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Summary

In recent years, Convolutional Neural Networks (CNNs) have gained signifi-
cant prominence across a multitude of computer vision and deep learning
applications, driving notable advancements in fields such as image classi-
fication, object detection, face recognition, and medical imaging. As the
demand for deep learning and computer vision applications continues to
rise, the pressing need for more efficient and scalable solutions to meet the
computational demands of cutting-edge CNN models becomes increasingly
evident. Furthermore, the necessity of extending these applications to a
broader range of devices, without relying on cloud solutions, has led to
a shift in computation from cloud servers to edge devices. However, this
transition presents a formidable challenge due to the limited computational
and memory resources inherent in edge devices. Addressing this challenge
requires the utilization of hardware accelerators and the partitioning of
tensors into manageable tiles that align with memory constraints. Within
this context, this thesis presents an innovative tiling architecture tailored to
facilitate large-scale Convolutional Neural Network (CNN) inference, with a
particular emphasis on harnessing the potential of High-Level Design (HLD)
and the Embedded Scalable Platform (ESP). HLD empowers the description
of hardware using more abstract, higher-level functional representations and
architectural constraints, subsequently translating into more concise and
debug-friendly C++ code. ESP augments the integration design process
by seamlessly incorporating the architecture into a System-on-Chip (SoC),
primarily comprising at least one RISC-V processor, one or more external
memory tiles, one or more accelerator tiles, and an I/O tile. ESP stream-
lines the design of accelerators using C/C++ in conjunction with diverse
HLD tools, thereby facilitating straightforward integration and testing of
bare-metal software applications. This thesis introduces a tiling algorithm
that takes into account several critical factors, including the organization
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and addressing of tensors within external memory, the maximum number of
available processing elements in the accelerator design (e.g. MAC units), the
required precision for Multiply-Accumulate (MAC) operations (e.g., 16, 8, or
4 bits), and the memory sizes of private local memories (PLMs) within the
accelerator. Each of these considerations is meticulously integrated into the
tiling algorithm to optimize performance and resource utilization. The archi-
tecture is rigorously tested through RTL simulation and FPGA deployment,
establishing its feasibility and effectiveness in real-world applications. The
experiments results show the tiling algorithm’s effectiveness and in which
tensor dimensions cases the tiling architecture performs the best.
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Chapter 1

Convolutional Neural
Networks

In recent years, Convolutional Neural Networks (CNNs) have emerged as
a cornerstone of computer vision and deep learning, enabling remarkable
progress in a wide range of applications. Their ability to automatically
extract intricate features from visual data has revolutionized fields such
as image classification, object detection, and medical imaging. However,
the widespread adoption of CNNs on edge devices, where computational
resources are limited, has been impeded by the substantial computational
and memory demands of convolutional operations inside these networks.
Convolutional Neural Networks are a type of artificial neural networks
uniquely designed to process and analyze visual data or data which is or-
dered in a grid-like topology, making them exceptionally suited for tasks
involving images and videos. The architecture of CNNs is inspired by the
visual processing hierarchy in the human brain, where layers of neurons
progressively extract increasingly abstract features from raw sensory input.
This hierarchical feature extraction enables CNNs to automatically learn
relevant patterns and representations from data, significantly reducing the
need for handcrafted features and manual classification.
The genesis of CNNs can be traced back to the pioneering work of Yann
LeCun and his colleagues in the early 1990s, however it was not until the
arrival of deep learning and the availability of large-scale labeled datasets
that CNNs truly gain importance in academic and industrial sectors. The
success of models like AlexNet, VGGNet, and ResNet in image classification
competitions marked a turning point in the development of CNNs. These
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Convolutional Neural Networks

models highlights the remarkable capacity of deep CNNs to outperform tradi-
tional computer vision techniques and even surpass human-level performance
in image classification tasks.
As CNNs continued to evolve, researchers began to work in various architec-
tural innovations and training techniques that contributed to improve their
performance. The introduction of concepts like skip connections, batch nor-
malization, and residual networks has permitted the development of deeper
and more efficient CNN architectures. The versatility of Convolutional Neu-
ral Networks extends beyond traditional computer vision tasks. They have
found applications in medical image analysis, in autonomous vehicles, or
even in artistic and creative fields.

Figure 1.1: Multi layer Convolutional Neural Network example [1]

1.1 Typical layers in CNNs
A typical Convolutional Neural Network (CNN) consists of several layers
that are designed to process and extract features from input data. The exact
architecture of a CNN can vary depending on the specific target task and
design choices, however the most common layers found in a typical CNN are:

• Input Layer
The input layer receives the raw input data, which is usually an image
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or a multi-dimensional tensor. The dimensions of this layer match the
dimensions of the input data.

• Convolutional Layers Convolutional layers are the main blocks of
CNNs. They are in charge of applying filters to the input data using the
convolution operation. These filters permit feature extraction from the
input data. A typically convolutional layer consists of multiple filters or
kernels which are used to detect different features in the input data. The
layer may include activation functions such as ReLU (Rectified Linear
Unit) to introduce non-linearity right after the convolution operation.

• Pooling Layers The main purpose of Polling Layers is to reduce
the spatial dimensions of the feature maps, output of convolutional
layers, keeping the most important information of the input. This
operation helps to reduce the computational workload and the number
of parameters in the network without impacting the performance of the
network.

• Fully-connected layers Fully-connected layers are traditional neural
network layers in which each neuron is connected to every neuron of
the previous layer. When used as last layer of a CNN, Fully-connected
layer’s output represents the network’s prediction or classification.

• Activation Functions As mentioned before, activation functions in-
troduce non-linearity into the network. Thanks to non-linearity the
network can model complex relationships in the data. Most common
activations functions are: ReLU, sigmoid, and tanh.

• Normalization Layers Normalization layers are used to stabilize and
accelerate training. The scope of the layer is to normalize the activations
of the neurons to have zero mean and unit variance.

• Dropout Layer This layer drops randomly a fraction of neurons during
training, preventing overfitting in the inference process and promoting
the generalization of the model.

• Output Layer The output layer produces the final predictions or
classifications in the network. The number of neurons presented in this
layer usually matches the number of classes in a classification task.
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Figure 1.2 shows an example of the multiple layers found in a Convolutional
Neural Network and how them are commonly organized to classify a car’s
image.

Figure 1.2: Typical layers in a CNN [2]

1.2 2D Convolution
2D Convolution or 2D-Conv operation is a fundamental building block
in Convolutional Neural Networks used for feature extraction from two-
dimensional data, most commonly images. It applies a convolutional filter
to an input image to extract features. The 2D-Conv operation is performed
multiple times in a Convolutional Neural Network using different filters to
extract and reconize features from the input image. These features are then
used in subsequent layers of the network for tasks like: image classification,
object detection, and segmentation. 2D-Conv operation can be explained
with the following concepts:

• Input The input of the 2D-Conv operation is a two-dimensional matrix,
typically representing an image. In the case of color images, this matrix
usually has one channel per color Red, Green, and Blue (RGB) or just
one channel in the case of gray scale images. In the following layers
across the network, the number of input channels may vary depending
on the topology of the network.

• Convolutional Filter - Kernel The convolutional filter, typically
a smaller two-dimensional matrix, is used to detect specific patterns
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or features within the input image. These filters have values usually
called weights which are set and learned by the network during training
process.

• Sliding the Filter The filter is systematically moved across the input
image. The movement is performed in both horizontal and vertical
directions passing through all the values or pixels of the input data.
The filter’s movement is controlled by a parameter called stride, which
defines the steps of the sliding . A stride equals to 1 means that the filter
moves one position at a time, while larger strides skip some positions
depending on stride’s value.

• Element-wise Multiplication At each position where the filter over-
laps with the input image, element-wise multiplication is performed
between the filter and the corresponding pixel values in the input. The
element-wise operations are also performed across all the input channels
for the same positions in each channel.

• Summation After element-wise multiplication, the results of the multi-
plications are summed together to obtain a single scalar value for that
position, the summation also considers the values obtained in all the
input channels which leads to a sum of elements in three dimensions.
This result is often referred to as the convolutional response or feature
activation.

• Output Feature Map The scalar value obtained in the Summation
step is placed in the corresponding position of the output feature map.
After placing all the values of an output channel, the process should be
repeated for the number of output channels that are present in the layer.
The output feature map represents the result of applying the filters
to the input image at that particular location. Each output channel
represents the result of different set of filters applied to the same input
data.

• Padding Padding might be added to the input image to adjust the size
of the output feature map. Padding consists in adding extra rows and
columns, typically filled with zeros, around the input image. This helps
maintain the spatial dimensions, which are also affected by the stride
value, and can be useful to avoid edge-related issues when applying the
filters in the image’s borders.
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• Strides The stride as mentioned before, defines how much the filter
is moved across input’s positions. A larger stride results in a smaller
output feature map, which can be beneficial for reducing computational
requirements due to the omission of certain positions in the image.

Figure 1.3 depicts the 2D Convolution operation for an input tensor with
three input channels and an output tensor with one output channel.

Figure 1.3: 2D Convolution [3]

1.3 Memory and computation requirements
for CNN

Convolutional Neural Networks (CNNs) have proven to be highly effective
for many tasks and applications in which they can perform better compared
with a human, however they come with substantial memory and computation
requirements which can suppose a limitation for the deployment. In real-world
scenarios, the deployment of CNNs on edge devices, such as smartphones,
IoT devices, or embedded systems, presents significant challenges due to the
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limited resources that are present in these devices and also for the necessity
of maintaining a low energy consumption in devices that are usually battery
powered. Hardware accelerators and tiling methods are crucial strategies to
address these requirements.

1.3.1 Memory requirements
• Model Parameters: Modern CNN architectures are deep -composed by

many layers- and often have millions of trainable parameters which most
of them are the filters applied to the input. Storing these parameters in
memory suppose a challenge due to the dimensions of the data and the
store capacity of the memories, especially on resource-constrained edge
devices.

• Activation Maps: Covolutional Neural Networks generate interme-
diate feature maps at each layer during inference. These feature maps
require memory for storage and further processing, and as the network
deepens, more intermediate feature maps are needed increasing memory
requirements.

• Batch Processing: Usually CNNs process input data in batches to im-
prove computational efficiency. Each batch requires additional memory
for storing intermediate results .

1.3.2 Computation Requirements
• Convolution Operations: In CNNs the most computational demand-

ing task is the convolutional operation due to the large number of
multiply and accumulate operations performed in the inference part.
The real-time behaviour of the applications makes also a computational
demanding task when trying to achieve a specific latency that meets the
application requirements.

• Fully-Connected Layers: These layers also demands a great number of
matrix multiplications increasing the computational load of the network.

• Activation Functions: Applying activation functions (e.g., ReLU,
sigmoid) introduces non-linearity which leads to some advantages as
explained before, however it also introduces additional computation
workload.
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• Pooling Layers: Pooling layers reduce spatial dimensions, but they
still require computational resources to perform operations like max-
pooling or average-pooling which also introduces workload overhead to
the network.

1.3.3 Edge devices constraints
Deploying CNNs on edge devices introduces several constraints and chal-
lenges:

• Limited Processing Power: Edge devices, such as smartphones
and IoT devices, have limited computational capabilities compared to
high-end servers or desktops. Running complex CNNs in real-time
applications needs further optimization of hardware and software.

• Energy Efficiency: Edge devices are often battery-powered, and energy
efficiency is a critical concern. Power-hungry CNN computations can
rapidly drain the device’s battery. To avoid this scenario the CNN
computation can be modified and special hardware such as custom
accelerators can be used.

• Memory Constraints: As the need to use less area is in Edge devices
increases, the amount of memory available is limited and the storing
of large models and intermediate feature maps become more complex.
This issue underscores the need to perform iterative computations with
small data chunks to meet memory constraints.

1.3.4 Tiling and methods to meet memory constrains
Many techniques have been proposed to alleviate the CNN’s memory require-
ments and to minimize partial results in intermediate layers which often are
transferred off-chip memory and then back again to on-chip memory causing
an increase in latency and energy consumption. Tiling methods are a set
of techniques used to split the computation of CNN operations into smaller
set of chunks or tiles. This helps to overcome limitations in memory and
computational resources as discussed in section 1.3.3. The main approaches
to mitigate the effect of large CNN models are:

1. Spatial Tiling: It divides the input data into smaller spatial regions or
tiles for processing. In this case each tile is computed separately reducing
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Figure 1.4: Depthwise Convolu-
tion. In this example, Filters and
image have been broken into three
different channels and then con-
volved separately and stacked there-
after [3]

Figure 1.5: Pointwise Convolution. In
this example, three input channels are
combined into one output channel [3]

the memory requisite and allowing a parallelization in the processing.
Then the results from each tile are combined obtaining the final result.
Spatial tiling reduces the memory footprint because just a portion of
the input data is loaded at a given time. However, managing the tile’s
boundaries is a challenge due to the data dependency between adjacent
tiles and also combining tile’s results can introduce synchronization
overheads.

2. Channel Tiling: This approach divides the channels of the input data
into smaller groups searching a reduction of memory requirements as well.
In this case, the data subset is processed at a time and parallelization
can be leveraged too. Nevertheless, the way the channels are divided
has to be carefully handled to ensure coherence in the results and avoid
to impact the model’s performance.

3. Depthwise Separable Convolutions: besides tiling or dividing data
into smaller parts, other effective way to reduce memory and computation
requisites is the use of a specialized form of convolution which divides
the operation into depthwise and pointwise convolutions. Depthwise
convolution applies a separate convolutional filter to each input channel,
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generating a set of feature maps per each channel. Then Pointwise
convolution combines these feature maps using a 1x1 kernel to produce
the final output. This process significantly reduces the number of
parameters and computations compared to traditional convolutions
maintaining a similar accuracy in the inference results. Figure 1.4 and
1.5 show a depthwise convolution followed by a pointwise convolution.

These methods help strike a balance between computational efficiency
and memory constraints, enabling real-time and energy-efficient processing
of deep neural networks. However, selecting the appropriate tiling method
and optimizing its implementation often involves trade-offs between memory
usage, computational speed, and model performance, and it may require care-
ful experimentation and fine-tuning for specific use cases. In this work, both
tiling approaches, spatial and channel, will be used with specific constrains
which are hardware and layer topology dependents. This will be discussed
in detail in Ch. 4.
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Chapter 2

Hardware CNN
accelerators

Many methods and strategies has been developed to address the memory
and computation constraints for deploying state-of-the-art CNN models.
These methods usually target a specific set of devices depending on the
application of the network. Therefore, there are tiling methods and dataflows
aiming at high-performance computing systems, DNN accelerators for desktop
computers, or small microcontrollers for embedded systems; each of them with
different resource capabilities and different memory hierarchies depending
on the system needs. Having a memory hierarchy implies data movements
between memory levels. The challenge arises from the high volume of weight
and activation data that needs to be moved during the execution of a DNN.
This movement of data has several implications:

• Data Transfer Bottleneck: moving data between levels of the memory
hierarchy can be a time-consuming and resource-intensive task. Due
to the different access times and bandwidths present in each memory
level, memory operations often results in significant latency and resource
usage.

• Memory Bandwidth Constraints: The share of data between mem-
ory levels is subject to bandwidth limitations depending on the memory
level. In DNN, especially in deep CNN, the volume of data being
moved can saturate available memory bandwidth, causing performance
bottlenecks.
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• Energy and Power Consumption: each data movement between
memory levels consumes energy and power; therefore as the rate of data
transfers increase, the energy consumption increases as well making a
critical concern for battery-powered devices, such as mobile phones and
IoT devices.

Memory hierarchy management is particularly critical in CNN deployment,
especially on resource-constrained devices like edge devices. The objective
is to optimize the memory usage and data transfer strategies to minimize
the impact on the DNN’s execution time and energy consumption. To
address this challenge, various techniques and hardware accelerators have
been developed [4], including the use of specialized hardware like GPUs [5],
TPUs [6], and optimized software libraries [7]. These solutions target to
reduce data movement, exploit parallelism, and enhance the efficiency of
memory hierarchy management for CNNs. Tiling methods also deal with
this challenge and some solutions are able to mitigate the problem up to a
point in which data transfer’s overhead is almost negligible for the system
performance [8],[9], [10].

2.1 Tiling methods
The tiling problem has been addressed from diverse approaches considering
the different variables that concern a CNN application deployment. Among
the state-of-the-art methods, the following ones have been considered in this
thesis:

• Block convolution [8] proposes a method which consists in dividing
the feature maps into independent tiles thanks to the application of
a block padding to each tile. Figure 2.1 depicts the padding process
applied to each block of the tensor. Therefore, the convolution can be
performed separately on individual blocks and layers, eliminating the
dependency of feature map in adjacent tiles. The results of each block
are then spliced together to obtain the final output. Block convolution
is a hardware-friendly and efficient approach which can eliminates the
off-chip transfer of intermediate results during inference. The paper also
propose two strategies to manage the block’s sizes across the layers:

– Fixed blocking: the block size remains consistent across layers.
After pooling, adjacent output blocks with reduced resolution are
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combined into a larger block for further processing. The number of
blocks in a layer decreases as the network deepens, and the receptive
field of output blocks increases.

– Hierarchical blocking: the number of blocks remains constant in
each layer. As the network deepens, the size of individual blocks
gradually becomes smaller. Unlike fixed blocking, the block’s re-
ceptive field in each layer stays unchanged. The entire network is
divided into independent sub-networks along the spatial dimension.

Fixed blocking allows information fusion between independent blocks,
expanding the receptive field and maintaining accuracy. Hierarchical
blocking lacks this information fusion, leading to larger accuracy degra-
dation. Figure 2.2 represents graphically the difference between fixed
and hierarchical blocking.

Figure 2.1: Block convolution example [8]

Figure 2.2: Fixed and Hierarchical blocking [8]

• DORY [10] proposes a tiling approach based on Constraint Programming
(CP). It targets devices with three hierarchical levels (L1, L2, L3) and it
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maximizes L1 memory utilization under topological constraints imposed
by each DNN layer. The approach generates ANSI C code to orches-
trate off- and on-chip transfers and computation phases. Furthermore,
to maximize speed, the CP formulation is augmented with heuristics
promoting performance-effective tile sizes. The operation of DORY is
organized in three steps, performed offline before network deployment:

– ONNX decoder: The purpose of the ONNX (Open Neural Network
Exchange) Decoder is to decode an input ONNX graph, which
represents an already quantized DNN. The decoded ONNX graph is
then reorganized into a set of layers. Each layer includes a Linear-
add-pooling operation, an optional Batch-Normalization operation,
and a Quantization/Activation operation. The ONNX Decoder
helps to prepare the input ONNX graph for deployment on low-cost
MCUs with limited on-chip memory.

– Layer analyzer: a component that is used in the first optimization
phase, it considers each layer of the Deep Neural Network (DNN)
separately from each other and uses weight dimension information
from the previous layer to optimize the current layer. The Layer
Analyzer consists of three sub modules that work together to optimize
the layer:

∗ Tiling Solver: it relies on a 2-step engine, which solves the
L3-L2 tiling constrained problem first, and the L2-L1 one after-
wards. L3-L2 tiling enables storing activations and weights in the
L3 off-chip memory instead of the on-chip L2, which supports
significantly larger layers. The Solver uses a five-stage cascaded
procedure to search for an L3 tiling solution, where each stage
tries to tile a different selection of buffers to fit the constraint. In
the case of L2-L1 tiling, DORY abstracts tiling as a CP problem
and uses the CP solver from the open-source OR-Tools developed
by Google AI to meet hardware and geometrical constraints while
maximizing an objective function. The objective function of the
solver is to maximize L1 memory utilization by manipulating tile
dimensions.

∗ Target-specific Heuristics and constraints: The objective
function of the tiling solver can be augmented with a series of
heuristics targeting a specific backend to maximize performance.
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∗ Software-cache generator: is a tool used by DORY to auto-
matically generate C code for executing a whole layer of a DNN.
The tool uses the tiling solution found by the Tiling Solver to
instantiate asynchronous data transfers and calls to the back-
end kernels without any manual effort. All data transfers are
pipelined and asynchronous, and with this approach, the mem-
ory transfer overhead can be almost completely hidden. The
code generator is not platform-agnostic, but the approach can
be easily generalized to any computing node with a three-level
memory hierarchy.

– Network parser: a component of the DORY tool that is responsible
for building a network graph after the Layer Analyzer has completed
layer-wise tiling. The network graph considers each layer as a callable
function, and DORY uses the information extracted from all the
layers to create this graph.

Figure 2.3 depicts the Dory’s dataflow through the memory hierarchy
level.

Figure 2.3: DORY L3-L2-L1 layer routine example [10]

• TTILE [9] is a tool to optimize the tiling process for convolution opera-
tions. It involves composing micro-kernels to perform a 2D convolution
efficiently. The authors use a technique called "loop fusion" to combine
multiple loops into a single loop, which can improve performance by
reducing the overhead associated with multiple loops. The microkernel is
created by fully unrolling innermost parallel loops and may also include
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perfectly nested reduction loops. The purpose of the microkernel is
to improve performance by reducing the overhead of loop control and
allowing for more effective code optimization. The authors demonstrate
that combining micro-kernels is more effective than relying on partial
tiles, which can be suboptimal.

