
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Visibility analysis in strategic scenario
using innovative GIS tools

Supervisors

Prof. Marco PIRAS

Candidate

Raffaele PEZONE

ACADEMIC-YEAR 2022/2023

Summary

In the recent strategic scenery and military operations, it is important to have
a good comprehension of employed areas in way to work in safe and well-placed
environments. The big challenge is to find a safe zone to stay in, well protected by
territorial dominance. The safeness of a strategic stakeout depends on the visual of
the surrounding environment and the level of self-coverage. The attention must
concentrate also on the streets, which are the crucial point of movement. Having
a padronance of the surrounding streets means having control of the entire zone.
The key point is the continuous usage of traditional methods based on digital
and paper geographical maps devoted to finding the best zone to use. Those
traditional methods require a lot in terms of resources and time and don’t allow
for a tridimensional view of the problem. This thesis proposes the development of
a dynamic visibility analysis tool for various scenarios in a strategic stakeout, with
the aim of improving comprehension of its effectiveness and critical points. The
proposed approach involves developing a Desk tool and a Mobile tool based on
GIS and Python adopting a DEM model. The tools fulfill the necessity of having a
useful instrument able to analyze a considered area from a chosen observation point
or an established observation zone. The analysis is both on the surrounding area
and streets to allow a well-developed or rapid response to an analysis request in
safe or dangerous situations. The input data include a Digital Terrain Model or a
Digital Surface Model derived from Open Data or generated through aerial surveys
using an unmanned aerial vehicle (UAV) and a street map of the considered area.
This research enables the analysis of the safety of a strategic stakeout in different
scenarios, leading to improved decision-making and enhanced safety measures. The
usage of analysis tools will open the possibility of a new typology of tests and
simulations conducted on the field. Strategically it could be very useful to simulate
the effectiveness of different real strategic stakeouts and simulate the response in
dangerous conditions.

ii

Acknowledgements

“A tutti quelli che ci sono sempre stati e che ci saranno, grazie”
Raffaele

iii

https://google.com

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Strategic operation: methods and tools 4
1.1 State of the Art . 4

1.1.1 Strategic Outpost . 4
1.1.2 Strategic Operation Planning 5

1.2 Requirements . 7
1.2.1 User Requirements . 8
1.2.2 Functional Requirements . 9
1.2.3 Technical Requirements . 10

2 Digital Maps and Open Data 12
2.1 Digital Map and Elevation Model 12

2.1.1 Traditional Map . 12
2.1.2 Digital Map . 13
2.1.3 Nominal Scale . 14
2.1.4 Raster and Vector . 15
2.1.5 Elevation Model . 16
2.1.6 Point Distribution Models 18

2.2 Cartography Availability . 19
2.2.1 IGM . 20
2.2.2 Regional Geoportals . 22
2.2.3 Ministry of the Environment and Territory Products 23
2.2.4 Open Cartography . 24
2.2.5 Remote Sensing Services . 24

2.3 GIS Environment . 24
2.3.1 GIS Data . 25

v

2.4 Open Data . 26
2.4.1 Open Platforms . 26
2.4.2 Open Protocols . 27
2.4.3 Open Licences . 28

3 GIS Desk Tool 30
3.1 Functionalities . 31

3.1.1 Flow Chart . 31
3.1.2 Tool Functionalities . 32
3.1.3 QGIS Plugin Interface . 34

3.2 Development . 35
3.2.1 Plugin Studies . 36
3.2.2 Graphical Modeler . 37
3.2.3 Code Development . 38

3.3 Results . 43
3.3.1 Outputs . 43
3.3.2 Output Analysis . 48
3.3.3 Limitations . 52

4 GIS Mobile Tool 53
4.1 Functionalities . 53

4.1.1 Flow Chart . 54
4.1.2 Front-End . 56
4.1.3 Back-End . 56
4.1.4 Database . 57
4.1.5 Tool Interface . 58

4.2 Development . 59
4.2.1 Code development . 61

4.3 Results . 64
4.3.1 Output Analysis . 65
4.3.2 Limitations . 67

5 Conclusion 69

A GIS Desk Tool 71
A.1 Plugin code development . 71

A.1.1 Library import . 71
A.1.2 Class VisibilityAnalysisToolAlgorithm 72
A.1.3 Name definition method . 79
A.1.4 DisplayName definition method 79
A.1.5 Group definition method . 79
A.1.6 GroupID definition method 80

vi

A.1.7 Try definition method . 80
A.1.8 Create instance definition method 80

B GIS Mobile Tool 81
B.1 Front-End . 81
B.2 Back-End . 88

B.2.1 Batch File . 91
B.2.2 QGIS Algorithm . 91

Bibliography 95

vii

List of Tables

3.1 Configurations Input Parameters 33
3.2 Configurations Input Parameters (x,y) = (427229.9E,5070829.2N) . 45

viii

List of Figures

1.1 Italian Army onfield planning phase [2] 7

2.1 Vector and Raster Differences [4] 15
2.2 DTM Elements . 17
2.3 DEM and DSM Comparison . 18
2.4 TIN and Grid Differences . 19
2.5 Excerpt from the union table of the map at 50000 as it appears in

the IGM catalogue . 21
2.6 Topographic Map of Italy: Series 25 and 25DB 22
2.7 Carta Tecnica Regionale (CTR) Example [7] 23
2.8 OGC Standards [10] . 28
2.9 Software Licences [12] . 29

3.1 GIS Desk Tool Flow Chart . 32
3.2 Visibility Analysis Tool Input Parameters 35
3.3 Viewpoint Logic [14] . 37
3.4 Initial tool structure . 38
3.5 Development Scheme . 42
3.6 Algoritm result on single observation point and single radius config-

uration . 45
3.7 Detail on result 3.6 . 46
3.8 Algoritm result on single observation point and two rays configuration 46
3.9 Algoritm result on observation area and single radius configuration 47
3.10 Detail on result 3.9 . 47
3.11 Algoritm result on observation area and two rays configuration . . . 48
3.12 Execution time for first configuration 50
3.13 Execution time for second configuration 50
3.14 Execution time for third configuration 51
3.15 Execution time for fourth configuration 51

4.1 GIS Mobile Tool Flow Chart . 55

ix

4.2 Database . 57
4.3 Login Page . 58
4.4 Data Page . 59
4.5 Analysis Page . 59
4.6 Application Pages on Smartphone 60
4.7 Development Scheme . 62
4.8 Visibility Analysis Result . 65
4.9 Execution time for single point configuration 66
4.10 Execution time for 25 m area configuration 67

x

Acronyms

GIS
Geographic Information System

DTM
Digital Terrain Model

DSM
Digital Surface Model

POA
Posto Osservazione e Allarme

CIGC
Centro Interforze di Gestione e Controllo

IGM
Istituto Geografico Militare

DEM
Digital Elevation Model

DDEM
Dense Digital Elevation Model

DDTM
Dense Digital Terrain Model

DDSM
Dense Digital Surface Model

xii

IIM
Istituto Idrografico della Marina

CIGA
Centro Informazioni Geotopografiche Aeronautiche

UTM
Universal Transverse of Mercator

CTR
Carta Tecnica Regionale

SINT
Sistema Informativo Nazionale per la Gestione e la Conservazione del Territorio
e dell’Ambiente

OSM
OpenStreetMap

TIN
Triangulated Irregular Network

TIFF
Tagged Image File Format

KML
Keyhole Markup Language

IS
Information System

GNU
General Public License

SQL
Structured Query Language

xiii

API
Application Programming Interface

GUI
Graphical User Interface

WMS
Web Map Service

WFS
Web Feature Service

WCS
Web Coverage Service

SWE
Sensor Web Enablement

CS-W
Catalog Services - Web

GSW
Geospatial Semantic Web

SSW
Semantic Sensor Web

CC BY
Creative Commons Attribution

OSGeo
Open Source Geospatial Foundation

REST
Representational state transfer

CORS
Cross-origin resource sharing

xiv

Introduction

In the recent strategic scenery, military operation duties are evolving simultaneously
with new technologies available on the market. Technology’s power plays the main
role in satisfying everyday challenges. Situational awareness and a deep understand-
ing of the operational theater are fundamental to reducing the risk of failure. In an
era characterized by complex geopolitical dynamics, decision-making depends on
acquiring knowledge about the terrain, infrastructure, and potentially dangerous
situations. The success of an operation is influenced by the ability to perceive,
analyze, and exploit the spatial attributes of the location. Finding a good position
for a strategic outpost is the primary task, followed by self-adaptation and planning
in every situation. Effective mission planning is essential for mission success, as it
helps anticipate and analyze potential risks well in advance, thereby avoiding them.
The temporal dimension is also a critical factor. Time is a limited resource but
fundamental in obtaining useful information about the operational area. The worst
situation for an operation is to make important decisions about the area without
information. The risks are associated with the potential consequences of inadequate
planning, which could lead to discovering or detecting certain missions in dangerous
environments, posing potential threats. Moreover, road network awareness in and
around the operational area increases his full control and surveillance. Roads are
the lifeblood of movement and logistics in any operation, and his block is one
of the biggest elements for the operation failure. Therefore, the planning phase
for strategic operations is fundamental and requires a lot of time and resources,
heavily relying on topographic maps, satellite images, and traditional method-
ologies. Such extended planning periods can be an obstruction nowadays, where
rapid decision-making is the key. In particular, operational problems may arise
concerning planning time, environmental safety or danger, and communication
availability. The planning process often takes a considerable amount of time, and
in certain situations, end users may face time constraints for conducting field
reconnaissance. The difference between gaining control of an area and achieving a
competitive advantage on the field can be a matter of days or even hours. Urgent
situations may not allow extensive field surveys or map and satellite image study
days. In both safe and dangerous scenarios, time is critical, and the ability to

1

Introduction

adapt quickly to changing circumstances is paramount. Effective communication
with remotely monitoring personnel is essential, especially in connectivity-limited
environments. Online or direct connections with remote monitoring personnel are
not always available, emphasizing the vital role of technology in enhancing military
responsiveness and preparedness. The Geographic Information Systems (GIS) tools
have emerged as useful assets in this challenging and dynamic environment. In
the phase of operation study, innovative GIS tools can revolutionize the way to
approach strategic planning and operational execution by enabling a comprehensive
understanding of the field. They offer the potential to optimize the temporal aspect
of planning, exploiting the power of GIS technology and reducing the time required
for data collection and analysis. This translates to a competitive advantage in the
modern theater of operations and the technology sector. Additionally, GIS tools
facilitate efficient route planning and logistics management. The road network can
be analyzed and optimized to ensure the flow of resources and the easy access and
exit of the personnel. This not only reduces the risk of logistical bottlenecks but also
encourages the overall efficiency of the operation. Optimizing time and planning is
crucial for any project, requiring proper problem definition and thorough research.
With the help of innovative software, users can explore new possibilities and devise
effective strategies to optimize time and planning. In this context, using drones for
data collection has proven to be a game-changer. Drones can access remote areas
and collect data that may not be available through traditional means. This data
can be used to create detailed maps and provide valuable insights into the project’s
progress. Moreover, the availability of open data sources has made it easier for
users to access relevant information, which can be used to enhance the project’s
efficiency. Combining drones and open data can lead to better-informed decisions
and more accurate planning. It is worth noting that traditional cartographic maps
may not always be readily available, and some may be classified or intended for
military use. By collecting data from drones, users can create detailed cartographic
maps that are accurate, up-to-date, and customized to their needs.
In particular, this thesis describes two GIS tools, conceited for different purposes
in different situations if combined. The first is a completely offline desk tool used
through the software QGIS. It allows the end user to do a visibility analysis of
the field, taking as input data the chosen coordinates, the range of analysis, the
Digital Terrain Model (DTM), and the established streets. The analysis outputs
show all the visible zones from the chosen observation point and all the visible
streets in the surroundings. This tool allows the end user to operate offline through
the QGIS software and directly on the field in adverse connection conditions. The
usage of this tool has a huge advantage in operation because of its versatility and
scalability. It allows users to perform offline visibility analysis in minutes, saving
significant planning time and facilitating swift action in the field. The second
type of tool is an online mobile app that communicates with a stable position. It

2

Introduction

allows the end user to do a visibility analysis of the field, taking as input data the
chosen coordinates and the range of analysis. As the previous tool, the analysis
outputs evidence of all the visible zones from the observation point and all the
visible streets in the surroundings. The stable position has a Digital Terrain Model
(DTM), Digital Surface Model (DSM), and streets database to detect the area. The
tool offers the possibility of arriving on the territory without previous studies and
preparation and rapidly responding to dangerous situations. It addresses challenges
such as lack of on-site information and time constraints, offering the advantage of
variable response times. Together, these complementary tools offer a comprehensive
and interesting solution. These tools provide user-friendly interfaces, promote
collaboration among team members, and enable real-time data transmission for
dynamic scenarios, ultimately enhancing military spatial analysis capabilities.
Regarding the composition of the thesis, five chapters are present to fully immerse
the lector into the various dynamics of visibility analysis. The first chapter explains
the actual operational strategy of the Italian Army and evidences its gaps, de-
scribing the end-user requirements. The second chapter contains the methodology,
a description of topographic and GIS environments, and the instrument used.
The third chapter discusses the desk tool’s realization, functionality, results, and
limitations. The fourth chapter discusses the mobile tool and, as in the previous
case, evidence of its realization, functionality, results, and limitations. The fifth
and last chapter contains the conclusion and all the possible future development of
the work done.

3

Chapter 1

Strategic operation:
methods and tools

1.1 State of the Art
In a strategic operation, preparing and collecting information is a fundamental
task. The preparation can last a few days or months, depending on the operation.
Military missions assigned to the Italian Army increasingly involve deploying small
and dispersed units on the ground. These units represent the tactical endpoints of
the military deployment in operational theaters and serve as the first responders
to potential changes that could impact the mission. Each soldier, down to the
junior leadership levels, is effectively required to be a leader, capable of swiftly
and autonomously making decisions that can have a significant impact, even
from a strategic standpoint. To this end, they must develop a strong aptitude
for information awareness, enabling them to read, contextualize, and evaluate
individual events and complex phenomena within the multifaceted environment in
which they operate, essentially acting as sensors themselves. These considerations
apply equally to domestic deployments within national territory, where a single
military personnel may perceive situational differences that could potentially impact
the security of military infrastructure or ongoing operations [1]. The preparation
for establishing a military strategic outpost in a specific location involves several
critical phases and activities to ensure the operation’s safety, effectiveness, and
success.

1.1.1 Strategic Outpost
A strategic outpost can be defined as a position or location established by a
military force to achieve specific objectives or to monitor and control an area of

4

Strategic operation: methods and tools

interest. These outposts have various purposes, such as providing surveillance,
gathering intelligence, supporting defensive operations, or facilitating offensive
actions. The specific nature of a military strategic outpost can vary depending
on the overall strategic goals of a military campaign or operation. In general, an
observation strategic outpost can be permanent or temporary. The first type is the
military permanent outpost characterized by previous studies of the environment
and situation. His construction requires a few days with previously established
resources and well-studied procedures. It can extend a few or hundreds of meters
depending on the strategic necessity. A trade-off exists between having logistic
supply and resources for the camp occupying a big area and the risk of being
discovered or monitored from a possible threat. The decision to occupy a large
or small area depends on the consciousness of the terrain and the state of the
operation’s alert. Personnel have to carefully consider factors such as the expected
duration of the operation, the availability of resources, and the level of security
required. Furthermore, the state of alert plays an essential role, as it dictates the
need for adaptability and rapid response to changing circumstances.
Conversely, the temporary outpost is established in areas with limited prior infor-
mation and uncertainty about the danger. His realization requires a few hours, and
the level of safety and coverage has a significant degree of uncertainty. This kind of
outpost requires a high level of surveillance, and the permanence time is usually one
or two days at maximum. In such situations, adaptability and the ability to make
rapid decisions are fundamental to ensuring the safety and effectiveness of these
temporary positions. The safety of the outpost depends on momentaneous elements
of coverage like vegetation or rocks. A concrete example of activity conducted
to increase the situational awareness of the interest zone is the construction of a
POA (Posto Osservazione e Allarme). POA can be defined as the smallest outpost
of the Italian Army to collect information on the surrounding environment. The
requirements of an optimal POA construction are based on various factors like
the level of self-coverage, the visibility range, the access and exit points, and the
radio coverage. In both scenarios, the human factor remains a critical component.
Adaptation requires the ability to make rapid decisions and consider the task’s
priorities.

1.1.2 Strategic Operation Planning
The Italian Army follows a meticulous procedure to prepare the personnel to
operate in operative theatre outside and inside Italy. Italian Army is organized
into different Arms and Corps based on the everyday tasks and the nature of the
study done. The Cavalry Arm plays a central role in the reconnaissance of territory
and the report of information. The high availability of tactic vehicles allows
them to inspect the assigned environment safely and efficiently. Moreover, those

5

Strategic operation: methods and tools

operations follow months of training and simulation process. The training process
begins with the need to replicate modern strategic scenarios as closely as possible.
Simulation training of troops and units is a crucial component of operational
theater studies. This type of simulation is conducted in specific simulation centers
located throughout Italy, and it is complemented by practical exercises conducted
on the field by various regiments. The planning phase aims to understand the
field’s characteristics and location. This phase begins with the search for resources
and materials such as maps, satellite images, and useful software. Information
is provided by the Centro Interforze di Gestione e Controllo (CIGC), SICRAL,
Istituto Geografico Militare (IGM), and the intelligence service of the individual
regiment. The strategic outpost positioning determination follows some guidance
line. It has to be elevated to have visibility on the minor streets, control the access,
and be far from big noise sources. Here are some of the key stages for the strategic
outpost establishment:

• Terrain study and analysis

• Surveillance and Defense

• Operational planning

• Logistics and supplies

• Troop training

The phase of terrain study and analysis involves acquiring detailed information
about the terrain, such as geographical, topographical, and climatic data, as well as
information about the presence of infrastructure, water resources, and vegetation.
Conversely, the terrain’s characteristics, including slopes, natural cover, observation
points, and obstacles, are critical to determining the ideal location. This kind of
study is done by military personnel using topographic maps, satellite imagery, and
data from intelligence services. The topographic map is always used by experts who
analyze the elements on the map and decide on the zone to occupy for an outpost.
Symbols and markers are used on maps with lucid paper to evidence the zone
and elements of interest. Some accurate scale models can be realized to show the
critical points of the training personnel as shown in figure 1.1. The surveillance and
defense phase accomplishes the task of providing on-site information and confirming
previously collected data. The awareness of what is happening in the surrounding
environment is the key to identifying hidden threats and tracking enemy movements.
Operational planning is fundamental to guarantee protection from enemy threats,
accessibility, resource distribution, and logistics. This also allows the end user
to stay in an organized environment where the synchronization of operations
and communication systems is efficient. Logistics and supplies management is

6

Strategic operation: methods and tools

assigned to specialized personnel to ensure that troops have access to necessary
resources such as food, water, ammunition, and medical equipment. Finally, troop
training is the base for the environment functionality. Troops must know how to
behave internally to the outpost and what to do in risky situations. These phases
are essential to ensure the effectiveness and safety of military operations in any
operational theater.

Figure 1.1: Italian Army onfield planning phase [2]

1.2 Requirements
The use of software and technology in military operations is an essential compo-
nent of the Italian Army’s everyday life. In the realm of military planning, not
everything always proceeds seamlessly, and the terrain can often present unfore-
seen challenges. Despite meticulous planning efforts, the actual field conditions
may unveil numerous complexities that were not evident during the initial stages
of planning. The dynamic nature of the environment, coupled with unexpected
variables, can introduce a level of uncertainty that planning alone may struggle to
account for. However, despite vital role of technology, some operational problems
may arise, such as:

• Planning time

• Environment safeness or danger

• Communication availability

7

Strategic operation: methods and tools

Planning a military operation requires a significant amount of time to complete.
Sometimes, end-users may not have enough time to plan and conduct a field
reconnaissance. The difference between gaining control of an area and gaining a
competitive advantage on the field can be days or hours. In some dangerous or urgent
situations, conducting a field survey or studying satellite images may not be the best
choice. Even in safe situations, time is essential, as circumstances can sometimes
change. In situations of danger, the commander’s decisions play a significant role in
the promptness of action, given the absence of information. Effective communication
with remotely monitoring personnel is also essential as it allows for receiving updates
and facilitates information exchange. However, in many cases, there is limited
connectivity with the remote monitoring personnel. Therefore, technology plays a
vital role in enhancing the responsiveness and preparedness of the military, especially
in environments with limited connectivity. In addition, the safety of the environment
where the military operation occurs is paramount. The use of technology can help
ensure the safety of the environment. For example, drones can provide real-time
video feeds of the area, which can help identify potential threats and ensure the
safety of military personnel. Finally, communication availability is also critical
in military operations. Effective communication with the remotely monitoring
personnel can help make timely decisions. However, in some situations, there may
be a lack of communication availability, making it challenging to receive updates
and exchange information. Therefore, it is essential to have backup communication
systems that can provide reliable communication, even when regular communication
channels are unavailable. The technology helps enhance the responsiveness and
preparedness of the military, ensures the environment’s safety, and provides reliable
communication channels even in situations where regular communication channels
are unavailable.

