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Abstract

This research investigates using speech analysis to detect depression non-invasively
and reliably by examining acoustic traits in healthy speech associated with depres-
sion and distinguishing them from pathological speech patterns.

The study compares two methods for depression detection: the first method
involves extracting handcrafted features from the audio signal and utilizing diverse
machine learning models for classification, while the second method involves using
convolutional neural networks (CNNs) to model source, filter, and overall combined
information from three different input signals.

The results suggest that depression in healthy patients can be better classified
with features that carry information related to the vocal source of the signal. On
the other hand, for Parkinson’s disease patients, presumably due to the effects of
the disease, retaining the full spectral content of the patient’s voice is more effective
in identifying depression.
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Chapter 1

Introduction

Depressive disorder (also known as depression) is a common mental disorder,
affecting about 5% of the global adult population [1]. Depression is characterized
by an individual’s struggle to cope with challenging life circumstances, resulting
in enduring emotions of sadness, pessimism, and an inability to effectively handle
daily obligations. If not addressed timely, it often elevates the risk of an individual
resorting to suicidal behaviors [2]. The World Health Organization (WHO) predicted
depression to be the second most significant disability worldwide by 2030 [3].

Timely identification and assessment of depression play a pivotal role in effective
treatment [4] [5]. Patient follow-ups and systematic symptom monitoring are
essential for making informed treatment choices and evaluating treatment progress
[6] [7].

Even today, depression diagnosis relies exclusively on the clinical assessment [8].
Hong et al.’s report [7] highlights that standardized scales in research and clinical
settings depend on either self-reported or clinician-reported scores to improve the
diagnosis and monitoring of symptoms. While these scales help minimize bias, there
remains a potential for subjective variation in interpreting items during clinical
interviews, leading to variability in diagnosis [9]. This bias further affects the
assessment in longitudinal treatments. Furthermore, the shortage of resources and
well-trained practitioners poses a significant challenge to effectively diagnosing and
monitoring depression patients [2]. Currently, there exists no objective measure for
the clinical detection of depression [4]. Therefore, bolstering the existing diagnostic
approaches with a dependable, affordable, automated screening tool or framework
for detecting and monitoring depression holds particular importance.

Recent research suggests significant potential in leveraging speech, specifically
the non-verbal paralinguistic cues for automatically detecting depression [4] [5] [6]
[7]. Speech stands out as a favourable option for incorporation into an automated
system, given its inexpensive, remote, and non-invasive measurability. In fact,
clinicians frequently rely on the verbal behaviour of a patient, noting reduced verbal
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Introduction

activity, low arousal, altered prosody, and a ’lifeless’ tone in speech as indicative
signs of depression [10].

This thesis aims to investigate how speech can be utilized in a reliable manner
for the detection of depression. While the primary focus centers on detecting
depression through speech/acoustics, the thesis also aims to examine the acoustic
traits that distinguish pathological speech associated with depression from regular
speech.

Pathological speech in patients with Parkinson’s disease (PD) was examined
and analyzed. PD is a neurological condition that impacts basal ganglia functions,
leading to the gradual reduction of dopamine-secreting neurons [11]. The dimin-
ished dopamine levels result in characteristic motor impairments such as tremors
and hypokinetic dysarthria (articulation difficulties), while non-motor symptoms
encompass complex behavioural alterations and depression. Pathological speech
analysis can provide valuable insights into the presence of depression, even when
patients may struggle to express their emotional state verbally. However, accurately
characterizing changes and finding insights from speech signals can be challenging,
as it typically requires separating the voice source and the vocal tract information
accurately.

By exploiting different machine learning and deep learning methods, this research
aims to:

• compare the performances of different classification methods for detecting
depression;

• investigate the primary acoustic features for detecting depression from the
speech of healthy and pathological patients and distinguish whether they are
related to the source voice or the vocal tract system;

• understand how depression in Parkinson’s patients manifests itself differently
in comparison to healthy patients in terms of acoustic features.

1.1 State of the art
Depression represents a notable phenomenon which has gained increased attention in
recent years, particularly in terms of its automated detection and severity assessment.
To address this challenge, researchers have explored the automatic classification
and severity prediction of depression using various modalities, including audio,
video, and text, by extracting relevant parameters from sessions of patient clinical
interviews [12] [13].

Numerous speech characteristics have been identified as potential indicators of
depression: the influence of depression on human speech production extends to
speech motor control, as documented in previous studies [14] [15], and is manifest
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1.2 – Outline

through observable abnormalities in prosody, articulation, and phonetic accuracy;
also, alterations in voice quality, encompassing features such as changes in glottal
pulse shape, breathiness degree, jitter, and shimmer, have been reliably associated
with depression [16] [17] [18]. Articulatory and phonetic errors have also been
shown to be indicators of depression [19]. Since depression can sometimes display
symptoms associated with negative emotions, some researchers have incorporated
features inspired by speech emotion recognition studies [20]. However, it is crucial
to recognize that the expression of negative emotions significantly differs from
the experience of clinical depression. Several studies have employed statistical
analyses of features known as low-level descriptors (LLD) (see Sec. 2.3.2) associated
with both the vocal source and vocal tract to enhance existing systems [20] [21].
However, not every statistical property contributes to the improvements.

Despite the progress made in this field, there is still no agreement on a set
of features that can be used to identify depression from speech signals reliably.
Furthermore, these systems’ performance could be limited by the features chosen
and their statistical properties. In more recent developments, a shift toward deep
learning methods has been observed. A notable example is utilizing neural networks
incorporating convolutional and long short-term memory layers. These networks
were employed to predict depression, using features such as log Mel filter-bank
(LMFB) and magnitude-spectrogram data [22].

1.2 Outline
Chapter 2 , Background, defines speech production and its related features. Also,
it gives an overview of feature extraction and classification methods used in the
study. Finally, it introduced the main knowledge of Convolutional Neural Networks
in the context of speech.
Chapter 3 , Datasets, Protocols and Evaluation Metrics, describes the dataset
provided for the analysis and defines the experimental protocols and metrics used
in the experiments.
Chapter 4 , presents the Handcrafted features methodology and gives the relative
results with comments.
Chapter 5 , explains the end-to-end approach, details the used CNNs and describes
results.
Chapter 6 , reports comments and considerations on the results obtained.

3



4



Chapter 2

Background

2.1 Speech production
The speech signal is often represented in terms of a source-filter model and modelled
as a two-stage process. The first process models the sound source originating at the
glottis as a time-varying signal e(t), as a periodic pulse train with a pulse spacing
τp. The second stage works as a filter that amplifies and attenuates the signal with
a continuous impulse response and a peak at a chosen resonance frequency, called
formats. The filter represents the vocal tract system ν(t). The resulting speech
signal s(t) is obtained by the convolution of e(t) and ν(t) in the time domain:

s(t) = e(t) ∗ ν(t).

Through Figure 2.1, it is possible to get an idea of the source-vocal filter model
that has just been described. In the frequency domain, this involves multiplying
the Fourier transform (FT) of the excitation signal and the FT of the vocal tract:

S(jω) = E(jω) · V (jω).

The resulting waveform is also periodic with a period of τp, with a line spectrum
with frequency of 1/τp and an envelope determined by the vocal tract’s frequency
response [23].

The sound source (the glottis) The source of voiced speech sounds emanates
from the vibration of the vocal folds, which are situated within the portion of the
larynx referred to as the glottis. When air is forced to flow from the lungs through
a closed glottis, the vocal folds enter a state of vibration. This vibratory motion
serves as the primary sound source for most speech sounds.

It is worth noting, however, that not all speech sounds are generated by the
glottal source wave. Voiceless speech sounds originating higher in the vocal tract
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Figure 2.1: In the source-filter model of speech production, the glottis serves as
the origin of the excitation signal, while the vocal tract, including the nasal and
oral cavities, acts as the filtering element. The accompanying figure illustrates the
temporal and spectral characteristics of the source, vocal tract, and the resulting
speech signal.
Source: [24]

are instead produced by constriction within the vocal tract itself. For instance, in
the case of the voiceless labiodental fricative [f], the sound source is air passage
through the constriction between the lower lip and the upper teeth. The filter for
this particular sound is relatively small since there is not much in front of these
structures to alter the sound.

The filter (the vocal tract) The glottal source wave undergoes filtration
within the vocal tract as it progresses towards the external environment. Numerous
essential anatomical structures concerning speech production within the vocal tract
come into play. These include the epiglottis, pharynx, velum, various tongue parts
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2.2 – Prosodic and acoustic features

(tip, blade, body, and root), the alveolar ridge, hard palate, teeth, lips, and the
nasal cavity. Each component serves as a potential filter for modifying the sound
originating from the glottal source wave.

2.2 Prosodic and acoustic features
Speech features can be divided into four main groups: source, spectral, prosodic,
and formant features.

Source related features: Source features convey information about the glottis
during natural voice production. They can either parameterize this flow via glottal
features or parameterize vocal fold movements via voice quality features. A limited
body of research has delved into the impact of depression on source measures, with
a predominant focus on voice quality attributes. Voice quality measures frequently
employed in the analysis of speech affected by depression encompass jitter, which
quantifies small cycle-to-cycle variations in glottal pulse timing during voicing;
shimmer, which measures small cycle-to-cycle variations in glottal pulse amplitude
in voiced segments; and harmonic-to-noise ratio (HNR), a ratio that gauges the
presence of harmonics relative to inharmonic components. Depressed speech is often
associated with breathy and tense voice qualities, indicating a decline in laryngeal
coordination. In a study by Flint et al. (1993) [25], increased spirantization was
observed in depressed individuals compared to healthy controls. Spirantization
reflects aspirated leakage at the vocal folds and indicates disruptions in vocal fold
behaviour.

Spectral features: Spectral features are utilized to characterize the speech
spectrum, which represents the frequency distribution of the speech signal at
a specific moment, typically in a high-dimensional representation. Among the
commonly employed spectral features are the Power Spectral Density (PSD) and
Mel Frequency Cepstral Coefficients (MFCCs). Spectral features are particularly
effective in capturing a range of characteristics, including the decay of intensity,
prosodic irregularities, and articulatory and phonetic errors associated with changes
in speech motor control. Moreover, they offer detailed insights into vocal tract
behaviour, potentially capturing information about muscle tension and control
alterations.

