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ACRONYMS 
 

• API   Applica+on Programming Interface 
• BOB   Break Out Box 
• BOM   Bill Of Material 
• BSW   Basic So>ware Layer 
• CAN   Controller Area Network 
• CNG   Compressed Natural Gas 
• CRF   Fiat Research Center  
• DBC   Database CAN 
• DLC   Data Length Code 
• DSL   Domain-Specific Language 
• ECM   Engine Control Module 
• ECU   Electronic Control Unit 
• EPR   Electronic Pressure Regulator 
• FI   Frequency Input 
• FLCU   Fuel Line Control Unit 
• FO   Frequency Output 
• GPL   Liquefied Petroleum Gas 
• HDS   Heavy Duty System 
• HEGO   Heated Exhaust Gas Oxygen sensor 
• HIL   Hardware-in-the-loop 
• HS  High Side 
• I/O   Input/Output 
• LIN   Local Interconnect Network 
• LNG   Liquefied Natural Gas 
• LS   Low Side 
• LUT   Lookup Table 
• MBD   Model Based Design 
• MCAL   Microcontroller Abstrac+on Layer 
• MCU   Micro Controller Unit 
• MIL   Model-in-the-loop 
• OBD   On-board diagnos+c 
• OEM   Original Equipment Manufacturer 
• OTV   On Tank Valve 
• PIL   Processor-in-the-loop 
• PIM   PlaUorm-Independent Model 
• PWM   Pulse-Width Modula+on 
• SIL   So>ware-in-the-loop 
• SRD   System Requirement Document 
• UEGO   Universal Exhaust Gas Oxygen sensor 
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1. Introduc4on 
 

In the last decades, the automo+ve industry has undergone a big transforma+on from different point 
of views, and it has reshaped the way vehicles are designed and manufactured. 
Environmental sustainability is becoming a crucial factor in this change and thanks to technological 
advancement, the challenge of reducing gas emission and improving the energy efficiency of vehicles 
can be addressed. 
For this purpose, more sustainable alterna+ve fuels were sought and, natural gas and hydrogen have 
emerged as promising candidates. 
This thesis project is done in collabora+on with the Metatron S.p.A. company, which is specialized in 
the design and produc+on of pressure regulator and Engine Control Units for alterna+ve fuels. 
 

1.1 Metatron Overview 
 
At the beginning of 90s, the Fiat Research Center (CRF) group iden+fied in the natural gas fuel the 
best solu+on for reducing gas emission from the internal combus+on engine both for passenger cars 
and heavy-duty systems. 
To launch the industrial produc+on of these natural gas systems, CRF found the Tartarini company 
in Bologna (specialized in ‘a>ermarket’ systems for conversion of gasoline engines to methane) as a 
partner for the development and produc+on. The first adopted solu+on was ‘bifuel’ (natural gas and 
gasoline supply) for light system and ‘monofuel’ (only natural gas) for heavy-duty systems such as 
commercial vehicles and public transport. 
 
In 1998 some resources detached from Tartarini and created Metatron, s+ll located at Bologna, with 
the goal to manufacture and sell CNG/LNG systems to OEM and not for the ‘a>ermarket’ field. 
Metatron became the exclusive supplier for Fiat Auto and IVECO of the main components for these 
type of systems, in par+cular electronic control unit and pressure regulator. A>er that, between 2008 
and 2010 Metatron founded in Volvera (TO) a new division devoted to electronics technologies and 
their applica+ons, acquiring from CRF resources that allowed to be independent from Fiat while 
maintaining different collabora+ons. This new division developed a secondary control unit for GPL 
systems of Fiat. 
In few years, China became the major buyer of Metatron’s pressure regulators with its producers of 
heavy-duty engines. 
 
In 2014 Metatron acquired the control of Digigroup, a society specialized in development and supply 
of electronics components for Automo+ve Info telema+c (ITS) and the following year was founded 
a new society called Metatronix, regarding all electronics applica+ons. 
A>er 4 years, in 2018, due to increasing differences between ITS and Powertrain field, Metatron 
decided to make Metatronix completely autonomous and to reinforce the group crea+ng the 
Metatron Research Center.  
 
In 2021, Landi Renzo Group signed a binding agreement for the acquisi+on of Metatron S.p.A. with 
the goal to reinforce and accelerate the posi+on as leader in the supply of systems and components 
for Natural Gas and Hydrogen mobility in the Mid&Heavy-duty field which is going to grow quickly 
in the coming years. 
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1.2 Thesis goals 
 
In the past years Metatron has designed a powerful solu5on for an Engine Control Module, 
called HDS. This ECU has been widely used to cover a great and different range of alterna5ve 
fueled engines, with several architecture such as 4/6/8/12 cylinders engines mainly for heavy 
duty vehicles (both with 12V or 24V power supply systems) with different scopes (Trucks, 
Buses, Off-road vehicles, Agriculture tractors, Locomo5ves, Industrial/Civil Cogenera5on 
applica5ons, …) according to the latest pollutant emission standards and to the latest safety 
and cybersecurity standards (such as ISO26262 or ISO/SAE 21434). 
 
The result of this development process is a very flexible hardware/soWware automo5ve 
general purpose plaXorm that Metatron started to use as a rapid prototyping or proof-of-
concept unit internally as basis for several spin-off project (such as Transmission Control Unit, 
Tank Control Unit, Pressure Regulator Control Unit, Injec5on Control Unit,…).  
 
Consequently, Metatron is now capable to propose a cheap and robust automo5ve solu5on 
able to manage the typical automo5ve sensors/actuators, that allows to its customers to 
easily integrate their own applica5on soWware (using the Model-Based approach) to be used 
to validate their concepts to control an automo5ve system with two main and big 
advantages: 

1. Drama5cally decreasing the investments typically needed for the concept phase, 
significantly reducing the 5me to market of the solu5on; 
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2. Validate and define the requirements for a tailored produc5on control unit. 
 
The ul5mate goal of this thesis project is to explore and to iden5fy a set of rules/guidelines 
to allow an easy integra5on of the customer applica5on soWware on the HDS hardware 
plaXorm. 
 
To reach this target the idea is to make available to the customers a proprietary library 
already integrated in the development environment (MATLAB/Simulink) that make the 
modeling of the applica5on soWware much easier and faster. 
 
Since the soWware applica5on is developed following a Model-Based approach and thanks 
to this library the customers will have at his disposal some Simulink blocks that help him with 
his workflow. 
 
In par5cular, there has been created blocks to interface with the I/O channels, the 
communica5on layer (CAN and DBC integra5on) and the automa5c genera5on of the code 
from the model.  
 
Finally, the added value of this solu5on is the automa5on of some procedures that could 
inevitably lead to errors if hand made. 
 

1.3 Hardware plaCorm – HDS9 
 
HDS stands for Heavy Duty System and it is an Engine Control Unit used for alterna5ve fueled 
vehicles. This ECU has been created by Metatron using a high level of technology in terms of 
hardware components and it sa5sfies the requirements of the latest emission standards 
(EUVI/CHINAVI), on-board diagnos5c (EOBD) and func5onal safety standards (ISO26262). 
 
This ECU has been used as plaXorm for the development of the thesis work. Thanks to its 
performance and its hardware specifica5ons it is an op5mal general purpose embedded 
plaXorm where test and validate every type of automo5ve applica5on soWware. The 
hardware characteris5cs of this plaXorm will be explained in detail later. Here it can be seen 
the picture of the HDS9. 
 
 

 
Figure 1 - HDS9 
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1.4 Prototype stages before industrializa4on 
 
Before arriving at the industrializa5on phase of a final product, it is followed a certain 
development flow made by different types of prototypes that are necessary for a great work. 
 
The star5ng point of this flow can be called ‘Proto A’ and it is basically laboratory 
instrumenta5on. An example of this first prototype can be the ‘CompactRIO’ made by 
Na5onal Instrument, it is a real-5me embedded controller and its main characteris5c is to 
have reconfigurable I/O modules and a FPGA module. Thanks to this characteris5c the 
CompactRIO is extremely modular and reconfigurable according to your needs. 
It is made by a chassis where can be agached the I/O modules and it also include a 
microprocessor for implemen5ng control algorithms. 
It is used as first prototype step because it can be adopted for the development of any 
product in case you don’t have a hardware plaXorm as HDS9. 
The advantages of this prototype are: 

- Flexibility: components can be easily swapped, upgraded or reconfigured enabling 
engineers to test various product. This flexibility accelerates the development process 
and facilitates the discovery of op5mal solu5ons. 

- Scalability: as the product’s complexity and requirements evolve, addi5onal modules 
can be integrated, accommoda5ng changes in func5onality or performance. 
Scalability minimizes the need to redesign the en5re system for incremental 
improvements. 

- Reusability: this type of prototype can be repurposed in other subsequent projects 
reducing the overall development 5me and cost and, in this way, it is covered the 
ini5al investment. 

On the other hand, the main disadvantage could be the performance limita5on because a 
dedicated plaXorm with another type of microprocessor could have beger performance and 
it would get closer to the final product. 

 
Figure 2 – CompactRIO 

 
 
The next prototype step can be called ‘Proto B’ and it is essen+ally the role that plays in our case the 
HDS9. In this step there is a generic plaUorm oversized in terms of power and hardware and in such 
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a way is possible to develop every type of applica+on so>ware that may require different type of 
I/O. 
In this step having a good plaUorm with all the basic func+onality easily accessible is crucial for the 
success of the final product and the goal of this thesis goes in that direc+on. In this way the user will 
have access to the hardware layer in an easier way and it will be able to develop his applica+on 
staying at a higher level of abstrac+on facilita+ng his workflow. 
 
The last step is called ‘Proto C’ and it is obtained by cujng out all that is not necessary from ‘Proto 
B’ in order to reduce produc+on costs. For example, if is not strictly necessary a microprocessor with 
the same performance of ‘Proto B’ it might be convenient install in the final product a less powerful 
one or if are not necessary all the I/O channel there could be deleted those that are not used. This 
prototype is the final product and then, a>er different test and valida+on phases, it will be 
industrialized. 

 
Figure 3 – Prototype stages 

  

 

Proto A Proto B Proto C
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2. Embedded soOware architecture in the automo4ve field 
 
The embedded so>ware architecture, as shown in the figure 4, follows the key principles of 
AUTOSAR. 
The basic idea behind AUTOSAR is the separa+on of the applica+on so>ware layer and the hardware 
layer. This leads to greater portability across different hardware plaUorm. 
Moreover, the so>ware is divided into autonomous so>ware components that can be developed, 
tested and updated independently. This modular approach simplifies complex so>ware 
management and enhances components reusability. 
 
The scheme of the embedded so>ware architecture can be represented in this image. 
 

 
 

2.1 Architecture layers 
 
The structure is divided in three different layers: 
 

- Basic So<ware Layer (BSW) 
 
This layer provides a series of so>ware modules that are essen+ally to use and communicate 
with different peripherals of MCU. It is composed by other different layers, each of them with 
a different purpose. 
The lowest layer of the BSW is the Microcontroller Abstrac+on Layer (also called MCAL) and 
it is strong dependent on the MCU in use, in fact it usually changes according to the type of 
microcontroller. It is very important because it contains drivers for accessing peripherals. 
The layer colored in orange is the ECU Abstrac+on Layer and his main purpose is to abstract 
the MCAL layer from upper layers and provides all the APIs for making available external and 
internal drivers. In this way upper layers of the ECU are independent from the hardware in 
use. 
The top layer colored in green is the Service Layer and it provides basic services for the 

Figure 4 – So?ware Architecture 
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applica+on. Some basic services are: Opera+ng System func+onality, communica+on 
services, memory services, ECU state management, etc.  
The last layer of the BSW that is linked with all the other three is the Complex Driver and it 
is useful for wri+ng func+on or drivers of external devices that are connected with our 
system. 
  

 
- ApplicaEon AbstracEon Layer 

 
The idea behind the project of this thesis is based on this layer, in fact the real strength of an 
architecture of this kind is to have this pillow layer which allows you to separate the 
Applica+on Layer from the BSW Layer. In this way for example if you change the hardware 
plaUorm you do not have to change the en+re applica+on so>ware. 
This meets the needs of customers who want to develop the applica+on layer in-house, so 
the company can make available only the hardware plaUorm with a dedicated Applica+on 
Abstrac+on Layer. 
This layer, that we internally also call ‘API Layer’, is the core of the architecture in fact it links 
the Applica+on Layer with the BSW Layer and it has the goal of making these two layers 
independently. 
Basically it implements the scheduling of the applica+on so>ware modules in different OS 
tasks and it is responsible for the I/O communica+on with the lower layer.  
All the APIs available in this layer are wrilen in C code and they are directly integrated in the 
development environment (Mathworks), but they will be analyzed in detail later. 
 
 

- ApplicaEon Layer 
 
This is the highest layer of the architecture and it implements the specific automo+ve 
applica+on. It is always distributed in different so>ware modules with the scope to have 
more scalability, reusability and an easier implementa+on of the en+re applica+on. 
The specific automo+ve applica+on will be developed in MATLAB/Simulink using a model-
based approach and in this way there will be many advantages. Following these guidelines 
the workflow will be more understandable and easier to manage. 
Finally, different so>ware modules can communicate each other exchanging input and 
output data that they can use for their control logics or in general their purpose. 
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2.2 Model-Based Design approach 

 
Model-based design (MBD) is a fundamental approach in the automo+ve field for the development 
of real systems and it is used in many other areas. 
It is basically the prac+ce of doing simula+on in a development environment to understand the 
behavior of a real physical system that will have to be built and controlled. 
Each component of the physical system is represented through a model and can cover a wide range 
of disciplines such as mechanical, electrical, hydraulic, thermal, pneuma+c, etc. 
A physical system is usually defined as a set of components which interact each other exchanging 
informa+on or data and perform a certain number of tasks. 
In the MBD a model of a physical system tries to reflect the mechanism inside the real system using 
fundamental physical laws and engineering principles. Therefore, relying on the accuracy level of the 
system descrip+on, the en+re model can be more or less similar to the real one. 
 
 

 
A key point of the MBD is the abstrac+on from specific realiza+on technologies using a high-level 
language that have a visual approach, so roughly speaking through lines and block. 
A graphical tool helps to develop high complex func+on with less effort, specially in real complex 
systems where split the en+re model in more simply modules can make the work much easier to do 
and understand. One of the most famous tools used in the automo+ve field is Simulink, developed 
by MathWorks and directly integrated in MATLAB. 
Using support tools, simula+on and valida+on can be executed on the model (MIL) and once the 
model is ready and the expected behavior is correct, the Embedded Coder (a tool of MATLAB) will 
take care of genera+ng the related so>ware code, following a setup that the user can specify to 
obtain the desired code and files generated. This increases a lot the produc+vity and the efficiency 
because in this way is much easier generate the applica+on so>ware than write by hand the code of 
the en+re model. 
Tes+ng the model before the integra+on in the real hardware target leads to reduce poten+ally 
expensive physical prototype itera+ons, in fact is possible to verify the design and the requirements 
of a system before its construc+on avoiding the waste of resources in terms of costs and +mes. 

