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Abstract

Banks, being the pillars of every international Ąnancial system, have the duty to
detect suspicious money movements related to criminal activities such as fraud,
terrorism Ąnancing or money laundering, in order to protect their clients and
countries from signiĄcant losses. The techniques used in the past, based on rule-
based deĄnitions, are no longer effective: the increase in digitization has not only
made it easier for criminals to evade these systems rendering them obsolete. More
reliable outlier detection systems must be built, necessarily based on the usage of
big data and artiĄcial intelligence techniques, to label suspicious transactions and
provide useful insights to the Ąnal human operator, who will be responsible for
conducting the necessary investigations to determine the real nature of the marked
money exchange. The goal of this thesis is to design and implement a clustering-
based pipeline, which is part of a larger architecture that aims to detect anomalies
in a dataset of pass-through transactions. SpeciĄcally, while the other pipelines
already implemented have the task of directly detecting anomalies at different
levels of granularity (transaction-level or user-level) using unsupervised algorithms,
the pipeline to be presented will primarily focus on enriching the information of
the Ąnal user reports. For this purpose, the transactions will Ąrst be aggregated
at various levels of granularity (users, banks, or countries) through a feature
engineering process guided by the indications of domain experts. Subsequently, by
employing clustering algorithms, actors with similar behavior in the chosen feature
space are going to be detected. Multidimensional space does not allow for an easy
interpretation of the clustering result and so, a continuous feature quantization
step followed by a frequent itemsets extraction one will generate the descriptors,
that better highlight the common structures of the entities within each cluster.
Finally, an aggregate result analysis step is going to produce a small number of
clusters that can be studied and labeled by a domain expert to facilitate further
investigations of the reported anomalous users. In addition, to enhance the second
pipeline, a new Outlier Detection Model based on the clustering output will be
presented. The methodologies used for the entire pipeline implementation will be
described in detail, along with the experimental results obtained.
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Chapter 1

Introduction

1.1 Motivation

In the recent years Ąnancial crimes like payment fraud, money laundering, terrorist
Ąnancing, etc. are on the rise. For example money laundering , which can be
deĄned as the process of concealing the source of money generated from illegal
proceeds through a complex scheme of bank transactions, in the 2023 is worth to
$800 billion from $2 trillion that is almost the 2%-5% of the global gross domestic
product (GDP). The illegal activities that usually are linked with this process are
cyber fraud schemes, smuggling, illegal arm sales, embezzlement, insider trading,
corruption, human trafficking, drug trafficking and prostitution. There are many
reasons why it is crucial to combat Ąnancial crime:

• National Security: some Ąnancial crimes, such as terrorism Ąnancing, pose
threats to national security, monitoring and preventing these crimes are
essential for a countryŠs safety.

• Protection of Individuals and Businesses: fraud and money laundering,
can cause signiĄcant Ąnancial harm to individuals and businesses. Combating
these crimes helps safeguard peopleŠs savings and investments.

• Market Integrity: corruption and insider trading can distort competition
and harm investors.

• Legal and Ethical Compliance: combating Ąnancial crimes promotes adher-
ence to laws and ethical business practices, contributing to the establishment
of just and ethical societies and communities.

In 1989, on the initiative of the G7 the Financial Action Task Force (FATF)
was founded in order to combat money laundering by developing effective policies.

1



Introduction

After the events of the 11 September 2001, the mission of the task force was
expanded to include also the battle against terrorism Ąnancing. In order to reĆect
the every evolving patterns and techniques used by the criminal minds, every year
the standards set by the FATF are revised where the banks play a crucial role.
They are the heart of every national Ąnancial system and also are the only entities
that can have a global view of the money movements; for these reasons they have
the duty to be on the front line of this Ąght by being equipped with effective tools
that are able to detect suspicious transactions or anomalous behaviour at higher
level. The Ąrst "Transaction Monitoring" models to be employer were very simple
since they were based on a Ąxed set of rules and nowadays are almost useless; their
limits are the fact that need to be constantly updated, which is impracticable in
real scenarios, and output a huge number of false positive alarms that translates
for the human operator, in charge of doing further researches, in wasting time
unnecessarily. Also the process of the digital transformation increased the number
of transactions that the banking system execute every day, forcing the Ąnancial
institution to abandon the old solution that were designed to deal only with a
not very large volume of data. As the technology improves helping the criminal
minds to Ąnd new strategies to move at breackneck speed "dirty" money accross
countries, new solutions can be designed and implemented in order to improve the
detection rate of the suspicious transactions, introducing big data and machine
learning techniques.

1.2 Contribution

A large italian bank is engaged in the Ąght against money laundering and the
Ąnancing of terrorism investing in the usage of the ArtiĄcial Intelligence; this thesis
work is part of a project requested by this Ąnancial institution conducted at the
SmartData research center of the Politecnico di Torino. The overall project consists
in the implementation of machine learning-based anomaly detection model for
pass-through transactions, which is characterized by three parallel pipelines that
works at different levels of granularity, from the transaction one to bank one or
above. The main goal of this contribution is the development of the third pipeline,
whose output is a set of labels and descriptions that can be assigned to the various
entities (users, banks or countries) and which can be used to enrich the information
originating from the Ąrst two pipelines, that are directly involved respectively in
extracting anomalies at transaction and user level. Since the dataset provided
consists of approximately 6 millions of transactions, the Ąrst block designed for the
presented pipeline consists of a feature extraction module that is able to describe
through a set of feature the actors in the Ąnancial network at the desired level in a
speciĄed window of time. The following block will cluster the entities in order to

2



Introduction

group together them together accordingly to the characteristics computed before
and since the most of the clustering algorithm are not natively interpretable an
extraction of the descriptors, that can be translated in the mining of frequent
itemsets pass, will be done in order to better highlight what are the commonalities
within the points in the clusters. Since most of the feature extracted on these
entities are not categorical a quantile binning step will be performed. The pipeline
ends with an aggregate result analysis block will be employed to produce a small
number of clusters that can be studied and labeled by a domain expert to facilitate
further investigation of the anomalous user reported. The absence of annotations
within the dataset poses a signiĄcant challenge for the assessment of the results
of the Ąrst pipelines, for this reason the clustering block will be also employed to
conduct experiments that will evaluate the degree of agreement between it and the
four unsupervised outlier detection algorithm proposed so far.

3



Chapter 2

Theoretical elements and
related works

As mentioned in the introduction, one of the core algorithm that need to be
employed in the pipeline to be developed is the clustering one. For this reason an
exploration of the state of art of the clustering algorithms used that deals with
banking transaction has been performed. This step is not only useful to understand
the best promising techniques but also to better understand where are the features
that best describe the data. Before discussing some works published in the recent
years, a brieĆy introduction of the main concepts and algorithms used in this work
will be made.

2.1 Clustering overview

In the context of exploratory data analysis, which is the process that allows for
initial studies on a dataset to understand its data structure, identify outliers, or test
hypotheses, cluster analysis, or simply clustering, is the primary task. Informally,
the deĄnition of clustering can be as follows: it is the technique that enables the
organization of objects into groups that, in some way, share certain characteristics.
A cluster is thus a set of objects that are Şsimilar" for some reason and are
Şdissimilar" from objects in other clusters. The formal deĄnition of clustering
cannot be uniquely provided because it is possible to Şgroup" points using various
criteria. In the literature, there are indeed different models, the main ones are:

• Centroid-based: According to this concept, each cluster is represented by a
centroid, which is a point representing the center of the cluster and may not
necessarily be one of the data points under consideration. Each data point is
then assigned to the cluster whose centroid is closest to it. Algorithms falling

4



Theoretical elements and related works

into this category require specifying an input, the number k of clusters to be
formed. Therefore, if you donŠt have a clear idea of how many clusters the
dataset may Şcontains" multiple runs of the algorithm with different values of
k may need to be performed.

• Density-based: This approach is based on the idea that each cluster corre-
sponds to a region in space with a high density of data points, and clusters
are separated from each other by regions of space where the point density is
low. The ŞdeĄnition" of density for these algorithms is provided by specifying
two input values, MinPts and ϵ. These values indicate the minimum number
of points that a point must have within a certain radius for the sphere it
describes to be considered as having high density. Points that do not belong to
any high-density area will be classiĄed as noise points and will not be assigned
to any cluster. For some applications, it may be useful to remove outliers,
while in others where every data point needs to be assigned to a cluster, the
presence of noise points can be problematic.

• Distribution-based: This methodology relies on distribution models, where
data points that appear to be Şgenerated" by the same distribution are assigned
to the same cluster. The disadvantage of using this type of clustering is that
it requires prior knowledge of the dataŠs distribution type, which may not be
precisely deĄned from a mathematical standpoint.

Starting from the same dataset, different cluster methodologies will lead to
the formation of clusters that, when visualized, have different shapes. Clustering
algorithms can also be divided into two main classes:

• Partitional: In this class, each data point belongs to one and only one cluster.

• Hierarchical: In hierarchical clustering, the output of the algorithm is to
identify a hierarchy of clusters, which can be graphically represented by a
dendrogram. This type of model can further be categorized as agglomerative
or divisive. In the agglomerative approach, starting with a speciĄc number of
clusters, clusters that are most Şsimilar" to each other are iteratively merged
until all clusters are merged into one. In the divisive approach, starting with
the entire dataset, clusters are divided into smaller, more Şheterogeneous"
clusters at each iteration.

If there is reason to believe that the records in the dataset to be explored can be
represented by a hierarchy of clusters, then the second type might be convenient.
Otherwise, due to its simplicity, including from a computational perspective, the
Ąrst type is preferred. The following subsections will serve to introduce brieĆy the
two algorithms explored in this thesis.
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(a) (b)

(c)

Figure 2.1: (a) example of centroid-based clustering, (b) example of density-based
clustering and (c) example of distribution based clustering. Images taken from [1].

2.1.1 K-Means

K-Means [2] is the most commonly used clustering algorithm, and it falls under the
partitional class and it is centroid-based. The k in K-Means refers to the number
of clusters that we want to detect and so it should be speciĄed by the user, and
each cluster is identiĄed by a point called centroid whom is computed as the mean
of the objects within the cluster. Let X = ¶x1, x2, ..., xn♢ be the dataset under
study, where a generic xi ∈ Rd and d is the number of feature used to describe
the data. Then let G1, ..., Gk the clusters and C = ¶c1, c2, ..., ck♢ be the set of the
associated centroids (which is initialized in someway), each point will be assigned
to the cluster whose centroid is the closest one. The objective function that the
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algorithm tries to minimize is the following:

ek(X; C) =
nX

i=1

min
j∈{1,...,k}

d(xi, cj) (2.1)

where d(x, c) is the distance function that we want to employ to evaluate the
Şsimilarity" between the points, the function that is commonly used is the Euclidean
one (others popular are Minkowski or the Cosine Similarity). The K-Means problem
belongs to the NP-hard problems and for this reason do not exist any implementation
of it that is able to Ąnd the global optimum in a reasonable time. However, are
available efficient heuristic algorithm that in a short time converge in a short time
to a local optimum, typically them rely on LloydŠs or ElkanŠs algorithm. In the
following an informal step-by-step explanation of how typically the implementations
of K-Means work:

• Initialization: Start by selecting k initial cluster centroids. These centroids
are typically initialized randomly from the data points, or a smarter way to
do it is by using K-Means++ [3]. This last strategy is the most used one since
it speed up convergence.

• Assignment: in this step the distances between the points and the centroid
are computed. Then each point is assigned to the cluster with the closest
centroid.

• Update: since the membership of the points to the cluster may have been
changed, the centroids are recomputed. The new centroids are determined
by computing the mean of all the data points assigned to each cluster in the
previous step.

• Repeat: Steps 2 and 3 are repeated iteratively until a stopping criterion is
met. The common stopping criteria used are: the membership of the points
not changed between two consecutive iterations, the difference in the cluster
centers of two consecutive iterations is below than a speciĄed threshold or the
speciĄed maximum number of iterations is reached.

K-Means is very fast (is one of the fastest clustering algorithm available): since
at each iteration we need to compute for each point the distance between it and
the cluster centers, the average complexity is O(k · n · d · t), where t is the number
of iterations. For this reason, K-Means represents one of the few options to be
considered when there is the need of clustering very large data or high dimensionality
ones (as it will shown later, is our case). The biggest drawbacks are: k should be
manually set, is highly sensitive to noise/outliers and the results depends on the
initial value of the centroids.
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Figure 2.2: Visualization of intermediate cluster results using K-means with
k = 3. At each iteration the centroids (represented by crosses) are recomputed and
so the clusters (represented by different colors). Images taken from [4].

