microservices

Types of Coupling

The concept of coupling in system design is nuanced and not as straightforward as it might
initially appear. While it’s true that excessive coupling can lead to various challenges in
system architecture, some level of coupling is inevitable and, in certain cases, necessary.
The key objective in effective system design is not to eliminate coupling entirely but to
manage and minimize its extent.

Figure 3.6. The different types of coupling, from loose (low) to tight (high)

.

The different types of coupling[44], as depicted in Figure 3.6, provide a comprehensive
spectrum, ranging from low to high. Low coupling is generally desirable as it indicates a
system where components operate independently, enhancing flexibility and ease of main-
tenance. High coupling, on the other hand, suggests a tightly interlinked system where
changes in one component can have significant ripple effects, making it less desirable due
to the increased complexity and risk involved. Understanding these variations and their
implications is crucial for designing robust, scalable, and maintainable systems.

• Domain Coupling: Domain coupling refers to a scenario where one microservice
depends on another for specific functionalities. While such interactions are largely
inevitable in a microservice architecture, where collaboration among multiple services
is essential for system operation, it’s important to minimize these interactions. It
is a form of loose coupling in microservices, but can lead to issues if a service relies
too heavily on many downstream services, suggesting over-centralization of logic.
Problems may also arise from exchanging complex data sets between services. It’s
advisable to share only essential information and minimize data exchange.

• Pass-Through Coupling: Pass-through coupling in microservices occurs when one
microservice transmits data to another solely for the use of a subsequent downstream
service. This form of coupling is particularly challenging within implementation
strategies, as it suggests that the initiating service is aware not only of the direct
recipient microservice but may also need to understand the functioning of the mi-
croservice further down the chain. This creates a complex interdependency where
knowledge of multiple services and their interactions becomes necessary, complicat-
ing the architecture.

• Common Coupling: Common coupling in microservices refers to the scenario
where multiple services utilize the same data set, such as a shared database, mem-
ory, or filesystem. This coupling becomes problematic when changes to the data’s

45

Fundamentals

structure affect several services simultaneously. For example, if the schema of a com-
monly used database changes incompatibly, all services relying on it need updates.
Additionally, common coupling can lead to resource contention issues, as multiple
services accessing the same database or filesystem may strain or even incapacitate
that resource. While sometimes manageable, common coupling often indicates a lack
of cohesion in the system and can pose operational challenges, making it one of the
less desirable forms of coupling.

• Content Coupling: Content coupling occurs when an upstream service intrusively
modifies the internal state of a downstream service, commonly by directly accessing
and altering the latter’s database. This is subtly different from common coupling,
where multiple services interact with a shared dataset, but acknowledge it as an
external, uncontrollable dependency. Content coupling blurs ownership lines, com-
plicating system modifications for developers. A clear distinction in microservices
between changeable and unchangeable elements is crucial. Developers must be aware
of the service contract exposed to external parties to avoid disrupting upstream con-
sumers. While common coupling shares some issues with content coupling, the latter
introduces additional complexities, often termed pathological coupling. Direct exter-
nal access to a database challenges the definition of what can be safely altered and
what cannot, undermining the principle of information hiding. Therefore, content
coupling is best avoided due to these inherent complications.

3.3.2 Domain-Driven Design
In defining microservice boundaries, we primarily focus on the domain itself, applying
domain-driven design (DDD) to model our domain more effectively. DDD, as introduced
by Eric Evans in "Domain-Driven Design"[22], provides key concepts that are crucial in
this context. These include Ubiquitous Language, which ensures uniform language usage
across the domain; Aggregates, which group related domain objects into a single unit;
and Bounded Context, which sets the scope of applicability for a particular model. These
principles play a vital role in guiding our microservice architecture strategy.

Ubiquitous Language

Ubiquitous language emphasizes the importance of aligning the terminology in our code
with the terms used by the users. This commonality of language between the develop-
ment team and the end users simplifies modeling the real-world domain and enhances
communication. Integrating real-world language into the code streamlines the develop-
ment process. It allows developers, when handling tasks or stories, to quickly grasp the
requirements and objectives, as these are expressed in terms familiar to both the product
owner and the development team.

Aggregates

Aggregates in microservice architecture are envisioned as self-contained units, each with
its own state, identity, and life cycle that mirrors real-world entities. These aggregates

46

3.3 – How to Model Microservices

are apt for implementation as state machines, given their inherent life cycles. The de-
sign focuses on consolidating the code that manages state transitions with the aggregate’s
state itself. Typically, a single microservice is responsible for one aggregate, but it may
handle several. For instance, an Invoice aggregate would include various line payments,
each significant only within the context of the overall Invoice aggregate.

A microservice’s role extends to managing the life cycle and data storage of one or several
types of aggregates. Should a different service need to modify an aggregate, it must either
directly request this change or prompt the aggregate to initiate its own state transitions,
possibly in response to events from other microservices. Aggregates are designed with the
capability to reject inappropriate state transition requests, underscoring the importance
of preventing illegal state changes in their implementation.

Bounded Context

A bounded context usually reflects a larger section of an organization, with clear respon-
sibilities within its boundaries. This concept focuses on concealing the finer details of
implementation, safeguarding internal aspects that aren’t necessary for external under-
standing or involvement.

In terms of structure, a bounded context comprises one or more aggregates. While some
of these aggregates might be visible externally, others remain internal to maintain the in-
tegrity of the context. Bounded contexts can also form relationships with other contexts,
translating into dependencies between services in a microservice architecture.

For instance, a warehouse service can be seen as a bounded context, bustling with activ-
ities like processing outgoing orders, receiving new inventory, and other logistical tasks.
In a different bounded context, such as the finance department, the focus shifts to less
dynamic but equally vital functions like managing payroll and handling financial trans-
actions. Each context operates within its own realm of responsibilities but may interact
with or depend on other contexts, reflecting the interconnected nature of services in a
microservices setup.

Domain-Driven Design in Microservices

Domain-Driven Design (DDD) is effective in microservices architecture due to its focus
on bounded contexts which conceal internal complexities and present clear boundaries to
the system. These contexts aid in maintaining stable microservice boundaries by ensuring
that internal changes do not affect other system parts. When systems are segmented along
bounded contexts, modifications for business needs are confined to specific microservices,
streamlining deployment and reducing the complexity of changes.

47

Fundamentals

Figure 3.7. The Warehouse service internally has been split into Inventory
and Shipping microservices

.

Aggregates and bounded contexts both provide cohesive units with clear interfaces to
the larger system. Aggregates are focused state machines for single domain concepts,
while bounded contexts group these aggregates and represent them to the outside world.
These constructs are ideal for defining microservice boundaries. Initially, it’s beneficial
to work with services that cover complete bounded contexts. If needed, services can
later be divided into smaller ones without splitting individual aggregates, keeping such
internal decisions invisible to external stakeholders. For instance, a Warehouse service may
internally be divided into Inventory and Shipping, but externally it remains a singular
Warehouse microservice to users, as depicted in the figure 3.7.

3.3.3 Event-Driven Architecture

Event-Driven Architecture (EDA) is a software design paradigm that facilitates communi-
cation between services or components through the asynchronous exchange of events. It is
essential in microservices for enabling decoupling, scalability, and reactive programming.
This architecture allows real-time information flow between applications, microservices,
and connected devices as events occur, promoting what is known as loose coupling. In
EDA, applications and devices communicate without needing to know the specific sources
or destinations of the information, maintaining isolated services with single responsibilities
within a system[60].

48

3.3 – How to Model Microservices

Example Architecture

The image 3.8 depicts an event-driven architecture for an e-commerce site, showcasing
how different components interact via events to enable a responsive and resilient system.
Event Producers like a retail website, mobile app, and point-of-sale system generate events
such as new orders or stock queries. These events are routed by the Event Router, which
ingests, filters, and directs them to the appropriate Event Consumers. The consumers,
such as the Warehouse Management Database, Finance System, and Customer Relations,
act upon these events to update inventory, financial records, and customer service actions,
respectively. This architecture ensures the site remains operational and efficient, even
during high traffic, by reacting to real-time data without overloading the system.

Figure 3.8. Example of an event-driven architecture[4].

49

Fundamentals

How it works

Figure 3.9. How event-driven architecture works[2].

In this architecture pattern, events are generated by producers and captured by an
event bus, which routes them to the appropriate consumer services that process the event
and may generate new events. This model enables decoupled and asynchronous interac-
tions, allowing microservices to operate independently while responding to changes and
inputs. EDA is scalable and allows for immediate response to events, with no need for
point-to-point integrations, making it easy to add new consumers to the system[41].

Component Description
Event The core of EDA, an event is a significant change in

state, which other parts of the application can listen
to and react upon.

Event Producer A component that generates events.
Event Consumer A component that processes events.
Event Bus A channel through which events are routed from pro-

ducers to the appropriate consumers.

Table 3.3. Event-driven architecture components[41].

Models

The table 3.4 summarizing the different models of Event-Driven Architecture along with
their descriptions and examples[15]:

50

3.3 – How to Model Microservices

Model Description Example
Process Man-
ager

The orchestrator that manages a workflow or
process, performing business logic and trig-
gering events to other consumers.

AWS Step Func-
tions

Event Sourcing Stores events to calculate state, with down-
stream projections using this to calculate
their view of the world. It’s great for au-
diting.

Amazon Dy-
namoDB

Event Stream-
ing

Used for real-time information processing,
such as user interactions. Messages are
placed onto a stream for consumers to pro-
cess.

Amazon Kinesis

Point-to-Point
Messaging

Sends messages to a channel for downstream
consumers to process, allowing for concurrent
processing and scalability.

Amazon SQS

Change Data
Capture

Reacts to changes made against data, with
consumers attached to these changes for pro-
cessing.

Amazon Dy-
namoDB

Pub/Sub Fires notifications out to downstream con-
sumers, fanning out events and allowing con-
sumers to get their own copy of the event.

Amazon Event-
Bridge

Table 3.4. Models of Event-Driven Architecture.

Advantages

Event-Driven Architecture offers several compelling advantages when applied to microser-
vices. One of its primary benefits is loose coupling, which allows services to operate
independently, thereby reducing dependencies and simplifying maintenance. This loose
coupling also contributes to the scalability of the system; services can be scaled up or
down independently, and new consumers can be integrated without significant disruption
to the existing ecosystem. Moreover, EDA provides flexibility and dynamism, enabling
the system to quickly adapt to new business requirements by simply adding new event
consumers. Finally, from a cost perspective, EDA systems are inherently efficient since
they are push-based rather than pull-based, eliminating the need for continuous polling
to check for events, which can lead to significant cost savings on compute and network
resources[58][4].

Disadvantages

While Event-Driven Architecture presents numerous benefits for microservices, it also
introduces a set of challenges. The inherent complexity of designing and managing an
event-driven system is non-trivial, often requiring a sophisticated understanding of dis-
tributed systems. Testing, debugging and monitoring in a highly distributed systems adds

51

Fundamentals

another layer of complexity, necessitating robust and comprehensive strategies for trac-
ing and logging. Performance can be impacted as well, given that the event broker or
bus acting as a middle man between producers and consumers might introduce latency,
potentially leading to longer execution times for event processing. Finally, the principle
of eventual consistency in EDA means that services might process and react to the same
event at different times, which can complicate transactional integrity and require careful
handling to maintain system accuracy and reliability[58][41].

3.3.4 Workflow Management
In the environment of microservices, the complexity of interactions extends beyond the
simple communication between two services. A critical aspect is the orchestration of mul-
tiple microservices working together to execute comprehensive business processes. This
orchestration requires a nuanced approach to maintain the system’s integrity and effi-
ciency.

In this section, we’ll explore how microservices can collaborate on workflows and pro-
cesses. We’ll delve into strategies like distributed transactions, which attempt to address
these coordination challenges, and examine the saga pattern, an advanced concept that
provides a structured approach to manage long-running, distributed business transactions
within microservice architectures.

Database Transactions

In computing, transactions are a series of actions completed as a single unit, ensuring all
changes are made or none if an error occurs. This concept is crucial in databases, where
transactions (like insertions, deletions, or updates) must be successful, often spanning
multiple tables. The term database transactions usually refers to ACID transactions[25],
which is explained in table 3.5.

Letter Stands for Description
A Atomicity Ensures that all parts of a transaction are completed

successfully, or none at all.
C Consistency Guarantees that a transaction only brings the system

from one valid state to another.
I Isolation Ensures that transactions are performed indepen-

dently and transparently.
D Durability Assures that once a transaction is committed, it will

remain so, even in the event of a failure.

Table 3.5. ACID properties of database transactions

In microservices, ACID transactions apply to local operations within a single mi-
croservice, complicating atomic operations across multiple services. Unlike a monolithic
database that ensures atomicity through ACID properties, a distributed microservices

52

3.3 – How to Model Microservices

system handles changes across separate databases, as depicted in Figure 3.10. This leads
to independent transactions that may succeed or fail separately, lacking atomicity for the
entire operation.

Figure 3.10. Example that show the difference between monolithic and mi-
croservices transactions.

Distributed transaction - Two-Phase Commit

The Two-Phase Commit (2PC) algorithm facilitates transactional updates across dis-
tributed systems, ensuring atomic transaction commits across multiple nodes. Essentially,
it mandates that all involved nodes must either commit or abort together, maintaining
the principle of atomic transactions[36]. Unfortunately, 2PC is often viewed as impractical
for microservice architectures[44], thus this section explores the reasons behind this per-
spective, analyzing the limitations and challenges of applying 2PC in such contexts.