1.2.1 User Requirements
In addressing the operational challenges faced by the Italian Army in using software
and technology during military operations, it is imperative to conduct a compre-
hensive analysis of user requirements. By understanding the unique demands posed
by military planning, the dynamic nature of environments, and the critical role
of effective communication, the aim is to formulate user centric solutions that
enhance the responsiveness and preparedness of the military. It is possible to
provide evidence that the user may need:

• The possibility of having an automatized area analysis in planning phase

• The possibility of having rapid responses on the field

• The possibility of working offline on the field

8

Strategic operation: methods and tools

• The possibility of having an analysis starting from a point or an established
area

• The possibility of having ad analysis without any preparation done in advance

During the planning phase, users need a system that can automate area analysis,
reducing the time and effort required for manual assessments. The system should
provide quick and accurate insights into the operational environment, enabling
end-users to receive real-time information in the field. This emphasizes the impor-
tance of timely decision-making and the need for technology that supports quick
reactions to dynamic situations. Considering the limitations of connectivity in
various operational environments, users require the ability to work offline on the
field. This ensures that critical tasks can be performed despite reliable internet
connection availability. Users also demand the flexibility to initiate analyses from
a specific point of interest or an established area, making it crucial for the system
to accommodate diverse operational scenarios and varying levels of preparedness
in the field. The system should allow users to conduct analyses without extensive
preparation in advance. This requirement acknowledges the unpredictable nature
of military operations, allowing for on-the-fly assessments based on emerging cir-
cumstances. In the subsequent sections, we will explore the proposed solutions and
how they align with these user-centric requirements.

1.2.2 Functional Requirements
Some functional requirements for an automated area analysis system have been
identified to address these challenges and streamline the planning process:

• Ability to do an automated area analysis

• Ability to work offline on field

• Ability to work with updated cartography

• Ability to work online

• Ability to support request

• Ability to provide rapid response

• Ability to work in safe and dangerous situations

• Ability to communicate with operative center

9

Strategic operation: methods and tools

The automated area analysis system must incorporate automated area analysis
capabilities, enabling efficient and accurate planning. The system should be versatile
and capable of operating on multiple platforms. It has to be accessible on personal
computers for detailed planning and on smartphones to facilitate rapid responses
and field analyses. Moreover, the system’s desk tool component has to be able
to work offline. The system must seamlessly integrate with digital cartography,
allowing for efficient geospatial information processing. Furthermore, it should
be adaptable to work with diverse datasets acquired through open data systems
or directly from the field, including through the use of drones. This ensures that
military personnel can conduct critical analyses even in environments with limited
or no internet connectivity, providing resilience in various operational scenarios. In
emergency and unplanned situations, a dedicated mobile tool is essential. The tool
has to enable quick responses, and analysis requests directly from smartphones.
Furthermore, both the desk and mobile tools should feature a user-friendly interface.
This ensures accessibility for military personnel with varying technical expertise,
promoting ease of use in dynamic and high-pressure situations. The system has to
facilitate real-time communication between field personnel and command centers.
This includes efficiently transmitting analysis results, updates, and information
exchange, enhancing overall coordination during military operations. The mobile
tool has to support on-demand analysis requests, allowing users to quickly initiate
analyses in response to emerging circumstances. This capability enhances the
system’s responsiveness in unpredictable situations. The proposed system provides
the Italian Army with a robust technological solution that enhances responsiveness
and adaptability in diverse operational scenarios.

1.2.3 Technical Requirements
It is essential to define some technical requirements to ensure the proper functioning
and compatibility of the automated area analysis system. Technically, the system
requires:

• Compatibility with standard hardware specifications

• Android operative system

• GIS software

• Strong database

• User authentication

The system should be designed to work with commonly used hardware configurations
to reduce potential compatibility issues and ensure accessibility. Compatibility

10

Strategic operation: methods and tools

with the Android operating system is essential for the mobile tool as it enhances
flexibility and supports a wide variety of devices, making it efficient for deployment
among military personnel. Integration with Geographic Information System (GIS)
software is crucial for spatial analysis and planning. The system should have
GIS capabilities to provide detailed insights into geographical data, facilitating
informed decision making. A well organized and robust database is essential for
storing and managing diverse geospatial data, including digital terrain models and
road information. Secure user authentication mechanisms must be implemented
to control system access, ensuring only authorized personnel can use its features.
This is crucial in maintaining the confidentiality and integrity of sensitive military
information. Efficient internet data transmission capabilities are necessary for
real time updates in way to maintain situational awareness and facilitate timely
decision-making.

11

Chapter 2

Digital Maps and Open Data

2.1 Digital Map and Elevation Model

2.1.1 Traditional Map
A map can be defined as a drawing of the earth’s surface, or part of that surface,
showing the shape and position of different countries, political borders, natural
features such as rivers and mountains, and artificial features such as roads and
buildings [3]. A large-scale traditional technical map comprises a territory represen-
tation divided into sheets and completed with appropriate frames and parameters.
The map is created in a system of flat cartesian coordinates whose points corre-
spond biunivocally, based on precise geometric and mathematical relationships,
with the physical surface of the represented territory. Additionally, it should be
noted that the representation of points can be divided into two distinct categories
of information: planimetry, involving horizontal coordinates (x, y), and altimetry,
focusing solely on the vertical component. The planimetry is formed by the pro-
jection onto the drawing plane of the natural and artificial details of the terrain.
The altimetry or vertical component it is composed of contour lines and known
points in the vertical component. The planimetry is always present, while the
altimetry may be absent, and in this case, the map is only planimetric. Managing
the vertical component presents various approaches in two dimensional maps. The
first approach includes the use of quoted points, providing a specific altimetric
reference for each map point. Contour lines represent another option, connecting
points at the same altitude and offering a visual indication of terrain elevation
changes. Additionally, in more complex situations, shading could be employed as a
method that uses different tones to represent altimetric variations, providing an
immediate visual perspective on the topography. Other characteristic elements
that define the drawing as a traditional map include the scale ratio of 1:n, where n
is the number of times the topographic distance between two points is reduced on

12

Digital Maps and Open Data

the map. The legend also provides the key to interpreting the map based on types
of lines, hatching, symbols, conventional signs, etc. Finally, the metric content
must comply with tolerances, establishing the maximum deviations between the
distances and elevations derived from the map and those in reality.

2.1.2 Digital Map
Digital cartography provides qualitative and metric information inherent in tradi-
tional cartography under two aspects: in the form of numerical data (coordinates
describing the geometry of mapped objects and codes indicating their types), stored
on magnetic media processed by an electronic computer, and in the form of visual-
izations on a video-graphic display or paper through a plotter, similar in appearance
to traditional cartography. Therefore, digital cartography constitutes a mirror
image of traditional cartography, as the latter is a cartographic product in the
form of a drawing that implicitly contains the same data in the form of coordinates.
While traditional cartography comprises a drawing that implicitly contains the
same data as coordinates, numeric cartography consists of a coordinate archive
that implicitly contains its visualization as a drawing. Digital cartography also
transforms cartographic data into information based on the logical processes of a
human operator using one of its possible visualizations and based on computations
programmed and performed by the electronic computer. Furthermore, complete
uniqueness to the metric content of cartography is provided by eliminating both the
subjective elements that affect the measurement operations in traditional cartogra-
phy, where one transition from drawing to coordinates, and the consequences of the
deformability and deterioration of paper supports. Uniqueness is also total from
the qualitative content perspective, as the interpretation of the drawing is replaced
by reading the coding. Finally, digital cartography allows for the expansion of
the typology of cartography, introducing other types of cartography based on an
increase in altimetric information. This is made possible because, formally, there is
no longer a difference between planimetric and altimetric information.
A digital map contains different data types classified into object, entity, and geo-
metric element. The object is any natural or artificial element that is not more
divisible, like a lake, a house, or a wall. The entity regards the cartographic repre-
sentation of the object and can be defined as polygons (closed polylines), polylines,
or points with associated codes. It can be formed from one or more geometric
elements. The geometric element is constituted by a polyline with an associated
code. Furtermore, a digital map can be planimentric (2D), plano altimetrical(2.5D)
and tridimetional (3D). The planimetric map describes only the elements that
characterize the planimetry through the two coordinates (E, N) and the relative
coding. Similar to traditional cartography, in the plano-altimetrical map, the
planimetry is described separately from elevation; the first through two coordinates

13

Digital Maps and Open Data

(E, N), the second through three coordinates (E, N, h). The tridimensional digital
map describes each point by three coordinates (E, N, h). The classic description of
elevation consists of contour lines and spot heights.

2.1.3 Nominal Scale
One of the most innovative aspects in the context of cartographic tradition is
that, for digital mapping, the concept of scale ratio seems to be surpassed. This
is because, aside from the deformation factor introduced by the adopted map
projection, the Pythagorean theorem applied to the planimetric coordinates of two
points directly provides their topographic distance; in other words, the terrain is
stored in the form of absolute coordinates, and therefore is always and consistently
at a 1:1 scale. It might appear improper, then, to speak of a scale for digital maps.
However, it is believed that this reference should not be abandoned, especially
considering that digital cartography data can be visualized via plotters or on
graphic screens with exaggerated zoom-ins and zoom-outs. This implies that digital
cartography adhering to the same cartographic principles as a traditional map at a
1:2000 scale could be easily displayed or scaled up, for example, to a 1:500 or even
1:200 scale, potentially leading the user to believe they possess a precision that is
not inherently present. It is crucial for users to understand that digital cartography
has a very specific metric precision dictated by classical photogrammetry standards.
Therefore, expecting to acquire more information by operating on visualizations
at scales greater than the nominal scale is akin to the error made by a traditional
cartography user who believes they can increase its informational and metric content
by enlarging a photographic print. It is therefore agreed that the concept of scale
ratio should be maintained for digital cartography, and the scale ratio for digital
cartography should be understood as the maximum ratio at which a digital map
can be reproduced using a plotter, ensuring it meets the qualitative and metric
requirements of a traditional map at the same scale. For digital cartography as well,
the scale ratio thus defines the degree of metric precision and qualitative content.
For formal correctness, it would be appropriate to use the term nominal scale for
digital cartography, intending this to be the scale ratio that a traditional map with
corresponding metric precision and qualitative content would have. As a partial
correction to the considerations regarding enlargements of digital cartography at
scale ratios higher than nominal, it is worth noting that visualization on a graphic
screen allows, or rather encourages, the representation of digital cartography at
scales higher than nominal. Therefore, while any enlargement beyond the nominal
scale of the map should be considered at the user’s risk, it would be incorrect to
consider the display on a graphic screen at a scale higher than nominal in the same
light as the criticized photographic enlargement of a traditional map. The ease of
automatically producing visualizations of digital cartography on a graphic screen

14

Digital Maps and Open Data

or via a plotter at scale ratios higher than nominal should be seen as an additional
opportunity offered by digital cartography to read not more than what it actually
contains but to read it better.

2.1.4 Raster and Vector
The digital map, in addition to the set of numerical data, also includes two forms
of graphical representation:

• Vector

• Raster

Vector is a type of representation through which it is possible to describe an object’s
geometry using only points, lines, and polygons. A clear example of this feature
is evidenced in figure 2.1a. Vector data provides two pieces of information: the
geometry (graphical component) and the effective data (x,y,z). The graphical
component describes the object’s shape and appearance, while the effective data
provides information about the object’s location, size, and orientation. The ad-
vantage of using vector data is the possibility of describing only the elements of
interest and creating a realistic object shape. In the database, it is possible to
include several fields (columns) that describe different properties of the object.

(a) Vector Data Concept (b) Raster Data Concept

Figure 2.1: Vector and Raster Differences [4]

Raster is defined as the representation of an object as regular elements (cell/pixel),
where each cell or pixel carries a unique value. The cell size in defines the spatial
resolution or granularity of the data. It represents the physical size of each cell or

15

Digital Maps and Open Data

pixel in the raster grid. A smaller cell size provides higher spatial resolution, allow-
ing for a more detailed representation of the geographic features. A clear example
of this feature is evidenced in figure 2.1b. For each cell it is applied a digital number
representing the value associated with the geographic attribute being measured or
observed. These values could represent the temperature at a specific location, the
elevation of the terrain, or the intensity of a particular spectral band in a satellite
image. For example, in a satellite image, each pixel might have a digital number
corresponds to the amount of reflected sunlight in a specific wavelength range. The
digital number is often determined by the sensor’s ability to capture and quantify
electromagnetic radiation. The intensity of the signal detected by the sensor is
converted into a digital value, and this value is assigned to the corresponding
pixel in the raster dataset. The digital number assigned to each pixel serves as
a quantitative representation of the observed phenomenon. The process involves
calibrating the sensor data to convert raw radiometric values into standardized
numbers. This calibration ensures that the digital number values accurately reflect
the real-world characteristics captured by the sensor. The combination of spatial
resolution (determined by cell size) and radiometric resolution (determined by bit
depth or levels of sensitivity) in raster data allows for the creation of detailed
and accurate representations of geographic features, making it a fundamental tool
in fields such as remote sensing and geographic information systems (GIS). The
advantage of raster data is the complete object description without focusing only
on the edges. The coordinates of the pixels are regular, and it is not necessary to
store them for each pixel, but only the position of the single pixel. Raster data
also allows the application of mathematical functions because it is a matrix.

2.1.5 Elevation Model
In traditional cartography, it is necessary to use interpolation procedures that
provide the data height depending on the elevation information represented by
elevation points and the contour lines to identify the part of a generic point. The
digital map overpasses the limit of traditional cartography, proposing two ways to
describe the elevation. The first one regards directly the elevation in the coordinates.
In contrast, the second one regards creating a specific Digital Model that describes
the elevation of the terrain or surface point by point. Differently from traditional
maps, the tridimensional data that describes the elevation are classified into the
list of elevation points, contour lines, height of points that describe the entities,
and height description of volumetric units. Digital models can be classified into the
Digital Elevation Model (DEM)/ Digital Terrain Model (DTM) and the Digital
Surface Model (DSM). A DEM, or equally a DTM, can be defined as a cartographic
model that includes a logical mathematical description of the terrain objects in

16

Digital Maps and Open Data

digital form and contains data about their characteristics. It is created in the
established map projections, scale, coordinate systems, and elevation systems,
considering the principles of cartographic generalization and establishing necessary
topological relationships between objects. [5] The elements that compose a DTM
can be seen in 2.2:

• Points that can be random or regular inside the model.

• Breaklines(in red), which are characteristic lines of the terrain, buildings, or
surface and placed where there are strong values of slope variation.

• Chorographic elements are specific points where it is fundamental to describe
the elevation, like the top of a mountain.

• Dead zone(in yellow), described as a region where I do not have any points or
information.

• Limits of the model(in blue), used to delimit the model borders.

Figure 2.2: DTM Elements

On the other hand, a DSM can be defined as a topographic digital model that
describes the relief and the situation on the surface. It consists of a digital terrain
model representing the Earth’s surface, including all objects. [6] The main difference
between DSM and DTM lies in what is included in the model. A DSM includes all
features on the Earth’s surface, both natural and artificial, while a DTM focuses
solely on the natural topography, excluding above-ground objects. Depending on
the specific needs of a project or application, one might choose to work with either
a DSM or a DTM. An example of comparison between DEM and DSM is evidenced
in figure 2.3.

17

Digital Maps and Open Data

Figure 2.3: DEM and DSM Comparison

On the other hand, when the model contains a large number of points, it is not
imperative to provide a meticulous and comprehensive description of the surface.
Detailed elements like breaklines and chorographic features become non mandatory
under such circumstances. Various Dense Digital Elevation Models, known as
DDEM or Dense Digital Terrain Models (DDTM), and Dense Digital Surface
Models (DDSM) should be consistently incorporated. It is crucial to always include
a Dead Zone, delineating the limits of the specified area with those specific models.
In particular, the DDTM is a more detailed version of the DTM, characterized by
a higher density of data. This model is particularly suitable for capturing intricate
details of the terrain, such as small elevations, valleys, or ridges. The DDSM is a
more detailed version of the DSM, capturing a wide range of elements present on
the surface with a higher density of data points. This model is useful in applications
that require an extremely detailed representation of the visible surface.

2.1.6 Point Distribution Models
The distribution of points in a Digital Elevation Model exhibits an irregular
pattern, and different methods are employed to represent this distribution. The
Point Cloud method represents a set of three-dimensional coordinates (Easting,
Northing, Elevation) distributed in an irregular pattern. This representation
provides precise details about the spatial positions of points but does not inherently
offer information about the surface between them. The Triangulated Irregular
Network (TIN) is a method that connects points in the point cloud using triangles
through triangulation. This method can be observed in figure 2.4a. Each triangle
in a TIN represents a planar surface, and the network of triangles allows for a more

18

Digital Maps and Open Data

accurate representation of the terrain or objects. However, TIN is not univocal,
meaning there can be different configurations of triangles connecting the same
points. Clearly describing the arrangement of triangles is essential to ensure the
accurate interpretation of the data. Moreover, it is possible to consider a regular
distribution or grid, where the points have a consistent spatial resolution. This
method can be observed in figure 2.4b. The resolution must be adequately reduced
to enable linear interpolation but not excessively small to minimize file size and
facilitate straightforward data processing. The resolution of this grid must be
carefully chosen. It should be reduced enough to facilitate linear interpolation
for a smooth representation of the data, ensuring that the transitions between
cells are visually seamless. However, it should not be excessively small to strike
a balance between detailed representation and practical considerations such as
file size. An optimal resolution allows for efficient data storage and processing,
making it easier to manage and analyze spatial information effectively. The grid
model can be defined in two distinct ways. One approach involves cartographic
coordinates, characterized by meter level precision, making them suitable for small
portions of territory. On the other hand, geographic coordinates utilize degrees
and are more applicable to larger expanses of land. It’s important to note that
a regular grid in cartographic coordinates does not align with a regular model in
geographic coordinates, and vice versa. As a result, there is a need to establish a
new interpolation method to bridge the gap between these coordinate systems.

(a) TIN Representation Concept (b) Grid Representation Concept

Figure 2.4: TIN and Grid Differences

2.2 Cartography Availability
In this context work, it is essential to explore the variety of cartographic resources
available to the user. This section evidences existing cartography, drawing from

19

Digital Maps and Open Data

sources defined by the Italian law 2/2/1960 n° 68. That law defines Italian
cartographic organ authorities the following ones:

1. Istituto Geografico Militare (IGM)

2. Istituto Idrografico della Marina (IIM)

3. Photo-cartographic section of the Air Force (CIGA)

4. Land Register Agency (Catasto)

5. Geological Service

6. Region Authority

The role of the Istituto Geografico Militare (IGM) in the history of military and
Italian cartography as a continuous and actual provider of cartography data is worth
mentioning. Most cartographic data are also provided by Regional Geoportals
and portals, products provided by the Ministry of Environment and Territory,
open source cartography projects like OpenStreetMap (OSM) and Remote Sensing
Services.

2.2.1 IGM
IGM plays a fundamental role in the production of Italian cartography. Founded
with the primary objective of providing cartographic support for military needs, the
IGM has evolved over the years to become the authority responsible for producing
and updating official maps of the Italian territory. Its expertise extends to a wide
range of cartographic products, including detailed topographic sheets, thematic
maps, and nationally relevant geographic data. Thanks to advanced technologies
and innovative surveying methods, the IGM continues to play a key role in providing
a reliable and accurate cartographic foundation, essential for military, civilian, and
territorial planning activities in Italy. The Istituto Geografico Militare (IGM)
produces a broad range of topographic maps. It is essential to mention some of
these topographic maps produced today that cover the whole of Italy. In the
current edition of topographic maps, the national territory is divided into 636 map
elements at the scale 1:50,000, known as sheets. Each sheet has dimensions of 20’
in longitude and 12’ in latitude. Subsequently, each sheet is further divided into
four equal parts at the scale 1:25,000, known as Sections. These sections are 10’ in
longitude and 6’ in latitude. Roman numerals identify each section. An excerpt of
this map at the scale 1:50,000 can be seen in the figure 2.5.