Figure 5 - Build a valid model 
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MBD in prac+ce, is based on the separa+on of the applica+on and the infrastructure to enhance the 
reusability of the model across different infrastructures. The basic idea of this concept is to model 
one +me and build everywhere, for every type of hardware technology. 
For all these reasons this type of approach has become very popular in the automo+ve field. 
The complete workflow for the development of a system that follows the MBD will be explained 
later in the chapter 2.3 going on to detail the steps involved. 
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2.3 V-diagram of MBD flow 
 
Model-Based Design follows a precise workflow divided in steps described by the V-diagram below. 
 

 
1. System Requirements 

 
The first important step to do is the analysis of System Requirements. It consists in a file, 
generally called System Requirement Document (SRD), that provides a detailed and clear 
descrip+on of the system in study and includes the declara+on of all elements that are 
necessary for the correct implementa+on and opera+on of the system. 
The SRD is organized in a hierarchical way in order to be clear and understandable. At the 
higher level are described general system requirements while each ‘child’ of these higher 
requirements explain in detail what the individual component should do. 
Each requirement must be described in a detail way in order to be follow from the team of 
engineers that will develop that component in the future. 
System requirements describe the hardware components such as mechanical or electrical 
parts and func+onal requirements so func+ons that the system and all its sub-components 
should properly perform. 
In parallel to this document is also necessary a So>ware Requirements Specifica+on 
document that has the goal to describe the func+on that so>ware parts of each system 
component should execute. 
Each line of so>ware requirement must have a reference to the system requirement to which 
is connected, a brief descrip+on of what it should do and an ID in order to draw up, later in 
the development of that component, some test case to verify that the so>ware requirement 
is sa+sfied and to insert all the test result. 
In this way every system requirement is linked with some so>ware requirements and the 
workflow is facilitated because the en+re system is more modular. The single system 
requirement will be sa+sfied when all its so>ware requirements will work properly. 
 
 
 

Figure 6 - V diagram 
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2. System Design 
 
The next step in the MBD flow is the System Design and it consist in describing all the 
modules, components and units that compose the system. 
This process of design is at a high level of abstrac+on where an engineer can s+ll evaluate 
and es+mate some features about the system such as reliability and costs. 
Itera+ons that usually are done in the design of a system will be made in this step so 
poten+ally problems can be solved before moving on the next phases of the flow. 
Generally, to guarantee an op+mal system design there are some prac+ces to follow. 
First of all, the communica+on between engineering teams must be done in the early stages 
of the development, so each of them should present many ideas as possible in order to have 
the best organiza+on for the success of the project. The goal of all these preliminary stages 
is always the same that is to arrive at the development stage having the clearest possible 
ideas of what to do and so try to find the best solu+on for the problem before the 
implementa+on. 
Another prac+ce to follow is to make the design of the system as scalable as possible, 
because in this way it is ready to future improvements or addi+ons. 
A simple design is the key to success, it should be as clear as possible with the scope of be 
understandable by everyone.  
Finally, through documenta+on is fundamental to ensure the valida+on and verifica+on in 
the next step. 

 
 

3. So<ware Design 
 
In this step the system is modelled as a PlaUorm-Independent Model (PIM) and in a suitable 
Domain-Specific Language (DSL) such as Simulink that is made of blocks that are very close 
to many domains like mechanical or electrical. 
When the design of the en+re system, that for example in a control system is made by the 
plant and the controller, is ready it is possible to simulate it several +mes in Simulink and in 
that way it helps to refine the model/controller and consider possible alterna+ves design. 
This itera+ve phase which includes the first three stages of the V-diagram is called Model-in-
the-loop tes+ng (MIL). 

 
Figure 7 - Model-in-the-loop tesMng 

 



 
 

 16 
 

 
Since the en+re model exists in a simula+on tool is very useful this type of tes+ng in order to 
find possible bugs that in the future phases of the development would be much more serious 
in terms of +me and costs. If this type of tes+ng would not possible you should have the real 
system for doing test and this is not possible in many cases, furthermore it would cost a lot 
of money. 
 

  
4. Coding 

 
When you are sure that the system behaves as you expected, you can proceed with the code 
genera+on of your model. This is an important step because the model that is generated will 
run in the real system so you should try to op+mize the implementa+on for the real target 
hardware. 
There are various tools for the automa+c code genera+on and each of them is designed to 
work with a specific program language. 
Tools like Embedded Coder in Simulink have a configurator for the automa+c code generator 
and permits you to define some guidelines and rules for reaching the desired code 
genera+on in terms of file created and programming style. 
The main advantage of automa+c code genera+on is that every +me the model change, the 
code will update automa+cally so it has the goal to minimize the +me required to write the 
code (minimizing also the costs) and to reduce the risk of manual coding errors. 
Automa+c code genera+on has become a widely used technique in recent years due to the 
increase of complexity of modern systems. As they become more complex, the effort for 
developers to manually write the code grow up and this technique offers a solu+on to this 
problem. 

 
 

5. So<ware IntegraEon 
 
Once the code is generated it must be verified that it works and does what is expected and 
specially that the results are the same of the model-in-the-loop test phase. 
This stage of verifica+on is called So>ware-in-the-loop (SIL) and it essen+ally consists in 
running the generated code on a local computer and verify that the controller works 
properly. 

 
Figure 8 - So?ware-in-the-loop tesMng 
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During the simula+on the plant remains in na+ve simula+on tool as Simulink while the 
controller running as executable code. 
If it works no properly it means that there was an error in the generated code or in the model 
so they must be reviewed and corrected. 
 
 

 
6. HW/SW IntegraEon 
 

A>er the correct integra+on of the so>ware now is +me to integrate the resul+ng code in 
the real embedded hardware like an ECU. In this step the so>ware is deployed in the target 
hardware and it is co-simulated with the plant model to verify its correctness. 
Also in this step the result must be the same of the previous MIL and SIL tes+ng and if it is 
not the case some adjustment must be done. 

 
Figure 9 - Processor-in-the-loop tesMng 

This itera+ve test phase is called Processor-in-the-loop (PIL). Here the controller run on the 
real embedded target hardware while the plant s+ll remains simulated in the simula+on tool 
and so it is missing the real +me. The controller runs at a certain frequency and must 
communicates with the plant that is s+ll simulated in the development PC. 
 
 

7. Vehicle IntegraEon and CalibraEon 
 
In this final step the plant is simulated in a real-+me simulator, so it performs simula+ons 
that are very close to the real word such as physical connec+ons, I/O and communica+on 
protocols. Real +me means that one second in the simula+on are equivalent to one second 
in the real system. 
The goal of all this step is to find issues related to interfaces and communica+ons before 
going in the real system. The sooner errors are found, the lower is the cost to solve them and 
for this reason all these phases are made sequen+ally and itera+vely with the scope of 
arriving in the real system without any problem.  
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Figure 10 - Hardware-in-the-loop tesMng 

 
 

A>er this final test phase, the product can be released end tested in the real word 
environment. Automo+ve customers typically adopt vehicle fleet tests to verify that the 
product respects their requirements. Once this last test session has been completed, the 
product can be considered as mature and producible. Design phase can be considered as 
completed and the produc+on phase starts. 
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3. General purpose automo4ve HW ECU 
 
An ECU (Electronic Control Unit) is an embedded system that has the purpose of control one or more 
electrical systems in the vehicle. Nowadays vehicles are equipped with many ECUs, each of which 
plays a specific role and thanks to the communica+on between them the correct func+oning of the 
en+re vehicle is guaranteed. 
Some examples of the modules implemented in automo+ve field ECUs are the following: 

• Engine Control Unit 
It controls mul+ple systems to guarantee the correct internal combus+on engine. 
Main systems that are controlled include the Fuel Injec+on system, the Igni+on 
system and the Variable Valve Timing system. 

• Transmission Control Unit 
It manages the electronic automa+c transmission using sensors from the car and data 
from the Engine Control Unit to calculate the best moment for the change gears in 
order to achieve the op+mal performance in terms of fuel economy and shi> quality. 

• Door Control Unit 
It is responsible for managing the func+ons of a vehicle door such as locking and 
closing, windows movements and mirror adjustments. 

• Break Control Module (ABS Control Module) 
It checks the braking system using data from wheel-speed sensor and from hydraulic 
break with the goal of release braking pressure at a wheel that is on the verge of lock 
up and start skidding. 

• Balery Management System 
This module has the purpose to monitor the state of the vehicle balery in terms of 
voltage, temperature, current and state of balery cells. 
 

As men+oned before, the hardware plaUorm used for this thesis work is the HDS9 (Figure 1) and it 
is an Engine Control Unit for methane applica+on currently in produc+on by Metatron. 
It is used in many fields such as medium and heavy-duty vehicles (buses and trucks), off-road vehicles 
(tractors and opera+ng machines) and also sta+onary units mainly with natural gas to generate 
electricity. 
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3.1 Hardware architecture 
 
The key elements of this ECU are essen+ally described in these macro areas: 
 

 
Figure 11 - HDS9 Hardware architecture 

 
 

1. Input 
The available input channels in this plaUorm are of Analog and Digital type. Analog channels 
are typically related to voltage sensors, such as temperature, pressure, actuator’s posi+on 
feedback, and level sensors. Digital channels are typically used for switches or binary level 
sensors. 
There are also some specific types of input such as SENT (Single Edge Nibble Transmission, 
that is a point-to-point protocol used from sensors to transmit data to the controller) and 
Frequency Input, typically used for the speed sensors. 
Input include HEGO (Heated Exhaust Gas Oxygen sensor) and UEGO (Universal Exhaust Gas 
Oxygen sensor), Cranksha> and Camsha> sensors, and Knock sensor. 
The board has also some internal sensor for monitoring the on-board temperature and 
pressure. 
 
 

2. Output 
As output channels are available Digital Output and Frequency Output (PWM). 
These output channels are necessary to control for example actuators connected to the ECU 
and, based to the use case, it can be used a Low Side or a High Side channel to load (mainly 
resis+ve and induc+ve loads). 
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Usually, the Digital Input channels are used for ON/OFF actuators (such as electro valves) or 
for lamp indicators. Frequency Output are typically related to propor+onal actuators or gage 
indicators.   
On the board are also present Peak&Hold Injector drivers and Spark drivers for ac+ve igni+on 
coils able to manage up to 8 cylinders. Moreover, some H-bridge DC motor drivers are also 
present on the device.  

 
 

3. Microcontroller 
There are several types of microcontrollers for embedded systems from different companies 
like Freescale, Intel, Infineon etc. with different specifica+ons. 
The one chosen for this board is the NXP MPC577C of Freescale company. It is used for 
automo+ve and industrial engine applica+on that require high performances and func+onal 
safety (ISO26262).  
Here some general features: 

o Two independent Power Architecture z7 cores (300 MHz) 
o Single z7 core in lockstep that runs the same set of opera+ons at the same +me in 

parallel in order to detect and correct possible errors 
o 8MB Flash memory 
o 512kB SRAM (to have beler performance than DRAM) 
o Sigma-Delta and eQADC converters (analog to digital converters)  
o eMIOS (enhanced Modular Input Output System) +mer with 32 channels to generate 

or measure +me events 
o eTPU (Enhanced Time Processor Unit) +mer with 96 channels to perform complex 

+ming and I/O management regardless to the CPU 
 
 

4. CommunicaEon 
The hardware plaUorm in use has 4 CAN channels that are fundamental for the 
communica+on in the automo+ve field. They permit the communica+on with other systems 
in the vehicle and in this way the ECU can work properly. It is also present a LIN channel that 
has the same purpose of the CAN, but it is based on a master-slave type of communica+on 
instead of a broadcast protocol.  
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3.2 CAN Communica4on 
 
The Controller Area Network is the system which all the ECUs of a vehicle are interconnected. An 
ECU can exchange informa+on through the CAN bus sending broadcast data, so the other nodes of 
the network, a>er receiving and checking these data, decide if accept or ignore them. 
 
The physical communica+on happens via the CAN bus wiring harness consis+ng of two wires, CAN 
Low and CAN High, that have different voltage levels and are terminated with a 120Ω resistor. In 
par+cular, CAN High varies from 2.5V to 3.75V while CAN Low from 1.25V to 2.5V. When both CAN 
High and CAN Low voltage is 2.5V the signal is called ‘Recessive’ and it takes on the meaning of 
logical 1. Vice versa when CAN High is 3.75V and CAN Low is 1.25 the signal is called ‘Dominant’ and 
it is equivalent to the binary value of 0. 
Using twisted pairs makes the CAN bus less sensi+ve to induc+ve spikes, electrical fields and other 
noise, so it is more robust. 

 
Figure 12 - CAN High & CAN Low 

At the physical layer the baud rate of the classical CAN bus (High-Speed CAN) is up to 1Mbit/s but 
with the new protocol released in 2012 by Bosch called CAN FD (Flexible Data-Rate) it can go up to 
5Mbit/s. This type of data-communica+on protocol is used in modern automo+ve ECUs which need 
a higher transfer rate to manage data with larger size in a faster way. 
 
The main advantages of the CAN bus can be resumed as follow: 

1. Efficient and low cost 
Thanks to a single CAN bus there is a sharp reduc+on of wires, weight end costs. 

 

 
Figure 13 - Wiring comparison 

2. Easily accessible 
The CAN bus is easily accessible because is possible to exchange data with all ECUs by a single 
access point making also easy diagnos+c, data logging and configura+on. 

 



 
 

 23 
 

3. Robust 
As men+oned before this bus is robust against disturbances and interferences, so it is very 
useful for applica+on that require high levels of safety such as all the vehicles. 
 
4. Priority 
CAN messages are priori+zed using the frame ID, in par+cular lower values have higher. 

 
Communica+on is done through CAN frames which can be standard or extended.  
 

 
Figure 14 - Standard CAN frame 

As it shown in the figure 14 the CAN frame is composed in various field which are: 
• SOF (start of frame): indicates the beginning of the frame and it is a ‘dominant’ 0. 
• ID: is the iden+fier of the message, it uses 11 bit for standard frame and 29 bit for extended 

frame (used for heavy-duty vehicles in the J1939 protocol) 
• RTR (remote transmission request): indicates if a node is reques+ng a certain frame from 

other nodes or is sending new data 
• Control: includes the Iden+fier Extension Bit (IDE) that is ‘0’ for the standard frame and the 

Data Length Code (DLC) that specifies the length of the data in the message (up to 8 bytes) 
• Data: contains the payload to be transmiled of length indicated in the DLC 
• CRC (cyclic redundancy check): used for error detec+on 
• ACK (acknowledgment): indicates if the node has received data correctly 
• EOF (end of frame): indicates the end of CAN frame 

 
Raw CAN data frame without a decoding system are useless. For this reason, to interpret correctly 
all the frames that travel on the CAN bus, it is necessary a CAN database called DBC file. It contains 
decoding rules for the ID frame to understand signals from the payload. 
 