However, it is worth noting that since these features encompass all the informa-
tion present in speech, both linguistic and paralinguistic, this comprehensiveness
may present challenges for the performance of classification or prediction systems re-
lying solely on these features. In the literature, prominent spectral effects have been
documented. It involves a relative shift in energy from lower to higher frequency
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bands or a decrease in energy variability within sub-bands. Notably, Tolkmitt et
al. (1982), as documented in their study [26], were the first to observe a shift in
spectral energy, specifically from frequencies below 500 Hz to the 500-1000 Hz
range, in correlation with increasing severity of depression.

Prosodic features: Prosodic features represent the long-time (phoneme level)
variations in perceived rhythm, stress, and speech intonation. Key examples include
speaking rate, pitch (the auditory perception of tone), and loudness. In practical
terms, fundamental frequency (F0, representing the rate of vocal fold vibration)
and energy are the most commonly employed prosodic features, as they directly
relate to the perceptual attributes of pitch and loudness. Hollien (1980) [27] has
suggested that individuals experiencing depression exhibit distinct speech patterns,
highlighting five potential characteristics: reduced speaking intensity, a narrower
pitch range, slower speech rate, diminished intonation, and a lack of linguistic
stress.
Curiously, even though clinical depictions of speech affected by depression often
describe it as dull, monotonous, and lacking vitality (as documented by Hall et al.,
1995), research has yielded divergent results concerning the influence of depression
on fundamental frequency (F0) variables. It is, however, not unexpected that
numerous studies have identified noteworthy correlations between a diminished
F0 range and a reduced average F0 in tandem with escalating levels of depression
severity. This contradiction in findings can be attributed to the diverse and varied
nature of depression symptoms.

Formant features: Formants are the dominant components in the speech spec-
trum and contain significant amounts of information on the resonance properties
of the vocal tract. Flint et al. (1993) [25] have identified significant disparities in
the second formant location (F2) associated with the phoneme /ai/ in individuals
diagnosed with depression, in comparison to a control group that was carefully
matched. They propose that this decrease in F2 location may be attributed to a
deceleration of tongue movement, specifically from a low-back to the high-front
position. Formant-based characteristics are widely favoured in developing systems
for classifying depressive speech. In their system architecture, Low et al. (2011)
[28] observed that a combined set of the first three formant frequencies and their
corresponding bandwidths exhibited noteworthy distinctions between individuals
with depression and control subjects, with a statistical significance of p<0.05. Ad-
ditionally, Helfer et al. (2013) [29] devised a binary classifier for distinguishing low
and high depression cases using features derived from formant frequencies. These
features included dynamic aspects, such as velocity and acceleration, resulting in
reported classification accuracies of 70% with a Gaussian Mixture Model and 73%
with a Support Vector Machine, respectively.
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2.2.1 The impact of Parkinson’s disease on speech
Parkinson’s disease profoundly affects the acoustic features of speech. The progres-
sive degeneration of the basal ganglia, resulting in dopamine insufficiency, limits
the muscular control of the larynx, oral cavity, and other physiological support
mechanisms for speech [30]. These limitations lead to speech abnormalities charac-
terized by mono-pitch, mono loudness, altered speech rate, articulation difficulties,
changes in nasality, voice quality issues, and disturbances in prosody. These acous-
tic abnormalities can substantially impact the ability of individuals with PD to
communicate effectively.

2.2.2 The impact of depression on speech
Depression has been associated with a diverse range of alterations in speech,
spanning prosodic, source, formant, and spectral attributes. These findings often
vary across different feature sets, which is unsurprising given the complexity of
speech production and the diversity of depression symptoms. Prosodic alterations,
particularly decreased speech rate measures, provide evidence of slower articulatory
muscle activity. Source-related changes suggest a decline in laryngeal coordination.
Additionally, reductions in energy, both in the full frequency range and sub-
bands, along with formant dynamics, point to increased articulatory effort and
modifications in the vocal tract’s resonance properties.

2.3 Short-time feature representations
The accurate extraction and interpretation of these acoustic features and classifica-
tion of depression remain challenging, especially in speech difficulties such as those
with Parkinson’s disease. This section describes one of the traditional approaches
to feature extraction from an audio signal.

2.3.1 Features extraction
In the classification process, the algorithm’s primary objective is to identify specific
characteristics or attributes that differentiate different classes, whether applied to
image or waveform data. This is precisely what the feature extraction phase aims
to achieve. It involves extracting relevant and informative characteristics from raw
speech signals, which can be used for analysis, modelling, or classification tasks.
The goal is to transform the raw audio data into numerical features that capture
essential aspects of the speech signal.

Traditionally, speech assessment has conventionally relied on utilising hand-
crafted features known as low-level descriptors (LLDs).
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2.3.2 Low Level Descriptors
LLDs are a generic set of features. openSMILE [31] is a standard software capable
of extracting Low-Level Descriptors (LLD) and applying various filters, functionals,
and transformations to these. It provides the eGeMAPS and ComPARE handcrafted
feature set representations, used in the experimental studies.

eGeMAPS

The (extended) Geneva Minimalistic Acoustic Parameter Set [32] feature set was
created to standardize affective computing research by generating the best collection
of engineered features. It is mostly used in the field of speech analysis and emotion
recognition [33].

The feature set includes 88 different descriptors in total. The features include
the following Low-Level Descriptors:

• Frequency-related parameters (8)

• Energy/Amplitude related parameters (3)

• Spectral parameters (14)

These LLDs are extracted at every 10 ms within the speech. They encompass a
range of short-term features related to the vocal source and vocal tract, as detailed
in the provided Tab 2.1

Source-related System-related
Loudness Alpha ratio
F0 semitone from 27.5 Hz Hammarberg index
Jitter Spectral slopes (0-500, 500-1500)
Shimmer Spectral flux
HNR (dB) F1 (freq, bw, ampLogRelF0)
logRelF0-H1-H2 F2 (freq, ampLogRelF0)
logRelF0-H1-A3 F3 (freq, ampLogRelF0)

MFCC (1-4)

Table 2.1: LLD features grouped by source and system (see [34] for detailed
explanations)

The arithmetic mean and coefficient of variation (standard deviation normalized
by the arithmetic mean) are applied as functionals to those 25 LLDs, yielding 50
parameters. Later, from loudness and fundamental frequency, eight functionals are
applied and the mean of the slope of the rising and falling portion of the signal
are computed. As a result, 70 parameters are generated. Finally, six temporal
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2.3 – Short-time feature representations

features are included: Rate of loudness peaks, mean length and standard deviation
of voiced regions, mean length and standard deviation of unvoiced regions, and
number of continuous voice regions per second. With other functionals on other
parameters, we arrive at 88 features.

A detailed description of the LLDs provided by the openSMILE toolkit can be
found in the Appendix.

ComPARE

The ComPARE [35] is the official baseline feature set introduced for the INTER-
SPEECH Computational Paralinguistics Challenge [36]. The feature set consists of
6373 different parameters. The different classes of used LLDs are:

• Energy-related LLDs (4)

• Spectral LLDs (54)

• Voicing related LLDs (6)
Many functionals are then applied to those parameters. In addition, the Com-

PARE set included 5 global temporal statistics based on voiced/unvoiced segments,
computed using functionals applied to the fundamental frequency (F0) LLD. The
statistics included the ratio of non-zero values (percentage of voiced frames out of
the total frames) and segment length statistics (minimum, mean, maximum, and
standard deviation of voiced segments, where F0 > 0. More information about
ComPARE LLDs can be found in the Appendix.

2.3.3 Fixed-length feature representation
Since most features incorporate frame-level information, several mapping techniques
can be employed for generating fixed-length utterances or speaker-level acoustic
feature vectors.

Functionals Another approach to handle segments with variable lengths and
eliminate the dependency of the feature vector dimensionality on the segment
length is statistical functionals that can be applied to the time series of LLDs. A
functional F maps a series of values x(n) to a single value XF :

x(n) → XF (2.1)
Thus, the result is independent of the length of the input. Common functionals
are the arithmetic mean, standard deviation, maximum, and minimum values.
Typically, these functionals are applied to each LLD individually or to multiple
descriptors simultaneously, such as the covariance or correlation between two
descriptors.

11



Background

Bag of Audio Words BoAW [37] is a sparse audio representation formed by
quantising acoustic LLDs; each frame-level LLD vector is assigned to an audio
word from a codebook learnt from some training data. Counting the number of
assignments for each audio word, a fixed-length histogram (bag) representation of an
audio chunk is generated. The histogram represents the frequency of each identified
audio word in a given audio instance. For example, spectral envelope features
associated with formants can result in phonemic audio representations, and their
histogram representations can convey the occurrence frequencies of pronounced
phonemes, pauses, and silences.

2.4 Classification methods
Classification is the procedure of identifying, comprehending, and organizing objects
and concepts into predefined groups. Machine learning classification algorithms
leverage training data to estimate and generate the probability or likelihood that
incoming data will belong to one of the established categories or classes. In essence,
a classifier is a model that, relying on input training information, assigns new
observations to specified classes or clusters.

The process of selecting suitable classification methods posed a significant
challenge. After thorough deliberation, the ultimate decision was made favouring
a combination of fundamental techniques commonly used for classification tasks.
These techniques include Random Forest (RF), Support Vector Machine (SVM),
and Gradient Boosting (GB), in addition to the incorporation of Convolutional
Neural Network (CNN).

2.4.1 Support Vector Machine
The aim of a Support Vector Machine (SVM) [38] is to detect the best hyper-plane
in N-dimensional space (N the number of features) that properly classify the data.
Of all the possible hyper-planes that could be chosen, the best is the one with
the maximum margin (i.e. the distance between the closest data points from each
class) and that minimises classification errors: in general the larger the margin, the
lower the generalization error of the classifier.

SVMs can handle both linearly separable and non-linearly separable data by
leveraging a technique known as the kernel trick. The kernel trick empowers the
algorithm to covertly transform the input features into a higher-dimensional space,
in which the data becomes linearly separable. Consequently, SVMs can effectively
address intricate classification challenges that lack a linear decision boundary within
the original feature space.
Support Vector Classification [39] is a classification method based on SVMs.
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The following parameters are essential for the algorithm and will be fine-tuned to
search for the best F1 score:

• Kernel: the purpose of this parameter is to accept the input data and convert
it into the hyperplane defined by the mathematical function of the kernel.
The kernels tested in our case are linear, polynomial, Radial Basis Function
(RBF), and sigmoid.

• Regularization parameter (C): the ’smoothness’ of the margins is controlled
by C, which allows the SVM to tolerate a certain degree of classification error:
a high value of C means the model is harder (less tolerant to misclassifications).
Whereas a low value of C means that the model is softer (more tolerant to
misclassifications).