20

Digital Maps and Open Data

Figure 2.5: Excerpt from the union table of the map at 50000 as it appears in
the IGM catalogue

It is also worth mentioning some of the Topographic Map Series of Italy such
as series 25 and series 25DB. The Series 25 Topographic Map of Italy represents
cartography at the scale 1:25,000. It is currently no longer in production at the
Institute, as the 25DB series continues and replaces it. This cartography consists
of 2,298 elements, of which 840 have been completed and are referred to as sections.
Each section has dimensions of 6’ in latitude and 10’ in longitude. The sections
are processed using aerophotogrammetric surveys, both numerical and analogue,
and subsequently drawn using automatic or manual methods. They are framed
in the conformal representation Universal Transverse Mercator (UTM), and the
geodetic reference system is based on the international ellipsoid with European
mean orientation (ED 1950). This cartography presents the orography with contour
lines at an equidistance of 25 metres and indicates state borders as well as regional,
provincial and municipal administrative boundaries. It is printed in four colours.
An example of this topographic map can be seen in the figure 2.6a. The Series
25 DB Topographic Map of Italy continues the previous Series 25, identifying
cartography at the scale 1:25,000, currently in production at the institute. This
map consists of 2,298 elements called sections, each of which is 6’ in latitude and
10’ in longitude. The Series 25 DB replaces and continues the previous Series
25. The sections are obtained by numerical stereorestitution or are derived from
the technical cartography of the regional kilometric grid in Mercator’s Universal
Transverse Conformal Projection. The geodetic reference system is ETRS89,
which uses the GRS80 ellipsoid. The information content includes human works,

21

Digital Maps and Open Data

hydrography, vegetation and orography. An example of this topographic map can
be seen in the figure 2.6b.

(a) Series 25 Example (b) Series 25DB Example

Figure 2.6: Topographic Map of Italy: Series 25 and 25DB

2.2.2 Regional Geoportals
Today, cartography is available on different platforms or websites, allowing users to
work with numerous and high quality data. One of the primary services providing
that information is regional geoportals. Regional portals are websites or dedicated
applications offering a wide range of geographic information, including maps,
topographic data, and thematic layers. Regional portals serve as centralized digital
platforms that provide access and utilization of geographic data at the regional level.
They provide centralized access to detailed geographic data, encompassing maps,
satellite imagery, topographic information, and other region-specific thematic data
layers. Additionally, they offer interactive visualization tools, enabling users to
dynamically explore geographic information such as zooming into specific areas or
selecting specific data layers. They may also allow the download of geographic data
for later use and facilitate information sharing across various platforms, contributing
to the dissemination of geographic knowledge. An example of an Italian geoportal
is the Geoportale della Regione Piemonte. This portal provides access to a wide
range of region specific geographic data, offering interactive tools and services for
exploring and understanding the Piedmont territory. Users can access thematic
maps, topographic information, environmental data, and more through a user
friendly platform. It is necessary to mention some topographical maps issued by

22

Digital Maps and Open Data

the Italian regions called Carta Tecnica Regionale (CTR). These maps, depict a
detailed survey of the Italian territory, providing precise information on topography,
administrative boundaries, watercourses, and other relevant elements. The 1:5.000
scale strikes an ideal balance between detail and geographic coverage, making
these maps useful for a variety of applications, from hiking activities to military
operations and territorial planning. An example of this map is evidenced in figure
2.7.

Figure 2.7: Carta Tecnica Regionale (CTR) Example [7]

2.2.3 Ministry of the Environment and Territory Products
On the other hand, the products of the Ministry of the Environment and Territory
in Italy provide detailed geographic data and cartography, along with environmental
information, ecosystem monitoring, and regulations. They also encompass tools for
territorial planning, online services, and digital platforms for accessing and sharing
information. These products contribute to the formulation of environmental policies,
the implementation of research and monitoring programs, as well as the promotion
of public participation in sustainable land management. In general, they reflect
the Ministry’s commitment to environmental sustainability and the protection of
the national territory. An example of products provided by the Ministry of the
Environment and Territory in Italy could include the Sistema Informativo Nazionale
per la Gestione e la Conservazione del Territorio e dell’Ambiente (SINT). This
system offers a broad range of data and services for national level land management

23

Digital Maps and Open Data

and environmental conservation.

2.2.4 Open Cartography
One other service providing geographic information is open cartography, exemplified
by OpenStreetMap (OSM). OSM operates as a collaborative mapping platform
shaped by a global community of users who voluntarily contribute to the collection,
updating, and sharing of geospatial data worldwide. This open participation model
results in a vast and diverse collection of geographic information, encompassing
details such as roads, buildings, green areas, and much more. The platform’s
flexibility is reflected in a range of visualization and editing tools, allowing users to
explore and update data directly on the web platform. OSM data is widely used in
navigation applications, geolocated services, and territorial analyses, powering a
variety of contexts and sectors. Its open license promotes the freedom to use the
data, requiring only proper attribution and the sharing of any derivative works
under the same license.

2.2.5 Remote Sensing Services
There are also some services which provide detailed and timely data on a wide
range of environmental parameters, contributing to understanding changes, predict-
ing phenomena, and supporting informed decision-making across various sectors.
Copernicus and other remote sensing services play a pivotal role in monitoring
and analyzing the Earth’s environment from a satellite perspective. Copernicus, in
particular, stands out with its constellation of Sentinel satellites, covering diverse
disciplines such as atmospheric observation, land monitoring, marine monitoring,
and more. These data, made accessible to the public, address critical challenges like
climate change, natural resource management, and response to catastrophic events.
Similarly, other remote sensing services offer specialized solutions. For instance,
Landsat, managed by NASA and the USGS, provides long term images of the
Earth’s surface, valuable for monitoring changes in environments such as forests,
agriculture, and urbanization. European Sentinel satellites and remote sensing
services from various nations contribute to a global and collaborative framework
for environmental monitoring.

2.3 GIS Environment
Over time, and especially with the rapid technological progress, digital cartography
has been required to support applications typical of a computer system, namely
the ability to manage the generated information. This has led to the creation
of the Geographic Information System (GIS). An Information System (IS) can

24

Digital Maps and Open Data

be defined as a set of tools and applications able to manage, collect, store, and
distribute information to territorial entities. A Geographic Information System
(GIS) is an Information System based on technologies able to acquire, update, store,
model, manipulate, extract, analyze, and visualize data that are spatially located
(geo-referenced). A Geographic Information System is composed of:

• Cartographic support/map Database

• GIS management software

• Hardware tools for input/output

• Organization framework

GIS is not only the usage of information but a process composed of several steps
to reach the definition of the GIS model. GIS model creation requires some steps
to satisfy. The first one is the definition of the problem to satisfy through GIS.
Consequently, there is the question of defining the GIS criteria with all the objects
needed in my model. The third step is to import or build a dataset that describes
my objects. The fourth step is the main one and represents the data analysis to
arrive at one output that can be a plot or a tridimensional model. The last step is
to decide how to complete the definition of my model. In this way, GIS encompasses
a structured workflow to address and solve spatial problems effectively.

2.3.1 GIS Data
A georeferenced data describes a real object in terms of position, attributes,
and relationships. This type of data is critical in GIS as it allows for creating
comprehensive and informative geographic analyses. There are three different types
of GIS data:

1. Geometric Data

2. Attributes

3. Metadata

Geometric Data are used to describe the shape of an object and can be classified
into raster and vector data. In a GIS environment like QGIS, raster and vector
data types are used to create comprehensive and informative geographic analyses,
making it a versatile tool for various spatial projects. Attributes or descriptive data
provide additional information about the geographic elements of geospatial data,
such as names, values, and dates. Attributes are essential in analyzing geospatial
data as they allow for identifying patterns and relationships, enabling users to

25

Digital Maps and Open Data

make informed decisions. Metadata is the essential information that describes,
documents, and provides context for other geospatial data. It includes information
such as data source, projection, accuracy, and creation date.

2.4 Open Data
Used data provenience is fundamental to having the right resources to work cleanly.
Open data refers to readily available data for use, reuse, and redistribution by
anyone, subject only to the requirement of attribution and sharing. Access to open
data is provided under specific data license conditions and can be modified and
shared according to the license terms. There are three primary methods for sharing
open data, including:

• Free download of the data: This method involves downloading data on a
computer as raster, vector, or tabular data. This approach allows for offline
work and centralizes all data in one location, but it may create memory size
issues. Raster data is used to represent images, while vector data is used
to represent objects with geometrical attributes. Tabular data is used to
represent information in a table format.

• Visualize the data on the web: This method involves visualizing data on a
web platform. It has the benefit of having updated data without downloading,
but it requires a good internet connection. This approach is typically utilized
when sharing data with a broad audience, such as the public.

• Use a web service: This method involves using data-based web services on a
server that can be visualized and used in the software with a stable internet
connection. Three types of services are provided: WMS (Web Map Service),
WFS (Web Feature Service), and WCS (Web Coverage Service).

Geospatial data is a crucial domain that values openness, collaboration, and accessi-
bility. The fundamental principles of the open data ecosystem are centered around
open platforms, protocols, and licenses, which form the foundational elements of
this field. To understand the seamless flow of geographic information across various
applications and users, it is essential to have a comprehensive understanding of
these components.

2.4.1 Open Platforms
In computing, an open platform describes a software system that is based on
open standards, such as published and fully documented external Application

26

Digital Maps and Open Data

Programming Interfaces (API) that allow the use of the software to function in
other ways than the original programmer intended, without requiring modification
of the source code. [8] Open-source or collaborative platforms supporting the
management, analysis, and sharing of geospatial data are, for instance, open-source
GIS platforms like QGIS or GeoServer, allowing users to work with geographic
data without licensing restrictions. Open platforms are designed with an open
and flexible architecture, allowing the integration of various technologies, data,
and functionalities. The main goal of an open platform GIS is to promote the
sharing, accessibility, and interoperability of geospatial information and guarantee
a collaborative and flexible approach in the use of GIS technologies. Concentrating
mainly on QGIS as one of the most famous open platforms is essential. QGIS is a
user-friendly Open Source Geographic Information System (GIS) licensed under
the GNU (General Public License). QGIS is an official project of the Open Source
Geospatial Foundation (OSGeo). It runs on Linux, Unix, Mac OSX, Windows,
and Android and supports numerous vector, raster, and database formats and
functionalities. It provides a continuously increasing number of capabilities provided
by core functions and plugins. It allows visualizing, managing, editing, analyzing
data, and composing printable maps.[9]

2.4.2 Open Protocols
Open protocols are communication protocols that are accessible and usable by
anyone. In the context of Geographic Information Systems (GIS), these protocols are
mainly developed and maintained by the Open Geospatial Consortium (OGC). This
international consortium creates open standards for geospatial and location-based
services. Standardized open protocols promote interoperability among different
geospatial systems, allowing them to work together seamlessly. Some OGC Services
evidenced in figure 2.8are:

• Web Map Service (WMS) Web Feature Service (WFS)

• Web Coverage Service (WCS)

• Sensor Web Enablement (SWE)

• Catalog Services - Web (CS-W)

• Geospatial Semantic Web (GSW)

• Semantic Sensor Web (SSW)

As discussed in section 2.4, it is crucial to describe the open protocols used in
the field of geospatial data services, such as the Web Map Service (WMS), Web
Feature Service (WFS), and Web Coverage Service (WCS). The Web Map Service

27

Digital Maps and Open Data

provides map images that can be overlaid with different data layers. It allows
clients to request and receive static map images, usually raster images, that can
be displayed in a mapping application. The Web Feature Service provides vector
data that can be edited and queried. This protocol enables clients to request and
receive geographic features like points, lines, and polygons as vector data. The Web
Coverage Service provides data in a gridded format. It allows clients to request and
receive coverage data representing information covering a geographic area. This
service is typically used for accessing and exchanging raster data, like satellite
imagery or other gridded datasets.

Figure 2.8: OGC Standards [10]

2.4.3 Open Licences
Open licenses permit the use, modification, and sharing of works or resources. Such
licenses promote the freedom to use, adapt and distribute resources, encouraging
accessibility and collaboration. In the context of Geographical Information Systems
(GIS), these agreements are commonly applied to software, geospatial data, and
maps. For example, QGIS adopts open-source licenses such as the GNU, while
geospatial data may be shared with licenses like the Creative Commons Attribution
(CC BY). The primary objective is facilitating the free exchange of resources
promoting sharing and cooperation within the geospatial community. Figure 2.9
shows different types of software licences and their features. It is important to
mention the GNU used in QGIS. It can be defined as a series of widely used
free software licenses that guarantee end users the four freedoms to run, study,
share, and modify the software. The license grants the recipients of a computer
program the rights of the Free Software Definition. These GNU series are all
copyleft licenses, which means that any derivative work must be distributed under
the same or equivalent license terms. [11]

28

Digital Maps and Open Data

Figure 2.9: Software Licences [12]

29

Chapter 3

GIS Desk Tool

The GIS Desk Tool is a highly versatile tool that is designed to cater to a wide
range of needs and to meet specific expressed requirements. In particular, it has
been developed to operate entirely offline, both in the field and remotely, providing
prompt responses. The tool requires preloading the Digital Terrain Model (DTM)
or Digital Surface Model (DSM) for the chosen area and the file containing all the
roads surrounding the area. Once these data are stored in a computer database,
the end user can go to the area of interest and obtain the offline visibility analysis
in just a few minutes. There is also the option to download data on the spot, run
the tool, and transmit the results to the field through simple data communication.
This tool is a versatile solution capable of operating seamlessly in both on-site and
remote settings, delivering swift responses. Primarily, it allows significant time
savings in the planning phase and enables swift action in the field. It provides the
option to conduct visibility analysis from a selected point or within a defined radius.
The decision to define a radius from the observation point addresses the practical
consideration that, in the field, users might not always be aware of the specific
polygon where they intend to establish an outpost. By allowing users to input a
radius value, which represents the radius of a circle centered at the observation
point, the tool accommodates real-world scenarios where precise polygon definitions
may not be immediately evident on-site. This feature enhances the tool’s usability,
enabling users to quickly and effectively perform visibility analysis without the
need for detailed polygon knowledge on the field. The analysis from an area will
be the combined results of the visibility of all the surroundings and streets. An
additional advantage of the tool is the focus of results on roads, as it highlights
the road segments visible and invisible from the observation point. Expanding
on the GIS desk tool, it offers a user-friendly interface, making it accessible to
professionals with varying technical expertise. It also facilitates collaboration by
allowing users to share analysis results with team members, promoting efficient
decision-making processes in field and remote environments.

30

GIS Desk Tool

3.1 Functionalities
3.1.1 Flow Chart
Figure 3.1 presents a detailed overview of the tool’s flow chart, primarily divided
between input parameters and algorithms. The first green box highlights the eight
possible input parameters, while the other light blue boxes represent intermediate
algorithms. The light green boxes represent the algorithms, and the orange boxes
represent optional points. The ouputs are represented by the green box on the
right. Within the first box, six mandatory parameters and two optional parameters
are observed. Specifically, these parameters are:

• Observation Point

• Observation Radius (optional)

• Analysis Radius 1

• Analysis Radius 2 (optional)

• Elevation Model (DTM or DSM)

• Streets

• Observer Height

• Target Height

The Elevation Model serves as the core input for all algorithms. The Observation
Point represents the coordinates of the location for visibility analysis, manually
inputted and processed through the Point Creation algorithm to become an actual
Observation Viewpoint. The input parameters also include Streets, a vector layer
representing the area’s relevant roads. The first phase is to create the points in those
streets through the Streets Point algorithm and have a visible output. Together
with the Elevation Model, Analysis Radius 1 or 2, Target Height, and Observer
Height, it feeds into the Streets Viewpoint algorithm. The Observation Radius is an
optional parameter, expressed in meters, subject to algorithms that create multiple
observation points around the Observation Point, facilitating visibility analysis in a
specific area. This parameter is optional as the analysis is conducted in this manner
only if the field is filled. Regardless of whether a single point or multiple points are
used as the basis for the analysis, they serve as input for the Observation Viewpoint
algorithm. This algorithm takes as input the Elevation Model, Analysis Radius
1, Target Height, and Observer Height. Analysis Radius 1 represents the radius
in meters that defines the extent of the desired area analysis. The output of the
Observation Viewpoint algorithm becomes the input for the Viewshield Analysis

31

GIS Desk Tool

algorithm. The Viewshield Analysis, taking this result along with the Elevation
Model, performs visibility analysis across the desired area. Finally, the Streets
Viewpoint, combined with the Observation Viewpoint, serves as input for the
Intervisibility Network 1 algorithm. Optionally, the Analysis Radius 2 parameter
can also be inserted, allowing for a second visibility analysis for comparison. If
filled, it allows the creation of Streets Viewpoint 2 and Observation Viewpoint 2 to
perform Intervisibility Network 2. The Intervisibility Network algorithm has the
capability to highlight the roads that are visible and not visible within the chosen
radius of analysis.

Figure 3.1: GIS Desk Tool Flow Chart

3.1.2 Tool Functionalities
Depending on the user’s specific requirements, its various functionalities can be
configured differently to achieve different results. The table 3.1 shows the input
parameters of the four possible configurations. In the first configuration, the tool

32

GIS Desk Tool

takes the input coordinates of an observation point and uses a series of advanced
algorithms to perform a detailed visual analysis. This analysis shows the visible
and non-visible areas from the observation point within a specified radius. The tool
also creates an Intervisibility Network between the observation point and the roads.
The visual output includes a detailed map highlighting the visible and non-visible
roads in the observed area and the roads provided as input and the observation
point. In the second configuration, the tool allows the user to set a radius for
the chosen polygon as the observation area. The tool generates various points
based on the input coordinates and radius and performs a highly detailed visibility
analysis on each point. The cumulative observation of all points is considered, and
the tool produces an expected result that provides a comprehensive view of the
observed area as in the first configuration. The third configuration is designed to
provide more flexibility to the user. It allows the user to set an observation point by
entering its coordinates and the first and second radius to visualize the area. Based
on these inputs, the tool performs two analyses with different visualized areas.
The visive output is the same as the first configuration but with two overlapped
analyses colored differently. The fourth configuration is designed to provide even
more detailed information to the user. It enables two distinct analyses starting
from an observation area by entering its radius in meters. The visive output is the
same as the third configuration but considers the cumulative analysis of each point
of the polygon as the second configuration. The tool performs a highly detailed
visibility analysis in each analysis, providing the user with a comprehensive view
of the observed area and enabling them to make more informed decisions. More
information and detailed explanation of results can be found in section 3.3.

/ First Conf. Second Conf. Third Conf. Fourth Conf.
Observation Point YES YES YES YES
Observation Radius NO YES NO YES
Analysis Radius 1 YES YES YES YES
Analysis Radius 2 NO NO YES YES
Elevation Model YES YES YES YES
Streets YES YES YES YES
Observer Height YES YES YES YES
Target Height YES YES YES YES

Table 3.1: Configurations Input Parameters

33

GIS Desk Tool

3.1.3 QGIS Plugin Interface

The following section explains the QGIS plugin interface, which allows users to
obtain desired outputs by inputting the required parameters into designated fields.
The process of opening a QGIS plugin interface involves several general steps.
Initially, the user must install the plugin by navigating to the Plugins menu in
the QGIS toolbar, selecting Manage and Install Plugins, and installing the desired
plugin. Once installed, the next step is to activate the plugin by checking the box
next to its name in the Manage and Install Plugins dialog. Following activation,
a new menu or toolbar may appear in QGIS, providing access to the plugin’s
interface. Clicking on this menu or toolbar allows users to configure and use the
plugin’s features. Some plugins may necessitate additional configuration, requiring
users to explore options or settings within the plugin interface. Upon opening
the plugin, users can download it from the Processing tool screen and access the
input screen, as seen in Figure 3.2a. The initial parameter required for successfully
implementing the plugin is the DTM or DSM raster of the area of interest for
analysis. This parameter serves as a crucial data source for the plugin’s analysis.
The Observation Point Coordinates field is the second parameter where users can
enter the coordinates of the observation point. The Polygon Radius field is optional
and defaults to zero, but it can be set to a specific value if the user desires to
make observations from a particular area. This field controls the radius value in
meters of the area where the observation will be made. The Analysis Radius 1
field is another crucial parameter, allowing users to determine the area to analyze
based on the input value in meters. The Analysis Radius 2 field is optional, but
it requires users to enter the value in meters of the radius of the area observed
to compare two analyses. The Observer Height field and Target Height field are
also essential, allowing users to set the observer’s and target’s height in meters
above the ground, respectively. The Streets field is recommended to provide the
plugin with the streets’ vector layer to obtain accurate results. Figure 3.2b displays
the possible outputs of the plugin. Once users have entered the necessary fields,
they can save the outputs to a file or leave them as temporary files. The Streets
output provides the vector layer with streets used in the algorithm, marked by
a series of points. The second and third outputs are Visibility Analysis 1 and 2,
allowing users to obtain two separate analyses of the streets around the observation
area. The fourth output, named Area Analysis, generates a .tif file containing the
analysis of visible and non-visible areas from the observation point enclosed within
the radius set in the input parameters. Lastly, the Observation Points output
generates the vector layer of the observation points used in the algorithm. The
plugin comprehensively analyzes the area surrounding the observation point based
on the input parameters.