 
Figure 15 - InterpretaMon of raw signals 
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Generally, the messages that are sent or received, consist in one or more signals (in par+cular cases 
they have no signals) that describe data.  
 
Here is an example of how messages and signals are described in the DBC file. 
 

 
Figure 16 - CAN messages and signals in DBC file 

Through this descrip+on signals are decoded in physical values and they can be effec+vely used. 
As it can be seen (figure 16) the message is iden+fied by the CAN ID, preceded by ‘BO_’. It must be 
unique (because it represents the address) and in decimal form. Then, in the same row, is described 
the name of the message, the DLC and the node of the network who send it. 
Below and indented from the message, are present all its signals, each of them start with ‘SG_’. Then 
all the parameters of the signals are described to give rules for decoding and read correctly physical 
values of the signals. 
One of the goals of this thesis work is to give the possibility to integrate directly in MATLAB this type 
of file in order to send and receive message as fluently as possible, without addi+onal complica+ons 
related to implementa+on details. In this way, when you are modelling your automo+ve system, you 
have available some tools (library blocks) that permit you to send or receive message very easily. 
The strong point of this work is that you can directly send or use a signal without worrying about 
physical implementa+on. 
 
As said before, the board has 4 CAN channels available, each of them is used for a specific purpose. 
The CAN 1 channel is set up for the communica+on between the ECU and the 
measurement/calibra+on system. Through this channel it is possible to read (measure) and modify 
(calibrate) signals and parameters of the ECU. This communica+on is made using XCP protocol, that 
is an interface to have access in r/w mode with the memory of the ECU. The memory access is 
address-oriented and the associa+ons between symbols and address range is described in the A2L 
file. XCP works with a master-slave paradigm, in par+cular the measurement system assumes the 
master role while the ECU driver is the slave, so it responds to memory access requests. 
This system can work with different type of transport layer, included CAN and CAN FD.  
Some of tools that can be used for this purpose are Vector CANape and Etas Inca (for the thesis work 
it has been used the first tool). 
 
The CAN 2 channel is used for the intravehicular communica+on, so with the other ECUs of the 
vehicle and in heavy-duty system it uses the J1939 protocol. Compared to light vehicles, in the heavy-
duty systems there is a greater trend to make the communica+on as standard as possible. The J1939 
protocol comes in handy defining an open standard for the communica+on in the commercial vehicle 
area. It comes from the SAE (Society of Automo+ve Engineers) and provides a Higher Layer Protocol 
based on CAN physical layer. 
 
The CAN 3 channel is generally used for the vehicle diagnos+c system. It is based on UDS (Unified 
Diagnos+c Service) protocol and it is used to check errors and reprogram the ECU, so in case of a 
fault is possible to flash a new firmware in the Electronic Control Unit to solve the problem. 
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UDS works in a client-server modality, in par+cular the tester acts as client sending UDS requests 
while the ECU is the server that responds to the client. 
To do this you have the possibility to connect a CAN bus interface with the OBD2 connector and start 
a diagnos+c session to check the correctness of the system. 
The OBD2 connector allows you to access informa+on very easily, it is a connector made by 16 pins 
specified by the standard J1962. It is collocated next to the steering wheel usually behind dashboard 
panels.  
 

 
Figure 17 - OBD2 connector 

 
As shown in figure 17 the pin 16 is used to provide balery power and, since nowadays the CAN 
protocol is the most used, the pins 6 and 14 will be connected and will act as CAN High and CAN Low 
respec+vely. 
 
The CAN 4 channel, also called private CAN, is used to implement a dedicated (and private) network 
among the ECM and other engine related smart devices.   
 
 

 
Figure 18 - CAN Networks 
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4. API level design 
 
This step is fundamental to reach the goal of crea+ng a hardware plaUorm ready to be used for 
developing the Applica+on layer. The API level, as said before, puts in communica+on the Applica+on 
layer with the Basic So>ware layer making available to the user a series of C func+ons. 
All these func+ons are collected in a file called ‘api.c’ (and its rela+ve header file ‘api.h’) and 
integra+ng them in Simulink through simple blocks, they can be ready for use in the modelling of 
the system.  
Actually, this file already exists but if the user wants to use an API func+on in his model, it must be 
ensured that the func+on follows certain rules to be compa+ble with MATLAB and, a>er that, it 
should create the rela+ve block in Simulink (usually by means of a S-Function). The major problem 
of this approach is the waste of +me for the crea+on of all single blocks and the relative probability 
to introduce errors due to this iterative but manual task. Furthermore, a>er having created the 
block, if the user in the future applies some changes to the func+on, it must modify also the related 
block. 
To solve these problems the API file has been changed with the correct rules and a block library does 
what the user did before. 
The strong point of this work is that all these C func+ons are transformed in Simulink blocks 
automa+cally, so through a ‘click’ all the related blocks are created in the library. 
This kind of approach brings a big advantage in the model development, in fact when the API file will 
be updated with new func+on or modified, Simulink blocks will be automa+cally adjusted 
accordingly. According to this approach, minimizing the number of func+ons in the api file would be 
effec+ve and useful for having a clearer workflow. 
Later there will be explained details regarding the implementa+on of this feature in the Mathworks 
tools ecosystem. 
 

4.1 API file descrip4on 
 
API func+ons covered by the activities for this thesis concern the I/O channels and the 
communica+on channels (CAN and DBC integra+on). 
 
The API file contains all the enumera+ve types and data struct that are used by func+ons. They can 
be resumed as follow: 
 

• struct tTxPduInfo 
It is used for transmijng a CAN message and it contains two fields that are the DLC and the 
payload (a uint8 vector of 8 elements since the maximum length of a payload is 8 bytes). 
 

• struct tRxPduInfo 
Vice versa it is used for receiving a CAN message and for this reason it also has some fields 
related to the diagnos+c that are the “DlcError” (if there is a mismatch in terms of DLC 
between the expected DLC and the received DLC),  “TimeOut” (if the +me limit for receiving 
the message has expired), “NewDataReceived” (report when new data is received), 
“ChannelIdErr” (if the channel is different from the expected one) 
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• struct tPWMInInfo 
It is used for receiving informa+on about the PWM input signal. It contains the period and 
the duty of the signal. 
 

• enum tCANTxStatus 
It enumerates the possible status of the CAN message in transmission. The status of the Tx 
message can be disabled, enabled or error. 
 

• enum tCANRxStatus 
Idem for a received CAN message, the status can be OK, DLC error, Timeout error, New data 
error, Ch ID error and signal out of range (one of the message signals is out of range). 
 

• enum CANRxId 
It enumerates all possible ID available for messages of all CAN networks. An example of ID 
for the CAN 2 network is ‘CAN2_MSG_RX_000’. 
 

• enum CANTxId 
It does the same thing for transmission messages. 
 

• enum DigInPinName 
It enumerates all the available digital input pins of the board. An example of a DigInPinName 
is ‘DIN_CH_ID_000’ and it is mapped in a par+cular pin of the board (a dedicated file contains 
all the maps between name and pin number). 
 

• enum ANIN_Channel 
It enumerates all analog input pins of the board. 
 

• enum PWMInPinName 
It enumerates all PWM input pins of the board. 
 

• enum PWMOutPinName 
It enumerates all PWM output pins of the board. They can be of two different type that are 
Low Side and High Side. An example of PWMOutPinName Low Side is 
‘PWMOUT_LS_CH_ID_000’.  
 

• enum DigOutPinName 
It enumerates all digital output pins of the board in Low Side and High Side. 
 

• enum Std_eDiagStatusT 
It enumerates all possible diagnos+c error in the system. 
 

Func+ons that deal with Input/Output channels by conven+on are preceded by ‘API_’ prefix followed 
by the type of I/O channel where: 

- ANIN: Analog Input 
- DIN: Digital Input 
- DOUT: Digital Output 
- PWMIN: PWM (Pulse Width Modula+on) Input 
- PWMOUT: PWM Output 
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They are described as follows: 
 

• uint16_T API_ANIN_getRawValue (ANIN_Channel u8ANIN_CH_ID) 
This func+on returns the raw value (using 16 bit) of the specified analog input channel passed 
by parameter. Note that the maximum value of 216-1 is equivalent to 5 V. 
 

• real32_T API_ANIN_getADC (ANIN_Channel numPin) 
It returns the value in [V] of the specified analog input channel. It is responsible for the 
conversion in Volt based on the channel where for example in the pin ANIN_CH_ID_000 the 
maximum value is 5 V while in the ANIN_CH_ID_023 (refers to the power supply) is higher. 
 

• uint8_T API_DIN_getDigIn (DigInPinName numPin) 
It returns the value of the specified digital input channel and in details it can take the value 
of 1 or 0. 
 

• void API_DIN_setHwPullUp (DigInPinName u8DIN_PU_CH_ID, uint8_T 
status) 
The func+on enables or disables (based on the status parameter) the hardware pull-up 
resistor for the channel specified as parameter.  
 

• uint8_T API_DOUT_setDigOut (DigOutPinName numPin, uint8_T 
value) 
It sets the value of the specified digital output channel and return a certain value in case of 
error such as wrong pin number. 
 

• Std_eDiagStatusT API_DOUT_getDigOutErrorInfo (DigOutPinName 
numPin) 
It returns the diagnos+c status of the specified digital output pin. 
 

• tPWMInInfo API_PWMIN_getPeriodAndDuty (PWMInPinName 
u8PWMIN_CH_ID, uint8_T bNegative) 
It returns the period and duty of the PWM input channel specified. The bNega+ve parameter 
allows to correctly compute the duty cycle according to the PWM polarity Low Side or High 
Side). The period is in microseconds while the duty in percentage. 
 

• void API_PWMOUT_setPeriodAndDuty (PWMOutPinName 
u8PWMOUT_CH_ID, uint16_T u16Period, uint16_T u16Duty) 
It sets the period and the duty cycle of the specified PWM output channel. The period is 
expressed in microseconds and must be in the range [100, 62500] corresponding to a 
frequency range of [16, 10000] Hz. If the period is outside the range, it will be saturated. The 
duty cycle must be in the range [0, 1].   
 

• Std_eDiagStatusT API_PWMOUT_getPwmOutErrorInfo (PWMOutPinName 
numPin) 
It provides informa+on about the diagnos+c errors of the specified PWM out channel. 
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Regarding func+ons that deal with communica+on, the most important and useful for the modeling 
phase are: 
 

• tRxPduInfo API_CAN_getRxPduInfo (CANRxId frameID) 
It receives from the CAN Rx ID passed as parameter the PDU containing all informa+on about 
the message. In par+cular, it is stored in the tRxPduInfo struct and in this way all the 
informa+on, included the payload, are available to the user through its fields. As will be 
shown later, this approach is very useful in the model development because simply using the 
Simulink block associated to this func+on, the user will be able to use all data of the message 
in an easy way. Furthermore, since all the informa+on about the message are available, 
including possible errors such as +meout error or DLC error, the user will have the possibility 
to manage the recep+on of the message based on these errors. Later it will be shown how 
this aspect will also automa+cally managed to allow the user the easiest model developing 
possible. 
 

• uint8_T API_CAN_setTxPduInfo (CANTxId frameID, tTxPduInfo 
data_SwSTXPdu) 
It sends to the CAN Tx ID specified the message passed as parameters. In details, the message 
is a struct containing the DLC and the payload. Also in this case, the process of sending a 
message is automated and directly integrated with DBC files to allow the user a smoother 
workflow. 
 

• uint8_T API_CAN_setPduTxEnblDisbl (CANTxId frameID, uint8_T 
status) 
It enables or disables the transmission of the message specified as parameter. 
 

• tCANTxStatus API_CAN_getPduTxEnblDisblStatus (CANTxId frameID) 
It provides the enable status of the transmission message specified as parameter. 
 

• uint8_T API_CAN_setPduRxEnblDisbl (CANRxId frameID, uint8_T 
status) 
It enables or disables the recep+on of the message specified as parameter. 
 

• tCANTxStatus API_CAN_getPduRxEnblDisblStatus (CANRxId frameID) 
It provides the enable status of the receiving message specified as parameter. 
 

• uint8_T API_CAN_getPduTxStatus (CANTxId frameID) 
It indicates if the last transmission request has been successful transmiled on the CAN bus. 

 
 
In addi+on to these, are declared some callbacks that are necessary for each CAN network to specify 
certain parameters. These callbacks will not be transformed in blocks because they are not useful in 
the Simulink model phase, but they are fundamental later in the integra+on of the code. 
For each CAN network are described these callbacks (here there are callbacks of CAN 2 network): 

- API_CAN2_setBaudRateCbk (sets the baud rate for the specified CAN network) 
- API_CAN2_getDiagStatus (returns the diagnos+c status of the specified CAN network) 
- API_CAN2_setIdRxCbk (specifies the ID, aka the address, of receiving messages 

according to the DBC file) 
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- API_CAN2_setIdTxCbk (idem for the transmijng messages) 
- API_CAN2_setIdeRxCbk (specified if a receive message is standard or extended 

according to the DBC) 
- API_CAN2_setIdeTxCbk (idem for transmission messages) 
- API_CAN2_getMsgStatusRx (returns the status of a received message, so if it was 

properly received) 
- API_CAN2_initCbk (sets parameters of messages according to the DBC file, in par+cular 

the init value for the transmiled messages, the period which a message has to be received 
or transmiled, the DLC, the +meout for receiving messages and the status of enable/disable 
of the single message so if it has to be sent/received) 

 
All callbacks that are related to a DBC file were wrilen by hand and could lead to mistakes. For this 
reason, all the process of populate the callbacks in the source file has been automated by a specific 
tool that does this job instead of user. This aspect will be explored in the next chapter. 
 
API func+ons are translated into Simulink ‘C Caller’ blocks1. This type of MATLAB blocks permits to 
call C func+ons declared in external source codes and libraries, so these files must be set in the 
configura+on parameters of MATLAB. 
When a C Caller block is created, all the values passed by parameter to the function are mapped into 
inputs of the block while the return value is the output of the block.  
 
As men+oned before, to ensure that MATLAB is able to create all the blocks, some rules should be 
followed for a correct crea+on of the API func+ons: 

- Pointers are not recommended because are difficult to integrate in MATLAB, so only 
parameters passed by value should be used. 

- In case you need to return mul+ple values, you should create a struct containing all the values 
and return it, as in the case of ‘API_CAN_getRxPduInfo’ where two different data 
return through a struct created ad hoc (these struct should be defined in the header file). 