• Gamma (γ): The kernel coefficient in question applies to the sigmoid, RBF, and
polynomial kernels. It governs how much a single training point can influence
the surrounding region. Lower gamma values (ranging from 0.008 to 0.01)
signify a broader similarity radius, causing more points to be grouped together.
In contrast, higher gamma values (ranging from 3.0 to 11.0) necessitate points
to be in very close proximity to each other to be classified within the same
category.

2.4.2 Random Forest
RF is based on decision trees and combines multiple trees to make predictions. To
build each tree within the forest, a random subset of the original training data is
chosen using bootstrap sampling, resulting in each tree being trained on a slightly
varied dataset, thereby infusing diversity into the forest.

At each node of a decision tree, a random subset of features is considered to
determine the best split. This approach ensures that each tree only assesses a subset
of features, reducing the risk of any single feature dominating the decision-making
process. The tree is constructed by iteratively dividing the data based on different
features and thresholds, to minimize impurities in the resulting subsets.
Once all the trees are constructed, predictions are made by aggregating the outputs
of individual trees through a voting mechanism. In classification tasks, the class
that garners the most votes becomes the predicted class.

The following parameters are essential for the algorithm and will be fined tuned
to search for the best F1 score:

• Number of estimators: represents the number of decision trees in the ran-
dom forest. Typically, the greater the number of estimators, the better the
performance of the random forest up to a certain threshold. Nonetheless,
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it’s important to note that an excessive number of estimators can lead to
computational complexity and prolonged training times.

• Maximum depth: A decision tree expands by separating data recursively
based on characteristics and thresholds until a stopping criterion, which may
be the maximum depth, is satisfied. The trees can recognise more intricate
patterns in the data when the maximum depth is greater, although overfitting
is also possible. To prevent overfitting and let the trees identify significant
correlations in the data, it is critical to tweak this parameter properly.

• Minimum sample split: dictates the minimum number of samples needed
further to split an internal node within a decision tree. When the number of
samples at a node falls below the specified minimum, that node is designated
as a leaf node, and any additional splitting is halted. This parameter serves
the purpose of regulating the depth of the tree, ensuring that it does not
excessively divide regions with inadequate data.

• Minimum samples leaf: establishes a minimum requirement for the number of
samples that must be present in a leaf node. Should a split operation lead
to a leaf node with fewer samples than the specified minimum, that split is
abstained from. Like the minimum samples split parameter, this setting is
essential for managing the size and depth of the decision tree and serves as a
safeguard against overfitting.

Tuning these parameters is crucial to optimize the Random Forest model’s
performance and enhance its ability to generalize well on new, unseen data.

2.4.3 Gradient Boosting
GB leverages the power of decision trees to make predictions. In the construction
of each tree within the ensemble, Gradient Boosting follows a sequential approach.
It starts with a simple model, typically a shallow tree, and then builds additional
trees, with each tree attempting to correct the errors of its predecessor.

At each stage of tree construction, Gradient Boosting assigns more weight to
data points that were previously misclassified or had higher prediction errors. This
adaptive weighting system ensures that the next trees focus on the challenging
instances in the data. A group of trees is progressively put together, and each tree
adds its own unique knowledge to the predictions. Gradient Boosting promotes
variety across the different trees by considering a subset of characteristics at each
node while deciding the optimum split, similar to Random Forest. These criteria
were selected to reduce the possibility of any aspect predominating the decision-
making process. Once all the trees are constructed and trained, predictions are
made by combining the outputs of individual trees. In classification tasks, the class
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that garners the most weighted votes becomes the predicted class, leading to robust
and accurate predictions.

The Gradient Boosting model has the same parameters listed in the previous
paragraph and described for the Random Forest model (Number of estimators,
Maximum depth, Minimum sample split, Minimum samples leaf) and includes a
parameter called the "learning rate" that regulates the speed at which the model
learns from errors.

2.4.4 Convolutional Neural Network
Over the past decade, notable demonstrations of the automatic acquisition of
task-specific knowledge from raw waveforms have occurred. This is achieved by
employing convolutional neural networks (CNN) rather than relying on hand-
crafted features. This innovation has been particularly evident in the context of
phoneme classification [40], speech recognition [41] [42], speaker recognition [43]
and verification [44], gender recognition [45], emotion recognition [46].

CNNs are a type of neural network that uses the convolution layer to filter and
decompose the input signal. These filters multiply local areas of the input data
element-wise using small arrays of learnable parameters as their representation.
After adding the findings, a single value known as a "convolutional feature" or
"activation" is created. CNNs create feature maps that capture various data elements
by swiping numerous filters across the entire input.

Figure 2.2: Example of a convolution operation

In a concise overview of CNN architecture, we observe that a non-linear activa-
tion function is applied element-wise after each convolution operation to introduce
complexity into the network. Fig 2.2 represents the convolution operation with a
1D input, where the middle list is the filter. This process involves the multiplication
of the filter with a specific part of the input, followed by summation, producing
a singular value referred to as the convolutional feature or activation. By sliding
the filters across the entire input, multiple convolutional features are generated,
constructing feature maps that encapsulate various aspects of the input. Among
the commonly used activation functions, Rectified Linear Unit (ReLU) stands
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out; another common activation function is the Hyperbolic tangent (Tanh). Addi-
tionally, a crucial component is the pooling layer, employed to reduce the spatial
dimensions of feature maps while preserving essential information. Beyond these,
we incorporate fully connected layers, akin to those found in traditional neural
networks. These layers are responsible for capturing high-level representations
and making predictions. Notably, each neuron in a fully connected layer connects
with every neuron in the preceding layer, enabling the network to learn intricate
relationships between features. Ultimately, the last fully connected layer yields the
model’s prediction.

2.5 Summary
This chapter explores the crucial steps in managing speech analysis, focusing on
producing a voice sound, feature extraction and classification methods. Feature ex-
traction is a vital process that transforms raw data into informative representations,
enabling us to analyze the speech signals effectively. We also discuss several classi-
fication methods, including Support Vector Machines, Random Forests, Gradient
Boostings, and deep learning. Each of these methods offers different approaches to
categorizing and analyzing speech signals, each with its hyperparameters, strengths,
and limitations.
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Chapter 3

Datasets, protocols and
evaluation metrics

In this chapter an overview of available datasets and their use is presented, followed
by an in depth description of the dataset that the rest of the chapters focus on.

3.1 Depression in Parkinson’s disease

The first dataset consists of speech data from 60 Spanish speakers from Colombia,
including 25 Depressive PD patients (D-PD) and 35 Non-Depressive PD patients
(ND-PD) [47]. The participants were asked to talk about their daily routines, and
immediately after the task, they were evaluated by a neurologist. The transcripts of
the speech data were obtained from audio recordings and were manually transcribed
following a verbatim protocol. Additionally, the transcriptions were translated into
English because the underlying language model was trained on English texts.

There is a total of 60 audio files for a total duration of about 4892 seconds. On
average, the monologues of D-PD patients lasted for approximately 84±34 seconds,
while those of ND-PD patients lasted for approximately 80±37 seconds.
For the study, silences between phrases were taken in since they could contain
important information useful to the task.
From the audio file, some statistics can be extracted, presented in Tab 3.1, and
Fig 3.1 shows the distribution of the duration grouping by class. The maximum
duration of close to 172 s concerns only one audio belonging to the Not Depressive
class, accompanied by a few speech audios which exceed 100 s. However, as depicted
in 3.1, a significant proportion of audios from both classes fall within the range of
50 s and 120 ms. This observation is further supported by the median of 82.12.
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Class Mean duration Max duration (s) Min duration (s) Median

Overall 81.5 171.85 23.37 82.12

Depressive 83.8 150.3 38.44 82.12

Not Depressive 81.12 171.85 23.37 84.24

Table 3.1: Statistics on PD-D
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Figure 3.1: Distribution of the duration

3.2 The Distress analysis interview corpus - Wiz-
ard of Oz

The Distress analysis interview corpus Wizard of Oz (DAIC-WOZ) [48] database
comprises audio-visual interviews of 189 participants, male and female, who un-
derwent evaluation of psychological distress such as anxiety, depression, and post
traumatic stress disorder. An animated virtual interviewer conducts the interviews
called Ellie controlled by a human interviewer in another room, and the partici-
pants include both distressed and non-distressed individuals. Each participant was
assigned a self-assessed depression score through the patient health questionnaire
(PHQ-8) method [49].
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This dataset consists of a total of 17 hours of audio data. The distributions
shown in Fig 3.2, and the statistics extracted and reported in Tab 3.2 refer to the
conversation pieces in which the patient speaks, then combined into a single audio
file, without inserting silences.
It is evident that this dataset has considerably longer audio files than the previous
dataset presenting a sample with a maximum length of 1215 s.
The durations of the speech audio file are mostly focused around the median and
the mean, between 100 s and 700 s. For the classification part, the audio are
segmented into small chunks of an average length of 2.7 s. In this way, the dataset
is more robust, and training is performed on more audio segments.

Class Mean duration (s) Max duration (s) Min duration (s) Median (s)

Overall 450.36 1214.9 62.23 421.58

Depressive 478.71 1214.9 127.97 458.72

Not Depressive 438.45 1174.93 62.23 413.19

Table 3.2: Statistics on DAIC-WOZ

250 0 250 500 750 1000 1250 1500
Duration (s)

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

De
ns

ity

Median: 421.58 s
Mean: 450.36 s
Depressive
Not Depressive

Figure 3.2: Distribution of duration
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3.3 Experimental setup
This section aims to delve into the details of our experimental configurations.

3.3.1 PD protocol
To address potential challenges when dealing with a small and relatively imbalanced
dataset, such as PD, a traditional train/validation/test split for model training
and testing may not suffice. In such cases, it is essential to devise an appropriate
approach for the train-test split. A highly effective solution to this issue is the
implementation of k-fold cross-validation.

The procedure involves a single parameter called k, which refers to the number
of groups a given data sample is split into. Then it is used to apply this procedure
on the limited sample to assess how the model is expected to perform in general
when we used to make predictions during the model’s training. Every observation
within the data sample is allocated to a specific group and remains within that
group throughout the procedure. This ensures that each sample can be included in
the holdout set once and utilized for training the model k − 1 times.

This methodology entails randomly partitioning the observation set into k
groups, or folds, of roughly equal sizes. The initial fold is treated as the validation
set, while the method is fitted using the remaining k − 1 folds.