• Tile and Pack [11] algorithm splits a layer over multiple IMAs (in-memory
computer accelerator) only when it does not fit the size of the cross-bar
(memory architecture). The algorithm does not allow tiling to fill unfilled
IMA locations, aiming at the highest utilization area of the cross-bar on
a per-tile basis. Packing is based on the Maximal Rectangles Best Short
Side Fit fitting algorithm. The Tile and Pack algorithm improves the
system performance by tiling all layers and packing their contributions
in the smallest number of IMAs. Here is a step-by-step explanation of
the algorithm:

1. Input Parameters: several input parameters are taken, including
the names, heights, and widths of all layers in the neural network,
the size of each IMA (default is 256), and the number of available
IMAs.

2. Creating Tiles: tiles for each layer of the neural network are
created. A tile represents a portion of a layer that can be processed
by an IMA. The size of each tile is determined by the size of the
IMA.

3. Calculating the Number of Tiles: the number of tiles needed
to cover the entire layer is calculated. This is done by dividing the
height and width of the layer by the size of the IMA. The remainder
of the division is stored for later use.

4. Creating Tiles for Full Rows: tiles for each full row of the layer
are created. The algorithm iterates over the number of rows and
columns and assigns a tile size of (S, S) to each tile.

5. Creating Tiles for Partial Rows: tiles for the remaining partial
rows of the layer are created. The algorithm iterates over the number
of rows and assigns a tile size of (hrem, S) to each tile.

6. Creating Tiles for Partial Columns: tiles for the remaining
partial columns of the layer are created. The algorithm iterates over
the number of columns and assigns a tile size of (S, wrem) to each
tile.
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7. Creating Tile for Remaining Area: a tile for the remaining
area that is not covered by the full rows or partial rows/columns. It
assigns a tile size of (hrem, wrem) to this tile.

8. Removing 0-sized Tiles: The algorithm removes any tiles that
have a height or width of 0, as they do not contain any meaningful
data.

9. Bin Packing: The algorithm uses a bin packing algorithm called
BINBESTFIT to organize the tiles into bins. This step ensures
efficient utilization of the IMAs.

10. IMA Mapping: The algorithm uses a rectangle packing algorithm
called MAXRECTSBSSF to map the bins onto the available IMAs.
This step determines the optimal placement of the tiles on the IMAs.

11. Output: The algorithm returns the IMA Mapping, which represents
the mapping of the tiles onto the IMAs.

Figure 2.4 shows the application of the tiling algorithm to the weights
of MobileNetV2 network.

Figure 2.4: Tile and Pack algorithm of the layers on the 34 IMAs [11]

• GrateTile [12] is an uneven tile division for efficient storage and pro-
cessing of sparse CNN feature maps. The algorithm divides the data
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into uneven-sized subtensors and stores them in a compressed format
with small indexing overhead and keeping the random access capabil-
ity. The goal is to avoid accessing partially compressed subtensors and
minimize the number of subtensors to reduce data fragmentation. This
design enables modern CNN accelerators to fetch and decompress sub-
tensors on-the-fly in a tiled processing manner and to reduce the DRAM
bandwidth utilization in the process inference. Figure 2.5 depicts the
difference between an uniform tile division and the GrateTile division
applied to compressed tensors.

Figure 2.5: The GrateTile data structure [12]

• Timeloop [13] splits the input data into smaller tiles that can fit into
the accelerator’s memory. The size of the tiles is determined taking into
account the size of the memory and the size of the input data. The tiles
are processed sequentially, and the results are combined to produce the
final output. Tile analysis involves the following steps:

– Varying the tile size: The size of the tiles used in loop tiling is
varied to analyze the performance of the accelerator for different tile
sizes.
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– Generating a performance model: For each tile size, a perfor-
mance model is generated that estimates the performance of the
accelerator for a given DNN workload.

– Analyzing the performance model: The performance model
is analyzed to determine the optimal tile size that maximizes the
performance of the accelerator.

2.2 Dataflow Techniques
Dataflow techniques for CNN are strategies and architectures designed to
optimize the flow of data -input, output, weights- through the hardware
in charge of managing and compute the convolution operations, the main
goal is to improve efficiency of computations and minimize latency in the
process. These techniques are crucial for achieving high performance in CNN
accelerators. The state-of-the-art methodologies and literature have deeply
analyzed the different dataflow techniques used in CNN accelerators. [14]
focuses on efficient design space exploration (DSE) of dataflow techniques
such as weight-stationary (WS), output-stationary (OS), row-stationary (RS),
and no local reuse (NLR) techniques. It analyzes the processing element (PE)
structure and computational pattern of each technique, then it calculates
performance metrics like throughput, computation-to-communication ratio,
on-chip memory usage, and off-chip memory bandwidth. The paper proposes
the roofline model, an analysis model used to explore the performance of
a system in terms of hardware and software design. It provides a visual
representation of the performance limits of a system based on the ratio of
computational resources (CR) and performance.
The four representative dataflow techniques are:

• Weight-Stationary (WS): This dataflow technique stores the weights
in stationary memory locations, increasing the reuse of weight values
during MAC operations. Instead, input activations are streamed contin-
uously through the computation units. The main advantages are the
reduction of weights movement and the reuse of them in architectures
where the weights are shared across multiple input activations. If the re-
duction of on-chip buffer memory is the goal, weight stationary dataflow
offers an appropriate design point [14]. Figure 2.6 shows PE structure
for the WS dataflow technique and Figure 2.7 shows an example of a
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PE set for 5x5 input feature maps, 3x3 weight, and a 3x3 output feature
map.

Figure 2.6: PE for the WS dataflow
technique [14]

Figure 2.7: Example of a PE set
for the WS dataflow technique [14]

• Output-Stationary (OS): The output stationary dataflow keeps out-
put features stationary in memory. Input and weight activations are
streamed continuously through the computation units. This technique
optimizes throughput and on-chip memory usage, specially for layers
with small output feature map sizes. The main advantages are the reduc-
tion of output feature maps movement and the performance efficiency
in scenarios when the output maps are reused or further processed. The
implementation of an accelerator, in which the design goal is to minimize
the area and hardware resources, has an optimal design point applying
an output stationary dataflow [14]. Figure 2.8 shows PE architecture for
the OS dataflow technique and Figure 2.9 shows an example of a PE set
for 5x5 input feature maps, 3x3 weight, and a 3x3 output feature map.

• Row-Stationary (RS): The RS dataflow technique arranges data in
a specific manner allowing that the entire rows of input activations or
feature maps can be processed in parallel. The technique also minimizes
energy consumption by leveraging local data reuse on a spatial architec-
ture, specially in scenarios where the accelerator can exploit parallelism
across rows in an efficient way. These scenarios are present in large CNN
architectures and when dealing with large convolution operations. [15]
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Figure 2.8: PE for the OS dataflow
technique. [14] Figure 2.9: Example of a PE set

for the OS dataflow technique. [14]

uses RS dataflow technique in its CNN accelerator’s architecture. It
breaks the high dimensional convolution down to 1D convolution primi-
tives allowing a parallel processing. Then each primitive is mapped to
one PE and it operates on one row of filter weights and one row of input
feature map, and generates one row of partial sums. The computation
of each row pair stays stationary in the PE, which creates convolutional
reuse of filter weights and ifmap pixels at the register file level. Figure
2.10 shows PE architecture for the RS dataflow technique and Figure
2.11 shows an example of a PE set for 3x3 input feature maps, 2x2
weight, and a 2x2 output feature map.

• No local reuse (NLR): In NLR dataflow, the accelerator uses global
buffers (GLBs) to store input, weight and output feature maps. Weight
data is unicast to specific processing element and Input data is multicast
to each procesing element that compute a specific output feature. The
NLR dataflow technique tends to have higher throughput for convolu-
tional layers with large input and output feature map sizes. If the main
goal of the system is to achive the maximum performance, the NLR
dataflow technique has an optimal point [14]. Figure 2.12 shows an
example of a PE set for the NLR datafow technique.

These dataflow techniques are usually used or adapted depending on the
specific architecture and requirements of the CNN accelerator. The goal
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Figure 2.10: PE for the RS
dataflow technique. [14]

Figure 2.11: Example of a PE set
for the RS dataflow technique. [14]

Figure 2.12: Example of a PE set for the NLR dataflow technique [14]

is always to efficiently utilize available resources, reduce data movement,
and maximize parallelism, finally improving the performance and energy
efficiency of the accelerator during CNN inference.
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2.3 Precision-Scalable Hardware Accelerators

An effective way to find a trade-off between performance and accuracy
when working with DNN layers is the use of Mixed-Precision Quantization,
Precision-Scalable Multiply-and-accumulate units, and specifically Mixed-
precision accelerators as the work presented in [16]. The work just mentioned
designs an accelerator based on Sum-Together (ST) multipliers, whose inputs
usually pack N = 1, 2, 4 operands depending on the configuration, and
obtaining a precision inversely proportional to N. The main advantage
of this approach is the computation in one shot of N multiplications in
parallel, together with the addition of the low-precision products. Then
the reconfiguration of the multiplier permits to perform a full-precision
multiplication or a dot-product at a lower precision increasing the overall
speed of a layer computation by a factor of N. Figure 2.13 depicts the basic
architecture of a generic ST multiplier, and Figure 2.14 shows the different
configurations of the operands that are supported by the multiplier. [16]
leverages the use of the ST multipliers to design three kind of accelerators
targeting: 2D-Conv, DW-Conv, and FC layers. The operational concept
of the three ST-based accelerators is depicted in Figure 2.15. Depending
on the configuration, the initial column illustrates the capability of the ST
multiplier to handle the number of activation/weight pairs (N) within the 16-
bit input operands. The subsequent three columns delineate the processing
methodology for the input (depicted in blue) and weight (depicted in orange)
tensors in 2D-Conv, DW-Conv, and FC operations, respectively.

Figure 2.13: Generic ST mul-
tiplier [16]. Figure 2.14: Configurations of a

ST multiplier [16]
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The three accelerators have different ways to fetch data for the multipliers
due to the actual topology of the layer, these methods are explained as
follows:

• Within the 2D-Conv operation, each orange filter featuring C kernels
undergoes a process where the C input tensor channels are multiplied
by the corresponding weight kernels. The resultant partial outcomes are
subsequently summed channel-wise. At full precision (N = 1), the ST
multiplier handles one weight and one "pixel" of the input channel at a
time. However, when operating at reduced precision, the ST multiplier
can receive two (N = 2) or four (N = 4) pixel/weight pairs from the
channels dimension. These configurations are highlighted in red in the
second and third rows of Figure 2.15. Thanks to the internal dot product
performed by the ST multiplier at low precision, the number of external
channel-wise additions reduces from N-1 to N/2 -1 or N/4 -1.

• A distinct strategy is essential for DW-Conv. In the context of depth-
wise convolution, each output channel is derived by convolving every
input channel with its corresponding weight kernel. As there is no
accumulation process across the channel dimension, the utilization of
the ST multiplier, as in 2D-Conv, is not feasible. Illustrated in the third
column, depending on the configuration, the ST multiplier is supplied
with 1, 2, or 4 pairs originating from the receptive field of the input
tensor and the corresponding weight kernel. Hence the results of the
low-precision multiplications can be summed together by the multiplier
itself.

• The operational mechanism of the ST-based FC accelerator executes
the matrix-vector product by computing between the weight matrix and
the linear array of input activations. The ST multiplier operates on the
activations array and a weights row to generate an output activation
derived from the summation of low-precision products. Similar to the
2D-Conv scenario, the number of Multiply-Accumulate (MAC) cycles
scales in proportion to C/N, while the corresponding latency scales
inversely as 1/N.
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Figure 2.15: Working principles of ST-based DNN accelerators [16]
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Chapter 3

Embedded Scalable
Platforms and CNN
accelerator design using
High-Level Synthesis

The continuous growth in chip design complexity, driven by the slowdown of
Moore’s Law and the end of Dennard’s scaling, has led to the adoption of het-
erogeneous System-on-Chip (SoC) architectures. These architectures, which
enable multi-core processors and specialized hardware accelerators on a single
die, have become the preferred solution for achieving both performance and
energy efficiency across diverse application domains. However, the escalating
costs of developing cutting-edge SoCs demands new methodologies and plat-
forms supporting design reuse to significantly reduce design time and design
expenses. In this context, the role of open-source hardware (OSH) is crucial,
as it can uniquely contribute to design reuse by boosting entrepreneurial
innovation and collaborative engineering across industry and academia. The
success of the RISC-V open standard Instruction Set Architecture (ISA)
has triggered the emergence of numerous SoC architectures. As the op-
tions of open-source hardware components expands, there is a growing need
for Computer-Aided Design (CAD) methodologies within the open-source
community. These methodologies should push the transformation of these
components into diverse SoC designs tailored for specific domain applications.
The predominant emphasis in Open-Source Hardware’s context has been the
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developing of processor cores that adhere to the RISC-V ISA. There also
has been a notable concentration on small-scale System-on-Chips (SoCs)
where these cores are tightly-coupled with functional units and co-processors,
commonly facilitated by bus-based interconnects. In contrast, there has been
a relatively limited emphasis on creating solutions for large scale SoCs that
use RISC-V cores with many loosely-coupled components, such as coarse-
grained accelerators, interconnected through a Network-on-Chip (NoC). The
open-source platform, Embedded Scalable Platforms (ESP) was released
taking into account all the previously issues presented in the development of
SoCs targeting the relative new Artificial Intelligence demands. The following
explanation about ESP is taken from references [17], [18].

3.1 ESP and its design flows
As stated before, ESP is a developing platform for heterogeneous SoC design
and programming. It integrates a scalable architecture with a flexible system-
level design methodology. Illustrated in Figure 3.1, the ESP architecture is
organized as a heterogeneous tile grid constructed on a 2D mesh, multi-plane
NoC. Each type of tile fulfills a distinct role within the SoC, yet all tiles are
encapsulated in modular sockets that can be decoupled from the NoC design.
In this architecture, processor and accelerators have the same importance
in the SoC implementation. This approach proposes a system-centric view
instead of the traditional processor-centric view. The main types of tiles
present in ESP architecture are:

• Processor Tile: Each processor tile incorporates a processor core
selected during the design phase from available options. The current
options includes the RISCV 64-bit Ariane core from ETH Zurich, the 32-
bit RISC-V Ibex core, and the SPARC 32-bit LEON3 core from Cobham
Gaisler. All cores support Linux and are equipped with their dedicated
L1 caches. The integration of processors into the distributed ESP system
is seamless, requiring no ESP-specific software patches for Linux booting.
Each processor communicates on a local bus independently of the rest
of the system. The processor socket includes a unified private L2 cache
with a configurable size, implementing a directory-based MESI cache-
coherence protocol and allowing the core to transparently communicate
in the ESP coherence protocol. Processor requests directed to memory-
mapped I/O registers are forwarded by the socket to the IO/IRQ NoC
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Figure 3.1: The ESP architecture and its main types of tiles [18]

plane through an APB adapter.

• Memory Tile: it establishes a connection to the external memory in
the system. ESP allows for the straightforward instantiation of multiple
memory tiles to meet the bandwidth requirements of large SoC designs.
In such instances, each memory tile serves to a distinct partition of
the global address space, and the mechanism to direct requests to the
appropriate tile is generated automatically as well as the logic to support
the partitioning, which is totally transparent to the software. When
the ESP cache hierarchy is activated, the memory tile incorporates the
ESP last-level cache (LLC). In conjunction with the L2 cache, ESP
LLC implements a standard directory-based MESI coherence protocol
specifically adapted to function over a NoC. Moreover, the ESP LLC
is designed to handle Direct Memory Access (DMA) requests directly
from accelerators in an LLC-coherent manner.

• Accelerator Tile: Within the ESP framework, the Accelerator Tile
assumes a fundamental role as ESP embraces heterogeneity in SoC
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design. These accelerators, characterized as loosely-coupled, execute
coarse-grained tasks upon invocation by a processor core through a
designated device driver. It also exchanges large datasets with the
memory hierarchy without processor’s intervention. When interacting
with the memory hierarchy, an accelerator employs various coherence
modes. These modes span from completely bypassing the cache hierar-
chy with Direct Memory Access (DMA) to participating in the system’s
coherence protocol when equipped with a private L2 cache. The socket
of an accelerator tile provides platform services for tasks such as ad-
dress translation, DMA, configuration registers, and coherence. This
design approach enables designers to concentrate on optimizing their
accelerators without the need to reimplement fundamental capabilities.
Accelerators must adhere to a simple interface, providing load/store
ports for latency-insensitive channels, signaling mechanisms for configur-
ing and initiating the accelerator, and a signal to indicate the completion
of accelerator operations and trigger an interrupt for the processors.

• Auxiliary Tile: The auxiliary tile accommodates all shared peripherals
in the system, excluding memory. These peripherals include the Ethernet
Network Interface Card (NIC), UART, a digital video interface, a debug
link for controlling ESP prototypes on FPGA, and a monitor module
responsible for gathering various performance counters and periodically
transmitting them through the Ethernet interface. The socket of the
auxiliary tile is the most complex because it must provide most platform
services to the devices hosted by this tile. The Ethernet connection
supports remote connection through SSH and enables the ESPLink
debug application.

ESP offers multiple design flows for developing new hardware accelerators.
These can be implemented at the Register-Transfer Level (RTL), or at higher
abstraction level with High-Level Synthesis (HLS) tools, or directly from
high-level machine learning models utilizing the open-source HLS4ML tool.
Additionally, ESP provides a streamlined process for integrating pre-designed
third-party accelerators, such as the NVIDIA NVDLA, as long as they
adhere to a standard interface like AXI. This flexibility ensures compatibility
and ease of integration for a diverse range of accelerators within the ESP
architecture. Figure 3.2 depicts the different design and integration flows
used in ESP. Depending on the abstraction level, the describing languages
(C/C++ , VHDL, Verilog, etc.) and tools can vary as follows:
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• Cycle-accurate RTL descriptions with languages like VHDL, Verilog,
SystemVerilog, or Chisel.

• Loosely-timed or un-timed behavioral descriptions with SystemC or
C/C++ that get synthesized into RTL with high-level synthesis (HLS)
tools. ESP supports the three main commercial HLS tools: Cadence
Stratus HLS, Mentor Catapult, and Xilinx Vivado HLS.

• Domain-specific libraries for deep learning like Keras TensorFlow, Py-
Torch, and ONNX, for which ESP offers a flow combining HLS tools
with hls4ml.

Figure 3.2: Agile SoC design and integration flows in ESP [17]

3.2 CNN accelerator design using High-Level
Synthesis

In HLS-based workflows, ESP simplifies the task for accelerator designers
by offering ESP-compatible accelerator templates, skeleton specifications
ready for High-Level Synthesis (HLS), numerous examples, and step-by-step
tutorials for each workflow. HLS-based workflow using C/C++ has the
following advantages:

• It can be found a large codebase of algorithms already written in C/C++.
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• Hardware/Software co-design is simplified due to the use of the same
language.

• The simulation of the code is so much faster than RTL simulation,
making the debugging process faster as well.

However, this workflow also shows some limitations when there is the need
to infer concurrency, timing, and communication properties of the hardware
systems.
An ESP accelerator design should have a well-organized description that
divides the specification into concurrent functional blocks. The objective
is to obtain a synthesizable specification that facilitates the exploration of
an extensive design space, allowing for the evaluation of numerous micro-
architectural and optimization choices. In Figure 3.3, the interconnection
between the C/C++ design space and the Register-Transfer Level (RTL)
design space is illustrated. HLS tools offer an extensive array of configura-
tion options, referred to as knobs, enabling the generation of diverse RTL
implementations. Each of these implementations corresponds to a distinct
tradeoff point between cost and performance. The green arrows represent
push-button directives within the HLS tool that control these knobs. Addi-
tionally, designers have the flexibility to manually transform the specification,
as indicated by the orange arrows. This manual transformation allows for
exploration of the design space while preserving the functional behavior.

Figure 3.3: HLS-based accelerator design in ESP [17]

The HLS design flow using C/C++ involves the following steps:

31



Embedded Scalable Platforms and CNN accelerator design using High-Level Synthesis

• Design Specification: The functionality and performance requirements
of the hardware accelerator are defined using a high-level programming
language.

• C Synthesis: The high-level code is analyzed and synthesized into an
intermediate representation. It captures the behavior of the hardware
accelerator taking into account some timing constraints.

• Optimization: The intermediate representation is optimized to improve
performance, area, and power consumption of the hardware accelerator.

• RTL Generation: The optimized intermediate representation is con-
verted into RTL code, which describes the hardware components and
their interconnections.

• Verification: The RTL code is verified to ensure that it correctly
implements the desired functionality and to ensure that it meets the
timing constraints.

• Synthesis and Implementation: The RTL code is synthesized and
implemented into a target technology, such as an FPGA or an ASIC.

• Testing and Debugging: The hardware accelerator is tested and
debugged to ensure its correct operation.