In the figure 3.11 we can see an example of the 2PC protocol process. The protocol
is divided into two phases: the prepare phase and the commit phase. Initially, in the
prepare phase, microservices are prompted to ready themselves for a potential atomic
data change. Following this, the commit phase involves directing these microservices to
execute the actual changes. Central to this process is a global coordinator, responsible for
overseeing the transaction’s lifecycle and engaging with microservices during both the pre-
pare and commit phases. This coordinator is pivotal in determining whether the nodes
can commit the proposed transaction and in issuing the final command to commit or
abort[36][63].

53

Fundamentals

Figure 3.11. Example of the 2PC protocol process[63].

The major benefit of 2PC protocol is that it is a robust mechanism for ensuring con-
sistency across distributed systems. Its dual phases — prepare and commit — assure
that transactions are atomic, making all microservices commit successfully or none at
all, preventing partial updates. Additionally, 2PC enforces read-write isolation, ensuring
that any modifications remain invisible until the coordinating node finalizes the commit,
maintaining transaction integrity throughout the process[63].

Although 2PC ensures atomicity, its limitations make it less suitable for numerous microservice-
based systems[63]. The main issue of 2pc protocol are[24]:

• Blocking: The protocol locks objects until a transaction is complete, causing po-
tential delays and deadlock.

• Latency: Waiting for all participant responses before proceeding adds to the trans-
action time.

• Coordinator Risk: The Transaction Coordinator is a critical point that can fail,
blocking all transactions.

• Participant Performance: The entire transaction’s speed is tied to the slowest
participant, with failures necessitating full rollbacks.

Saga distributed transactions pattern

As described so far, to avoid coupling between microservices, the database-per-microservice
pattern is utilized, allowing each service to manage its own data. This method offers sev-
eral advantages: select the most suitable data store type, scale it independently, and
maintain isolation from failures in other services[42]. This pattern has a drawback: it does
not support ACID transactions across multiple services. To overcome this limitation, the
Saga pattern can be employed.

Unlike a two-phase commit, the saga pattern is designed to effectively coordinate multiple

54

3.3 – How to Model Microservices

state changes, ensuring data consistency and avoiding resource locks across microservices.
It accomplishes this by decomposing the process into separate, independently executable
activities. The adoption of the saga pattern necessitates the explicit modeling of business
processes, which can yield significant benefits[44].

Figure 3.12. From 2pc to Saga pattern[56].

How showed in figure 3.12, the Saga pattern manages transactions across multiple
services through a sequence of local transactions, each serving as an atomic work effort
by a saga participant. In this pattern, every local transaction updates the database and
publishes a message or event to initiate the subsequent local transaction within the saga.
If any local transaction fails, typically due to a violation of business rules, the saga re-
sponds by executing compensating transactions to reverse the changes made by earlier
local transactions. This approach ensures consistent and reliable transaction manage-
ment in complex, distributed systems[42][56].

The key benefit of Saga is maintaining data consistency across multiple services with-
out needing distributed transactions. However, it introduces complexities: developers
must create compensating transactions to reverse earlier changes, and debugging becomes
challenging, especially as the number of services involved increases. When a client initi-
ates a saga through a synchronous request (like an HTTP POST), determining the saga’s
outcome is crucial. This can be managed in several ways[56]:

• Immediate Response Post-Completion: The service responds after the saga
completes, ensuring a definitive outcome but possibly causing delays.

55

Fundamentals

• Initiation Acknowledgement with Periodic Polling: The service acknowledges
the saga’s start, and the client periodically checks for the outcome.

• Initiation Acknowledgement with Event Notification: The service sends an
initial response and notifies the client via an event (e.g., websocket) upon saga com-
pletion.

There are two prevalent methods for implementing the Saga pattern: choreography and
orchestration. Each method presents unique challenges and requires specific technologies
to effectively coordinate the workflow.

Choreography-based saga

Choreography in sagas refers to a decentralized method of coordination where participants
communicate through the exchange of events, without relying on a central control point. In
this approach, each local transaction emits domain events that activate local transactions
in other services[42].

Figure 3.13. Choreography-based saga[42].

The workflow is well-suited for simpler processes with fewer participants, as it does
not necessitate complex coordination logic or the implementation and maintenance of an
additional service. This decentralization also prevents the emergence of a single point of
failure. However, the approach has its limitations; as the workflow grows, it becomes in-
creasingly challenging to track the interactions and commands between saga participants,
potentially leading to cyclic dependencies. Integration testing can be complicated, requir-
ing all services to be active to effectively simulate a transaction, posing a considerable
challenge in practical applications[42].

Orchestration-based saga

Orchestration in sagas involves a central controller directing saga participants on which
local transactions to carry out. The orchestrator manages all transactions, instructing

56

3.4 – Serverless

participants on specific operations in response to events. It is responsible for executing
saga requests, maintaining and interpreting the state of each task, and managing failure
recovery through compensating transactions[42].

Figure 3.14. Orchestration-based saga[42].

This pattern is advantageous for complex workflows with numerous participants or
when incorporating new participants over time, as it allows complete control over each
participant and their activities. This approach eliminates cyclical dependencies by hav-
ing the orchestrator solely depend on the saga participants and simplifies business logic
by clearly separating concerns. Anyway, it introduces additional design complexities by
requiring the implementation of specific coordination logic, and the orchestrator itself be-
comes a potential point of failure, managing the entire workflow and thus presenting a
risk to the system’s stability[42].

3.4 Serverless

3.4.1 Introduction
The advent of serverless computing marks a significant shift in the way applications are de-
veloped and managed, especially within the domain of microservices. As the architecture
of an application expands, operational responsibilities grow correspondingly. Public cloud
providers have risen to this challenge by offering an extensive suite of managed services,
ranging from managed database instances and Kubernetes clusters to message brokers
and distributed file systems. Leveraging these managed services translates to offloading
substantial operational workload to third-party experts, who are often more equipped to
manage these complex tasks[44].

Within the serverless offerings, services that facilitate Event-Driven Architecture hold
a place of prominence. Serverless platforms inherently support EDA by abstracting away
the infrastructure, allowing developers to concentrate on code and event flows rather than
server management. Products such as message brokers, storage solutions, and databases
are designed to seamlessly integrate with event-driven models, providing a responsive and
efficient means to trigger and scale microservices based on real-time events[14].

57

Fundamentals

Function as a Service (FaaS), a cornerstone of serverless offerings, perfectly complements
EDA by providing a mechanism to deploy code that automatically responds to events with-
out the need for explicit server provisioning. Developers simply deploy their functions,
which are then executed in response to events, scaling automatically with the volume
of requests. This serverless, event-driven model significantly reduces the complexity of
scaling and managing infrastructure, allowing developers to focus on building responsive,
efficient, and modern cloud-native applications.[44].

Example of Serverless

Figure 3.15. Example of Serverless Architecture.

The diagram 3.15 presents a serverless data processing architecture that enables auto-
matic handling of interview notes. When documents in Markdown format are uploaded
to a cloud-based storage service, the system is designed to trigger multiple automated
workflows. The first workflow involves a function-as-a-service platform, which is activated
to convert the Markdown documents into HTML files; these are then saved back to the
storage service in a different location for future access. Simultaneously, a second work-
flow commences, where another function is triggered through a message queuing service
to perform sentiment analysis on the text. The results of this analysis are stored in a
NoSQL database, allowing for efficient retrieval and analysis of the processed data.

The entire process is monitored by a cloud-based monitoring system that watches over

58

3.4 – Serverless

the message queues and function executions. In case of any errors or malfunctions, an alert
system is activated to send notifications, ensuring that any issues are addressed promptly.
This serverless architecture exemplifies the modern approach to cloud computing, empha-
sizing automated, event-driven processes that facilitate quick, scalable, and efficient data
processing without the need for managing server infrastructure[5].

3.4.2 Benefits

Cost-effective

Serverless computing provides a cost-efficient model by charging only for the backend
services when code is executed, following an event-based model. This stands in contrast
to traditional hosting models, where costs are incurred for dedicated servers regardless
of whether they are in active use. By eliminating the need to provision, manage, and
maintain physical servers, serverless computing allows for significant cost savings. It is
particularly economical for applications that do not run continuously, as you pay solely for
the resources utilized during the execution time, without the overhead of server mainte-
nance and upgrades[62][37]. However, it is worth noting that for applications with constant
runtime, serverless computing may not always be the most cost-effective option[43].

Scalability

Seamless scalability is a hallmark of serverless computing, allowing applications to adapt
quickly to fluctuating demands without the need for server management. It operates much
like a bus system that adjusts its capacity according to the number of passengers; server-
less infrastructure automatically scales up or down as user demand changes. This model
ensures that server capacity is precisely aligned with the necessary demand, providing
ample resources when the number of user requests increases without being constrained
by the limitations of server storage and performance capabilities[62]. This adaptability
is considered one of the primary benefits of serverless computing, enabling businesses,
especially small and medium enterprises (SMEs), to handle traffic surges efficiently and
cost-effectively, ensuring service continuity and performance without the disruptions com-
monly associated with traditional hosting models[37].

Reliability

Serverless computing inherently enhances application reliability due to multiple layers of
built-in redundancy. Since serverless applications are not tethered to a single origin server,
they have the flexibility to execute code from various locations, optimizing the function
execution closer to the end-user[62][37]. This distributed nature not only helps in reducing
latency, thereby improving performance, but also contributes to high availability. The
risk of service outages or failures is significantly reduced, ensuring that end-users have
consistent and reliable access to the application functions[43].

59

Fundamentals

Increased productivity

Serverless computing streamlines the development process, making it much faster and
more efficient to build and deploy applications. Developers are freed from the time-
consuming tasks of server setup and infrastructure maintenance, allowing them to con-
centrate on innovation and creativity without being hindered by server constraints. As
a result, developers can launch products more swiftly, as there is no need for traditional
server-side installations or workflow monitoring. The serverless model enables direct code
uploads and immediate function execution on the cloud provider’s infrastructure. This
agility extends to application updates and patches, which can be implemented incre-
mentally, targeting individual functions rather than disrupting the entire service. This
approach not only enhances development velocity but also reduces the resources allocated
to DevOps, leading to cost savings and allowing developers to focus purely on coding and
product improvement[62][37].

Resource Utilisation

The efficiency of serverless computing in terms of resource utilization marks a substan-
tial advancement towards greener technology practices. By engaging resources solely
during code execution, serverless platforms significantly minimize waste and avoid the
energy costs associated with powering idle servers. This responsiveness to real demand
underscores serverless computing as an eco-friendly choice, particularly appealing to or-
ganizations aiming to reduce their environmental impact and achieve sustainability goals.
Such a model is not only in line with ecological considerations but also optimizes opera-
tional expenditures, positioning serverless computing as a judicious approach for backend
operations that are both environmentally and economically conscious[20].

3.4.3 Drawbacks
Performance Issues

Serverless architectures can encounter performance hiccups, particularly when reactivating
idle applications. Known as "cold start" latency, this issue arises when the serverless
platform takes additional time to provision resources for an application that hasn’t been
used recently. While steps such as reducing code length can mitigate the impact, they
may lead to a trade-off where developers must manage a larger number of smaller, more
manageable functions. Despite these efforts, the initial delay in resource setup inherent
to cold starts can still lead to slower response times when an application is invoked after
being dormant[37].

Limited Control

In serverless computing, the cloud provider’s management of the infrastructure results in
developers having limited control over the environment and certain application param-
eters. This lack of direct control can hinder customization efforts and may pose issues
if specific needs arise that require adjustments at the infrastructure level. Additionally,

60

3.4 – Serverless

cloud providers may offer limited support for certain programming languages and run-
time environments, which can restrict the technology stack options for development[62].
Another consideration is the potential for vendor lock-in; reliance on a single provider’s
serverless architecture can create dependencies that complicate migrating to a different
provider’s services[43]. These factors highlight the trade-offs between the convenience of
serverless models and the need for flexibility in application deployment and management.

Increased Complexity

While developers benefit from the reduced need to manage servers and scalability concerns,
they are faced with the intricacies of serverless architectures, such as state management,
integration with other services, and the unique security considerations these environments
entail. Moreover, the serverless paradigm often requires a different approach to application
design, with a focus on individual functions and services, which can be a departure from
traditional monolithic architectures. These elements can sometimes increase the cognitive
load on developers and complicate the application lifecycle management, especially for
those accustomed to more control over the server environment[62][37].

Testing & Debugging

The abstraction inherent in serverless computing can obscure backend processes, compli-
cating tasks such as testing and debugging. Without traditional backend visibility, de-
velopers might find it difficult to conduct in-depth inspections, detect faults, and identify
errors within the cloud environment, adopting more comprehensive strategies to antici-
pate and address potential issues. This added complexity in monitoring and diagnosing
problems requires a proactive approach to fault prediction and management to minimize
service disruptions for users[37]. Debugging, in particular, presents a challenge as the in-
frastructure’s concealed nature takes away some of the direct troubleshooting tools that
developers rely on in more conventional setups[43].