On the PD-D dataset, cross-validation was applied by assigning k the value of
1, i.e. the Leave One Out (LOO) protocol.
In speech context, speakers often represent examples. In automatic speech recogni-
tion (ASR) tasks, a speaker refers to an individual who produces speech or vocal
utterances. Leave One Speaker Out (LOSO), illustrated in Figure 3.3, is executed
iteratively, with each iteration involving the following steps:

1. One session is selected as the test speaker for the current iteration;

2. The remaining session’s data (excluding the test speaker) is combined to create
the training set;

3. A speech processing model (e.g., classifier, recognizer) is trained using the
training set;

4. The trained model is tested on the data from the test speaker to assess its
performance.

The final performance estimate is the average of all the individual scores. For
training purposes, speaker 52 was excluded due to recording errors.
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Figure 3.3: Overview of Leave One Speaker Out protocol1

3.3.2 DAIC protocol
The detection of depression was carried out exclusively using the speech modality
from the DAIC-WOZ corpus, framing it as a binary classification problem at the
speaker level. The time labels available in the dataset were utilized to isolate the
speech recordings of the participants for experimentation. For training purposes,
sessions 318, 321, 341, and 362 were excluded due to time-labeling errors. The
techniques were evaluated on the dev set, as the test set had been reserved as a
component of the AVEC 2016 challenge [50].

Data augmentation

Due to the naturally larger proportion of non-depressed people relative to those
who are depressed, unbalanced datasets are widespread in many real-world contexts,
including identifying depression. When creating and assessing machine learning
models, this intrinsic class imbalance might cause problems. When confronted
with imbalanced data, machine learning models tend to favour the majority class
(non-depressed) during training.

It is noticeable that the proportion of depressive and not depressive patients in
DAIC-WOZ is imbalanced: only 42 individuals were identified as having depression.

1https://scikit-learn.org/stable/modules/cross_validation.html
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Thus, a data augmentation technique has been adopted. After splitting the data
according to the protocol, only on training data, the following two-step approach
has been applied:

1. By examining the distribution of labels in the set the algorithm identifies
which category between depressed, labelled as 1, and not depressed, labelled
as 0, needs additional samples for balancing and the necessary number of
repetitions;

2. The script addresses class imbalance by creating additional instances of un-
derrepresented data.

3.4 Performance metrics
The accuracy counts the number of times a model is correctly predicted over the
full dataset. This measure can only be relied on if the dataset is class-balanced, or if
each class in the dataset contains an equal number of samples. Thus, the F1 score,
precision (P), and recall (R) have been used to assess the binary classification tasks
of depression detection. To that end, frame-level results like true positive (TP),
false positive (FP), false negative (FN), and false positive (FP) can be exploited to
calculate the classification metrics. Precision measures the proportion of predicted
positive samples that are actually true positives.

Recall is calculated as the ratio of true positives (TP) to the sum of true positives
and false negatives (FN).

The harmonic mean of recall and precision is the F1 score.
They are computed as:

P = TP

TP + FP

R = TP

TP + FN

F1 Score = 2
1
P + 1

R
= 2 × P × R

P + R

3.5 Summary
This chapter introduces two distinct datasets used in the studies. The first dataset,
Depression in Parkinson’s Disease (PD-D), includes 60 speakers, of whom only 24
were validated as depressed. The second dataset, the Distress analysis interview
corpus Wizard of Oz (DAIC-WOZ), contains 189 male and female patients. There
is an imbalance between the classes, with non-depressed predominating. It is
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important to note that there is an imbalance between the classes, with non-
depressed individuals being predominant. To mitigate any issues during training,
we resorted to data augmentation. We also present the evaluation metrics used to
assess the performance of the models.
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Chapter 4

Handcrafted feature study

The traditional approach to speech processing tasks, like emotion recognition or
depression detection, involves short-time feature extraction. These handcrafted
features are extracted from speech by a feature extractor. They are aggregated
to obtain fixed-length representations at the utterance or speaker level and finally
used as the input of a classifier.

eGeMAPS

ComPARE

BoAW

Functionals

Classifier

Feature extraction Utterance LevelRaw Speech

Figure 4.1: Handcrafted features pipeline

4.1 Experimental strategy
The image in Figure 4.1 depicts the main steps of the pipeline that have been used
in the study.

First, as already used several times in literature for other research, eGeMAPS and
ComPARE feature sets were extracted, analysed and compared. The features are
then normalised with a scaler1 that scales and translates each feature individually
so that it lies in the range given on the training set; in this study between zero

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html
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and one. According to its classification algorithm, the classifier is fed with the
normalized features and gets the most probable belonging class as output. This
study applied Support Vector Machine, Random Forest, and Gradient Boosting
algorithms to determine the optimal classifier and hyperparameters for the specific
features and dataset used in the analysis.

At the last stage, since the purpose of this study is to understand the most
relevant features to identify depression, a qualitative analysis of the most important
features has been done.

From the models that best fit the distribution of the features extracted from
each dataset, the names of the top 10 descriptors were printed out and analysed
qualitatively, sorted according to their feature importance score.

Lastly, a qualitative understanding enabled us to arrive at some important
conclusions for the task and to be able to comment on some evidence concerning how
depression in healthy patients presents differently from depression in Parkinson’s
patients.

4.2 Hyper-parameter tuning
To find the most efficient set of hyperparameter values for a specific model, grid
search2 is a well-known hyperparameter optimisation technique. The process
involves selecting the best set of hyperparameters before the training phase, which
significantly impacts the model’s performance.

Each combination of values in the grid is used to train and evaluate the model
using a predefined evaluation metric described in Section 3.4. This systematic
evaluation process helps to assess the model’s performance across all possible
hyperparameter combinations.

The ultimate objective of grid search is to find the most efficient set of hyper-
parameters that produces the best performance on the evaluation measure. This
combination is then selected as the most suitable set to evaluate the algorithm on
a test set taken out before the k-fold, according to the protocol splitting for each
dataset.

4.3 Hypotesis and Results
As we have previously stated, selecting the right set of biomarkers to accurately
indicate depression is crucial. Biomarkers that reflect changes in an individual’s

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html
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Model parameters Grid search values

SVM
C
γ

Kernel

[0.1, 1, 10, 100]
[0.001, 0.01, 0.1, 1]

Linear, RBF, polynomial, sigmoid

RF

Number of estimators
Maximum depth

Minimum samples split
Minimum samples leaf

[10, 20, 30, 40, 50, 70, 80, 100, 150, 200]
[5, 7, 10, 20]

[2, 3, 5, 7, 10, 15]
[3, 4, 5]

GB

Number of estimators
Maximum depth

Minimum samples split
Minimum samples leaf

Learning rate

[10, 20, 30, 40, 50, 70, 80, 100, 150, 200]
[5, 7, 10, 20]

[2, 3, 5, 7, 10, 15]
[3, 4, 5]

[0.001, 0.01, 0.1]

Table 4.1: Grid search parameters and value for SVM, RF and GB

emotional and mental state are becoming increasingly important. Although not
consistently reported in all studies, certain vocal source-related features such as
shimmer and jitter of vocal-fold vibration, degree of aspiration, dynamics of the
fundamental frequency, and frequency dependence of variability and velocity of
energy have been shown to have a statistically significant association with the
presence of depression [51] [52].

Considering these factors, the goal of ongoing research is to demonstrate through
analytical findings that there is a substantial correlation between vocal source
characteristics and depression. It is these characteristics that are most important
in distinguishing between depressed patients and those who are not.

The following section describes the results of experiments on PD-D and DAIC
datasets applying the traditional pipeline. For each dataset, first, the performance
will be discussed, and the different classifiers for each feature set will be com-
pared. Then, for the best-performing models, a qualitative analysis of the most
representative features for depression detection will be presented.

4.3.1 PD: classification results
Table 4.2 presents the results of the classification of the three chosen rankings.
The first column indicates the model used and the handcrafted features extracted
from the PD-D dataset. The second column lists the optimal parameters from
the optimisation phase that best fit the data distribution. Finally, the last three
columns present the F1 score, precision and recall values grouped for each class:
depressed (D) and non-depressed (ND). The unweighted average between the F1
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score values for the two labels was the reference for deciding the best classification
model. Finally, the value in bold indicates the best result discriminating between
depressed and non-depressed in the Depression in Parkinson’s disease dataset.

On comparing the models’ performance, this study found that the SVM classifier
is the model that distinguishes optimally between depressed and not-depressed in
the Depression-PD database for both eGeMAPS and ComPARE feature spaces.
For the ComPARE features set, we obtained the best classification result for PD-D
with an overall value of 0.64 for the F1 score. Also, SVMComP ARE presents the
highest percentage of Recall for D class: over out of all the instances that truly
belong to Depressed, the model correctly identifies 64% of them as Depressed class.
Below 0.5 score overall (0.59), but still the best for eGeMAPS representation, the
SVM model ranks the depressed patients with an F1-score of 0.54 and a recall of
0.56. The two top models, however, had different hyperparameters: SVMComP ARE

exploited a linear kernel, while SVMeGeMAP S relied on a polynomial kernel by
transforming the input features into a higher dimensional space in which the features
become linearly separable. The Random Forest classifier is the second-best with
an overall F1 score of 0.56 and 0.45 for eGeMAPS and ComPARE respectively,
and in this occurrence, the optimal parameters for depression classification are the
same for both feature sets. Finally, the Gradient boosting system is the one with
the lowest values.

4.3.2 DAIC: classification results
Table 4.3 summarizes the results obtained by applying the handcrafted features
extraction method on the DAIC-WOZ dataset. The meaning of each column in the
table is the same as described in the previous section 4.3.1; this time the labels refer
to depressed (D) and control (C) individuals. The label O indicates the unweighted
average between the F1-score values for the two classes.