34

GIS Desk Tool

(a) Part 1 (b) Part 2

Figure 3.2: Visibility Analysis Tool Input Parameters

3.2 Development
The GIS Desk Tool is a powerful plugin for QGIS that enables visibility analysis.
It has been developed meticulously and with great attention to detail, using the
Python programming language and the QGIS Desktop 3.32.0 software. QGIS
allows data visualization using maps, charts, and diagrams while customizing
the presentation with various symbology choices. For more complex geographical
analysis, users can additionally use plugins and algorithms. QGIS also makes it
simple to share and publish geospatial data as maps, online services, or print maps in
various file formats, such as shapefiles, GeoTIFFs, and KML files. [8] Shapefiles are
a standard geospatial vector data format used in GIS. They consist of multiple files
storing both geometric and attribute data for map features. The main components
include a .shp file for geometry, a .shx file for indexing, a .dbf file for attribute data,
and a .prj file for projection information. GeoTIFFs are a raster image file format
that includes geographic information embedded within the file. These files, based
on the Tagged Image File Format (TIFF), are commonly used in GIS and remote
sensing applications. The key characteristic of GeoTIFFs is the incorporation of
georeferencing data, such as spatial coordinates and projection information, directly
within the image file. KML, or Keyhole Markup Language, is an XML-based file
format used for representing geographic data in three-dimensional Earth browsers,
such as Google Earth and Google Maps. KML files can include a variety of data
types, such as points, lines, polygons, images, and text annotations, allowing
for the visualization of spatial information. Plugins are elements done to add
functionality to the QGIS application. There are various plugins ready to be used
and available to download. Plugins are fundamental to accomplishing complex

35

GIS Desk Tool

tasks and achieving results. The development process involved extensive research
and experimentation, including studying existing plugins, using graphical modelers,
and using the plugin builder in Python. The result is a robust tool that makes it
easy to analyze visibility and perform a wide range of GIS tasks.

3.2.1 Plugin Studies

The first step in developing the tool was researching various existing QGIS plugins.
The plugin considered for the study was the Visibility Analysis developed by Zoran
Čučković. It includes four internal tools that can be used, namely: Viewshed
Analysis, Intervisibility Network, Visibility Index, and Create Viewpoints.
Viewshield Analysis produces a visibility map showing visible and not visible zone.
The output can be Binary viewshed, Depth below horizon, and Horizon. The basic
output for viewshed analysis is a visibility map in raster format, which classifies
the terrain surrounding an observation point into visible and not visible (true/false
or 1/0). The logic behind this can be understood in Figure 3.3. The viewpoint
traces rays that intersect with the terrain at specific points, allowing the distinction
between the visible and non-visible areas. Depth below horizon will provide the
depth at which lay invisible portions of a terrain. The value produced by this
module can be understood as the theoretical height a construction should attain
to appear on the horizon, as visible from the chosen observer point. Horizon
option will trace a viewshed’s outer edges, representing points that appear on the
horizon from a chosen observer point. Intervisibility Network constructs a vector
network of visual relationships between two sets of points (or within a single set).
The depth below/above the visible horizon is also calculated for each link. The
output of the intervisibility network routine is a network, in vector format, of visual
relationships between two sets of points (or within a single set). For each link, the
depth below/above the visible horizon is calculated, as in many cases only a portion
of the specified target is visible. Visibility Index calculates the incoming/outgoing
views for all-terrain locations. This module calculates the visual exposition of each
data point for a given terrain model. The Index is calculated as the proportion
of positive views, returning 1.0 when all views are positive. Create viewpoint is
the first step in getting the observer points for the other three instruments already
discussed. The observer points in the input will be processed and written as a
geopackage file with standardized field names. Data will be reprojected to match
the elevation model used if needed. Data inside the table can be changed manually
- but the names and data types of fields should remain unchanged. [13]

36

GIS Desk Tool

Figure 3.3: Viewpoint Logic [14]

3.2.2 Graphical Modeler
The second step in the process of developing the tool involved the use of the QGIS
Graphical Modeler. It allows the user to create a visual structure for the plugin,
enabling efficient organization. The graphical modeler allows the user to create
complex models using a simple and easy-to-use interface. When working with a
GIS, most analysis operations are not isolated, rather part of a chain of operations.
Using the graphical modeler, that chain of operations can be wrapped into a single
process, making it convenient to execute later with a different set of inputs. No
matter how many steps and different algorithms it involves, a model is executed
as a single algorithm, saving time and effort. [15] Figure 3.4 depicts the plugin
structure developed using the graphical modeler. The yellow rectangular boxes
represent the inputs to the model, which are the observation point, DTM/DSM,
and streets. Initially, the observation point and streets were designed as vector
layers, while the DTM/DSM input was in raster form. The white boxes represent
various algorithms that deliver the desired result. Starting from the bottom of
Figure 3.4, the "Create centroids along the line" algorithm generates a point vector
from the input raster DTM/DSM and the linear vector Street. The algorithm
creates points corresponding to the centroids of the pixels that intersect the linear
vector, providing a punctual representation of the streets. The "Viewpoint" and
"Streets Viewpoint" algorithms create a viewpoint for both the observation point
and streets. Both algorithms take as input the raster DTM/DSM, Viewpoint takes
the vector Observation Point, and Streets Viewpoint takes the "Create centroids

37

GIS Desk Tool

along the line" algorithm. The next step is "Viewshield," which creates a visibility
map showing visible and non-visible areas using the raster DTM/DSM and the
Viewpoint algorithm as input. The algorithm identifies which areas are visible
and which are not. "Intervisibility Network" constructs a vector network of visual
relationships between the input Viewpoint and Streets Viewpoint, taking them and
the raster DTM/DSM as input. The algorithm identifies how objects are visible to
each other. Finally, the green rectangular box shows the output of "Intervisibility
Network" and "Viewshield." The output consists of an Intervisibility Network and
a Viewshield, which help analyze and understand the visual relationships between
objects in the model.

Figure 3.4: Initial tool structure

3.2.3 Code Development
Plugins are a great way to extend the functionality of QGIS. It is possible to
write plugins using Python text editor ranging from adding a simple button to
sophisticated toolkits. The final version of the visibility analysis tool has been
implemented building a processing plugin for QGIS. This choice has been made
because a process plugin is designed primarily for analysis, with user interaction
limited to selecting inputs and outputs. The Processing Framework is essential to
its development as it eliminates the need for a custom user interface, streamlining

38

GIS Desk Tool

the process. The built-in processing library generates a standard interface based on
the inputs, resembling and behaving like any other processing algorithm in QGIS.
Furthermore, it seamlessly integrates with the rest of the Processing framework,
enabling the plugin algorithms to be utilized in batch processing, graphical modeler,
and invoked from the Python console, among other functionalities. The development
starts with a QGIS plugin named Plugin Builder, which creates all the necessary
files and the boilerplate code for a plugin. Plugins Reloader is another helper
plugin that allows the iterative development of plugins. This plugin helps change
the plugin code and reflect it in QGIS without having to restart QGIS every time.
To create a new plugin using Plugin Builder, it is necessary to fill out a form with
all the relevant information, including the class name, plugin name, description,
module name, version numbers, and author’s credentials. Once this is done, it will
be necessary to select the Processing Provider and output directory. Finally, it is
possible to publish the plugin or classify it as experimental. It has been chosen as
experimental because of the academic purposes of this thesis. The code development
step can be found into the plugin directory and in the selected code file in Python
text editor. In Appendix A, it is possible to find the plugin code. The code starts
with the libraries import in section A.1.1. The line "from qgis.PyQt.QtCore import
QCoreApplication" is importing the "QCoreApplication" class from the "QtCore"
module of the "PyQt" package in the QGIS Python Application Programming
Interface (API). In particular, "qgis" is the QGIS package providing access to the
QGIS API for Python scripting. "PyQt" is a set of Python bindings for the Qt
application framework, and QGIS uses it to create its Graphical User Interface
(GUI) and other functionality. "QtCore" is a module within PyQt that provides
core non-GUI functionality and includes essential classes and functions for event
handling, file I/O, data types, and more. "QCoreApplication" is a class in the
"QtCore" module. It represents the core application object in Qt and provides
functionality related to application-wide resources, event handling, and more. In
QGIS scripting, importing "QCoreApplication" is often necessary to ensure the
script runs within the Qt application framework. This is important for handling
events and ensuring proper integration with the QGIS environment. The following
line indicates that the code imports specific classes or modules from the QGIS core
module. The various libraries imported are:

• QgsProcessingAlgorithm: This class represents a processing algorithm in QGIS.
It is the base class for all processing algorithms.

• QgsProcessingParameterNumber: This is a parameter type for numerical
input. It is often used when the algorithm requires numeric values as input.

• QgsProcessingParameterRasterLayer: This parameter represents a raster layer
in QGIS. It is used when the algorithm needs a raster layer as input.

39

GIS Desk Tool

• QgsProcessingParameterPoint: This parameter type represents a point in
QGIS. It can be used when the algorithm requires a point as input.

• QgsProcessingParameterMapLayer: This parameter represents a map layer in
QGIS. It is used when the algorithm needs a generic map layer as input.

• QgsProcessingParameterFeatureSource: This parameter represents a feature
source in QGIS. It is used when the algorithm requires a vector layer (feature
source) as input.

• QgsProcessingParameterFeatureSink: This parameter represents a feature
sink in QGIS. It is used when the algorithm produces a vector layer as output.

• QgsProcessingParameterRasterDestination: This parameter represents a des-
tination for raster data. It is used when the algorithm produces a raster layer
as output.

• processing: This is the QGIS processing module, providing access to various
geospatial processing algorithms.

The section A.1.2 starts with the definition of the class "VisibilityAnalysisToolAl-
gorithm" as a custom class that extends the functionality provided by the "QgsPro-
cessingAlgorithm". The section follows with the parameters initialization method.
The parameters defined are the following:

• DTM or DSM: A raster layer representing a Digital Terrain Model (DTM) or
Digital Surface Model (DSM). It is an input parameter that allows the user
to select a raster layer.

• Observation Point Coordinates: It is an input parameter point that allows
the user to specify the location of the observation point.

• Polygon Radius: A numeric optional parameter representing the polygon
radius in meters with a default value of 0.

• Analysis Radius 1: A numeric parameter representing analysis radius 1 in
meters with a default value of 10,000. m.

• Analysis Radius 2: Similar to Analysis Radius 1 but for Analysis Radius 2. It
is optional and has a default value of 0.

• Observer Height: A numeric parameter representing the observer’s height in
meters. It has a default value of 1.6 meters.

• Target Height: A numeric parameter representing the target height in meters
with a default value of 0.

40

GIS Desk Tool

• Streets: A vector map layer representing streets. It is an input parameter that
allows the user to select a vector layer containing streets.

• Streets: A vector feature sink for streets. It is an output parameter that stores
the processed street data.

• Final Result Analysis 2: A vector feature sink for the final result of Analysis
2. It is an output parameter that stores the processed data for Analysis 2.

• Final Result Analysis 1: A vector feature sink for the final result of Analysis
1. It is an output parameter that stores the processed data for Analysis 1.

• Area Analysis: A raster destination representing the area analysis. An output
parameter stores the analysis result as a raster layer.

• Observation Point: A vector feature sink for observation points. It is an
output parameter that stores the processed observation points data.

Next to the parameters definition is the method "processAlgorithm," which is the
main entry point for all plugins’ processing logic. In the following line, there is the
object "QgsProcessingMultiStepFeedback" creation. This object is used to manage
the feedback during the algorithm’s execution. It is handy when the algorithm
consists of multiple steps, and it is defined to report progress at each step. "results"
and "outputs" are variables respectively defined to store intermediate results or data
during the algorithm’s execution and to store the final outputs of the algorithm.
Subsequently, the algorithms part comprehends the plugin’s core with all the logic.
A brief summary of the input parameters and algorithms is depicted in Figure 3.5.
The first algorithm is "qgis:generatepointspixelcentroidsalongline" and can be found
in A.1. It generates points along a line by calculating the pixel centroids taken
from the DTM or DSM raster over the Streets vector in the entrance. The output
is set to "QgsProcessing.TEMPORARY OUTPUT", meaning the result will be
temporarily stored in the project’s temporary directory.
The second algorithm is "native:pointtolayer" and can be found in A.2. His role is
to convert the input point to a point layer taken as input the written coordinates
of the observation point. His output point layer is stored in the results dictionary
under the key "Si", allowing it to be shown on the map.
The third step of the algorithm involves the "native:buffer" operation, which is
detailed in A.3. This operation is designed to create a buffer around the observation
point when the specified buffer distance is not equal to zero. The buffer is computed
based on the provided distance, forming a protective zone around the observation
point. It takes as input the result of the previous algorithm, the layer observation
point. The resulting buffer layer is stored in the outputs dictionary under the
identifier "Buffer".

41

GIS Desk Tool

Figure 3.5: Development Scheme

The next step involves the "native:generatepointspixelcentroidsinsidepolygons" al-
gorithm, described in A.4. This operation generates points inside the polygon
created in the previous step. It utilizes the DTM or DSM specified by the user and
the polygon layer generated in the buffer operation. The resulting point layer is
stored in the outputs dictionary under the key "GeneraPuntiCentroidiDeiPixelDen-
troPoligoni", allowing it to be shown on the map.
The fifth step introduces the "visibility:createviewpoints" algorithm, outlined in A.5.
This algorithm is responsible for generating observation points based on specified
parameters. It utilizes the DTM or DSM provided by the user and the point layer
generated in the previous step, which could be a single point or a composition. It
also utilizes the target height and observer height as input. The resulting observa-
tion points are stored temporarily and can be referred to in subsequent stages of
the algorithm.
Similar to the fifth algorithm, the next one utilizes the "visibility:createviewpoints"
algorithm to generate visibility analysis points along a line, incorporating input
parameters such as observer height, target height, analysis radius, DTM or DSM,
and the output of algorithm seen in A.1. The resulting points are stored in the
specified vector layer "Strade", allowing it to be shown on the map.
The sixth algorithm A.7 uses the "visibility:viewshed" algorithm to perform a
viewshed analysis. It considers parameters such as the type of analysis (binary
viewshed), the DTM or DSM, observer points as the output of A.5 algorithm,

42

GIS Desk Tool

and additional settings like the refraction coefficient and curvature. The resulting
viewshed analysis output is stored in the specified raster layer "Analisi". The
generated layer is accessible in the outputs dictionary under the key "Viewshed",
allowing it to be shown on the map.
The seventh algorithm uses the "visibility:intervisibility" algorithm to create an
intervisibility network, as shown in A.8. The algorithm considers parameters such
as the DTM or DSM, observer points as the output of A.5, target points derived
from the visibility analysis along streets ("Str"), and settings like the refraction
coefficient and curvature. The resulting intervisibility network is stored in the
specified vector layer "FinalResult". The generated layer is accessible in the outputs
dictionary under the key "IntervisibilityNetwork", allowing it to be shown on the
map.
Algorithms eight, nine, and ten, respectively A.9, A.10 and A.11 are the same as
A.5, A.6 and A.8 with the condition that they are executed if Analysis Radius 2 is
set, and the user want output with two analysis.
Subsequently, some methods are mandatory for the plugin implementation. The
name definition method in section A.1.3 returns the algorithm name used for
identifying the algorithm. DisplayName definition method in section A.1.4 returns
the translated algorithm name, which should be used for any user-visible display
of the algorithm name. The group definition method in section A.1.5 returns the
name of the group to which this algorithm belongs. GroupID definition method in
section A.1.6 returns the unique ID of the group this algorithm belongs to. The try
definition method in section A.1.7 is used for translating text to the user’s language.
Create instance definition method in section A.1.8 is responsible for creating an
instance of the algorithm class.

3.3 Results
3.3.1 Outputs
The output generated by the GIS Desk tool can be visualized through QGIS. As
elucidated in section 3.1, the plugin affords four configurations that produce distinct
outputs. Table 3.2 displays the input parameter values for the four configurations.
The Observation point is the same for all four configurations and is expressed in
Cartesian coordinates (27229.9E, 5070829.2N). When specified, the Observation
Radius is set to 15 meters. Analysis Radius 1 is 10000 meters, while Analysis
Radius 2 is 4000 meters when specified. Observer Height and Target Height are
consistently set to default values of 1.6 and 0 meters, respectively. Elevation Model
and Streets remain the same across all configurations. Figure 3.6 shows the first
configuration called also single observation point and single radius configuration.
This setup necessitates the observation point coordinates, the radius in meters,

43

GIS Desk Tool

the DTM, the target height, the observer height, and the roads as inputs. The
legend of figure 3.6 clarifies the output’s constituents. The red dot represents the
observation point, while the purple lines denote the roads used in the analysis.
The blue segments originate from the observation point and extend to the visible
roads. The DTM employed in the analysis is presented, and two colors represent
the binary visibility analysis. The visible portion is presented transparently, while
the non-visible portion is depicted in black. Figure 3.7a and figure 3.7b provide a
more detailed look at the information presented in Figure 3.6. In particular, Figure
3.7a highlights the observation point in red and shows all the blue segments that
originate from this point. These blue segments represent the visible areas from the
observation point, a crucial aspect of the intervisibility network. On the other hand,
figure 3.7b provides more information about the endpoints of the value segments in
the intervisibility network. Additionally, it shows the purple points that depict the
streets. The borders in this figure define the visibility area, with the blue segments
extending only as far as the points along the purple street outside the black area.
These figures help clarify the plugin’s functionality and provide a more detailed
understanding of the intervisibility network. By examining these figures closely, it
is possible to appreciate better the visible areas and those that are not. Figure 3.8
shows the second configuration possible called also single observation point and
two rays configuration. Observation point coordinates, two rays in meters, the
DTM, the target height, the observer height, and the roads are taken as inputs.
The difference with 3.6 is the second output of the intervisibility network in green.
The utility of having two kinds of analysis on the streets is evident here. Figures
3.9, 3.10a, and 3.10b provide an overview of the third configuration, called also
observation area and single radius configuration. Figure 3.9 displays the outcome
of the visibility analysis carried out from an observation area with a radius of 15
meters. Figure 3.10a shows the four points that define the observation area from
which the blue segments of the intervisibility network originate. The cumulative
analysis of the entire area has been employed better to understand the appropriate
size for an observation area. This approach allowed the user to comprehend the
observation area’s size better and optimize it for specific applications. Figure
3.11 displays the same output as figure 3.9, but with two intervisibility networks,
one in green and one in blue. This represents the fourth configuration, called
also observation area and two rays configuration. Its usage is intended for specific
situations where a detailed response is required. Similar to the second configuration,
these two analyses provide the user with a more comprehensive understanding.