2.1.2 DBSCAN

Another well known partitional clustering algorithm is Density-based spatial clus-
tering of applications with noise (DBSCAN) [5], as the name suggests falls under
the density-based class models. The key basic idea behind this type of clustering is
that for each point that belongs to a cluster must there, within the neighborhood
described by the radius ϵ, at least a minimum number of points, represented by the
hyper-parameter MinPts, i.e. the cardinality of it has to exceed this threshold;
this means that may be points that will not belong to any cluster and so will be
classiĄed as noise. To better understand how DBSCAN works formally, some key
concept will be brieĆy introduced. Fixing ϵ and MinPts:

• A point p is a core point if ♣Nϵ(p)♣ ≥ MinPts where Nϵ(p) is the set of
points whose distance from q is below ϵ (i.e. is the neighborhood of p w.r.t ϵ)

• A point p ∈ X is directly-density from a point q ∈ X, if p ∈ Nϵ(q) and q is
a core point.

• A point p is reachable from an object q if there is a chain of points p1, ..., pn

with p1 = q and where each pi+1 is directly reachable from pi. This means
that all the points on the path must be core point, with the exception of q.
This property is not symmetrical: not-core points cannot reach core points,
while the opposite is possible.

• A point p is connected to a point q if there is an object o such that both q
and p are reachable from o. This property is symmetrical.

• A point p is deĄned as noise (or outlier), if is not reachable by any other
point.
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Having introduced the notion of reachability and connectedness, is possible to
deĄne which property the DBSCAN clusters satisfy:

• Maximality: if a point p ∈ Gi and a point q is reachable from p then also
q ∈ Gi

• Connectivity: if p and q are connected then p, q ∈ Gi

In other words if p is a core point it will forms a cluster with all the points that
are reachable from it and also with the one that are only connected to it. While K-
Means performs well if the assumption of having spherical shape Şnatural" clusters
is met, DBSCAN is able to Ąnd clusters of arbitrarly shapes, since it is able to adapt
to the characteristics of the data dynamically. Another huge advantage is the fact
that there is no need at all of specifying the number of cluster to extract, contrary
to K-Means. Since DBSCAN introduce the notion of outlier, for some applications
this can be a disadvantage, for example if there is the need to assign each point
to a cluster (like for the Ąnal goal of our thesis); is possible to circumvent it by
assigning the outliers to a manually created cluster, however even if the data within
it share a logical common characteristic (are outliers), will unlikely presents some
common structural behaviors (making the clustering results even less interpretable).
The other main disadvantages are:

• ϵ and MinPts are hyper-parameters and so should be speciĄed manually by
the user. This values signiĄcantly inĆuence the process, and so many runs
are required in order to Ąnd the optimal values. However exists some rules of
thumb that can be adopted to determine more intelligent values, for example
using the K-Graph to choose a proper value of ϵ and by setting MinPts = 2d,

• DBSCAN may have hard time handling clusters with variable densities. Specif-
ically, clusters with signiĄcantly different densities can be challenging to cor-
rectly identify, since the ϵ-MinPts pair cannot be chosen in a way to adapt
to the characteristic of each cluster.

LetŠs now analyze the computational complexity of the algorithm: the time
part is mostly covered by the regionQuery operations (the one used to discover the
neighborhood of a point). This operation is performed only one for each point and
if an indexing structure is used it will execute in O(log n). Choosing a good value
of ϵ the overall complexity of the algorithm will be O(n log n), but in the worst case
would be O(n2) . This means that DBSCAN is not suited for large datasets and
will be executed in a reasonable time only if good values for the hyper-parameters
are set.
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(a) (b)

(c)

Figure 2.3: (a) Original points to be clustered using DBSCAN. (b) Point types:
core (green), border (blue) and noise (red). (c) Clustering output (clusters are
identiĄed by colors). Images taken from [4].

2.1.3 Evaluation

So far we have discussed how the clustering algorithms build a cluster, but how we
can assess the quality of the results in order to understand which is better? Quoting
James and Dubes ŞThe validation of clustering structures is the most difficult and
frustrating part of cluster analysis" [6]. While for supervised classiĄcation we have a
variety of measures to evaluate how good our model is (accuracy, precision, recall),
for cluster analysis, since it lies under the unsupervised domain, is difficult to assess
the how well our data have been grouped. Numerical measures can be employed to
judge various aspects of cluster validity, and be classiĄed into three classes:

• Internal: when the quality of the result is assessed based on the features
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considered by the clustering algorithm itself without respect to external
information. For this reason, since a clustering algorithm may already optimize
metrics used by these indices, a high score does not always indicate a useful
result. Some example are Sum of Squared Error (SSE), cluster cohesion,
cluster separation, RandIndex, adjusted rand-index, Silhouette index.

• External: these indices are based on data that was not considered for cluster
formation, such as class labels or external benchmarks, which are nothing
more than a set of preclassiĄed items created by domain experts. This allows
for an assessment of how close the clustering result is to the desired one. Some
example are purity and entropy

• Relative index: Used to compare two different clusterings or clusters.

The external metrics cannot be always used since they require the strict requirement
of having information that can be only be supplied by the experts of the dataset
domain. However this kind of indexes can bias the Ąnal choice of the clustering
since the reproduction of known knowledge may will not allow to capture hidden
intrinsic structures of the data. In the majority of cases the internal ones are used,
since them do not require to met any particular constraint.

Silhoutte

The silhoutte score [7] is a internal metrics that can be used to evaluate how
well each point lies within its cluster and generally can be also computed for an
individual cluster or for the cluster results. The silhoutte score s computed for a
point i can be deĄned as follows:

s(i) =
b(i) − a(i)

max(a(i), b(i)
(2.2)

where a(i) is the the average distance of i with all other objects within the same
cluster, and b(i) is the minimum average distance between any other cluster (the
one of which i is member is excluded). To be complete, formally we have:

a(i) =
1

♣GI ♣ − 1

X

j∈GI ,i /=j

d(i, j) (2.3)

b(i) = min
J=I

1

Gj

X

j∈Gj

d(i, j) (2.4)

Observing the formulation, the metric can be computed for each point only if each
cluster contains at least 2 points, and typically this requirement is always satisĄed.
The silhoutte range spans from -1 to 1, and higher is the value better is the point
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is matched to its own cluster and badly matched to other ones. Heuristically if
many points have a value close to 1, then the resulting conĄguration is good. As
mentioned before is possible to compute the silhoutte even for a speciĄc cluster
and for the overall clustering. Respectively and formally, with K equals to the
number of clusters, he have:

s(GI) =
1

♣GI ♣

X

i∈GI

s(i) (2.5)

s(C) =
1

K

X

I=1

Ks(GI) (2.6)

The observations made for the values of the metric are still valid here. Since for
K-Means is necessarily to manually select the value k, a silhoutte analysis can be
performed: by launching the algorithm with different values of it and computing for
each execution the overall silhoutte score, it is possible to show through a plot how
the metric change. Then the value of k that shows the best promising performance,
will be chosen with the corresponding results.

2.2 Dimensionality reduction

One of the most used and famous distance deĄnition is the Euclidean one, it was
deĄned by Euclid by observing our real world which is essentially three dimensional.
However in a high dimensionality world it loses all the meaning, due to a popular
issue called ŞCurse of Dimensionality" [8]; the term refers to various problems that
may arise when we are dealing with high dimensional data that do not occur in a
low dimensional one. Intuitively all this problem are due to the fact that as the
number of dimension the volume of this space grows exponentially and so the points
that are lying within it become sparse. Let d be the number of dimension in the
space and MaxDist and MinDist respectively the maximum and the minimum
distances that we can observe between any points within it, formally we have:

lim
d→∞

MaxDist − MinDist

MinDist
= 0 (2.7)

So in this particular settings, the Euclidean distance between any two points
essentially become a constant and so meaningless. Not only the Euclidean distance
is affected by this Şcurse": in fact we can observed it also for other distance metrics
like the Manhattan or the Cosine Similarity ones. In order to deal with this kind
of problem, in such way to still use the Euclidean distance, is to circumvent it
by reducing the dimensionality of the dataset before injecting it into the Ąnal
algorithm. This can be achieved in several ways, the common ones involve to Şdrop"
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Figure 2.4: Plots that shows how the difference between the maximum distance
between two points and the minimum one shrinks to zero as the number of
dimensions increases, within a dataset of 500 randomized records. Images taken
from [4].

those features that irrelevant (i.e. the ones that present always the same value)
or redundant (i.e. the ones strongly correlated to another one) or by projecting it
into a lower space, in which the mapping captures the largest amount of variation
in data. Reducing the dimensionality of the data has additional beneĄts:

• Memory: less features means less amount of space required to store each
point in memory or in disk

• Time: the computation of any distance depends on the number of features
that characterize the data. Computing the distance in a lower space will be
faster

• Visualization: as humans we can only understands 3 or lower dimension
spaces. Lowering the dimensionality with the help of techniques such as
PCA, allows to visualize the data projecting them on the so-called Şprincipal"
direction.
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2.2.1 Pearson correlation coefficient

In some cases the data under analysis are described by features that brings the
same kind of information. For example letŠs assume that we are dealing with
receipts, possible features can be the purchase price of the product and the amount
of taxes to be applied on it. The last one, for each product, will always be a Ąxed
percentage of the Ąrst one, and for this reason do not Şenrich" the description of the
receipt. ItŠs possible to compute the linear correlation between the distribution of
two features by using the Pearson correlation coefficient [9]. Let X and Y are two
random variables that describe the distribution of two distinct features, formally
this coefficient is deĄned as:

ρX,Y =
cov(X, Y )

σXσY

(2.8)

where cov is the covariance function, σX is the standard deviation of X and σY is
the standard deviation of Y . This metric can be seen as a normalized version of
the covariance between two R.V. since the value will be always between -1 and 1,
and higher is the absolute value of it and more correlated the variables will be. For
instance, if this value computed between two features is close to 1, we can consider
to drop one of the two in order to decrease the number of dimensions.

2.2.2 Principal component analysis

Principal component analysis (PCA) [10] is one the most used technique for reducing
the dimensionality of a dataset. Roughly this mapping is achieved by searching
for a new Şcoordinate" system, with less dimensions, where a good amount of the
variation of the data is preserved. Formally we want to search for a subspace,
deĄned by P ∈ Rn×m (where n is the number of dimension of the original space
and m is the one of the subspace), whose columns are orthonormal. A reasonable
criterion, that this lower dimension space needs to satistfy, may be the minimization
of the average reconstruction error, and so (where K is the number of samples,
formally we have:

P
∗ = arg min

P

1

K

KX

i=1

♣♣xi − PP T xi♣♣ (2.9)

which is a eigenvalue/eigenvector problem. It can be shown that the optimal
solution is then given by the matrix P whose columns are the m eigenvectors of
1
K

PK
i=1 xix

T
i corresponding to the m largest eigenvalues, where the Ąrst column is

called principal component. The lower the dimensionality respect to the original
space, the higher the information loss is, so how to select an optimal value of m?
Remembering that each eigenvalue corresponds to the explained variance along the
corresponding axis, we can select m as the lowest number such that the cumulative
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explained variance of the Ąrst m eigenvalues is higher than a Ąxed threshold (i.e.
to retain at least the 80% of the variance).

Figure 2.5: Principal component (the e axis) computed on a 2D dataset using
PCA. The principal component captures the largest amount of variation in data.
Images taken from [4].

Data are often described by features with very different scales, and the one
that presents the wider ranges will have a greater contribute in computation of
the principal axis w.r.t the ones that presents narrower ones. Also, if the dataset
mean is far from the origin, the principal component of PCA will connect them;
this direction in most cases does not bring any value. For this reason is almost
mandatory to scale our data before Ątting PCA, and a standard approach to achieve
this is by using Z-Score (each feature is recalculated by subtracting the mean of
the distribution and by dividing the outcome by distribution standard deviation).
Also, it is important to drop redundant (highly correlated) features before this
analysis since them can amplify the variance of the principal components. To
better understand this phenomenon, the following experiment will be conducted by
picking up three features that are highly correlated among them and a forth one
which is independent, them are respectively feature_1, feature_2, feature_3 and
feature_4. By computing the PCA only on the Ąrst and the last features which
are totally uncorrelated, the contribution, that can be measure in terms of the
explained variance of each component, is almost identical. After adding a variable
correlated with the Ąrst one, the variance of the Ąrst component is now twice the
size of the second. After adding another correlated variables, the size of the Ąrst
component is now three times bigger than the second; the results are shown in 2.6.
This means that, by retaining correlated features, the contribution of each variable

15



Theoretical elements and related works

will be indirectly unbalanced in an eventual clustering process, since the formation
of clusters will most likely based only on those that are correlated.