Security concerns

In serverless computing, the responsibility for security configurations largely rests with the
cloud provider, which can lead to concerns over limited control and potential security risks
if the provider’s measures are not up to par. Careful evaluation of a provider’s security
protocols is crucial, and applications must be designed with security best practices in mind
to mitigate risks. Despite the robust security measures typically employed by service
providers, some users may still be apprehensive about relinquishing direct control over
security. Serverless architecture often involves sharing resources between different clients
on the provider’s infrastructure, which introduces the need for strong isolation policies
to ensure that one client’s activities do not compromise another’s security. Complying
with these security considerations requires trust in the provider’s ability to safeguard the
environment while also necessitating that developers stay vigilant and informed about the
security posture of their serverless applications[37][43].

61

Fundamentals

3.4.4 Function-as-a-Service
Functions-as-a-Service (FaaS) represents a modern "serverless" approach that has gained
widespread popularity for its ability to simplify the development and operation of appli-
cations. In FaaS, functions - pieces of code - are executed in response to specific triggers,
running only until their task is completed. This model allows for efficient scaling, as the
number of function executions automatically adjusts based on the load, making it highly
effective for event-driven systems where workload can be unpredictable.

FaaS operates on a consumer/producer basis, where functions are transient, ceasing to
exist after a set duration along with their connections and state. This design necessitates
careful planning in function development but offers significant benefits. The cost efficiency
is notable, as you incur charges only for the time your code is running. Additionally, the
FaaS platform manages the operational complexities, such as automatically handling the
spinning up and down of functions and ensuring high availability and robustness with
minimal effort from the developer.

The integration of FaaS in application development reduces operational overhead sub-
stantially, making it an ideal choice for implementing simple to moderately complex so-
lutions within event-driven architectures. This approach allows developers to focus more
on building functionality without the burden of managing infrastructure, leading to more
agile and responsive application development[14].

Figure 3.16. Evolution of architectures[18].

Cold Start and Warm Starts

A "cold start" refers to the initial phase of a function in a FaaS (Function-as-a-Service)
environment when it is first activated or after a period of dormancy. During this phase,
the system initiates a container, loads the code, establishes connections with the event
broker, and sets up other necessary external resource connections. Once these preparatory
steps are complete, the function transitions to a "warm state," primed to process events.

62

3.4 – Serverless

In this state, the function actively processes events until it either completes its task or
reaches a timeout, at which point it enters a suspended or hibernation mode.

FaaS frameworks typically strive to optimize resource usage by reactivating these sus-
pended functions for subsequent tasks. In scenarios where there is a consistent flow of
events, a function may cycle between active processing and brief termination due to time-
out. However, if the connections to the event broker and state stores remain active during
these short periods of inactivity, the system can quickly resume processing with the reac-
tivated function instance. This reuse of function instances enhances efficiency, reducing
the overhead and latency associated with initializing a function from a cold start[14].

Maintaining State

FaaS (Function-as-a-Service) platforms are designed for stateless operations, primarily
due to the ephemeral nature of functions. Since these functions have a limited lifespan,
any FaaS-based solution that requires statefulness typically relies on external stateful ser-
vices. This design choice aligns with the objective of FaaS providers to offer rapid, highly
scalable processing resources that are not constrained by the location of data. Local state
dependence, where a function needs to access state from previous executions, restricts ex-
ecution to specific nodes where this state is available. This limitation hinders the inherent
flexibility of FaaS.

To maintain scalability and flexibility, FaaS providers often implement a policy that pro-
hibits local state within functions, directing that all stateful data be stored externally.
Functions then interact with these external state stores in the same manner as any other
client: by establishing a connection and utilizing the appropriate API. Consequently, it’s
essential for functions to explicitly persist and retrieve any state as part of their opera-
tional process. This approach ensures that while the functions themselves remain stateless,
stateful interactions are still possible through external mechanisms[14].

Integrated with Event-Driven Architectures

This technology is inherently stateless and is activated by specific triggers or events,
making it an ideal match for event-driven architectures. In an event-driven architecture,
components react to events such as user actions, sensor outputs, or messages from other
systems. FaaS fits seamlessly into this paradigm because it is designed to respond to events
automatically. When an event occurs, it triggers a specific function, which executes and
then terminates, ensuring a minimal use of resources. This model is highly efficient and
scalable, as it allows for on-demand, ephemeral computing resources that are only used
when needed. The stateless nature of FaaS ensures that each function execution is isolated
and independent, enhancing both scalability and reliability. This integration of FaaS with
event-driven architecture represents a powerful and flexible approach to building and
operating modern, responsive, and efficient applications.

63

Fundamentals

Mapping to microservices

There are two primary modes of mapping microservices using Function-as-a-Service tech-
nology: "Function per Microservice" and "Function per Aggregate".

In Function per microservice method, a single instance of a microservice is deployed
as a singular function, as illustrated in figure 3.17. This strategy maintains the integrity
of the microservice instance as the fundamental unit of deployment in the FaaS platform.

Figure 3.17. Example of Function per microservice.

In this setup, when the function is invoked, the FaaS platform activates a singular entry
point within the deployed function. This necessitates a mechanism within the function
for routing the invocation to various functionalities that the microservice comprises. For
instance, if you have a microservice like the Expenses service, designed as a REST-based
system, it could expose different endpoints such as /receipt, /claim, or /report. In a sin-
gle function deployment model, requests to any of these endpoints are funneled through
the same entry point. Consequently, there must be an internal dispatch system within
the function that discerns the path of the incoming request and directs it to the correct
segment of the microservice for processing. This design ensures streamlined handling of
various functionalities within a microservice through a unified FaaS-based interface[44].

The Function per aggregate approach adopts a detailed perspective, dividing a single
microservice into several functions, where each function is responsible for a distinct part
or "aggregate" of the microservice’s overall role. In this context, an aggregate refers to
a group of domain objects treated as a cohesive unit for the purposes of data manipula-
tion. This approach aligns well with domain-driven design, where aggregates are typically
defined as collections of objects managed together and often represent real-world entities.

If a microservice manages multiple aggregates, a practical solution is to dedicate a
function to each aggregate, as depicted in figure 3.18. This strategy ensures that all the
logic pertaining to an individual aggregate is encapsulated within a single function. Such
an arrangement simplifies the management and ensures consistent implementation of the
aggregate’s life-cycle[44].

64

3.4 – Serverless

Figure 3.18. Example of Function per aggregate.

Adopting this model alters the traditional concept of a microservice instance from a single
deployment unit to a more conceptual framework composed of various functions. These
functions, representing different parts of the microservice, can theoretically be deployed
independently. This not only provides flexibility in deployment but also allows for more
granular scaling and maintenance of the service.

3.4.5 Market Overview
The serverless computing market is poised for rapid expansion, with projections esti-
mating a compound annual growth rate (CAGR) of 22.2% from 2024 to 2032, fueled by
an escalating demand for cost-effective computing. Organizations are keen to diminish
capital expenditures on IT infrastructure, and serverless computing meets this need by
delivering backend services that only incur costs when actively used. This pricing model
significantly enhances organizational cost-efficiency and augments scalability, reliability,
and the pace of product development to market[54].

Contributing to this growth is a concerted move towards sustainable IT practices, with
companies embracing serverless computing to cut down on IT hardware dependency and
improve energy efficiency, thereby supporting their environmental, social, and governance
(ESG) objectives. The adaptability of serverless computing, compatible with numerous
programming environments, is finding traction across vital sectors like manufacturing,
IT, and banking. This is further amplified by the boom in web and mobile applica-
tion development, thanks to broader mobile and internet accessibility, where serverless
computing’s efficient resource utilization and speedy deployment significantly lower oper-
ational and maintenance costs. Collectively, these factors are making serverless computing
a compelling strategy for organizations seeking to bolster user experiences and maintain
a competitive edge, indicating a strong and dynamic future for the serverless computing
market[54].

65

Fundamentals

Trends and Success Rates

Figure 3.19. Serverless adoption among survey respondents’ organizations.

The O’Reilly serverless survey[50], with over 1,500 participants, showcased a high level
of engagement with serverless architecture, reflecting its growing significance in the tech
community. The figure 3.19 shows around 40% of respondents’ organizations had em-
braced serverless, drawn by the promise of reduced operational costs and the benefit of
automatic scaling. These adopters spanned across various industries and company sizes,
indicating that serverless solutions are not limited to any specific sector or business scale.
The survey also revealed that while a substantial 60% of organizations had not yet adopted
serverless, the reported benefits and the growing success rates among experienced users
could serve as a catalyst for wider adoption. The benefits driving this interest include not
only cost efficiency and scalability but also the agility to adapt to new business require-
ments rapidly.

Figure 3.20. Success rating of serverless adoption among survey respondents, broken
down by serverless experience level.

66

3.4 – Serverless

In figure 3.20 is illustrate how adoption rates varied by experience, with half of those
using serverless for over three years considering their implementation a success, compared
to a lower success rate among newer adopters. This suggests a correlation between experi-
ence with serverless technologies and successful deployment, highlighting the importance
of familiarity and understanding of serverless paradigms in achieving positive outcomes.

The data indicates that the serverless model is gaining traction beyond the realm of early
adopters and innovators, with a diverse range of professionals from various fields showing
interest. This is indicative of a broader trend towards infrastructure management models
that offer greater efficiency and flexibility. The survey paints a picture of serverless as a
maturing field with significant potential for growth, as more organizations begin to realize
and leverage its advantages for building modern, scalable, and cost-effective applications.

Costs

The cost of using a FaaS model can be lower than using a Software as a Service model,
as you only pay for the specific code you run, rather than paying a monthly or yearly
fee for access to the entire software. Additionally, with a FaaS model, you only pay for
the resources that your code actually uses, like computing time and data storage, rather
than paying for the entire server or infrastructure even when your code is not running.
This can result in significant cost savings; it tends to be more cost-effective than SaaS for
short-lived, event-driven workloads as the customer only pays for the specific computation
and resources used by each function[1].

In this section, we delve into a practical case study drawn from ’Horsa’ the company
hosting my thesis research, to illustrate the impact of Enterprise Resource Planning sys-
tems in small business environments. The case involves a small Italian company utilizing
Microsoft Business Central, with a user base of seven employees. By extrapolating this
data and applying it to a Function as a Service environment, we aim to demonstrate the
cost-efficiency and potential benefits of embracing FaaS technology in small-scale business
operations. This analysis not only highlights the adaptability and scalability of FaaS so-
lutions but also presents a tangible example of how transitioning to cloud-based platforms
can offer significant cost savings and operational advantages for small businesses.

Object Usage per day Conversion Request/Day
Pages 3K 1 Page = 2 function request

1 to read - 1 to write
6K

Report 150 1 Report = 1 function req. 150
WebService 76K 1 WS = 1 function req. 76K

Table 3.6. Example of ERP usage

Inside the teble 3.6, we can see the usage of the ERP system. Now applying these data

67

Fundamentals

to the FaaS cost model. Considering a month with 26 working days we have:

(150 + 6000 + 76000) ∗ 26 = 2135900 ∼= 2.2M Request per month (3.1)

We will use the FaaS service called Lambda provided by Amazon AWS, prices are calcu-
lated based on the number of calls, duration, and memory allocation for the respective
function. By definition, Lambda functions must be fast and lightweight, so we will use
half a second as the duration of each request and an allocated memory amount of 256
Mb, we will calculate the price not considering the free plan offered by Amazon:

Total processing time: 2200000 ∗ 0.5sec = 1100000.00sec (3.2)

256 MB ∗ 0.0009765625 = 0.25 GB (3.3)

Total processing: 0.25 GB ∗ 1100000.00sec = 275000 GB/s (3.4)

Total processing cost: 275000 GB/s ∗ 0.0000195172 USD = 5.3672 USD (3.5)

Request cost: 2200000 ∗ 0.00000023 USD = 0.51 USD (3.6)

Total monthly lambda cost: 5.3672 USD + 0.51 USD = 5.88 USD (3.7)

To this we must also add the cost of the API Gateway for routing requests:

2200000 ∗ 0.00000117 USD = 2.57 USD (3.8)

Finally, the total cost of the enviroment is 8,45 USD per month, that show the flexibility
and cost-effectiveness of the system. This example gives us the reason why the serverless
has rapidly become a popular choice for many organizations, even if the concept is still
relatively new.

68

Chapter 4

Technologies

This chapter focuses on the specific technologies utilized in implementing Kube. Foremost
among these is the suite of AWS services, including Lambda for serverless computing,
SQS (Simple Queue Service) and SNS (Simple Notification Service) for messaging, and
RDS (Relational Database Service) for database management. These services collectively
provide a resilient and scalable infrastructure for Kube. Additionally, the platform lever-
ages the serverless architecture to optimize resource utilization and reduce operational
overhead and the Go programming language for its efficiency and suitability for build-
ing high-performance applications. The user interface of Kube is crafted using Flutter,
a versatile UI toolkit, which enhances the platform’s accessibility and aesthetic appeal.
Together, these technologies form the cornerstone of Kube, enabling it to deliver good
performance and user experience.

4.1 Amazon AWS Services
AWS is recognized as the world’s most comprehensive and broadly adopted cloud plat-
form. It offers over 175 fully featured services from data centers globally. AWS is utilized
by a diverse range of customers, including rapidly growing startups, large enterprises, and
leading government agencies, to reduce costs, increase agility, and accelerate innovation.
The platform provides a wide array of cloud-based products including compute, storage,
databases, analytics, networking, mobile, developer tools, management tools, IoT, secu-
rity, and enterprise applications, all available on-demand with pay-as-you-go pricing[6]. In
this section we will analyze the most important services offered by Amazon AWS that we
will use in the development of the project.