44

GIS Desk Tool

/ First Conf. Second Conf. Third Conf. Fourth Conf.
Observation Point (x,y) (x,y) (x,y) (x,y)
Observation Radius 15 m 15 m
Analysis Radius 1 10000 m 10000 m 10000 m 10000 m
Analysis Radius 2 4000 m 4000 m
Elevation Model YES YES YES YES
Streets YES YES YES YES
Observer Height 1.6 m 1.6 m 1.6 m 1.6 m
Target Height 0 m 0 m 0 m 0 m

Table 3.2: Configurations Input Parameters (x,y) = (427229.9E,5070829.2N)

Figure 3.6: Algoritm result on single observation point and single radius configu-
ration

45

GIS Desk Tool

(a) Single Observation Point (b) Segment Terminal on Street

Figure 3.7: Detail on result 3.6

Figure 3.8: Algoritm result on single observation point and two rays configuration

46

GIS Desk Tool

Figure 3.9: Algoritm result on observation area and single radius configuration

(a) Observation Area Points (b) Segment Terminal on Street

Figure 3.10: Detail on result 3.9

47

GIS Desk Tool

Figure 3.11: Algoritm result on observation area and two rays configuration

3.3.2 Output Analysis
This section delves into the results obtained from the algorithm and elucidates the
correlation between the input parameters and the algorithm’s execution time. The
algorithm’s execution time is a crucial metric in achieving the set objectives and
directly influences the planning phase. Inadequate time allocation during this phase
can result in suboptimal outcomes. To better understand how the input parameters
affect the algorithm’s performance, the execution time will be analyzed for all four
possible configurations with different input parameters. Execution time values are
considered as the mean values of several tests done. This analysis will provide
insight into the input parameters that significantly impact the execution time and
those that do not. Identifying the critical input parameters makes optimizing
the algorithm’s performance and setting limits possible. The first configuration
under examination involves a single observation point as input, with area analysis
radius variations. The graph 3.12 clearly illustrates the trend of execution time
with six different input rays. The first analysis radius is 5000 meters, a vast range
allowing a complete view. The plugin’s execution time is just under 20 seconds,
an excellent result in terms of planning. The most extensive analysis is conducted

48

GIS Desk Tool

with a radius of 30000 meters, a comprehensive analysis that requires specific
considerations for its use. This analysis requires around 7 minutes, which is a
tolerable time compared to the significant extension. Graph 3.12 shows that the
times remain around a minute up to 15000 meters but spike at 20000 meters radius.
This favorable outcome covers significant distances in a minute or less. The second
configuration under examination involves a single observation point as input, with
two different area analysis radius variations. The graph 3.13 clearly illustrates the
trend of execution time with six different input rays. The first two analysis rays
are 5000 and 10000 meters, a vast range allowing a complete view. The plugin’s
execution time is just around 50 seconds, an excellent result in terms of planning.
The most extensive analysis is conducted with two rays of 30000 and 25000 meters,
and it required around 10 minutes, which is a tolerable time compared to the
significant extension. Graph 3.13 shows that the times remain under three minutes
up to 15000 meters but spike at 20000 meters radius. This outcome is coherent
with the previous analysis considering only one radius. The third configuration
under examination involves multiple observation points as input in a radius of 25
m, with area analysis radius variations. The graph 3.14 clearly illustrates the trend
of execution time with five different input rays. The first analysis radius is 5000
meters, a vast range allowing a complete view. The plugin’s execution time is just
around 40 seconds, an excellent result in terms of planning. The most extensive
analysis is conducted with a radius of 25000 meters, and it requires around 4 hours,
which is a tolerable time compared to the significant extension. However, compared
to other configurations, his time is higher. Graph 3.13 shows that the times remain
around seven minutes up to 15000 meters but spike at 20000 meters radius. The
outcome is coherent with the previous analysis and evidence that staying within
15000 meters for rapid request analysis is better. The fourth configuration under
examination involves multiple observation points as input in a radius of 25 m, with
two different area analysis radius variations. The graph 3.15 clearly illustrates the
trend of execution time with four different input rays. The first couple of analysis
radius is 5000 and 10000 meters, a vast range allowing a complete view. In that
case, the plugin’s execution time is just around 3 minutes, an excellent result in
terms of planning. The most extensive analysis is conducted with two rays of 20000
and 25000 meters, and it required around 7 hours, which is a tolerable time only in
the planning phase. Graph 3.15 shows that the times remain under 10 minutes up
to 15000 meters but spike at 20000 meters radius. This outcome is coherent with
the previous analysis considering only one radius.

49

GIS Desk Tool

Figure 3.12: Execution time for first configuration

Figure 3.13: Execution time for second configuration

50

GIS Desk Tool

Figure 3.14: Execution time for third configuration

Figure 3.15: Execution time for fourth configuration

51

GIS Desk Tool

3.3.3 Limitations
Upon analyzing the results generated by the GIS Desk tool, it is fundamental to
delineate the limitations encountered. These limitations may manifest in various
forms, ranging from input values that significantly impede algorithmic execution
to constraints that necessitate the impracticability or redundancy of the algorithm.
Exploring these limitations provides critical insights into the tool’s applicability
in specific contexts. This approach is vital in creating solutions better suited to
end user needs. The first limitation is the analysis radius, which cannot exceed
30000 m. This is usually sufficient for most applications, but it can be restrictive
for assessments that require analysis beyond this range. Additionally, the tool
may take longer to process data when analyzing long distances and using two-ray
visibility. In some cases, processing times can extend to several hours, affecting the
tool’s responsiveness. Another tool limitation involves the observation radius when
multiple observation points are used. As the observation area radius increases,
processing time increases significantly, especially when set above 25-30 m. This
limitation aligns with the strategic nature of stakeouts, where the extension has
a practical limit. The last limitation concerns data availability. Before using the
GIS Desk tool, it is necessary to prepare streets, Digital Terrain Models (DTM),
or Digital Surface Models (DSM) in advance. In some cases, it may be necessary
to extract or create this data for areas that lack it. This requirement adds a
preparatory step to the tool’s workflow and limits its adaptability to areas with pre-
existing geospatial data. These limitations highlight the importance of considering
practical constraints, processing times, and data availability when using the GIS
Desk tool in different contexts.

52

Chapter 4

GIS Mobile Tool

The GIS Mobile Tool is a highly versatile tool that is designed to cater to a
wide range of needs and to meet specific expressed requirements. It has been
designed to be combined with the GIS Desk Tool or act independently to meet
some requirements that still need to be satisfied. The mobile tool allows the
transmission of input data from an application and receives visibility analysis as
output. It aims to address various challenges, such as the lack of on-site information
and time constraints. Its significant advantage is the ability to send data to a
distant and fixed station, eliminating the need to preload data as they are already
present in the fixed station’s database. Another benefit is the variable response
time, allowing for a quick response to an unplanned request. The tool requires
an internet connection to function, but when combined with the desk tool, it can
effectively address all the previously mentioned challenges.

4.1 Functionalities
The GIS Mobile Tool represents an application designed for smartphones or desktop
devices, structured to transmit data to a fixed station and receive a detailed image
of the visibility analysis for a specific area as output. Visibility analysis can be
conducted intuitively, starting simply from a point identified by its coordinates.
The user interested in performing such an analysis selects a reference point and
specifies the radius of the area of interest, obtaining a detailed visual result. Thanks
to specialized algorithms, the visual output consists of an image containing a map
of the considered area, enriched with numerous segments extending from the user-
entered point to the surrounding roads. The presence of segments reaching the
roads indicates the visibility of the road from that point, while the absence of
segments indicates the area is not visible from that perspective. Additionally,
the user has the option to enter a third piece of information, represented by the

53

GIS Mobile Tool

radius in meters of the area from which they want to initiate the analysis. The
entered coordinates constitute the center of this area that is created. In this case,
a combined analysis of the surrounding area is obtained, considering various points
within the area defined by that radius. This tool streamlines the submission of
essential data, such as the coordinates of the point of interest, the analysis radius,
and, optionally, the radius of the area for conducting an analysis from an area
rather than a specific point. Using this data, along with various elevation models
and files containing information about the surrounding roads, stored in a database,
the application can perform a visibility analysis of the area without requiring
complex initial preparation. As mentioned earlier, the convenience of being able to
use this tool directly on one’s mobile device allows for obtaining a detailed analysis
in just a few minutes.

4.1.1 Flow Chart
The tool is primarily divided between the front-end and back-end. The front-end
consists of three distinctive pages: one for login, one for data submission, and
one for viewing the resulting image. The login page interacts with the back-end,
transmitting user credentials. The back-end connects to the database to verify the
congruence of the entered data. In case of a match, the back-end communicates
with the front-end, authorizing access. The data submission page offers dedicated
fields for plugin parameters, including the coordinates of the observation point, the
analysis radius, and, optionally, the area radius for conducting an analysis from
an area rather than a point. Once the data is entered, the front-end transmits
it to the back-end, which stores it in the database. The third page focuses on
the visualization of the image and the result of the data submission. When the
result is requested, the front-end forwards the request to the back-end, which
leverages a batch file and a QGIS algorithm. The back-end initiates the batch
file to configure the QGIS environment and launch an algorithm based on the
visibility analysis algorithm described in the previous chapter’s GIS Desk Tool. The
algorithm retrieves the necessary data from the database and proceeds with the
visibility analysis. Once completed, the back-end processes the results and sends a
response to the front-end, enabling the image’s display through the application. It
is worth noting that the database is divided into two parts: SQLite, containing
manually entered data from the application, and a second database with all DTM
or DSM and road files useful for analysis. Both serve as inputs for the QGIS
algorithm. Figure 4.1 provides a detailed view of the tool’s flow chart. Here it is
possible to see how credentials are entered for the login page in the dark green
box. After checking the credentials in the database, a response is returned. In
the case of incorrect credentials, access to the next page is denied. In the case of
correct credentials, access is gained to the data entry page. Here, it is possible

54

GIS Mobile Tool

to log out and return to the login page or enter data. It is also possible to insert
some data inside some white box. This data includes, as previously mentioned, the
coordinates of the observation point, the analysis radius and, optionally, the radius
of the area to conduct an analysis from an area rather than a point. This data
is entered into the database. Next, it is possible to pass to the visibility analysis
page. Here the analysis is requested and the actual algorithm is executed. A batch
file that sets up the QGIS operation environment is executed and the algorithm is
started. The algorithm takes data from the two databases: the one in which the
data was previously entered and a database containing roads and the elevation
model of the area. Having all the inputs, the algorithm produces a KML file of the
Intervisibility Network. This is converted into an image and overlaid on a map of
the area. Once the process is complete, the output is displayed as an image on the
visibility analysis page of the application.

Figure 4.1: GIS Mobile Tool Flow Chart

55

GIS Mobile Tool

4.1.2 Front-End
The front-end of the tool has been entirely developed using the Flutter framework.
This framework provides the ability to organize code into classes, ensuring a
flexible and user-friendly structure. In our implementation, we have adopted a
specific architecture for creating the three previously mentioned pages, each with
its associated classes. The choice of Flutter has allowed us to achieve a versatile
front-end that is highly adaptable to the tool’s requirements. The class-based
organization facilitates code management and maintenance, improving readability
and enabling rapid development. In the developed code, each of the three pages
has been carefully designed to perform specific functions. Communication between
the front-end and back-end occurs efficiently through the Representational State
Transfer (REST) protocol. In this communication model, the front-end acts as
a client, interacting with the back-end through RESTful requests and responses.
This client-server architecture ensures reliable and fast communication between
the components of the system. The front-end sends requests to the back-end,
which processes these requests and returns the necessary responses to ensure a
smooth and consistent user experience. Overall, the use of Flutter for front-
end development provides a robust and efficient environment, ensuring a solid
technological foundation for the tool’s functionality.

4.1.3 Back-End
The back-end has been entirely developed using the Python programming language.
Its primary function is to orchestrate the operation of the application by acting
as a server, managing and responding to all requests coming from the client. It
interacts with both the SQLite database and a dedicated bash file to configure the
QGIS environment. The bash file is a shell script, a command program used in
Unix and Unix-like operating systems. In this context, the bash file is essential
for setting up the QGIS environment. This procedure is necessary because QGIS
requires a dedicated environment to operate in stand-alone mode, and the bash
file is responsible for preparing and launching this environment. The back-end can
execute the bash file on request, which sets up the necessary environment for QGIS
to operate in stand-alone mode. This critical phase is activated only when requested
by the client’s output, ensuring a safe and controlled approach. The interaction
between the algorithm and the database plays a crucial role, enabling efficient
and rapid data transmission. This dynamic connection between the back-end, the
bash file, and the database ensures the consistent functioning of the application,
providing the client with precise and timely results. In short, the back-end is the
powerhouse behind the application’s operations, effectively managing the complex
interactions among various components, including the preparation of the QGIS
environment through the bash file.

56

GIS Mobile Tool

4.1.4 Database
The database used for the entire plugin has been created with SQLite, chosen for
its ease of use and versatility as a database management system. The composition
of the database is illustrated in figure 4.2. In particular, in figure 4.2a, it is possible
to examine the structure of the user table, which consists of two columns containing
credentials for users authorized to access the plugin. To ensure the uniqueness of
users, a primary key has been set on the username column. In figure 4.2b, the
data table is highlighted, characterized by three columns for point coordinates and
two columns for the rays related to visibility analysis. This table is essential for
storing crucial information needed for algorithm execution and analysis generation.
The creation of an SQLite database involves defining tables and columns. A table
represents an organized set of data, while columns define the different categories
of information in the table. In the context of our plugin, the user table and
the data table are examples of tables, while the columns represent various pieces
of information, such as username and password for the user table, and point
coordinates and radii for the data table. Using a primary key for the username in
the user table is a common practice to ensure the unique identification of users,
avoiding unwanted duplications. This primary key plays a key role in the database
structure, ensuring the integrity and consistency of the stored information.

(a) User (b) Data

Figure 4.2: Database

The tool makes use of an additional database that needs to contain numerous
elevation models relating to the area in which an analysis might be required. In
addition, it must include vector layers with the roads in the zones mentioned
above. The size and completeness of this database play a fundamental role, directly
influencing the accuracy and completeness of the results obtained during the
analysis. The accurate management of this extensive database is essential to
guarantee the quality and reliability of the analysis conducted.

57

GIS Mobile Tool

4.1.5 Tool Interface
The three pages of the tool interface can be observed in figures 4.3, 4.4, and 4.5.
This desktop representation is provided to facilitate the visualization of the various
components of the tool but is also adapted for use on mobile devices. The use
on mobile device is shown in figure 4.6. The login page, depicted in figure 4.3, is
clear and functional with two fields for entering credentials and a login button.
Clicking on this button leads to the second page, dedicated to parameter input, as
illustrated in figure 4.4. This page features three empty boxes for data entry. In
the first box, coordinates for the analysis point are entered. In the second box, the
optional radius in meters for the analysis area is specified. The third box requires
the radius in meters of the area to be analyzed. Three buttons are available: the
first for data submission, the second to access the results viewing page, and the
third to log out. The third and final page allows for the visualization of the visual
output of the tool. A single button, when pressed, generates an image in a few
minutes, as shown in figure 4.5. This image adapts to the device in use, displaying
a map with the conducted analysis.

Figure 4.3: Login Page

58

GIS Mobile Tool

Figure 4.4: Data Page

Figure 4.5: Analysis Page

4.2 Development
The GIS Mobile Tool is a comprehensive and sophisticated software that allows
users to perform visibility analysis on mobile devices. The tool has been developed
meticulously and with great attention to detail, using the powerful combination
of Python programming language for the back-end and Flutter for the front-end.
The database is built on SQLite, which offers high performance and reliability.
Moreover, the tool is designed to be highly customizable, allowing users to tailor it
to their specific needs. The algorithm development uses QGIS, ensuring the tool
provides accurate and reliable results. QGIS allows data visualization using maps,

59

GIS Mobile Tool

; ; ;

Figure 4.6: Application Pages on Smartphone

charts, and diagrams while customizing the presentation with various symbology
choices. Flutter is an open-source framework by Google for building beautiful,
natively compiled, multi-platform applications from a single codebase. [16] One of
its key functionalities is enabling developers to build inviting and high-performance
applications with a consistent user experience across multiple platforms. One of
Flutter’s standout features is its hot-reload capability, enabling developers to view
changes made to the code instantly, stimulating a highly efficient development
process. The framework provides a rich set of customizable widgets, ensuring
flexibility and creativity in designing user interfaces. Furthermore, Flutter supports
various plugins and packages, allowing developers to integrate various functionalities
seamlessly. Its extensive community and growing ecosystem contribute to a wealth
of resources and support for developers. With its cross-platform nature, Flutter
simplifies the development process, reducing the time and effort required to create
applications for different platforms. On the other hand, SQLite is an in-process
library that implements a self-contained, serverless, zero-configuration, transactional
SQL database engine. The code for SQLite is in the public domain and is thus
free for use for any purpose, commercial or private. [17] SQLite stores data in a
single, self-contained file, simplifying deployment and management. One of the
critical features of SQLite is its support for SQL (Structured Query Language),

60

GIS Mobile Tool

allowing developers to define, manipulate, and query relational databases using a
standard and widely adopted syntax. SQLite is known for its efficiency, especially
in terms of storage and resource utilization. It operates without a separate server
process, reducing overhead and making it suitable for embedded systems and mobile
applications. The database engine is also highly scalable and capable of handling
large datasets and concurrent connections. Another noticeable aspect of SQLite is
its cross-platform compatibility, supporting various operating systems, programming
languages, and platforms. SQLite is a versatile and reliable database management
system that excels in simplicity, efficiency, and cross-platform compatibility. It is
ideal for various applications, from small scale embedded systems to large-scale
software solutions.

4.2.1 Code development
A thorough understanding of how the algorithm operates and its final configuration
is essential through a detailed examination of the source code. Subsequently, it
will be possible to explore both the back-end and front-end code, paying particular
attention to the implementation of the QGIS algorithm and the configuration of
the bash file. Delving into the source code provides a clear overview of design
choices, interactions between components, and key procedures that drive the
proper functioning of the application. It also allows for a greater understanding
of implementation decisions and optimizations made during the development of
both the back-end and front-end. Figure 4.7 provides a detailed view of the tool
development scheme, primarily divided between the front-end and back-end.

Front-End

Front-End code configuration can be observed in appendix B.1. The code is
structured into several components, each serving a distinct purpose in the Flutter
application. The initialization phase begins with the configuration and start
of the Flutter app in the main() function. This involves essential imports and
the definition of the main widget, ’MyApp’ (B.1). The core of the application’s
logic lies in the ’MyAppState’ class, an extension of ’ChangeNotifier’. This class
handles global state management, incorporating methods for user authentication,
logout, data submission to the back-end, and image retrieval. The seamless
integration of authentication and API calls within ’MyAppState’ streamlines
the overall functionality (B.2). The primary user interface is represented by
the ’MyHomePage’ widget, which is conditionally displayed based on the user’s
authentication status. This widget features input fields for coordinates, radius, and
analysis radius. Additionally, it provides buttons for submitting data, visualizing
output, and logging out (B.3). The ’NewPage’ widget specializes in displaying

61

GIS Mobile Tool

Figure 4.7: Development Scheme

output, particularly the visualization of visibility analysis. It facilitates the retrieval
of images from the back-end, dynamically adjusting the display based on the
availability of image data (B.4). The login functionality is encapsulated within
the ’LoginPage’ widget, which hosts the ’LoginForm’ module. This module, a
stateful widget, handles user input for the username and password, initiating
the authentication process upon pressing the ’Login’ button (B.5). The entire
application comes to life through the Flutter app initialization in the main()
function, culminating in the execution of runApp(MyApp()). This succinctly
initiates the Flutter app, establishing a seamless flow of user interactions and
backend communications (B.6).

Back-End

Back-End code configuration can be observed in appendix B.2. The Flask applica-
tion begins its journey with the initialization of the app and the crucial configuration
steps, such as enabling Cross-origin resource sharing (CORS) to handle cross-origin
requests and establishing a secret key for secure session management (B.7). For

62

GIS Mobile Tool

database operations, a connection function named connect db is introduced to
seamlessly connect to the SQLite database, referred to as raffaele.db (B.8). User
authentication and session management unfold through distinct endpoints. The
/login endpoint meticulously verifies user credentials against the database, dynami-
cally updating the session upon a successful login attempt. Conversely, the /logout
endpoint adeptly clears the user’s session, ensuring a secure logout process. The
/check login endpoint serves as a sentinel, examining the current login status and
providing valuable insights into the user’s authentication state (B.9). The /send
data endpoint becomes the gateway for data from the client, orchestrating an
interaction with the SQLite database. This endpoint handles the task of updating
existing records or introducing new data based on the coordinates provided by the
user (B.10). The /get image endpoint executes a batch file to render geographical
data using Geopandas and Matplotlib. The resulting image is carefully preserved
and promptly delivered to the awaiting client, transforming abstract data into a
tangible visual representation (B.11). Finally the app initializes to run on 0.0.0.0 at
port 5000 in debug mode, providing a robust platform for testing and development
(B.12).

QGIS Batch

QGIS Batch code configuration can be observed in appendix B.2.1. This script serves
as a Windows batch file designed to configure the environment for an application
relying on QGIS. The initial line, @echo off, suppresses the echoing of commands,
contributing to a cleaner script execution without displaying each command. The
script sets the ’OSGEO4W ROOT’ variable to the installation directory of QGIS,
and ’QGIS PREFIX’ is defined as the path to the QGIS installation within the
OSGEO4W root. Key system paths are then modified using the ’SET PATH’
command. Directories containing QGIS and OSGEO4W binaries are appended
to the system PATH variable, ensuring that the system recognizes the locations
of QGIS and OSGEO4W binaries. The ’PYTHONPATH’ environment variable
is configured to include paths relevant to Python. This encompasses the QGIS
Python directory, the Python directory within OSGEO4W, and QGIS Python
plugins. The ’PYTHONHOME’ variable is set to point to the location of the
Python interpreter within the QGIS installation. Additionally, the ’QT PLUGIN
PATH’ variable is defined, indicating the path to the Qt5 plugins directory within
the QGIS installation. The script proceeds to initiate the execution of a Python
script named Test.py using the Python interpreter. This is achieved with the
command python Test.py before exit (B.13).