Figure 2.6: This bar plots show how the variance of the principal components is
affected if the variables under analysis are correlated. The Ąrst plot on the top left
has performed on feature_1 and feature_4, which are totally independent. The
one on the top right, has been performed by adding the feature_2 variable which is
correlated to the Ąrst one. The last plot involves the contribution of an additional
correlated feature feature_3.

Since the Ąrst two (also three) components of this analysis are the ones to
Şembed" most of the variance of the original space, them can be used to visualize
the data in a human understandable plot; in this way it is possible to investigate
how the data are clustered in the space and doing further investigations is possible
to Ąnd to which of the original features these principal axis are referring to.
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2.3 Frequent Pattern Mining

The problem of frequent itemset extraction is often mistakenly confused with
association rule mining. However, the latter is signiĄcantly more complex and
depends on a prior step of itemsets extraction. To intuitively describe this technique
of data characterization, we will refer to the Şmarket-basket" model [11]. In this
model, there are essentially two types of elements: Şitems" and Şbaskets", where
the latter are nothing more than collections of the former. The goal of frequent
itemsets extraction is to Ąnd sets of items that appear with a frequency greater than
a speciĄed parameter within the available baskets. This model was originally used
for analyzing real market baskets. By extracting frequent itemsets, a retailer could
determine which products were frequently purchased together. Nowadays, this
technique is used in various Ąelds such as recommendation systems, user behavior
analysis, medical analysis, text analysis, and more. Formally we have, given a a
transactional dataset, where a transaction is a (not ordered) set of transactions
(i.e. market basket data, textual data, structured data), the following deĄnitions:

• Itemset: is a set including one or more items.

• Support: is the fraction of transactions that contain an speciĄc itemset

• Frequent itemset: is an itemset whose support is greater than or equal to a
speciĄed support threshold

• minsup: the threshold mentioned before

Unlike machine learning algorithms, the results of frequent itemsets extraction is
deterministic. The property that the result should satisfy are:

• Correctness: all the itemsets found must be frequent

• Completeness: all the frequent itemsets within the transactional dataset
must be found

A trivial way to extract frequent itemsets is the brute force one by enumerating all
the possible permutations and the count the support; obviously this is completely
ineffecient, the complexity is ′(T2dw), where T is the size of the dataset, d is
the number of items and w the average length of a transaction. Exist several
implementation of the frequent itemset generation, that cut down by a lot, the
complexity of the brute force approach. The most famous are:

• Apriori [12]: which is based on the homonym principle ŞIf an itemset is
frequent, then all of its subsets must also be frequent". One of the main
perfomance issue of the it, is the fact that requires multiple database scan (if
n is the length of the longest frequent itemsets, it requires n + 1 scans in total)
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• Fp-growth [13]: Exploits a main memory compressed representation of the
database, the FP-tree. The frequent itemsets are extracted by a visiting
recursevily it and only two database scans are needed, one for creating the
FP-tree and one for count the item support.

Since both the algorithm will lead to the same result (given a speciĄed transactional
dataset), the choice between which implementation to use is based only on the
computational efficiency; in most cases Fp-growth is the fastest. In somecases the
number of frequent itemsets that are Şlying" in the dataset is very high, so may
be preferred to extract only a compact representation. For this reason we need to
introduce the deĄnition of maximal frequent itemsets: an itemset is maximal if
none of its immediate supersets is frequent. Through the apriori principle we are
able to deduce all the frequent itemsubset from the maximal ones. The discovery
of maximal itemsets is faster and requires less memory, however if we are interested
also in the support of each frequent this become useless since we can only know
the lower-bound of this value (the support of the related maximals). Fp-max [14]
is a variant of the Fp-growth algorithm, which focuses only on the extraction of
this compressed representation.

2.4 Clustering of Ąnancial data in literature

In the Ąnancial world, clustering techniques are primarily used for the anomaly
detection task. The goal of this task is to identify those points, also known
as outliers, that exhibit substantial differences from the majority of other data.
Yang et al., [15] use DBSCAN to extract bank accounts that may are performing
money laundering activities. Starting from a database of transactions, the data
are aggregated to compute the features that describes the accounts under analysis:
this set extracted includes monthly deposit frequency, monthly deposit amount,
monthly withdrawal frequency, and monthly withdrawal amount. Then after this
preparation step, different runs of DBSCAN are executed: each one will cluster the
points according to only one feature at time; this step will produce for each run a set
of outliers whom differs a lot from the current feature under analysis. In the Ąnal
step, called by the author the ŞLink Analysis" one, the level of agreement between
the various clustering results is computed and according to it a suspicious level is
assigned to the found outliers. Arévalo et al., [16] experiment both K-Means and
DBSCAN to form clusters that will be analyzed to detect anomalous transactions.
The feature engineering process is interesting: each transaction is described by the
amount of money involved and a set of one-hot encoded features describing the
transactionŠs origin and beneĄciary, as well as a set of network features that describe
interactions between the involved participants in the system within a speciĄc time
window (total number of transactions sent/received and the total amount of money
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sent/received); this is done in order to let the algorithm to also considers the
behaviour of them during the period under consideration. Since the transactions
that will be clustered are also characterized by these institution-level features, large
one-hot encoded vectors are introduced. In order to deal with the dimensionality
increasing of the dataset studied and with the noise introduced by the one hot
encoded features, PCA was employed in order keeping the 85% of the explained
variance. Finally, to make interpretable the results of the clustering, Random
Forests are used in order to understand which are the features that inĆuenced the
algorithm the most. Larik and Haider [17] developed a Anti Money Laundering
system in which for the suspicious user is computed an anomaly index score,
named AICAF (Anomaly Index Computation based on Amount and Frequency),
to measure how much the behaviour of a customer deviate from the one of the
cluster in which belongs. The feature on which the process relies are the transaction
amount and its type (credit or debit card). Then, the K-Means algorithm is used to
determine the optimal number of clusters using the Sum of Squared Error metric,
and then a modiĄed version of the Euclidean Adaptive Resonance Theory (EART)
algorithm is used to form clusters of balanced sizes. After this step, the AICAF
index is computed for each user, and the ones that exhibit the higher values are
considered anomalous. Shahriar et al., [18] the goal of the work is different from
the previous discussed ones: a bank database is analyzed from the viewpoint of
customer behavioral. Since the Ąnal goal of the architecture presented is to help the
organization to acquire new customers, the main features on which the clustering
process focuses, beside the amount carried out by the transaction, are categorical
like: education level, occupation, sex and age of the entities. K-Means is used to
cluster the data and an association rule step take place to understand the behavior
of the users within the groups created.
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Architecture overview

Figure 3.1: The overall architecture, comprised of a shared data loading phase,
three parallel pipelines that work at different levels of granularity, and a Ąnal
aggregation phase that produces user-level reports.

In this chapter will be introduced the overall architecture for a machine learning-
based anomaly detection in pass-through transactions. It is characterized by the
three pipelines that can be executed in parallel, that share a common data-loading
phase. Each pipeline is designed in order to identify anomalies at different level of
granularity, from the single transaction one to the country one. Then, the output
of these pipelines is injected in an aggregation phase that will produces a user-level
reports, that will contain the suspicious ones along their most relevant transactions
enriched with useful information extracted for the human operation, that will later
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investigate the case.

3.1 Data Loading

This phase is common to all the three pipelines. In this step, will be loaded in
memory transaction data from CSV Ąles. At the moment, only one Ąle is available
and contains about 6.3 million transactions that spans for four consecutive months.
Due to the sensitive nature of the Ąnancial data, the identiĄers of the users and
the banks were been anonymized by the partner bank with not meaningful strings.
Each transaction is described by many feature, we will focus on the main most
relevant ones that are useful for our task:

• transaction_id: represents a censored identiĄer of the transaction which in
most cases is a unique universal identiĄer.

• data_ref : indicates the date and the time in which the transaction has been
carried out. This feature is useful in order to group that transactions that
took place in a speciĄed time window.

• BIC_o_anon: it is the censored Bank IdentiĄer Code of the senderŠs bank.

• BIC_b_anon: it is the censored Bank IdentiĄer Code of the receiverŠs bank.

• user_o: it is the anonymized version of the senderŠs account identiĄer.

• user_b: it is the anonymized version of the receiverŠs account identiĄer.

• amount: represents the transaction amount carried by the current transaction
converted to Euro.

• CTRYbnkCD_o: describes to the senderŠs bank country code (i.e. IT for an
italian bank).

• CTRYbnkCD_b: describes to the receiverŠs bank country code.

• CTRYresCD_o: describes the sender country code.

• CTRYresCD_b: describes the receiver country code.

• party_name_anon_o: a string that represent the party name of the sender of
the transaction.

• party_name_anon_b: a string that represents the party name of the receiver
of the transaction.

• account_o_anon: censored version of the senderŠs account number.
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• account_b_anon: censored version of the receiverŠs account number.

It is important to mention that if the same real entity has two accounts at the
same bank it will be treated by the architecture as two separate users, for this
reason the identiĄers for this chosen granularity are the user_o and user_b features
which are created by concatenating the party name, the BIC and the account
number extracted from the relative Ąelds.

3.2 Istance-Level anomalies

The Ąrst pipeline of the architecture have been already implemented. At the time
being, the solution implemented is based on an autoencoder, that reconstruct
transactions after projecting them in a latent space. So, receiving a transaction as
input will output a score that represents the quality of the reconstruction, where a
low value implies one that is very close to the original representation. Assuming
that the suspicious transaction are only a small fraction within the whole dataset,
the autoencoder will mostly learn the common patterns that describes the regular
ones. So, since anomalous transactions do not follow the normal behaviour of the
"expected" ones will likely output an high reconstruction error scores. Without
going into too much details, a brieĆy overview of the tree main blocks of this
pipeline will be done.

Figure 3.2: The Ąrst pipeline detects suspicious users by directly detecting their
anomalous transactions.

3.2.1 Autoencoder

The core of this pipeline is the previously mentioned autoencoder. This model
can be described by introducing two opposite functions: an encoding function
h = e(x) and a decoding one x̃ = d(h). So, denoting a transaction as x ∈ R

n, the
reconstructed transaction x̃ is obtained by chaining the output of e with d, i.e.
x̃ = d(e(x)). The encoding phase will project x to a latent space that has a lower
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dimensionality than the original one; in this way, the reconstruction will, in most
cases, be lossy.

The autoencoder proposed in this moment follows a standard architecture since
it is comprised by an encoder followed by decoder, that implement respectively
the e and d functions. Both the module are composed by various linear layers
interleaved with ReLU activation functions. Since the lack of a supervised dataset,
the number of layer is at the moment no strictly deĄned. The autoencoder proposed
is trained in a traditional way through the usage of a loss function that represents
the quality of the reconstruction of the current batch appropriately deĄned in order
to take into account the different nature of the feature, which can be both binary
or continuous. Formally, by denoting as Xc and X̃c the continuous feature matrix
of the batch in the original space and the reconstructed one

Since the continuous and the binary loss portions can have different importance
and/or also to address the fact that these two value can have different ranges
of values, the λ hyperparameter can be tuned. The reconstruction error of each
transaction is computed according to this loss function, this means that a bad
reconstruction will lead to higher value as already mentioned before. The last block
of this pipeline is the aggregation one, in which starting from each transaction
and the relative reconstruction error, an aggregation policy is employed in order
to convert the transaction-level scores to user-level ones. At the time being, a
transaction is associated to a user either if he is the sender or the receiver and since
each user have a different number of transactions associated, three aggregation
policies can be used. Informally:

• Average rating: the score assigned to the user is equal to the average of his
transaction scores. The drawback of this policy is the fact that users that have
1 or few transactions with a high reconstruction error will be easily marked as
anomalous, while the ones that have many Şmedium" ones will be Ćagged as
Şexpected".

• Sum of ratings: in this case the score assigned to each user is the sum of
his transaction scores. In this case, those users that have a lot of low score
transactions will be still considered suspicious.

• Log-n average ratings: this represents a trade-off between the Ąrst two men-
tioned ones. To each user will be assigned the average score multiplied by
log(n + 1), where n is the number of transactions, in this way the we are
taking into account also the number of the transaction (i.e. users with a few
number of transaction will have a lower multiplying factor).
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3.3 User-level anomalies

The Ąrst pipeline is able to mark users as anomalous by observing the common
pattern of the extracted feature at transaction level. Since some behaviours cannot
be captured at that level (i.e. the total amount sent within a time window), the
second pipeline has been deĄned in order to deal with the trends that can be
observed only at the user-level. The output of this pipeline will not only produce
an outlier user set, but will enrich this with the most relevant transactions that
lead the relative users to be labeled as anomalous.