69

Technologies

Example of AWS services integration

Figure 4.1. Example of AWS services integration.

The image 4.1 illustrates the architecture of a simple "to-do list" web application built
using serverless technology on the Amazon public cloud. This event-driven application
is designed to allow registered users to manage their tasks efficiently. Users interact
with the application to create, update, view, and delete to-do items. The architecture
integrates several Amazon Web Services to achieve this functionality. Each component
of the architecture is orchestrated to respond to specific events triggered by user actions,
such as adding a new to-do item or marking one as complete, making the entire application
responsive and scalable without the need to manage server infrastructure[5].

4.1.1 Pros and cons
Amazon Web Services (AWS) is renowned for its extensive array of over 200 fully-featured
services, ranging from fundamental infrastructure technologies like compute, storage, and
databases to cutting-edge fields such as machine learning, AI, data lakes, analytics, and
IoT. This diversity offers tailored solutions for different applications, optimizing both cost
and performance. However, the sheer breadth of services can be overwhelming for less
experienced users and creates a potential dependency on AWS, making it challenging to

70

4.1 – Amazon AWS Services

switch providers. Additionally, while AWS allows for cost and performance flexibility,
improper resource management or unsuitable service choices can lead to high expenses.

4.1.2 Alternatives
Microsoft Azure and Google Cloud Platform (GCP) stand as significant alternatives to
Amazon Web Services. Azure, backed by Microsoft’s legacy in enterprise software, excels
in integrating with existing Windows-based environments, making it a preferred choice for
organizations deeply embedded in Microsoft’s ecosystem. It offers a strong focus on hybrid
cloud, AI, and machine learning capabilities. On the other hand, GCP is highly regarded
for its deep expertise in data analytics, machine learning, and open source technologies,
leveraging Google’s pioneering work in these areas[40][27]. The table 4.2 shows a comparison
between the major four cloud services providers.

Figure 4.2. Cloud services comparison[17].

71

Technologies

4.1.3 AWS API Gateway
Amazon API Gateway is a fully managed service that simplifies the creation and mainte-
nance of APIs, serving as the gateway for applications to access backend data and services.
It supports various workloads, including real-time communication through RESTful or
WebSocket APIs, and handles tasks like traffic management, security, and monitoring.
Plus, there are no upfront fees, and you pay based on your API usage, with pricing that
scales according to your needs[7].

4.1.4 AWS Lambda
AWS Lambda is a serverless computing service from Amazon Web Services, designed
to run code without server provisioning or management. It executes code in a high-
availability environment, handling all aspects of computational resource administration.
This approach allows for code organization into Lambda functions, which are executed
and automatically scaled as needed, with billing based on compute time used. Ideal for
scenarios requiring rapid scaling, Lambda supports diverse applications like real-time data
processing with Amazon S3, streaming data handling with Amazon Kinesis, and creating
scalable web and serverless back-ends for IoT and mobile devices. Key features include
easy function configuration, environment variables, version management, container image
support, packaging libraries, monitoring tools, HTTP(S) endpoints, streaming responses,
and code signing for security. Lambda’s flexibility, scalability, and cost-effectiveness make
it an attractive solution for various cloud computing needs, emphasizing efficiency and
developer focus[8].

AWS Lambda functions can be invoked in various ways, depending on the needs of the
application. One common method is through event triggers, which can include changes
in data within AWS services like S3 bucket updates or DynamoDB table updates. These
events can be configured to invoke a Lambda function synchronously or asynchronously
how showed in figure 4.3.

Figure 4.3. Lambda invocation types.

Synchronous invocation, where the caller waits for the function to process the event
and return a response, is commonly used in scenarios like API executions through Ama-
zon API Gateway. Asynchronous invocation is employed when the order of execution is
not critical. In this case, events are placed in a queue before being sent to the function,
and AWS Lambda manages the function’s invocation rate. For asynchronous execution,

72

4.1 – Amazon AWS Services

AWS also provides services like Amazon Simple Queue Service (SQS) for queueing mes-
sages or Amazon Simple Notification Service (SNS) for delivering messages to subscribing
endpoints or functions. These services can be directly integrated with Lambda to han-
dle event-driven, scalable computing architectures, allowing developers to focus on code
rather than infrastructure management.

4.1.5 AWS RDS
Amazon Relational Database Service (Amazon RDS) is a web service from AWS that
simplifies setting up, using, and scaling relational databases in the cloud. It offers scal-
able, cost-effective solutions for standard industry relational databases, managing com-
mon administrative tasks, thus allowing users to focus more on their applications and user
engagement. As a fully managed service, Amazon RDS handles the majority of manage-
ment tasks, relieving users from manual and time-consuming database maintenance. It
supports various popular database engines, such as Amazon Aurora, MySQL, MariaDB,
PostgreSQL, Oracle, and SQL Server. Additionally, Amazon RDS provides deployment
flexibility, including on-premises options with Amazon RDS on AWS Outposts. This
combination of versatile database engine support, automated management, and deploy-
ment options make Amazon RDS a comprehensive and user-friendly solution for managing
relational databases in the AWS Cloud[9].

RDS vs DynamoDB

AWS does not offer only SQL options with RDS; there is also DynamoDB, a NoSQL
alternative for different database needs. While RDS excels in structured data manage-
ment and complex querying capabilities via SQL, DynamoDB provides a flexible schema
with key-value and document data models, delivering quick and predictable performance.
RDS is preferable for traditional applications that need transactional support, complex
joins, and other SQL operations. In contrast, DynamoDB is tailored for modern applica-
tions that demand scalability, low-latency data access, and where database management
overhead should be minimized. The choice between RDS and DynamoDB hinges on the
application’s data requirements and scalability demands.

4.1.6 AWS SQS
Amazon Simple Queue Service (SQS) is a fully managed message queuing service for
microservices, distributed systems, and serverless applications, offering secure and reliable
data transfer without losing messages or depending on other services’ availability. Amazon
SQS provides key benefits such as security, with user-controlled access and server-side
encryption options using AWS Key Management Service, and durability, ensuring message
storage across multiple servers. Its high availability is maintained through a redundant
infrastructure for consistent message access. The service is highly scalable, processing
each request independently to manage load spikes, and guarantees reliability by locking
messages during processing to support multiple producers and consumers. Amazon SQS
also allows for customization, like setting default delays on queues or storing large message

73

Technologies

contents on Amazon S3 or DynamoDB. These features make Amazon SQS an efficient and
versatile tool for handling large volumes of messages in various application architectures,
offering a combination of reliability, scalability, security, and customization[10].

4.1.7 AWS SNS
Amazon Simple Notification Service (Amazon SNS) is a fully managed service offering
effective Pub/Sub messaging for both application-to-application (A2A) and application-
to-person (A2P) communication. It facilitates high-throughput, push-based messaging
among distributed systems, microservices, and serverless applications, integrating seam-
lessly with Amazon SQS, AWS Lambda, and other services. A2P messaging extends capa-
bilities to customer communications through SMS, push notifications, and emails. Ama-
zon SNS stands out for simplifying messaging architectures while reducing costs through
features like message filtering, batching, ordering, and deduplication. It also enhances
message durability with storage, delivery retries, and dead-letter queues. Additionally, it
supports strict FIFO message delivery, ensuring accuracy and consistency across applica-
tions. This combination of features makes Amazon SNS a versatile tool for a wide range
of messaging scenarios, from system integration to direct customer engagement[11].

4.1.8 AWS Cognito
Amazon Cognito is a comprehensive service designed to implement secure, frictionless
customer identity and access management (CIAM) in a scalable manner. With Amazon
Cognito, you can offer a smooth management of customer identity and access, thanks to its
affordable and customizable platform. It includes features such as adaptive authentication,
support for compliance, and data residency requirements.Amazon Cognito is capable of
scaling to millions of users with a fully managed, high-performance, and reliable identity
store. It also provides access to federation using OpenID Connect (OIDC) or SAML 2.0
and integrates with a broad range of AWS services and products. This platform supports
up to 50,000 active users per month for free under the AWS free tier plan, making it a
cost-effective solution for businesses of varying sizes[12].

4.2 Firebase Cloud Messaging
Firebase Cloud Messaging (FCM)[31] is a powerful cloud solution for messages on iOS,
Android, and web applications for free. It provides a reliable and efficient connection
between servers and devices that allows for the delivery of notifications or messages.
FCM offers versatile messaging options including topic messaging, which allows you to
send a message to multiple devices that have opted in to a particular topic, device group
messaging, allowing for messages to devices that belong to a group, and direct messaging
to individual devices. This scalability makes it an essential tool for developers looking to
engage their user base effectively, with the added benefits of analytics and performance
tracking.

74

4.2 – Firebase Cloud Messaging

4.2.1 How it works
Firebase Cloud Messaging employs a client-server architecture where the FCM backend
is responsible for handling and routing messages. The client app on a user’s device com-
municates with the FCM via an SDK, which manages the registration process and token
generation. This token uniquely identifies the app instance and enables secure message
delivery to the device. Messages sent from the developer’s server to the FCM backend
can be payload-specific, directing the FCM to deliver them as notification or data mes-
sages. FCM then optimizes message delivery by queuing them, managing priority, and
even aggregating messages for network efficiency. This architecture supports a high level
of scalability and reliability in delivering messages across platforms and devices globally.

Figure 4.4. FCM architecture.

The image 4.4 show the FCM’s operational architecture:

1. Tools for crafting message requests, including a GUI via the Notifications composer
for notifications, and server environments like Cloud Functions for Firebase or App
Engine, supported by the Firebase Admin SDK or FCM server protocol, for com-
prehensive message type handling.

2. The central FCM server that handles incoming message requests, manages topic-
based message distribution, and assigns metadata like message IDs.

3. A device-level transport system that ensures messages reach their destination, vary-
ing by platform: Android devices, Apple devices and Web push protocols for browsers

4. The FCM SDK, which resides on the end-user’s device, and is responsible for display-
ing notifications or processing messages, depending on the app’s state and custom

75

Technologies

logic.

4.3 GO Language
For my project, I chose the Go language[28] due to its inherent cloud-native characteristics
and enhanced performance in cloud environments. It presents numerous advantages and
capabilities:

• Concurrency in Cloud Computing: Go is tailored for building highly reliable con-
current applications, a necessity in cloud computing where coordinating access to
shared resources is crucial. This makes Go an excellent choice for scalable cloud
systems.

• Development Cycle and Server Performance: Go addresses the trade-off between
development cycle time and server performance. A significant portion of Cloud
Native Computing Foundation projects use Go. Its fast build times, lower memory
and CPU utilization, and instant server start-up times make it a cost-effective option
for cloud applications.

• Addressing Modern Cloud Challenges: Go provides standard idiomatic APIs and
built-in concurrency to leverage multicore processors. Its low-latency and "no knob"
tuning offer a balance between performance and productivity, enabling teams to
adapt quickly to changing needs.

• Strong Ecosystem for Service Development: Go’s standard library includes tools for
HTTP servers and clients, JSON/XML parsing, SQL databases, and security/encryption.
The runtime includes tools for race detection, benchmarking, code generation, and
static code analysis. Major cloud providers and open-source libraries offer Go APIs,
supporting a wide range of services and functionalities.

It have the drawback too, it has faced criticism for its until-recent lack of generics, lead-
ing to less flexible code, and its verbose error handling approach. While Go’s standard
library is comprehensive, it sometimes falls short in specialized third-party libraries com-
pared to other languages. In essence, Go excels in backend and cloud services development
but might not be ideal for all project types.

4.3.1 GO CDK
The Go Cloud Development Kit[29] is an open-source project aimed at enhancing the ex-
perience of developing cloud applications with Go. It provides vendor-neutral, commonly
used generic APIs that work across different cloud providers, supporting hybrid cloud
deployments and the integration of on-premises (local) and cloud tools. Go CDK’s main
focus is on portable APIs for cloud programming, targeting major cloud providers like
AWS, GCP, and Azure, along with local (on-prem) implementations. The project enables
developers to write application code once using these APIs, test locally, and then deploy
to a cloud provider with minimal changes. The Go CDK is open-source and released

76

4.3 – GO Language

under the Apache 2.0 License.

The Go CDK provides APIs like blob.Bucket or runtimevar.Variable as specific, con-
crete types rather than interfaces. This design distinguishes the generic logic from the
specific interface. The generic logic resides in what we call the ’portable type,’ whereas
the ’driver’ represents the interface. This is illustrated in figure 4.5.

Figure 4.5. Go CDK API architecture.

This approach offers several advantages:

• The portable type can handle complex logic internally, simplifying the driver’s inter-
face. For example, in the blob service, the NewWriter method of the portable type
can determine the content type before interacting with the driver.

• It allows for the addition of new methods to the portable type without affecting
backward compatibility, unlike modifying an interface which would be a breaking
change.

• The portable type can seamlessly integrate new operations introduced in the driver
through optional interfaces, eliminating the need for the user to perform type asser-
tions.