63

GIS Mobile Tool

QGIS Algorithm

QGIS Algorithm code configuration can be observed in appendix B.2.2. This
initial section of the script is responsible for preparing the environment for QGIS.
It adds the necessary paths for QGIS plugins, initializes the QGIS application,
and incorporates the native algorithms provider. Furthermore, it introduces and
configures a custom visibility provider, adding it to the processing registry. Finally,
it initializes the Processing module, which is crucial for executing geospatial
algorithms (B.14). The next script establishes a connection to an SQLite database
named raffaele.db. It creates a cursor to interact with the database and executes a
SELECT query on the ’DATA’ table. The retrieved data is stored in the variable
data from db for further processing. Finally, the database connection is closed
to ensure proper resource management (B.15). The third script enters a loop
to process each row of data retrieved from the database. Within this loop, it
executes specific QGIS algorithms using the Processing framework. Notably, it
generates points along a line and creates viewpoints for visibility analysis. The
loop structure allows the script to perform these operations iteratively for each
set of data from the database (B.16). The final section is responsible for exiting
the QGIS application. It calls the ’exitQgis()’ method to ensure proper cleanup
and termination of the QGIS environment. This step is crucial for maintaining
the stability of the application and freeing up resources associated with the QGIS
session (B.17).

4.3 Results

The output produced by the GIS Mobile Tool is visualized through an image on
the application, as depicted in figure 4.8. The output is displayed as an image
on the application, and it is composed of a map derived from OpenStreetMap,
with blue segments originating from the starting point and extending towards the
surrounding roads. The tool conducts the analysis within a 10,000-meter radius,
which allows for a comprehensive view of the area. The blue segments on the
output image represent the distance from the starting point to the surrounding
roads. This analysis provides valuable information to users, such as the distance
between two points, the best route to take, and the accessibility of different areas.
At the boundary of the output image, it is noticeable that the blue segments reach
halfway towards the surrounding roads, which signifies a commendable result. This
outcome highlights the accuracy of the algorithm used by the tool, which is crucial
for users who rely on the output for decision-making purposes.

64

GIS Mobile Tool

Figure 4.8: Visibility Analysis Result

4.3.1 Output Analysis

This section delves into the results obtained from the algorithm and elucidates the
correlation between the input parameters and the algorithm’s execution time. The
algorithm’s execution time is a crucial metric in achieving the set objectives and
directly influences the planning phase. Inadequate time allocation during this phase
can result in suboptimal outcomes. The first configuration under examination
involves a single observation point as input, with area analysis radius variations.
The graph 4.9 clearly illustrates the trend of execution time with six different input
rays. The first analysis radius is 5000 meters, a vast range allowing a complete
view. The plugin’s execution time is just around 30 seconds, an excellent result in
terms of planning. The most extensive analysis is conducted with a radius of 30000
meters, a comprehensive analysis that requires specific considerations for its use.
This analysis requires around 8 minutes, which is a tolerable time compared to the

65

GIS Mobile Tool

significant extension. Graph 4.9 shows that the times remain around two minute up
to 15000 meters but spike at 20000 meters radius. This favorable outcome covers
significant distances in a minute or less, and it is perfect for the requirements of
that application. The second configuration under examination involves multiple
observation points as input in a radius of 25 m, with area analysis radius variations.
The graph 4.10 clearly illustrates the trend of execution time with five different
input rays. The first analysis radius is 5000 meters, a vast range allowing a complete
view. The plugin’s execution time is just around 60 seconds, an excellent result
in terms of planning. The most extensive analysis is conducted with a radius of
25000 meters, and it requires around 5 hours, which is a tolerable time compared
to the significant extension. However, compared to other configurations, his time
is higher. Graph 4.10 shows that the times remain around seven minutes up to
15000 meters but spike at 20000 meters radius. The outcome is coherent with the
previous analysis and evidence that staying within 15000 meters for rapid request
analysis is better. Examining these results, one can be satisfied with the achieved
timelines. The GIS Mobile Tool is designed for on-the-fly situations without the
need for pre-planning. The response times and modes are satisfactory to fulfill its
intended purpose. The flexibility-oriented design allows the tool to adapt promptly
to various circumstances, ensuring a timely and effective response when needed.
The immediate and practical nature of the application proves particularly useful in
contexts where rapid intervention is crucial, and advance planning might not be
feasible.

Figure 4.9: Execution time for single point configuration

66

GIS Mobile Tool

Figure 4.10: Execution time for 25 m area configuration

4.3.2 Limitations

Analyzing the results generated by the GIS Mobile tool is fundamental to delin-
eating the limitations encountered. These limitations may manifest in various
forms, ranging from input values that significantly impede algorithmic execution
to constraints that necessitate the impracticability or redundancy of the algorithm.
Exploring these limitations, it is possible to assert that they are very similar to the
GIS Desk Tool ones. This approach is vital in creating solutions better suited to
end-user needs. The first limitation is the analysis radius, which cannot exceed
30000 m as in the GIS Desk Tool case. This is usually sufficient for most applica-
tions, but it can be restrictive for assessments that require analysis beyond this
range. In some cases, processing times can extend to several hours, affecting the
tool’s responsiveness. Another tool limitation involves the observation radius when
multiple observation points are used. As the observation area radius increases,
processing time increases significantly, especially when set above 25-30 m. This
limitation aligns with the strategic nature of stakeouts, where the extension has a
practical limit. The final limitation concerns data availability. Before utilizing the
GIS Mobile Tool, it’s necessary to prepare a database containing elevation models
and street files. In certain instances, there may be a need to extract or generate
this data for regions lacking it. This requirement introduces a preparatory step into
the tool’s workflow, limiting its adaptability to areas with pre-existing geospatial
data. Another limitation arises from the tool’s reliance on a single analysis, as

67

GIS Mobile Tool

opposed to the two available in the GIS Desk Tool. Additionally, the analysis
focuses solely on streets, excluding the broader surrounding area. This choice was
primarily made to ensure the tool’s responsiveness and speed. These limitations
underscore the importance of considering practical constraints, processing times,
and data availability when employing the GIS Mobile Tool in various contexts.

68

Chapter 5

Conclusion

This research analyzed the complexities and opportunities surrounding strategic
military operations within the rapidly evolving technological landscape. The
main goal was to address the increasing complexity of geopolitical dynamics by
utilizing Geographic Information Systems (GIS) technology. The main challenges
addressed were related to reducing planning timelines, the need for rapid adaptation
to dangerous situations, and the ability to operate in conditions with limited
connectivity. Military operations require careful planning and communication.
In situations where time is limited, technology can enhance responsiveness and
preparedness. Reliable communication is critical, and backup systems are necessary
in case of connectivity issues. Safety is also paramount, and technology can ensure
the safety of military personnel. The user needs to have an automatized area analysis
in the planning phase, rapid responses on the field, working offline, conducting
analyses starting from a point or an established area, and performing analyses
without prior preparation. The research demonstrates that the use of two GIS tools,
a desktop application for offline use and a mobile app for online scenarios, has
significantly enhanced the military’s capability to address operational challenges.
By improving response times and conducting a detailed analysis of terrain visibility,
the risks associated with mission failure have been drastically reduced. It is
important to note that the adaptability and speed of planning have also been
greatly enhanced, allowing for greater flexibility in military operations. The use of
GIS tools has the potential to revolutionize planning by saving precious time and
resources. This innovation helps to address several challenges, including adapting
to dangerous situations and proactively preventing issues in secure environments.
The impact of these tools extends beyond just operational efficiency. They can
represent a change point in planning and responsiveness on the field, allowing
for a strategic advantage in every situation. It is important to say that these
two tools operate in different conditions, yet exhibit very similar response times,
enabling their combined use in missions to cover a broader range of scenarios. It is

69

Conclusion

crucial to emphasize that the tools adapt to various available map data, whether
open, already available, or created. Looking ahead, there are many opportunities
for further development. Continuously refining these applications and making
them more accessible can enhance operational efficiency. Implementing advanced
algorithms with collaborations with other disciplines have the potential to yield
significant advancements. An important enhancement could be the integration of a
tool capable of autonomously recognizing roads around a designated point. This
capability would further reduce planning timelines and enhance the overall efficiency
of the tools. A further significant development could be the adaptation of the GIS
Mobile Tool also for Apple devices with the iOS operating system. At present, the
use of the tool on Android systems has an obvious limitation, as those who do not
have a device of this system are excluded from its use. The utilization of GIS tools
signifies a substantial leap forward, affording military leaders a clearer perspective
and a more rapid response to the continually evolving operational landscape. This
research evidence the significance of using advanced technologies to enhance the
safety of individuals, potentially making the workplace more comfortable and even
saving lives.

70

Appendix A

GIS Desk Tool

A.1 Plugin code development

A.1.1 Library import

1

2 __author__ = ’ R a f f a e l e Pezone ’
3 __date__ = ’ 2023−10−01 ’
4 __copyright__ = ’ (C) 2023 by R a f f a e l e Pezone ’
5

6 # This w i l l get r ep laced with a g i t SHA1 when you do a g i t a r ch ive
7

8 __revision__ = ’ $Format:%H$ ’
9

10 from qg i s . PyQt . QtCore import QCoreApplication
11 from qg i s . core import (QgsProcessing ,
12 QgsFeatureSink ,
13 QgsProject ,
14 QgsRasterLayer ,
15 QgsProcessingAlgorithm ,
16 QgsProcessingParameterNumber ,
17 QgsProcessingMultiStepFeedback ,
18 QgsProcess ingParameterRasterLayer ,
19 QgsProcessingParameterPoint ,
20 QgsProcessingParameterMapLayer ,
21 QgsProcess ingParameterFeatureSource ,
22 QgsProcess ingParameterFeatureSink ,
23 QgsProcess ingParameterRasterDest inat ion)
24 import p ro c e s s i ng

71

GIS Desk Tool

A.1.2 Class VisibilityAnalysisToolAlgorithm

1

2 c l a s s V i s i b i l i t yAna ly s i sToo lA lgo r i thm (QgsProcess ingAlgorithm) :
3

4 OUTPUT = ’OUTPUT’
5 INPUT = ’INPUT ’

Parameters initialization method

1

2 de f in i tA lgor i thm (s e l f , c o n f i g) :
3 " " "
4 Here we d e f i n e the inputs and output o f the algor ithm , along
5 with some other p r o p e r t i e s .
6 " " "
7 s e l f . addParameter (QgsProcess ingParameterRasterLayer (’

dtm_piemonte ’ , ’DTM or DSM’ , de fau l tVa lue=None))
8 s e l f . addParameter (QgsProcess ingParameterPoint (’ punto_di_oss2 ’

, ’ Observation Point Coordinates ’ , de fau l tVa lue=None))
9 s e l f . addParameter (QgsProcessingParameterNumber (’ raggio_pol ’ ,

’ Polygon Radius [m] ’ , type=QgsProcessingParameterNumber . Double ,
minValue=0, maxValue=100 , de fau l tVa lue =0, op t i ona l=True))

10 s e l f . addParameter (QgsProcessingParameterNumber (’
ragg io_ana l i s i_1 ’ , ’ Ana lys i s Radius 1 [m] ’ , type=
QgsProcessingParameterNumber . Double , minValue=0, maxValue=30000 ,
de fau l tVa lue =10000))

11 s e l f . addParameter (QgsProcessingParameterNumber (’
ragg io_ana l i s i_2 ’ , ’ Ana lys i s Radius 2 [m] ’ , type=
QgsProcessingParameterNumber . Double , minValue=0, maxValue=30000 ,
de fau l tVa lue =0, op t i ona l=True))

12 s e l f . addParameter (QgsProcessingParameterNumber (’ a l t e z z a os s ’ ,
’ Observer Height [m] ’ , type=QgsProcessingParameterNumber . Double ,

de fau l tVa lue =1.6))
13 s e l f . addParameter (QgsProcessingParameterNumber (’ a l t e z z a targ ’

, ’ Target Height [m] ’ , type=QgsProcessingParameterNumber . Double ,
de fau l tVa lue =0))

14 s e l f . addParameter (QgsProcessingParameterMapLayer (’ s t rada ’ , ’
S t r e e t s ’ , de fau l tVa lue=None , types =[QgsProcess ing . TypeVectorLine])
)

15 s e l f . addParameter (QgsProcess ingParameterFeatureSink (’ Strade ’ ,
’ S t r e e t s ’ , type=QgsProcess ing . TypeVectorAnyGeometry ,

createByDefau l t=True , de fau l tVa lue=None))

72

GIS Desk Tool

16 s e l f . addParameter (QgsProcess ingParameterFeatureSink (’
F ina lResu l t2 ’ , ’ F ina l Result Ana lys i s 2 ’ , type=QgsProcess ing .
TypeVectorAnyGeometry , createByDefau l t=True , de fau l tVa lue=None))

17 s e l f . addParameter (QgsProcess ingParameterFeatureSink (’
F ina lResu l t ’ , ’ F ina l Result Ana lys i s 1 ’ , type=QgsProcess ing .
TypeVectorAnyGeometry , createByDefau l t=True , de fau l tVa lue=None))

18 s e l f . addParameter (QgsProcess ingParameterRasterDest inat ion (’
A n a l i s i ’ , ’ Area Ana lys i s ’ , c reateByDefau l t=True , de fau l tVa lue=None
))

19 s e l f . addParameter (QgsProcess ingParameterFeatureSink (’ S i ’ , ’
Observation Point ’ , type=QgsProcess ing . TypeVectorPoint ,
c reateByDefau l t=True , de fau l tVa lue=None))

Process algorithm method

1

2 de f processAlgor i thm (s e l f , parameters , context , model_feedback) :
3 " " "
4 Here i s where the p ro c e s s i ng i t s e l f takes p lace .
5 " " "
6 # Use a multi−step feedback , so that i n d i v i d u a l c h i l d

a lgor i thm prog r e s s r e p o r t s are adjusted f o r the
7 # o v e r a l l p rog r e s s through the model
8 f eedback = QgsProcess ingMult iStepFeedback (5 , model_feedback)
9 r e s u l t s = {}

10 outputs = {}

Listing A.1: Create points pixel along the line
1

2 # Create po in t s p i x e l a long the l i n e
3 alg_params = {
4 ’INPUT_RASTER’ : parameters [’ dtm_piemonte ’] ,
5 ’INPUT_VECTOR’ : parameters [’ s t rada ’] ,
6 ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT
7 }
8 outputs [’ CreaPuntiCentroidiDelPixelLungoLaLinea ’] =

pro c e s s i n g . run (’ qg i s : g e n e r a t e p o i n t s p i x e l c e n t r o i d s a l o n g l i n e ’ ,
alg_params , context=context , feedback=feedback , i s_ch i ld_algor i thm
=True)

9

10 f eedback . setCurrentStep (1)
11 i f f eedback . i sCance l ed () :
12 re turn {}

73

GIS Desk Tool

Listing A.2: Create observation point
1

2 i f parameters [’ punto_di_oss2 ’] != None :
3

4 # Observation po int
5 alg_params = {
6 ’INPUT ’ : parameters [’ punto_di_oss2 ’] ,
7 ’OUTPUT’ : parameters [’ S i ’]
8 }
9 outputs [’ PuntoDiOsservazione ’] = pr o c e s s i ng . run (’

nat ive : p o i n t t o l a y e r ’ , alg_params , context=context , feedback=
feedback , i s_chi ld_algor i thm=True)

10 r e s u l t s [’ S i ’] = outputs [’ PuntoDiOsservazione ’] [’
OUTPUT’]

11

12 inp = outputs [’ PuntoDiOsservazione ’] [’OUTPUT’]
13

14 f eedback . setCurrentStep (3)
15 i f f eedback . i sCance l ed () :
16 re turn {}

Listing A.3: Create optional observation area
1

2 i f parameters [’ raggio_pol ’] != 0 :
3

4 # Buf f e r
5 alg_params = {
6 ’DISSOLVE ’ : False ,
7 ’DISTANCE ’ : parameters [’ raggio_pol ’] ,
8 ’END_CAP_STYLE’ : 0 , # Arrotondato
9 ’INPUT ’ : outputs [’ PuntoDiOsservazione ’] [’

OUTPUT’] ,
10 ’JOIN_STYLE ’ : 0 , # Arrotondato
11 ’MITER_LIMIT ’ : 2 ,
12 ’SEGMENTS’ : 5 ,
13 ’SEPARATE_DISJOINT ’ : False ,
14 ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT
15 }
16 outputs [’ Bu f f e r ’] = pro c e s s i n g . run (’ nat ive : b u f f e r

’ , alg_params , context=context , feedback=feedback ,
i s_chi ld_algor i thm=True)

Listing A.4: Create point inside the optional observation area
1

2 # Generate po int i n s i d e the polygon
3 alg_params = {
4 ’INPUT_RASTER’ : parameters [’ dtm_piemonte ’] ,

74

GIS Desk Tool

5 ’INPUT_VECTOR’ : outputs [’ Bu f f e r ’] [’OUTPUT’] ,
6 ’OUTPUT’ : parameters [’ S i ’]
7 }
8 outputs [’

GeneraPunt iCentro id iDe iPixe lDentroPol igon i ’] = pro c e s s i n g . run (’
nat ive : g e n e r a t e p o i n t s p i x e l c e n t r o i d s i n s i d e p o l y g o n s ’ , alg_params ,
context=context , feedback=feedback , i s_chi ld_algor i thm=True)

9 r e s u l t s [’ S i ’] = outputs [’
GeneraPunt iCentro id iDe iPixe lDentroPol igon i ’] [’OUTPUT’]

10

11 inp = outputs [’
GeneraPunt iCentro id iDe iPixe lDentroPol igon i ’] [’OUTPUT’]

12

13 f eedback . setCurrentStep (1)
14 i f f eedback . i sCance l ed () :
15 re turn {}

Listing A.5: Create observation viewpoint
1

2 # PUNTO
3 alg_params = {
4 ’ANGLE_DOWN_FIELD’ : ’ ’ ,
5 ’ANGLE_UP_FIELD’ : ’ ’ ,
6 ’AZIM_1_FIELD ’ : ’ ’ ,
7 ’AZIM_2_FIELD ’ : ’ ’ ,
8 ’DEM’ : parameters [’ dtm_piemonte ’] ,
9 ’OBSERVER_ID’ : ’ ’ ,

10 ’OBSERVER_POINTS ’ : inp ,
11 ’OBS_HEIGHT’ : parameters [’ a l t e z z a os s ’] ,
12 ’OBS_HEIGHT_FIELD ’ : ’ ’ ,
13 ’RADIUS ’ : parameters [’ ragg io_ana l i s i_1 ’] ,
14 ’RADIUS_FIELD ’ : ’ ’ ,
15 ’RADIUS_IN_FIELD ’ : ’ ’ ,
16 ’TARGET_HEIGHT’ : parameters [’ a l t e z z a targ ’] ,
17 ’TARGET_HEIGHT_FIELD’ : ’ ’ ,
18 ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT
19 }
20 outputs [’ Punto ’] = p ro c e s s i ng . run (’ v i s i b i l i t y :

c r ea t ev i ewpo in t s ’ , alg_params , context=context , feedback=feedback ,
i s_chi ld_algor i thm=True)

21

22 f eedback . setCurrentStep (2)
23 i f f eedback . i sCance l ed () :
24 re turn {}

Listing A.6: Create streets viewpoint
1

75

GIS Desk Tool

2 # STR
3 alg_params = {
4 ’ANGLE_DOWN_FIELD’ : ’ ’ ,
5 ’ANGLE_UP_FIELD’ : ’ ’ ,
6 ’AZIM_1_FIELD ’ : ’ ’ ,
7 ’AZIM_2_FIELD ’ : ’ ’ ,
8 ’DEM’ : parameters [’ dtm_piemonte ’] ,
9 ’OBSERVER_ID’ : ’ ’ ,

10 ’OBSERVER_POINTS ’ : outputs [’
CreaPuntiCentroidiDelPixelLungoLaLinea ’] [’OUTPUT’] ,

11 ’OBS_HEIGHT’ : parameters [’ a l t e z z a os s ’] ,
12 ’OBS_HEIGHT_FIELD ’ : ’ ’ ,
13 ’RADIUS ’ : parameters [’ ragg io_ana l i s i_1 ’] ,
14 ’RADIUS_FIELD ’ : ’ ’ ,
15 ’RADIUS_IN_FIELD ’ : ’ ’ ,
16 ’TARGET_HEIGHT’ : parameters [’ a l t e z z a targ ’] ,
17 ’TARGET_HEIGHT_FIELD’ : ’ ’ ,
18 ’OUTPUT’ : parameters [’ Strade ’]
19 }
20 outputs [’ Str ’] = pro c e s s i ng . run (’ v i s i b i l i t y : c r ea t ev i ewpo in t s ’

, alg_params , context=context , feedback=feedback ,
i s_chi ld_algor i thm=True)

21 r e s u l t s [’ Strade ’] = outputs [’ Str ’] [’OUTPUT’]
22

23 f eedback . setCurrentStep (3)
24 i f f eedback . i sCance l ed () :
25 re turn {}

Listing A.7: Create viewshed
1

2 # Viewshed
3 alg_params = {
4 ’ANALYSIS_TYPE ’ : 0 , # Binary viewshed
5 ’DEM’ : parameters [’ dtm_piemonte ’] ,
6 ’OBSERVER_POINTS ’ : outputs [’ Punto ’] [’OUTPUT’] ,
7 ’OPERATOR’ : 1 , # Addit ion
8 ’REFRACTION’ : 0 . 13 ,
9 ’USE_CURVATURE’ : True ,