Figure 3.3: The second pipeline. The user dataset is generated through a feature
extraction and then it is injected in the outlier detection module. The Ąnal output
is the outlier users set with their most relevant transactions.

3.3.1 Features Extraction Module

As described before, all the pipelines share a common data loading phase, in which
roughly the transaction are loaded in memory. Since the outlier detection methods
proposed in this pipeline works on an higher level, a new feature extraction module
has been designed and implemented for scratch. This module is able to extract
features at different levels of granularity (user, BIC or country) and for this reason
is also shared with the last pipeline. It will be discussed in details in Chapter 4.

3.3.2 Outlier detection

The outlier detection module is the core of this pipeline and it basically constituted
of an outlier detection algorithm. Due to the absence of labels, supervised or
semi-supervised approaches cannot be employed and so far, 4 different models have
been proposed:

• Autoencoder: the only deep learning option. It works in the same way of the
one employed in the Ąrst pipeline.

• Isolation Forest
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• One Class Support Vector Machine

• Local Outlier Factor

Each model outputs for each user under test an anomaly score, the higher the score,
more suspicious the user is. Also is worth mentioning, that since models like the
One Class Support Vector Machine and the Local Outlier Factor, cannot be trained
on the whole dataset of users (due to the lack of adequate computational resources)
an ensemble approach has been adopted. By specifying an hyperparameter N , such
a number of different instances of the same model will be trained, by distributing
uniformly the data.

3.4 Collection-level enrichment

The output of this pipeline is to produce a set of descriptors and labels that can
be assigned to the users but also to their banks and countries. Since the design
and the implementation of this pipeline is the focus of this thesis, it will explained
in details in Chapter 5.

25



Chapter 4

Feature Engineering

The feature extractor was described at very high level in 3.3.1 and since it is
a core module for both the second and the third pipeline, is worth describing
in details its implementation. By specifying the aggregation level (user, BIC or
country), the module will produce a dataset of the desired entities; the set of
features extracted are all requested by the domain experts of the partner bank.
Some of these higher level features cannot be implemented without extending
the instance level feature extraction of the Ąrst pipeline; for this reason before
describing the feature engineering process of the high level entities, the integration
of the new ones at transaction-level will be described.

4.1 Instance-level features extractor extension

The extension of this module includes the implementation of two brand new features:
unexpected corridor and closeness to round amount.

4.1.1 Unexpected Corridor

In the Ąnancial context a corridor can be roughly deĄned as the combination of
two countries, one is the country where the transaction is sent and the other one is
where it is received. Let O be the country of the originator (of the transaction)
and Ob the one of its bank, B the country of the beneĄciary and Bb the one of
its bank, we can deĄne (by extending the given the deĄnition for our purposes)
the following types of corridors: O − Ob, B − Bb, O − B and Ob − Bb. For each
of this corridor a relative feature will be computed that will evaluate the degree
of unexpectedness of it w.r.t. the distribution of the combination observed in the
dataset. Let x be the normalized count for a speciĄc corridor (i.e. Italy-Ireland)
in an arbitrary corridor type (i.e. O − B), the value of the corresponding feature
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will be 1/ log10(x + ϵ). Since we need to compute an unexpectedness value, the
feature need to be inversely proportional to x. Also since some combination can be
extremely rare, and so having a value of x ≈ 0, to avoid numerical issues a positive
number ϵ is added to it. This feature can be discriminative in the outlier detection
task, since anomalous transactions will likely belong to not usual corridors.

4.1.2 Closeness To Round Amount

As pointed out by the domain experts, anomalous transactions often carry out
a well Şrounded" amount. This features describe how much the original import
is close to the next rounded value w.r.t. a speciĄed parameter named over. The
function used to describe this feature is log10(ϵ + x), where:

x = min(♣over − (a mod over)♣, a mod over) (4.1)

and where a is the amount moved by the transaction in the original currency. Even
in this case ϵ is a positive integer used to avoid numerical issues.

4.2 Users-level Features Extractor

The main entities that are involved in the network described by the transaction
database are the users, the banks and the countries; this high level features extractor
have the goal of computing the most relevant information about these entities in a
speciĄc time window. The features that will be described can be subdivided into
two categories:

• Bidirectional: these features aim to describe the user/bank/country both as
the originator and as beneĄciary of the transactions related to it. Each feature
that belongs to this category will have a incoming and an outgoing version, in
order to describe the two different roles that the user/bank/country can play.

• ProĄle-level: these features aims to describe some information about the
proĄle of the user/bank/country or that is not strictly related to the directional
Ćow of its transactions.

Before describing how these features are going to be computed, is worth showing
how many users, banks and countries are involved in each month, which for our
study will be the time windows that are going to be considered. Analyzing 4.1, can
be observed that the transactions are distributed uniformly over the various months
and about the 55% of the users send or receive money in each of these months (and
so their banks and countries). Of course, Month 4 will be not considered since only
one transaction has been registered within it.
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Month 1 Month 2 Month 3 Month 4 Total

#Txns 2,094,669 2,013,688 2,236,507 1 6,344,865
#Users 1,458,174 1,412,687 1,541,610 2 2,548,772
#Banks 3392 3,418 3392 2 4130

#Countries 235 239 234 2 241

Table 4.1: This table shows the number of transactions, users, banks and countries
involved for each month.

In order to work, this module takes as mandatory input the aggregation level
(user/bank/country) and the time window (i.e. Month 2). Without loss of generality
and to make the following descriptions more intuitive and clear, we will consider:

• User as aggregation level. To make the explanation less verbose we will refer
only to the case where the features are extracted at this level.

• Month 3 as time window in order to show the distributions of the feature
extracted, on account of the fact that the distribution of each feature is
roughly the same across each month. Also since some features are based
on the transactions that were executed before the time windows speciĄed,
choosing this month allow us to have more data to work one and so the
outcome will be more Şreliable".

• For the bidirectional feature set, only the active version will be analyzed.

The Ąrst features to be described are the bidirectional ones.

4.2.1 Total Amount

The Total Amount is actually a group that comprises four bidirectional features
used to describe the money Ćow of the user within the time window. These features
are:

• Amount Sent: represents the log10total amount of money sent by the user,
i.e. is obtained by summing up the amount Ąeld of the raw transactions in
Euro. Since there might be users that never sent a transaction, in order to
avoid numerical issues the value of 1 is added before applying the logarithmic
function.

• Count Sent: represents the number of transaction executed by the user.

• Mean Sent: represents the mean of the amount sent by the user at each
transaction, i.e. is obtained by dividing the previous two.
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• Std Sent: represents the variability in the amounts sent by the user, i.e.
is the standard deviation of the amount Ąeld. The users that never sent a
transaction or sent just 1, will have a default value of 0.

(a) (b)

Figure 4.1: Histograms that show the distribution of the log10 version of Count
Sent and the Amount Sent features (left and right respectively) at user level in
the month of Month 3. It is important to observe that almost 1 million of users
never sent a transaction. To obtain a better visualization of the distributions, the
transformations speciĄed on the x-axis has been applied.

By observing the power low distribution of the feature Count Sent in Ągure
4.1, can be deduced that many users in the network only have a passive role
since are only receiving transactions; this statement is also truth for the other
direction: many users only play an active role without receiving any transaction
at all. Also the majority of users within a single time window are related only to
one transactions: this means that almost all user send/receive only one transaction
while receiving/sending none of them. As a consequence of this common pattern,
the distributions of Mean Sent and Std Sent, that will be not shown can be easily
inferred: the Ąrst one will have the same shape of Amount Sent while the second
one will have almost all values in the 0 bin. Additionally the common pattern
mentioned before, will lead the Ąnal feature vector to somehow sparse: only one
part of the bidirectional features set will not have default values.

4.2.2 Growth

As the previous one, Growth is a group of four different features, that are used to
describe how the Ąnancial Ćow of the user within the time window considered has
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changed w.r.t the past. To compute them we need to Ąrstly compute the Total
amount group as if we were analyzing the previous time window (i.e. if Month 3 is
the current time window, the previous one is Month 2), and by having also the
standard one, we can compute each variation using this formula:

xc − xp

xc + xp

(4.2)

where xc represents the feature computed in the current window, and xp stands for
one in the previous window. There are various ways to express user growth; this
particular normalization was chosen because even in cases where the user has not
submitted transactions in either of the two windows (past or current), it is possible
to determine a real value. For instance, the simple ratio between the current and
past windows could be indeterminate if the latter is empty.

The name of these features are Growth Amount Sent, Growth Count Sent,
Growth Mean Sent and Growth Std Sent. The values of these features are,
by deĄnition, always between -1 and 1; a positive value of the growth shows a
positive trend of the user w.r.t. to the past while a negative value the contrary.
An extreme value of -1 can be found within the user that were active in the past
but not now, while 1 can be found in the mirror case. Another particular value is
0, it appears when the user did not send any transaction at all, in the union of the
two time windows. As can be observed in 4.2, the most frequent values are 1, -1

(a) (b)

Figure 4.2: Histograms that show the distribution of the Growth Count Sent and
Growth Sum Sent at user level in the month of Month 3.

and 0: this means that the majority of users have sent transaction only in Month 3
or Month 2, or have almost sent the same number of transactions and amounts
in these month (this is also valid for the Şreceived" version). The formula used
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to compute the growth features is one of the many options that can be employed
to estimate the variation between two observations, another simple alternative
can be the ration between them. However, keeping in mind the considerations
about the user database depicted previously, in order to avoid indeterminate results
(i.e. divisions by 0), the proposed solution is a very good one, since can always
determine a value. Another way, to effectively,describe the growth is by introducing
directly the Total amount features computed in the past; in this way we let to
the employed models (especially to the deep learning ones that can be used in
the outlier detection block of the second pipeline) to put indirectly in relation the
current user behavior with the past one. These features are named Past Amount
Sent, Past Count Sent, Past Mean Sent and Past Std Sent.

(a) (b)

Figure 4.3: Histograms that show the distribution of the log10 version of Past
Count Sent and the Past Amount Sent features (left and right respectively) at user
level in the month of Month 3. This plots can be seen also as the Count Sent and
Amount Sent that would have been obtained in the month of Month 2. To obtain a
better visualization of the distributions, the transformations speciĄed on the x-axis
has been applied.

4.2.3 Rapid

The bidirectional Rapid features measures the frequency at which the transactions
are sent by the user within the time window speciĄed. The feature is simply
calculated as the Count Sent feature over the days of the time window, i.e. it
represents the mean number of transactions executed by the user each day. This
feature is simply a scaled version of Count Sent, and since it is a redundant
information is not interesting at all, for this reason the relative histogram will be
not shown.
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4.2.4 Count of BICs

The bidirectional feature Count of BICs Sent depicts the number of distinct
banks (identiĄed by their BIC) to which each user has sent its transactions. Since

Figure 4.4: Histogram that shows the distribution of the Count of BICs Sent
feature at user level at user level in Month 3. To obtain a better visualization of
the distribution, the transformation speciĄed on the x-axis, has been applied.

there number of transactions sent by a user cannot be lower than this feature
and also taking into account the nature of the dataset as highlighted before, the
distribution of this feature is a power low which case shrinks faster w.r.t the one
that describes Count Sent.

4.2.5 Count of Countries

Count of Countries is a group of two features, Count of UsersŠ Countries and
Count of BICsŠ countries, which respectively represents the number of the
distinct countries of the users and banks to which each user sent its transactions.

Even in this case the distribution of the feature (4.5) is a power low one that
expires faster than the Count Sent one. It is important to point out that only a
very few percentage of users have a value higher than 1 for these features, roughly
30000 and 10000 respectively.

4.2.6 Min-Max Amount

The Max Amount Sent and Min Amount Sent features as the names suggest,
describe the minimum and maximum amounts carried out by the transactions sent
by each user.
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(a) (b)

Figure 4.5: Histograms that show the distribution of the log10 version of Count
of UsersŠ Countries and the Count of BICsŠ countries (left and right respectively)
in the month of Month 3. Only more than 30000 and 10000 users, respectively,
have a value higher than 1.

(a) (b)

Figure 4.6: Histograms that show the distribution of Max Amount Sent and the
Min Amount Sent (left and right respectively) at user level in the month of Month
3. The distribution is very similar to the one that can be observed in Amount Sent.
To obtain a better visualization of the distributions, the transformations speciĄed
on the x-axis has been applied.

Both the distributions (Figure 4.6) shows a behavior very close to the Amount
Sent one (Figure 4.1); this is due to the fact that many users have sent only one
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transaction (or any at all) and so the minimum and the maximum amounts are
the same and also is trivially equal to the sum.