4.3.2 GORM

GORM[32] is a prominent ORM (Object-Relational Mapping) library for Go (Golang),
designed to be developer-friendly. It offers a full-featured ORM system with capabilities
such as associations (various relationship types), hooks (for create, save, update, delete,
find operations), and eager loading using Preload and Joins. GORM supports trans-
actions, nested transactions, context, prepared statement mode, and dry-run mode. It
also provides functionality for batch insert, SQL building, upserts, locking, and auto mi-
grations. The library includes a logger, extendable plugins, and is test-backed for each
feature. Additionally, GORM supports composite primary keys, indexes, and constraints,
emphasizing its flexibility and developer-friendly nature.

77

Technologies

4.4 Serverless framework
The Serverless Framework[59] is a leading tool for deploying serverless architectures. De-
veloped after the release of AWS Lambda in 2014, it enables building applications on cloud
infrastructure that auto-scales and incurs no charges when idle. Key highlights include:

• Empowering developers to focus more on building and less on managing.

• Supporting a wide range of serverless use-cases.

• Automated deployment of both code and infrastructure.

• Simple syntax for deploying AWS Lambda functions without needing in-depth cloud
expertise.

• Multi-language support.

• Full lifecycle management of serverless architecture.

• Built-in support for multiple stages and environments.

• Extensibility through plugins.

The Framework streamlines serverless application development, offering tools for build-
ing, deploying, updating, monitoring, and troubleshooting serverless architectures.

4.4.1 Pros and cons
The Serverless Framework offers a host of benefits for serverless architecture, such as
facilitating more efficient building with less management, supporting a wide range of use-
cases, automating code and infrastructure deployment, and providing simple syntax for
safe AWS Lambda function deployment. It supports multiple languages and manages
the full lifecycle of serverless architecture, accommodating large projects and teams with
multi-domain and multi-environment support. The framework is also highly extensible
through its plugin ecosystem. However, it presents challenges like a steep learning curve
for newcomers, potential dependency issues, limited control over fine infrastructure de-
tails, complexities in handling large-scale projects, and possible performance bottlenecks.
Also the variability in plugin reliability, the risk of vendor lock-in, and challenges in cost
management are significant considerations.

4.4.2 Alternatives
Based on the image 4.6 taken from a Datadog research[21], it is evident that there are sev-
eral alternatives to the Serverless Framework for deploying functions, and their adoption
varies according to the size of the organization, measured by host count. In smaller com-
panies with zero hosts, the Serverless Framework is the clear frontrunner, indicating its
preference among startups or for small-scale projects. For mid-sized organizations, with

78

4.5 – Flutter

Figure 4.6. Serverless Framework alternatives.

host counts between 1 and 500, there is a more even split between the Serverless Frame-
work and Terraform, showing that both tools are well-suited for medium-scale operations.
However, in larger companies with over 500 hosts, Terraform emerges as the dominant tool.
This trend suggests that Terraform’s versatility, its support for multiple cloud providers,
and its widespread adoption by DevOps teams make it the preferred choice for larger
organizations that likely have more complex and diverse cloud infrastructures.

4.5 Flutter
Flutter[23] is an open-source UI software development kit created by Google. It’s used
for building natively compiled applications for mobile, web, and desktop from a single
codebase. Flutter provides a fast development cycle with a "hot reload" feature that
allows instant updates without losing the state of the app. It offers expressive and flexible
UI with a rich set of widgets and a layered architecture that enables full customization.
Flutter’s native performance is achieved through the use of Dart, which compiles to ARM
or JavaScript code. This toolkit is popular for its ability to create visually attractive and

79

Technologies

natively compiled applications across platforms efficiently.

4.5.1 Pros and cons
Flutter, as a framework for app development, offers several compelling advantages along-
side a few drawbacks. Its ability to maintain consistency across multiple platforms with a
single codebase streamlines development, while the stateful hot reload feature significantly
boosts developer productivity. The framework’s growing popularity is evident from its
strong community support and open-source nature, which fosters continual improvement
and innovation. Flutter’s approach to app development with customizable widgets and
excellent documentation facilitates faster and more flexible app creation. However, being
a relatively new entrant in the cross-platform arena, it faces challenges such as limited
learning resources, fewer plugins and packages compared to more established frameworks,
and larger app sizes due to its use of built-in widgets. Additionally, Dart, the programming
language for Flutter, has a smaller community, which might limit resources for learning
and development. These factors make Flutter a powerful but nuanced choice for app
developers, balancing its efficiency and ease of use against the considerations of newness
and community size.

4.5.2 Architecture
As depicted in figure 4.7, Flutter is constructed as a modular, layered framework. It com-
prises a set of autonomous libraries where each is built upon the layer beneath it. There’s
no special access granted to any layer over the one it rests on, ensuring a democratic
structure. Additionally, the framework is engineered to be adaptable, with each segment
crafted to be optional and replaceable.

To the base operating system, Flutter apps are wrapped and delivered just like any na-
tive app. The platform-specific embedder acts as the initial entry point, interfacing with
the OS for critical services such as rendering surfaces, accessibility, inputs, and managing
the messaging event loop. This embedder layer is adaptable, written in the native lan-
guages of the platform such as Java and C++ for Android, Objective-C/Objective-C++
for iOS and macOS, C++ for Windows and Linux, and JavaScript for the web. Flutter’s
flexibility allows its code to be embedded within existing apps as a module, or to form the
entirety of a new application, supported by a variety of embedders tailored for common
target platforms, as well as third-party options.

Central to Flutter’s functionality is the engine layer, primarily crafted in C++. This
engine underpins every Flutter app by providing the essential components they require.
It’s tasked with rasterizing composited scenes for painting new frames and underlies the
core API of Flutter, encompassing graphics (employing Impeller on iOS, soon on Android,
and Skia elsewhere), text, file and network I/O, accessibility, plugin infrastructure, and
the Dart runtime with compilation tools.

The bridge between the Flutter engine and the framework is dart:ui, which translates
the engine’s C++ capabilities into Dart classes. This critical library introduces base

80

4.5 – Flutter

Figure 4.7. Flutter architecture.

primitives, enabling the manipulation of input, graphics, and text rendering. Although
the core Flutter framework is compact, it is extendable, with numerous high-level func-
tions available through additional packages, not unlike the independent libraries stacked
in the image, which collectively form the robust and extensible framework that Flutter is
known for.

4.5.3 Alternatives
Two major alternatives to Flutter for app development are React Native and Angular.

React Native[39], developed by Facebook, is an open-source framework tailored for build-
ing mobile applications. It allows developers to create natively rendered apps for both
iOS and Android using React, a popular JavaScript library. This framework embraces a
’learn once, write anywhere’ philosophy, enabling the use of a single codebase for multiple
platforms while retaining the capability to include platform-specific features. Known for
its time and resource efficiency, React Native can seamlessly integrate with existing native
code, offering versatility in development. It features live reloading for immediate reflection
of code changes, boosting developer productivity. With extensive community support, a

81

Technologies

wealth of libraries, and third-party plugin compatibility, React Native is ideal for devel-
opers aiming for efficient cross-platform development with a strong native performance
and feel.

Angular[30], developed by Google, is a comprehensive solution for web application de-
velopment. This platform and framework are geared towards building single-page client
applications using HTML and TypeScript. Angular streamlines the development and
testing process with tools for declarative templates, dependency injection, and integrated
best practices. It features a two-way data binding, reducing the need for additional code
and enhancing efficiency for interactive applications. Angular’s architecture supports the
rapid development of readable, maintainable, and testable code, making it suitable for
enterprise-level and complex web projects that demand scalability and productivity. With
its extensive libraries and strong community support, Angular is an excellent choice for
creating dynamic, high-performance web applications.

82

Chapter 5

Kube Platform

In this chapter, we commence on an in-depth exploration of the Kube platform, an imple-
mentation of innovative ERP platform prototype. We start by outlining the fundamental
requirements that have shaped the development of the Kube platform, highlighting the
strategic objectives, technical needs, and business logic that inform its design. This leads
us into a detailed examination of the platform’s final architecture, which showcases a
Microservices framework implemented through a Function as a Service (FaaS) model, us-
ing AWS services. We then transition to practical applications, where specific use cases
demonstrate the platform’s operational flow and its real-world applicability. The chapter
ends with a focus on the client application, delving into the design and development of a
user interface using Flutter, which not only complements the platform’s robust backend
but also enhances the overall user experience. Throughout this chapter, we aim to unravel
the complexities of the Kube platform, illustrating its role as a transformative force in the
field of enterprise resource planning and highlighting its potential.

5.1 Requirements
Before starting development, requirements are established to define the properties of the
product. It’s important that these requirements are thorough and coherent, covering all
necessary features without conflicts or inconsistencies. However, creating these documents
can be challenging and errors may occur, such as incomplete or ambiguous feature de-
scriptions, redundancy, or important details being omitted. To address these challenges,
software engineering techniques have been developed to formalize the requirements and
minimize the occurrence of errors.

ISO/IEC 25010[34], an international standard, serves as a comprehensive framework for
assessing software product quality. This standard enumerates several key quality charac-
teristics, including functionality, reliability, usability, efficiency, maintainability, security,
compatibility, and portability. Its widespread application in software engineering and
quality assurance offers a standardized approach to evaluating and articulating software
quality. This facilitates more informed decisions in software acquisition, development, and

83

Kube Platform

maintenance. ISO/IEC 25010 aids in identifying the actors involved and delineating both
functional and non-functional requirements.

5.1.1 Stakeholders

A stakeholder refers to any role, person, group, or organization that has an interest in
a software project or system being developed. This could include end-users, customers,
investors, project managers, developers and other individuals or groups involved in the
development, deployment, and maintenance of the software. Identifying all relevant stake-
holders is important for considering diverse perspectives and generating relevant require-
ments for the system. As shown in Table 5.1, numerous stakeholders play a role in the
process.

Stakeholder Description
End-users These are the people who will use the ERP system in their

day-to-day work. They may include employees from various
departments within the organization.

Developers These are the individuals responsible for creating the software
code that makes up the ERP system.

Admin/IT staff These are the individuals responsible for installing, configur-
ing, and maintaining the ERP system.

Customers These are the organizations or businesses that are purchasing
the ERP system. They have a vested interest in ensuring the
system meets their needs and requirements.

Vendors These are the organizations that provide the ERP software
and related services, such as installation, configuration, and
support.

Cloud Vendors These hosts the system and provide the necessary infrastruc-
ture for its operation. They are responsible for system avail-
ability, scalability, and security.

Table 5.1. Stakeholders of a Cloud ERP System.

5.1.2 Functional and Non-functional

Functional requirements and non-functional requirements are two types of requirements
that are used to specify what a system or software application should do and how it
should perform. They are important for the successful development and implementation
of a system or software application. The functional requirements ensure that the software
application meets the needs of its users, while the non-functional requirements ensure that
the system is reliable, efficient, and secure.

84

5.1 – Requirements

Functional requirements

Functional requirements describe what the system should do in terms of its functionalities,
features, and capabilities. They define the specific tasks that the software application
should be able to perform to meet the needs of its users. For distinguish one requirement
from another it is important to assign for each functionality an ID, in order to easy identify
it and trace throughout the life cycle of the project (Table 5.2).

ID Description
FR1 Sign-up users by email and password
FR2 Login users by email and password
FR3 Logout users
FR4 Activate notifications
FR5 Deactivate notifications
FR6 View chart for andamento mensile degli ordini
FR7 View chart for distribuzione degli ordini per cliente
FR8 Customize the menu bar
FR9 View the log of the platform events
FR9.1 View the detailed log of an event
FR9.2 Delete a log event
FR10 View the customers list
FR10.1 View the detailed customer
FR10.2 Insert a customer
FR10.3 Update a customer
FR10.4 Delete a customer
FR11 View the sales order list
FR11.1 View the detailed sales order with sales lines
FR11.2 Insert a sales order
FR11.3 Update a sales order
FR11.4 Delete a sales order
FR11.5 Insert a sales order line
FR11.6 Update a sales order line
FR11.7 Delete a sales order line
FR12 Launch the posting order event
FR13 show notifications of change status on order
FR14 View the shipment list
FR14.1 View the detailed shipment with sales lines
FR14.2 Delete a shipment
FR15 View the invoice list
FR15.1 View the detailed invoice with sales lines
FR15.2 Delete an invoice

Table 5.2. Functional requirements for the platform.

85

Kube Platform

Non-functional requirements

Non-functional requirements describe how the system should perform in terms of its
functionality, reliability, usability, efficiency, maintainability, security, compatibility, and
portability, all aspects that are not directly related to the specific functionalities to be
implemented. They refer to operating methods and constraints, such as response times,
supported platforms, choice of languages, required resources, tools and various implemen-
tation techniques. They must be measurable and may be more critical than functional
requirements. They are identified with a unique code and it is also necessary to specify
their type associated to the ISO properties and which functional requirements they refer
to (Table 5.3).

ID Type Description
NFR1 Usabilty Application should be used with no training by any

user
NFR2 Efficiency All functions should complete in < 0.5 sec
NFR2 Efficiency All functions must optimize the resource utilization
NFR3 Portability System must work on Chrome, Firefox, Safari, Edge,

Android and iOS
NFR4 Portability No installation is needed
NFR5 Compatibility Platform must be compatible with Azure and AWS

cloud
NFR6 Security All data must be stored in a secure database
NFR7 Maintainability All functionalities must be tested indipendently
NFR8 Reliabilty Downtime allowed is of one hour per year

Table 5.3. Non-functional requirements for the platform.