- To visualize input and output names of parameters in the C Caller block you have to put them 
also in the prototypes of the header file (api.h) just like in the api source file (api.c). In this 
way it will be clearer in the development phase use the C Caller block thanks to the presence 
of parameter names instead of a generic ‘input 1’ and ‘input 2’. 

 
In the MATLAB project used for the model development, it could be useful a copy of the original 
source file, with the simplification that the body func+on could be empty. This choice has been made 
because func+ons in the real source file call in turn other lower-level func+ons and MATLAB would 
not be able to handle them. In this way when the automa+c code generator will translate C Caller 
blocks in source code, it will only write the name of the func+on and its parameters. This is enough 
for the company’s goal because the integra+on with the real source file is done outside MATLAB. 
 
Below is an example of C Caller block created from the API_CAN_getRxPduInfo func+on (figure 
19), and as can be seen the received CAN message is ready to be used in your model simply by 
dragging a line from the block. 
In par+cular, the block has as input the frame ID of the message to receive (in this example it is a 
message of the second available CAN network, CAN2), and as output the struct containing all the 

 
1 h#ps://www.mathworks.com/help/simulink/ug/integrate-ccode-ccaller.html 
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message informa+on. Using a ‘bus selector’ is possible to split the struct in its fields and use them 
in the user’s model. 
 

 
Figure 19 - C Caller block for receiving a CAN message 

 
For those func+ons which have a struct datatype as input parameter (as for example the 
API_CAN_setTxPduInfo), the procedure is the reverse that is the use of a bus creator which 
“assembles” all single fields in the final struct. 
 
This is another example of C Caller block created from the API_DOUT_setDigOut func+on where 
is set to 1 a certain Digital Output pin number and in this way for example, a LED connected to that 
pin can be turned on. 
 

 
Figure 20 - C Caller block for Digital Output 

 
These types of examples should allow easily to understand the poten+al of this approach and how 
simple is the communica+on between the model environment and the low level software. 
 
Other func+ons present in the API file are those that are related to the management of the Opera+ng 
System (OS). In par+cular, some specific func+ons are used to schedule the different tasks divided 
by execu+on +me. When the code of a certain model is generated, it will be composed by a step 
func+on (and other file that will explain later) that must be inserted in the right task func+on based 
on his execu+on +me. The different execu+on +mes available are 1ms, 2ms, 4ms, 10ms, 50ms, 
100ms and 1s. The func+on in the API file that call these tasks is named with ‘API_OS_Task’ plus 
the execu+on +me. For example, the API_OS_Task10ms func+on has the purpose to call all 
func+ons that must be executed every 10 ms. 
The remaining func+ons related to the OS are ‘API_OS_LockOS’ and ’API_OS_UnlockOS’ 
that lock or unlock the opera+ng system in order to prevent some possible task switching, 
‘API_OS_DriverEnable’ and ‘API_OS_DriverDisable’ that enable or disable all 
external drivers. 
In the future could also be managed func+ons in Simulink regarding the memory management 
(NVRAM) and the diagnos+c modules (WWH-OBD) always with the idea of having available some 
blocks that allow the user to model more easily. 
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5. SW integra4on on the real target 
 
When the MBD of your applica+on is completed and the MIL tes+ng itera+on is done with the 
expected result, it is +me to automa+cally generate the code with the scope to integrate it in the 
real target HW. To generate the code in the correct manner, it must be declared some configura+on 
parameters in MATLAB. These parameters permit to create a so>ware that is compa+ble with the 
ECU and the SW implementa+on strategies. A>er this step, trough other tools, is possible to 
generate the ‘.s19’ and ‘.a2l’ files that will be flashed in the ECU. 
 

5.1 MATLAB configura4on parameters for code genera4on 
 
MATLAB makes available to the user many parameters that determine how the code generator 
produces code and builds an executable program.  
The most important file generated from MATLAB are the following: 

- model.c  (contains the code for the model algorithm implementa+ons and it is made by 
three main func+ons that are model_ini+alize, model_step, model_terminate) 

- model.h  (is the header file of model.c and contains the declara+ons of data structures, 
signals and calibra+ons used in the model. It also contains the prototypes of the three 
func+ons explained in the source file) 

- model_private.h  (contains local data that the model requires. It is automa+cally 
included along with model.h in model.c) 

- model_types.h   (provides user-defined types that the model requires) 
- model_data.c   (contains the declara+ons for the parameters data structure and the 

constant I/O blocks) 
- rtwtypes.h  (contains data types required by the generated code) 

 
Concerning the func+ons generated in model.c, only model_ini+alize and model_step func+ons are 
necessary, without the terminate func+on. Furthermore, is not necessary the genera+on of a main 
func+on since ‘API_OS_Task’ will take care to call the generated func+ons in ‘model.c’. 
 
Configura+on parameters are divided in mul+ple fields, each of which concern a specific aspect of 
the code genera+on. The main ones are described below: 
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Figure 21 - General parameters 

The System target file (figure 21) describes the file configura+on used to control the code genera+on 
based on the final HW target and, in this case, it is set to ‘ert.tcl’ (embedded real-+me target). In 
contrast with ‘grt.tlc’ (generic real-+me target) that is used for a generic target (such as the host PC), 
the ‘ert.tlc’ has a beler speed and memory op+miza+on since the target is an Embedded system, so 
with lower power and space memory. 
The language used for the code genera+on is the C. It follows the language standard C99 and the 
MISRA C 2012 guidelines. They have the scope to make easier some code characteris+cs in the 
embedded systems field such as security, safety, portability and reliability. 
For what concern the build process, the MinGW64 is used to build the executable program and the 
build configura+on op+on is set to ‘Faster Builds’ for op+mizing the build +me. 
 

 
Figure 22 - OpMmizaMon parameters 
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As shown in the figure 22, MATLAB makes also available many op+miza+on parameters for saving 
space memory and computa+onal power. All these op+miza+ons are related to the target in use, 
that in this case is an Embedded plaUorm, in fact in these types of systems do not have all resources 
that can take for granted in a generic PC. 
The first op+on ‘Default parameter behavior’ is set to ‘Inlined’ to not allocate memory for 
represen+ng block parameters. In this way it reduces global RAM usage and increases efficiency of 
the generated code. The same scope has the second parameter that permit to pass reusable 
subsystem outputs as structure reference (pointer to it) to op+mize the memory usage. 
The following two flag disable the ini+aliza+on of inports/outports and internal work structures, so 
the user will manage them. Then are available other parameters always with the scope to op+mize 
the code generated, as for example the flag ‘Use memcpy for vector assignment’ that avoid for loops 
or ‘Eliminate superfluous local variables’ that increases the memory efficiency. 
 

 
Figure 23 - Interface parameters 

 
These parameters (figure 23) manage the interface of the generated code. The ‘Shared code 
placement’ is set to ‘Shared loca+on’ to place the code for u+lity func+ons in a shared folder. In the 
support flags, only floa+ng-point numbers are enabled for code genera+on while the others are 
disable, so for example complex numbers cannot be generated. 
The ‘Code interface packaging’ set on ‘Nonreusable func+on’ permits to generates nonreusable code 
alloca+ng model data structures in a sta+c way. 
The array layout is le> to default as ‘Column-major’, so the matrix elements of the columns are 
con+guous in memory, and the transport layer used follows the TCP/IP mechanism.  
As men+oned before the terminate func+on is not required, so the rela+ve flag is disable. 
Furthermore, since it is necessary only the ini+alize and step func+ons, all API genera+ons for 
signals, parameters and I/O are disable. 
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Figure 24 - Code style parameters 

Code style parameters (figure 24) configures the appearance of the generated code. Through these 
parameters is possible to have a code that is conform to a specific standard, such in this case the 
MISRA C. 
The first parameter ‘Parenthesis level’ is set to ‘Standards’ to have beler code readability and to be 
conform to MISRA requirement. An important parameter is the ‘Preserve extern keyword in func+on 
declara+ons’ that permits to generate the model entry point func+ons, model_ini+alize() and 
model_step(), with the keyword ‘extern’ that explicitly indicates an external linkage. 
The ‘Cas+ng modes’ parameter is set to ‘Standards compliant’ to sa+sfy some MISRA rules, for 
example it can replace bitwise XOR opera+ons with rela+onal opera+ons to sa+sfy the 10.1 MISRA 
rule.  
 
In the Code Placement sec+on of the configura+on parameters windows, is possible to set the 
format of the file packaging. In par+cular, with the op+on ‘Modular’ all files described at the 
beginning of the chapter are generated, while using ‘Compact’ model_data.c, model_private.h, 
model_types.h are included in the source and header file. 
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Figure 25 - Data type replacement parameters 

The data type replacement (figure 25) sec+on permits to replace built-in data type name with user-
defined names in the code genera+on. In this case are used the default coder typedefs but in case 
of specific requests by a customer, is possible through the ‘Specify custom data type names’ flag to 
modify all names wri+ng the desired ones. 
 
 

5.2 Workflow from MATLAB to ECU 
 
Once the MBD of a system is completed and the MIL tes+ng is done with the expected results, as 
explained in the chapter before, the code of the model will be generated automa+cally. To run the 
so>ware in the real hardware and test it, some steps have to be done. 
In the PC used for development/test of the Model-Based applica+on, should be created a project 
folder where insert all necessary files used for the project. 
For a clearer understandability of the project architecture, the three layers of the SW architecture 
have been divided in different folders (BSWL, API, MBSL). The MBSL folder is dedicated for the 
applica+on, in fact it shall contain all the source code files generated from the applicative models by 
MATLAB during the code genera+on. 
The next step is to link these applica+on files to the API layer, and this is done by including all the 
model header files in the API file. 
 
The API file, as explained in previous chapters, contains some func+ons related to the OS that are 
executed at specific +mes. The ‘API_OS_Init’ is in charge to do the task rou+ne for the system 
ini+aliza+on, so all the model_ini+alize() func+ons generated from MATLAB must be inserted here. 
In this way all models’ ini+aliza+ons will be executed at the right +me. 
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Figure 26 - API_OS_Init 

 
As the figure 26 shows, ‘API_OS_Init’ func+on contains all ini+aliza+ons tasks such as the 
EEPROM ini+aliza+on, the variables ini+aliza+ons or the I/O ini+aliza+ons. At line 4524 of the code 
in the figure, all the applica+on ini+aliza+on func+ons are inserted, and in this example, there are 
some func+ons related to the Demo Applica+on that has been developed for tes+ng the created 
library.  
 
A>er that, model_step() func+ons must be inserted in the ‘API_OS_Task’ func+on based on the 
frequency at which the task has to run. In the example below (figure 27) is shown the 
‘API_OS_Task50ms’ containing all tasks that must be run every 50ms. At the line 4700 are 
inserted two step func+ons derived from the related Simulink models. Obviously, the order in which 
func+ons are inserted depends on the applica+on logic, so if is necessary to run model A first than 
model B, the order will be the same in the code. 
 

 
Figure 27 - API_OS_Task50ms 

 
Once this is done, is possible to proceed with the build of the project to transform the source code 
into an executable so>ware for the embedded system. There are many so>ware tools available for 
this task and in this case, it has been used ‘HighTec Development PlaUorm’.  
A>er having selected the microcontroller used in the ECU, this tool manages the en+re build process 
of the project so compiler, assembler and linker. The final result is the crea+on of two different files 
that are the ‘.elf’ and the ‘.s19’. 
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Figure 28 - Build project with HighTec 

The ELF file (Executable and Linkable Format) is a standard file format for executable files, object 
code and shared libraries, it contains informa+on for the execu+on of a program such as data 
memory addresses. The s19 file (S-Record file) contains the machine code compiled and it is used to 
program the EEPROM (non-vola+le memory of the microcontroller). 
 
The next step is the crea+on of the A2L file through some tools developed by Vector. The A2L file 
contains informa+on about memory address and data type of all data objects (parameters, maps, 
signals, etc.) and, together with the s19 file, will be flash in the ECU. 
It has been created a batch file to execute some instruc+ons that allow the correct crea+on of the 
file: 
 

- Through the Vector ASAP2 Merger tool, all A2L files belonging to the source codes of the 
project are merged into a single one, that will be called with the name of the project. It works 
with a master-slave paradigm, so is present a Master A2L file (Header A2L) that described 
rules for communica+ng with the ECU and it is merged with all the others that contains 
symbols. 
 

 
Figure 29 - ASAP2 Merger tool 

 
- Through the Vector ASAP2 Updater, all the symbol addresses present in the A2L file are 

updated based on the ELF file generated from the last build process. This is done because 
object addresses may change from a build process to another and, if the A2L file is not 
update, the en+re project may no longer work properly. 
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Figure 30 - ASAP2 Updater tool 

When the A2L and S19 files are ready, they can be flashed in the ECU using a tool called CANape, 
developed by Vector. CANape is a plaUorm able to connect with the ECU and perform many tasks 
including: 
 

- Flashing (upload a new so>ware in the ECU via XCP/CCP protocol, UDS or Ethernet) 
 

 
Figure 31 - Flash via CANape 

- Data acquisi+on and analysis (measurement and processing of data and signals from ECU) 
 

 
Figure 32 - Data acquisiMon 

- Calibra+on (modify parameters and flash it to reach the expected behaviors of the system) 
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Figure 33 - CalibraMon 

To start a session with CANape for flashing and tes+ng your MBD applica+on in the ECU, you should 
create a new CANape project (in a dedicated folder) defining all rela+ve configura+ons and files 
needed to the project execu+on (such as S19 and A2L). 
 
The figure below shows the physical links that must be done for the correct configura+on of the 
environment work. The PC communicates with ECU through CANape using the XCP protocol.  

 
Figure 34 - Physical links 

 
From a prac+cal point of view, the ECU is connected to a power supply and, as shown in the figure 
below, in this case it is set to 12V in DC. 
 

 
Figure 35 - ECU connected with power supply 
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The next step is to connect Vector CANape device to both the ECU and the PC. Concerning the 
connec+on with the PC is used an USB type B cable while a VGA port is used for the connec+on with 
the ECU. 
As it can be seen (Figure 36), it is used the CAN 1 channel (as explained in the chapter 3.2) to 
exchange data with the PC and it is also necessary a termina+on resistor of 120 Ω (the lille black 
box in the figure below between CANape and CAN 1 connector). 
 

 
Figure 36 - ConnecMon between PC and ECU 

A>er correctly sejng all the connec+ons, is possible to launch the CNA file (CANape configura+on 
file of the project). The tool will immediately no+ce that the so>ware in the ECU is different from 
the one in the PC (basically looking the EPK, Figure 37) and is necessary to flash the new so>ware. 
 

 
Figure 37 - So?ware version check 
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The tool makes available to the user three type of flash (Figure 38). ‘CALIB’ stands for calibra+ons 
and is used when the applica+on so>ware is the same but change only calibra+on parameters. 
‘APPLICATIVE’ is used when the applica+on part is different from the precedent one, for example if 
is added a gain block in the control module. The ‘BOOT’ flash is used in specific cases when is 
necessary to change the boot code in the memory (the code executed when the ECU is turned on). 
 