4.2.7 Past Active

The number of days elapsed between the last transaction sent by the user before the
start of the current time window and the Ąrst transaction sent within it, is described
by the Past Active bidirectional feature. This feature is useful in order to describe
how long a bank account remained inactive, and can be used to highlight the user
that wait a long period of time to sent two consecutive transactions (accounts that
are involved in international terrorism Ąnancing usually operate in this way). Users
that never sent a transaction in the current time window or in the past one will
receive a default value equal to 62, which is two times the length of the longest
month that can be analyzed. It can be observed in Figure 4.11, that Month 1 many

Figure 4.7: Histogram that show the distribution of Past Active Sent at user level
in Month 3. The highest spike represents to the default value assigned to the many
users that never sent a transaction in Month 3 and/or in the past. To obtain a
better visualization of the distributions, the transformations speciĄed on the x-axis
has been speciĄed.

users never sent a transaction even in the past.

4.2.8 Mean Time Between Transactions

The Mean Time Between Transactions bidirectional feature, measure the
mean number of days that elapse between two consecutive (in time) transactions
sent by the user. ItŠs possible to proof that the value of this feature is equal to
number of days elapsed between the Ąrst transaction sent by the user and the last
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one within the current window divided by the overall number of transactions sent.
Users that sent only one transactions or any at all will receive a default value of 0.

Figure 4.8: Histogram that show the distribution of Mean Time Between Trans-
actions Sent at user level in Month 3. Excluding those users that received the
default value of 0, the value of this feature is roughly uniformly distributed.

4.2.9 High-Level Unexpected Corridor

High-Level Unexpected Corridor is a group of two features denominated Unex-
pected Corridor O-B Sent and Unexpected Corridor OB-BB Sent which
are computed relying on the relative values obtained at transaction level (4.1.1).
The values of these features are obtained by summing up the values of unexpect-
edness of the O-B and Ob-Bb corridors. For both channels, as it can be seen in
Figure 4.9, the majority of the users have a relative low degree of unexpectedness,
while only a few percentage (about 2500 ones) have a very high one.

4.2.10 Funneling

In the context of Ąnancial crimes, Şfunneling" refers to an illegal practice where
funds or assets are transferred through a series of complex and intricate transactions
in order to conceal the source of the funds or for money laundering purposes. The
Funneling is a proĄle-level group of feature that aims to estimate the Şfunneling"
degree of each user. The two features that belongs to this group are Funneling
User and Funneling Bank which measure in log10 scale respectively the ratio
between the number of distinct users/banks to which the transactions are sent
and the one from whom transactions are received; in order to avoid numerical
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Figure 4.9: The plots shows both the histograms of Unexpected Corridor O-B
Sent and Unexpected Corridor Ob-Bb Sent (respectively in blue and orange).

issues the value 1 is added to both the numerator and denominator. By using the
logarithmic scaling the following properties are achieved: a positive value shows
that the user sent transactions to many other users respects to the ones from which
it receive them, while a negative value shows the opposite trends; also in this way
both sides have a fair Şranges" of values(without using the logarithm, the actual
negative values would have been shrinked between 0 and 1, while the positive
value would have been higher than 1 without an upper limit). An high absolute
value of this features highlight the users that acts as a Şfunnel" for the money Ćow,
which is a typical behavior of the money launders. The Figure 4.10, shows the
distributions of these two features. If we take only the positive (or negative) slice of
the histograms, the funneling index follows a power low distribution: meaning that
there are only very few users that acts like funnels. Also the highest spikes for both
sides represents the majority of users that sent or received only one transactions in
the month of Month 3.

4.2.11 Motifs

SmurĄng is money laundering technique exploited by criminals that involves split-
ting up high amount of money into a set of multiple transactions that carry small
amounts. The detection of smurfs can be tackle by translating the interactions
of the various entities into a graph, in which the nodes are the Ąnancial actors
and the links represent the money exchange between them. There are differents
smurf-like motifs, the three that we want to represents are:

• N − 1 − M , this motif consists in a set of N source nodes that inject money to
a middle node, that in turn will sends the amount to a set of M target nodes.

• 1 − N − 1, this motif consists in a single source node that sends money to a
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(a) (b)

Figure 4.10: Histograms that show the distribution of Funneling User and the
Funneling bank features (left and right respectively) in the month of Month 3. The
high spikes around the value 0, represents that users that sent or received only one
transactions.

set of N middle nodes, that in turn will resend the amount to a single target
node.

• U-turn, in this motif the source node send money to another node that later
will send them back to it.

Figure 4.11: Illustration of smurf-like motifs N − 1 − M (on the left labelled as
Type-1) and 1 − N − 1 (on the right labelled as Type-2), where the source nodes
are represented as red circles, the middles ones as square and the targets green
circles. Figure taken from [19].

The feature motif_1n1, motif_n1n and motif_uturn measure for each user the
number of his transactions that belongs to the these motifs, that can be detected
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using a graph representation as mentioned before. Since there are few users that
acts as smurfs and these set of features seems to be not very useful for the formation
of clusters, we will not discuss in deep the implementation of the detection process.
The extraction of these patterns are showed by Starnini et al. [19].

(a) (b) (c)

Figure 4.12: Pie charts that show the share of users that are occuring respectively
in the 1 − N − 1, N − 1 − M and U-turn motifs in Month 3.

4.2.12 Country-Region

The countries and the continents of the users and their relative banks have been
encode as 1-hot encoded vectors. Given the wide variety of countries that appear
in the dataset, only the top-N countries (i.e. the N countries that are most frequent
in the current window) have been explicitly represented, while the other countries
are encoded in a shared <other> bucket. Since, for some users is not available the
belonging country, the missing category will be treated as it were one. Choosing
N = 9, the 4.2 shows the distribution of the encoded countries for users and banks.
The 4.3 shows the distribution of the encoded regions for users and banks.

4.2.13 Country counters

The country counters feature is a set of feature that measures the share of transac-
tions sent by each user towards a speciĄc country of users and their banks. As in
the previous case only the N most frequent countries will be taken in considerations,
while the other ones will be represented as a one, the < other > category. Since
these feature represents a percentage, the values will lies in the range from 0 to
1. Choosing N = 4, the 4.6 shows the numbers of users that sent at least one
transactions towards the encoded countries.
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Users Banks

IT 0.40 0.40
IE 0.26 0.27
RO 0.16 0.16
DE 0.03 0.03
FR 0.01 0.01
BE 0.01 0.01
NL 0.01 0.01
ES 0.01 0.01
LT - 0.01

missing 0.03 -
< other > 0.07 0.07

Table 4.2: Recap of the most commonly found countries, in percentage, of users
and banks in Month 3. For each column, the top-9 (most frequent) countries have
been included. Transactions not belonging to those 9 countries have been included
in the < other > category. The missing category represents those users for which
the country information is not avaiable.

Regions Users Banks

Europe 0.95 0.97
Asia 0.02 0.02

Americas > 0.01 > 0.01
Africa > 0.01 > 0.01

Oceania > 0.01 > 0.01
missing 0.03 > 0.01

Table 4.3: Distribution of the regions among users and countries. The missing
category represents those users or banks where the country region was missing or
the mapping operation between country and region is not available.

4.2.14 High-Risk Geography counters

Each country is associated to a High-Risk Geography level, that can be low, medium
or high. The High-Risk Geography counters is a set of three features that measures
the share of transactions sent by each user towards these three categories. Since
these feature represents a percentage, the values will lies in the range from 0 to 1.
The 4.6 shows the numbers of users that sent at least one transactions towards a
speciĄc HRG level.
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Countries Users Banks

IT 0.32 0.33
IE 0.31 0.32
RO 0.24 0.25
DE 0.01 0.01

< other > 0.12 0.13

Table 4.4: The table shows the percentage of users that have sent at least one
transactions to the encoded countries for users and banks. The not frequent
countries are represented in the < other > category.

HRG Levels Users Banks

Low 0.92 0.96
Medium 0.06 0.02

High 0.02 0.02

Table 4.5: The table shows the percentage of users that have sent at least one
transactions towards the three HRG levels.

4.3 Bank-Country Features Extractor

Bank and Country level features can be extracted in the same of the user ones, i.e.
the Count Sent for a bank can be the total number of transactions that sent in the
window. However there are several reasons why this strategy can be detrimental
for the clustering process and for the Ąnal purpose of this pipeline. Indeed:

• Either the banks and the countries do not have a balanced number of transac-
tions associated to them; most banks and countries receive or sent very few
transactions, in many cases only one. Computing the aforementioned features
in the same way, by changing only the aggregation level, will lead to a result
where the most frequent banks and countries will be treated likely as outliers,
showing very noisy featuresŠ values.

• Even if we consider a uniform distribution of transactions among banks and
countries, it can happen that for some entities, a signiĄcant portion of these
movements is associated with the same user who is transferring a large sum
of money. This could lead to characterizing the bank or country based on
the behavior of that individual user. In this scenario, other users cannot be
effectively represented.

• For the same reason discussed before, there is the need to represents the banks
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and the countries by summarizing the behavior of the belonging users with
other strategy like computing the mean or the median features wise. In this
way the descriptions of this higher level entities will be very close to the most
frequent patterns that can we observe at user level.

• The Ąnal goal of the architecture is Ąnding anomalous user and to provide
useful insights that can help the Ąnal human-operator. By describing the
banks and the countries by the behavior of the average users, can be more
useful to deĄne the proĄle of the suspicious users.

#Users Banks Countries

Equal to 1 0.24 0.06
Between 2 and 10 0.36 0.22

Between 11 and 100 0.26 0.34
Higher than 101 0.15 0.37

Table 4.6: The table shows the how many banks and countries have a number of
users, in percentage, associated that lies in a speciĄed range (i.e. the number of
users equal to 1).

At this point, there are two possibility that we can take into consideration to
compute the features at these aggregation levels, having for each bank/country the
set of users that belongs to them:

• Each feature is expressed as the mean of the same feature on the set of users.
This is suggested when the distribution of the feature among the users follows
a normal shape.

• Each feature is expressed as the median of the same feature on the set of users.
This is strongly recommended when the distribution of the feature among the
users is a power-law one.

• A mix of them, considering the distribution of each feature.

Given how the features are distributed the best choice for the considered time
windows is the second one. However, the one hot encoded features cannot be
represented in this way: if no of the bucket within the same feature shows a
population higher than the half of the whole one, the Ąnal vector will be Ąlled by
zeros (i.e. if a bank has 10 users and each user have a different country residency,
the median of each bucket will be 0 and the aggregated Ąnal feature will not bring
any value). For this reason, the country/region residency/bank features, will be
computed by observing the most frequent country/region among the set of users
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related to the current entity (in case of tie, the most frequent country/region among
the whole dataset will be picked). We can observe trivially, that:

• The country and the region at bank level, for each bank will certainly corre-
spond to its country and region.

• The country at country level, will correspond itself. Since the relative 1-hot
encoded vector is able to represent only the top N countries plus the < other
> category, these feature will be dropped; otherwise the clustering process will
favor the Şinfrequent" countries to be grouped together.
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Chapter 5

Collection Level-Enrichment
Pipeline

In this chapter will be explained the design and the implementation of the third
pipeline. To do so, a brieĆy introduction to its skeleton will be made.

5.1 Overview

Figure 5.1: The third pipeline with its main components. Its input is the batch
of transactions previously loaded (not represented in the Ągure).

The collection enrichment pipeline (shown in 5.1), which takes as input the
batch of transactions under study, comprises the following components:

• Features extractor: by specifying the aggregation level parameters, this step
allows to compute the features at user, BIC or country level, it is also manda-
tory to specify the time window in which them will be computed. Optionally,
other parameters can be speciĄed to inĆuence the outcome of some features
like the one hot encoded ones (i.e. the number of the most frequent countries
to consider).
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• Aggregation/Clustering module: in this step, a clustering algorithm will run
taking as input the entities previously extracted. It is possible to specify
the algorithm to run (i.e. K-Means, DBSCAN or OPTICS) and depending
on the strategy chosen other hyperparameters can be passed (i.e. the K for
K-Means).

• Dimensionality reducer: since the entities are described by a multitude of
features, there is the need to reduce the dimensionality of the data by dropping
highly correlated features or trough the usage of PCA.

• Descriptors extractor: to make the clustering results interpretable, i.e. to
better highlight the commonalities among the entities that have been clustered
together, this step need to be employed. This extractor in turn, includes two
sub-steps: a quantization and a frequent itemsets extraction ones. The former
by mapping the continuous features into categorical ones prepares the cluster
to be analyzed by the latter. Its possible to specify the quantization strategy,
which will be discussed in depth later, and the algorithm that will extracts
the itemsets along with the minimum desired support.