5.2 Server application
In this section, we will discuss the final architecture designed for the Kube platform,
encompassing its data structures and services. We will explore the database setup, high-
lighting the tables crafted for each microservice. Following this, we’ll shed light on the
REST APIs tailored for every microservice, along with the integration of queues and
events designed for asynchronous event management. Concluding our discussion, we’ll
outline a SAGA implementation that has been incorporated into the platform.

86

5.2 – Server application

5.2.1 Final Architecture

Figure 5.1. Final architecture of the platform.

The architecture diagram in Figure 5.1 showcases a modern, serverless microservices-
based architecture for the Kube system. Here’s a description based on the elements and
their interconnections:

• User Authentication: the service which is responsible for user authentication is
’Cognito’. It is the entry point for security, ensuring that only authenticated users
can interact with the platform and with all the API.

• Firebase Cloud Messaging: At the bottom of the diagram, we can see ’Firebase
Cloud Messaging’, it is an integration with a cloud solution for sending notifications
to devices, allowing for real-time user engagement.

• API Gateway: The ’API Gateway’ is the central hub through which all client
requests pass. It acts as a front door, directing incoming requests from various
devices (such as computers and mobile phones) to the appropriate microservices.

• Microservices Architecture: Actually each microservice is deployed to AWS
(Amazon Web Services), and utilize various AWS serverless features for optimiz-
ing performance.

87

Kube Platform

– Utility Microservice: This service handles log functions and events, and is
backed by a ’Utility Database’ for storing log records. It also manage home
page graph function and data and navigations/menu API and data.

– Sales Microservice: Dedicated to handling sales-related operations, like han-
dle customer and sales order, this service interacts with a ’Sales Database’.

– Whse Microservice: this service manages shipment and warehouse-related
data, backed by its own ’Whse Database’.

– Financial Microservice: This handles financial transactions and invoice, with
a separate ’Financial Database’ for storing related records.

• Database Pattern: The architecture uses a database-per-microservice pattern with
SQL databases, ensuring that each service has its own datastore, thus maintaining
database isolation and decoupling services.

• Event-Driven Architecture: all microservices are connected through an event-
driven architecture, which allows them to communicate asynchronously and facili-
tates loose coupling. This architecture is implemented using Amazon Simple Queue
Service (SQS) and Amazon Simple Notification Service (SNS), which are managed
message queues and notification services.

All services are managed and deployed using the serverless framework, which allows
to easily integrate a CI/CD pipeline manage the entire infrastructure as code. With this
setup, the platform can be easily deployed to other cloud providers and add other cloud
services and features. How we can see, the Kube platform’s architecture is designed to be
scalable, flexible, and maintainable, with a focus on modern cloud-native principles and
best practices for microservices development.

Microservices components

Figure 5.2. Microservices components.

88

5.2 – Server application

Each microservice in the Kube platform is a composite of four essential components
that work in concert to deliver its specific functionality:

Component Service Description

Data Models RDS

At the core of each microservice is a set of data
models. These models define the structure of the
data that the microservice handles, ensuring data
integrity and consistency. By having its own mod-
els, each microservice encapsulates the necessary in-
formation to perform its tasks, leading to a clear de-
lineation of responsibilities within the system.

REST APIs API Gateway

The REST APIs serve as the interfaces through
which external services or client applications inter-
act with the microservices. These APIs are care-
fully designed to provide a clear and consistent con-
tract for accessing and manipulating data. They
follow REST principles, allowing for stateless com-
munication and enabling clients to perform standard
HTTP operations such as GET, POST, PATCH,
and DELETE.

Functions Lambda

The functions are the operational units within each
microservice, containing the business logic that pro-
cesses requests, manipulates data models, and per-
forms the necessary computations. These functions
are likely implemented as serverless functions, which
are executed in response to events, scaling automat-
ically with the number of requests and reducing the
need for managing server infrastructure.

Events SNS, SQS

Each microservice also incorporates an event-driven
mechanism, signaling and reacting to various con-
ditions and triggers. These events facilitate asyn-
chronous communication between microservices,
thereby enhancing the platform’s responsiveness
and efficiency. By decoupling microservices through
events, the system can better handle load variations
and failure modes, contributing to overall resilience.

Table 5.4. Microservices components.

Together, these components create a modular and cohesive microservice that is self-
contained, scalable, and robust. The data models ensure that each service can indepen-
dently manage its segment of the data. The REST APIs provide the necessary endpoints
for interaction, while the functions encapsulate the business logic. Finally, the event sys-
tem allows the services to react to and communicate changes across the platform without

89

Kube Platform

direct coupling, promoting a reactive architecture that can quickly adapt to changing
conditions.

5.2.2 Code Structure
In our microservices architecture, all lambda functions are written in the Go language.
This decision was influenced by several key factors. Firstly, Go is a compiled language,
which leads to significantly faster execution times and results in smaller executable files.
Another important reason for choosing Go is the availability of the Go CDK library. This
library is unique to Go and aids in making functions as portable as possible across dif-
ferent cloud providers. While it’s true that shifting functions between providers requires
some manual adjustments, the process could be streamlined by developing CLI tools for
automation.

However, adopting Go was not without its challenges. Unlike object-oriented languages,
Go doesn’t fully integrate all object-oriented principles. It has its own way of handling
certain programming concepts, which required a learning curve. Additionally, Go is not
as versatile in some aspects; for instance, the main function is bound to have a dedicated
’main’ package. This can pose difficulties in managing multiple functions, each with its
own ’main,’ making the overall management a complex task.

Figure 5.3. Stack abstractions layer.

In every function architecture, I’ve implemented an abstraction layer specifically de-
signed for managing REST APIs of various resources. This unified approach, applied
across all microservices, is facilitated by a layer we’ve named ’kube’. Built on top of the
GORM and Go CDK libraries, this layer simplifies and accelerates API management.
Connecting a GORM model to a ’kube’ layer structure called ’page’ requires minimal
coding. The ’page’ concept is central to our approach: it automatically generates a suite
of REST APIs for a resource, significantly reducing development time and standardizing
structures across resources. Moreover, these ’pages’ can define a UI schema, which clients
can use to dynamically build pages for resources in their applications. The APIs that
are automatically constructed from a GORM model are structured as indicated inside the

90

5.2 – Server application

following tables.

http://api.example.com/:pageid?field=value

Method Description

GET
Returns the list of records linked to the page. The records
can be filtered by inserting the fields to be filtered in the
URL’s query string.

POST Creates a new record in the table linked to the page.
PATCH Edits the record in the table linked to the page.

DELETE Deletes records linked to the page. The records can be filtered
by inserting the fields to be filtered in the URL’s query string.

Table 5.5. REST API for page.

http://api.example.com/:pageid/schema

Method Description
GET Returns the UI schema for building the page in the client.
POST Not allowed.
PATCH Not allowed.
DELETE Not allowed.

Table 5.6. Methods for page schema.

http://api.example.com/:pageid/button?button_id=value

Method Description

GET Initiates the functionality linked to the button and returns
the result.

POST Not allowed.
PATCH Not allowed.
DELETE Not allowed.

Table 5.7. Methods for page buttons.

91

Kube Platform

5.2.3 Utility Microservice
This microservice is responsible for managing the home page graph data, the navigation
menu, and the logging system. It is the first microservice to be deployed, as it have
the entry points of the client application. In this microservice there are three crucial
componentes of the platform: the home page, the logging system and the navigation
functionalities.

Home Page

The home page is the first page that the user see when he log in the client application.
It is composed by two graphs, one for the monthly trend of the orders and one for the
distribution of the orders by customer. The data of these graphs are stored in the database
of the microservice and are updated by the final event of the posting order chain, it call
the graph update function. The home page is implemented by a page model, so through a
Lambda function, which is triggered by HTTP API by the client. The Lambda function
is responsible for updating the home page table.

Logging System

The logging component allows for monitoring and debugging the system. It is implemented
through a FIFO Queue, using Amazon SQS, and a Lambda function, which is triggered
by the queue. The Lambda function is responsible for writing the log to the database of
the microservice, inside the Log tabel. Thanks to the thesis layer in the framework stack,
a message to the logging queue is automatic sended when an error occurs in the platform
(even in other microservices).

Navigation

The navigation component is responsible for managing the menu bar of the client appli-
cation. It have a list of all the page ids that most be present in the client menu bar.
This list is stored in the table navigation and is updated by the client application when
the user customize the menu bar. It not have only ids information but also the order of
the pages in the menu bar, the icon to show, the caption name to show and the entry
point of the page. The entry point is the url of the page that the client application must
call when the user click on the page in the menu bar, and it depends on the microservice
that manage the page. The navigation component is implemented by a page model, so
through a Lambda function, which is triggered by an HTTP API by the client. The
Lambda function is responsible for updating the navigation table.

Functions

In the table 5.8 are summarized all the lambda functions of the utility microservice, with
the relative description and the trigger event (type and name).

92

5.2 – Server application

Name Type Event Name Description
Home API /home handle home page GET request
GraphUpdate SNS OnFinishPostOrder Update graph data for home page

NavigationList API /navigationlist represents the list page of naviga-
tion model

NavigationCard API /navigationcard represents the detailed page of
navigation model

LogList API /loglist represents the list page of log
model

LogCard API /logcard represents the detailed page of log
model

LogMessage SQS LogMessageQueue for logging the message in RDS
database

Table 5.8. Functions of utility microservice.

5.2.4 Sales Microservice

This microservice is specifically designed to handle and manage customer and sales order
data. It includes dedicated page functionalities that allow for efficient management and
access to both customer and sales order information. The data related to these entity are
securely stored in a specialized database, named ’sales’, which is an integral part of this
microservice. Additionally, this service is equipped with a lambda function that plays a
crucial role in orchestrating the saga of posting orders. This function ensures that the
process of managing and posting sales orders is conducted smoothly and effectively.

Functions

In the table 5.9 are summarized all the lambda functions of the sales microservice, with
the relative description and the trigger event (type and name).

5.2.5 Whse and Financial Microservice

These two microservices are tailor-made to manage shipments and invoices, each equipped
with its respective page model and database. They incorporate lambda functions integral
to the posting order saga. These functions are tasked with creating shipments and invoices,
as well as updating the status of sales orders.

Functions

In the table 5.10 are summarized all the lambda functions of the Warehouse and Financial
microservice, with the relative description and the trigger event (type and name).

93

Kube Platform

Name Type Event Name Description

CustomerList API /customerlist represents the list page of
customer model

CustomerCard API /customercard represents the detailed
page of customer model

SalesOrderList API /salesorderlist represents the list page of
sales order model

SalesOrderCard API /salesordercard

represents the detailed
page of sales order model,
it has the button for start
the posting process

SalesOrderLineList API /salesorderlinelist represents the list page of
sales order lines

SalesOrderLineCard API /salesorderlinecard represents the detailed
page of sales order lines

ChangeOrderStatus SQS ChangeOrderStatusQueue the function that orches-
trates the saga

Table 5.9. Functions of sales microservice.

Name Type Event Name Description

ShipmentList API /shipmentlist represents the list page of shipment
model

ShipmentCard API /shipmentcard represents the detailed page of ship-
ment model

PostShipment SNS OnPostShipment the function that create shipment
and recall the change order status

InvoiceList API /invoicelist represents the list page of invoice
model

InvoiceCard API /invoicecard represents the detailed page of in-
voice model

PostInvoice SNS OnPostInvoice the function that create invoice and
recall the change order status

Table 5.10. Functions of Whse. and Financial microservices.

5.2.6 Posting Order Saga
The posting order saga, designed for users to post sales orders, operates through a series
of orchestrated lambda functions. At its core is the ’ChangeOrderStatus’ function from
the sales microservice, which manages the sequence of steps in the saga. This function is
triggered by an SQS queue, which initially receives data when a user clicks the ’Post Or-
der’ button via the ’SalesOrderCard’ function. Once activated, the ’ChangeOrderStatus’
function begins the saga, leading to a sequence of lambda functions, each set off by an

94

5.2 – Server application

SNS event. Key functions in this saga include ’CreateShipment’ from the warehouse mi-
croservice and ’CreateInvoice’ from the financial microservice. This well-organized method
ensures a seamless and efficient process for posting orders.

Figure 5.4. Sequence diagram of the posting order saga.

The figure 5.4 shows the sequence diagram of the posting order saga. Here’s a detailed
description of the steps involved:

1. User initiates the process by clicking the "Post Order" button, which triggers an API
event which is processed by the SalesOrderCard function.

2. The SalesOrderCard places a message in an SQS queue, the ChangeOrderStatusQueue.
It is a FIFO queue, ensuring that messages are delivered to the recipient in the same
order they were received by the queue.

3. ChangeOrderStatus make the check of posting order, change the status of order in
"Pending Shipment" and triggers an SNS event on topic OnPostShipment.

4. The SNS event invokes the PostShipment function. It create the shipment and send
an SQS message on ChangeOrderStatusQueue.

5. ChangeOrderStatus change the status of order in "Shipped" and triggers an SNS
event on topic OnPostInvoice.

6. The SNS event invokes the PostInvoice function. It create the Invoice and send an
SQS message on ChangeOrderStatusQueue.