Figure 3.4: Overview of the accelerator and SoC design flows with an
example of SoC design configuration on the ESP GUI [17]

HLS flow permits designers to rapidly prototype and explore different
hardware architectures. Therefore, it significantly reduces the time and effort
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required for hardware design. This design flow is part of a larger process
intended to integrate the accelerator design into the SoC. The main steps in
the ESP accelerator design flow are:

• Generate Skeleton: this step involves creating a basic framework
or structure for the accelerator design, the overall architecture and
organization of the accelerator is defined here. It includes determining
the number and type of functional units, the interconnections between
them, and the control logic. Then the generated skeleton serves as a
starting point for further design and optimization. It also provides a
foundation for adding and integrating specific functionality and features
into the accelerator design.

• Customize: in this step the generated skeleton is tailored depending on
specific requirements and performance optimization. During this step,
application developers can customize the accelerator design by adding
or modifying functional units, adjusting interconnections, and refining
the control logic. The customization process aims to optimize the accel-
erator design for the targeted application or workload, ensuring efficient
execution and improved performance. Thanks to the customization the
design can be adapted to software requirements too, permitting a further
optimization and support for the task performed by the system.

• Generate RTL with HLS: as explained before, this step is part of
the HLS design flow and consists in generating RTL code using HLS
techniques.

• Testing: verification and validation of the accelerator’s functionality
and performance are performed in this step. During this step, various
tests and simulations are conducted to ensure that the accelerator
operates correctly and meets the desired specifications. Testbenches
are created to provide input stimuli and evaluate the output responses
of the accelerator design. Functional verification tests check if the
accelerator performs the intended operations accurately. Performance
testing evaluates the accelerator’s speed, latency, throughput, and power
consumption. The test step is critical to ensure the reliability and
correctness of the accelerator design before proceeding to the next stages
of the design flow.
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Once the accelerator is tested and verified, it has to be integrated into the
SoC, verified together with the other components that interact through the
Network on Chip, and tested with the application software. Figure 3.4 shows
the different design flows within an example of the use of ESP’s configuration
GUI. The steps presented in the SoC flow are:

• Software Build: the software components that will run on the SoC
are compiled and built. It includes tasks such as compiling source code,
linking libraries, and generating executable files. The software build
process ensures that the software components are ready to be deployed
on the SoC.

• SoC Configuration: Configuring a SoC encompasses arranging the
diverse components and subsystems depending on the intended spec-
ifications. This process involves establishing interconnections among
different modules, configuring memory interfaces, and setting communi-
cation protocols. SoC configuration plays a crucial role in ensuring the
seamless integration of hardware components, guaranteeing their proper
functionality and readiness for operation.

• FPGA Prototyping: it plays an important role in SoC design, per-
forming the implementation of the SoC design on a FPGA device. This
phase enables early validation and testing of the SoC design before the
actual fabrication process. Through FPGA prototyping, potential design
issues and performance bottlenecks can be identified and addressed in
time.

• Full System Simulation: it covers both hardware and software ele-
ments within a virtual environment. This simulation enables thorough
testing and evaluation of the SoC’s functionality, performance, and
interactions among its diverse components. By conducting a full system
simulation, potential issues or conflicts can be detected and resolved
before the physical implementation of the SoC.
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Chapter 4

Tiling Architecture for
CNN

In this chapter the tiling algorithm used in the proposed work will be
explained and analyzed. The software implementation will be also addressed,
making special emphasis in the steps needed to obtain the tensor tiles,
and finally provide the tile’s dimensions and computation order to the
accelerator. Then this last one is in charge of loading the tiled data, perform
the corresponding operations, and store the results in memory again.

4.1 Tiling algorithm
The algorithm proposed in this work takes into consideration several aspects
of the accelerator architecture and the topological characteristics, dimensions
of the tensors, found in typical CNN layers. In this thesis, the accelerators
mentioned in Ch. 2.3 are considered. These considerations are used as input
to the tiling algorithm to constraint the tile sizes and ordering. They can be
stated as follows:

• The main scope of the tiling algorithm is to fit the input, weight and
output data into the accelerator’s PLM. To accomplish this requirement,
it is needed to know the various sizes of these PLMs, so the algorithm
can recursively check if the tile fits these sizes.

• The for loops of the accelerators should have fixed upper bounds. Since
each loop works on one dimension of the tensor, this means that each
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tensor dimension has a maximum value supported by the accelerators.
These maximum values have to be considered when deciding the dimen-
sion of a tile.

• The accelerators have several multiply-and-accumulate (MAC) units
within the computation unit. Each PE works with a different and
independently set of data. In the case of a 2D-convolution (2D-Conv)
each PE works on a different output channel, in detphwise convolution
(DW-COnv) each PE works on a different input channel, and in fully-
connected (FC) operation each PE works on a different output neuron.

• The tiling architecture considers the implementation of a precision-
scalable (PS) accelerator based on ST multipliers. Therefore, as ex-
plained in Ch. 2, multiple input features and weights values are fetched
for the multiplier when using PS accelerators in low-precision configu-
ration. These values are taken from different input channels (up to 4
channels for the lowest precision) in the case of 2D-Conv or different
input values (up to 4 for the lowest precision) in the case of DW-COnv
or FC algorithms. To leverage the advantages of the PS accelerator,
the tiling algorithm should take into account the different values men-
tioned in the previous bullet points and split the input or weight tensors
considering the precision configuration as the limit values. With this
consideration, it is always possible to take advantage of the low-precision
configuration.

• When the input tensor is tiled in the height or width dimensions, the
sliding process used in convolution makes that part of the data has to be
replicated in adjacent tiles to guarantee that the convolution operation
is perform correctly. Consequently, in this work the tiling of the input
tensor in width dimension and the tiling of the weight tensor in the
width and height dimension are avoided.

After taking these requirements in consideration, a set of inequalities is
derived for each accelerator taking inspiration from Dory [10]. In particular,
three memory size conditions have to be met for each PLM used. For the
more complex case, 2D-Conv, the inequalities are:

PLMIN ≥ HIN ∗ WIN ∗ CIN (4.1)

PLMW ≥ Hkernel ∗ Wkernel ∗ CIN ∗ COUT (4.2)
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PLMOUT ≥ HOUT ∗ WOUT ∗ COUT (4.3)

Inequality 4.1 evaluates if the input PLM size is greater or equal to the
multiplication of the input tensor dimensions: height, width and channel
dimension. Inequality 4.2 evaluates if the weight PLM size is greater or equal
to the multiplication of the weight tensor dimensions: kernel height, kernel
width, channel input, and channel output dimension. Inequality 4.3 evaluates
if the output PLM size is greater or equal to the multiplication of the output
tensor dimensions: height, width and channel dimension. These inequalities
have to be checked each time a tile is evaluated. Then if all the conditions
are satisfied, the tiling algorithm is able to find a feasible tile which can be
executed by the accelerator, otherwise the memory requirements need to be
less restrictive.
After this general introduction, the tiling algorithm is now explained in detail
for each kind of accelerator considered in this work:

• 2D Convolution steps:

1. The tiling starts by dividing the output channel dimension of the
weight and output tensors. To obtain the maximum performance of
the accelerator, the number of output channels taken by the tile is
equal to the number of PEs present in the accelerator, in case there
are more PEs than output channels no tiling operation is done. In
this way, the accelerator can leverage all its internal resources and
can process data in parallel. Figure 4.1 shows a weight tensor with
two output channels represented by tow cubes.

2. The next step is to tile across the input channel dimension of the
input and weight tensors. In this step, the tensors are recursively
divided by two until the inequalities 4.1 and 4.2 are met or until
a minimum channel input value is reached. Depending on the
precision configuration of the accelerator, the minimum values change
correspondingly to the number of input channels processed in parallel.
For instance, when the precision configuration is set to the lowest
precision (i.e. 4-bit for activations and weights) the accelerator takes
up to 4 different values from different input channels; in this case
the minimum channel input value is also set to 4. In the case of
medium precision (i.e. 16-bit for activations and weights) the value
is 2 and for full precision (i.e. 16-bit for activations and weights) is 1
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because the accelerator only takes one value from the input channels
at a time. Figure 4.2 shows an input or weight tensor which has
been tiled across the input channel dimension dividing the tensor
by two.

3. If the tiled tensor still does not fit into the memories, the current
step is executed. Here the input and output tensor are tiled across
the height dimension. A fixed-height length is taken to simplify
the problem of data replication when dealing with adjacent tiles.
The length is equal to the height length of the kernel, this choice
simplifies the need to calculate a tile dimension compatible with the
size of the kernel and the stride used in convolution operation. It
also avoids to take a part of the tensor that will not be used due to
a mismatch between the tile size and the kernel/stride sizes. Then,
the tiling across the width dimension is avoided to prevent data
replication for adjacent tiles (which can have some part of the input
data in one and the rest of the data in the next tile). Figure 4.3
shows an input or output tensor that has been tiled across height
dimension selecting the height size equal to the kernel height size.

4. In case the memory requirements are not satisfied up to this point,
this last step is performed. Here the tiling across the output channel
dimension is performed again. In this case, performance is resigned
and functionality is prioritized. The tile is divided by two, the
conditions are checked, and then the cycle is repeated up to the
point where just one output channel is obtained.

Figure 4.1: Tiling of the weight tensor across output channel dimension
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Figure 4.2: Tiling of the in-
put/weight tensor across input
channel dimension

Figure 4.3: Tiling of the input
tensor across the height dimension

• Depthwise convolution steps:

1. In the case of DW-Conv the process starts with the tiling across the
channels. As the case of 2D-Conv, here each PE works in a single
channel independently of the other channels. Therefore, the number
of channels taken by the tile is equal to the number of PEs present
in the accelerator. If the number of channels is less than the number
of PEs, no tiling is performed. In this case the three tensors are
tiled, input, weight and output tensors.

2. After tiling across channel dimension, the tiling across height di-
mension is performed in the same way as the 2D-Conv, obtaining a
height size equal to the kernel height size. Here just the input and
output tensors are tiled.

3. Finally, if the tensor does not fit into the PLM requirements; perfor-
mance is rescinded to achieve a feasible tile. A recursively division
by 2 is done in channel dimension until the constraints are met.

• Fully-connected steps:

1. In the FC case there are just two dimensions to tile. First, the tiling
is performed in the output activation dimension. In this dimension
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the values are independent, therefore each PE can work with one of
them. As the previous cases, the number of output activations taken
by the tile is equal to the number of PEs. If the number of output
activations is less than the number of PEs, no tiling is performed.
In this case both weight and output tensors are tiled.

2. The next step is to tile across the input activations dimension both
input and weight tensors. In this case, the tensors are recursively
divided by two until the memory constraints are met or until a mini-
mum value is achieved. The minimum value depend on the precision
configuration that will be used in the computation. For instance,
when the precision configuration is set to the lowest precision, the
accelerator can take up to 4 different values from different input
activations; in this case the minimum value is also set to 4. In
the case of medium precision the value is 2 and for full precision
is 1 because the accelerator only takes one value from the input
activations at a time.

3. In case the memory requirements are not satisfied up to this point,
this last step is performed. Here the tiling across the output ac-
tivations dimension is performed again. In this case, performance
is gave up and functionality is prioritized. The tile is recursively
divided by two, the conditions are checked each time, and if they
are not satisfied the cycle repeats up to the point where just one
output channel is obtained.

4.2 Software Implementation
The tiling algorithm was implemented in C language and can be executed
offline because the size of the accelerator’s PLMs are known in advance, i.e.
the tile sizes can be calculated before the inference process saving compu-
tation time for the processor, following the implementation of each tiling
algorithm explained before.

4.2.1 2D Convolution Tiling
The method that computes the tiling has the following prototype:
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Listing 4.1: Tiling method prototype
1 i n t g e t _ t i l i n g ( i n t Hin , i n t Win , i n t Cin , i n t Cout , i n t ker , i n t ∗ Cout_t , i n t ∗

Cin_t , i n t ∗ Hin_t ) ;

It receives the dimensions of the tensors: Hin, Win, Cin, Cout, ker; and
then it returns the tiled dimensions with the pointers: Cout_t, Cin_t, and
Hin_t. Then the memory requirements are calculated with the help of the
mem_update function. The available and required memories are printed as
well.

Listing 4.2: Initialization step
1 void mem_update( i n t Hin , i n t Win , i n t Cin , i n t Cout , i n t ker , i n t ∗ mem_in , i n t

∗ mem_w, i n t ∗ mem_out) {
2 ∗mem_in = Hin ∗ Win ∗ Cin ;
3 ∗mem_w = ker ∗ ker ∗ Cin ∗ Cout ;
4 ∗mem_out = Hin ∗ Win ∗ Cout ;
5 }
6 i n t g e t _ t i l i n g ( i n t Hin , i n t Win , i n t Cin , i n t Cout , i n t ker , i n t ∗ Cout_t , i n t ∗

Cin_t , i n t ∗ Hin_t ) {
7 i n t mem_in , mem_w, mem_out ;
8 mem_update( Hin , Win , Cin , Cout , ker , &mem_in , &mem_w, &mem_out) ;
9 p r i n t f ( " Ava i l ab l e l o c a l input memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_in , mem_in) ;
10 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_w, mem_w) ;
11 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_out , mem_out) ;
12 . . .

After checking the preliminary conditions, the first step of the tiling is
performed. The code checks the memory conditions for the weights and
outputs, the maximum number of output channel supported by the accelerator
(FILT_MAX) is also checked. If the number of output channels are greater
than the PEs, the tile is performed and the memory parameters are updated.
Otherwise, no tiling is performed.

Listing 4.3: First step in the algorithm for conv2d
1 ∗Cout_t = Cout ;
2 i f (plm_w < mem_w | | plm_out < mem_out | | ∗Cout_t > FILT_MAX) {
3 // T i l e a c r o s s Cout dimension with t i l e s mu l t ip l e o f number o f PEs

(16)
4 i f ( Cout >= PE) {
5 ∗Cout_t = PE;
6 mem_update( Hin , Win , Cin , ∗Cout_t , ker , &mem_in , &mem_w, &mem_out)

;
7 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tWeight memory

needed a f t e r t i l i n g Cout i s : \ t%d\n" , plm_w, mem_w) ;
8 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tOutput memory

needed a f t e r t i l i n g Cout i s : \ t%d\n" , plm_out , mem_out) ;
9 } e l s e {
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10 p r i n t f ( "No t i l i n g in Cout was performed \n" ) ;
11 }
12 }

The next step of the tiling is done in a similar way, in this case the
memory requirements are checked recursively in a while loop and if the
conditions are satisfied or the minimum values are reached (N_C_MAX
is the maximum value of the input channel dimension supported by the
accelerator), the loop breaks thanks to the if statements. The code also
approximates the tile dimension to a multiple of 2 or 4 in case lower precision
configuration are used. Thanks to this approximation the accelerator can
leverage the parallel computation for the lower precision configurations.
Then the memory conditions are updated and the information of the tiling
is printed for debugging purposes.

Listing 4.4: Second step in the tiling algorithm for 2D-Conv
1 // T i l e a c r o s s Cin dimension d i v i d i n g by 2 u n t i l i t f i t s i n to memory

otherwi s e go to next s tep
2 ∗Cin_t = Cin ;
3 i n t i = 1 ;
4 whi le ( ( plm_in < mem_in | | plm_w < mem_w | | plm_out < mem_out | | ∗Cin_t >

N_C_MAX) ) {
5 i f ( prec i s i on_opt == 0) {
6 i f (∗ Cin_t == 1) break ;
7 } e l s e i f ( prec i s i on_opt == 1) {
8 i f (∗ Cin_t == 4) break ;
9 } e l s e { // prec i s i on_opt == 2 | | prec i s i on_opt == 3

10 i f (∗ Cin_t == 2) break ;
11 }
12 ∗Cin_t = (∗ Cin_t / 2) ;
13 // aproximate the t i l e dimesion to a mul t ip l e o f 2 or 4 depending on

prec i s i on_opt
14 i f ( prec i s i on_opt == 1) {
15 i f (∗ Cin_t % 4 != 0)
16 ∗Cin_t += ∗Cin_t % 4 ;
17 } e l s e i f ( prec i s i on_opt == 2 | | prec i s i on_opt == 3) {
18 i f (∗ Cin_t % 2 != 0)
19 ∗Cin_t += 1 ;
20 }
21 mem_update( Hin , Win , ∗Cin_t , ∗Cout_t , ker , &mem_in , &mem_w, &mem_out) ;
22 p r i n t f ( " Ava i l ab l e input memory i s : \ t%d\ tInput memory needed a f t e r

t i l i n g Cin=%d %d time ( s ) i s : \ t%d\n" , plm_in , ∗Cin_t , i , mem_in) ;
23 p r i n t f ( " Ava i l ab l e weight memory i s : \ t%d\tWeight memory needed a f t e r

t i l i n g Cin=%d %d time ( s ) i s : \ t%d\n" , plm_w, ∗Cin_t , i , mem_w) ;
24 i ++;
25 }

Afterwards, if memory constraints are still unsatisfied, tiling across height
dimension is done. This part of the code checks the memory conditions
and also the maximum height dimension supported by the accelerator
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(N_H_MAX). Then assigns the size tile equal to the kernel height size
and finally update the memory conditions.

Listing 4.5: Third step in the tiling algorithm for 2D-Conv
1 // T i l e a c r o s s Hin dimension by s t r i p e s with he ight equal to k e r n e l ’ s

he ight
2 ∗Hin_t = Hin ;
3 i f ( plm_in < mem_in | | plm_out < mem_out | | ∗Hin_t > N_H_IN_MAX) {
4 ∗Hin_t = ker ;
5 mem_update(∗ Hin_t , Win , ∗Cin_t , ∗Cout_t , ker , &mem_in , &mem_w, &

mem_out) ;
6 p r i n t f ( " Ava i l ab l e input memory i s : \ t%d\ tInput memory needed a f t e r

t i l i n g Hin i s : \ t%d\n" , plm_in , mem_in) ;
7 p r i n t f ( " Ava i l ab l e output memory i s : \ t%d\tOutput memory needed a f t e r

t i l i n g Hin i s : \ t%d\n" , plm_out , mem_out) ;
8 }

Finally, the last part of the algorithm is applied. Memory constraints are
checked again and the recursively division by two is done taking into account
an approximation to the upper integer in case the division gives an fractional
result. This prevents missing data when there is an uneven division. If
the conditions are not met, a warning message is printed. Otherwise tiles
dimensions are printed, then the total number of tiles are also calculated.
This last step will vary depending on the which dimensions were tiled. The
get_h_iterations function returns the number of iterations that are performed
in the convolution when the kernel is slid through the input in the height
dimension.

Listing 4.6: Fourth step in the tiling algorithm for 2D-Conv
1 . . .
2 // T i l e a c r o s s Cout again g i v i n g up performance
3 whi le (∗ Cout_t > 1 && (plm_w < mem_w | | plm_out < mem_out) ) {
4 //∗Cout_t = ( i n t ) c e i l (∗ Cout_t / 2 . 0 ) ;
5 ∗Cout_t = (∗ Cout_t % 2 == 0) ? (∗ Cout_t / 2) : (∗ Cout_t / 2 + 1) ;
6 mem_update(∗ Hin_t , Win , ∗Cin_t , ∗Cout_t , ker , &mem_in , &mem_w, &

mem_out) ;
7 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tWeight memory needed

a f t e r t i l i n g Cout i s : \ t%d\n" , plm_w, mem_w) ;
8 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tOutput memory needed

a f t e r t i l i n g Cout i s : \ t%d\n" , plm_out , mem_out) ;
9 }

10 i f ( plm_in < mem_in | | plm_w < mem_w | | plm_out < mem_out | | Win >
N_W_IN_MAX | | ∗Hin_t > N_H_IN_MAX | | ∗Cin_t > N_C_MAX | | ∗Cout_t >
FILT_MAX ) {

11 p r i n t f ( " Layer impos s ib l e to t i l e , l a r g e r memory needed\n" ) ;
12 re turn −1;
13 } e l s e {
14 p r i n t f ( " T i l e dimensions are − Hin x Win x Cin x Cout : %d %d %d %d\n" ,

∗Hin_t , Win , ∗Cin_t , ∗Cout_t ) ;
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15 i n t c in_i t = ( Cin % (∗ Cin_t )==0)? ( Cin/ (∗ Cin_t ) ) : ( Cin/ (∗ Cin_t ) +
1) ;

16 i n t cout_it = ( Cout % (∗ Cout_t )==0)? ( Cout/ (∗ Cout_t ) ) : ( Cout/ (∗
Cout_t ) + 1) ;

17 i f (∗ Hin_t<Hin )
18 p r i n t f ( " Total number o f t i l e s ( aprox ) : %d\n" , ( get_h_iterat ions ( ) ∗

c in_i t ∗ cout_it ) ) ;
19 e l s e
20 p r i n t f ( " Total number o f t i l e s ( aprox ) : %d\n" , ( c in_i t ∗ cout_it ) ) ;
21 re turn 0 ;
22 }
23 }

4.2.2 Depthwise Convolution Tiling
The code that implements the tiling for DW-Conv is very similar to the code
used in the case of 2D-Conv. The main difference is the absence of output
channels in the DW-Conv case, therefore there is just one channel dimension
which is tiled according to the number of PEs present in the accelerator.
Another major difference is that in this case the precision configuration is not
considered due to the absence of tiling in the width dimension, the one from
which are taken more input values in case a low precision configuration is
used. The code also calculates the number of tiles that should be calculated
and it returns the tile’s sizes in case of a successful tiling.