• Aggregated result analysis module: so far, all the steps involved in this pipeline
are automated, however there is no a Şdomain" meaning behind the clusters
detected. This step, requires human intervention and aims to produce a small
number of clusters that will be studied and labelled. After this step, we have a
set of labels that can be assigned to users and their banks and residency, which
are representative of some behaviors that can help the further investigation of
the suspicious users detected.

Following, will be presented in depth the implementations of these modules, by
discussing also all the possibilities that have been explored during the thesis work
highlighting the pros and cons of each one.

5.2 Features Extraction

The feature extraction module behave very similarly to the one presented in 3.3.1,
however this pipeline allows to describe other higher level entities like the banks
(identiĄed by their BICs) and the countries of residence of the users. The main
parameters that this module takes as input are:

• Aggregation level: a string that can be either user, bank or country, which
serves to specify which entities (users, banks or countries) will be extracted,
through the features presented in 4.
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• Raw transactions: the transactions on which the user features will be
computed. Additionally, its possible to associate each user to its bank and
residency and each bank to its country.

• Country-Region mapper: the object that allows to map each country to
its region (Europe, Americas, Africa, Oceania, Asia).

• User-level features: if the aggregation level is set either to bank or country,
pre-computed user-level features need to be passed as input. In this way we
can recycle the dataset of users extracted in a previous run of this pipeline at
this level, saving a lot of resources.

• Start date and end date: two datetime objects which describes the time
window in which the features will be computed. This means that, if the
aggregation level is set at user, the batch of transactions passed as input will
be Ąltered by mantaining only those transactions in which the data_ref Ąeld is
between these dates (i.e. by setting the start date to 2022 − 04 − 0100 : 00 : 00
and end date to 2022 − 04 − 3023 : 59 : 59, only the transactions executed in
April 2022 will be kept). Of course, the start date should precedes the end
one. If the aggregation level is set to bank or country, these parameters will be
ignored (this means that the precomputed user-level features to pass should
have been computed on the desired time period).

There are other secondary parameters that may be speciĄed (otherwise the default
values will be retained) are:

• Top-N countries: it specify how many of the most frequent countries should
be explicitly encoded in the relative 1-hot encoded vector. The default value
is set to 9.

• Top-N country counters: it specify for how many of the most frequent
countries the feature described in 4.2.13 should be computed. The default
value is set to 4.

By keeping the default value of the secondary parameters each entities (user,
banks and countries) are described by 121 features, where 87 are continuous and
34 are 1-hot encoded bits.

5.3 Feature selection/Dimensionality reduction

Clustering algorithms are distance-based, in order to measure how similar two points
are a distance metric is employed. As discussed in 2.2, the curse of dimensionality
phenomenon, can make most of these metrics not very signiĄcant. Since our data
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are described by a reasonably high number of features, its highly recommended
to compress them in order to achieve a better clustering results. This goal can be
achieved, in two ways: dropping highly correlated features and/or using PCA.

5.3.1 Correlated features

The insights drawn by the distribution of the user-level features presented in 4,
show that most users send only one transactions while receiving none, and vice
versa. More speciĄcally, referring only to the former without loss of generality, they
have all the passive features (the ones that describe the users as the beneĄciary of
the transactions) set to default values (this is also true in the mirror case). Formally,
the number of transactions sent (or received) is correlated to many features, i.e.
the number of distinct banks towards which the user sent his transactions cannot
be higher than it, and in many cases represents an upper bound. The correlations
between these features is not-linear by deĄnition (excluding the count_sent and
txns_frequency_sent pair), however the correlation heatmap proves otherwise. By
observing 5.2, we can observe that there two main groups of correlated features, in
depth:

• The Ąrst main group that can be observed on the top left of the heat map,
comprises features like count_sent, sum_sent, count_bank_country_sent,
count_user_country_sent, max_amount_sent, min_amount_sent, etc..

• The second smaller group can be observed is on the bottom right of the heat
map. These group is described by the features that describes the behavior of
the users in the past, like past_count_sent, past_sum_sent, past_mean_sent,
etc..

• The two groups are also correlated together, probably due to the fact that
behavior of a user is staple across different time windows (i.e. if a user did
not send any transaction in the past, likely he will not do it in the future).

The fact that a great number of users, only sends or receive transactions suggest
that the this behavior are anti-correlated, indeed the Pearson correlation coefficient
between count_sent and count_receive pair its around −0.55. The funneling_bank
(or funneling_user) feature is very effective in representing the nature of user: a
value higher than 0 indicate that the user only sent transactions, while a value
below 0 indicate the opposite case. More speciĄcally, the Pearson correlation
coefficient between this feature and the count_sent one is around 0.81; very close
values can be observed by computing the metric also on the features that are
highly correlated with this last one. The correlation metric computed with the
mirror features (the Şreceived" ones) are around −0.80, demonstrating that a very
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Figure 5.2: Heat map of the bidirectional Şsent" features on users.

high number of feature can be summarized using only one, despite them describe
opposed aspects of the user proĄle. So far have been discussed and highlighted the
presence of groups of correlated features, but how we can pick among each group
the feature that will represent it? Two possibilities are proposed:

• Manual choice: given the heatmap, the operator selects manually the features
to retain. The main advantage of this strategy is the fact that it is simple and
there is a full control over the process, while a deep domain knowledge poses a
huge drawback. Also, since the distribution of the features can evolve trough
different time windows this choice it does not Ąt into an automated scenario.

• Feature selection algorithm: the heatmap is passed as input in order to
estimate through an heuristic the most representative features, which roughly
are the ones that show the higher average correlation. Its main advantage is
certainly the fact that the features are selected in a fully automated way, while
the biggest drawback as it will be discussed later its the need of a threshold
that can affects the Ąnal results.
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Feature selection algorithm

The algorithm employed to perform feature selection its inspired from CORR-
FS (Correlation-Based Feature Selection) proposed by Giobergia et al.[20]. This
algorithm is able to identify a set of independent features, within which all the
features have among them a Pearson correlation coefficient lower than a speciĄed
threshold rmin. Also this algorithm ensures that all the features that not belongs
to the returned set, are correlated with a feature within it with a coefficient higher
or equal than rmin. The steps that characterize CORR-FS are:

1. Given the dataset of entities, the absolute value of the Pearson correlation
coefficient is computed between each pair of features i and j as ri,j.

2. The list L that represents the Şremaining featuresŤ to choose is initialized to
all the features that describes the data.

3. For each feature i in L, the sum of squared correlation coefficient si is computed
as si =

P
j ∈ Lr2

i,j

4. Than the variable b computed as:

b = arg max
i∈L

si (5.1)

represent the most representative feature left.

5. All variables j ∈ L that rj,b > rmin are removed since they are also well
represented by b. This step guarantees that at least one feature is removed
since rb,b = 1.

6. If L is empty the algorithms ends otherwise it restart from Step 3.

5.3.2 Principal Component Analysis

Another way to reduce the dimension of the dataset is by performing the well-known
PCA. By employing this analysis is possible to reduce the number of dimension to
a desired one or by retaining the number of dimension that guarantee at least a
speciĄed cumulative explained variance ratio. In both cases, its extremely important
to perform on each features (excluded the 1-hot encoded ones) a standardization
step and the aforementioned feature selection one. The former is mandatory since
PCA is sensible to to the scale of the data (and also to their ŞcenterŤ as explained
in 2.2.2), otherwise it will give more importance to the variable with larger standard
deviation; the latter its also important since correlated features can amplify the
variance of the principal components. To better understand this phenomenon,
the following experiment will be conducted by picking up three features that are
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highly correlated among them and a forth one which is independent, them are
respectively count_sent, count_bank_country_sent, count_user_country_sent and
past_active_sent. By computing the PCA only on the Ąrst and the last features
which are totally uncorrelated, the contribution, that can be measure in terms
of the explained variance of each component, is almost identical. After adding a
variable correlated with the Ąrst one, the variance of the Ąrst component is now
twice the size of the second. After adding another correlated variables, the size
of the Ąrst component is now three times bigger than the second; the results are
shown in 2.6. This means that, by retaining correlated features, the contribution
of each variable will be indirectly unbalanced in the clustering process, since the
formation of clusters will most likely based only on those that are correlated.

5.4 Aggregation/Clustering module

The data preprocessed by the previous step are now taken as input by this module,
who will build clusters, whose number depends on the clustering algorithm and/or
on the set of hyperparameters chosen. Even though clustering methods such
as DBSCAN and OPTICS have been explored, the only algorithm capable of
generating Şmeaningful" clusters is K-Means. It is also the only usable algorithm
when the entities to be grouped are users. Since, on average, there are more than
1 million users for the considered time windows, density-based algorithms with
memory complexity that is, in the worst case, O(n2) cannot be executed without
using a speciĄc hyperparameter conĄguration. Furthermore, using these algorithms
for other higher-level entities leads a signiĄcant portion of banks and countries to
be considered as outliers. Even if the latter could be assigned to a specially created
cluster, the points within it are unlikely to share a similar structure, decreasing
the overall result quality.

As is well known, the major disadvantage of K-Means is the need to specify
the input hyperparameter k, i.e., the number of clusters to form. Since this value
is difficult to predict in advance, the following algorithm has been employed to
identify the best cluster conĄguration:

• Two positive integers, kmin and kmax, are speciĄed as input, such that 1 <
kmin < kmax.

• K-Means is run for each value i ranging from kmin to kmax, resulting in the
cluster conĄguration Gi. For each conĄguration, the corresponding Silhouette
score si is calculated. If the entities involved are users, only an estimate of this
metric will be performed, calculated on only 10 percent of the data randomly
selected.
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• The conĄguration Gk is chosen such that k = arg maxi∈[kmin,kmax] si. Gk is
then the Ąnal result of this module.

In this case, the choice of the range in which the Ąnal value of k will be selected
is crucial. That is, if kmax is set too high, it will likely result in the formation of
very small and less meaningful clusters with a consequent high Silhouette score.
Therefore, it is essential to have prior knowledge of the characteristics of the entities
that will be aggregated (such as population) to achieve satisfactory results.

5.4.1 Outlier model

Although this pipeline is used to characterize the entities under examination, the
result of the clustering phase can be utilized as an outlier detection model to be
employed in the second pipeline. In the literature, there are various deĄnitions for
the term anomaly/outlier: one of these describes such points as those that exhibit
behavior signiĄcantly different from the behavior of the points in the considered
dataset. While in density-based algorithms like DBSCAN, the concept of an outlier
is naturally deĄned, for K-Means, it is not (all points are assigned to a cluster). In
this regard, a simple heuristic has been employed, which marks points as anomalies
if they are farthest from their respective centroids. More speciĄcally:

• Consider the most promising result in terms of Silhouette score among multiple
runs of K-Means, as described in the algorithm outlined earlier (5.4).

• Each entity i is assigned an anomaly score si, equal to the distance of that
entity from its centroid ci.

• By specifying a contamination parameter c, which is a number between 0
and 1, the top K entities with the highest anomaly scores are Ćagged, where
K = N

c
and N is the number of entities considered.

Another possibility is to consider the anomaly score si of each entity i equal to its
Silhouette score. However, this option is computationally expensive, speciĄcally
O(n2), as it requires calculating distances between all points. This new outlier
model, which could be integrated into the second pipeline, despite its simplicity, has
the signiĄcant advantage of not reducing the overall execution times of the entire
architecture since the aggregation phase of this pipeline and the outlier detection
phase of the second one are executed almost simultaneously.

5.5 Descriptors extraction

Interpreting the result of a clustering algorithm, especially when points are described
by a relatively high number of features, can be challenging. To identify common
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characteristics within each cluster, the objective of this step is to Ąnd a list of
traits (e.g., user_country=IE) that are frequent within them. To achieve this
goal, algorithms for extracting frequent itemsets like FP-Max have been employed.
Since these techniques can only operate on transactional data, i.e., data described
by categorical features, it is necessary to map the continuous features of entities
into categorical features. In the next subsection, various possible strategies for
performing this operation will be illustrated. Subsequently, various techniques
explored for the extraction of frequent itemsets will be discussed.

5.5.1 Binning strategy

Binning is a method for mapping the values of a continuous feature into a one-hot
encoded vector, where the bits indicate whether the original value belongs to a
speciĄc interval called Şbin". These intervals should not overlap, and if combined,
they must align with the domain of the continuous feature. The main strategies,
for which the implementation is already available, include:

• Uniform: all bins have equal length. This strategy, while usable, would
lead to the formation of extremely imbalanced bins. The features describing
entities are distributed according to a power-law, so it is highly likely that all
values will be mapped to the same bin.