7. Upon successful invoice creation, the status of order is changed in "Invoiced" and a
final Firebase (FCM) event is triggered, sending a notification to the user client.

95

Kube Platform

5.3 Client Application
The Kube application client, a multifaceted and versatile platform, is constructed using
Flutter, a well-known cross-platform framework. This comprehensive solution seamlessly
supplies a wide array of platforms including Android, iOS, and Web, while also extending
support to desktop environments like Windows, MacOS, and Linux, albeit with a current
limitation in notification capabilities. At its core, the application smoothly integrates
various robust systems and components, each playing a pivotal role in its functionality
and are described in the following sections. These integral elements include a secure
authentication system featuring a Cognito login page, an efficient state management setup
utilizing the Provider package, a dynamic routing mechanism powered by the GoRouter
package, a custom-made page builder tailored to specific needs, and a reliable notification
system implemented through Firebase Cloud Messaging, Figure 5.5.

Figure 5.5. Client application architecture.

From an UI point of view, the application is designed to be simple and intuitive, with
a clean and modern look. Visually it is mainly composed of a menu bar and a page
area, where the content of the selected page is displayed. The Figure 5.6 shows what the
application looks like.

To enhance its effectiveness, the client application is hosted on GitHub Pages and is
seamlessly woven into a CI/CD pipeline orchestrated via GitHub Actions. This strategic
implementation ensures a streamlined deployment process: each commit to the repository
triggers an automated build and deployment sequence. This diligent approach guarantees
that the latest iteration of the web application is consistently accessible, embodying the
epitome of efficiency and continuous integration.

5.3.1 State Management
State management in the Flutter framework refers to the process of handling the data
and UI states of an app effectively. In Flutter, "state" can be anything that affects the

96

5.3 – Client Application

Figure 5.6. Client UI.

UI and needs to be tracked, such as user inputs, server responses, or even a timer’s
progress. Proper state management ensures that the UI reflects the current state of the
app accurately and efficiently, without unnecessary rebuilds or updates. For the Kube
application, the state is managed by the Provider package. it is a popular library and it
give an efficient way to manage state. It works by using a mix of dependency injection
and state management, allowing widgets to subscribe to changes in the state of the app.

Figure 5.7. Provider package.

97

Kube Platform

Provider simplifies the process of passing data and events down the widget tree. This
approach not only makes the code more maintainable and scalable but also optimizes the
app’s performance by rebuilding only those widgets that need to be updated. The figure
5.7 shows how the Provider package works. In this project, the Provider system is utilized
for managing various states within the application. It handles the user’s authentication
state, controls the navigation state of the menu bar, and manages the notification state
of the application, and finally it is used for handling the controller page between several
widgets on a single page.

5.3.2 Authentication System
The authentication system is a crucial component of the Kube application, ensuring that
only authenticated users can access the platform. This system is implemented using
Amazon Cognito, a comprehensive authentication service that provides secure user sign-
up and sign-in functionality. Cognito is a fully managed service, which means that it
handles all the authentication processes, including user registration, authentication, and
account recovery. In this platform, the sign-up process is exclusively handled by the
administrator, meaning that users are unable to register themselves. Instead, users can
only sign in using credentials provided by the administrator.

Figure 5.8. Authentication system.

98

5.3 – Client Application

The authentication is facilitated through a Cognito login page, which is accessible via
the app’s login page status - serving as the application’s entry point. This process is
illustrated in Figure 5.8. Once authenticated, users gain access to the menu bar and
the various pages of the application, thereby unlocking the routing system which was
previously restricted.

5.3.3 Routing System
Kube application’s routing system, an important aspect for page navigation, is powered
by the GoRouter package. This dynamic routing tool is both user-friendly and highly
adaptable, supporting custom routes and parameterized paths. Integrated state manage-
ment ensures navigation state updates in response to route changes, allowing the app to
respond dynamically. The app features three primary routes: login, home, and page, as
shown in Table 5.11.

Route Page Description

/login LoginStatus go to the page where are shown login in-
formation and login and logout buttons

/home Home call the home API to retrieve page home
information e show it

/page/:pageId Page Selected
open the page indicated in pageId param-
eter. Call the page API related and build
the page based on schema

Table 5.11. Routes and pages.

These routes are established in the main.dart file, the application’s starting point.
Positioned under the navigation menu bar, which remains constantly visible, all routes
are constructed accordingly. Post-login, the first constructed widget is the menu bar, set
up by querying the navigation list API. This API, a GET request to the navigationlist
function in the utility microservice, retrieves a list of all pages to be displayed in the menu
bar, with the relative icon, caption and url. When a user interacts with the menu bar by
clicking on its buttons, it initiates a change in the application’s navigation state. This
action prompts the menu bar to be reconstructed. In the menu, each button corresponds
to a different page within the application. Therefore, selecting a button results in a change
to the respective page route, which in turn triggers the refreshing of that page.

5.3.4 Page Builder
The Page Widget in our application is a custom-built, dynamic component that creates
pages according to a JSON schema fetched from the page API. Its design is intentionally
flexible, allowing for the construction of a variety of page types. The widget uses a switch
statement to decide the type of page to construct, based on the ’page type’ defined in the
schema. Currently, it supports three types of pages: list, card, and home. The Figure 5.9
is how the page builder workflow operates:

99

Kube Platform

Figure 5.9. Page builder workflow.

1. The User clicks on a menu bar button, triggering a change in the navigation state.

2. The menu bar call the routing system to change the page with the pageId of the
selected button.

3. The Page Widget is initiated with a specific ’pageId’ parameter.

4. It then calls the page API to obtain layout information using the endpoint
/:pageId/schema. This schema, a JSON format, outlines the structure of the page.

5. Based on this layout information, the widget builds the page. There are three distinct
page types it can construct: list, card, and home. For each page type, a specialized
widget is employed to build the page: PageList for lists, PageCard for cards, and
PageHome for the home page.

6. These widgets then call their respective APIs, using ’/:pageId’ endpoint, to fetch the
data needed for display. For the PageCard, a key filter is applied to retrieve specific
records.

7. After receiving the data from the API, each widget finish to constructs the page,
populating it with the relevant data.

5.3.5 Notification System
In Kube platform, the notification system is implemented through Firebase Cloud Messag-
ing (FCM), a robust cross-platform messaging solution that ensures the reliable delivery
of messages and notifications to client applications. FCM, a free service, supports messag-
ing to devices using iOS, Android, and Web applications, although it does not extend to
desktop applications. I have seamlessly integrated FCM into the global state management
system of our application. This integration simplifies accessing and managing notification
states, enabling the client application to receive notifications effortlessly. Each notification
is displayed as a snackbar at the bottom of the screen, effectively informing users about
important events on the platform, such as status updates on orders or the creation of new
shipments. This feature enhances user engagement by keeping them promptly informed.

100

5.4 – Use Case

5.4 Use Case
A use case comprises various scenarios connected by a shared user objective, serving to
illustrate how a system behaves under different circumstances when processing a request.
Each use case should specify the system as an opaque entity, the user type (often referred
to as the actor) interacting with the system, and the actor’s functional objective achieved
through the system. A single scenario represents a series of steps outlining the interaction
between a user and the system. Additionally, each scenario requires a pre-condition that
must be met before initiation and a post-condition fulfilled upon completion. This section
will present several use cases, demonstrating the range of operations a user can execute
on the platform.

5.4.1 User interaction
This use case is applicable to all entities of the platform that have a page list, so it is a
generic use case. In this example we will see how the user can interact with the customer
list page. We use the insert example, but the same steps are valid for the update and
delete operations. The table 5.12 shows the steps of the scenario.

Actors involved User
Precondition The user U has already authenticated to the system and

opened the customer list
Post-condition The user U has created a new customer for the ERP system
Normal scenario

1. The user U clicks on the new button

2. Insert valid data in the opened detailed page

3. Click the button "Insert" for creating the new customer

Variant The user inserts a non-valid data and the system inform him
with an error message

Table 5.12. User interaction scenario

101

Kube Platform

Figure 5.10. New button on customer list page.

Figure 5.11. Insert Customer from detailed page.

5.4.2 Posting order
This use case show how the user can post an order. The table 5.13 shows the steps of the
scenario.

102

5.4 – Use Case

Actors involved User
Precondition The user U has already authenticated to the system and

opened the sales order card
Post-condition The user U has posted a sales order, and created a shipment

and invoice document
Normal scenario

1. The user U clicks on the Posting button

2. The system check if the order is valid

3. The system create the shipment document

4. The system create the invoice document

5. The system change the status of the order in "INV"

6. The system send a notification to the user U with the
result of the posting order

Variant The user inserts a non-valid data and the system inform him
with an error notification

Table 5.13. User interaction scenario

Figure 5.12. Posting order button on sales order card.

103

Kube Platform

Figure 5.13. Posting order result notification.

104

Chapter 6

Conclusions and future works

As outlined in the introduction, this thesis sets out to develop a platform that handles key
operations of an Enterprise Resource Planning system while incorporating microservices
and serverless computing design patterns, ensuring accessibility across various platforms.
With the completion of the platform’s initial version, we have established a technical foun-
dation that supports the ongoing development of diverse modules and functionalities. The
platform is designed for easy extensibility and scalability, making it adaptable to a range
of needs and requirements. Currently, the platform can be deployed on an AWS tenant us-
ing the Serverless Framework. Once user settings are configured, it becomes operational.
The platform supports all CRUD (Create, Read, Update, Delete) operations for its main
entities, such as customers, orders, and shipments. It features a dashboard displaying key
statistics and allows for the posting of operations on orders. This triggers asynchronous
processes like the creation of new shipments and invoicing for customers. Technically, the
chosen technologies lay a valid foundation for future enhancements and the distribution of
the platform across various cloud infrastructures. Despite encountering several challenges
during development, the thesis reaffirms the belief in the future of platforms like Function
as a Service, which streamline development by abstracting many underlying details. While
FaaS may not be suitable for all applications due to certain constraints, it offers signif-
icant benefits for compatible systems, marking a progressive step in software development.

Looking ahead, there are multiple areas for future development of the platform. Build-
ing on its current capabilities, a wide array of ERP functionalities could be integrated,
including warehouse management, production, accounting, and human resources man-
agement. Additionally, the introduction of a Command Line Interface (CLI) could offer
a streamlined way to interact with the platform’s code, enabling the automatic conver-
sion of YAML files into templates for various cloud providers. Another promising avenue
for expansion is the incorporation of a NoSQL database like AWS DynamoDB or Azure
CosmosDB. This would allow for data storage in a truly serverless mode, enhancing the
platform’s serverless capabilities. Furthermore, the microservices architecture of the plat-
form lends itself well to the integration of a Machine Learning (ML) module. Such a
module could analyze platform data to provide valuable insights, such as identifying the
best-selling products, top customers, and leading suppliers.

105

Conclusions and future works

An additional area of future research could focus on the environmental implications of
serverless computing. In the context of growing concerns about energy consumption in
data centers, serverless computing, with its features like pay-per-use, auto-scaling, and
multi-tenancy, could offer a more sustainable solution. This aspect of serverless comput-
ing is particularly relevant in today’s world and warrants further exploration to understand
its potential in reducing the environmental footprint of data centers.

106

Bibliography

[1] Joe Weinman Adam Eivy. Be wary of the economics of "serverless" cloud computing.
IEEE Cloud Computing, 2017.

[2] adservio. Event-driven architecture, 2022. URL https://www.adservio.fr/post/
event-driven-architecture.

[3] Amazon. What is cloud computing?, 2023. URL https://aws.amazon.com/
what-is-cloud-computing/?nc1=h_ls.

[4] Amazon. What is an event-driven architecture?, 2023. URL https://aws.amazon.
com/event-driven-architecture/?nc1=h_ls.

[5] Amazon. Serverless on aws, 2023. URL https://aws.amazon.com/serverless/
?nc1=h_ls.

[6] Amazon. What is aws?, 2023. URL https://aws.amazon.com/what-is-aws/.

[7] Amazon. Amazon api gateway, 2023. URL https://aws.amazon.com/
api-gateway/.

[8] Amazon. Amazon lambda, 2023. URL https://aws.amazon.com/it/lambda/.

[9] Amazon. Amazon rds, 2023. URL https://aws.amazon.com/it/rds/.

[10] Amazon. Amazon sqs, 2023. URL https://aws.amazon.com/it/sqs/.

[11] Amazon. Amazon sns, 2023. URL https://aws.amazon.com/it/sns/.

[12] Amazon. Amazon cognito, 2023. URL https://aws.amazon.com/it/cognito/.

[13] Avenga. Microservices vs. monoliths: which architecture will be best
for your product?, 2022. URL https://www.avenga.com/magazine/
microservices-vs-monoliths/.

[14] Adam Bellemare. Building Event-Driven Microservices. Oreilly & Associates Inc.,
2020.

[15] David Boyne. Inside event-driven architectures, 2023. URL
https://serverlessland.com/event-driven-architecture/visuals/
inside-event-driven-architectures.