10 ’OUTPUT’ : parameters [’ A n a l i s i ’]
11 }
12 outputs [’ Viewshed ’] = pro c e s s i ng . run (’ v i s i b i l i t y : viewshed ’ ,

alg_params , context=context , feedback=feedback , i s_ch i ld_algor i thm
=True)

13 r e s u l t s [’ A n a l i s i ’] = outputs [’ Viewshed ’] [’OUTPUT’]
14

15 f eedback . setCurrentStep (4)
16 i f f eedback . i sCance l ed () :
17 re turn {}

76

GIS Desk Tool

Listing A.8: Create intervisibility network
1

2 # I n t e r v i s i b i l i t y network
3 alg_params = {
4 ’DEM’ : parameters [’ dtm_piemonte ’] ,
5 ’OBSERVER_POINTS ’ : outputs [’ Punto ’] [’OUTPUT’] ,
6 ’REFRACTION’ : 0 . 13 ,
7 ’TARGET_POINTS’ : outputs [’ Str ’] [’OUTPUT’] ,
8 ’USE_CURVATURE’ : True ,
9 ’WRITE_NEGATIVE’ : False ,

10 ’OUTPUT’ : parameters [’ F ina lResu l t ’]
11 }
12 outputs [’ I n t e r v i s i b i l i t y N e t w o r k ’] = pro c e s s i n g . run (’

v i s i b i l i t y : i n t e r v i s i b i l i t y ’ , alg_params , context=context , feedback
=feedback , i s_ch i ld_algor i thm=True)

13 r e s u l t s [’ F ina lResu l t ’] = outputs [’ I n t e r v i s i b i l i t y N e t w o r k ’] [’
OUTPUT’]

Listing A.9: Create observation viewpoint 2
1

2 i f parameters [’ ragg io_ana l i s i_2 ’] != 0 :
3 # PUNTO 2
4 alg_params = {
5 ’ANGLE_DOWN_FIELD’ : ’ ’ ,
6 ’ANGLE_UP_FIELD’ : ’ ’ ,
7 ’AZIM_1_FIELD ’ : ’ ’ ,
8 ’AZIM_2_FIELD ’ : ’ ’ ,
9 ’DEM’ : parameters [’ dtm_piemonte ’] ,

10 ’OBSERVER_ID’ : ’ ’ ,
11 ’OBSERVER_POINTS ’ : inp ,
12 ’OBS_HEIGHT’ : parameters [’ a l t e z z a os s ’] ,
13 ’OBS_HEIGHT_FIELD ’ : ’ ’ ,
14 ’RADIUS ’ : parameters [’ ragg io_ana l i s i_2 ’] ,
15 ’RADIUS_FIELD ’ : ’ ’ ,
16 ’RADIUS_IN_FIELD ’ : ’ ’ ,
17 ’TARGET_HEIGHT’ : parameters [’ a l t e z z a targ ’] ,
18 ’TARGET_HEIGHT_FIELD’ : ’ ’ ,
19 ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT
20 }
21 outputs [’ Punto2 ’] = pro c e s s i ng . run (’ v i s i b i l i t y :

c r ea t ev i ewpo in t s ’ , alg_params , context=context , feedback=feedback ,
i s_chi ld_algor i thm=True)

22

23 f eedback . setCurrentStep (2)
24 i f f eedback . i sCance l ed () :
25 re turn {}

77

GIS Desk Tool

Listing A.10: Create streets viewpoint
1

2 # STR 2
3 alg_params = {
4 ’ANGLE_DOWN_FIELD’ : ’ ’ ,
5 ’ANGLE_UP_FIELD’ : ’ ’ ,
6 ’AZIM_1_FIELD ’ : ’ ’ ,
7 ’AZIM_2_FIELD ’ : ’ ’ ,
8 ’DEM’ : parameters [’ dtm_piemonte ’] ,
9 ’OBSERVER_ID’ : ’ ’ ,

10 ’OBSERVER_POINTS ’ : outputs [’
CreaPuntiCentroidiDelPixelLungoLaLinea ’] [’OUTPUT’] ,

11 ’OBS_HEIGHT’ : parameters [’ a l t e z z a os s ’] ,
12 ’OBS_HEIGHT_FIELD ’ : ’ ’ ,
13 ’RADIUS ’ : parameters [’ ragg io_ana l i s i_2 ’] ,
14 ’RADIUS_FIELD ’ : ’ ’ ,
15 ’RADIUS_IN_FIELD ’ : ’ ’ ,
16 ’TARGET_HEIGHT’ : parameters [’ a l t e z z a targ ’] ,
17 ’TARGET_HEIGHT_FIELD’ : ’ ’ ,
18 ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT
19 }
20 outputs [’ Str2 ’] = pro c e s s i ng . run (’ v i s i b i l i t y :

c r ea t ev i ewpo in t s ’ , alg_params , context=context , feedback=feedback ,
i s_chi ld_algor i thm=True)

21

22

23 f eedback . setCurrentStep (3)
24 i f f eedback . i sCance l ed () :
25 re turn {}

Listing A.11: Create intervisibility network 2
1

2 # I n t e r v i s i b i l i t y network2
3 alg_params = {
4 ’DEM’ : parameters [’ dtm_piemonte ’] ,
5 ’OBSERVER_POINTS ’ : outputs [’ Punto2 ’] [’OUTPUT’] ,
6 ’REFRACTION’ : 0 . 13 ,
7 ’TARGET_POINTS’ : outputs [’ Str2 ’] [’OUTPUT’] ,
8 ’USE_CURVATURE’ : True ,
9 ’WRITE_NEGATIVE’ : False ,

10 ’OUTPUT’ : parameters [’ F ina lResu l t2 ’]
11 }
12 outputs [’ I n t e r v i s i b i l i t y N e t w o r k 2 ’] = pro c e s s i n g . run (’

v i s i b i l i t y : i n t e r v i s i b i l i t y ’ , alg_params , context=context , feedback
=feedback , i s_ch i ld_algor i thm=True)

13 r e s u l t s [’ F ina lResu l t2 ’] = outputs [’
I n t e r v i s i b i l i t y N e t w o r k 2 ’] [’OUTPUT’]

14

78

GIS Desk Tool

15

16 re turn r e s u l t s

A.1.3 Name definition method

1

2 de f name(s e l f) :
3 " " "
4 Returns the a lgor i thm name , used f o r i d e n t i f y i n g the

a lgor i thm . This
5 s t r i n g should be f i x e d f o r the algor ithm , and must not be

l o c a l i s e d .
6 The name should be unique with in each prov ide r . Names should

conta in
7 l owercase alphanumeric ch a ra c t e r s only and no spaces or other
8 f o rmatt ing c ha ra c t e r s .
9 " " "

10 re turn ’ V i s i b i l i t y Ana lys i s Tool ’

A.1.4 DisplayName definition method

1

2 de f displayName (s e l f) :
3 " " "
4 Returns the t r a n s l a t e d a lgor i thm name , which should be used

f o r any
5 user−v i s i b l e d i sp l ay o f the a lgor i thm name .
6 " " "
7 re turn s e l f . t r (s e l f . name ())

A.1.5 Group definition method

1

2 de f group (s e l f) :
3 " " "
4 Returns the name o f the group t h i s a lgor i thm be longs to . This

s t r i n g
5 should be l o c a l i s e d .
6 " " "

79

GIS Desk Tool

7 re turn s e l f . t r (s e l f . groupId ())

A.1.6 GroupID definition method

1

2 de f groupId (s e l f) :
3 " " "
4 Returns the unique ID o f the group t h i s a lgor i thm be longs to .

This
5 s t r i n g should be f i x e d f o r the algor ithm , and must not be

l o c a l i s e d .
6 The group id should be unique with in each prov ide r . Group id

should
7 conta in lowercase alphanumeric c ha ra c t e r s only and no spaces

or other
8 f o rmatt ing c ha ra c t e r s .
9 " " "

10 re turn ’ ’

A.1.7 Try definition method

1

2 de f t r (s e l f , s t r i n g) :
3 re turn QCoreApplication . t r a n s l a t e (’ Proce s s ing ’ , s t r i n g)

A.1.8 Create instance definition method

1

2 de f c r e a t e I n s t a n c e (s e l f) :
3 re turn V i s i b i l i t yAna ly s i sToo lA l go r i thm ()

80

Appendix B

GIS Mobile Tool

B.1 Front-End

Listing B.1: MyApp definition
1

2 import ’ dart : convert ’ ;
3 import ’ dart : typed_data ’ ;
4 import ’ package : http / http . dart ’ as http ;
5 import ’ package : f l u t t e r / mate r i a l . dart ’ ;
6 import ’ package : p rov ide r / prov ide r . dart ’ ;
7

8 void main () {
9 runApp(MyApp()) ;

10 }

Listing B.2: MyAppState
1 c l a s s MyApp extends State l e s sWidget {
2 @overr ide
3 Widget bu i ld (BuildContext context) {
4 re turn ChangeNot i f i e rProv ider (
5 c r e a t e : (context) => MyAppState () ,
6 c h i l d : MaterialApp (
7 t i t l e : ’Namer App ’ ,
8 theme : ThemeData(
9 useMater ia l3 : true ,

10 colorScheme : ColorScheme . fromSeed (seedColor : Colors .
deepOrange) ,

11 sca f fo ldBackgroundColor : Colors . l i ghtGreen [1 0 0] ,
12) ,
13 home : MyHomePage () ,
14) ,
15) ;

81

GIS Mobile Tool

16 }
17 }
18

19 c l a s s MyAppState extends ChangeNot i f i e r {
20 bool _isLoggedIn = f a l s e ;
21

22 bool get i sLoggedIn => _isLoggedIn ;
23

24 f i n a l TextEd i t ingContro l l e r _coord inateCont ro l l e r =
TextEd i t ingContro l l e r () ;

25 f i n a l TextEd i t ingContro l l e r _rad iusCont ro l l e r =
TextEd i t ingContro l l e r () ;

26 f i n a l TextEd i t ingContro l l e r _ana ly s i sRad iusContro l l e r =
27 TextEd i t ingContro l l e r () ;
28

29 void authent i ca t e (S t r ing username , S t r ing password) async {
30 f i n a l r e sponse = await http . post (
31 Uri . parse (’ http : / / 1 9 2 . 1 6 8 . 1 . 2 2 7 : 5 0 0 0 / l o g i n ’) ,
32 headers : {
33 ’ Content−Type ’ : ’ a p p l i c a t i o n / j son ’ ,
34 ’X−Requested−With ’ : ’ XMLHttpRequest ’ ,
35 } ,
36 body : jsonEncode ({
37 ’ username ’ : username ,
38 ’ password ’ : password ,
39 }) ,
40) ;
41

42 i f (r e sponse . statusCode == 200) {
43 _isLoggedIn = true ;
44 n o t i f y L i s t e n e r s () ;
45 } e l s e {
46 pr in t (’ Errore d i a u t e n t i c a z i o n e ’) ;
47 }
48 }
49

50 void logout () async {
51 f i n a l r e sponse = await http . post (
52 Uri . parse (’ http : / / 1 9 2 . 1 6 8 . 1 . 2 2 7 : 5 0 0 0 / logout ’) ,
53) ;
54

55 i f (r e sponse . statusCode == 200) {
56 _isLoggedIn = f a l s e ;
57 _coord inateContro l l e r . t ex t = ’ ’ ;
58 _rad iusContro l l e r . t ex t = ’ ’ ;
59 _ana lys i sRad iusContro l l e r . t ex t = ’ ’ ;
60 n o t i f y L i s t e n e r s () ;
61 } e l s e {
62 pr in t (’ Errore d i l ogout ’) ;

82

GIS Mobile Tool

63 }
64 }
65

66 void sendDataToBackend (
67 St r ing coord inate s , S t r ing radius , S t r ing ana ly s i sRad ius) async

{
68 Map<Str ing , dynamic> dataMap = {
69 ’ Coordinates ’ : coord inate s ,
70 ’ Radius ’ : rad ius ,
71 ’ Analys i sRadius ’ : ana lys i sRadius ,
72 } ;
73

74 f i n a l r e sponse = await http . post (
75 Uri . parse (’ http : / / 1 9 2 . 1 6 8 . 1 . 2 2 7 : 5 0 0 0 / send_data ’) ,
76 headers : {
77 ’ Content−Type ’ : ’ a p p l i c a t i o n / j son ’ ,
78 } ,
79 body : jsonEncode (dataMap) ,
80) ;
81

82 i f (r e sponse . statusCode == 200) {
83 pr in t (’ Risposta dal backend : ’) ;
84 } e l s e {
85 pr in t (’ Errore d i i n v i o da t i a l backend : ’) ;
86 }
87 }
88

89 void getImage (BuildContext context) async {
90 f i n a l r e sponse = await http . get (
91 Uri . parse (’ http : / / 1 9 2 . 1 6 8 . 1 . 2 2 7 : 5 0 0 0 / get_image ’) ,
92 headers : {
93 ’ Connection ’ : ’ keep−a l i v e ’ , // Adding Keep−Al ive header
94 } ,
95) ;
96

97 i f (r e sponse . statusCode == 200) {
98 pr in t (’ Lunghezza immagine : ${ response . bodyBytes . l ength } ’) ;
99 Navigator . push (

100 context ,
101 MaterialPageRoute (
102 b u i l d e r : (context) => NewPage(imageBytes : r e sponse .

bodyBytes) ,
103) ,
104) ;
105 } e l s e {
106 pr in t (’ Errore durante i l recupero d e l l \ ’ immagine ’) ;
107 }
108 }
109 }

83

GIS Mobile Tool

Listing B.3: MyHomePage
1

2 c l a s s MyHomePage extends State l e s sWidget {
3 @overr ide
4 Widget bu i ld (BuildContext context) {
5 var appState = Provider . of<MyAppState>(context) ;
6

7 i f (appState . i sLoggedIn) {
8 re turn S c a f f o l d (
9 appBar : AppBar(

10 t i t l e : Text (’GIS MOBILE TOOL’) ,
11) ,
12 body : Center (
13 c h i l d : Column(
14 mainAxisAlignment : MainAxisAlignment . center ,
15 c h i l d r e n : [
16 Container (
17 width : 200 ,
18 c h i l d : TextFie ld (
19 c o n t r o l l e r : appState . _coord inateContro l l e r ,
20 decora t i on : InputDecorat ion (
21 l abe lText : ’ I n s e r t coo rd ina t e s ’ ,
22 border : Outl ineInputBorder () ,
23) ,
24) ,
25) ,
26 SizedBox (he ight : 40) ,
27 Container (
28 width : 200 ,
29 c h i l d : TextFie ld (
30 c o n t r o l l e r : appState . _rad iusContro l l e r ,
31 decora t i on : InputDecorat ion (
32 l abe lText : ’ I n s e r t rad iu s [m] [op t i ona l] ’ ,
33 border : Outl ineInputBorder () ,
34) ,
35) ,
36) ,
37 SizedBox (he ight : 40) ,
38 Container (
39 width : 200 ,
40 c h i l d : TextFie ld (
41 c o n t r o l l e r : appState . _ana lys i sRad iusContro l l e r ,
42 decora t i on : InputDecorat ion (
43 l abe lText : ’ I n s e r t Ana lys i s Radius [m] ’ ,
44 border : Outl ineInputBorder () ,
45) ,
46) ,
47) ,
48 SizedBox (he ight : 40) ,

84

GIS Mobile Tool

49 ElevatedButton (
50 onPressed : () {
51 St r ing coo rd ina t e s = appState . _coord inateContro l l e r

. t ex t ;
52 St r ing rad iu s = appState . _rad iusCont ro l l e r . t ex t ;
53 St r ing ana ly s i sRad ius =
54 appState . _ana ly s i sRad iusContro l l e r . t ex t ;
55 appState . sendDataToBackend (
56 coord inate s , radius , ana ly s i sRad ius) ;
57 pr in t (’ button pre s sed ! ’) ;
58 } ,
59 c h i l d : Text (’ Send Parameters ’) ,
60) ,
61 SizedBox (he ight : 20) ,
62 ElevatedButton (
63 onPressed : () {
64 Navigator . push (
65 context ,
66 MaterialPageRoute (
67 b u i l d e r : (context) => NewPage(imageBytes :

n u l l)) ,
68) ;
69 } ,
70 c h i l d : Text (’ V i s u a l i z e Output ’) ,
71) ,
72 SizedBox (he ight : 20) ,
73 ElevatedButton (
74 onPressed : () {
75 appState . l ogout () ;
76 } ,
77 c h i l d : Text (’ Logout ’) ,
78) ,
79] ,
80) ,
81) ,
82) ;
83 } e l s e {
84 re turn LoginPage () ;
85 }
86 }
87 }

Listing B.4: NewPage
1

2 c l a s s NewPage extends State l e s sWidget {
3 f i n a l L i s t <int >? imageBytes ;
4

5 NewPage({ r equ i r ed t h i s . imageBytes }) ;

85

GIS Mobile Tool

6

7 @overr ide
8 Widget bu i ld (BuildContext context) {
9 var appState = Provider . of<MyAppState>(context) ;

10

11 re turn S c a f f o l d (
12 appBar : AppBar(
13 t i t l e : Text (’ V i s i b i l i t y Ana lys i s ’) ,
14) ,
15 body : S ing l eCh i ldSc ro l lV i ew (
16 c h i l d : Center (
17 c h i l d : Column(
18 mainAxisAlignment : MainAxisAlignment . center ,
19 c h i l d r e n : [
20 SizedBox (he ight : 20) ,
21 ElevatedButton (
22 onPressed : () {
23 appState . getImage (context) ;
24 } ,
25 c h i l d : Text (’ V i s u a l i z e V i s i b i l i t y Ana lys i s ’) ,
26) ,
27 SizedBox (he ight : 20) ,
28 i f (imageBytes != n u l l)
29 Container (
30 width : double . i n f i n i t y , // Use the f u l l width

a v a i l a b l e
31 c h i l d : Image . memory(
32 Uint8Li s t . f romList (imageBytes !) ,
33 f i t : BoxFit . contain , // Choose the appropr ia te

f i t
34) ,
35) ,
36] ,
37) ,
38) ,
39) ,
40) ;
41 }
42 }

Listing B.5: LoginPage
1

2 c l a s s LoginPage extends State l e s sWidget {
3 @overr ide
4 Widget bu i ld (BuildContext context) {
5 re turn S c a f f o l d (
6 appBar : AppBar(
7 t i t l e : Text (’ Login Page ’) ,

86

GIS Mobile Tool

8) ,
9 body : Padding (

10 padding : const EdgeInsets . a l l (1 6 . 0) ,
11 c h i l d : LoginForm () ,
12) ,
13) ;
14 }
15 }

Listing B.6: LoginForm
1

2 c l a s s LoginForm extends State fu lWidget {
3 @overr ide
4 _LoginFormState c r e a t e S t a t e () => _LoginFormState () ;
5 }
6

7 c l a s s _LoginFormState extends State<LoginForm> {
8 f i n a l TextEd i t ingContro l l e r _usernameControl ler =

TextEd i t ingContro l l e r () ;
9 f i n a l TextEd i t ingContro l l e r _passwordControl ler =

TextEd i t ingContro l l e r () ;
10

11 @overr ide
12 Widget bu i ld (BuildContext context) {
13 re turn Column(
14 crossAxisAl ignment : CrossAxisAlignment . center ,
15 mainAxisAlignment : MainAxisAlignment . center ,
16 c h i l d r e n : [
17 TextFie ld (
18 c o n t r o l l e r : _usernameControl ler ,
19 decora t i on : InputDecorat ion (labe lText : ’ Username ’) ,
20) ,
21 TextFie ld (
22 c o n t r o l l e r : _passwordControl ler ,
23 obscureText : true ,
24 decora t i on : InputDecorat ion (labe lText : ’ Password ’) ,
25) ,
26 SizedBox (he ight : 20) ,
27 ElevatedButton (
28 onPressed : () {
29 var appState = Provider . of<MyAppState>(context , l i s t e n :

f a l s e) ;
30 appState . au thent i ca t e (
31 _usernameControl ler . text ,
32 _passwordControl ler . text ,
33) ;
34 } ,
35 c h i l d : Text (’ Login ’) ,

87

GIS Mobile Tool

36) ,
37] ,
38) ;
39 }
40 }

B.2 Back-End

Listing B.7: Configuration
1

2 from f l a s k import Flask , request , j s o n i f y , s end_f i l e , s e s s i o n
3 from f l a sk_co r s import CORS
4 import s q l i t e 3
5 import j son
6 import geopandas as gpd
7 import matp lo t l i b . pyplot as p l t
8 import c o n t e x t i l y as ctx
9 import subproces s

10

11 app = Flask (__name__)
12 CORS(app)
13

14 app . secret_key = ’ your_secret_key ’

Listing B.8: Database Connection
1

2 # Database Connection
3 de f connect_db () :
4 re turn s q l i t e 3 . connect (’ r a f f a e l e . db ’)

Listing B.9: Authentication
1

2 @app . route (’ / l o g i n ’ , methods=[’POST ’])
3 de f l o g i n () :
4 data = reques t . get_json ()
5

6 username = data . get (’ username ’)
7 password = data . get (’ password ’)
8

9 conn = connect_db ()
10 cur so r = conn . cur so r ()
11 cur so r . execute (’SELECT ∗ FROM USER WHERE username=? AND password

=? ’ , (username , password))
12 user = cur so r . f e t chone ()

88

GIS Mobile Tool

13 conn . c l o s e ()
14

15 i f u ser :
16 s e s s i o n [’ username ’] = username
17 re turn j s o n i f y ({ ’ message ’ : ’ Login succ e s s o ’ }) , 200
18 e l s e :
19 re turn j s o n i f y ({ ’ message ’ : ’ C r e d e n z i a l i non v a l i d e ’ }) , 401
20

21 # Logout
22 @app . route (’ / logout ’ , methods=[’POST ’])
23 de f logout () :
24 s e s s i o n . pop (’ username ’ , None)
25 re turn j s o n i f y ({ ’ message ’ : ’ Logout suc c e s s o ’ }) , 200
26

27 # Login Check
28 @app . route (’ / check_login ’ , methods=[’GET’])
29 de f check_login () :
30 i f ’ username ’ in s e s s i o n :
31 re turn j s o n i f y ({ ’ logged_in ’ : True , ’ username ’ : s e s s i o n [’

username ’] }) , 200
32 e l s e :
33 re turn j s o n i f y ({ ’ logged_in ’ : Fa l se }) , 200

Listing B.10: Data Send
1

2 # Endpoint
3 @app . route (’ / send_data ’ , methods=[’POST ’])
4 de f send_data () :
5 data = reques t . get_json ()
6 pr in t (’ Dati r i c e v u t i : ’ , data)
7

8 coo rd ina t e s = data [" Coordinates "]
9 rad iu s = data [" Radius "]

10 rad ius1 = data [" Analys i sRadius "]
11

12 conn = connect_db ()
13 cur so r = conn . cur so r ()
14 cur so r . execute (’SELECT ∗ FROM DATA WHERE Coordinates=? ’ , (

coord inate s ,))
15 ex i s t ing_data = cur so r . f e t chone ()
16

17 i f ex i s t ing_data :
18 cur so r . execute (’UPDATE DATA SET Radius=?, Analys i sRadius=?