If for PD-D we had found SVM to be the best classification algorithm whatever
the features selected, different results were obtained in the case of eGeMAPS
and ComPARE in DAIC. It stands out that no model among SVM, RF and
GB produces F1 scores below 0.5 (0.48, 0.39, 0.47 respectively) for ComPARE
features. This could indicate that the models are making many errors both in
correctly classifying true positives (low recall) and in preventing false positives (low
precision). The opposite is achieved by classifying the depression using eGeMAPS
features. The three models discriminate between depressed and control individuals
with good results. The best F1 scores are obtained using algorithms based on
decision trees, then RF and GB. The latter is the best-performing model with an
overall F1 score value of 0.74, a precision of 0.9 and a recall of 0.47 for class D.
This outcome is definitely the best classification result obtained in this study for
the handcrafted approach.
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Model Parameters F1-score Precision Recall
O D ND D ND D ND

PD-D

SVMeGeMAP S

k: poly
γ: 1
C: 10

0.59 0.54 0.64 0.52 0.66 0.56 0.62

RFeGeMAP S

max_feat: log2
min_sample_leaf: 5
min_samples_split: 15
max_depth: 20
n_estimators: 10

0.56 0.41 0.71 0.57 0.62 0.32 0.82

GBeGeMAP S

max_feat: log2
min_sample_leaf: 1
min_samples_split: 10
max_depth: 20
n_estimators: 100
loss: log_loss
learning_rate : 0.1

0.54 0.4 0.69 0.53 0.61 0.32 0.79

SVMComP ARE

k: linear
degree: 1
C: 1

0.64 0.6 0.68 0.57 0.72 0.64 0.65

RFComP ARE

max_feat: log2
min_sample_leaf: 5
min_samples_split: 15
max_depth: 20
n_estimators: 10

0.45 0.34 0.56 0.44 0.58 0.28 0.74

GBComP ARE

max_feat: log2
min_sample_leaf: 1
min_samples_split: 10
max_depth: 20
n_estimators: 100
loss: log_loss
learning_rate: 0.1

0.43 0.3 0.56 0.33 0.53 0.28 0.59

Table 4.2: Performance of the different classifiers on the Depression Parkinson’s
Diseases data. D points out depressed, ND indicates not depressed, and O denotes
the overall score by un-weighted average over the two classes. Out of all the
suggested techniques, the system with the highest total F1 score is indicated in
bold type.
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Model Parameters F1-score Precision Recall
O D C D C D C

DAIC-WOZ

SVMeGeMAP S

k: rbf
γ: 1
C: 10

0.67 0.52 0.83 0.73 0.75 0.41 0.92

RFeGeMAP S

max_feat: log2
min_sample_leaf: 5
min_samples_split: 15
max_depth: 20
n_estimators: 20

0.69 0.54 0.85 0.86 0.76 0.4 0.97

GBeGeMAP S

max_feat: log2
min_sample_leaf: 1
min_samples_split: 10
max_depth: 20
n_estimators: 100
loss: log_loss
learning_rate : 1

0.74 0.62 0.87 0.9 0.78 0.47 0.97

SVMComP ARE

k: poly
degree: 1
C: 10

0.48 0.3 0.66 0.41 0.58 0.18 0.8

RFComP ARE

max_feat: log2
min_sample_leaf: 7
min_samples_split: 5
max_depth: 7
n_estimators: 20

0.39 0.07 0.72 0.35 0.58 0.04 0.95

GBComP ARE

max_feat: log2
min_sample_leaf: 1
min_samples_split: 10
max_depth: 10
n_estimators: 60
loss: log_loss
learning_rate: 0.1

0.47 0.24 0.7 0.45 0.59 0.16 0.86

Table 4.3: Performance of the different classifiers on the DAIC-WOZ dataset.
D points out depressed, C indicates control, and O denotes the overall score by
unweighted average over the two classes. Out of all the suggested techniques, the
system with the highest total F1 score is indicated in bold type.
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(a) Confusion Matrix on the PD-D set, ex-
tracting ComPARE feature set using SVM
classifier

(b) Confusion Matrix on the DAIC-WOZ dev
set, extracting eGeMAPS feature set using
Gradient Boosting classifier

Figure 4.2: Confusion matrices for depression prediction on PD-D (a) and DAIC-
WOZ (b) dataset using their respectively best classifiers

4.3.3 PD: feature importance analysis
Table 4.4 displays the ten most significant features of the ComPARE feature set
in ascending order of feature importance score. The first column shows the original
name of the descriptor. The second, third, and fourth columns refer to the origin of
the descriptors, indicating whether they relate to the vocal source (source-related),
the vocal tract system (system-related), or convey global and general information.
The last column shows the relative feature importance score, which is calculated
using the coef_ attribute provided by the SVM library3.

Before assigning a feature to either the system or source category, we conducted
a qualitative investigation of the name’s semantic significance. We examined and
interpreted different parts of the label based on the string to assign the correct value.
To help understand the feature names, we provide some examples by separating the
first entry’s name in the table. This will better prepare us for the data analysis.

"pcm_fftMag_spectralVariance_sma_de_peakMeanRel"

• pcm_fftMag: This refers to the magnitude spectrum obtained from the Fast

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Feature Name Source-related System-related General Importance score
PD-D, ComPARE, SVM

pcm_fftMag_spectralVariance_sma_de_peakMeanRel X 0.056435
pcm_fftMag_spectralCentroid_sma_de_peakMeanRel X 0.049565
pcm_fftMag_psySharpness_sma_de_peakMeanRel X 0.049564
pcm_RMSenergy_sma_minPos X 0.041844
pcm_fftMag_spectralRollOff90.0_sma_de_peakMeanRel X 0.041256
mfcc_sma[14]_minPos X 0.040951
logHNR_sma_de_upleveltime25 X 0.039373
pcm_fftMag_spectralEntropy_sma_de_peakMeanRel X 0.039115
pcm_fftMag_spectralEntropy_sma_de_minPos X 0.036591
audspec_lengthL1norm_sma_de_upleveltime50 X 0.035357

DAIC-WOZ, eGeMAPS, GB
F0semitoneFrom27.5Hz_sma3nz_percentile50.0 X 0.024646
loudness_sma3_amean X 0.023184
F3frequency_sma3nz_amean X 0.020240
F0semitoneFrom27.5Hz_sma3nz_percentile20.0 X 0.017258
loudness_sma3_percentile50.0 X 0.017234
equivalentSoundLevel_dB X 0.017009
loudness_sma3_pctlrange0-2 X 0.016828
F0semitoneFrom27.5Hz_sma3nz_percentile80.0 X 0.016502
F0semitoneFrom27.5Hz_sma3nz_amean X 0.016470
hammarbergIndexV_sma3nz_amean X 0.016416

Table 4.4: The table shows the names and relative scores of the top 10 most signif-
icant features for depression classification. The upper part refers to the experiment
conducted on the PD dataset, and the lower part refers to the results obtained
using DAIC-woz samples. The middle columns specify when the descriptors carry
source-related, vocal system-related or general information.

Fourier Transform (FFT) of the audio signal, which represents the distribution
of signal energy across different frequency components.

• spectralVariance: identifies the variance or spread of power across these
frequency components in the spectrum. It describes how the energy is dis-
tributed among various frequencies and indicates the variability of energy
within different frequency bands.

• sma_de: This part implies the application of some form of differential analysis,
such as differential computation or features computed using a Simple Moving
Average.

• peakMeanRel: This indicates a calculation related to the relative mean of
peaks in the spectrum. It likely refers to the relationship between the average
intensity of the peaks found in the frequency domain.

mfcc_sma[14]_minPos

• mfcc: Stands for Mel-frequency cepstral coefficients, which are coefficients
derived from the Fourier transform of a signal. They are used to represent the
short-term power spectrum of an audio signal.
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• sma[14]: Refers to the computation or extraction of this feature using a
specific function or process. The ’[14]’ represents the 14th coefficient within
the MFCCs;

• minPos: Indicates the position or time index where the minimum value of the
14th MFCC occurs within the analyzed segment of the speech signal.

Against our hypothesis formulated in Section 4.3, the dataset of depressed
Parkinson’s patients presents more features carrying information related to the
vocal tract or general measure of the spectral characteristics. The spectral variance,
spectral entropy, spectral Rolloff, Root Mean Square (RMS), and psychoacoustic
sharpness all describe a signal’s overall energy distribution. For example: the
spectral variance measures the signal’s spectral content variability over time [53];
The spectral entropy measures the randomness of a signal’s spectral content [54];
the spectral roll-off is the frequency below which a specified percentage of the
total spectral energy lies. This measure distinguishes voiced from unvoiced speech-
unvoiced speech has a high proponion of energy contained in the high-frequency
range of the spec", where most of the energy for unvoiced speech and music is
contained in lower bands [55] [56]. These features are all influenced by both the
vocal source (the vocal cords) and the vocal tract system (the airways, nasal
cavity, and larynx) since they shape the overall spectral characteristics of the sound
produced.

The spectral centroid represents the centre of gravity of the signal’s spectral
content, and it is more directly related to the overall characteristics shaped by the
vocal tract [57] [58] [59].

With an importance score of roughly 0.040, the only feature related to the
voice source that matters is logHNR_sma_de_upleveltime25. This feature logs
the Harmonics-to-Noise Ratio (HNR) and highlights the clarity and periodicity of
voiced sounds [60].

However, we based our idea on studies of depression in control patients without
any specific pathology, rather than taking into account the influence of a disorder
on our speech analysis. This oversight led us to make subsequent considerations
and analyses of the impact of the disorder on depression detection. Therefore, more
research on Parkinson’s effects on speech is needed to explain the outcome (refer
to Section 4.4 for more information).

4.3.4 DAIC: feature importance analysis
Similarly, the ten most important features of the eGeMAPS set are displayed at
the bottom of Table 4.4, arranged in ascending order by feature importance score.

The descriptor’s original name is displayed in the first column, where it is
possible to distinguish between several components: the root refers to the LLD,
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and the desinences specify the functionals applied to the related descriptor. More
details on LLDs and functionals can be found in Section 2.3.1. The GB model
library4 supplied the feature_importances_ property, which was exploited to derive
the relative feature importance score, which is shown in the last column.

Before analyzing the results, let us give examples of how to interpret the feature
names by breaking down each part of the name of the first entry in Table 4.4
bottom part.

"F0semitoneFrom27.5Hz_sma3nz_percentile50.0"

• F0semitoneFrom27.5Hz: this component refers to the fundamental frequency
(F0) measured in semitones from a reference frequency of 27.5Hz. F0 represents
the perceived pitch of the speech signal.

• sma3nz: "sma" stands for "simple moving average," indicating that smoothing
has been applied to the F0 values. The "3nz" further specifies the smoothing
technique, which could involve a specific window size and other parameters.
The smoothing process helps reduce noise and variations in the F0 values,
making them more stable and suitable for analysis.

• percentile50.0: this represents the 50th percentile of the F0 values. The
50th percentile, also known as the median, is the value below which 50% of
the F0 measurements fall and above which the other 50% fall. It provides a
measure of the central tendency of the F0 values after applying the specified
smoothing technique.

"loudness_sma3_amean"

• loudness: this LLD refers to the perceived intensity of the audio signal. It is
a psychoacoustic measure that aims to quantify how the human ear perceives
sound intensity.

• sma3: almost as before.