 
Figure 38 - Flash types 

 
The first +me that is flashed a new so>ware version, calibra+on values in the so>ware may differ 
from the displayed ones in CANape (Figure 39). The tool asks to the user if he wants to upload those 
in the so>ware to the work screen of CANape or vice versa if he wants to download the old values 
present in CANape to the ECU. 
 

 
Figure 39 - Cache synchronizaMon 

 
A>er this step, if the user changes some calibra+on values during his test in CANape and flash them 
in the ECU memory, the two version of so>ware will be aligned and the precedent popup will not 
appear in the next working sessions. 
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From a technical point of view, applica+on and calibra+ons sec+ons are divided in two different 
memory areas. This is done for a beler management of the two sec+ons and for enhance the 
security. Having the calibra+on sec+on independent permits, in case of errors during the calibra+on 
wri+ng, to preserve the applica+ve sec+on. Furthermore, it can be subdivided in more sec+ons 
based on their purpose and in this way is possible to give restricted accesses. 
 

 
Figure 40 - Flash memory scheme 

 
When the ECU is turned on, the MCU starts from the bootloader its rou+ne tasks and, if is present 
an applica+on so>ware (checking the rela+ve key presence), it updates the Stack Pointer with its 
first instruc+on. Then all calibra+on parameters are taken from the CAL ROM sec+on of the flash 
memory and are copied in the CAL RAM sec+on.  
When calibra+ons are flashed from CANape to ECU, they are directly wrilen to the CAL ROM and 
they will remain when the ECU will turn off. 
If the applica+on so>ware should be flashed, the applica+on key presence (located in a common 
storage area accessible by both the applica+on and boot sec+on) is canceled, and via CANape a 
request shall be sent for wri+ng in the applica+on sec+on memory via XCP protocol. A>er that, will 
be possible to overwrite the applica+on sec+on with the new applica+on so>ware and to enable 
again the key presence. 
 
The overall workflow from MATLAB to the ECU can be resumed in the following schema. 
 
 

 
Figure 41 - Workflow from MATLAB to ECU 
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6. Modeling environment and Library design 
 
As previously explained, the model environment used for this thesis work is MATLAB and it is one of 
the most famous tools for the Model-Based Design of systems.  
 
MATLAB makes available a large number of libraries and, integrated with Simulink, is possible to 
develop complex systems with a MBD approach in an easy and fast way. 
Furthermore, the community of MATLAB is very large and so in case of problems is easier to find 
online resources and receive support.  
 
For these types of works is very useful to use a MATLAB ‘Project’, that is an environment where is 
easier to manage files of different types including: MATLAB files, DBC files, source code files, 
requirements file, reports, generated files etc. 
 
For the descrip+on of the modeling environment, it has been considered the demo applica+on 
developed to test and validate the created library. It tries to follow the basic rules and hints that a 
good project development should have. 
 

6.1 Custom Storage Classes 
 
To meet some specific implementa+on requirement, there has been created some custom storage 
classes that add some features to default MATLAB classes. 
 
The custom storage class ‘Calibra+on’ has been created for all parameters that must be tunable 
(calibratable) during the following phases of tes+ng. 
To do this, it has been defined in MATLAB a new memory sec+on called ‘CalRam’ that is a sec+on of 
the RAM dedicated to calibra+on parameters and it is characterized by a pragma sec+on. 
A pragma is a direc+ve that gives the possibility to assign addi+onal informa+on to the compiler and 
in this way decide some compila+on details which are generally not modifiable.  
Using this direc+ve, MATLAB will add the pragma sec+on to the code when it declares all parameters 
saved as ‘Calibra+on’. 
These figures show how the memory sec+on is created and then how MATLAB declares all 
calibra+on parameters in the generated code with the correctly use of the pragma statement. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 43 - Pragma secMon use 

Figure 42 - CAL RAM creaMon 
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The same procedure is done for the ‘Map’ custom storage class that is an extended class of the 
Lookup Table (LUT). In this way all the parameters of the LUT declared as ‘Map’ could be modified 
since is stored in the CalRam memory sec+on. This is important when you have to find the right 
parameters of the table through various simula+ons. 
 
The last two custom classes created are named ‘Signal’ (used for input/output) and ‘TestPoint’ (used 
for intermediate signals). 
 
I/O signals are used with the custom class ‘Signal’, in par+cular input signals shall be imported from 
other models while output signals are declared as extern. 
TestPoint signals are those that are used inside the model and only in that model. However, from a 
“code genera+on” point of view they are treated as output signals so they are declared as extern 
and they can be visualized in the measurement tool later. 
 
The figure 44 shown a use case example of these created storage class. On the le> is present the 
LUT called ‘zvRailPConv1’ and it is related to a ‘Map’ object in the data dic+onary with the same 
name. In the line coming out of the LUT is connected a ‘TestPoint’ called ‘zsRailPressureTmp’, as 
explained before it is a signal that remains in the current model and is not used from other models. 
A>er that is present a switch that permits to set a fixed value instead the real signal if a enable 
parameter is turned on. This parameter (zfRAILPRESSURE_VALUE) and the fixed value 
(zfRAILPRESSURE_EN) are saved in the data dic+onary as ‘Calibra+on’ and so they are modifiable in 
CANape during the HIL. Outgoing from the switch is present a ‘Signal’ that can be used in other 
models.  
 

 
Figure 44 - Custom storage class example 

 

6.2 MATLAB Project architecture 
 
A project should follow a modular architecture with the goal of making the work environment well-
structured for improving the comprehensibility and facilita+ng the system development. 
A>er having created a new MATLAB project, should be created folders for different working areas, 
so for example a library folder where to put all files inherent to the library blocks, and a model folder 
containing all files of system models. 
Regarding models of the system, they are divided by different task (e.g. igni+on module, injec+on 
module, turbo module, etc.) each of which is in turn composed of mul+ple simulink models divided 
by execu+on +me. Each model has an associated data dic+onary that contains all its data such as 
parameters, signals or lookup tables.  
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Upstream of all data dic+onaries is present a data dic+onary that is linked with all the others and so 
it contains data of all models. This is done because each model will be linked with this ‘father’ data 
dic+onary to visualize and use data of all the other models. 
Downstream of all models is present a data dic+onary containing all the enumera+ve data types and 
data struct of the project. It will be linked and so available to all models allowing its use.  
 
In the figure below is shown the folder management of the Demo Applica+on (chapter 7) in MATLAB. 
As it can be seen, in the ‘DemoApp’ folder are present all different models, each of which has the 
Simulink model, the data dic+onary associated and a test harness model to verify the correct 
func+onality of the model (MIL). 
In the ‘Librerie’ folder are present the library and all files associated to it like the API file, custom 
class files and DBC files. Then is present the data dic+onary ‘father’ (DDLib.sldd) and the data 
dic+onary of all enumera+ves and data type (eAxle_enum.sldd) 
 

 
Figure 45 - Project folder management in MATLAB 

 
MATLAB provides a very useful tool for visualizing all dependencies between project files that is 
called ‘Dependency Analyzer’. It helps the user to understand the links present between the various 
models and data dic+onaries. 
 
As it is shown in the figure 46, all models (characterized by the red label and the suffix “.slx”) are 
connected with the ‘father’ data dic+onary (called in this example ‘DDLib.sldd’ and with yellow label) 
and, as said before, each model can use signals of other models. Each model data dic+onary is 
connected to ‘eAxle_enum.sldd’ for having access to all enumera+ve data types. 
The created library for this thesis work (‘eAXLE_LIB.slx’) could have access to the data dic+onary of 
enumera+ve data types but it cannot be linked with the other data dic+onaries. 
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Figure 46 - Dependency Analyzer 

6.3 Blocks library design 
 
To create a new library is necessary to start Simulink and click on ‘Blank Library’. Using your own 
library in addi+on to the exis+ng ones, allows the user to have some func+onal blocks available that 
help the model development. These blocks library performs ac+ons with the aim of reducing 
development +me and avoid errors due to human mistakes. 
 
All blocks that require an input from the user such as click a bulon, are created simply by adding a 
new empty subsystem to the library model and modifying its mask. Through the ‘Mask Editor’ of the 
block is possible to create a block library with which to dialog using bulons, check box, editable 
parameters etc. All bulons are related to a specific script file (saved in the same folder of the project 
with the suffix “.m”) that is executed at the +me the bulon is pressed. These script files are wrilen 
in MATLAB programming language that is similar to the C language. 
 
To have available the created library directly in the library browser some ac+ons have been 
performed following guidelines in the MathWorks website2. This leads to the advantage of having 
all blocks available directly in the model by simply dragging and dropping them. 
 
The mainly blocks that have been created are resumed in the following table. 
 

Block name Descrip0on Reference 
Update Update enumera,ve types and 

API func,on blocks 
6.3.1 

Import DBC Import in MATLAB DBC files and 
generate related callbacks in API 
file 

6.3.2 

CANRX_MESSAGE Receive message belonging to 
DBC files imported 

6.3.3 

 
2 h#ps://www.mathworks.com/help/simulink/ug/adding-libraries-to-the-library-browser.html 
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CANTX_MESSAGE Send message belonging to DBC 
files imported 

6.3.4 

GenCode Build model wrapper to manage 
I/O signals and generate code  

6.3.5 

 
 
The figure 47 shows the created library and its blocks. 
 

 
Figure 47 - Created library 

 
 

6.3.1 “Update” block library 
 
In the MATLAB environment, when you start a new project, you have to create one by one in the 
appropriate data dic+onary all enumera+ve data types that are present in the API file. Once you 
have done, if are necessary some updates or if there are new data types in the API file that must be 
added, you must modify the data dic+onary by hand ac+ng one data type at a +me. The same 
problem concerns the crea+on of C Caller blocks for using API func+ons and this can take a lot of 
+me. 
 
This block library has been created whenever is required to create or update all the enumera+ve 
data types and C Caller blocks from the API file. 
When you have just created your new MATLAB project for the model-based design of your 
applica+on, you should add the API source and header files in your project folder and declare them 
in the library configura+on parameters under the heading ‘Code informa+on’. 
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Figure 48 - "Update" block library 

The block shown in figure 48 is composed of two bulons, the “Update Enum” bulon is in charge to 
add all the enumera+ve data types and data struct from the API header file to the ‘eAxle_enum.sldd’ 
(the data dic+onary used for this purpose). Before do this, it deletes all entries of the data dic+onary 
in order to start with the original state (where the data dic+onary is empty), so in case the bulon is 
pressed for an update it correctly regenerates all enumera+ve data types. 
A>er that, through the “Simulink.importExternalCTypes” func+on used in the script, it 
effec+vely adds entries to the data dic+onary and then it converts all storage types of ‘Na+ve Integer’ 
to ‘uint8’, to be aligned with the code genera+on implementa+on. This is the data dic+onary of the 
enumera+ve types a>er having pressed the “Update Enum” bulon and, as it can be seen from the 
figure 49, all data types are created (enumera+ve data types denoted by the yellow grid and struct 
data types by the three black lines) and the storage type of each data is ‘uint8’. 
 

 
Figure 49 - "Update enum" result 

 
The second bulon ”Update Blocks” performs the same ac+ons with the API func+ons, so it creates 
all C Caller blocks with the scope of calling the API func+on associated. When the bulon is pressed, 
present C Caller blocks are eliminated for the same reason of the previous case, then is created a ‘C 
Caller block Init’ that has the scope of generate all the other blocks. The script updates the list of the 
available func+ons in the ‘C Caller Init’ (figure 50) and then it creates them one by one. 
As the figure 51 shows, a>er having pressed the “Update Blocks” bulon in the library will be present 
in an orderly manner all the C Caller blocks, ready to be used in the model. 
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Figure 50 - C Caller Init block 

 
 

 
 
 
 
 
 
 
This block library is very useful because it permits to configure the work environment quickly and 
easily. Its strong point is the scalability because large numbers of enumera+ve data types or different 
func+ons are not a problem since all the work is automa+cally done. 
 
 

6.3.2 “Import DBC” block library 
 
When it is necessary to receive or transmit messages via CAN, the user should implement in Simulink 
the composi+on of signals for every message that must be used. This process can take a lot of +me 
and the risk of making mistakes is present since many things must be implemented such as 
encapsula+on of payload, data conversions, signal resolu+on and units. 
To have a beler management of CAN messages and consequently use them in the model 
development, the integra+on of DBC files in MATLAB is fundamental. 
For this scope, it has been created a specific block. It gives the possibility to the user to add or delete 
a DBC file in the project and integrates in MATLAB all its messages and signals. Furthermore, is 
possible to automa+cally generate all callbacks (specified in chapter 4.1) that are related to DBC files 
in the API file (and programmatically populate the file during the DBC import procedure). 
 
To manage messages and signals, two different classes have been defined. The ‘Message’ class, used 
for managing all messages has the following proper+es: 

- Name (name of the CAN message) 
- ID (represent the address of the message expressed in hexadecimal form) 
- NetworkType (indicates if it belongs to CAN1, CAN2, CAN3 or CAN4 network) 
- UniqueID (flag that indicates if the message address is unique or not) 
- DLC (Data Length Code of the message, the length of the payload in byte) 
- Period (period in [ms] which a message must be received/transmiled) 
- Timeout (+me limit within which wait a message) 
- Enable (flag that indicates if the message can be transmiled/received) 

Figure 51 - "Update Blocks" result 
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- Type (Extended or Standard message) 
- MboxId (the frame ID associated to the message) 
- Role (if is a transmiled or received message) 
- Signals (list of all its signals) 

 
The ‘SignalOfMsg’ class used for all message signals is composed by: 

- Name (name of the signal) 
- BitStart (start bit of the signal in the message payload) 
- Length (bit length of the signal) 
- ByteOrder (if expressed in Lille Endian (Intel) or Big Endian (Motorola)) 
- ValueType (if the signal is signed or unsigned) 
- Factor (precision factor of the signal) 
- Offset (possible offset of the signal) 
- Min (min value it can take) 
- Max (max value it can take) 
- Unit (unit of measurement) 
- Comment (signal comment string from DBC file) 

 
For what concerns the mapping between MboxId available (frame ID) and messages in DBC files it 
has been created a class called ‘canMap’ that manages this rela+onship. This class contains the list 
of all MboxId available, a flag that indicates if each frame ID exist in the API file (so if it has been 
managed at low level), the name of the possible message associated (empty if no message is 
associated yet) and the number of total messages associated. For a clearer management of network 
and messages, it is created an object of this class for each CAN network and for each ‘Role’. For 
example, the CAN2 network will have a ‘canMap’ object for messages in recep+on (called CAN2RX) 
and another for those in transmission (called CAN2TX). 
 