Listing 4.7: Tiling algorithm DW-Conv
1 i n t g e t _ t i l i n g ( i n t Hin , i n t Win , i n t Cin , i n t ker , i n t ∗ Cin_t , i n t ∗ Hin_t ) {
2 i n t mem_in , mem_w, mem_out ;
3 mem_update( Hin , Win , Cin , ker , &mem_in , &mem_w, &mem_out) ;
4 p r i n t f ( " Ava i l ab l e l o c a l input memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_in , mem_in) ;
5 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_w, mem_w) ;
6 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_out , mem_out) ;
7
8 // T i l e a c r o s s Cin dimension d i v i d i n g by 2 u n t i l i t f i t s i n to memory

otherwi s e go to next s tep
9 ∗Cin_t = Cin ;

10 i n t i = 1 ;
11 i f ( ( plm_in < mem_in | | plm_w < mem_w | | plm_out < mem_out | | ∗Cin_t >

N_C_MAX) ) {
12 i f ( Cin >= PE) {
13 ∗Cin_t = PE;
14 mem_update( Hin , Win , ∗Cin_t , ker , &mem_in , &mem_w, &mem_out) ;
15 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tWeight memory

needed a f t e r t i l i n g Cin i s : \ t%d\n" , plm_w, mem_w) ;
16 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tOutput memory

needed a f t e r t i l i n g Cin i s : \ t%d\n" , plm_out , mem_out) ;
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17 } e l s e {
18 p r i n t f ( "No t i l i n g in Cin was performed \n" ) ;
19 }
20 }
21 // T i l e a c r o s s Hin dimension by s t r i p e s with he ight equal to k e r n e l ’ s

he ight
22 ∗Hin_t = Hin ;
23 i f ( plm_in < mem_in | | plm_out < mem_out | | ∗Hin_t > N_H_IN_MAX) {
24 ∗Hin_t = ker ;
25 mem_update(∗ Hin_t , Win , ∗Cin_t , ker , &mem_in , &mem_w, &mem_out) ;
26 p r i n t f ( " Ava i l ab l e input memory i s : \ t%d\ tInput memory needed a f t e r

t i l i n g Hin i s : \ t%d\n" , plm_in , mem_in) ;
27 p r i n t f ( " Ava i l ab l e output memory i s : \ t%d\tOutput memory needed a f t e r

t i l i n g Hin i s : \ t%d\n" , plm_out , mem_out) ;
28 }
29 // T i l e a c r o s s Cin again g i v i n g up performance
30 whi le (∗ Cin_t > 1 && (plm_w < mem_w | | plm_out < mem_out) ) {
31 //∗Cout_t = ( i n t ) c e i l (∗ Cout_t / 2 . 0 ) ;
32 ∗Cin_t = (∗ Cin_t % 2 == 0) ? (∗ Cin_t / 2) : (∗ Cin_t / 2 + 1) ;
33 mem_update(∗ Hin_t , Win , ∗Cin_t , ker , &mem_in , &mem_w, &mem_out) ;
34 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tWeight memory needed

a f t e r t i l i n g Cin i s : \ t%d\n" , plm_w, mem_w) ;
35 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tOutput memory needed

a f t e r t i l i n g Cin i s : \ t%d\n" , plm_out , mem_out) ;
36 }
37 i f ( plm_in < mem_in | | plm_w < mem_w | | plm_out < mem_out | | Win >

N_W_IN_MAX | | ∗Hin_t > N_H_IN_MAX | | ∗Cin_t > N_C_MAX ) {
38 p r i n t f ( " Layer impos s ib l e to t i l e , l a r g e r memory needed\n" ) ;
39 re turn −1;
40 } e l s e {
41 p r i n t f ( " T i l e dimensions are − Hin x Win x Cin : %d %d %d \n" , ∗Hin_t ,

Win , ∗Cin_t ) ;
42 i n t c in_i t = ( Cin % (∗ Cin_t )==0)? ( Cin/ (∗ Cin_t ) ) : ( Cin/ (∗ Cin_t ) +

1) ;
43 i f (∗ Hin_t<Hin )
44 p r i n t f ( " Total number o f t i l e s ( aprox ) : %d\n" , ( get_h_iterat ions ( ) ∗

c in_i t ) ) ;
45 e l s e
46 p r i n t f ( " Total number o f t i l e s ( aprox ) : %d\n" , ( c in_i t ) ) ;
47 re turn 0 ;
48 }
49 }

4.2.3 Fully-connected Tiling
As the previous cases, the FC Tiling follows the a similar procedure to obtain
the tiling and to satisfy the memory constraints. However, in this case the
first dimension to be tiled is the output activations dimension taking into
consideration the number of PEs present in the accelerator. Afterwards, the
tiling across input activations dimension is done considering the memory
constraints and the maximum number of input activations supported by
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the accelerator (N_MAX). An approximation to the upper multiply is also
performed in case the division gives as result values different from multiplies
of 2 or 4, this last step is done just in the case of using the lower precision
configurations.

Listing 4.8: Tiling algorithm FC
1 i n t g e t _ t i l i n g ( i n t N, i n t M, i n t ∗ N_t, i n t ∗ M_t) {
2 i n t mem_in , mem_w, mem_out ;
3 mem_update(N,M ,&mem_in , &mem_w, &mem_out) ;
4 p r i n t f ( " Ava i l ab l e l o c a l input memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_in , mem_in) ;
5 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_w, mem_w) ;
6 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tMemory needed i s : \ t%d\n" ,

plm_out , mem_out) ;
7 ∗M_t = M;
8 i f ( ( plm_in < mem_in | | plm_w < mem_w | | plm_out < mem_out | | ∗M_t > M_MAX

) ) {
9 i f (M >= PE) {

10 ∗M_t = PE;
11 mem_update( N, ∗M_t, &mem_in , &mem_w, &mem_out) ;
12 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tWeight memory

needed a f t e r t i l i n g M i s : \ t%d\n" , plm_w, mem_w) ;
13 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tOutput memory

needed a f t e r t i l i n g M i s : \ t%d\n" , plm_out , mem_out) ;
14 } e l s e {
15 p r i n t f ( "No t i l i n g in M was performed \n" ) ;
16 }
17 }
18 ∗N_t = N;
19 i n t i = 1 ;
20 whi le ( ( plm_in < mem_in | | plm_w < mem_w | | plm_out < mem_out | | ∗N_t >

N_MAX) ) {
21 i f ( prec i s i on_opt == 0) {
22 i f (∗N_t == 1) break ;
23 } e l s e i f ( prec i s i on_opt == 1) {
24 i f (∗N_t == 4) break ;
25 } e l s e { // prec i s i on_opt == 2 | | prec i s i on_opt == 3
26 i f (∗N_t == 2) break ;
27 }
28 ∗N_t = (∗N_t / 2) ;
29 i f ( prec i s i on_opt == 1) {
30 i f (∗N_t % 4 != 0)
31 ∗N_t += ∗N_t % 4 ;
32 } e l s e i f ( prec i s i on_opt == 2 | | prec i s i on_opt == 3) {
33 i f (∗N_t % 2 != 0)
34 ∗N_t += 1 ;
35 }
36 mem_update(∗N_t, ∗M_t, &mem_in , &mem_w, &mem_out) ;
37 p r i n t f ( " Ava i l ab l e input memory i s : \ t%d\ tInput memory needed a f t e r

t i l i n g N=%d %d time ( s ) i s : \ t%d\n" , plm_in , ∗N_t, i , mem_in) ;
38 p r i n t f ( " Ava i l ab l e weight memory i s : \ t%d\tWeight memory needed a f t e r

t i l i n g N=%d %d time ( s ) i s : \ t%d\n" , plm_w, ∗N_t, i , mem_w) ;
39 i ++;
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40 }
41 // T i l e a c r o s s M again g i v i n g up performance
42 whi le (∗M_t > 1 && (plm_w < mem_w | | plm_out < mem_out) ) {
43 ∗M_t = (∗M_t % 2 == 0) ? (∗M_t / 2) : (∗M_t / 2 + 1) ;
44 mem_update(∗N_t, ∗M_t, &mem_in , &mem_w, &mem_out) ;
45 p r i n t f ( " Ava i l ab l e l o c a l weight memory i s : \ t%d\tWeight memory needed

a f t e r t i l i n g M i s : \ t%d\n" , plm_w, mem_w) ;
46 p r i n t f ( " Ava i l ab l e l o c a l output memory i s : \ t%d\tOutput memory needed

a f t e r t i l i n g M i s : \ t%d\n" , plm_out , mem_out) ;
47 }
48 i f ( plm_in < mem_in | | plm_w < mem_w | | plm_out < mem_out | | ∗N_t > N_MAX

| | ∗M_t > M_MAX ) {
49 p r i n t f ( " Layer impos s ib l e to t i l e , l a r g e r memory needed\n" ) ;
50 re turn −1;
51 } e l s e {
52 p r i n t f ( " T i l e dimensions are − N x M : %d %d \n" , ∗N_t, ∗M_t) ;
53 i n t N_it = (N % (∗N_t)==0)? (N/ (∗N_t) ) : (N/ (∗N_t) + 1) ;
54 i n t M_it = (M % (∗M_t)==0)? (M/ (∗M_t) ) : (M/ (∗M_t) + 1) ;
55 p r i n t f ( " Total number o f t i l e s ( aprox ) : %d\n" , ( N_it ∗ M_it ) ) ;
56 re turn 0 ;
57 }
58 }

4.2.4 2D Convolution Tiled Process and Loops Order
Once the tile sizes are computed, the next step is to decide the processing
order of the tiles to obtain the best performance of the system and try to
reduce the memory transfers if partial results are generated. On the other
hand, the addressing of the tiles has to be managed to access the data
correctly and to store the output data in the correct addresses. Figure 4.4
shows how the tensor data is stored in external memory for the architecture
proposed. The picture represents an example of a tensor with the following
dimensions: 4x2x2x2 Width - Height - Input channels - Output channels.
The values are packed first considering the width dimension or the rows,
then each row is packed considering the height dimension. The following
dimension to group is the input channel, placing the tensor Width-Height-
Input_Channel consecutively. Finally, the last packing is done considering
the output channels, defining the outermost index as the channel output
of the tensor. This is the more complex case and corresponds to a weight
tensor; in case of the input and output tensor just the first three dimensions
are considered, but the order remains the same.

Figure 4.5 depicts the external memory organization of input, weight and
output tensors. To address each tensor three pointers are used, each of them
pointing to the beginning of each memory region. Hence these three pointers
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Figure 4.4: Tensor data organization in external memory

will serve as the reference when a new tile must be addressed. The software
that is in charge of invoking the accelerator to perform the convolution
operation should also calculate the offsets needed by the pointers to address
the corresponding tiles. Therefore, the three pointers are continuously
updated with the offsets. The tile sizes are also checked in case there is
present an uneven division in the last iteration.

Figure 4.5: Organization of the tensors in external memory

The method which controls the convolution tiling organization has the
following prototype:

Listing 4.9: Prototype 2D-Conv tiled
1 i n t conv2d_t i l ing ( token_t ∗ input , token_t ∗ weight , token_t ∗output ,

uint32_t o f f s e t_data ) ;

It receives the three pointers mentioned above: input, weight, and output
and an additionally pointer for the quantization data. The last will be explain
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later in the document. The code defines the values and flags that control
the processing of the tiles. Table 4.1 explain the function of each variable
used in this part of the code. The tiling algorithm is also called, however it
can be also performed offline and only the tile sizes must be provided to this
part of the code.

Listing 4.10: Initialization of parameters for 2D-Conv
1 i n t conv2d_t i l ing ( token_t ∗ input , token_t ∗ weight , token_t ∗output , uint32_t

o f f s e t_data ) {
2 i n t Cout_t , Cin_t , Hin_t ;
3 i n t Cout_t_aux , Cin_t_aux , Hin_t_aux ;
4 i n t Hin_acc = 0 ;
5 i n t Cin_acc = 0 ;
6 i n t Cout_acc = 0 ;
7 i n t offset_PE = 0 ;
8 i n t offset_PE_out = 0 ;
9 i n t acc_f lag = 0 ;

10 i n t q_flag = 0 ;
11 i n t update_reg = 1 ;
12 i n t o f f s e t_read_c i = Hin∗Win ;
13 i n t t i l i n g = g e t _ t i l i n g ( Hin , Win , Cin , Cout , ker , &Cout_t , &Cin_t , &Hin_t )

;
14 i f ( t i l i n g != 0) // I f t i l i n g can ’ t be done
15 p r i n t f ( " T i l i n g i n f e a s i b l e \n " ) ;
16 re turn −1;
17 Cout_t_aux = Cout_t ;
18 Cin_t_aux = Cin_t ;
19 Hin_t_aux = Hin_t ;
20 token_t∗ in_p = input ;
21 token_t∗ w_p = weight ;
22 token_t∗ out_p = output ;
23 i n t t i l e = 0 ;
24 uint8_t pad_type = 0 ;
25 i f (PE>1){
26 offset_PE = Cin ∗ ker ∗ ker ;
27 offset_PE_out = Wout∗Hout ;
28 }
29 . . .
30

Variable Description
Cout, Cin, Hin This variables store the sizes of the entire tensors

for the output channel, input channel and height
dimensions respectively

Cout_t, Cin_t,
Hin_t

This variables store the sizes of the tile
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Cout_t_aux,
Cin_t_aux,
Hin_t_aux

Auxiliary variables to restore the size values

Hin_acc, Cin_acc,
Cout_acc

These variables accumulate the values of tile sizes
at each iteration to compare them with the orig-
inal sizes. If the accumulation value is greater
than the original a correction has to be done

offset_PE It stores an offset value used when a tiled weight
tensor is read. If the tensor is tiled across input
channel and output channel dimensions, the tiled
values will be split in different chunks inter-spaced
by a size equal to this variable

offset_PE_out It stores the an offset value used when a tiled
output tensor is written. If the tensor is tiled
in height dimension, the output values will be
split in chunks inter-spaced by a size equal to this
variable

acc_flag Variable used to enable accumulation, it is needed
when processing input channels in different tiles
and partial results are generated

q_flag Variable used to activate quantization in the ac-
celerator, it is enabled at the end of the input
channel processing, i.e. when no more partial
results are generated

update_reg It is used to enable the update of some user con-
figurations registers for the accelerator, not all
the registers have to be updated in each iteration

offset_read_ci It is an offset value used when a tiled input tensor
is read and the tiling has split the data into chunks
inter-spaced by a size equal to this variable. This
case happens when a low precision configuration
is used
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pad_type This variable helps to control the behaviour of
the padding in the accelerator depending on how
the tile has been split. If the variable is 1, the
padding is done on the sides and upper part of the
tile. If it is 2, the padding is done on the sides and
the lower part of the tile. If it is 3, the padding
is done only on the sides of the tile. Finally, if it
is 0, the padding is done on all the sides

Table 4.1: Variables definition for 2D-Conv tiled

The first loop to iterate is the one that goes through the output channels.
In this case two partial offsets are calculated, one for the weight tensor and
another for the output tensor. On the other hand the if condition evalu-
ates if the accumulator value is greater than the original channel output
size, if so a correction in the size of the tile is done and the update flag
is set to change all the user registers values in the next accelerator invocation.

Listing 4.11: Iteration through output channels
1 // I t e r a t e through the number o f t i l e s in Cout channel and c a l c u l a t e the

address o f f s e t f o r output and weight p o i n t e r s
2 i n t tempp = ( Cout % Cout_t == 0) ? ( Cout / Cout_t ) : ( Cout / Cout_t +1) ;
3 f o r ( i n t co = 0 , Cout_acc=0; co < tempp ; co++) {
4 token_t∗ out_p_co = ( ( co ∗ Cout_t ) ∗ Hout ∗ Wout) + output ;
5 token_t∗ w_p_co = ( ( co ∗ Cout_t ) ∗ Cin ∗ ker ∗ ker ) + weight ;
6 Cout_acc += Cout_t ;
7 i f ( Cout_acc>Cout ) {
8 Cout_t −= ( Cout_acc − Cout ) ;
9 update_reg = 1 ;

10 }

After this point the workflow is divided in two cases: in one case the tiling
is done in height and input channel dimensions and in the other the tiling is
done just in input channel dimension as seen in Lst. 4.12. Let us see first
the case where both dimensions have been tiled.
The next iteration loop is the one that goes through the height dimension.
The choice of going first with the height dimension instead of the channel
input dimension is taken due to the behaviour of the accelerator. The
accelerator used in this thesis has an output stationary dataflow, hence it
keeps the output results in memory and permits the reuse of these values
in the following iteration. In this context, and taking into account the
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computation of the output values in 2D-Conv where the results of the input
channels have to be accumulated, it is a reasonable choice to let the channel
input loop be the inner part of the code. Therefore, at every new iteration,
the partial results computed by the accelerator can be accumulated with the
next values in the channel input dimension.
In the height loop, the partial offsets are calculated for the input and output
tiles. In the case of the output offset, the partial offset value of the outermost
loop is added to get the final offset value for the output tile. Then, the
height accumulator (Hin_acc) is updated and used to check if the value
has over-passed the original height size. If the previous condition is true,
the size correction is performed to the tile and the update flag is also set.
The size correction has to be done because of an uneven tiling of the tensor
can lead to a different size of the tile at the last iteration. In this part the
configuration in case of padding is also set. Depending on the iteration, the
value of the variable pad_type is adjusted. If the first iteration is computed,
the variable value is 1 which means to apply the padding to the sides and
the upper part. If the last iteration is computed, the variable value is 2
hence the padding is done in the sides and lower part. In the other cases the
variable value is 3 hence the padding is done just in the sides of the tensor.
The output pointer has to be corrected if padding is used. The correction is
done after the first iteration (h > 0).
The last iteration loop goes through the channel input dimension. The loop
bound is calculated and approximated to the upper integer number. Then,
partial offsets are computed and added to the previous partial offsets to
generate the final offsets for the input and weight tiles. As the previous cases,
a size correction is performed if the accumulator value is greater than the
original channel input size of the tensor. In this part the flags to accumulate
partial results and to enable quantization are also set. The acc_flag is zero,
which means that the accelerator must reset the accumulator buffer, when
the first iteration is computed and is 1 in all the other iterations, which means
that the accelerator must accumulate the partial results. On the other hand,
the q_flag is set when the accumulator contains the final result, i.e. the last
tile iteration is computed, while is zero in all the other iterations. Finally,
the code invokes the accelerator to start the convolution operation passing
the tile sizes,the stride, the number of padding pixels, the type of padding,
the pointers to the tile tensors, the offsets for reading and writing data on
memory, and the flags to manage accumulation, precision and quantization.
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Listing 4.12: Case H and Cin tiled - H and Cin loops iterations
1 i f ( Hin_t < Hin ) {
2 // I t e r a t e through the number o f t i l e s in Hin dimension and

c a l c u l a t e the o f f s e t f o r input and output p o i n t e r s
3 f o r ( i n t h = 0 , Hin_acc = Hin_t − s t r i d e , Hin_t = Hin_t_aux ; h <

get_h_iterat ions ( ) ; h++) {
4 in_p = input + (h ∗ s t r i d e ∗ Win) ;
5 out_p = out_p_co + (h ∗ Wout) ;
6 t i l e ++;
7 Hin_acc += s t r i d e ;
8 i f ( Hin_acc>Hin ) {
9 Hin_t −= ( Hin_acc −Hin ) ;

10 update_reg = 1 ;
11 }
12 i f ( pad > 0) {
13 i f (h==0)
14 pad_type = 1 ; // padding s i d e s and upper part
15 e l s e i f (h==get_h_iterat ions ( ) −1)
16 pad_type = 2 ; // padding s i d e s and lower part
17 e l s e
18 pad_type = 3 ; // padding j u s t s i d e s
19 i f (h > 0) {
20 out_p += Wout∗( pad/ s t r i d e ) ; // o f f s e t c o r r e c t i o n in

case o f padding
21 }
22 }
23 // I t e r a t e through the number o f t i l e s in Cin channel and

c a l c u l a t e the o f f s e t f o r input and weight p o i n t e r s
24 i n t temp1 = ( Cin % Cin_t == 0) ? ( Cin / Cin_t ) : ( Cin / Cin_t +1) ;
25 f o r ( i n t c i = 0 , Cin_acc=0, Cin_t = Cin_t_aux ; c i < temp1 ; c i++) {
26 token_t∗ in_p_ci = ( c i ∗ Cin_t ∗ Hin ∗ Win) + in_p ;
27 w_p = w_p_co + ( c i ∗ Cin_t ∗ ker ∗ ker ) ;
28 Cin_acc += Cin_t ;
29 i f ( Cin_acc>Cin ) {
30 Cin_t −= ( Cin_acc−Cin ) ;
31 update_reg = 1 ;
32 }
33 i f ( c i == 0)
34 acc_f lag = 0 ;
35 e l s e
36 acc_f lag = 1 ;
37 i f ( c i == temp1 −1 && output_q_en )
38 q_flag = 1 ;
39 e l s e
40 q_flag = 0 ;
41 conv2d_hw ( ( int32_t ) ( in_p_ci − input ) , ( int32_t ) (w_p −

input ) , ( int32_t ) ( out_p − input ) , Win , Hin_t , Cin_t , Cout_t , pad ,
pad_type , offset_PE , offset_PE_out , prec i s ion_opt , acc_flag , q_flag ,
update_reg , offset_q_data , o f f s e t_read_c i ) ;

42 p r i n t f ( " T i l e completed \n" ) ;
43 update_reg = 0 ;
44 }
45 }
46 }

The second case in the workflow is present when the tiling is done only in
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the the channel input dimension. This case is similar to the previous scenario
with the difference that the loop iteration across the height dimension is
omitted. The partial offsets are calculated for the input and weight pointers.
The weight partial offset is added with the previous value calculated in the
channel output loop to obtain the final pointer for the weight tile, shown in
line 6 of Lst 4.13. In the case of the input pointer, it is directly generated
in this loop. The correction in case of the tile size and the control of the
quantization flag are executed in the same way as the previous case. The
configuration of the pad_type in this case is set to force the padding around
all the tensor because no tiling has been done in the height dimension. Finally,
the accelerator is invoked to compute the 2D-Conv with all the parameters
previously defined.