• amean: This component specifies that the feature calculates the arithmetic
mean or average value of the loudness values processed using the "sma3"
algorithm.

It is immediately noticeable that the majority of features are related to the vocal
source, suggesting that it is this group that dominates and thus is representative

4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier.
feature_importances_
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4.4 – Mutual Information: Parkinson’s vs Depression

of depression. Despite this, there are also two features related to the vocal tract
among the top 10: "F3frequency_sma3nz_amean" with a score of 0.02024 in the
top three highest, and "hammarbergIndexV_sma3nz_amean" in the last position
with an importance score of 0.016416. Among those related to the source, several
descriptors are associated with the fundamental frequency F0 (first, fourth, octave
and ninth place) and the loudness (second and fifth place).

It is interesting to remark that for DAIC-WOZ, the three percentile levels are
present (50th, 80th, 20th). In the depression classification task, those features suggest
that pitch-related characteristics at different percentile levels may be relevant in
capturing differences between depressed and non-depressed individuals. This
could indicate a complex relationship between pitch characteristics and depression,
potentially highlighting various aspects of pitch distribution.

4.4 Mutual Information: Parkinson’s vs Depres-
sion

Feature analysis presented in Section 4.3.3 from the classification of Depressive
Parkinson’s patients reveals vocal tract-related features as significant in depression,
thus an involvement of disease effects on speech. Indeed, it has been shown that
one of the main consequences of Parkinson’s disease is its motor symptoms, such
as tremors and rigidity, including articulation difficulties (dysarthria) [52]. This
disturbance of motor control of speech can affect one or all of the respiratory, phona-
tory, resonatory or articulatory components of the speech production mechanism.
Therefore, these abnormalities are reflected when extracting features contributing
to classification. In light of these considerations, features related to the vocal tract
become significant and may interfere in the classification of depression in people
with Parkinson’s disease.

To justify the presence of vocal tract and global related features in the depres-
sion classification of individuals with Parkinson’s disease, we exploit the Mutual
Information method.

Mutual Information (MI)5 is a measure that quantifies the mutual dependence
between two random variables. In other words, it measures the amount of knowledge
that can be gleaned from one random variable through observation of another
random variable (called reference target). High mutual information suggests
a strong relationship or dependency between the variables, while low mutual

5https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
mutual_info_classif.html#id3

35

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html##id3
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html##id3


Handcrafted feature study

information indicates little to no relationship6. For our purposes, an additional
dataset comprising people with Parkinson’s disease and healthy people was used:
PC-GITA corpus.

PC-GITA corpus [61] The database includes speech recordings of 50 people
with PD and 50 healthy controls, 25 men and 25 women in each group. All
the participants are Colombian Spanish native speakers. The age of the men
with PD ranges from 33 to 77 years old (mean 62.2 ± 11.2), and the age of
the women with PD ranges from 44 to 75 years old (mean 60.1 ± 7.8). For the
case of healthy controls, the age of the men ranges from 31 to 86 (mean 61.2
± 11.3), and the age of the women ranges from 43 to 76 years old (mean 60.7 ± 7.7).

We have calculated the mutual information score between ComPARE features
and labels for each PD-D and PC-GITA dataset. This helps us to evaluate the
amount of information that each feature carries for a specific task. In simpler
terms, we can determine how much information a feature contains for Parkinson’s
disease when compared to PD-D data or PC-GITA audio data. Our goal is to
determine whether the features listed in Table 4.4 are more indicative of depression
or Parkinson’s disease by comparing their MI scores. For simplicity’s sake, here we
have reported the MI value referring only to the features’ LLD without considering
their functionals and deltas.

The table 4.5 displays the top 10 LLDs already presented in section 4.3.3,
categorized by type: source-related, vocal tract system-related, or global-related.
The sixth column of the table represents the mutual dependencies value of these
features with the PD-D dataset, indicated as "MI-Depression". The seventh column
shows their MI score with the PC-GITA dataset, indicated as "MI-Parkinson".

The grey highlighted rows contain feature features with higher mutual informa-
tion value in the last column, thus more indicative of Parkinson’s.

Upon careful analysis of the table 4.5, it becomes clear that the characteristics
that strongly suggest the presence of Depression are not particularly prominent.
Elevated MI-Parkinson values are associated with the vocal tract system or offer
a broad overview. Upon a closer examination of the values, we realize that the
difference between them is only a delta of plus or minus 0.06. However, within the
scope of this examination, the feature ’pcm_fftMag_psySharpness’ is the most
significant indicator of Parkinson’s. Meanwhile, ’LogHNR’ remains the feature with
the highest delta and is connected to the source. The lack of a strongly significant
value to indicate depression among Parkinson’s patients is understandable, as the
analysis involves two datasets that have a majority of samples with overlapping

6https://en.wikipedia.org/wiki/Mutual_information
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4.5 – Summary

FI rank position LLD name Source System General MI-Depression MI-Parkinson
1 pcm_fftMag_spectralVariance X 0.1069 0.1663
2 pcm_fftMag_spectralCentroid X 0.0866 0.1893
3 pcm_fftMag_psySharpness X 0.0953 0.2146
4 pcm_RMSenergy X 0.0709 0.1308
5 pcm_fftMag_spectralRollOff90.0 X 0.1321 0.176
6 mfcc X 0.2189 0.1803
7 logHNR X 0.116 0.0777

8,9 pcm_fftMag_spectralEntropy X 0.1291 0.1859
10 audspec_lengthL1norm X 0.1182 0.1142

Table 4.5: The table shows the names and relative scores of the top 10 most
significant features for depression classification on the PD-D (see Tab 4.4. The
second column indicates the LLD name of each feature; the middle columns
specify when the descriptors carry source-related, vocal system-related or general
information. Lastly, the MI scores referred to PD-D and PC-Gita

Parkinson’s patients without depression. Those with Parkinson’s and depression,
as well as healthy individuals, are in the minority. Moreover, speech production is
strongly influenced by Parkinson’s pathology, likely due to phonological difficulties
experienced by patients.

Going forward, it may be beneficial to proceed in smaller steps, integrating one
more piece of information each time and looking for distinctive and characterizing
insights into depression in individuals with Parkinson’s disease.

4.5 Summary
In Chapter 4 of our study, we discuss the traditional method of extracting features
from signals and classifying them. We have used two feature sets, eGeMAPS
and ComPARE, that are provided by the OpenSMILE toolkit. We have used
different methods to classify depressed patients into PD-D and discriminate between
depressed and control for DAIC. Our results show that SVM is the best method to
classify depressed patients into PD-D, while Gradient Boosting is the best method
to discriminate between depressed and control for DAIC. We have found that the
descriptors that carry information related to the voice source of the signal are
more indicative of discriminating depression in non-pathological patients. However,
the most characteristic features of Parkinson’s patients describe general speech
information, and it’s more controversial. After comparing the mutual information
scores, we have found that there are no significant and characterizing values for
our task, suggesting a complex correlation between the effects of Parkinson’s on
speech.
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Chapter 5

End-to-End CNN study

The second approach involves directly feeding the waveform data into a neural
network, utilizing an end-to-end CNN architecture. In an end-to-end approach, the
model is trained to complete a task directly using the raw input data taken with a
fixed length.

1D Convolution Max Pooling ReLu
Tanh

Fully
connected

layer
Output

Filter stage
Classification

stageRaw Speech

Figure 5.1: Overview of CNN architecture

As depicted in Fig 5.1, the model consists of a filter stage repeated several
times, followed by a classification stage that comprises fully connected layers. Each
convolution layer is composed of 3 operations: 1D convolution, max-pooling, and
the activation function.

5.1 System architecture

We employed an architecture already adopted in several studies mentioned in
section 2.4.4. Fig 5.2 shows how the row waveform is fed into the first convolutional
layer. Let’s consider a signal of length wseq; the CNN takes as input a 250 ms (kW )
fixed-length signal overlapped with a 10 ms (dW ) window shift. nf represents the
number of filters in each layer.
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Figure 5.2: Illustration of the first convolution layer processing1

Thus, the first layer’s output may be seen as a time-frequency representation
like a spectrogram, except that the frequency axis has no particular order (unlike a
standard spectrogram) and the channels can be connected based on the frequency
responses of the filters. Figure 5.3 shows the structure of the network. Each
layer’s output is subjected to a nonlinearity, a rectified linear unit (ReLU), and, a
max-pooling operation along the time axis. To obtain the probabilities of detecting
depression, the output of the feature learner is fed to fully connected layers, with
ReLU activations at the hidden layers and sigmoid activations at the output
layer. The classifier component of the CNN is made up of a single hidden fully
connected layer with 10 nodes. During training, the parameters are updated by
backpropagating a cross-entropy loss calculated between the predictions and the
targets. All the frames of the depressed group were labelled 1, and the rest 0. In
this study, networks were trained using Tensorflow [62] [63].

Two CNNs can be distinguished based on the length of the kernel in the first
convolution layer:

• Subsegmental modelling (Subseg): the kernel length is about 1.5 ms, considered
less than a pitch period. This technique offers a reliable time resolution.

• Segmental modelling (Seg): the filter width is about 15 ms, values that allow
to catch 1-5 pitch periods. It provides a better frequency resolution.

We examined both the subsegmental approach, which is useful for capturing locally
present information related to glottal pulses, often requiring high time resolution,
and the segmental approach to enhance the modelling of source-related information
[44].

1https://infoscience.epfl.ch/record/270134?ln=fr
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5.2 – Modelling source and system based signals

Table 5.1 summarizes and shows the architecture of the CNNs.

Figure 5.3: Automatic depression detection using raw speech CNNs

Model Layer Nf
Conv
kW dW MP

subseg

1 128 30 10 2
2 256 10 5 3
3 512 4 2 -
4 512 3 1 -

seg
1 128 300 100 2
2 256 5 2 -

3,4 same as subseg

Table 5.1: CNN architectures. Nf refers to the number of filters; kW indicates
the kernel width; dW denotes the kernel shift; MP is for max-pooling

5.2 Modelling source and system based signals
In order to reproduce the feature classification analysis into source-related or
vocal tract-related and to interpret the results, we utilized the method of filtering
signals to enhance both the source-specific information and system information.
We conducted three types of experiments to detect depression detection by feeding
the network with three kinds of signals, which are as follows:

1. Original raw signals, Method 1 in Figure 5.4, contain both vocal source and
vocal tract system information;
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2. Zero Frequency filtered (ZFF) signals, Method 2 in Figure 5.4, carry source-
related information;

3. Composite signals (CS), Method 3 in Figure 5.4, include system-related infor-
mation.

Conv

CNN

MP

xN

FC

FC-S

ZFF

CS

Depression
score per frame

Average per
speaker

Predicted state:
Depressed/Control

Method 1

2

3

Figure 5.4: The proposed method

5.2.1 Original raw signals
In the first step, the original signals were used without applying any filter. Each
one carries all the information relating to both the vocal source and the system. We
used these raw signals to get reference results and then tried to interpret reasonably
how the neural network learns according to different input types.