 
Figure 52 - "Import DBC" block library 

A>er opening the block library, the first ac+on to do is to add a new DBC file in MATLAB pressing the 
‘Add DBC’ bulon (figure 52). At that moment, an open file dialog appears to choose the DBC file 
from the file system and then the tool will ask the user to select the CAN Network and the 
transmission node (figure 53).  
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Figure 53 - Select CAN network and transmission node 

This is done because based to transmission node, the tool can understand which messages are 
transmiled and which are received (since in the DBC file each message has among its proper+es the 
transmission node). Then it will update the correct canMap related to the selected CAN Network. 
The script will analyze the DBC file and based to its syntax (figure 16, chapter 3.2), it will create 
message and signal objects saving them in a specific file called as the DBC with the suffix ‘.mat’ (type 
of MATLAB file used to store data). A>er saving the objects, the ‘Import DBC’ block will show all the 
message proper+es of the selected one in the popup menu (in the example of the figure 52 it is 
shown the ‘FLCU_TO_PCM_003’ message, including a popup that shows the signals associated to 
the message). The script is predisposed for changing all message proper+es and consequently 
update the MATLAB object but for the moment, the user can only modify the flag for enabling or 
disabling the message. 
If the user adds more DBC files, they will integrate with the exis+ng ones, so the block library will 
assign new MboxId from those not yet occupied (checking from the canMap) and it will check the 
address univocity for the network of belonging.  
All DBC files imported are visible through the first popup called ‘DBC imported’. 
 

 
Figure 54 - Message properMes 
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The next step a>er impor+ng all DBC files into MATLAB, is to generate automa+cally all callbacks 
related to messages. Pressing the ‘Generate callbacks’ bulon, the script will write in the correctly 
code por+on of the API file all the proper+es of the messages. As shown in the figure 55, in the API 
file are present some markers (line 3111 and 3143 highlighted of the example code) that have the 
purpose to indicate the star+ng and ending point of the callback in such a way the script knows 
where to write the code. 
Every +me the callbacks are generated, the script deletes the old ones and rewrite the new ones. In 
this way is easier to manage update of exis+ng messages or add more. 
The big advantage of this feature is to eliminate all possible human errors due to incorrect 
transcrip+on of message callbacks. 
The ‘Generate DBC file’ bulon is inac+ve and in the future can be used for regenerate the DBC file 
according to all modifies done by the user. 
 

 
Figure 55 - Callbacks generated automaMcally 

 
The last thing that the user can do with this block is to delete an imported DBC file using the ‘Delete 
DBC selected’ bulon. In this way, a>er having chosen the DBC file to delete through the first popup 
and pressed the bulon, the script will automa+cally update the callbacks to be aligned with the DBC 
files imported at that +me. 
 

6.3.3 “CANRX_MESSAGE” block library 
 
A>er integra+ng DBC files, for using them is necessary to send and receive their messages. This block 
library (and its dual) concludes the management and integra+on of CAN communica+on in the 
MATLAB environment. It makes available to the user a simple way to use signals of received 
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messages in the model development and for doing this, it is integrated with all DBC files imported 
thanks to the previous block library explained. 
 

 
Figure 56 – CANRX_MESSAGE block 

As it is shown in the figure 56 the user has available all messages of DBC files imported in MATLAB 
and they are viewable through the two popups. A>er selec+ng the message and pressing the ‘Create’ 
bulon, the tool will create a subsystem with all message signals as output and the user will be able 
to use them directly in the model. The created subsystem also has two diagnos+c outputs called 
with the name of the message plus ‘_Status’ and ‘_BitStatus’ and they are used to check the 
diagnos+c status of the message. 
 
The ‘_Status’ signal describes through the enumera+ve data type ‘tCANRxStatus’ (page 27) the 
diagnos+c status of the message but it can represent only one state of error. For this reason, error 
state is displayed following a priority order. The most important error is the ‘Channel ID’ error 
because in presence of this error the message is not received. In case there were other errors besides 
this one, they will not be displayed due to priority management. Con+nuing with the priori+es order, 
there is the TimeOut error, it means that the +me limit imposed to receive the message has expired, 
so that message will be lost. The next error is the DLC error, it means that the DLC of the message 
received is not equal to the expected one. A>er that, the NewDataReceived state indicates when a 
new message is received raising a bit to 1. For transforming it to an error it has been inserted a ‘NOT’ 
block in such a way the error status rises when the new message is not arrived (before the Timeout 
error). The last error in order of priority is the SignalOutOfRange error and it means that one of the 
message signals assumes an out-of-range value. 
 
To inves+gate deeper and visualize all possible status error, it is used the ‘_BitStatus’ signal. It is a bit 
word made by 8 bit, each of which represent a specific status error. To compose it, every status has 
been weighted by a mul+ple of 2 and summing all of them you get the bit word. 
In the figure 57 it can be seen the subsystem created a>er having pressed the ‘Create’ bulon of the 
library block and it is composed, as men+oned before, from two diagnos+c signals and the message 
signals (in this case the message contains only the signal ‘csPCM_TO_FLCU_001_EnableFLCU’). 
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Figure 57 - CAN RX subsystem 

If the user presses ‘CreateAll’ a window like the one in the figure 58 will appear to ask the rate of 
messages that he wants to receive. Selec+ng the rate in [ms] the tool will create all subsystems as 
those in figure 57, one for each message. 
 

 
Figure 58 - CreateAll messages 

 
The CANRX subsystem is in turn composed from other subsystems that permit its purpose, so it is 
created from a script using other blocks library, specially made for this scope. 
 

 
Figure 59 - CAN RX subsystem composiMon 

As shown in the figure 59 there are other blocks that do different task. The upper part is in charge 
of giving in output the message signals while the bolom part takes care about diagnos+c status 
errors. 
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Figure 60 - CAN_RX_MESSAGE 

The first subsystem in the upper le> corner of figure 59, called ‘CAN_RX_MESSAGE’, is described in 
the figure 60. It takes the frameID associated to the selected message and call the 
‘API_CAN_getRxPduInfo’ func+on to receive the message (through the C Caller block created 
using the library, chapter 4.1 figure 19). The C Caller block gives as output the CAN frame (containing 
the payload and the error fields) and it is spun off using a bus selector. 
 
The ‘Error_Analyzer’ subsystem (figure 61) takes in input all the errors of the message and, based to 
priority, gives in output the two error signals (they are denoted as ‘Temp’ because is s+ll missing  
the SignalOutOfRange error that is managed in another part of the subsystem). As it is shown below 
(figure 61) the priority concept is modeled in MATLAB using a cascade of switch blocks (that can be 
interpreted as IF-THEN-ELSE) so if the first switch is verified (it passes the true condi+on) the others 
are ignored. Each switch corresponds to a possible error status described by a constant value, for 
example the ‘ChannelIdErr’ is represent by the number 4 because it is its enumera+ve (accordingly 
to the enum data dic+onary). 
For crea+ng the bit word status, each error signal is mul+plied by a power of two and they are 
summed. 
 

 
Figure 61 - Error Analyzer 
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To complete the two diagnos+c signals is also necessary the ‘SignalOutOfRange’ error but it is 
managed separately because it is a property of the single message signal and not of the en+re 
message. For doing this all ‘SignalOutOfRange’ errors of each message signal (that comes from the 
‘CANRX_SIGNAL_LITTLE_ENDIAN’ block as will be shown later) are inserted in an AND block that 
gives as output the ‘SignalOutOfRange’ error of the message (in the example in figure 59 there is 
only one input in the AND block because there is only one signal but in case of mul+ple signals the 
AND block would adapt with the same number of input). In this way, if just one signal is out of range 
(denoted by a 0), the signal ‘SigOutOfRange’ (output of AND block) will be zero (the NOT block raises 
the error flag) and the two diagnos+c signals can be completed in the ‘MSG_STATUS’ subsystem 
(figure 62). 
 

 
Figure 62 - MSG_STATUS subsystem 

In the figure above in the lower right corner it also can be seen the composi+on of the bit word 
status where each bit means a specific diagnos+c error. 
For what concern the extrac+on of single signals from the payload data, the block 
‘CANRX_SIGNAL_LITTLE_ENDIAN’ (figure 59) has this purpose. Through the informa+on about the 
signal, this block is able to extract the correct bits from the en+re payload and create the correct 
signal. In case of a message with more than one signal, it will be present a block of this type for each 
one. 
Inside this block is also done the check of the ‘SignalOutOfRange’, in par+cular the signal is saturated 
to the minimum and maximum value before going out from the subsystem. Then it is compared the 
signal before and a>er the satura+on block and, if they are different, it means that the signal value 
is out of range. 
A>er this step, the user will have the opportunity through the ‘Fix_’ block (in the figure 59 is called 
‘Fix_csPCM_TO_FLCU_001_EnableFLCU’ because it assumes the name of the message signal) to 
enable a fixed value for that signal instead the real one. 
As the figure 63 shown, each signal has two calibra+ons. The first calibra+on, cfSIGNALNAME_EN, 
has the purpose to enable the fixed value represented by the second calibra+on, 
cfSIGNALNAME_VALUE. Through a switch block is checking if the enable calibra+on is equal to one, 
and in that case, the signal output will take the value of the value calibra+on. Otherwise, if it is zero 
the signal remains the original one. This type of approach is used very o>en during the test phases 
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because thanks to these calibra+ons the user can test some values inside the opera+ng range of the 
signal. 
 

 
Figure 63 - Fix subsystem 

 
 

6.3.4 “CANTX_MESSAGE” block library 
 
From the dual side, this block has the purpose to send CAN messages in the network. The window 
that appears is the same as in the ‘CANRX_MESSAGE’ block (figure 56) but the messages proposed 
to the user are the transmiled messages instead received messages. The aspect of the created 
subsystem for each message is similar to the receive ones, in fact it has as inputs all message signals 
that are going to be send (figure 64, in this example the message FLCU_TO_PCM_001 is composed 
by two signals that are ‘FuelLevel’ and ‘FuelLevelLow’). 
 

 
Figure 64 - CAN TX subsystem 

 
Also in this case, the subsystem is composed by other subsystems that have different role. The 
‘CANTX_SIGNAL_LITTLE_ENDIAN’ (figure 65) blocks have the purpose to compose the payload of the 
message. Based to the signal informa+on such as start bit, number of bits, factor etc., each signal 
data is routed to a bitwise OR to create the en+re payload data. 
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Figure 65 - CAN TX subsystem composiMon 

 
Inside the ‘CANTX_SIGNAL_LITTLE_ENDIAN’ block (figure 66) is present the ‘Fix_’ subsystem, since 
also in this case is possible to send specific values using the calibra+ons (they are called with the 
same syntax in received messages). The block is inserted before the crea+on of the signal data in 
order to put the right values in the payload, original signal or fixed signal. 
 

 
Figure 66 - CANTX_SIGNAL_LITTLE_ENDIAN 

The Bitwise OR block in the figure 65, that is adapted based to the number of signals, sends to the 
‘CAN_TX_MESSAGE’ block the payload data. This subsystem (figure 67) is in charge of sending the 
CAN frame to the associated frameID (MboxId) and, as shown in the figure below, it is done 
automa+cally using the message informa+on. The tool uses the ‘API_CAN_setTxPduInfo’ 
block crea+ng, through a bus creator, the CAN frame composed by the DLC and the payload. 
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It also makes available to the user a calibra+on, called ‘csMessageName_En’ that enable or disable 
the state of message transmission. The calibra+on is converted in ‘uint8’ according to the func+on 
parameter. 
 

 
Figure 67 - CAN_TX_MESSAGE subsystem 
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6.3.5 “GenCode” block 
 
When the model development is finished, MATLAB takes care of genera+ng the related code. To 
properly handle signals between different modules, certain opera+ons need to be carried out. This 
block has the scope to do these ac+ons, in addi+on to the code genera+on, that are necessary for 
the correct workflow of the project and that were done by the user, having the possibility to make 
mistakes or forgeUulness.  
 
For what concern Lookup tables, they are used crea+ng a ‘Map’ object in the data dic+onary of the 
model and specifying its table and breakpoint vectors. This block has been created to have a clearer 
representa+on of the LUTs in the code generated, in fact it updates all the struct type defini+on 
names before the code genera+on in such a way each Lookup table will have the struct type name 
equal to the LUT object name plus ‘_str’ at the end (to indicate that it is a struct). Furthermore, it 
assigns the name of each LUT object to the related LUT block in the model. 
 
 

 
 
 
 
 
 
 

 
 
As can be seen from the figures above, the LUT called ‘zvRailPConv’ is declared as a Map in a pragma 
sec+on (figure 69), so due to the fact that is stored in the CAL RAM, it is calibratable in the test 
phases. Furthermore, its data type has been set with the same name of the LUT (figure 68). In this 
way the code generated is clearer and more understandable. 
 
As men+oned before, this block takes care about the management of signals. Since complex systems 
are divided in several models, signals are o>en shared between them. In par+cular a signal produced 
by a certain model can be used from another model (for this reason is used a main root data 
dic+onary that includes all data dic+onaries). The tool created does opera+ons through a script 
before and a>er the code genera+on following the flow below. 
Before to proceed with the code genera+on the script does the following tasks: 

- Check if Input signals are present in the data dic+onary of the project and set 
‘ImportFromFile’ as Storage Class. If the header file from where to import the signal is not 
present it gives error because is not possible use the signal. 

- Set the parameters Min, Max, Data type and Unit of the inport blocks equal to the signal 
associated. It is necessary for the report created at the end of the model. 

- Check if Output signals are present in the data dic+onary and set the storage class as 
‘ExportedGlobal’ in such a way they are declared as ‘extern’ in the code generated. 

- Set the parameters Min, Max, Data type and Unit of the outport blocks equal to the signal 
associated. 
 

Then the code genera+on started: 
- Update and generate code of the model. 

Figure 68 - Typedef struct definiMon 

Figure 68 – LUT object definiMon 
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- Save the most important generated files in a directory created ad hoc for the current model 
(‘.c’, ‘.h’, ‘_private.h’, ‘_types.h’, ‘.a2l’). 

- Save shared files in a directory common to all project models. 
 
A>er the code genera+on phase the script: 

- Sets for each Output signal ‘ImportFromFile’ as storage class and assign the name of the 
current model (adding ‘.h’ at the end) as header file in such a way the next model that uses 
that signal will have already set up the correct header file. 

- Saves all changes of the data dic+onary father. 
 
The script that does all these ac+ons is inserted inside a block library in a dedicated bulon called 
‘Generate code’ (figure 70). The following block is meant to be used at the end of the design of each 
model.  
 

 
Figure 70 - "GenCode" block library 

When the user has finished the model design it should wrap the model in a subsystem obtaining a 
new block with inputs and outputs. The first bulon in the block called ‘Build wrapper’ has the scope 
to join all inputs in a single block, link the inports to the related signal and lock/unlock the OS to 
avoid conflic+ng with other OS task during the acquisi+on of that signals. 
 