• Quantile: all bins have approximately the same number of points. For
example, assuming you want to identify 10 intervals, mapping the continuous
variable to each bin would associate around 10 percent of the points with
each bin. In this case, the power-law distribution of features makes this goal
impossible. For instance, considering that about half of the users do not send
transactions, the only way to quantize such a variable is to choose 2 as the
number of output intervals (which is quite limiting).

• Manual: the intervals are predeĄned in advance. However, for this strategy
to be effective, a deep understanding of the domain is required.

Given the peculiar nature of the involved features, a custom discretization
strategy has been designed and implemented based on the idea of quantiles. The
goal of this custom technique is indeed to obtain bins that are populated as
optimally as possible, reserving speciĄc bins for those duplicated values that make
fair division impossible. Formally, the algorithm used for each feature F can be
described as follows:

• Let B be the number of bins to be identiĄed, and N be the number of data
points. Let nv be the number of occurrences of the value v for the variable F .
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• Let Nl be the number of elements not yet assigned to a bin, and Bl be the
remaining number of bins to identify at each execution step. Initially, we have
Nl = N and Bl = B.

• In this Ąrst step, special bins will be assigned to values v such that nv > Nl

Bl
.

Since this step could update the values of Nl and Bl, the step will be repeated
until an iteration does not result in the creation of any new bins.

• Having removed the values that obstructed the quantile strategy, it is now
possible to apply it directly. The special bins identiĄed earlier may have led to
the fragmentation of the remaining intervals (it could happen that the domain
identiĄed by the values not yet assigned also includes these special ranges,
but we must ensure that the Ąnal result does not have overlapping bins). In
this regard, denoting I as the number of ranges of this nature, the quantile
strategy will be applied to it by inputting the integer part of Bl

I
as the number

of bins to calculate (if the operation returns a remainder, it will only be added
to the Ąrst interval).

An example of the result of this algorithm is shown in Figure 5.3, compared to the
one obtained using a uniform division, which is clearly ineffective for the purposes
of this module.

(a) (b)

Figure 5.3: Histograms that show how the values of count_sent are distributed
among the 6 bins detected using the uniform (a) and the custom (b) strategies,
showing how the latter is the only one employable.

.
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5.5.2 Frequent Itemset Extraction

Having mapped each continuous feature to categorical features, it is now possible
to apply frequent itemset extraction algorithms such as FP-Max to each cluster
identiĄed in the previous step. Traditional extraction algorithms like Apriori and
FP-growth are not applicable due to the unique characteristic of the data. Assuming
the need to extract common features in a cluster where almost all entities have
never sent transactions, the number of frequent itemsets that will be identiĄed
would be at least 32!, given that the 32 features describing the active behavior of
the user (in the current window, excluding those related to the past) will all be
set to default values. Such a high number of features would saturate memory and,
from a practical standpoint, is unnecessary. Essentially, it could be described by
the frequent itemset containing all 32 default categories. Since itŠs not possible
to convey this kind of functional dependency to the algorithm, the only usable
algorithm is FP-Max. FP-Max ensures returning only maximal itemsets that satisfy
the speciĄed minimum support, avoiding the degenerate case illustrated earlier
while simultaneously ensuring a non-trivial solution.

After the descriptors are extracted, the following information is written to a
text Ąle:

• For each feature, the calculated intervals in the binning phase will be speciĄed.

• For each cluster, starting from the set of extracted itemsets, the set of unique
individual itemsets present is written. The list of all frequent itemsets, along
with their respective support, will be written for all clusters in a separate Ąle,
accessible as needed. This choice is made for practical reasons, as there are
cases where the list contains a high number of elements.

• For each cluster, the population is reported, and for each feature, the mean,
standard deviation, and the number of values different from default values are
provided.

• For each cluster, Ąnally, the identiĄers of the 5 most representative entities
are reported: those that are least distant from the centroid.

5.6 Aggregated results analysis

At this point, a fairly comprehensive description of the characteristics of each cluster
is available. However, it is not possible to qualitatively validate the Ąnal result. In
this regard, at this stage, the intervention of a domain expert is necessary. The
expert, consulting the text Ąle previously produced, will select a limited number
of clusters and label them by observing their description. These labels will then
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be potentially assigned to suspicious users (as well as their banks and countries
of residence), enriching the available information that will be essential for the
investigation to be conducted, which will determine the innocence or guilt of the
marked subjects.
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Chapter 6

Experimental Results

6.1 Implementation Details

The experiments described in this chapter were conducted using the BigData
@Polito Cluster. SpeciĄcally, this infrastructure is equipped with more than 1700
CPU cores, 19 TB of RAM memory, and 8 PB of storage available for users. A
single machine that a user can reserve is equipped with 35 to 60 CPU threads and
120 to 260 GB of memory. The experiments that will follow focus on describing
the results obtained by analyzing users, banks, and countries, also proposing a
possible outcome of the Aggregate Results Analysis step, which will be carried out
in production by a domain expert. An experiment involving the second pipeline
will also be conducted, showing the agreement between the originally proposed
models for outlier detection and the new one proposed in this thesis. For each pair
of models, the agreement will be calculated as the percentage of users marked as
suspicious by both models compared to the total number of users marked by the
models. For the purposes of the experiments, Month 3 2022 will be considered as
the time window.

6.2 Evaluating the Collection Enrichment Pipeline

By considering the same time window, speciĄed previously, an analysis of the third
pipeline on all the three possible aggregation level will be conducted.

6.2.1 Users

The number of users extracted are about 1.5 million and the extraction features
process at this level took about 70 minutes. Since the majority of users reside in
Europe, as well as their banks, the one-hot encoded vectors expressing these pieces
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of information have been dropped, as including them would worsen the results of
clustering.

Feature selection

In order to determine a suitable value for rmin, the number of retained features was
evaluated as a function of its variation, as shown in Figure 6.1. It can be observed
that for values close to 0.80, the number of retained features is almost half. For
this reason, the result obtained for rmin = 0.80 will be selected for further analysis.

Figure 6.1: Plot that shows how many features are retained for different values
of the rmin parameter, on users.

As shown in Figure 6.2, through the single feature funneling_bnk, it is possible to
represent a very high number of features. The feature selection algorithm narrowed
the number of user features from 99 down to 60, where 22 are one-hot encoded bits.

Using PCA (applied exclusively to continuous features), it can be observed
through the plot in Figure 6.3 that only the Ąrst 16 components are able to express
more than 80 percent of the total variance, while the last 17 components appear to
be less signiĄcant. Therefore, 16 components will be selected, and when added to
the 22 bits set aside, they will constitute the components on which the clustering
algorithm will be executed.
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Figure 6.2: The list of features that have been dropped by the feature selection
algorithm, represented by funneling_bnk, on users.

Figure 6.3: Plot that shows the explained variance ratio against the number of
components on the PCA computed, on users. The Ąrst 15 components retain about
the 80% of the variance.

Aggregation/Clustering module

For this step, the K-Means algorithm is employed, specifying kmin = 2 and kmax = 40
as range boundaries for the search of the optimal k in terms of Silhouette score.
As shown in Figure 6.4, high values are obtained for k = 2 and for 15 ≤ k ≤ 30,
while the result obtained for k = 5 is the worst. The result obtained for k = 2
is easily justiĄed by the fact that users can naturally be divided into those who
do not receive or never execute transactions, a hypothesis conĄrmed by observing
the extracted descriptors. It can be hypothesized instead that the poor quality of
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clustering for k = 5 is due to points belonging to a small cluster that are very close
to points assigned to another larger cluster, lowering the metric employed. The
highest Silhouette score is obtained for k = 21, in which the smallest cluster has
approximately 5000 points, while the largest has 200,000.

This step takes roughly, 8 hours.

Figure 6.4: Plot that shows the estimation of the Silhoutte scores for values of k
that goes from 2 to 40, on users. The best value is obtained for k = 21.

Descriptors Extractor

For this step, continuous features have been binned using the custom strategy
speciĄcally implemented, calculating 6 intervals for each of them and choosing a
minimum support equal to 0.9. Observing the extracted descriptors for each cluster,
it is possible to notice that the formation of each cluster is concentrated on the
following characteristics:

• Users have never received or sent transactions.

• The country of the users or the banks to which they have sent or from which
they have received money.

• The HRG level of the countries of the users and the banks to which they have
sent or received money.

• The country of the owning bank.
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• Whether they have sent or received transactions in the past.

Examples of extracted descriptors are shown in the Tables 6.1, 6.2, 6.3 and 6.4.
The extraction took roughly 10 minutes. The generic descriptors feature_[f, t),
indicates the bin where the continuous variable feature has value in the range that
goes from f to t, where f, t ∈ R and f ≤ t.

Cluster 0 - Descriptors

bank_RO_sent_[1.0,1.0)
count_received_[0.0,0.0)

funneling_bnk_[0.301,0.301.0)
hrg_banks_low_received_[1.0,1.0)
hrg_users_low_received_[1.0, 1.0)

motif_n1n_[0.0, 0.0)
past_mean_received_[61.0, 61.0)

user_RO_sent_[1.0, 1.0)

Table 6.1: Descriptors extracted for Cluster 0, at user level using a minimum
support of 0.9. The number of points is 155270. A possible level could be "Users
that did not sent any transactions and receiving them from medium HRG countries".

Cluster 6 - Descriptors

bank_IE_sent_[1.0,1.0)
bank_country=IE

count_received_[0.0,0.0)
count_sent_[1.0,1.0)

funneling_bnk_[0.301,0.301.0)
hrg_banks_low_received_[1.0,1.0)
hrg_users_low_received_[1.0, 1.0)

motif_n1n_[0.0, 0.0)
past_mean_received_[61.0, 61.0)

user_IE_sent_[1.0, 1.0)

Table 6.2: Descriptors extracted for Cluster 6, at user level using a minimum
support of 0.9. The number of points is 102311. A possible level could be "Users,
with irish banks, that did not received any transactions and sent them to irish users
and banks".
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Cluster 8 - Descriptors

bank_<other>_received_[1.0,1.0)
count_sent_[0.0,0.0)

funneling_bnk_[-0.301,-0.301.0)
hrg_banks_medium_received_[1.0,1.0)
hrg_users_medium_received_[1.0, 1.0)

motif_n1n_[0.0, 0.0) past_active_sent_[61.0, 61.0)
user_<other>_received_[1.0, 1.0)

Table 6.3: Descriptors extracted for Cluster 8, at user level using a minimum
support of 0.9. The number of points is 20131. A possible label could be "Users that
did not sent any transactions and receiving them from medium HRG countries".

Cluster 10 - Descriptors

bank_<other>_received_[1.0,1.0)
count_received_[1.0,1.0)

count_sent_[0.0,0.0)
funneling_bnk_[-0.301,-0.301.0)

hrg_banks_high_received_[1.0,1.0)
hrg_users_high_received_[1.0, 1.0)

motif_n1n_[0.0, 0.0) past_active_sent_[61.0, 61.0)
user_<other>_received_[1.0, 1.0)

Table 6.4: Descriptors extracted for Cluster 10, at user level using a minimum
support of 0.9. The number of points is 24871. A possible label could be "Users
who have never sent transactions and received from infrequent countries located in
high level HRG".

Aggregated Result Analysis

A possible labeling of the identiĄed clusters could be based on the key char-
acteristics that guide the clustering algorithm in their formation, as illustrated
earlier. Taking Cluster 10, as shown in Figure 6.4, and examining descriptors such
as count_sent_[0.0,0.0), count_received_[1.0,1.0), bank_<other>_received_[1.0,
1.0), and hrg_banks_high_received_[1.0, 1.0), a potential label could be "Users
who have never sent transactions and received from infrequent countries of banks
located in high HRG".
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6.2.2 Banks

The banks extracted are 3,392, and the feature extraction process at this level took
about 1 minute and 20 seconds, having the usersŠ features precomputed. In this
case, the one-hot encoded vectors specifying the country of the users were dropped,
and some features with zero variance were ignored, such as motif_uturn.

Feature selection

Again, to determine a good value for rmin, the number of retained components
for different values was evaluated. Observing 6.5 (the Ągure reference seems to
be missing), rmin = 0.80 seems like a reasonable value to choose. The number of
features in this case reduces from 121 to 64, of which 22 are one-hot encoded bits.

Figure 6.5: Plot that shows how many features are retained for different values
of the rmin parameter, on banks. For values around 0.80 the number of features
are practically halved.

.