Listing 4.13: Case only Cin tiled - Cin loop iteration
1 e l s e {
2 // I t e r a t e through the number o f t i l e s in Cin channel and c a l c u l a t e

the o f f s e t f o r input and weight p o i n t e r s
3 i n t temp1 = ( Cin % Cin_t == 0) ? ( Cin / Cin_t ) : ( Cin / Cin_t +1) ;
4 f o r ( i n t c i = 0 , Cin_acc=0, Cin_t = Cin_t_aux ; c i < temp1 ; c i++) {
5 token_t∗ in_p_ci = ( c i ∗ Cin_t ∗ Hin ∗ Win) + input ;
6 w_p = w_p_co + ( c i ∗ Cin_t ∗ ker ∗ ker ) ;
7 Cin_acc += Cin_t ;
8 i f ( Cin_acc>Cin ) {
9 Cin_t −= ( Cin_acc−Cin ) ;

10 update_reg = 1 ;
11 }
12 t i l e ++;
13 i f ( pad > 0)
14 pad_type = 4 ; // padding in a l l s i d e s
15 i f ( c i == 0)
16 acc_f lag = 0 ;
17 e l s e
18 acc_f lag = 1 ;
19 i f ( c i == temp1 − 1 && output_q_en )
20 q_flag = 1 ;
21 e l s e
22 q_flag = 0 ;
23 conv2d_hw ( ( int32_t ) ( in_p_ci − input ) , ( int32_t ) (w_p − input )

, ( int32_t ) ( out_p − input ) , Win , Hin_t , Cin_t , Cout_t , pad , pad_type ,
offset_PE , offset_PE_out , prec i s ion_opt , acc_flag , q_flag , update_reg ,
offset_q_data , o f f s e t_read_c i ) ;

24 p r i n t f ( " T i l e completed \n" ) ;
25 update_reg = 0 ;
26 }
27 }
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4.2.5 Depthwise Convolution Tiled Process and Loops
Order

The DW-Conv tiled process is similar to the 2D-Conv tiled process. However,
there are some differences in the use of the variables for managing the offsets,
in the computing of the partials offsets, and also in the loop order executed in
the process. The table 4.2 defines the variables which change their definitions
with respect to 2D-Conv process.

Variable Description
Cin_t, Hin_t Same behaviour as previous 2D-Conv case
Cin_t_aux,
Hin_t_aux

Same behaviour as previous 2D-Conv case

Hin_acc, Cin_acc Same behaviour as previous 2D-Conv case
offset_PE It stores an offset value used when a tiled weight

tensor is read. The value differs from the 2D-Conv
analogous value because in this case the weight
tensor has only three dimensions (height-width-
channels), consequently the offset value is smaller,
i.e kernel height x kernel width.

offset_PE_out Same behaviour as previous 2D-Conv case
acc_flag No accumulation is performed in this case. Hence

the variable is always 0
q_flag Variable used to activate quantization. Due to the

topology of DW-Conv, the variable goes directly
to the accelerator invocation.

update_reg Same behaviour as previous 2D-Conv case
offset_read_ci Same behaviour as previous 2D-Conv case
pad_type Same behaviour as previous 2D-Conv case

Table 4.2: Variables definition for DW-Conv tiled

This process begins with the loop that goes through the channels dimension
because in this case there is no restriction or constraint for accumulating
partial results. Therefore, three partial offsets are calculated, each of them
corresponding to the input, weight, and output tensor pointers. The tile size
correction is checked and performed in case is necessary. Then, the workflow
is also divided depending if the Height tiling is performed or not. In case it is
not performed, the code invokes the DW-Conv accelerator passing the partial
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offsets calculated in the previous loop and all the parameters related to the
tile sizes and operation configuration. On the other hand, when height tiling
is done, partial offsets are calculated for the input and output tensor pointers,
then they are added with the partial offsets calculated in the previous loop
obtaining the final offsets. The padding configuration is also executed in
this case and the output offset correction as well. Finally, the DW-Conv
accelerator is called to begin the computation of the tile with the parameters
defined and calculated before the accelerator’s invocation.

Listing 4.14: DW-Conv tiled process
1 i n t depthwi s e_t i l i ng ( token_t ∗ input , token_t ∗ weight , token_t ∗output ,

uint32_t o f f s e t_data ) {
2 i n t Cin_t , Hin_t ;
3 i n t Cin_t_aux , Hin_t_aux ;
4 i n t Hin_acc = 0 ;
5 i n t Cin_acc = 0 ;
6 i n t offset_PE = 0 ;
7 i n t offset_PE_out = 0 ;
8 i n t acc_f lag = 0 ;
9 i n t q_flag = 0 ;

10 i n t update_reg = 1 ;
11 uint32_t of fset_q_data = of f s e t_data ;
12 int32_t o f f s e t_read_c i = Hin∗Win ;
13 i n t t i l i n g = g e t _ t i l i n g ( Hin , Win , Cin , ker , &Cin_t , &Hin_t ) ;
14 i f ( t i l i n g != 0) // I f t i l i n g can ’ t be done
15 p r i n t f ( " T i l i n g i n f e a s i b l e \n " ) ;
16 re turn −1;
17 Cin_t_aux = Cin_t ;
18 Hin_t_aux = Hin_t ;
19 token_t∗ in_p = input ;
20 token_t∗ w_p = weight ;
21 token_t∗ out_p = output ;
22 i n t t i l e = 0 ;
23 uint8_t pad_type = 0 ;
24 i f (PE>1){
25 offset_PE = ker ∗ ker ;
26 offset_PE_out = Wout∗Hout ;
27 }
28 i n t temp1 = ( Cin % Cin_t == 0) ? ( Cin / Cin_t ) : ( Cin / Cin_t +1) ;
29 f o r ( i n t c i = 0 , Cin_acc=0, Cin_t = Cin_t_aux ; c i < temp1 ; c i++) {
30 token_t∗ in_p_ci = ( c i ∗ Cin_t ∗ Hin ∗ Win) + input ;
31 token_t∗ w_p_ci = ( c i ∗ Cin_t ∗ ker ∗ ker ) + weight ;
32 token_t∗ out_p_ci = ( c i ∗ Cin_t ∗ Hout ∗ Wout) + output ;
33 Cin_acc += Cin_t ;
34 i f ( Cin_acc>Cin ) {
35 Cin_t −= ( Cin_acc−Cin ) ;
36 update_reg = 1 ;
37 }
38 i f ( Hin_t < Hin ) {
39 // I t e r a t e through the number o f t i l e s in Hin channel and

c a l c u l a t e the o f f s e t f o r input and output p o i n t e r s
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40 f o r ( i n t h = 0 , Hin_acc = Hin_t − s t r i d e , Hin_t = Hin_t_aux ; h <
get_h_iterat ions ( ) ; h++) {

41 in_p = in_p_ci + (h ∗ s t r i d e ∗ Win) ;
42 out_p = out_p_ci + (h ∗ Wout) ;
43 // p r i n t f ( " T i l e : %d Cout : %d Cin : %d Hin : %d Input po in t e r i s :

%d Output po in t e r i s : %d\n " , t i l e , co ∗ Cout_t , c i ∗ Cin_t , h ∗ s t r i d e ,
in_p , out_p ) ;

44 t i l e ++;
45 Hin_acc += s t r i d e ;
46 i f ( Hin_acc>Hin ) {
47 Hin_t −= ( Hin_acc −Hin ) ;
48 update_reg = 1 ;
49 }
50 // p r i n t f ( " T i l e %d\n " , t i l e ) ;
51 i f ( pad > 0) {
52 i f (h==0)
53 pad_type = 1 ; // padding s i d e s and upper part
54 e l s e i f (h==get_h_iterat ions ( ) −1)
55 pad_type = 2 ; // padding s i d e s and lower part
56 e l s e
57 pad_type = 3 ; // padding j u s t s i d e s
58 i f (h > 0) {
59 out_p += Wout∗( pad/ s t r i d e ) ;
60 }
61 }
62 depthwise_hw ( ( int32_t ) ( in_p − input ) , ( int32_t ) (w_p_ci −

input ) , ( int32_t ) ( out_p − input ) , Win , Hin_t , Cin_t , pad , pad_type ,
offset_PE , offset_PE_out , prec i s ion_opt , acc_flag , q_flag , update_reg ,
offset_q_data , o f f s e t_read_c i ) ;

63 p r i n t f ( " T i l e completed \n" ) ;
64 update_reg = 0 ;
65 }
66 } e l s e {
67 depthwise_hw ( ( int32_t ) ( in_p_ci − input ) , ( int32_t ) (w_p_ci − input

) , ( int32_t ) ( out_p_ci − input ) , Win , Hin_t , Cin_t , pad , pad_type ,
offset_PE , offset_PE_out , prec i s ion_opt , acc_flag , q_flag , update_reg ,
offset_q_data , o f f s e t_read_c i ) ;

68 p r i n t f ( " T i l e completed \n" ) ;
69 update_reg = 0 ;
70 }
71 }
72 re turn 0 ;
73 }

4.2.6 Fully-connected Tiled Process and Loops Order
The FC tile process is the simplest case of the three because it has less
dimensions to be considered. Still, it is worth highlighting the differences
with respect to the previous cases. Table 4.3 defines the variables which
change their definitions with respect to 2D-Conv process.
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Variable Description
N_t, M_t Same behaviour as previous 2D-Conv values

Cout_t, Cin_t, Hin_t
M_t_aux, N_t_aux Same behaviour as previous 2D-Conv values

Cout_t_aux, Cin_t_aux, Hin_t_aux
N_acc, M_acc Same behaviour as previous 2D-Conv values

Hin_acc, Cin_acc, Cout_acc
offset_PE It stores an offset value used when a tiled weight

tensor is read. The value differs from the 2D-
Conv analogous value because in this case the
weight tensor has only two dimensions (N-M),
consequently the offset value is smaller, i.e just
the value of the input activations width.

offset_PE_out This variable is not needed because the output
values will not be separated when they will be
written on memory

acc_flag Same behaviour as previous 2D-Conv case
q_flag Same behaviour as previous 2D-Conv case
update_reg Same behaviour as previous 2D-Conv case
offset_read_ci This variable is not needed in this case because

the input activations have just one dimension
pad_type No padding is perform in this layer

Table 4.3: Variables definition for FC tiled

The process has only two loop iterations to be considered, in this case the
order of these loops matters because an accumulation of partial results is
performed. Hence the first loop to be executed is the output activations loop.
The offset for the output pointer is calculated and the partial offset for the
weight pointer is also calculated. If necessary, the correction of the tile size
is done for the output activation dimension. At this point, depending if the
tiling across the input activations was done, the code invokes the accelerator
or continue to set the offsets and parameters.
The second loop to execute is the input activations loop. In this case the
input tensor offset is calculated and a partial weight tensor offset is also
computed. The latter is added with the value calculated in the previous
loop to obtain the final offset value for the weight pointer. If necessary, the
correction of the tile size is done for the input activation dimension. The
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accumulation and quantization flags are managed in the same way as the
2D-Conv case. Finally, the FC accelerator is invoked to start its computation
with the parameters, pointers and flags configured before.

Listing 4.15: FC tiled process
1 i n t f c _ t i l i n g ( token_t ∗ input , token_t ∗ weight , token_t ∗output , uint32_t

o f f s e t_data ) {
2 i n t N_t , M_t;
3 i n t M_t_aux, N_t_aux ;
4 i n t N_acc = 0 ;
5 i n t M_acc = 0 ;
6 i n t offset_PE = 0 ;
7 i n t acc_f lag = 0 ;
8 i n t q_flag = 0 ;
9 i n t update_reg = 1 ;

10 uint32_t of fset_q_data = of f s e t_data ;
11 i n t t i l i n g = g e t _ t i l i n g (N, M, &N_t , &M_t) ;
12 i f ( t i l i n g != 0) // I f t i l i n g can ’ t be done
13 p r i n t f ( " T i l i n g i n f e a s i b l e \n " ) ;
14 re turn −1;
15 M_t_aux = M_t;
16 N_t_aux = N_t ;
17 token_t∗ in_p = input ;
18 i n t t i l e = 0 ;
19 i f (PE>1){
20 offset_PE = N;
21 }
22 i n t temp1 = (M % M_t == 0) ? (M / M_t) : (M / M_t +1) ;
23 f o r ( i n t mi = 0 , M_acc=0; mi< temp1 ; mi++) {
24 token_t∗ w_p_mi = (mi ∗ M_t ∗ N) + weight ;
25 token_t∗ out_p = (mi ∗ M_t) + output ;
26 M_acc += M_t;
27 i f (M_acc>M) {
28 M_t −= (M_acc−M) ;
29 update_reg = 1 ;
30 }
31 i f (N_t < N) {
32 i n t temp2 = (N % N_t == 0) ? (N / N_t) : (N / N_t +1) ;
33 f o r ( i n t n i = 0 , N_acc = 0 , N_t = N_t_aux ; n i < temp2 ; n i++) {
34 in_p = input + ni ∗N_t ;
35 token_t∗ w_p = w_p_mi + ni ∗N_t ;
36 N_acc += N_t ;
37 i f (N_acc>N) {
38 N_t −= (N_acc −N) ;
39 update_reg = 1 ;
40 }
41 i f ( n i == 0)
42 acc_f lag = 0 ;
43 e l s e
44 acc_f lag = 1 ;
45 i f ( n i == temp2 −1 && output_q_en )
46 q_flag = 1 ;
47 e l s e
48 q_flag = 0 ;
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49 fc_hw ( ( int32_t ) ( in_p − input ) , ( int32_t ) (w_p − input ) , (
int32_t ) ( out_p − input ) , N_t , M_t, prec i s ion_opt , acc_flag , q_flag ,
update_reg , offset_q_data , offset_PE ) ;

50 p r i n t f ( " T i l e completed \n" ) ;
51 update_reg = 0 ;
52 }
53 } e l s e {
54 fc_hw ( ( int32_t ) ( in_p − input ) , ( int32_t ) (w_p_mi − input ) , (

int32_t ) ( out_p − input ) , N, M_t, prec i s ion_opt , 1 , output_q_en ,
update_reg , offset_q_data , offset_PE ) ;

55 p r i n t f ( " T i l e completed \n" ) ;
56 update_reg = 0 ;
57 }
58 }
59 re turn 0 ;
60 }

4.3 Hardware Implementation
In this section the hardware implementation of the accelerators used in the
tiling architecture are explained with the help of previous works [19] [20].
In these works the workflow followed to implement an CNN accelerator is
explained from the very basic steps. It is suggested to check these works
before continue reading the following design workflow. This document focuses
in explaining the differences from the previous works in order to explain the
design flow of the hardware implementation of the CNN accelerators.
The proposed accelerators maintain the interfaces used in previous works.
However, the data which is shared through these port interfaces is not the
same and will be explained in detail following in this section. Figure 4.6
depicts the ESP accelerator interfaces and signals needed for the integration
of the accelerator into the SoC. The accelerators execute the four main
phases to perform the complete operation, which are: configuration, load,
compute, and store. This work only considers the sequential architecture,
but a hierarchical architecture can be implemented as well and will be part
of future work. Below each accelerator design flow will be explained:

4.3.1 2D Convolution accelerator
The accelerator used in this thesis is the PS accelerator proposed in [16].
As explained at the beginning of Ch. 4, it has multiple PEs, each of them
work independently on a different output channel. Each processing element
is composed by PS multiply and accumulate units based on Sum-together
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Figure 4.6: Interfaces for a generic ESP accelerator

multipliers. This feature permits to have a configurable precision for the
computation of the convolution operations. Furthermore, the accelerator
also enables the quantization of the output data for three different bitwidths:
4, 8, and 16 bits.

Configuration Phase During the configuration phase, the configuration
parameters held in the memory-mapped registers and set by the processor
are retrieved through the conf_info port. Information transmitted through
this ac_channel is then organized and stored in the appropriate conf_info_t
structure. This method enables the assignment of each parameter to a local
variable, facilitating their utilization in subsequent phases. The maximum
number of user-defined registers is 14 [21], which is defined by the ESP
accelerator specifications. This suppose a challenge for the architecture
proposed due to the need of at least 20 parameters explained in table 4.4.
To address this challenge, some parameters have to be packed inside a single
register, when written, and then this data has to be unpacked using masks
and bitwise or and operations, when read.

Parameter Description
in_add Pointer or offset to the input tile
w_add Pointer or offset to the weight tile
out_add Pointer or offset to the output tile
q_flag Flag that enables the quantization operation
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n_w Width size of the input tile
n_h Height size of the input tile
n_c Input channel size of the input and weight tile
kern Width and Height size of the weight tile. Since

most of the times a symetric kernel is used, these
dimensions are cosidered the same

filt Output channel size of the output and weight tile
pad Number of pixels to apply the padding operation
pad_type Configuration variable that indicates where to

apply padding around the tensor
stride Number of positions the kernel slides
CONFIG1 Configuration variable that specifies the precision

(4, 8, or 16 bit) set for the multiply and accumulate
operations

offset_PE Offset value used to read inter-spaced weight val-
ues from different output channels

offset_PE_out Offset value used to write inter-spaced output
values to different output channels

offset_read_ci Offset value used to read inter-spaced input values
from different input channels

Table 4.4: List of parameters to configure the 2D-Conv accelerator

In the configuration phase the parameters are unpacked and read as it is
shown in the following code:

Listing 4.16: Configuration phase for 2D-Conv
1 // Read a c c e l e r a t o r c o n f i g u r a t i o n
2 #i f n d e f __SYNTHESIS__
3 whi le ( ! conf_in fo . a v a i l a b l e (1 ) ) {} // Hardware s t a l l s u n t i l data ready
4 #e n d i f
5 params = conf_in fo . read ( ) ;
6 in_add = params . in_add ;
7 w_add = params . w_add ;
8 out_add = params . out_add ;
9 acc_f lag = ( params . f l a g s >>1) & 0 x00000001 ;

10 q_flag = ( params . f l a g s ) & 0 x00000001 ;
11 r e l u _ f l a g = ( params . f l a g s >>2) & 0 x00000001 ;
12 n_w = params .n_w;
13 n_h = params . n_h ;
14 n_c = params . n_c ;
15 kern = ( ( params . pad_stride_kern ) & 0x0000F000 ) >>12;
16 f i l t = params . f i l t ;

62



Tiling Architecture for CNN

17 pad = ( ( params . pad_stride_kern ) & 0x0000000F ) ;
18 pad_type = ( ( params . pad_stride_kern ) & 0x00000F00 )>>8;
19 s t r i d e = ( ( params . pad_stride_kern ) & 0x000000F0 )>>4;
20 offset_PE_out = params . offset_PE_out ;
21 offset_PE = params . offset_PE ;
22 CONFIG1 = ( ( params . opt ions ) & 0x0000000F ) ;
23 CONFIG2 = ( ( params . opt ions ) & 0x000000F0 ) >> 4 ;
24 of fset_q_data = params . of fset_q_data ;
25 o f f s e t_read_c i = params . o f f s e t_read_c i ;

Before passing to the load phase, some auxiliary variables are defined to
control the loop boundaries. n_w_in and n_h_in are the auxiliary variables
that keep the width and height dimensions of the input tile after evaluating
the type of padding to be applied. Instead, n_w_out and n_h_out keep
the width and height dimensions of the output tile considering the padding
value and the stride as well. They are shown in the following code snip:

Listing 4.17: Auxiliary variables
1 uint16_t n_w_in ;
2 uint16_t n_h_in ;
3 // Padded Input Dimensions
4 switch ( pad_type )
5 {
6 case 0 : // no padding
7 n_w_in = n_w ;
8 n_h_in = n_h ;
9 break ;

10 case 1 : // padding 3 s i d e s
11 n_w_in = n_w + 2 ∗ pad ;
12 n_h_in = n_h + pad ;
13 break ;
14 case 2 : // padding 3 s i d e s
15 n_w_in = n_w + 2 ∗ pad ;
16 n_h_in = n_h + pad ;
17 break ;
18 case 3 : // padding 2 s i d e s
19 n_w_in = n_w + 2 ∗ pad ;
20 n_h_in = n_h ;
21 break ;
22 case 4 : // padding 4 s i d e s
23 n_w_in = n_w + 2 ∗ pad ;
24 n_h_in = n_h + 2 ∗ pad ;
25 break ;
26 d e f a u l t :
27 n_w_in = n_w ;
28 n_h_in = n_h ;
29 break ;
30 }
31 // Output Dimensions
32 uint16_t n_w_out ;
33 uint16_t n_h_out ;
34 i f ( s t r i d e == 1) {
35 n_w_out = (n_w_in − kern ) + 1 ;
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36 n_h_out = (n_h_in − kern ) + 1 ;
37 }
38 e l s e {
39 n_w_out = (n_w_in − kern ) /2 + 1 ;
40 n_h_out = (n_h_in − kern ) /2 + 1 ;
41 }
42 // DMA v a r i a b l e s
43 uint16_t dma_read_in_data_length = n_w ∗ n_h ;
44 uint16_t dma_read_w_data_length = kern ∗ kern ∗ n_c ;
45 uint16_t dma_write_data_length = n_w_out ∗ n_h_out ;

Load Phase In this phase the input and weight data of the corresponding
tile are transferred from external memory to the private local memories
(PLMs) of the accelerator. These data transfers are carried out by the
direct-memory access (DMA) engine. As seen in Lst. 4.18 The load phase is
composed by two parts, the load of the input tensor and the load of the weight
tensor. The first part has three loops iterations, each of them corresponds
to one dimension of the tensor. The order of the loops corresponds on how
the input data are stored in external memory as explained before, hence
the innermost loop iterates through the width dimension. The middle one
iterates through the height dimension and the outermost iterates through
the input channel dimension. In the outermost loop the DMA configuration
is performed, here the offset to the data chunk to read and data length are
passed to the DMA controller to start the transaction. In this case the data
length is equal to the width size times the height size of the input tile. The
input tile pointer, in_add, is added to the multiplication of the current input
channel and the offset, offset_read_ci, which skips the reading to the next
input channel of the entire tensor. The result of the previous operation
gives the current offset for each iteration, offset_read. Afterwards, the
hardware stalls until the DMA configuration is correctly written. After the
serialization if-condition the other two loops are present. Within the nested
loops (iterating over the input height and width), the code applies padding
based on the specified padding type (pad_type), ensuring that the input
data is appropriately padded or not for convolution operations. Depending
on the padding type and position within the input matrix, a pad_control
flag is set to determine whether to include or exclude the data during the
loading phase. If the pad_control flag is true, indicating that the data from
memory needs to be considered, otherwise a zero is read. In case data is
read from memory, the code checks the readiness of the DMA read channel
(dma_read_chnl) to ensure that the data is available before reading it. The
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data read is manipulated to fit the bidwidth required by the accelerator,
then it is stored in the input data plm_in at an appropriate index calculated
based on the row, column, and channel. This special index is required to
prepare the data in the PLMs in the way the accelerator needs it in the
computation phase.