 
Figure 71 - Build wrapper result 

 
As is shown in the figure 71, all the input ports enter in the green block and with ‘Goto’ and ‘From’ 
blocks the signals are sent in the subsystem of the model. Inside the ‘IN PORTS’ green block it can 
be seen (figure 72) from the blue trident shaped symbol that the inport is connected to the signal 
object denominated in the same way. Furthermore, are present the C Caller blocks 
‘API_OS_LockOS’ and ‘API_OS_UnlockOS’ to do the ac+ons men+oned before. To ensure the 
correct order of execu+on, that is Lock the OS, assign the signal object to the inport and then Unlock 
the OS, block priori+es were changed through their proper+es. The ‘API_OS_LockOS’ has 1 as 
priority, the square block interposed between inports and outports (it has no func+on, only to pass 
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the signal from one side to the other) has priority 2 and finally the ‘API_OS_UnlockOS’ has 
priority 3. 
 

 
Figure 72 - IN PORTS block 

The result of the priority orders in the generated code is the following: 
 
 

 
Figure 73 - Signals assignment avoiding conflicts 

 
The last bulon ‘Generate report’ has the scope to generate a specific report for the current model 
to describe it. This bulon was already present and was created by previous colleagues. 
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6.4 Blocks valida4on 
 
A>er having created the new library, all blocks must be validated to be ensure that they work as 
expected. 
To validate I/O blocks is necessary to interface with the pins on the board and know the mapping 
with the related channel IDs. 
The Break-Out Box (BOB) (figure 74) is used in these situa+ons for having available all physical pins 
of the board and doing test. It replicates all pins and each of them has a specific ID number (e.g. 
B50). 
The test equipment changes according to the project and to the development phase of the product. 
For the rapid prototyping it is possible to connect some electronic components such as resistors or 
LEDs and measure voltages through tester or oscilloscope for tes+ng the model func+onali+es 
directly in the hardware. 
Dedicated HIL benches with real or emulated loads can be used in more advanced phases of the 
project. 
 
The mapping between pin numbers and MATLAB channel ID is made at a lower layer and a file that 
describe it is necessary for connec+ng electronic devices to the correct pin number. For example, 
the pin B53 is mapped to the channel ID ‘DOUT_LS_CH_ID_000’ so in the model phase if the user 
set a Digital Output LS to a certain value, he should check the result through that pin of the Break-
Out Box. 
 

 
Figure 74 – HDS9 Break Out Box 

 
With the BOB is possible to test and validate blocks that use Input and Output channels such as the 
example in the figure 20 which is present a Digital Output set to one. Connec+ng a LED, in this case 
it occurs that effec+vely when the channel is set to one, it turns on. 
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Figure 75 - LED on 

 
Regarding communica+on blocks, they have been validated through a real use case for a test 
implementa+on of the third CAN channel as possible intravehicular channel communica+on. To do 
this, it has been created a DBC file containing the largest possible number of messages and every 
possible task frequency. The goal is to check if all these messages are sent and transmiled correctly 
using CAN 3. 
 

 
Figure 76 - DBC file 

 
As shown in the figure 76, each message has from one to eight byte as DLC and, for simplicity, one 
signal for each byte. The ID starts from 0x300 (since all messages are standard and not extended) 
and increases by one for each message, the cycle +me to send or receive the message is 10, 50, 100 
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or 1000 ms. The network has two nodes where ‘EAXLE’ is the transmiler (the ECU) and ‘TESTER’ is 
the receiver (the PC). All message names are fic++ous and start with C3 (stands for CAN 3), then are 
followed by RX or TX to indicate their role in the network and at the bolom there is an incremental 
string that start from ‘AAA’. 
 
A>er this first step, the DBC file has been imported in MATLAB through the “Import DBC” block 
library and the result is visible in the figure 77. In this case is shown the ‘C3RXAAA’ message and its 
proper+es. By default, the +meout is set as three +mes the period. 
The tool assigns a different MboxId for each message and checks if the address is unique. In case it 
is not unique the flag ‘UniqueID’ would be disable. 
 

 
Figure 77 - DBC imported in MATLAB 

 
For what concern the design of this valida+on applica+on, there has been created one model for 
each period and for each role. This is done because each model will run in different OS task based 
on its frequency. Each model also has a data dic+onary where all signals are saved. 
 
Models for received messages have the only scope to receive messages of a certain period and 
visualize, through CANape, their signals. From the dual side, models for transmiled messages have 
to send some fic++ous signals. 
Using the ‘CANRX_MESSAGE’ and ‘CANTX_MESSAGE’ blocks library, all subsystems of messages are 
created automa+cally in the model in a few seconds. In this use case, it can be appreciated the +me 
saving that these blocks have provided since before, the crea+on and integra+on of the DBC file in 
MATLAB could take three weeks. 
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Figure 78 - CAN3_RX_1000ms 

The figure 78 shows the model created for received messages with period 1000ms. All the outports 
connected to the green block are created automa+cally using the ‘Build wrapper’ bulon of the block 
library and, consequently, all signals are connected to each related outport. 
 

 
Figure 79 - CAN3_TX_1000ms 

On the other hand, the Figure 79 shows the model for transmiled messages with period 1000ms. 
To send signals, some calibra+ons have been created and saved in the data dic+onary appropriate. 
In this way, in the next valida+on step with CANape, is possible to modify the transmiled signals 
and verify that the communica+on channel works properly. 
A>er having done all models for all types of messages, it is possible to automa+cally generate the 
code and, through the ‘Import DBC’ block, generate all the callbacks related to the DBC messages. 
The final step is to flash the so>ware in the ECU following the flow explained in the chapter 5.2 and 
though CANape visualize all signals messages.  
For the thesis, the ‘TESTER’ node in the network is done by the PC using a Peak dongle (PCAN-USB, 
visible in the figure 80) connected to the CAN 3. Through a tool called ‘PCAN-view’, a network sniffer, 
is possible to visualize network messages as well as send them. A>er having opened the tool is 
necessary to set the type of messages that are Standard or Extended. In this case it is set to Standard 
since all messages created in the DBC file have the ID of that type. 
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Figure 80 - Peak dongle 

To validate the func+onality of the program developed for this test, it has been tested both received 
and transmiled messages. The figure 81 shows a simple check to ensure the func+onality of CAN 3. 
On the le> side of the screen is present the PCAN-View tool that as said before plays the ‘TESTER’ 
role. Consequently, the received messages in PCAN-View are those transmiled by EAXLE, vice versa 
the transmiled messages in PCAN-View are received by EAXLE.  
On the right side of the screen is shown Vector CANape tool that represents EAXLE messages. 
 
For what concern transmiled messages (EAXLE -> TESTER), it can be seen from PCAN-View that are 
received all messages from ID 0x600 to 0x631. In addi+on to that it has been done another type of 
test, changing the value of the signal ‘SGN1_cal100ms_CAN3’ from 0x01 to 0x08 (since it is a 
calibra+on it is modifiable from CANape), is received the updated message value in fact, the blue 
circle shows that. This signal is used from all messages that have cycle +me 100ms and it represents 
the first byte of the payload. 
In addi+on to the message with ID 0x616, it is correctly updated in messages with ID 0x601, 0x606, 
0x611, 0x621, 0x626, 0x631. 
 
On the other hand (TESTER -> EAXLE), for tes+ng received messages it has been created a new 
message to transmit from the TESTER. To correctly create the message all setups must be done 
according to the DBC file, so in this case since is sent the message with ID 0x300, the DLC is set to 1 
and the cycle +me is set to 100ms. The payload data sent is 0x05 and from CANape is visible the 
correct payload circled in red. In this case the message received is the ‘csC3RXAAA_Sgn1’ and its 
status is CAN_RX_OK since the recep+on has no problem. 
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Figure 81 - CAN 3 funcMonality 
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7. Demo Applica4on - Rail pressure regulator and Fuel tank 
management  

 
To have a complete valida+on of the created library, a demo applica+on has been developed. The 
scope is to follow the en+re workflow from requirements to SW integra+on in order to emulate (in 
a simplified way) the crea+on of a real work project: a Fuel Line Control Unit. 
 
The Fuel Line Control Unit (FLCU) is an important component of the fuel delivery system in internal 
combus+on engines. Its primary func+on is to regulate and monitor the fuel flow, ensuring op+mal 
performance and efficiency.  

7.1 System requirements 
 
The FLCU system must meet specific requirements to ensure proper fuel management. They 
describe the purpose of each component of the system and how they are interconnected with the 
other components. 
The following subchapters represent the key requirements for the FLCU. 

7.1.1 Fuel Rail Pressure Control 
 
The Fuel Rail Pressure control is one of the most important requirements for the development of 
the FLCU as it directly impacts engine performance and fuel efficiency. By regula+ng the pressure of 
the Fuel Rail in a correct manner, many advantages can be achieved such as op+mized combus+on, 
precise fuel delivery and reduced emissions. 
To do this, a propor+onal-integral-deriva+ve (PID) controller can be employed in order to 
con+nuously monitors the actual fuel rail pressure, obtained from pressure sensors of the system, 
and compares it to the target pressure provided by the Powertrain Control Module (PCM).  
The PCM is an external module that is in charge of managing the desired engine torque and 
communicates with the FLCU via CAN. 
Based on the comparison between the actual and the desired rail pressure, the PID controller 
calculates the appropriate adjustment signal to control the Pressure Regulator Valve (PRV).  
The control mechanism of the PRV is based on the Pulse Width Modula+on (PWM) technique. 
Modifying the duty cycle of a fixed-frequency square wave signal, the PWM signal controls the 
actuator connected to the PRV. In par+cular, if the duty cycle increases, the PRV opens more allowing 
more fuel to enter in the fuel rail and increasing its pressure. On the other hand, decreasing the duty 
cycle restricts the fuel flow, reducing the pressure in the fuel rail. 
The PID controller permits to the FLCU to correctly regulate the fuel rail pressure remaining within 
the desired range specified by the PCM. 
 
 

7.1.2 Fuel Level Monitoring 
 
The fuel level monitoring requirement in the FLCU is necessary for maintaining a correct fuel supply 
and preven+ng fuel deple+on.  
For this reason, the FLCU interfaces with fuel pressure sensors installed in the fuel tanks also called 
On Tank Valve (OTV). These sensors provide con+nuous measurements of the fuel tank pressure, 
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allowing the FLCU to detect a low fuel level condi+on when the pressure in both tanks falls below a 
tuneable threshold. A>er detec+ng a low fuel level condi+on, the FLCU should ac+vate a visual 
warning to alert the driver (fuel reserve LED). Addi+onally, it should transmit this informa+on to the 
PCM, which can further op+mize engine opera+on based on the actual fuel level. 
 

7.1.3 Tank Valve Management 
 
Tank valve management is required for maintaining balanced fuel flow and pressure between the 
fuel tanks. The FLCU employs a dedicated control system for managing the opening and closing of 
the tank valves. This control system con+nuously monitors the pressure difference between the 
tanks using an addi+onal pressure sensor at the tank manifold (a>er both the OTVs). 
For implemen+ng the tank valve management are used solenoid valves as actuators that are 
controlled by the FLCU to maintain the pressure difference between the tanks below a configurable 
threshold.  
By implemen+ng precise tank valve management, the FLCU ensures op+mal fuel distribu+on, trying 
to keep consistent fuel pressure throughout the system. This in turn, promotes efficient engine 
opera+on and minimizes the risk of fuel starva+on. 
 

7.1.4 Communica4on with PCM 
 
Establishing effec+ve communica+on between the FLCU and the PCM is necessary for coordinated 
opera+ons and it is done via CAN. 
 
The communica+on enables seamless exchange of informa+on from the PCM to the FLCU related 
to: 

- The target fuel rail pressure to ensure the desired engine torque 
- The system enabling condi+ons (binary condi+on to ac+vate the FLCU control) 

Vice versa the FLCU provides to the PCM informa+on about: 
- The diagnos+c status of the sensors 
- The diagnos+c status of the actuators (valves and LED) 
- The actual rail pressure 
- The fuel level informa+on 

The CAN database that describes the communica+on is the following. 
Received messages: 

- PCM_TO_FLCU_001 (ID: 0x110) 
EnableFLCU (Signal): Indicates the system enable/disable signal 

- PCM_TO_FLCU_002 (ID: 0x220) 
TargetRailPressure (Signal): Represents the desired fuel rail pressure 

Transmiled messages: 
- FLCU_TO_PCM_001 (ID: 0x167) 

FuelLevelLow (Signal): Indicates a low fuel level condi+on 
FuelLevel (Signal): Indicates the actual fuel level 

- FLCU_TO_PCM_002 (ID: 0x123) 



 
 

 72 
 

RailPressure (Signal): Indicates the actual rail pressure 
- FLCU_TO_PCM_003 (ID: 0x145) 

Tank1PSDiagStatus (Signal): Diagnos+c status of Tank1 Pressure Sensor 
Tank2PSDiagStatus (Signal): Diagnos+c status of Tank2 Pressure Sensor 
ManifoldPSDiagStatus (Signal): Diagnos+c status of Manifold Pressure Sensor 
RailPSDiagnos+cStatus (Signal): Diagnos+c status of Rail Pressure Sensor 
OTV1DiagStatus (Signal): Diagnos+c status of OTV1 
OTV2DiagStatus (Signal): Diagnos+c status of OTV2 
PRVDiagStatus (Signal): Diagnos+c status of PRV 
LedDiagStatus (Signal): Diagnos+c status of LED 
 

7.1.5 Sensor/Actuator Management 
 
Effec+ve management of the pressure sensors within the Fuel Line Control Unit (FLCU) is essen+al 
for accurate monitoring and control of the fuel system. The sensor management requirement 
includes the following aspects: 

- Data Acquisi+on: The FLCU must acquire pressure readings from mul+ple sensors, including 
those located before each OTV, before and a>er the PRV (tank manifold pressure sensor and 
rail pressure sensor). The FLCU should establish reliable and efficient data acquisi+on 
mechanisms to capture sensor data accurately and in a +mely manner. 

- Error Handling: The FLCU should implement robust error handling mechanisms to detect and 
handle sensor failures or abnormal readings. This includes monitoring sensor output for 
inconsistencies, iden+fying sensor malfunc+ons, and genera+ng appropriate error codes. 
The FLCU should also have the capability to switch to backup sensors if primary sensors fail, 
ensuring con+nuous monitoring and control of the fuel system. 

- Diagnos+c Capabili+es: The FLCU should provide diagnos+c func+onality to iden+fy poten+al 
sensor faults or actuator anomalies. This result in running diagnos+c algorithms to analyze 
sensor data and detect discrepancies, genera+ng diagnos+c signals in case of problems. 