Employing PCA, it can be observed through the plot in Figure 6.6 that only the
Ąrst 15 components are able to express more than 80 percent of the total variance.
Therefore, this 15 components with the other retained one hot encoded bits, are
the preprocessed features on which the clustering algorithm will work.
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Figure 6.6: Plot that shows the explained variance ratio against the number of
components on the PCA computed, on banks. The Ąrst 15 components retain
about the 80% of the variance.

Aggregation/Clustering module

For this step, kmin = 2 and kmax = 20, are the range boundaries for the search of
the optimal k in terms of Silhouette score. A restricted range has been selected
since the number of banks is much lower than the users one. As showed in Ągure
6.7, the highest values are for k > 10. The best promising Silhouette score is
obtained for k = 15, where the clusters have a minimum size of around 50 points
up to the most populous one consisting of 900 points. This step took 10 seconds.

Descriptors Extractor

In this step, the same number of intervals chosen for the case of users was selected
and a minimum support equal to 0.8 was used. Observing the descriptors output for
each cluster, the banks were also grouped according to the same pattern followed
for users. The extraction took approximately 3 minutes. Examples of extracted
descriptors are shown in Tables 6.5 and 6.6.

Aggregated Result Analysis

Taking Cluster 13 as example (Table 6.6) and observing the descriptors count_sent_[0.0,0.0),
count_received_[1.236,10.0), bank_IE_received_[1.0, 1.0), and past_count_[1.236,
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Figure 6.7: Plot that shows the estimation of the Silhoutte scores for values of k
that goes from 2 to 20, on banks. The best value is obtained for k = 15.

Cluster 12 - Descriptors

count_received_[0.0,0.0)
count_sent_[2.0, 649)

funneling_bnk_[0.301,0.301.0)
motif_uturn_[0.0, 0.0)

Table 6.5: Descriptors extracted for Cluster 12, at bank level using a minimum
support of 0.8. The number of points is 127. A possible label could be "Banks,
whose users, sent a very high number of transactions and never received some".

12.0), a potential label could be "Banks, whose users, have never sent transactions
and have received multiple transactions from Irish banks, also receiving multiple
transactions in the past".

6.2.3 Countries

The extracted countries are 235, and the feature extraction process at this level
took about 30 seconds, reusing precomputed users features. In this case, unlike the
experiments performed on users, the one-hot encoded vectors specifying the region
of origin of users and the bank are not ignored.
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Cluster 13 - Descriptors

bank_IE_received_[1.0,1.0)
count_received_[1.236,10.0)

count_sent_[0.0,0.0)
funneling_bnk_[-0.301,-0.301.0)

hrg_banks_low_received_[1.0,1.0)
motif_n1n_[0.0, 0.0)

motif_uturn_[0.0, 0.0) past_count_received_[2.0, 12.0)
past_mean_sent_[0.0, 0.0)

user_region=Europe

Table 6.6: Descriptors extracted for Cluster 13, at bank level using a minimum
support of 0.8. The number of points is 44. A possible label could be "Banks, whose
users, have never sent transactions and have received multiple transactions from
Irish banks, also receiving multiple transactions in the past".

Feature selection

Even in this case, the behavior of the number of features dropped against rmin
has been studied. Observing 6.8, rmin = 0.80, conĄrms to be a reasonable value to
choose. The number of features in this case reduces from 121 to 64, of which 22
are one-hot encoded bits.

The Principal Component Analysis (Figure 6.9) shows that the 13 components
keep more than 80 percent of the total variance, and for this reason only these axis
will be retained for the next step.

Aggregation/Clustering module

Since the number of different countries is very small, the search of the optimal
clustering is between kmin = 2 and kmax = 8. The highest Silhouette score is
achieved for k = 6 (Figure 6.10), where the clusters have a minimum size of about
50 points up to the most populous one consisting of 900 points. The search, took
less than a second.

Descriptors Extractor

Again, the number of intervals chosen is 6 and even for this aggregation level, the
entities are grouped in the same way did for banks and users . The extraction,
took few milliseconds using minimum support equal to 0.8. Examples of extracted
descriptors are shown in Tables 6.7 and 6.8.
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Figure 6.8: Plot that shows how many features are retained for different values
of the rmin parameter, on countries.

Figure 6.9: Plot that shows the explained variance ratio against the number of
components on the PCA computed, on countries. The Ąrst 13 components retain
about the 80% of the variance.

.
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Figure 6.10: Plot that shows the estimation of the Silhoutte scores for values of
k that goes from 2 to 8, on countries. The best value is obtained for k = 7. 61

Cluster 0 - Descriptors

bank_IT_sent_[1.0, 1.0)
bank_country=<other>
count_received_[0.0,0.0)

count_sent_[1.0,1.0)
funneling_bnk_[0.301, 0.301.0)

hrg_banks_low_received_[1.0,1.0)
motif_n1n_[0.0, 0.0)

past_mean_sent_[0.0, 0.0)

Table 6.7: Descriptors extracted for Cluster 0, at country level using a minimum
support of 0.8. The number of points is 30. A possible label could be "Countries,
whose users, did not received any transactions and sent them to italian banks. The
banks of this users are in not frequent countries".

Aggregated Result Analysis

Taking Cluster 0 as an example (as shown in Table 6.7), by observing the descriptors
count_sent_[1.0, 1.0), count_received_[0.0, 10.0), bank_IT_sent=[1.0, 1,0) and
bank_country=<other>, a potential label could be "Countries, whose users, did
not received any transactions and sent them to italian banks. The banks of this

66



Experimental Results

Cluster 3 - Descriptors

bank_region=Europe
count_received_[0.0,0.0)

count_sent_[1.0,1.0)
funneling_bnk_[0.301, 0.301.0)

hrg_banks_low_received_[1.0,1.0)
hrg_users_low_received_[1.0,1.0)

motif_n1n_[0.0, 0.0)
user_RO_sent_[0.0, 0.0)

Table 6.8: Descriptors extracted for Cluster 3, at country level using a minimum
support of 0.8. The number of points is 18. A possible label could be "Countries,
whose users, with european banks, did not received any transactions and sent them
to romanian users".

users are in not frequent countries".

6.3 Outlier Detection Models Agreement

The currently available transaction dataset is unlabeled; hence, all proposed outlier
detection models operate in an unsupervised manner. The absence of labels not
only diminishes the overall reliability of the architecture but also prevents the
evaluation of the two outlier detection modules in terms of crucial metrics such as
precision and recall. The objective of this experiment is to assess the agreement
among the various models implemented so far and those proposed in this thesis,
aiming to determine which pairs of models identify the same users as suspicious
and which ones rely on different patterns during their operation. The metric we
will employ is the Intersection Over Union, formally calculated as follows:

• Let D = u1, u2, ..., uN be the set of users under examination, where N is the
cardinality of this set.

• Let M and R be two instances of models for which we want to calculate the
metric, i.e., Autoencoder and One-Class Support Vector Machine.

• Let c (contamination) be the hyperparameter indicating the percentage of
users within D assumed to be anomalous.

• For both models M and R, calculate for each user ui their anomaly score,
denoted as si,M and si,R, respectively.
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• Determine, for both models, the sets TM and TR containing the c
N

users with
the highest anomaly scores for models M and R respectively.

• Next, calculate the sets U = TM
S

TR and I = TM
T

TR. The Intersection
Over Union metric between models M and R is computed as IOU = #I

#U
.

A value of IOU equal to 1 indicates that the models have precisely labeled
the same set of users as anomalous, while a value of 0 indicates that the sets are
completely disjoint. The conĄguration and the hyperparameters chosen for this
experiment are:

• The Autoencoder model employed is comprised of two linear layers for the
encoder part and two linear layers for the encoding one. The hyperparameter
λ, which controls the tradeoff between the Mean Squared Error and the Binary
Cross Entropy is set to 1.

• The number of trees of the Isolation Forest is set to 100.

• The One-Class SVM, use a radial basis kernel with a value of ν = 0.1,
employing an ensemble approach with 10 instances.

• The number of neighbors to use by default for k-neighbors queries, in the
Local Outlier Factor model is set to 200, employing an ensemble approach
with 10 instances.

• For the K-Means based model, the one proposed in this thesis, the range
in which the best clustering results should be found is speciĄed by setting
kmin = 2 and kmax = 40.

The set of features on which the models will work, are the one selected with
the feature selection algorithm employed for clustering, setting rmin = 0.80. The
PCA will be employed for all the run, except for the Autoencoder one (since it is a
deep learning model). The results of the experiment is show in Table 6.9, choosing
c = 0.0001.

The results show how the new proposed model exhibits, except for the Local
Outlier Factor, a high level of agreement with all the models. The behavior of the
One Class Support Vector Machine also seems to be aligned with the same models,
while the predictions between the Autoencoder and the Isolation Forest do not
overlap.

To try to understand what leads a model to classify a user as anomalous, it is
possible to use the descriptors extraction module on the set of suspicious users,
treating them as if they were clusters. The extracted descriptors could then help
explain what the most signiĄcant features are in the outlier detection task, as they
represent the description of the structure that unites the marked bank accounts.
This analysis has shown that:
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IOU AE IF LOF OCSVM KM

AE 1.0 0.08 0.0 0.16 0.18
IF 0.08 1.0 0.0 0.42 0.39

LOF 0.0 0.0 1.0 0.02 0.0
OCSVM 0.16 0.42 0.02 1.0 0.57

KM 0.18 0.39 0.0 0.57 1.0

Table 6.9: The table show the Intersection Over Unit values, for contamination
set to 0.0001. The K-Means based model shows an high degree of agreement with
all the models, except the Local Outlier Factor one.

• For the K-Means model, anomalous users have sent and received discrete sums
of money in the past. In the current window, users seem to be involved in a
high number of transactions involving the exchange of money that replicate
the motif N − 1 − M .

• Consistent with the results obtained, the One Class Support Vector Machine
presents the same set of descriptors.

• The model based on an Autoencoder presents descriptors very close to those
of the previous analyzed models. Moreover, the set of users extracted for this
model has in common the fact that they have sent transactions to Italian
banks.

• The Isolation Forest marks as anomalous mainly users who have sent large
amounts in the past and are involved in the motif N − 1 − M .

• On the other hand, the Local Outlier Factor identiĄes as anomalous users who
have received from banks and Irish users, not presenting any transactions as
originators.
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Chapter 7

Conclusions

In this thesis work, a pipeline for extending a machine learning-based architecture
for anomaly detection in transaction pass-throughs has been described. The goal
was to Ąnd an effective way to cluster entities in the Ąnancial network at different
levels and make these results interpretable, enriching the information available
about suspicious users found in other pipelines.

To achieve this objective, an initial feature engineering process was designed,
where raw transactions were used to describe users, banks, and countries through
a set of features recommended by domain experts. Since the quality of the features
directly inĆuenced the outcomes of the last two pipelines, a careful analysis of their
distributions was conducted, showing that most users sent or received only very few
transactions. The particular nature of these bank accounts made many features
redundant and highly correlated with each other, leading to the implementation
of a feature selection algorithm that extracts only the most representative ones.
Subsequently, data mining algorithms like FP-Max were employed to make the
results of the clustering step interpretable, a procedure facilitated by a previous
binning process implemented from scratch, necessary due to the power-law shape
of the features.

The Ąnal results at all aggregation levels have been presented, showing that
entities are grouped mostly based on whether they have only sent or received
transactions and/or on the country to or from which they sent or received them.
Furthermore, the second pipeline has been extended by reusing the K-Means-based
algorithm employed in the third one as an outlier detection model, which shows a
higher level of agreement with the already implemented Autoencoder.

A continuation of this thesis work could certainly focus on improving the feature
engineering process through active cooperation with a domain expert. Indeed, some
features may prove useless or even harmful to the aggregation and outlier detection
process, and some that play a fundamental role may have been dropped during
feature selection because they were believed to be redundant for the employed
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feature selection algorithm. Moreover, an extension of entity descriptions could
be considered, for example, by introducing, for instance, features that include the
amount of money sent or received to or from a set of countries/regions.

Additionally, assuming that labeled dataset will be available with metadata
about the entities involved, it would be possible not only to employ supervised
models whose performance can be evaluated by well-deĄned metrics but also to
reĄne the clustering process by introducing external evaluation metrics, making
the Ąnal result closer to the desired outcome.

Finally, in a hypothetical future scenario where this architecture will be used for
online detection of anomalous transactions, incremental clustering techniques can
be employed to provide as much information as possible in a very short time to
assess the degree of anomaly of a transaction. Although this approach signiĄcantly
increases the complexity of the entire architecture, it would greatly improve response
times in detecting Ąnancial crimes.
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