Listing 4.18: Input data load and padding control
1 f o r ( uint16_t chan = 0 ; chan < N_C_MAX; chan++){
2 // Conf igure DMA read channel (CTRL)
3 uint32_t o f f s e t_read = in_add + chan∗ o f f s e t_read_c i ;
4 dma_read_info = { of f s e t_read , dma_read_in_data_length , DMA_SIZE} ;
5 bool dma_read_ctrl_done = f a l s e ;
6 bool pad_control = true ;
7 LOAD_CTRL_LOOP:
8 do { dma_read_ctrl_done = dma_read_ctrl . nb_write ( dma_read_info ) ; }

whi l e ( ! dma_read_ctrl_done ) ;
9 // Force s e r i a l i z a t i o n between DMA c o n t r o l and DATA data t r a n s f e r

10 i f ( dma_read_ctrl_done ) {
11 f o r ( uint16_t row = 0 ; row < N_H_IN_MAX; row++){
12 f o r ( uint16_t c o l = 0 ; c o l < N_W_IN_MAX; c o l++){
13 FPDATA_IN data ;
14 switch ( pad_type ) {
15 case 1 :
16 i f ( ( row >= pad ) && ( c o l >= pad ) && ( c o l < n_w_in − pad ) )
17 pad_control = true ;
18 e l s e
19 pad_control = f a l s e ;
20 break ;
21 case 2 :
22 i f ( ( c o l >= pad ) && ( c o l < n_w_in − pad ) && ( row < n_h_in − pad ) )
23 pad_control = true ;
24 e l s e
25 pad_control = f a l s e ;
26 break ;
27 case 3 :
28 i f ( ( c o l >= pad ) && ( c o l < n_w_in − pad ) )
29 pad_control = true ;
30 e l s e
31 pad_control = f a l s e ;
32 break ;
33 case 4 :
34 i f ( ( row >= pad ) && ( c o l >= pad ) && ( c o l < n_w_in − pad ) && ( row

< n_h_in − pad ) )
35 pad_control = true ;
36 e l s e
37 pad_control = f a l s e ;
38 break ;
39 d e f a u l t :
40 pad_control = true ;
41 break ;
42 }
43 i f ( pad_control )
44 {
45 #i f n d e f __SYNTHESIS__
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46 whi le ( ! dma_read_chnl . a v a i l a b l e (1 ) ) {} ; // Hardware s t a l l s u n t i l
data ready

47 #e n d i f
48 ac_int<DATA_WIDTH, f a l s e > data_ac = dma_read_chnl . read ( ) . template

s l c <DATA_WIDTH>(0) ;
49 data . s e t _ s l c (0 , data_ac ) ;
50 }
51 e l s e {
52 data = 0 ;
53 }
54 uint16_t index_in = MAX_INPUT_CHANNELS ∗ (

MAX_INPUT_WIDTH ∗ row + c o l ) + chan ;
55 plm_in . data [ index_in ] = data ;
56 i f ( c o l == n_w_in − 1) break ;
57 }
58 i f ( row == n_h_in − 1) break ;
59 }
60 }
61 i f ( chan == n_c − 1 ) break ;
62 }

Then is the turn of the weight tile to be read. This case has four loop
iterations which are also ordered according to the organization of the weight
data into the external memory. As the pevious case, here the outermost loop
performs the DMA configuration; the offset and data length are passed to the
DMA controller to start the transaction. In this case the data length is equal
to the width size times the height size times the input channel size of the
weight tile. The weight tile pointer, w_add , is added to the multiplication of
the current output channel and the offset,offset_PE, which skips the reading
to the next output channel of the entire tensor. The rest of the steps are
similar to the input load case, but the internal PLM index has a bit different
shape because of the presence of an extra dimension in this tensor. This
index is also used to fit the memory organization needed in the computation
phase.

Listing 4.19: Weight data load
1 weight_load_for :
2 f o r ( uint16_t co = 0 ; co < FILT_MAX; co++){
3 uint32_t o f f s e t_read = w_add + co∗ offset_PE ;
4 dma_read_info = { of f s e t_read , dma_read_w_data_length , DMA_SIZE

} ;
5 bool dma_read_ctrl_done2 = f a l s e ;
6 LOAD_CTRL_LOOP2:
7 do { dma_read_ctrl_done2 = dma_read_ctrl . nb_write (

dma_read_info ) ; } whi l e ( ! dma_read_ctrl_done2 ) ;
8 i f ( dma_read_ctrl_done2 ) {
9 LOAD_LOOP:

10 f o r ( uint16_t c i = 0 ; c i < N_C_MAX; c i++){
11 f o r ( uint16_t j = 0 ; j < KERN_MAX; j++){
12 f o r ( uint16_t i = 0 ; i < KERN_MAX; i++) {
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13 uint16_t index = MAX_OUTPUT_CHANNELS ∗ (
MAX_INPUT_CHANNELS ∗ (KERN_MAX ∗ j + i ) + c i ) + co ;

14 #i f n d e f __SYNTHESIS__
15 whi le ( ! dma_read_chnl . a v a i l a b l e (1 ) ) {} ; //

Hardware s t a l l s u n t i l data ready
16 #e n d i f
17 ac_int<DATA_WIDTH, f a l s e > data_ac =

dma_read_chnl . read ( ) . template s l c <DATA_WIDTH>(0) ;
18 FPDATA_IN data ;
19 data . s e t _ s l c (0 , data_ac ) ;
20 plm_f . data [ index ] = data ;
21
22 i f ( i == kern − 1) break ;
23 }
24 i f ( j == kern − 1) break ;
25 }
26 i f ( c i == n_c − 1) break ;
27 }
28 }
29 i f ( co == f i l t − 1) break ;
30 }

The next data to be read are the parameters needed to perform quanti-
zation to the results of the convolution operation. In this case the DMA
transaction is done just one time with a fixed offset, offset_q_data, and a
data length equal to the number of output channels times 3 (because three
parameters are meant for each output channel) plus 2 extra parameters which
are common to all output channels. Each parameter is manipulated to fit the
correct bitwidth intended for the efficient computation of the quantization.
Finally, they are stored in their respective variables and they are ready to
be used for the computation phase.

Listing 4.20: Quantization data load
1 i f ( q_flag ) {
2 uint16_t dma_read_q_data_length = f i l t ∗ 3 + 2 ;
3 dma_read_q_info = { offset_q_data , dma_read_q_data_length , DMA_SIZE} ;
4 bool dma_read_ctrl_done3 = f a l s e ;
5 LOAD_CTRL_LOOP3:
6 do { dma_read_ctrl_done3 = dma_read_ctrl . nb_write ( dma_read_q_info ) ; }

whi l e ( ! dma_read_ctrl_done3 ) ;
7 i f ( dma_read_ctrl_done3 ) {
8 LOAD_Q_LOOP:
9 f o r ( uint16_t i = 0 ; i < (FILT_MAX∗3 + 2) ; i++) {

10 #i f n d e f __SYNTHESIS__
11 whi le ( ! dma_read_chnl . a v a i l a b l e (1 ) ) {} ; // Hardware s t a l l s

u n t i l data ready
12 #e n d i f
13 ac_int<W_CROSS_BITWIDTH, true> data_WC;
14 ac_int<SF_IN_W_TOT_BITWIDTH, true> data_SF ;
15 ac_int<BIASQ_SCALED_TOT_BITWIDTH, true> data_BS ;
16 ac_int<SF_OUT_INV_TOT_BITWIDTH, true> data_SFI ;
17 ac_int<Z_BITWIDTH, true> data_Z ;
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18 i f ( i < f i l t ) {
19 data_WC = dma_read_chnl . read ( ) . template s l c <

W_CROSS_BITWIDTH>(0) ;
20 WEIGHTS_CROSSPRODUCT[ i ] . s e t _ s l c (0 , data_WC) ;
21 } e l s e i f ( i >= f i l t && i < ( f i l t ∗2) ) {
22 data_SF = dma_read_chnl . read ( ) . template s l c <

SF_IN_W_TOT_BITWIDTH>(0) ;
23 SCALING_FACTOR_INPUTS_WEIGHTS[ i− f i l t ] . s e t _ s l c (0 , data_SF ) ;
24 } e l s e i f ( i >= ( f i l t ∗2) && i < ( f i l t ∗3) ) {
25 data_BS = dma_read_chnl . read ( ) . template s l c <

BIASQ_SCALED_TOT_BITWIDTH>(0) ;
26 BIASQ_SCALED [ i− f i l t ∗ 2 ] . s e t _ s l c (0 , data_BS) ;
27 } e l s e i f ( i == ( f i l t ∗3) ) {
28 data_SFI = dma_read_chnl . read ( ) . template s l c <

SF_OUT_INV_TOT_BITWIDTH>(0) ;
29 SCALING_FACTOR_OUT_INVERSE. s e t _ s l c (0 , data_SFI ) ;
30 } e l s e {
31 data_Z = dma_read_chnl . read ( ) . template s l c <Z_BITWIDTH>(0) ;
32 Z_O2. s e t _ s l c (0 , data_Z ) ;
33 }
34 i f ( i == dma_read_q_data_length − 1) break ;
35 }
36 }
37 }

Once the data is in the PLMs, it has to be arranged to fit the requirements
of the computation unit. This last requires the data to be split in four groups,
each of them intended for managing 4 bits of one multiplier-and-accumulate
operand. Depending on the precision configuration selected, the operands
can be formed in the following ways:

• Taking one 16-bit value from an input channel

• Taking two 8-bit values from two input channels

• Taking four 4-bit values from four input channels

The four groups of buffers are divided by the position that have when are
used as operands, i.e. A/B_reconf_HH group all the values that contains
the 4 MSB of the final operand, A/B_reconf_HL group all the values that
contains the following 4 bits of the final operand, A/B_reconf_LH group
all the values that contains the following 4 bits of the final operand, and
A/B_reconf_LL group all the values that contains the 4 LSB of the final
operand. The packing of the data has to take into account the cases where
there is no more available data to read from memory, hence the empty
positions in the packing should be filled with zeros. This is done inside the
loops depending on the precision configuration used for the operations. Two
indexes are used for managing the buffers depending on the configuration,
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one of them serves as an address for the 4-bit buffers (idx2 ) and the other
makes the same for the PLM (idx).

Listing 4.21: Input data packing
1 f o r ( u int16 h = 0 ; h < N_H_IN_MAX; h++) {
2 f o r ( u int16 w = 0 ; w < N_W_IN_MAX; w++) {
3 f o r ( u int16 c i = 0 ; c i < N_C_MAX; c i ++) {
4 uint16 ci_temp = c i ∗ i n c r 1 ;
5 uint16 idx = (MAX_INPUT_CHANNELS ∗ (MAX_INPUT_WIDTH ∗ h + w) +

ci_temp ) . to_int ( ) ;
6 uint16 idx2 = (MAX_INPUT_CHANNELS ∗ (MAX_INPUT_WIDTH ∗ h + w) + c i

) . to_int ( ) ;
7 i f (CONFIG1 == 1) { // 4x
8 i f ( c i == in_ch_temp −1 && n_c % 4 == 1 ) {
9 A_reconf_HH [ idx2 ] = ( in t4 ) 0 ;

10 A_reconf_HL [ idx2 ] = ( in t4 ) 0 ;
11 A_reconf_LH [ idx2 ] = ( in t4 ) 0 ;
12 A_reconf_LL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
13 } e l s e i f ( c i == in_ch_temp −1 && n_c % 4 == 2 ) {
14 A_reconf_HH [ idx2 ] = ( in t4 ) 0 ;
15 A_reconf_HL [ idx2 ] = ( in t4 ) 0 ;
16 A_reconf_LH [ idx2 ] = ( in t4 ) plm_in . data [ idx + 1 ] . s l c <4>(0)

;
17 A_reconf_LL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
18 } e l s e i f ( c i == in_ch_temp −1 && n_c % 4 == 3 ) {
19 A_reconf_HH [ idx2 ] = ( in t4 ) 0 ;
20 A_reconf_HL [ idx2 ] = ( in t4 ) plm_in . data [ idx + 2 ] . s l c

<4>(0) ;
21 A_reconf_LH [ idx2 ] = ( in t4 ) plm_in . data [ idx + 1 ] . s l c

<4>(0) ;
22 A_reconf_LL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
23 } e l s e {
24 A_reconf_HH [ idx2 ] = ( in t4 ) plm_in . data [ idx + 3 ] . s l c <4>(0)

;
25 A_reconf_HL [ idx2 ] = ( in t4 ) plm_in . data [ idx + 2 ] . s l c <4>(0)

;
26 A_reconf_LH [ idx2 ] = ( in t4 ) plm_in . data [ idx + 1 ] . s l c <4>(0)

;
27 A_reconf_LL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
28 }
29 } e l s e i f (CONFIG1 == 2 | | CONFIG1 == 3) {
30 i f ( c i == in_ch_temp −1 && n_c % 2 == 1 ) {
31 A_reconf_HH [ idx2 ] = ( in t4 ) 0 ;
32 A_reconf_HL [ idx2 ] = ( in t4 ) 0 ;
33 A_reconf_LH [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(4) ;
34 A_reconf_LL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
35 } e l s e {
36 A_reconf_HH [ idx2 ] = ( in t4 ) plm_in . data [ idx + 1 ] . s l c <4>(4)

;
37 A_reconf_HL [ idx2 ] = ( in t4 ) plm_in . data [ idx + 1 ] . s l c <4>(0)

;
38 A_reconf_LH [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(4) ;
39 A_reconf_LL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
40 }
41 } e l s e {
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42 A_reconf_HH [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(12) ;
43 A_reconf_HL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(8) ;
44 A_reconf_LH [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(4) ;
45 A_reconf_LL [ idx2 ] = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
46 }
47 i f ( c i == in_ch_temp −1) break ;
48 }
49 i f (w == n_w_in − 1) break ;
50 }
51 i f (h == n_h_in − 1) break ;
52 }

The packing for the weight data is similar to the previous case, but there
is a difference in the order the data are organized inside the four groups. The
data belonging to the lowest input channel in the packing goes to the higher
positions in the operand, i.e. it goes to the B_reconf_HH group. This is
done in this way due to the organization of the data in the ST multipliers
inside the PEs.

Listing 4.22: Weight data packing
1 f o r ( u int8 i = 0 ; i< KERN_MAX; i ++){
2 f o r ( u int8 j = 0 ; j< KERN_MAX; j ++){
3 f o r ( u int16 c i = 0 ; c i < N_C_MAX; c i ++) {
4 f o r ( u int8 co = 0 ; co < FILT_MAX; co++) {
5 uint16 ci_temp = c i ∗ i n c r 1 ;
6 uint16 idx = (MAX_OUTPUT_CHANNELS ∗ (MAX_INPUT_CHANNELS ∗ (

KERN_MAX ∗ i + j ) + ci_temp ) + co ) . to_int ( ) ;
7 uint16 idx2 = (MAX_OUTPUT_CHANNELS ∗ (MAX_INPUT_CHANNELS ∗ (

KERN_MAX ∗ i + j ) + c i ) + co ) . to_int ( ) ;
8 i f (CONFIG1 == 1) { // 4x
9 i f ( c i == in_ch_temp −1 && n_c % 4 == 1 ) {

10 B_reconf_HH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(0) ;
11 B_reconf_HL [ idx2 ] = ( in t4 ) 0 ;
12 B_reconf_LH [ idx2 ] = ( in t4 ) 0 ;
13 B_reconf_LL [ idx2 ] = ( in t4 ) 0 ;
14 } e l s e i f ( c i == in_ch_temp −1 && n_c % 4 == 2 ) {
15 B_reconf_HH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(0) ;
16 B_reconf_HL [ idx2 ] = ( in t4 ) plm_f . data [ idx +

MAX_OUTPUT_CHANNELS ] . s l c <4>(0) ;
17 B_reconf_LH [ idx2 ] = ( in t4 ) 0 ;
18 B_reconf_LL [ idx2 ] = ( in t4 ) 0 ;
19 } e l s e i f ( c i == in_ch_temp −1 && n_c % 4 == 3 ) {
20 B_reconf_HH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(0) ;
21 B_reconf_HL [ idx2 ] = ( in t4 ) plm_f . data [ idx +

MAX_OUTPUT_CHANNELS ] . s l c <4>(0) ;
22 B_reconf_LH [ idx2 ] = ( in t4 ) plm_f . data [ idx +

MAX_OUTPUT_CHANNELS ∗ 2 ] . s l c <4>(0) ;
23 B_reconf_LL [ idx2 ] = ( in t4 ) 0 ;
24 } e l s e {
25 B_reconf_HH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(0) ;
26 B_reconf_HL [ idx2 ] = ( in t4 ) plm_f . data [ idx +

MAX_OUTPUT_CHANNELS] . s l c <4>(0) ;
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27 B_reconf_LH [ idx2 ] = ( in t4 ) plm_f . data [ idx +
MAX_OUTPUT_CHANNELS∗ 2 ] . s l c <4>(0) ;

28 B_reconf_LL [ idx2 ] = ( in t4 ) plm_f . data [ idx +
MAX_OUTPUT_CHANNELS∗ 3 ] . s l c <4>(0) ;

29 }
30 } e l s e i f (CONFIG1 == 2 | | CONFIG1 == 3) {
31 i f ( c i == in_ch_temp −1 && n_c % 2 == 1 ) {
32 B_reconf_HH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(4) ;
33 B_reconf_HL [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(0) ;
34 B_reconf_LH [ idx2 ] = ( in t4 ) 0 ;
35 B_reconf_LL [ idx2 ] = ( in t4 ) 0 ;
36 } e l s e {
37 B_reconf_HH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(4) ;
38 B_reconf_HL [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(0) ;
39 B_reconf_LH [ idx2 ] = ( in t4 ) plm_f . data [ idx +

MAX_OUTPUT_CHANNELS] . s l c <4>(4) ;
40 B_reconf_LL [ idx2 ] = ( in t4 ) plm_f . data [ idx +

MAX_OUTPUT_CHANNELS] . s l c <4>(0) ;
41 }
42 } e l s e {
43 B_reconf_HH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(12) ;
44 B_reconf_HL [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(8) ;
45 B_reconf_LH [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(4) ;
46 B_reconf_LL [ idx2 ] = ( in t4 ) plm_f . data [ idx ] . s l c <4>(0) ;
47 }
48 i f ( co == f i l t −1) break ;
49 }
50 i f ( c i == in_ch_temp −1) break ;
51 }
52 i f ( j == kern − 1) break ;
53 }
54 i f ( i == kern − 1) break ;
55 }

At this point all the data is ready for the next phase, the computation
phase.