107

https://www.adservio.fr/post/event-driven-architecture
https://www.adservio.fr/post/event-driven-architecture
https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls
https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls
https://aws.amazon.com/event-driven-architecture/?nc1=h_ls
https://aws.amazon.com/event-driven-architecture/?nc1=h_ls
https://aws.amazon.com/serverless/?nc1=h_ls
https://aws.amazon.com/serverless/?nc1=h_ls
https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/it/lambda/
https://aws.amazon.com/it/rds/
https://aws.amazon.com/it/sqs/
https://aws.amazon.com/it/sns/
https://aws.amazon.com/it/cognito/
https://www.avenga.com/magazine/microservices-vs-monoliths/
https://www.avenga.com/magazine/microservices-vs-monoliths/
https://serverlessland.com/event-driven-architecture/visuals/inside-event-driven-architectures
https://serverlessland.com/event-driven-architecture/visuals/inside-event-driven-architectures

BIBLIOGRAPHY

[16] Marianne Bradford. Modern ERP: Select, Implement, and Use Today’s Advanced
Business Systems. Lightning Source Inc., 2020.

[17] ByteByteGo. Cloud services cheat sheet, 2023. URL https://blog.bytebytego.
com/p/ep70-cloud-services-cheat-sheet.

[18] Inc. CB Information Services. Why serverless computing is the fastest-growing
cloud services segment, 2018. URL https://www.cbinsights.com/research/
serverless-cloud-computing/.

[19] ClickIt. Web application architecture: The latest guide, 2022. URL https://www.
clickittech.com/devops/web-application-architecture/.

[20] Codemotion. Green cloud computing strategies and best practices,
2022. URL https://www.codemotion.com/magazine/devops/cloud/
green-cloud-computing-strategies-and-best-practices/.

[21] Datadog. The state of serverless, 2023. URL https://www.datadoghq.com/
state-of-serverless/.

[22] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2004.

[23] Flutter. Flutter, 2023. URL https://flutter.dev/.

[24] Animesh Gaitonde. Distributed transactions & two-phase
commit, 2021. URL https://medium.com/geekculture/
distributed-transactions-two-phase-commit-c82752d69324.

[25] GeeksforGeeks. Acid properties in dbms, 2023. URL https://www.geeksforgeeks.
org/acid-properties-in-dbms/.

[26] Gitlab. What are the benefits of a microservices architec-
ture?, 2022. URL https://about.gitlab.com/blog/2022/09/29/
what-are-the-benefits-of-a-microservices-architecture/.

[27] Google. What is cloud computing?, 2023. URL https://cloud.google.com/learn/
what-is-cloud-computing?hl=en.

[28] Google. Go for cloud and network services, 2023. URL https://go.dev/solutions/
cloud.

[29] Google. Go cloud cdk, 2023. URL https://gocloud.dev/.

[30] Google. Angular, 2023. URL https://angular.io/.

[31] Google. Firebase, 2023. URL https://firebase.google.com.

[32] Gorm. Gorm documentation, 2023. URL https://gorm.io/index.html.

108

https://blog.bytebytego.com/p/ep70-cloud-services-cheat-sheet
https://blog.bytebytego.com/p/ep70-cloud-services-cheat-sheet
https://www.cbinsights.com/research/serverless-cloud-computing/
https://www.cbinsights.com/research/serverless-cloud-computing/
https://www.clickittech.com/devops/web-application-architecture/
https://www.clickittech.com/devops/web-application-architecture/
https://www.codemotion.com/magazine/devops/cloud/green-cloud-computing-strategies-and-best-practices/
https://www.codemotion.com/magazine/devops/cloud/green-cloud-computing-strategies-and-best-practices/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://flutter.dev/
https://medium.com/geekculture/distributed-transactions-two-phase-commit-c82752d69324
https://medium.com/geekculture/distributed-transactions-two-phase-commit-c82752d69324
https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://about.gitlab.com/blog/2022/09/29/what-are-the-benefits-of-a-microservices-architecture/
https://about.gitlab.com/blog/2022/09/29/what-are-the-benefits-of-a-microservices-architecture/
https://cloud.google.com/learn/what-is-cloud-computing?hl=en
https://cloud.google.com/learn/what-is-cloud-computing?hl=en
https://go.dev/solutions/cloud
https://go.dev/solutions/cloud
https://gocloud.dev/
https://angular.io/
https://firebase.google.com
https://gorm.io/index.html

BIBLIOGRAPHY

[33] Taufiq Hidayat. Microservice versus monolithic architecture.
what are they?, 2020. URL https://medium.com/javanlabs/
micro-services-versus-monolithic-architecture-what-are-they-e17ddc8d3910.

[34] ISO. Software standards, 2023. URL https://iso25000.com/index.php/en/
iso-25000-standards/iso-25010.

[35] Joy Joel. An introduction to cloud computing, cloud service models, and
cloud deployment models, 2021. URL https://aws.plainenglish.io/
cloud-computing-intro-cloud-service-models-cloud-deployment-models-e013872064a4.

[36] James Kwon. What is two phase commit in distributed
transaction?, 2022. URL https://hongilkwon.medium.com/
when-to-use-two-phase-commit-in-distributed-transaction-f1296b8c23fd.

[37] Grace Lau. Serverless computing: The advantages and disadvantages,
2023. URL https://www.codemotion.com/magazine/devops/cloud/
serverless-computing-the-advantages-and-disadvantages/.

[38] David Luther. 8 erp trends for 2023 and the future of erp, 2023. URL https:
//www.netsuite.com/portal/resource/articles/erp/erp-trends.shtml.

[39] Inc. Meta Platforms. React native, 2023. URL https://reactnative.dev/.

[40] Microsoft. What is cloud computing?, 2023. URL https://azure.microsoft.com/
en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/.

[41] Microsoft. Event-driven architecture style, 2023. URL https://learn.microsoft.
com/en-us/azure/architecture/guide/architecture-styles/event-driven.

[42] Microsoft. Saga distributed transactions pattern, 2023. URL https://learn.
microsoft.com/en-us/azure/architecture/reference-architectures/saga/
saga.

[43] Sanad Mohamed. Pros and cons of serverless, 2023. URL https://www.linkedin.
com/pulse/pros-cons-serverless-sanad-mohamed-mba-aws/.

[44] Sam Newman. Building Microservices: Designing Fine-Grained Systems. Oreilly &
Associates Inc., 2021.

[45] Jim O’Donnell. Experts predict flexibility as a top erp trend in
2022, 2022. URL https://www.techtarget.com/searcherp/feature/
Experts-predict-flexibility-as-a-top-ERP-trend.

[46] Elegberun Olugbenga. Netflix system design- backend ar-
chitecture, 2021. URL https://dev.to/gbengelebs/
netflix-system-design-backend-architecture-10i3.

[47] David Parnas. On the criteria to be used in decomposing systems into modules.
Journal contribution, 1971.

109

https://medium.com/javanlabs/micro-services-versus-monolithic-architecture-what-are-they-e17ddc8d3910
https://medium.com/javanlabs/micro-services-versus-monolithic-architecture-what-are-they-e17ddc8d3910
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://aws.plainenglish.io/cloud-computing-intro-cloud-service-models-cloud-deployment-models-e013872064a4
https://aws.plainenglish.io/cloud-computing-intro-cloud-service-models-cloud-deployment-models-e013872064a4
https://hongilkwon.medium.com/when-to-use-two-phase-commit-in-distributed-transaction-f1296b8c23fd
https://hongilkwon.medium.com/when-to-use-two-phase-commit-in-distributed-transaction-f1296b8c23fd
https://www.codemotion.com/magazine/devops/cloud/serverless-computing-the-advantages-and-disadvantages/
https://www.codemotion.com/magazine/devops/cloud/serverless-computing-the-advantages-and-disadvantages/
https://www.netsuite.com/portal/resource/articles/erp/erp-trends.shtml
https://www.netsuite.com/portal/resource/articles/erp/erp-trends.shtml
https://reactnative.dev/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing/
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://www.linkedin.com/pulse/pros-cons-serverless-sanad-mohamed-mba-aws/
https://www.linkedin.com/pulse/pros-cons-serverless-sanad-mohamed-mba-aws/
https://www.techtarget.com/searcherp/feature/Experts-predict-flexibility-as-a-top-ERP-trend
https://www.techtarget.com/searcherp/feature/Experts-predict-flexibility-as-a-top-ERP-trend
https://dev.to/gbengelebs/netflix-system-design-backend-architecture-10i3
https://dev.to/gbengelebs/netflix-system-design-backend-architecture-10i3

BIBLIOGRAPHY

[48] David Parnas. Information distribution aspects of design methodology. Journal
contribution, 1972.

[49] Timothy Grance Peter M. Mell. The nist definition of cloud computing (technical
report). Special Publication 800-145, 2011.

[50] C. Guzikowski R. Magoulas. O’reilly serverless survey 2019: Concerns, what
works, and what to expect, 2019. URL https://www.oreilly.com/radar/
oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/.

[51] Recro. Top 5 cloud service providers: A comparison, 2019. URL https://recro.
io/blog/top-5-cloud-service-providers/.

[52] Allied Market Research. Enterprise resource planning (erp) market, 2022. URL
https://www.alliedmarketresearch.com/ERP-market.

[53] ERP Research. Independently compare erp systems and erp consulting, 2023. URL
https://www.erpresearch.com/.

[54] Expert Market Research. Global serverless computing market out-
look, 2023. URL https://www.expertmarketresearch.com/reports/
serverless-computing-market.

[55] Grand View Research. Cloud computing market size, share and trends analysis report
by service, by deployment, by enterprise size, by end-use, by region, and segment
forecasts, 2023. URL https://www.grandviewresearch.com/industry-analysis/
cloud-computing-industry.

[56] Chris Richardson. Pattern: Saga, 2023. URL https://microservices.io/
patterns/data/saga.html.

[57] Felix Richter. Amazon maintains lead in the cloud mar-
ket, 2023. URL https://www.statista.com/chart/18819/
worldwide-market-share-of-leading-cloud-infrastructure-service-providers/.

[58] Stephen Roddewig. What is event-driven architecture? everything you need to know,
2023. URL https://blog.hubspot.com/website/event-driven-architecture.

[59] Serverless. Serverless documentation, 2023. URL https://www.serverless.com/
framework/docs.

[60] Solace. The complete guide to event-driven architecture, 2023. URL https:
//solace.com/what-is-event-driven-architecture/.

[61] Ketan Varshneya. Understanding design of microservices architec-
ture at netflix, 2021. URL https://www.techaheadcorp.com/blog/
design-of-microservices-architecture-at-netflix/.

[62] Jerry Wallis. 6 serverless computing benefits and drawbacks to
help decide if it’s right for you, 2023. URL https://intuji.com/
serverless-computing-benefits-and-drawbacks/.

110

https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://recro.io/blog/top-5-cloud-service-providers/
https://recro.io/blog/top-5-cloud-service-providers/
https://www.alliedmarketresearch.com/ERP-market
https://www.erpresearch.com/
https://www.expertmarketresearch.com/reports/serverless-computing-market
https://www.expertmarketresearch.com/reports/serverless-computing-market
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://www.grandviewresearch.com/industry-analysis/cloud-computing-industry
https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/saga.html
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://blog.hubspot.com/website/event-driven-architecture
https://www.serverless.com/framework/docs
https://www.serverless.com/framework/docs
https://solace.com/what-is-event-driven-architecture/
https://solace.com/what-is-event-driven-architecture/
https://www.techaheadcorp.com/blog/design-of-microservices-architecture-at-netflix/
https://www.techaheadcorp.com/blog/design-of-microservices-architecture-at-netflix/
https://intuji.com/serverless-computing-benefits-and-drawbacks/
https://intuji.com/serverless-computing-benefits-and-drawbacks/

BIBLIOGRAPHY

[63] Keyang Xiang. Patterns for distributed transactions within a microservices
architecture, 2018. URL https://developers.redhat.com/blog/2018/10/01/
patterns-for-distributed-transactions-within-a-microservices-architecture.

111

https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture
https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture

	List of Tables
	List of Figures
	Introduction
	Overview of the Thesis

	ERP: Enterprise resource planning
	Reasons for Implementing ERP
	Disadvantages of ERP Systems
	Modules
	Technology
	Three-Tier Client-Server Architecture
	Deployment
	Customization

	Market
	Cost
	Competitors

	Fundamentals
	Cloud Computing
	Definition
	Service Models
	Deployment Models
	Benefits
	Market Overview

	Microservices
	Characteristics
	Benefits
	Challenges
	Comparison with Monolithic Architecture

	How to Model Microservices
	Boundaries
	Domain-Driven Design
	Event-Driven Architecture
	Workflow Management

	Serverless
	Introduction
	Benefits
	Drawbacks
	Function-as-a-Service
	Market Overview

	Technologies
	Amazon AWS Services
	Pros and cons
	Alternatives
	AWS API Gateway
	AWS Lambda
	AWS RDS
	AWS SQS
	AWS SNS
	AWS Cognito

	Firebase Cloud Messaging
	How it works

	GO Language
	GO CDK
	GORM

	Serverless framework
	Pros and cons
	Alternatives

	Flutter
	Pros and cons
	Architecture
	Alternatives

	Kube Platform
	Requirements
	Stakeholders
	Functional and Non-functional

	Server application
	Final Architecture
	Code Structure
	Utility Microservice
	Sales Microservice
	Whse and Financial Microservice
	Posting Order Saga

	Client Application
	State Management
	Authentication System
	Routing System
	Page Builder
	Notification System

	Use Case
	User interaction
	Posting order

	Conclusions and future works