5.2.2 Zero Frequency Filtering
Zero frequency filtering (ZFF) is a technique that characterizes glottal source activity
[64] [65]. It takes advantage of the characteristic of an impulse-like excitement at
the glottal closure instance to detect glottal closure instants (GCIs). To obtain
Zero Frequency Filtering (ZFF) signals, pre-emphasized speech signals are passed
through a sequence of two ideal digital resonators positioned at 0Hz. Subsequently,
any underlying trends in the resulting signals are removed by subtracting the
average value within a window of a size ranging from 1 to 2 pitch periods. In
addition to detecting GCIs, ZFF signals allow for the estimation of the strengths of
glottal excitations, the fundamental frequency, and the instants of glottal opening.
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Recent research has also demonstrated that Convolutional Neural Networks
can be employed to model ZFF signals for paralinguistic applications, such as
predicting factors like sleepiness [66] and dementia [67].

5.2.3 Composite signals
To collect information related to the vocal tract system we created a signal composed
of different zero-frequency filtered signals by combining the filter outputs together
to compose a signal carrying F1 and F2 related information. Then, a dynamic
threshold was applied based on spectral entropy-based weighting [68].

5.2.4 Comparison between signals
For a more intuitive understanding of filtering on datasets, let’s compare the
spectrograms of four typical situations that can occur in our datasets:

1. Healthy without Depression: Subfigure (a) in figure 5.5 refers to 5s chunk
"475_P_11" of DAIC-WOZ dataset. The selected patient is a healthy male.

2. Healthy with Depression: Subfigure (b) in figure 5.5 refers to 7s chunk
"339_P_10" of DAIC-WOZ dataset. The selected patient is a healthy male
with depression.

3. Parkinson’s disease without Depression: Subfigure (b) in figure 5.5 refers to
7s of audio, clipped from the signal "005PD" in PD-D. It is a female patient
with Parkinson’s disease and depression.

4. Parkinson’s disease with depression: Subfigure (b) in figure 5.5 refers to the
first 6s of audio, clipped from the signal "006PD" in PD-D. It is a female
patient with Parkinson’s disease and depression.

Each subfigure in Figure 5.5 displays, from top to bottom, the original raw speech,
the ZF-filtered signal, and the composite signal of the narrowband spectrogram
for each situation described above. We use a narrowband representation of the
spectrogram because it provides better frequency resolution and lets us visualize
the fundamental frequency F0.

As mentioned in Section 5.2.2, using the Zero Frequency Filter on a vocal audio
signal isolates and emphasizes fundamental information associated with the vocal
source, highlighting the glottal closure instances and vocal pulse characteristics. The
spectrograms at the centre of the subfigures in Figure 5.5 highlight these differences.
The original signal’s spectrogram (at the top of each subfigure) depicts a broad
range of frequencies, whereas the ZFF signal’s spectrogram is centred around
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vocal-relevant features such as the fundamental frequency (F0) and eliminates
non-relevant information for source analysis.

In contrast, the composite signal, derived from the combination of zero-frequency
filtered signals of the first two formats (see Section 5.2.3) and depicted in the
spectrogram at the bottom of each subfigure, exhibits more pronounced resonances
around specific frequencies. This reflects a notable concentration of information
related to the formants and a decrease in the intensity of the F0, indicating an
attenuation of information not directly linked to vocal tract characteristics. These
differences indicate an accentuation and a more focused analysis of specific acoustic
features of the vocal tract in the composite signal.
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Figure 5.5: Comparison between narrow spectrograms between (a) Healthy
without depression male patient, (b) Healthy with depression male patient; (c)
female patient with Parkinson’s disease without depression, (d) female patient with
Parkinson’s disease with depression.

5.3 Results
The following section describes the results of experiments on PD-D and DAIC
datasets applying the End-to-End CNN method. The experiments with the three
signals, Raw speech, ZFF signal and Composite signal will be compared in terms
of network performance, and an interpretation of the results will be provided.
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5.3.1 PD results
The table in Table 5.2 shows the CNN approach results for the dataset on Depression
in Parkinson’s disease. The first column indicates the experiment type, including
the signal type (Raw speech, Zero frequency filtered, or Composite) and architecture
type (segmental or subsegmental). The F1 score, precision, and recall values are
grouped for each class - depressed (D) and non-depressed (ND) - in the final three
columns. The optimal classification model was selected based on the unweighted
average of the F1 score values for the two labels. The value in bold denotes the
best outcome found in the PD-D database for differentiating between depressed
and non-depressed individuals.

The model’s predictions on the test samples could have been more satisfactory.
However, due to the insufficient size of the dataset, it was challenging to use neural
network models that needed many samples in the training phase. This led to the
model’s almost random behaviour in predicting the test samples.

However, having already carried out experiments using the first method (see
Chapter 4) allowed us to anticipate the possible behaviour of the CNN when
given the Composite and the ZFF signals. Even though the highest F1 score is
obtained by feeding the CNN with the raw speech signal, we can see that CS in
both structures (seg and subseg) behaves better than the zero frequency filtered
audio.

It is important to recall that the composite signal carries information related
to the first two formants, which are characteristics of the vocal tract. Thus, our
E2E experiments confirmed the hypothesis that Parkinson’s disease affects the
vocal tract’s characteristics, such as tremors and muscle rigidity, affecting vocal
production.

5.3.2 DAIC results
Table 5.3 shows the results obtained by using CNN architectures on the DAIC-WOZ
dataset. The table presents an overview of the outcome for each column, which
represents control (C) and depressed (D) individuals, respectively. The label O
represents the unweighted average of the F1 score values for the two classes. Each
value displayed is the average performance obtained by training the proposed
CNN five times. This was done to ensure that the proposed methods are not
sensitive to CNN initialization and that the outcomes are repeatable. The best
F1 score was achieved using the ZFF signal with the subseg architecture model,
producing an overall value of 0.57 and 0.54 for depressed individuals. The confusion
matrix in Figure 5.6 subfigure (b) represents the true positives, false positives, false
negatives, and true negatives produced by the best performing seed in the ZFF signal
experiment. Overall, the F1 score values are around 0.5, with slight variations
in the second decimal place. While no particularly distinctive or enlightening
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Experiment F1-score Precision Recall
O D ND D ND D ND

PD-D
Raw speech - subseg 0.5 0.32 0.68 0.46 0.59 0.24 0.79
Raw speech - seg 0.4 0.12 0.67 0.29 0.56 0.08 0.65
ZFF signal - subseg - - 0.64 - 0.53 - 0.83
ZFF signal - seg 0.35 0.06 0.64 0.12 0.53 0.04 0.79
CS signal - subseg 0.44 0.22 0.66 0.4 0.55 0.15 0.82
CS signal - seg 0.41 0.17 0.65 0.33 0.53 0.12 0.82

Table 5.2: The table shows the performances of different methods and architectures
used on PD-D dataset. D indicates depressed, ND indicates not-depressed and O
denotes the overall score by unweighted average over the two classes. The bold
type value indicates the best system in terms of F1 score.

results were found, this study provides an opportunity for further improvement in
future studies through protocol variations, diverse data augmentation techniques,
or exploiting self-supervised learning methods (SSL). Finally, we confirmed our
hypothesis that for healthy patients, feeding a CNN with signals containing source-
related information produces the best results in classifying depression, even if only
by a small margin.

Experiment F1-score Precision Recall
O D C D C D C

DAIC-WOZ
Raw speech - subseg 0.52 0.48 0.56 0.39 0.69 0.56 0.52
Raw speech - seg 0.55 0.52 0.59 0.424 0.73 0.67 0.50
ZFF signal - subseg 0.57 0.54 0.60 0.43 0.75 0.70 0.50
ZFF signal - seg 0.55 0.52 0.59 0.42 0.73 0.67 0.50
CS signal - subseg 0.53 0.50 0.56 0.40 0.70 0.67 0.46
CS signal - seg 0.55 0.52 0.58 0.42 0.73 0.58 0.49

Table 5.3: The table shows the performances of different methods and architectures
used on DAIC-WOZ dev set. D indicates depressed, C indicates control and O
denotes the overall score by unweighted average over the two classes. The bold
type value indicates the best system in terms of F1 score.
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5.4 – Summary

(a) Comfusion matrix on the PD-D set using
raw speech signals and the subsegmental model.

(b) Confusion Matrix of the best performing
seed in the ZFF signal experiment for DAIC-
WOZ database.

Figure 5.6: Confusion matrices for depression prediction on (a) PD-D and (b)
DAIC-WOZ dataset using CNN approach

5.4 Summary
In this chapter, we discuss the results of our investigation into the use of convolu-
tional neural networks (CNNs) that were fed with three different input signals to
model the source, filter, and overall combined information. The three signals were
the ZFF signal, the composite signal, and the original raw speech.

Our findings suggest that the information contained in the F0 signal is the most
useful for the network to classify depressed patient in DAIC. However, in the case of
Parkinson’s patients, there is a drop in the value of the F1 score when the network
is fed with ZFF signals or Composite signals when using the subseg architecture.
This drop in score may be due to vocal tract articulation problems experienced by
these patients.

Overall, our results suggest that all spectral content may be useful in the
detection of depression in pathological patients.
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Chapter 6

Conclusions

The present research aims to investigate the potential of utilizing speech analysis as
a reliable and non-invasive tool for detecting depression. The primary focus of this
study lies in examining the acoustic traits present in healthy speech associated with
depression and exploring how these features can be distinguished from pathological
speech patterns.

The thesis investigated two alternative methods for depression detection. The
first approach involves a traditional process that extracts handcrafted features such
as eGeMAPS and ComPARE from the audio signal, followed by a classification
module utilizing diverse machine learning models. The second method involves
utilizing convolutional neural networks (CNNs) that were fed with three different
signals as input- the ZFF signal, the composite signal, and the original raw speech
signal, to model source, filter, and overall combined information respectively.

To conduct our experiments, we used two datasets: Depression in Parkinson’s
disease (PD-D) and The Distress analysis interview corpus Wizard of Oz (DAIC-
WOZ).