Computation Phase This phase is basically a version of the accelerator
developed in [16]. For deeper details check the paper to understand the
internal composition. The prototype of the functions that implements the
accelerator computation is shown as follows:

Listing 4.23: Prototype computation phase
1 void conv2d_m4_v10_reconf_reducedbitwidth (
2 i n t4 INPUT_HH[INPUTS_SIZE_MAX] ,
3 i n t4 INPUT_HL[INPUTS_SIZE_MAX] ,
4 i n t4 INPUT_LH[INPUTS_SIZE_MAX] ,
5 i n t4 INPUT_LL[INPUTS_SIZE_MAX] ,
6 i n t4 WEIGHT_HH[FILTERS_SIZE_MAX] ,
7 i n t4 WEIGHT_HL[FILTERS_SIZE_MAX] ,
8 i n t4 WEIGHT_LH[FILTERS_SIZE_MAX] ,
9 i n t4 WEIGHT_LL[FILTERS_SIZE_MAX] ,
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10 plm_outputs_t &OUT,
11 uint8 IN_HEIGHT,
12 uint8 IN_WIDTH,
13 uint8 IN_CH,
14 uint8 K_SIZE,
15 uint8 STRIDE,
16 uint8 OUT_HEIGHT,
17 uint8 OUT_WIDTH,
18 uint1 RST_OUT_ACC,
19 uint1 EN_QUANTIZATION,
20 uint3 CONFIG1,
21 uint2 CONFIG2,
22 uint1 EN_RELU,
23 uint8 OUT_CH,
24 ac_int<W_CROSS_BITWIDTH, true> WEIGHTS_CROSSPRODUCT[FILT_MAX] ,
25 ac_fixed<SF_IN_W_TOT_BITWIDTH, SF_IN_W_INT_BITWIDTH, true>

SCALING_FACTOR_INPUTS_WEIGHTS[FILT_MAX] ,
26 ac_fixed<BIASQ_SCALED_TOT_BITWIDTH, BIASQ_SCALED_INT_BITWIDTH,

true> BIASQ_SCALED[FILT_MAX] ,
27 ac_fixed<SF_OUT_INV_TOT_BITWIDTH, SF_OUT_INV_INT_BITWIDTH,

true> SCALING_FACTOR_OUT_INVERSE,
28 ac_int<Z_BITWIDTH, true> Z_O2 ) ;

Table 4.5 explains the arguments used in the previous function.

Argument Description
INPUT_HH, INPUT_HL,
INPUT_LH, INPUT_LL

These are the intermediate private local
memories which stores the 4-bit values
used to store the values that will be
assigned to the operand A of the ST
multiplier

WEIGHT_HH, WEIGHT_HL,
WEIGHT_LH, WEIGHT_LL

These are the intermediate private local
memories which stores the 4-bit values
used to store the values that will be
assigned to the operand B of the ST
multiplier

OUT This is the reference to the output PLM
IN_HEIGHT The height size of the input tile
IN_WIDTH The width size of the input tile
IN_CH The input channel size of the input and

weight tiles
K_SIZE The width and height size of the weight

tile
STRIDE Number of positions the kernel slides
OUT_HEIGHT The height size of the output tile
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OUT_WIDTH The width size of the output tile
RST_OUT_ACC Argument that enables accumulation of

partial results, corresponds to acc_flag
variable

EN_QUANTIZATION Argument that enables quantization
of the output results, corresponds to
q_flag variable

CONFIG1 It specifies the configuration precision
of the operations, 4, 8, or 16 bit pre-
cision. Consequently it specifies how
many input channels values are taken,
1, 2 or 4 values

CONFIG2 It specifies the bitwidth of the final out-
put operation: 4, 8, 16 bit

EN_RELU Argument that enables Relu operation
of the output results, corresponds to
relu_flag variable

OUT_CH The output channel size of the output
and weight tiles

WEIGHTS_CROSSPRODUCT Result of a product operation between
the quantized weights of a layer and
the zero point of the input. Used for
quantization and explained in [22]

SF_IN_W_INT_BITWIDTH Result of a product operation between
the weight and input scale factors.
Used for quantization and explained
in [22]

BIASQ_SCALED_INT_BITWIDTH Product of the bias value and its scale
factor. Used for quantization and ex-
plained in [22]

SF_OUT_INV_INT_BITWIDTH Inverse of the output scale factor. Used
for quantization and explained in [22]

Z_O2 Zero point of the output. Used for quan-
tization and explained in [22]

Table 4.5: List of arguments of the function that implements the computa-
tion phase
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Store Phase At this point all the computation values are kept in the
output PLM with the addressing followed in the computation phase. This
same addressing has to be used to read the values from the output PLM
and pass them to the DMA engine, so this last can write the results to the
external memory. The output data is passed sequentially to the DMA, hence
the loop order determines how the data will be organized into the external
memory. Following the memory organization explained at the beginning of
this chapter, the outermost loop iterates through the output channels, the
next loop iterates through the height dimension and the innermost loop goes
across the width dimension. DMA configuration is done in the outermost
loop because in each iteration a new transaction is done. The offset given to
the DMA configuration is composed by the output tensor pointer passed by
the tiling algorithm plus the multiplication of the iteration number in the
output channel dimension and the size of one entire output channel in the
original tensor, without tiling. Each transaction length size is equal to the
multiplication of the height and width of the output tile.

Listing 4.24: Store phase
1 STORE_CO_LOOP:
2 f o r ( uint16_t co = 0 ; co < FILT_MAX; co++){
3 uint32_t o f f s e t _ w r i t e = out_add + co∗offset_PE_out ;
4 dma_write_info = { o f f s e t_wr i t e , dma_write_data_length , DMA_SIZE} ;
5 bool dma_write_ctrl_done = f a l s e ;
6 STORE_CTRL_LOOP:
7 do { dma_write_ctrl_done = dma_write_ctrl . nb_write ( dma_write_info ) ; }

whi l e ( ! dma_write_ctrl_done ) ;
8 i f ( dma_write_ctrl_done ) { // Force s e r i a l i z a t i o n between DMA c o n t r o l

and DATA data t r a n s f e r
9 STORE_H_LOOP: f o r ( uint16_t h = 0 ; h < N_H_OUT_MAX ; h++){

10 STORE_W_LOOP: f o r ( uint16_t w = 0 ; w < N_W_OUT_MAX; w++){
11 uint16_t index = MAX_OUTPUT_CHANNELS ∗ (MAX_OUTPUT_WIDTH ∗

h + w) + co ;
12 FPDATA_OUT data = plm_out . data [ index ] ;
13 a s s e r t (DMA_WIDTH == 64 && "DMA_WIDTH should be 64 (

s i m p l i c i t y cho i c e ) " ) ;
14 ac_int<DMA_WIDTH, f a l s e > data_ac ;
15 ac_int <32, f a l s e > DEADBEEF = 0 xdeadbeef ;
16 data_ac . s e t _ s l c (32 , DEADBEEF. template s l c <32>(0) ) ;
17 data_ac . s e t _ s l c (0 , data . template s l c <DATA_WIDTH>(0) ) ;
18 dma_write_chnl . wr i t e ( data_ac ) ;
19 i f (w == n_w_out −1) break ;
20 }
21 i f (h == n_h_out −1) break ;
22 }
23 }
24 i f ( co == f i l t −1 ) break ;
25 }
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4.3.2 Depthwise Convolution accelerator
The DW-Conv accelerator has the same structure and phases as the 2D-
Conv accelerator. The main difference is the computation phase which in
this case performs a different kind of convolution. Since the computation
of this convolution does not consider the output channel dimension, all
the parameters related to this dimension are omitted in this case. Other
important differences are explained as follows:

• Due to the way how the weight tensor is tiled in this algorithm, all
the weight data of the tiles are located together in external memory.
Therefore, only one DMA transaction is required for reading these values.

Listing 4.25: Weight load in DW-Conv
1 dma_read_info = {w_add , dma_read_w_data_length , DMA_SIZE} ;
2 bool dma_read_ctrl_done2 = f a l s e ;
3 LOAD_CTRL_LOOP2:
4 do { dma_read_ctrl_done2 = dma_read_ctrl . nb_write ( dma_read_info ) ;

} whi l e ( ! dma_read_ctrl_done2 ) ;
5 i f ( dma_read_ctrl_done2 ) {
6 weight_load_for :
7 f o r ( uint16_t c i = 0 ; c i < N_C_MAX; c i++){
8 f o r ( uint16_t j = 0 ; j < KERN_MAX; j++){
9 f o r ( uint16_t i = 0 ; i < KERN_MAX; i++) {

10 uint16_t index = MAX_INPUT_CHANNELS ∗ (KERN_MAX ∗
j + i ) + c i ;

11 #i f n d e f __SYNTHESIS__
12 whi le ( ! dma_read_chnl . a v a i l a b l e (1 ) ) {} ; //

Hardware s t a l l s u n t i l data ready
13 #e n d i f
14 ac_int<DATA_WIDTH, f a l s e > data_ac =

dma_read_chnl . read ( ) . template s l c <DATA_WIDTH>(0) ;
15 FPDATA_IN data ;
16 data . s e t _ s l c (0 , data_ac ) ;
17 plm_f . data [ index ] = data ;
18 i f ( i == kern − 1) break ;
19 }
20 i f ( j == kern − 1) break ;
21 }
22 i f ( c i == n_c − 1) break ;
23 }
24 }
25

• The packaging done in the load phase arranges the data in the four
buffer groups using the same index. Hence a position in this buffers
only contains one value no matter the precision configuration used.
The values are group together in the computation phase to form the
respective operands for the ST multiplier.
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Listing 4.26: Data packaging in DW-Conv
1 f o r ( u int16 h = 0 ; h < N_H_IN_MAX; h++) {
2 f o r ( u int16 w = 0 ; w < N_W_IN_MAX; w++) {
3 f o r ( u int16 c i = 0 ; c i < N_C_MAX; c i ++) {
4 uint16 idx = (MAX_INPUT_CHANNELS ∗ (MAX_INPUT_WIDTH ∗ h + w)

+ c i ) . to_int ( ) ;
5 i f (CONFIG1 == 1) { // 4x
6 a_LL_4b = ( in t4 ) plm_in . data [ idx ] . s l c <4>(4) ;
7 a_HH_4b = a_LL_4b >> 4 ;
8 a_HL_4b = a_LL_4b >> 4 ;
9 a_LH_4b = a_LL_4b >> 4 ;

10 } e l s e i f (CONFIG1 == 2 | | CONFIG1 == 3) {
11 a_LH_4b = ( in t4 ) plm_in . data [ idx ] . s l c <4>(4) ;
12 a_LL_4b = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
13 a_HH_4b = a_LH_4b >> 4 ;
14 a_HL_4b = a_LH_4b >> 4 ;
15 } e l s e {
16 a_HH_4b = ( in t4 ) plm_in . data [ idx ] . s l c <4>(12) ;
17 a_HL_4b = ( in t4 ) plm_in . data [ idx ] . s l c <4>(8) ;
18 a_LH_4b = ( in t4 ) plm_in . data [ idx ] . s l c <4>(4) ;
19 a_LL_4b = ( in t4 ) plm_in . data [ idx ] . s l c <4>(0) ;
20 }
21 A_reconf_HH [ idx ] = a_HH_4b;
22 A_reconf_HL [ idx ] = a_HL_4b ;
23 A_reconf_LH [ idx ] = a_LH_4b ;
24 A_reconf_LL [ idx ] = a_LL_4b ;
25 i f ( c i == n_c −1) break ;
26 }
27 i f (w == n_w_in − 1) break ;
28 }
29 i f (h == n_h_in − 1) break ;
30 }
31

• The DW-Conv does not need the accumulation of partial results, hence
the accumulation flag and its implementation is omitted in this case.

• Each processing element works with values taken from one input channel,
which can be computed independently.

4.3.3 Fully-connected accelerator
The FC accelerator also follows the same architecture of the previous accel-
erators. However, it presents less parameters and loops because the tensors
used in this cases have less dimensions. The main differences are explained
as follows:

• The input values are read using a single loop iteration because the input
activations have just one dimension.
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• The weight values are read using two loop iterations and an auxiliary
offset, offset_PE, is also used to read inter-spaced data.

Listing 4.27: Weight load in FC accelerator
1 LOOP_LOAD_WEIGHTS:
2 f o r ( uint16_t mi = 0 ; mi < MAX_OUTPUT_NEURONS; mi++){
3 uint16_t offset_weight_M = w_add + mi∗ offset_PE ;
4 dma_read_info = {offset_weight_M , dma_read_w_data_length ,

DMA_SIZE} ;
5 bool dma_read_ctrl_done2 = f a l s e ;
6 LOAD_CTRL_LOOP2:
7 do { dma_read_ctrl_done2 = dma_read_ctrl . nb_write ( dma_read_info ) ;

} whi l e ( ! dma_read_ctrl_done2 ) ;
8 i f ( dma_read_ctrl_done2 ) {
9 weight_load_for :

10 f o r ( uint16_t n i = 0 ; n i < MAX_INPUT_ACTIVATIONS; n i++) {
11 uint16_t index = MAX_OUTPUT_NEURONS ∗ ni + mi ;
12 #i f n d e f __SYNTHESIS__
13 whi le ( ! dma_read_chnl . a v a i l a b l e (1 ) ) {} ; // Hardware

s t a l l s u n t i l data ready
14 #e n d i f
15 ac_int<DATA_WIDTH, f a l s e > data_ac = dma_read_chnl . read ( ) .

template s l c <DATA_WIDTH>(0) ;
16 FPDATA_IN data ;
17 data . s e t _ s l c (0 , data_ac ) ;
18 plm_f . data [ index ] = data ;
19 i f ( n i == N − 1) break ;
20 }
21 }
22 i f (mi == M − 1) break ;
23 }
24

• The architecture of this accelerator considers two ST multipliers for each
processing element [16]. This decision implies that the packaging should
consider twice the values compared to the previous cases. Therefore,
there are 8 different intermediate buffers which store parts of two different
operands intended for the two ST multipliers. The packaging part has to
fill the empty spaces in case no available data is present for the feeding
the multipliers.

Listing 4.28: Packaging data in FC accelerator
1 f o r ( u int16 c = 0 ; c < MAX_INPUT_ACTIVATIONS; c++) {
2 uint16 c_temp = c∗ i nc r1_recon f ;
3 i f (CONFIG1 == 1) { // 4x
4 i f ( c == new_N −1 && N % 8 == 1 ) {
5 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+3) . to_int ( ) ] . s l c <4>(0) ;
6 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
7 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
8 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
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9 a2_HH_4b = ( in t4 ) 0 ;
10 a2_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+6) . to_int ( ) ] . s l c <4>(0) ;
11 a2_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+5) . to_int ( ) ] . s l c <4>(0) ;
12 a2_LL_4b = ( in t4 ) plm_in . data [ ( c_temp+4) . to_int ( ) ] . s l c <4>(0) ;
13 } e l s e i f ( c == new_N −1 && N % 8 == 2 ) {
14 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+3) . to_int ( ) ] . s l c <4>(0) ;
15 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
16 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
17 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
18 a2_HH_4b = ( in t4 ) 0 ;
19 a2_HL_4b = ( in t4 ) 0 ;
20 a2_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+5) . to_int ( ) ] . s l c <4>(0) ;
21 a2_LL_4b = ( in t4 ) plm_in . data [ ( c_temp+4) . to_int ( ) ] . s l c <4>(0) ;
22 } e l s e i f ( c == new_N −1 && N % 8 == 3 ) {
23 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+3) . to_int ( ) ] . s l c <4>(0) ;
24 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
25 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
26 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
27 a2_HH_4b = ( in t4 ) 0 ;
28 a2_HL_4b = ( in t4 ) 0 ;
29 a2_LH_4b = ( in t4 ) 0 ;
30 a2_LL_4b = ( in t4 ) plm_in . data [ ( c_temp+4) . to_int ( ) ] . s l c <4>(0) ;
31 } e l s e i f ( c == new_N −1 && N % 8 == 4 ) {
32 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+3) . to_int ( ) ] . s l c <4>(0) ;
33 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
34 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
35 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
36 a2_HH_4b = ( in t4 ) 0 ;
37 a2_HL_4b = ( in t4 ) 0 ;
38 a2_LH_4b = ( in t4 ) 0 ;
39 a2_LL_4b = ( in t4 ) 0 ;
40 } e l s e i f ( c == new_N −1 && N % 8 == 5 ) {
41 a1_HH_4b = ( in t4 ) 0 ;
42 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
43 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
44 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
45 a2_HH_4b = ( in t4 ) 0 ;
46 a2_HL_4b = ( in t4 ) 0 ;
47 a2_LH_4b = ( in t4 ) 0 ;
48 a2_LL_4b = ( in t4 ) 0 ;
49 } e l s e i f ( c == new_N −1 && N % 8 == 6 ) {
50 a1_HH_4b = ( in t4 ) 0 ;
51 a1_HL_4b = ( in t4 ) 0 ;
52 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
53 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
54 a2_HH_4b = ( in t4 ) 0 ;
55 a2_HL_4b = ( in t4 ) 0 ;
56 a2_LH_4b = ( in t4 ) 0 ;
57 a2_LL_4b = ( in t4 ) 0 ;
58 } e l s e i f ( c == new_N −1 && N % 8 == 7 ) {
59 a1_HH_4b = ( in t4 ) 0 ;
60 a1_HL_4b = ( in t4 ) 0 ;
61 a1_LH_4b = ( in t4 ) 0 ;
62 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(0) ;
63 a2_HH_4b = ( in t4 ) 0 ;
64 a2_HL_4b = ( in t4 ) 0 ;
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65 a2_LH_4b = ( in t4 ) 0 ;
66 a2_LL_4b = ( in t4 ) 0 ;
67 } e l s e {
68 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+3) . to_int ( ) ] . s l c <4>(0) ;
69 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
70 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
71 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
72 a2_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+7) . to_int ( ) ] . s l c <4>(0) ;
73 a2_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+6) . to_int ( ) ] . s l c <4>(0) ;
74 a2_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+5) . to_int ( ) ] . s l c <4>(0) ;
75 a2_LL_4b = ( in t4 ) plm_in . data [ ( c_temp+4) . to_int ( ) ] . s l c <4>(0) ;
76 }
77 } e l s e i f (CONFIG1 == 2 | | CONFIG1 == 3) { // 8x
78 i f ( c == new_N −1 && N % 4 == 1 ) {
79 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(4) ;
80 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
81 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(4) ;
82 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
83 a2_HH_4b = ( in t4 ) 0 ;
84 a2_HL_4b = ( in t4 ) 0 ;
85 a2_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(4) ;
86 a2_LL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
87 } e l s e i f ( c == new_N −1 && N % 4 == 2 ) {
88 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(4) ;
89 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
90 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(4) ;
91 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
92 a2_HH_4b = ( in t4 ) 0 ;
93 a2_HL_4b = ( in t4 ) 0 ;
94 a2_LH_4b = ( in t4 ) 0 ;
95 a2_LL_4b = ( in t4 ) 0 ;
96 } e l s e i f ( c == new_N −1 && N % 4 == 3 ) {
97 a1_HH_4b = ( in t4 ) 0 ;
98 a1_HL_4b = ( in t4 ) 0 ;
99 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(4) ;

100 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(0) ;
101 a2_HH_4b = ( in t4 ) 0 ;
102 a2_HL_4b = ( in t4 ) 0 ;
103 a2_LH_4b = ( in t4 ) 0 ;
104 a2_LL_4b = ( in t4 ) 0 ;
105 } e l s e {
106 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(4) ;
107 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
108 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(4) ;
109 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp ) . to_int ( ) ] . s l c <4>(0) ;
110 a2_HH_4b = ( in t4 ) plm_in . data [ ( c_temp+3) . to_int ( ) ] . s l c <4>(4) ;
111 a2_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+3) . to_int ( ) ] . s l c <4>(0) ;
112 a2_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(4) ;
113 a2_LL_4b = ( in t4 ) plm_in . data [ ( c_temp+2) . to_int ( ) ] . s l c <4>(0) ;
114 }
115 } e l s e { // i f (CONFIG == 0 | | CONFIG == 4) { // 16x
116 i f ( c == new_N −1 && N % 2 == 1 ) {
117 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(12) ;
118 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(8) ;
119 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(4) ;
120 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(0) ;
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121 a2_HH_4b = ( in t4 ) 0 ;
122 a2_HL_4b = ( in t4 ) 0 ;
123 a2_LH_4b = ( in t4 ) 0 ;
124 a2_LL_4b = ( in t4 ) 0 ;
125 } e l s e {
126 a1_HH_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(12) ;
127 a1_HL_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(8) ;
128 a1_LH_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(4) ;
129 a1_LL_4b = ( in t4 ) plm_in . data [ ( c_temp) . to_int ( ) ] . s l c <4>(0) ;
130 a2_HH_4b =( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(12) ;
131 a2_HL_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(8) ;
132 a2_LH_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(4) ;
133 a2_LL_4b = ( in t4 ) plm_in . data [ ( c_temp+1) . to_int ( ) ] . s l c <4>(0) ;
134 }
135 }
136 A1_reconf_HH [ c ] = a1_HH_4b ;
137 A1_reconf_HL [ c ] = a1_HL_4b ;
138 A1_reconf_LH [ c ] = a1_LH_4b ;
139 A1_reconf_LL [ c ] = a1_LL_4b ;
140 A2_reconf_HH [ c ] = a2_HH_4b ;
141 A2_reconf_HL [ c ] = a2_HL_4b ;
142 A2_reconf_LH [ c ] = a2_LH_4b ;
143 A2_reconf_LL [ c ] = a2_LL_4b ;
144 i f ( c == new_N −1) break ;
145 } // c
146

• When the input activations are tiled, this accelerator also performs the
accumulation of partial results to calculate the output activations.