WHERE Coordinates=? ’ , (radius , radius1 , c oo rd ina t e s))
19

20 e l s e :
21 cur so r . execute (’INSERT INTO DATA (Coordinates , Radius ,

Analys i sRadius) VALUES (? , ? , ?) ’ , (coord inate s , radius , rad ius1))

89

GIS Mobile Tool

22

23 conn . commit ()
24 conn . c l o s e ()
25

26 re turn j s o n i f y ({ ’ message ’ : ’ Dati r i c e v u t i con succ e s so e s a l v a t i
ne l database ’ }) , 200

Listing B.11: Get Image
1

2 @app . route (’ /get_image ’ , methods=[’GET’])
3 de f get_image () :
4

5 percor so_f i l e_batch = r "C: / Users / r a f f a /Desktop/APPLICAZIONE/
QGISenv . bat "

6

7 r e s u l t = subproces s . run ([pe rcor so_f i l e_batch] , s h e l l=True)
8

9 i f r e s u l t . r e turncode == 0 :
10 pr in t (" I l f i l e batch è s t a to e s e g u i t o con succ e s s o . ")
11 e l s e :
12 pr in t (f " Errore durante l ’ e s e cuz i one de l f i l e batch . Codice d i

r i t o r n o : { r e s u l t . re turncode } ")
13

14 f i l e_path_pol igono = "C:/ Users / r a f f a /Desktop/INTER. gpkg "
15 f i le_path_punto = "C:/ Users / r a f f a /Desktop/PUNTO. gpkg "
16

17 gdf_pol igono = gpd . r e a d _ f i l e (f i l e_path_pol igono)
18 gdf_punto = gpd . r e a d _ f i l e (f i le_path_punto)
19

20 f i g , ax = p l t . subp lo t s (f i g s i z e =(10 , 10))
21

22 gdf_punto . p l o t (ax=ax , c o l o r=’ red ’ , markers i ze =10)
23

24 gdf_pol igono . p l o t (ax=ax , c o l o r=’ blue ’ , alpha =0.5)
25

26 ctx . add_basemap (ax , c r s=gdf_pol igono . c r s . to_st r ing () , source=ctx .
p rov ide r s . OpenStreetMap . Mapnik)

27

28 image_path = ’C: / Users / r a f f a /Desktop/ fo to1 . png ’
29 f i g . s a v e f i g (image_path , bbox_inches=’ t i g h t ’ , dpi =300)
30

31 p l t . c l o s e (f i g)
32

33 re turn s end_f i l e (image_path , mimetype=’ image/png ’)

Listing B.12: Flask App Launch
1

90

GIS Mobile Tool

2 i f __name__ == ’__main__ ’ :
3 app . run (host=’ 0 . 0 . 0 . 0 ’ , port =5000 , debug=True)

B.2.1 Batch File

Listing B.13: QGIS Environment Set
1

2 @echo o f f
3 REM This i s a boots t rap s c r i p t f o r Windows to s e t up the environment

f o r an a p p l i c a t i o n that depends on QGIS .
4

5 SET OSGEO4W_ROOT=C: \ Program F i l e s \QGIS 3 . 3 2 . 0
6 SET QGIS_PREFIX=%OSGEO4W_ROOT%\apps\ qg i s
7 SET PATH=%QGIS_PREFIX%\bin ;%OSGWO4W_ROOT%\bin ;%PATH%
8 SET PYTHONPATH=%QGIS_PREFIX%\python;%OSEO4W_ROOT%\apps\Python39;%

QGIS_PREFIX%\python\ p lug in s ;%PYTHONPATH%
9 SET PYTHONHOME=%OSGEO4W_ROOT%\apps\Python39

10 SET QT_PLUGIN_PATH = %OSGEO4W_ROOT%\apps\Qt5\ p lug in s
11

12

13 REM Launch python job
14

15 python Test . py
16

17 REM Esc i d a l l o s c r i p t
18 e x i t

B.2.2 QGIS Algorithm

Listing B.14: Inizializing
1

2 from qg i s . core import QgsApplication , QgsProcess ing
3 from qg i s . a n a l y s i s import QgsNativeAlgorithms
4

5 import s q l i t e 3
6 import sys
7 sys . path . append (’C: / Program F i l e s /QGIS 3 . 3 2 . 0 / apps/ qg i s /python/

p lug in s ’)
8

9 qgs = QgsAppl icat ion ([] , True)
10

11 # Load prov ide r s
12 qgs . i n i t Q g i s ()
13 QgsAppl icat ion . p r o c e s s i n g R e g i s t r y () . addProvider (QgsNativeAlgorithms ()

)

91

GIS Mobile Tool

14

15 from qg i s . p r o c e s s i n g import ∗
16 import p ro c e s s i ng
17 from proc e s s i ng . core . Proce s s ing import Proce s s ing
18

19 from ViewshedAnalysis . v i s i b i l i t y _ p r o v i d e r import V i s i b i l i t y P r o v i d e r
20

21 prov ide r = V i s i b i l i t y P r o v i d e r ()
22

23 QgsAppl icat ion . p r o c e s s i n g R e g i s t r y () . addProvider (prov ide r)
24

25 prov ide r . loadAlgor i thms ()
26

27 Proce s s ing . i n i t i a l i z e ()
28

29 #f o r a lg in QgsAppl icat ion . p r o c e s s i n g R e g i s t r y () . a lgor i thms () :
30 #pr in t (a l g . id () , "−>", a l g . displayName ())

Listing B.15: Database Connection
1

2 # DATABASE
3 conn = s q l i t e 3 . connect (’ r a f f a e l e . db ’)
4 cur so r = conn . cur so r ()
5

6 cur so r . execute (’SELECT ∗ FROM DATA’)
7 data_from_db = cur so r . f e t c h a l l ()
8

9 conn . c l o s e ()

Listing B.16: QGIS Call
1

2 #ALGORITHM
3 f o r row in data_from_db :
4

5 outputs = {}
6

7 #STREETS
8 outputs [’ CreaPuntiCentroidiDelPixelLungoLaLinea ’] =

pro c e s s i n g . run (" qg i s : g e n e r a t e p o i n t s p i x e l c e n t r o i d s a l o n g l i n e " , { ’
INPUT_RASTER’ : ’C: / Users / r a f f a /Desktop/Qgis /w50540_s10 . t i f ’ , ’
INPUT_VECTOR’ : ’C: / Users / r a f f a /Documents/STRADE. shp | layername=
STRADE’ , ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT})

92

GIS Mobile Tool

9 outputs [’ Str ’] = pro c e s s i ng . run (" v i s i b i l i t y : c r ea t ev i ewpo in t s "
, { ’OBSERVER_POINTS ’ : outputs [’
CreaPuntiCentroidiDelPixelLungoLaLinea ’] [’OUTPUT’] , ’DEM’ : ’C: / Users
/ r a f f a /Desktop/Qgis /w50540_s10 . t i f ’ , ’OBSERVER_ID’ : ’ ’ , ’RADIUS ’ : row
[2] , ’RADIUS_FIELD ’ : ’ ’ , ’OBS_HEIGHT’ : 1 . 6 , ’OBS_HEIGHT_FIELD ’ : ’ ’ , ’
TARGET_HEIGHT’ : 0 , ’TARGET_HEIGHT_FIELD’ : ’ ’ , ’RADIUS_IN_FIELD ’ : ’ ’ , ’
AZIM_1_FIELD ’ : ’ ’ , ’AZIM_2_FIELD ’ : ’ ’ , ’ANGLE_UP_FIELD’ : ’ ’ , ’
ANGLE_DOWN_FIELD’ : ’ ’ , ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT})

10

11 #POINT
12 outputs [’ PuntoDiOsservazione ’] = pr o c e s s i ng . run (" nat ive :

p o i n t t o l a y e r " , { ’INPUT ’ : row [0] , ’OUTPUT’ : ’C: / Users / r a f f a /Desktop/
PUNTO. gpkg ’ })

13 inp = outputs [’ PuntoDiOsservazione ’] [’OUTPUT’]
14

15 i f row [1] != 0 :
16 outputs [’ Bu f f e r ’] = pro c e s s i n g . run (" nat ive : b u f f e r " , {

’INPUT ’ : inp , ’DISTANCE ’ : row [1] , ’SEGMENTS’ : 5 , ’END_CAP_STYLE’ : 0 , ’
JOIN_STYLE ’ : 0 , ’MITER_LIMIT ’ : 2 , ’DISSOLVE ’ : False , ’SEPARATE_DISJOINT ’
: False , ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT})

17 outputs [’ GeneraPunt iCentro id iDe iPixe lDentroPol igon i ’]
= pr o c e s s i ng . run (" nat ive :

g e n e r a t e p o i n t s p i x e l c e n t r o i d s i n s i d e p o l y g o n s " , { ’INPUT_RASTER’ : ’C: /
Users / r a f f a /Desktop/Qgis /w50540_s10 . t i f ’ , ’INPUT_VECTOR’ : outputs [’
Bu f f e r ’] [’OUTPUT’] , ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT})

18 inp = outputs [’
GeneraPunt iCentro id iDe iPixe lDentroPol igon i ’] [’OUTPUT’]

19

20 outputs [’ Punto ’] = p ro c e s s i ng . run (" v i s i b i l i t y :
c r ea t ev i ewpo in t s " , { ’OBSERVER_POINTS ’ : inp , ’DEM’ : ’C: / Users / r a f f a /
Desktop/Qgis /w50540_s10 . t i f ’ , ’OBSERVER_ID’ : ’ ’ , ’RADIUS ’ : row [2] , ’
RADIUS_FIELD ’ : ’ ’ , ’OBS_HEIGHT’ : 1 . 6 , ’OBS_HEIGHT_FIELD ’ : ’ ’ , ’
TARGET_HEIGHT’ : 0 , ’TARGET_HEIGHT_FIELD’ : ’ ’ , ’RADIUS_IN_FIELD ’ : ’ ’ , ’
AZIM_1_FIELD ’ : ’ ’ , ’AZIM_2_FIELD ’ : ’ ’ , ’ANGLE_UP_FIELD’ : ’ ’ , ’
ANGLE_DOWN_FIELD’ : ’ ’ , ’OUTPUT’ : QgsProcess ing .TEMPORARY_OUTPUT})

21

22 #INTERVISIBILITY
23 pro c e s s i n g . run (" v i s i b i l i t y : i n t e r v i s i b i l i t y " , { ’

OBSERVER_POINTS ’ : outputs [’ Punto ’] [’OUTPUT’] , ’TARGET_POINTS’ :
outputs [’ Str ’] [’OUTPUT’] , ’DEM’ : ’C: / Users / r a f f a /Desktop/Qgis /
w50540_s10 . t i f ’ , ’WRITE_NEGATIVE’ : False , ’USE_CURVATURE’ : True , ’
REFRACTION’ : 0 . 1 3 , ’OUTPUT’ : ’C: / Users / r a f f a /Desktop/INTER. gpkg ’ })

Listing B.17: QGIS Closure
1

2 # Exit QGIS a p p l i c a t i o n
3 qgs . ex i tQg i s ()

93

GIS Mobile Tool

94

Bibliography

[1] Attività di approntamento. Oct. 2023. url: https://www.esercito.difesa.
it/Rapporto- Esercito/Mantenere- la- prontezza- operativa- dello-
strumento/Addestramento/Pagine/Attivita-di-Approntamento.aspx
(cit. on p. 4).

[2] Onfield Planning. Nov. 2023. url: https://www.esercito.difesa.it/
comunicazione / pagine / campo - primaverile - per - il - corso - lealta -
160510.aspx (cit. on p. 7).

[3] Map. Nov. 2023. url: https://dictionary.cambridge.org/dictionary/
english/map (cit. on p. 12).

[4] Raster Vector. Nov. 2023. url: https://www.vebuso.com/2019/01/vector-
raster-tale-two-spatial-data-types/ (cit. on p. 15).

[5] DTM. Nov. 2023. url: https://innoter.com/en/services/photogramme
try/digital-terrain-models_dtm/ (cit. on p. 17).

[6] DSM. Nov. 2023. url: https://innoter.com/en/products/spatial-
data/dsm-generation/ (cit. on p. 17).

[7] CTR. Nov. 2023. url: https://geoportale.regione.emilia-romagna.
it/catalogo/dati-cartografici/cartografia-di-base/cartografia-
tecnica/layer (cit. on p. 23).

[8] QGIS. Sept. 2023. url: https://en.wikipedia.org/wiki/QGIS (cit. on
pp. 27, 35).

[9] Discover QGIS. Oct. 2023. url: https://www.qgis.org/en/site/about/
index.html (cit. on p. 27).

[10] OOGC. Nov. 2023. url: https://commons.esipfed.org/node/362 (cit. on
p. 28).

[11] Open Licence. Nov. 2023. url: https://en.wikipedia.org/wiki/GNU_
General_Public_License (cit. on p. 28).

95

https://www.esercito.difesa.it/Rapporto-Esercito/Mantenere-la-prontezza-operativa-dello-strumento/Addestramento/Pagine/Attivita-di-Approntamento.aspx
https://www.esercito.difesa.it/Rapporto-Esercito/Mantenere-la-prontezza-operativa-dello-strumento/Addestramento/Pagine/Attivita-di-Approntamento.aspx
https://www.esercito.difesa.it/Rapporto-Esercito/Mantenere-la-prontezza-operativa-dello-strumento/Addestramento/Pagine/Attivita-di-Approntamento.aspx
https://www.esercito.difesa.it/comunicazione/pagine/campo-primaverile-per-il-corso-lealta-160510.aspx
https://www.esercito.difesa.it/comunicazione/pagine/campo-primaverile-per-il-corso-lealta-160510.aspx
https://www.esercito.difesa.it/comunicazione/pagine/campo-primaverile-per-il-corso-lealta-160510.aspx
https://dictionary.cambridge.org/dictionary/english/map
https://dictionary.cambridge.org/dictionary/english/map
https://www.vebuso.com/2019/01/vector-raster-tale-two-spatial-data-types/
https://www.vebuso.com/2019/01/vector-raster-tale-two-spatial-data-types/
https://innoter.com/en/services/photogrammetry/digital-terrain-models_dtm/
https://innoter.com/en/services/photogrammetry/digital-terrain-models_dtm/
https://innoter.com/en/products/spatial-data/dsm-generation/
https://innoter.com/en/products/spatial-data/dsm-generation/
https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/cartografia-di-base/cartografia-tecnica/layer
https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/cartografia-di-base/cartografia-tecnica/layer
https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/cartografia-di-base/cartografia-tecnica/layer
https://en.wikipedia.org/wiki/QGIS
https://www.qgis.org/en/site/about/index.html
https://www.qgis.org/en/site/about/index.html
https://commons.esipfed.org/node/362
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License

BIBLIOGRAPHY

[12] Murat Karagamp;ouml;zgil. Software licenses on github: Which one should you
choose? Nov. 2023. url: https://muratkaragozgil.medium.com/softwar
e-licenses-on-github-which-one-should-you-choose-3d4cfbb6c2f9
(cit. on p. 29).

[13] QGIS Visibility Analysis. Nov. 2023. url: https://www.zoran-cuckovic.
from.hr/QGIS-visibility-analysis/help_qgis3.html (cit. on p. 36).

[14] Viewpoint Logic. Nov. 2023. url: https://www.researchgate.net/figure/
Ray-tracing-for-visibility-analysis_fig2_277676814 (cit. on p. 37).

[15] QGIS Grapic Modeler. Nov. 2023. url: https://docs.qgis.org/3.4/it/
docs/user_manual/processing/modeler.html (cit. on p. 37).

[16] Flutter. Sept. 2023. url: https://flutter.dev/ (cit. on p. 60).
[17] SQLite. Nov. 2023. url: https://www.sqlite.org/about.html (cit. on

p. 60).

96

https://muratkaragozgil.medium.com/software-licenses-on-github-which-one-should-you-choose-3d4cfbb6c2f9
https://muratkaragozgil.medium.com/software-licenses-on-github-which-one-should-you-choose-3d4cfbb6c2f9
https://www.zoran-cuckovic.from.hr/QGIS-visibility-analysis/help_qgis3.html
https://www.zoran-cuckovic.from.hr/QGIS-visibility-analysis/help_qgis3.html
https://www.researchgate.net/figure/Ray-tracing-for-visibility-analysis_fig2_277676814
https://www.researchgate.net/figure/Ray-tracing-for-visibility-analysis_fig2_277676814
https://docs.qgis.org/3.4/it/docs/user_manual/processing/modeler.html
https://docs.qgis.org/3.4/it/docs/user_manual/processing/modeler.html
https://flutter.dev/
https://www.sqlite.org/about.html

	List of Tables
	List of Figures
	Acronyms
	Strategic operation: methods and tools
	State of the Art
	Strategic Outpost
	Strategic Operation Planning

	Requirements
	User Requirements
	Functional Requirements
	Technical Requirements

	Digital Maps and Open Data
	Digital Map and Elevation Model
	Traditional Map
	Digital Map
	Nominal Scale
	Raster and Vector
	Elevation Model
	Point Distribution Models

	Cartography Availability
	IGM
	Regional Geoportals
	Ministry of the Environment and Territory Products
	Open Cartography
	Remote Sensing Services

	GIS Environment
	GIS Data

	Open Data
	Open Platforms
	Open Protocols
	Open Licences

	GIS Desk Tool
	Functionalities
	Flow Chart
	Tool Functionalities
	QGIS Plugin Interface

	Development
	Plugin Studies
	Graphical Modeler
	Code Development

	Results
	Outputs
	Output Analysis
	Limitations

	GIS Mobile Tool
	Functionalities
	Flow Chart
	Front-End
	Back-End
	Database
	Tool Interface

	Development
	Code development

	Results
	Output Analysis
	Limitations

	Conclusion
	GIS Desk Tool (1)
	Plugin code development
	Library import
	Class VisibilityAnalysisToolAlgorithm
	Name definition method
	DisplayName definition method
	Group definition method
	GroupID definition method
	Try definition method
	Create instance definition method

	GIS Mobile Tool (1)
	Front-End
	Back-End
	Batch File
	QGIS Algorithm

	Bibliography