Throughout the experiments, the guiding hypothesis was to use the knowledge
from pre-existing literature that vocal source features could be accurate for depres-
sion. The study of healthy patients with depression suggests this assumption. The
top-10 most indicative features derived from the Gradient Boosting classifier, which
was found to be the best in terms of performance, were mostly source-related. This
result was confirmed by the application of the CNN approach, which showed that
Zero Frequency filtered signals, carrying information related to the fundamental
frequency of the spectrum, had the highest F1 score value of 0.57.

In contrast, the study of patients with Parkinson’s disease and depression was
more controversial. The best F1 score was achieved by providing the CNN with
the original raw signal, including all spectral content, scoring 0.5. Interestingly, the
performance trend of the seg architecture remains almost unchanged when working
only with the F0 frequency or a composite signal. However, the subseg model
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Conclusions

performance worsens to 0.4 for composite signals. This outcome could suggest that
retaining the information from the fundamental frequency F0 significantly improves
results.

Further analysis revealed that the most relevant descriptors for discrimination
of depression in pathological patients are features influenced by both source-related
and vocal tract-related components. The development implies that the presence
of motor impairments, such as tremors and hypokinetic dysarthria (articulation
difficulties), may be the cause for the observed outcome. The comparison of mutual
information values between features and datasets leaves no doubt that the results
point out that depression cannot be treated in Parkinson’s patients without taking
into account the impact of the illness on their speaking ability.

The thesis attempted to interpret the outlines obtained through the utilization
of two methods and to extract progress knowledge from the current literature.
However, recent advancements in self-supervised learning techniques and State-
of-the-Art models have achieved better results. Hence, for future works, it would
be advantageous to emphasize improving the performance of the model while also
leveraging the insights from this thesis work to make better-informed decisions.
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Appendix A

openSMILE features

Feature Description
Waveform Zero-Crossings, Extremes, DC
Loudness Energy, intensity, auditory model loud-

ness
FFT spectrum Phase, magnitude (lin., dB, dBA)
ACF Cepstrum Autocorrelation and Cepstrum
Mel/Bark spectr. Bands 0-Nmel

Semitone spectr. FFT based and filter based
Cepstral Cepstral features, e.g. MFCC, PLP- CC
Pitch F0 via Autocorrelation and sub-harmonic

summation, smoothed by Viterbi algo-
rithm

Voice Quality HNR, Jitter, Shimmer, Voice Prob
LPC LPC coeff., reflect. coeff., residual Line

spectral pairs (LSP)
Auditory Auditory spectra, psychoacoustic sharp-

ness
Formants Centre frequencies and bandwidths
Spectral Energy in N user-defined bands, roll-off

points, centroid, entropy, flux, and rel.
pos. of max./min., har- monicity

Tonal CHROMA, CENS, CHROMA-based fea-
tures

Table A.1: openSMILE’s low-level-descriptors
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openSMILE features

6 Frequency related parameter Meaning
Pitch logarithmic F0 on a semitone frequency

scale, starting at 27.5 Hz (semitone 0)
Jitter deviations in individual consecutive F0

period lengths
Formant 1, 2, and 3 frequency, centre frequency of first, sec-

ond, and third formant
Formant 1 bandwidth of first formant.
3 Energy/amplitude related parameter Meaning
Shimmer difference of the peak amplitudes of con-

secutive F0 periods
Loudness estimate of perceived signal intensity from

an auditory spectrum
Harmonics-to-Noise Ratio (HNR) relation of energy in harmonic compo-

nents to energy in noise-like components
9 Spectral (balance) parameters Meaning
Alpha Ratio Ratio of the summed energy from 50–1000

Hz and 1–5 kHz
Hammarberg Index Ratio of the strongest energy peak in the

0–2 kHz region to the strongest peak in
the 2–5 kHz region

Spectral Slope 0–500 Hz and 500–1500 Hz Linear regression slope of the logarith-
mic power spectrum within the two given
bands

Formant 1, 2, and 3 relative energy Ratio of the energy of the spectral har-
monic peak at the first, second, third for-
mant’s centre frequency to the energy of
the spectral peak at F0

Harmonic difference H1–H2 Ratio of energy of the first F0 harmonic
(H1) to the energy of the second F0 har-
monic (H2)

Harmonic difference H1–A3 Ratio of energy of the first F0 harmonic
(H1) to the energy of the highest harmonic
in the third formant range (A3)

Table A.2: Minimalistic parameter set (GeMAPS)
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openSMILE features

LLD Functionals
Group A: 59
Loudness Root-quadratic mean, flatness
Modulation loudness Standard deviation, skewness, kurtosis
RMS energy, ZCR Quartiles 1–3
RASTA auditory bands 1–26 Inter-quartile ranges 1–2, 2–3, 1-3
MFCC 1–14 99th and 1-st percentile, range of these
Energy 250–650 Hz Relative position of max. and min. value
Energy 1–4 kHz Range (maximum to minimum value)
Spectral RoP .25, .50, .75, .90 Linear Regression slope
Spectral flux, entropy, variance Linear regression quadratic error
Spectral skewness and kurtosis Quadratic regression coeff.
Spectral slope Quadratic regression quadratic error
Spectral harmonicity Temporal centroid
Spectral sharpness (auditory) Peak mean value and dist. to arithm.

mean
Spectral centroid (linear) Mean and std. dev. of peak to peak

distances. Peak and valley range (abso-
lute and relative), Peak-valley-peak slopes
mean and std. dev.

Group B: 6
F0 via SHS, Prob. of voicing Segment length mean, min., max., std.

dev.
Jitter (local and delta) Up-level time 25%, 50%, 75%, 90%
Shimmer Rise time, left curvature time
logHNR(time domain) Linear Prediction gain and coefficients 1–5

Table A.3: INTERSPEECH 2013 Computational Paralinguistics ChallengE
(ComParE) set
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Appendix B

Mutual information

Feature name Source System Global MI-Depression MI-Parkinson
F0final X 0.0568 0.1692
audSpec_Rfilt X 0.1557 0.2115
audspecRasta_lengthL1norm X 0.1162 0.1135
audspec_lengthL1norm X 0.1182 0.1142
jitterDDP X 0.1753 0.068
jitterLocal X 0.0703 0.1178
logHNR X 0.116 0.0777
mfcc X 0.2189 0.1803
pcm_RMSenergy X 0.1308 0.0709
pcm_fftMag_fband1000-4000 X 0.0502 0.0908
pcm_fftMag_fband250-650 X 0.0684 0.1181
pcm_fftMag_psySharpness X 0.0953 0.2146
pcm_fftMag_spectralCentroid X 0.0866 0.1893
pcm_fftMag_spectralEntropy X 0.1291 0.1859
pcm_fftMag_spectralFlux X 0.1238 0.1
pcm_fftMag_spectralHarmonicity X 0.0651 0.0968
pcm_fftMag_spectralKurtosis X 0.1277 0.0997
pcm_fftMag_spectralRollOff25.0 X 0.1027 0.1429
pcm_fftMag_spectralRollOff50.0 X 0.1195 0.1649
pcm_fftMag_spectralRollOff75.0 X 0.1526 0.1647
pcm_fftMag_spectralRollOff90.0 X 0.1321 0.176
pcm_fftMag_spectralSkewness X 0.1537 0.1517
pcm_fftMag_spectralSlope X 0.1055 0.0747
pcm_fftMag_spectralVariance X 0.1069 0.1663
pcm_zcr X 0.0835 0.1919
shimmerLocal X 0.0582 0.1134
voicingFinalUnclipped X 0.1364 0.1345

Table B.1: Entire list of Mutual information values computed in the study
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Mutual information

Feature name Meaning
F0final The smoothed fundamental frequency con-

tour
audSpec_Rfilt Relative Spectral Transform (RASTA)-

style filtered applied to Auditory Spec-
trum

audspecRasta_lengthL1norm Relative Spectral Transform applied to
Auditory Spectrum and engthL1norm is
the magnitude of the L1 norm

audspec_lengthL1norm Magnitude of L1 norm of Auditory Spec-
trum

jitterDDP The differential frame-to-frame Jitter (the
‘Jitter of the Jitter’)

jitterLocal The local (frame-to-frame) Jitter (pitch
period length deviations)

logHNR Log of the ratio of the energy of harmonic
signal components to the energy of noise
like signal components

mfcc Mel-frequency cepstral coefficients 1–14
pcm_RMSenergy Root-mean-square signal frame energy
pcm_fftMag_fband1000-4000 fft magnitude of frequency band between

1000Hz to 4000Hz
pcm_fftMag_fband250-650 fft magnitude of frequency band between

250Hz to 650Hz
pcm_fftMag_psySharpness Psychoacoustic sharpness
pcm_fftMag_spectralCentroid Spectral Features, represents the centre

of gravity of the signal’s spectral content
pcm_fftMag_spectralEntropy Measures the randomness of a signal’s

spectral content
pcm_fftMag_spectralFlux Evaluates the temporal variation of the

logarithmically-scaled rate-map across ad-
jacent frames

pcm_fftMag_spectralHarmonicity Spectral Harmonicity
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Mutual information

pcm_fftMag_spectralKurtosis Indicates the presence of series of tran-
sients and their locations in the frequency
domain.

pcm_fftMag_spectralRollOff25.0 Represents the frequency below which 25
percentage of the total spectral energy lies

pcm_fftMag_spectralRollOff50.0 Represents the frequency below which 50
percentage of the total spectral energy
lies.

pcm_fftMag_spectralRollOff75.0 Represents the frequency below which 75
percentage of the total spectral energy lies

pcm_fftMag_spectralRollOff90.0 Represents the frequency below which 90
percentage of the total spectral energy lies

pcm_fftMag_spectralSkewness Measures the symmetry of the spectrum
around its arithmetic mean. The feature
will be zero for silent segments and high
for voiced speech where substantial en-
ergy is present around the fundamental
frequency.

pcm_fftMag_spectralSlope It is a high-frequency response of spec-
trum calculated using linear regression
and the central wavelet of the signal for a
window

pcm_fftMag_spectralVariance Measures the signal’s spectral content
variability over time

pcm_zcr Zero-crossing rate of time signal (frame-
based)

shimmerLocal The local (frame-to-frame) Shimmer (am-
plitude deviations between pitch periods)

voicingFinalUnclipped The voicing probability of the final funda-
mental frequency candidate. Unclipped
means,that it was not set to zero when is
falls below the voicing threshold

Table B.2: ComPARE features explanation. Reference by [69] [70]
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