• Each processing element works on a different output activation.

• The store phase only has one loop iteration because the output has only
one dimension.
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Chapter 5

Simulation, FPGA
implementation and
Results

In this chapter the correctness of the tiling algorithm presented above will
be tested thought C and RTL simulations, and then further evaluated on
a FPGA exploiting the ESP framework. The basic steps to set up all the
framework and environment variables, in order to reproduce the tests just
mentioned, are presented in these thesis works [19], [20]. They can be taken
as a reference guide to replicate the workflow from scratch. Accordingly, the
following chapter will focus on explaining the differences in the workflow and
some considerations that have been taken to validate the tiling architectures.
The test results confirms the correct behaviour of the tiling algorithm and
highlights the conditions in which the tiling architecture performs at its best.
It also compares the performance using the hardware accelerators with the
tiling algorithm and the performance of the RISC-V processor to compute
convolution operations.

5.1 C/C++ simulation
The first step to validate the correct operation of the tiling algorithm of
each accelerator is to perform a C simulation by considering the accelerators
isolated from the rest of the SoC. Hence, the testbench has to simulate the
operations of the DMA and the processor, i.e. set the tile parameters and
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configuration for the computation of the convolution, feed the DMA channels
with random data to be used by the accelerator as follows:

Listing 5.1: Input and weight data transfer to accelerator in TB
1 // Pass inputs to the a c c e l e r a t o r
2 f o r ( unsigned i = 0 ; i < input_s ize ; i++) {
3 // generate random input
4 FPDATA_IN data_fp = ( i % 200) ∗ 0 .25 − 25 ;
5 inputs [ i ] = data_fp ;
6 ac_int<DMA_WIDTH, true> data_ac ;
7 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
8 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2>(0) ) ;
9 data_ac . s e t _ s l c (0 , inputs [ i ] . template s l c <DATA_WIDTH>(0) ) ;

10 dma_read_chnl . wr i t e ( data_ac ) ;
11 }
12 f o r ( unsigned i = 0 ; i < weight_size ; i++) {
13 FPDATA_IN data_fp = ( i % 200) ∗ 0 .25 − 25 ;
14 weights [ i ] = data_fp ;
15 ac_int<DMA_WIDTH, true> data_ac ;
16 ac_int<DMA_WIDTH/2 , true> DEADBEEF = 0 xdeadbeef ;
17 data_ac . s e t _ s l c (DMA_WIDTH/2 , DEADBEEF. template s l c <DMA_WIDTH/2>(0) ) ;
18 data_ac . s e t _ s l c (0 , weights [ i ] . template s l c <DATA_WIDTH>(0) ) ;
19 dma_read_chnl . wr i t e ( data_ac ) ;
20 }

After passing the data, the accelerator is called and performs the convolu-
tion. Then, the output data is fetched from the accelerator’s output memory
and compared to the golden results computed by the testbench code. Figure
5.1 shows the test’s results considering a tile with the following dimensions
and parameters:

• Width = 7

• Height = 7

• Input channels = 7

• Kernel width and height = 3

• Ouptut channels = 10

• Stride = 1

• Paddding = valid
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Figure 5.1: C Testbench simulation result of a 2D Convolution operation

5.2 High Level Synthesis and RTL simulation

At this point the behaviour of the accelerator is checked at higher level of
abstraction. Now the high-level synthesis has to be performed to obtain the
RTL code and to integrate the accelerator into the SoC. The HLS tool used
in this work is Siemens Catapult HLS.
The synthesis workflow is similar to the previous works [19], [20], with the
difference that in this architecture an accelerator with multiple PEs has
to be synthesized, therefore loop unrolling directives need to be added to
the synthesis script. The adoption of multiple PEs requires to access more
information from the PLMs at the same time. Since the memories have
only one read port and one write port, the interleave directive is needed
to infer multiple smaller memory banks from the original PLMs for those
that require multiple data accesses in parallel. This directive specifies that
the data should be organized or accessed in an interleaved manner. This
means that the tool will attempt to interleave the memory accesses for the
specified variables, enabling concurrent or grouped access to multiple memory
locations. Furthermore, the largest arrays of the accelerator’s architecture
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are mapped to memories and others are mapped to registers. The following
directives are added to the base synthesis script of [19]:

Listing 5.2: Additional directives for systhesis script [19]
1 d i r e c t i v e s e t /$ACCELERATOR/ core / p lm_in .data : r s c −MAP_TO_MODULE

Xilinx_RAMS.BLOCK_1R1W_RBW
2 d i r e c t i v e s e t /$ACCELERATOR/ core / p lm_f .data : r s c −MAP_TO_MODULE

Xilinx_RAMS.BLOCK_1R1W_RBW
3 d i r e c t i v e s e t /$ACCELERATOR/ core / plm_out .data : r sc −MAP_TO_MODULE

Xilinx_RAMS.BLOCK_1R1W_RBW
4 d i r e c t i v e s e t /$ACCELERATOR/ core / plm_out .data : r sc −INTERLEAVE

$MAX_OUTPUT_CHANNELS
5 d i r e c t i v e s e t /$ACCELERATOR/ core / bu f_acc .da ta : r s c −INTERLEAVE

$MAX_OUTPUT_CHANNELS
6 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_HH:rsc −INTERLEAVE

$MAX_OUTPUT_CHANNELS
7 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_HL:rsc −INTERLEAVE

$MAX_OUTPUT_CHANNELS
8 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_LH:rsc −INTERLEAVE

$MAX_OUTPUT_CHANNELS
9 d i r e c t i v e s e t /$ACCELERATOR/ core /B_reconf_LL:rsc −INTERLEAVE

$MAX_OUTPUT_CHANNELS
10 d i r e c t i v e s e t /$ACCELERATOR/ core / output_acc : r sc −MAP_TO_MODULE { [ Reg i s t e r ] }
11 d i r e c t i v e s e t /$ACCELERATOR/ core / outputq_quantized_4x:rsc −MAP_TO_MODULE { [

Reg i s t e r ] }
12 d i r e c t i v e s e t /$ACCELERATOR/ core / outputq_quantized_8x:rsc −MAP_TO_MODULE { [

Reg i s t e r ] }
13 d i r e c t i v e s e t /$ACCELERATOR/ core / outputq_quantized_16x:rsc −MAP_TO_MODULE { [

Reg i s t e r ] }
14 d i r e c t i v e s e t /$ACCELERATOR/ core / in_h_for −PIPELINE_INIT_INTERVAL 1
15 d i r e c t i v e s e t /$ACCELERATOR/ core /in_w_for −PIPELINE_INIT_INTERVAL 1
16 d i r e c t i v e s e t /$ACCELERATOR/ core /k_h_for −PIPELINE_INIT_INTERVAL 1
17 d i r e c t i v e s e t /$ACCELERATOR/ core /k_w_for −PIPELINE_INIT_INTERVAL 1
18 d i r e c t i v e s e t /$ACCELERATOR/ core / c i_ fo r −PIPELINE_INIT_INTERVAL 1
19 d i r e c t i v e s e t /$ACCELERATOR/ core / co_for −UNROLL yes

Figure 5.2 shows the list of loops considered in the accelerator, the loop
where loop unrolling was applied (co_for, wb_for, q_for) to enable 16
PEs and the rest of them which pipelining was applied. Figure 5.3 shows
the scheduled operations of all the loops that compose the 2D convolution
accelerator.

After performing the synthesis, the tool gives different results from the
expected ones with respect to the number of multipliers synthesised in the
accelerator. As it can be deduced, if there are 16 PEs, 16 are also the
number of multipliers expected after the synthesis. However, when the
target technology is FPGA-oriented, the ST multipliers are synthesized with
multiple multipliers instead of a single instance, as in the FPGA fabric the
types of resources are limited. Therefore, the synthesis tool, which in this
work is Xilinx Vivado, decided to emulate the behaviour of the ST multiplier
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Figure 5.2: Loop list and configurations

Figure 5.3: 2D-Conv loop’s schedule

with extra multipliers of different operators bitwidths (8, 16 bits). Hence,
instead of having 16 ST multipliers, the final design has 64 multipliers that
together behave as 16 ST ones. Figure 5.4 shows that more multipliers are
synthesised when the target is a FPGA technology. On the other hand,
Figure 5.5 shows that exactly 16 multipliers are synthesised when the target
technology is ASIC oriented. This experiment double-checked that the
unrolling and memory partitioning was performed correctly by the HLS tool.

The next step is to simulate the operation of all the SoC in RTL. Thanks
to the baremetal it is possible to simulate how the processor can handle the
tiling algorithm and subsequently call the accelerator to process each tile
in a specific order. Figure 5.6 shows the accelerator’s waveforms captured
from the simulation tool. When it is high, the signal acc_done tells that the
accelerator has finished a tile computation, therefore four tiles are computed
in Figure 5.6. Also in this case the convolution results are compared to the
golden results, computed in software considering the entire tensors and the
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Figure 5.4: Multipliers synthesised for FPGA technology

Figure 5.5: Multipliers synthesised for ASIC technology

results match.
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Figure 5.6: RTL Simulation of Tiled convolution

5.3 FPGA Prototyping and validation results
Finally, the tiling architecture is tested on the FPGA, in this case the board
ProFPGA XC7V2000T. The RTL code is synthesised considering the FPGA
resources and constraints, then the generated bitstream is upload to the
FPGA to program it. After this process, the FPGA is ready to execute
the baremetal code that implements the tiling algorithm. As expected, the
tests performed in the FPGA are orders of magnitude faster than the RTL
simulation, hence larger tensors can be used when testing the tiling process.
To validate the results and correct behaviour of the system, Tensorflow
framework is used to obtain the golden values of a convolution layer. The
code developed in previous works used Tensorflow to generate the results of a
convolution operation using quantization as well. This code also provides the
parameters needed to apply quantization to the final results, all the values
are written in text files. However, the tensor values (input, weight, output)
have a different organization and order inside the text files with respect to
the order consider for the external memory organization and explained in
the chapter 4. Therefore, a reorder of the data is needed to correctly feed
the accelerator with the input and weight values. The golden results are
reordered as well to compare them against the system’s ones. The following
pyhton script was developed to take the values and parameters from the text
files, reorder the data and write them into arrays inside header files that will
be imported by the baremetal C code. The script shows the dimensions of
the tensor used in the test as well.

Listing 5.3: Data reorder and headers generator script
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1 import s t r u c t
2 import numpy as np
3 Win = 8
4 Hin = 8
5 Hout = 6
6 Wout = 6
7 Cin = 16
8 Cout = 4
9 ker = 3

10 de f read_f i le_write_header ( input_f i l e , header_f i l e , array_name , array_type ,
reorder , i n p u t _ f i l e 2=’ ’ ) :

11 # Read numbers from the input f i l e
12 with open ( input_f i l e , " r " ) as f i l e :
13 l i n e s = f i l e . read ( ) . s p l i t l i n e s ( )
14 i f ( r eo rde r == 2) :
15 with open ( input_f i l e2 , " r " ) as f i l e 2 :
16 l i n e s 2 = f i l e 2 . read ( ) . s p l i t l i n e s ( )
17 def_name = s t r ( array_name ) . upper ( )
18 # Create the C header f i l e
19 with open ( header_f i l e , "w" ) as header :
20 header . wr i t e ( "#i f n d e f "+def_name+"_H\n" )
21 header . wr i t e ( "#d e f i n e "+def_name+"_H\n\n" )
22 header . wr i t e ( f "#d e f i n e {array_name} _size { l en ( l i n e s ) }\n " )
23 header . wr i t e ( f " { array_type } {array_name } [{ array_name} _size ] = {{\n" )
24 i f ( r eo rde r==1) :
25 temp = [ ]
26 temp_ordered = [ ]
27 f o r i , l i n e in enumerate ( l i n e s ) :
28 temp . append ( f l o a t ( l i n e ) )
29 i f ( array_name == ’ input ’ ) :
30 channel1 = Cin
31 channel2 = 1
32 Height = Hin
33 Width = Win
34 e l i f ( ( array_name == ’ output ’ ) ) :
35 channel1 = Cout
36 channel2 = 1
37 Height = Hout
38 Width = Wout
39 e l i f ( ( array_name == ’ weight ’ ) ) :
40 channel1 = Cin
41 channel2 = Cout
42 Height = ker
43 Width = ker
44 f o r c2 in range ( channel2 ) :
45 f o r c1 in range ( channel1 ) :
46 f o r h in range ( Height ) :
47 f o r w in range ( Width ) :
48 temp_ordered . append ( temp [ channel2 ∗( channel1 ∗(

Width∗h + w)+c1 )+c2 ] )
49 f o r i in range ( l en ( temp_ordered ) ) :
50 header . wr i t e ( f " {temp_ordered [ i ] } " )
51 i f i < l en ( temp_ordered ) − 1 :
52 header . wr i t e ( " , " )
53 header . wr i t e ( " \n " )
54 header . wr i t e ( " } ; \ n\n" )
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55 header . wr i t e ( "#e n d i f \n " )
56 e l i f ( r eo rde r == 2) :
57 temp1 = [ ]
58 temp2 = [ ]
59 f o r i , l i n e in enumerate ( l i n e s ) :
60 temp1 . append ( ( np . f l o a t 1 2 8 ( l i n e ) ) )
61 f o r i , l i n e in enumerate ( l i n e s 2 ) :
62 temp2 . append ( ( np . f l o a t 1 2 8 ( l i n e ) ) )
63 f o r i in range ( l en ( temp1 ) ) :
64 header . wr i t e ( f " { s t r ( temp1 [ i ] ∗ temp2 [ 0 ] ) } " )
65 i f i < l en ( l i n e s ) − 1 :
66 header . wr i t e ( " , " )
67 header . wr i t e ( " \n " )
68 header . wr i t e ( " } ; \ n\n" )
69 header . wr i t e ( "#e n d i f \n " )
70 e l s e :
71 f o r i , l i n e in enumerate ( l i n e s ) :
72 i f ( r eo rde r == 3) :
73 header . wr i t e ( f " {1/ f l o a t ( l i n e ) } " )
74 e l s e :
75 header . wr i t e ( f " { f l o a t ( l i n e ) } " )
76 i f i < l en ( l i n e s ) − 1 :
77 header . wr i t e ( " , " )
78 header . wr i t e ( " \n " )
79 header . wr i t e ( " } ; \ n\n" )
80 header . wr i t e ( "#e n d i f \n " )
81 p r i n t ( f " Generated { h e a d e r _ f i l e } with { l en ( l i n e s ) } e lements . " )
82 read_f i le_write_header ( " qconv2d /0_ofq_in_out . txt " , " input . h " , " input " , " double "

, 1)
83 read_f i le_write_header ( " qconv2d /0_wq. txt " , " weight . h " , " weight " , " double " , 1)
84 read_f i le_write_header ( " qconv2d /0_ofq_out . txt " , " output . h " , " output " , " double "

,1 )
85 read_f i le_write_header ( " qconv2d /0_subq1 . txt " , " w_cross . h " , " w_cross " , " double " ,

0 )
86 read_f i le_write_header ( " qconv2d /0_bq . txt " , " b iasq_sca led . h " , " b iasq_sca led " , "

double " , 2 , " qconv2d /0_b_s . txt " )
87 read_f i le_write_header ( " qconv2d /0_w_s. txt " , " s ca l ing_factor_iw . h " , "

sca l ing_factor_iw " , " double " , 2 , " qconv2d /0_of_s_in . txt " )
88 read_f i le_write_header ( " qconv2d /0_of_z_in . txt " , " z_o . h " , " z_o " , " double " , 0 )
89 read_f i le_write_header ( " qconv2d /0_of_s_out . txt " , " s ca l i ng_fac to r_o i . h " , "

s ca l i ng_fac to r_o i " , " double " , 3 )

Figure 5.7 shows the results of the 2D convolution implemented and
validated in the FPGA. There is only one error detected due to the approxi-
mations done for the quantization which is totally normal and do not affect
the accuracy of the results.

5.4 Performance results
The 2D-Conv accelerator and the tiling algorithm are tested with three
different layers that have different dimensions: the first and the last layer
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Figure 5.7: 2D-Conv results in FPGA

of MobileNet, and a common layer taken from [23]. The dimensions of the
layers are shown in table 5.1, the stride is 1 and no padding is applied in
all the layers. The test also considers different PLMs sizes, two values for
the number of PEs (4 and 16, which corresponds to the Cout size of the
PLMs), and the 3 kind of precision configurations (16, 8, or 4 bits). The
tensor dimensions are represented in the following order: Height (or kernel
height) x Width (or kernel width) x Input Channels x Output Channels.
Table 5.1 presents the results of the tests. The first column shows the time, in
clock cycles, that takes to the accelerator to compute the layer. The second
column shows the time the processor takes to compute the layer in software,
considering the tiling algorithm as well. The third column shows the time
that takes to the processor to compute the entire layer without the tiling
algorithm. The fourth column shows the speedup of the hardware accelerator
approach (HW) in comparison with the processor approach (SW) with tiling,
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a negative value means that the accelerator takes less time to perform the
computation. The fifth column shows the speedup of the hardware accelerator
approach (HW) in comparison with the processor approach (SW) without
tiling. The rest of the columns provides information about the layer that
has been processed and the parameters given by the tiling algorithm.
The results demonstrate that the accelerator performs the best when the
number of tiles is low and when the tile sizes are large. In these cases the
accelerator better exploits each DMA transaction, moving more data in each
transaction and spending less time configuring the accelerator and the DMA
transactions. The results suggest that the largest PLMs are preferred because
they permit to have less number of tiles and tiles with bigger dimensions.
The tiling and DMA transactions overhead can become more significant when
the number of tiles are bigger and the size of the tiles are smaller, impacting
the overall performance of the accelerator and the tiling algorithm. Figure
5.8 shows the RTL simulation waveforms of the worst case experiment of
table 5.1 (10th row) and Figure 5.9 shows the RTL simulation waveforms
of the best case experiment of table 5.1 (15th row). In the worst case the
percentages of time with respect to the total time are the following: the load
phase 32%, the computation phase 56%, and the store phase 12%. Instead in
the best case the percentages of time with respect to the total time are: 34%,
44%, and 22% respectively. This proves that in approximately half of the
total time, the accelerator performs data movements for reading and writing.
To improve the performance, a hierarchical design (with load, compute, and
store phases pipelined with a dataflow directive), and double buffers for the
accelerator’s PLMs would hide the data transfer times. These improvements
are left as future work.

Figure 5.8: RTL simulation of the 2D-Conv computation for the worst case
scenario
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Figure 5.9: RTL simulation of the 2D-Conv computation for the best case
scenario
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Chapter 6

Conclusions

Convolutional Neural Networks (CNNs) have become pivotal in numerous
computer vision applications, enabling advancements across diverse domains
like image classification, object detection, and medical imaging. The esca-
lating demand for these applications has underscored the critical need for
more efficient, scalable solutions that can meet the computational demands
of cutting-edge CNN models.
This thesis addresses these challenges by presenting an innovative tiling archi-
tecture tailored for large-scale CNN inference. The emphasis on High-Level
Design and the Embedded Scalable Platform (ESP) underscores a paradigm
shift in designing hardware accelerators and optimizing tensor partitioning
for memory-constrained edge devices. The thesis work has demonstrated
how is possible to execute larger CNN layers in a memory constrained device
thanks to the tiling method proposed within the architecture. However, the
results have demonstrated that in order to achieve the best performance of
the accelerators and tiling algorithm, the PLMs have to be large enough to
avoid getting a high number of small tiles after applying the tiling algorithm.
Moreover, the utilization of High-Level Design enables a higher-level represen-
tation of hardware, yielding more concise, debug-friendly C/C++ code. ESP
complements this approach by seamlessly integrating the architecture into a
System-on-Chip (SoC), facilitating straightforward integration and testing of
baremetal software applications that test the proposed algorithm. Rigorous
testing through RTL simulation and FPGA deployment has validated the
feasibility and real-world effectiveness of the proposed tiling algorithm.
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Conclusions

Future work:

• Exploring dynamic tiling strategies that adapt to other types of dataflows
and memory constraints in real-time scenarios.

• Exploring the management of the tiles with a hardware approach instead
of the software approach used in this work.

• Evaluating the tiling algorithm on a complete quantized DNN with
mixed-precision to validate the ST-based accelerators and the tiling
overhead.

In conclusion, this thesis highlights the fundamental role of innovative
tiling architectures and High-Level Design in enhancing CNN inference on
edge devices. By addressing critical challenges, this research lays a robust
foundation for future advancements in efficient CNN deployment.
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