 
With a correct managing of the pressure sensors, the system ensures accurate and reliable 
measurement of fuel pressures at different points in the fuel delivery system and addi+onally has an 
efficient fault diagnosis procedure. In this way the reliability of the en+re system is enhanced. 
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7.2 System Architectural Design 
 
For a beler understanding of the system, it is necessary to have a system layout that represent each 
component of the system and how is connected with the other elements. 
As it can be seen from the figure 82, the FLCU exchange data with other components of the system 
that are described in detail a>erwards. The figure shows that it receives data from sensors 
(represented by yellow rectangles) and exchange messages via CAN with the PCM module. Green 
lines represent actuator controls while blue lines represent the fuel flow. 
 

 
Figure 82 - System Layout 

 
The following list outlines the main components interfaced with the FLCU: 

1. Pressure Sensors: The FLCU interfaces with pressure sensors installed in the fuel tanks to 
monitor the tank pressure and with pressure sensor installed before and a>er the PRV. These 
sensors provide accurate measurements of the fuel pressure, enabling the FLCU to detect 
low fuel level condi+ons. 

2. PRV Actuator: The FLCU interfaces with the actuator responsible for controlling the pressure 
regulator valve (PRV). The FLCU adjusts the actuator based on the output from the PID 
controller to regulate the fuel rail pressure. 

3. Tank Valves: The FLCU interfaces with the valves connected to the fuel tanks. These valves 
are responsible for controlling the fuel flow between the tanks and the main fuel line. The 
FLCU manages the opening and closing of these valves to maintain the pressure difference 
within the desired range. 

4. PCM Interface: The FLCU establishes a communica+on interface with the Powertrain Control 
Module (PCM). It receives the target fuel rail pressure from the PCM for maintaining the 
desired pressure level and an enabling signal for the en+re system. 

5. LED: The FLCU interfaces also with a LED that turn on in case of low fuel level. 
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7.2.1 BOM descrip4on 
 
The Bill Of Material (BOM) represent the list of material necessary to develop the system in study 
and some other informa+on about them. 
 

Name Descrip0on Type Range 
Tank1 pressure sensor Point 1 of chapter 7.2 Analog 0-5 V 
Tank2 pressure sensor Point 1 of chapter 7.2 Analog 0-5 V 
Manifold pressure sensor Point 1 of chapter 7.2 Analog 0-5 V 
Rail pressure sensor Point 1 of chapter 7.2 Analog 0-5 V 
Fuel Tank1 Valve Control Point 3 of chapter 7.2 Digital 0-5 V 
Fuel Tank2 Valve Control Point 3 of chapter 7.2 Digital 0-5 V 
Pressure Regulator Valve 
Control 

Point 2 of chapter 7.2 PWM 0-5 V 

LED Point 5 of chapter 7.2 Digital 0-5 V 
Fuel Line Control Unit ECU of the system Analog 8-32 V 
Powertrain Control 
Module 

Extern ECU interfaces 
with the FLCU 

Analog 8-32 V 

 
 
 

7.3 SoOware Architectural Design 
 
To have a clearer idea of how organize the model development is necessary a scheme of the so>ware 
architecture that represent all system modules. Each block will be modeled in MATLAB and will 
sa+sfy a precise so>ware requirements. 
 

 
Figure 83 - So?ware architecture 
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So<ware requirements: 
 

ID Name Descrip0on Notes System req. 
chapter 
reference 

SW_REQ_ID_001 CANRX Read the message 
according to the 
frame ID every 100 
ms 

 7.1.4 

SW_REQ_ID_001.1 CANRX_ENABLE_SYS Read the message 
containing the 
enable status of the 
system in the frame 
ID 0x110 

Frame ID 
according 
to DBC file 

7.1.4 

SW_REQ_ID_001.2 CANRX_PRAIL_TARGET Read the message 
containing the target 
rail pressure in the 
frame ID 0x220  

Frame ID 
according 
to DBC file 

7.1.4 

SW_REQ_ID_001.3 CANRX_FIX_VALUES Receive the fix 
values of the enable 
signal and target rail 
pressure signal 
instead the original 
ones 

Frame ID 
according 
to DBC file 

7.1.4 

SW_REQ_ID_001.4 CANRX_SAT_PRESS Receive the 
saturated value of 
the pressure in case 
of signal out of range 
and warns the user 
se^ng the correct 
message diag. status 

 7.1.4 

SW_REQ_ID_002 TANK_CTRL Manage the fuel 
tank valves every 50 
ms 

 7.1.3 

SW_REQ_ID_002.1 TANK_CTRL_DSBL_SYS Close all fuel tank 
valves in case of 
enable status as 0 

 7.1.3 

SW_REQ_ID_002.2 TANK_CTRL_DIFF_PRESS Keep the difference 
pressure between 
the two tanks below 
a delta calibra,on 
set to 20 bar ini,ally 

 7.1.3 

SW_REQ_ID_002.3 TANK_CTRL_EMPTY_TANK Close both valves in 
case of low fuel level 

 7.1.3 

SW_REQ_ID_003 PRV_CTRL Manage the PRV 
based on target 
pressure rail and 
current pressure rail 
every 50 ms 

 7.1.1 

SW_REQ_ID_003.1 PRV_CTRL_SET_DC Set the Duty Cycle of 
the square wave to 

 7.1.1 
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reach the desired rail 
pressure 

SW_REQ_ID_004 CANTX Send message 
according to the 
frame ID every 100 
ms 

 7.1.4 

SW_REQ_ID_004.1 CANTX_ACTUAL_PRAIL Send a message to 
frame 0x123 
containing a signal 
with the actual 
pressure rail 

Frame ID 
according 
to DBC file 

7.1.4 

SW_REQ_ID_004.2 CANTX_FUEL_LEVEL Send a message to 
frame 0x167 
containing a signal 
with the actual fuel 
level and another 
signal containing a 
boolean value that 
indicates if the fuel 
level is low.  

Frame ID 
according 
to DBC file 

7.1.4 

SW_REQ_ID_004.3 CANTX_DIAGNOSTIC Send a message to 
frame 0x145 
containing sensors 
and actuators 
diagnos,c 

Frame ID 
according 
to DBC file 

7.1.4 

SW_REQ_ID_005 PRESS_SENS Read the pressure 
values from the 
sensors every 4ms 

Analog PIN 
according 
to the BOB 

7.1.5 

SW_REQ_ID_005.1 PRESS_SENS_TANK1 Read and convert 
using a LUT the 
Tank1 pressure 

 7.1.5 

SW_REQ_ID_005.2 PRESS_SENS_TANK2 Read and convert 
using a LUT the 
Tank2 pressure 

 7.1.5 

SW_REQ_ID_005.3 PRESS_SENS_TANK_MANI
FOLD 

Read and convert 
using a LUT the 
manifold pressure 

 7.1.5 

SW_REQ_ID_005.4 PRESS_SENS _RAIL Read and convert 
using a LUT the rail 
pressure 

 7.1.5 

SW_REQ_ID_005.5 PRESS_SENS_RAIL_SAT Read and convert 
the saturate level of 
rail pressure 

 7.1.5 

SW_REQ_ID_006 FUEL_LEVEL Manage the fuel 
level 

 7.1.2 

SW_REQ_ID_006.1 FUEL_LEVEL_COMPUTATI
ON 

Calculate the fuel 
level based on tank1 
and tank2 pressure 

 7.1.2 

SW_REQ_ID_006.2 FUEL_LEVEL_LOW Check if the fuel 
level falls below the 
threshold 

 7.1.2 



 
 

 77 
 

SW_REQ_ID_007 ACTUATOR_COMMANDS Give commands to 
the valves based on 
the computa,ons of 
control blocks 

  

SW_REQ_ID_007.1 ACTUATOR_COMMANDS_
TANK1_VALVE 

Open/Close tank1 
valve according to 
diagnos,c status 
(close in case of 
diagnos,c error) 

 7.1.3 

SW_REQ_ID_007.2 ACTUATOR_COMMANDS_
TANK2_VALVE 

Open/Close tank2 
valve according to 
diagnos,c status 
(close in case of 
diagnos,c error) 

 7.1.3 

SW_REQ_ID_007.3 ACTUATOR_COMMANDS_
PRV 

Give the command 
to PRV based on 
computa,on of 
control block 
according to 
diagnos,c status 
(DC=0 in case of 
diagnos,c error) 

 7.1.1 

SW_REQ_ID_008 UTILS Manage diagnos,c 
of sensors and 
actuators 

 7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.1 UTILS_TANK1_PRESSURE_
SENSOR 

Check if the tank1 
pressure sensor 
works properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.2 UTILS_TANK2_PRESSURE_
SENSOR 

Check if the tank2 
pressure sensor 
works properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.3 UTILS_MANIFOLD_PRESS
URE_SENSOR 

Check if the 
manifold pressure 
sensor works 
properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.4 UTILS_RAIL_PRESSURE_SE
NSOR 

Check if the rail 
pressure sensor 
works properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.5 UTILS_LED Check if the LED 
works properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.6 UTILS_PRV Check if the PRV 
works properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.7 UTILS_TANK1_VALVE Check if the Tank1 
Valve works properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 

SW_REQ_ID_008.8 UTILS_TANK2_VALVE Check if the Tank2 
Valve works properly 

Correct 
Range: 
0-5 V 

7.1.5 
Diagnos,c 
capabili,es 
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7.4 System development 
 
The system in study has been developed using a MBD approach. Firstly, it has been created a new 
MATLAB project where to put all folders and files related to the system. Next, using the created 
blocks library, it has been updated blocks and enumera+ve data types (using the block library in 
figure 48) and has been imported the DBC file containing all messages (as shown in the figure 54). 
As men+oned before, every module in the so>ware architecture has a corresponding Simulink 
model and in turn, a data dic+onary. 
 

7.4.1 CAN RX module 
 
Concerning Input modules, the CANRX model uses the created blocks library to receive messages 
declared in the DBC files and makes available to the other models the signals received. 
As it is shown in the figure below, the model is inside the subsystem and contains the descrip+on of 
the so>ware requirement referred to (in this case the CANRX model is referred to the 
SW_REQ_ID_001). 
 

 
Figure 86 - CANRX module 

 
 

7.4.2 Pressure Sensor module 
 
The Pressure Sensor module (figure 85) uses the Analog Input blocks for reading voltages from pins 
related to all pressure sensors. A>er having received the voltage values, they pass in a EMWA 
(Exponen+ally-Weighted Moving Average) filter to smooth out short-term fluctua+ons and then they 
are saturated in the range [0.5 – 4.5] V. Then through LUTs, voltage values are converted to the unit 
of measurement of pressure (Bar) in order to be used from the other modules. Before output, all 
pressure signals pass in a fix block (switch block) to permit to the user to change their values in the 
tes+ng phase through calibra+ons. 
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This module, as the name remember, has to run every 4ms so a>er genera+ng the code it will be 
inserted in the right OS task. 
 

 
Figure 85 – Pressure Sensor module 

7.4.3 Fuel Level module 
 
Control modules are the core of the system. They are divided in three modules each of which have 
a specific control objec+ve. They must be run every 50ms to have an op+mal control of the fuel 
delivery system. 
 
The Fuel Level control logic is very simple. Taking in input the two tank pressures from the precedent 
module, it checks if both are below a certain calibratable threshold (in this case is equal to 5 bar) 
and in that case gives in output the signal (xsLEDEn) to turn on the reserve fuel LED. Furthermore, it 
calculates the total fuel level (xsFuelLevel) summing the two tank pressures and repropor+on it in 
percentage. 
 

 
Figure 86 - Fuel Level control module 
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7.4.4 Tank Control module 
 
The Tank control logic (figure 87) is developed using Stateflow for represen+ng state machines. The 
main two state are represented by ‘ON’ / ‘OFF’ and indicate the enabling state of the tanks. The 
default entry point is in the ‘OFF’ state where is ini+alized the signal of the state valve (xsValveState) 
to 0. The system remains in this state while it is in fuel reserve (both tank pressure below the reserve 
threshold) for preserving and not damage the vehicle. 
If the FLCU system is enabled (xsSystemAbilita+on==1) the system passes to the ‘ON’ state, where 
one of the two tank valve is opened and the natural gas can flow. As explained in the requirements, 
the tanks are opened in an alterna+ng manner to avoid big pressure changes, so when the pressure 
difference between the tanks is above a calibratable threshold (xsSWITCH_TANK_THR) the control 
logic change valve passing from TANK1_ON to TANK2_ON and vice versa. In those states, is set the 
valve state signal to the proper value based on the tank to open. 
The system returns to the ‘OFF’ state when it receives the signal to disable the FCLU system 
(xsSystemAbilita+on=0) or if the fuel is on the verge of running out. 
 

 
Figure 87 - Tank control module 

 

7.4.5 PRV control module 
 
The PRV control uses a PID controller to control the pressure flow of the natural gas. The controller 
is of discrete type since it must run on a real hardware every 50ms. 
This module receives the target rail pressure via CAN and the actual rail pressure from sensors. It 
calculates the error value subtrac+ng measured pressure from the desired pressure. The error will 
be used from the three parts of the PID controller to calculate its proper contribute. 
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The propor+onal part (figure 88) follows the formula 𝑃 = 𝐾! ∗ 	𝜀[𝑛] where 𝐾! is the propor+onal 
gain while 𝜀[𝑛] represent the tracking error in that moment. Its contribute is directly propor+onal 
to the error and in Simulink is modeled as in the figure 86. 

 
Figure 88 - ProporMonal part of PID controller 

Obviously, the parameter 𝐾! is a calibra+on to permit to be modifiable during various test. 
 
The integral part (figure 89) is propor+onal to the sum over +me of the error and follows the formula  
𝐼 = +𝐾" ∗

#[%]
'!
, + 𝐼[𝑛 − 1]  where 𝐾" is the integral gain calibratable,  𝑇( is the sampling +me (in this 

case is equal to 0.05 since the controller has to run every 50ms) and 𝐼[𝑛 − 1] is the integral 
contribu+on in the previous instant. The delay block (characterized by 𝑧)* block) has the scope to 
produce in output the signal of the previous instant and besides the input signal has two other 
inputs, the ini+al condi+on (represented by 𝑥+) and the external reset (represented by the up arrow) 
that impose the ini+al condi+on when is triggered. 
 

 
Figure 89 - Integral part of the PID controller 

 
The deriva+ve part (figure 90) is propor+onal to the speed of the error signal changing (deriva+ve 

over +me) and is characterized by the following formula:  
("#"$[%]-

"#
"$
[%)*])	

0
∗ 𝐾1  where  𝑑𝜀 = 	𝜀[𝑛] −

𝜀[𝑛 − 1]. 
In this case it has been used the average of the last two sample for a beler integra+on. 
 
 

 
Figure 90 - DerivaMve part of the PID controller 
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The overall implanta+on of the PID controller (figure 91) for the PRV management, also takes into 
account the system enable signal (xsSystemAbilita+on) to set the DC to 0 in case the system must be 
disable. Furthermore, when the system is disabled, all delay blocks are triggered to be reset. 
From the figure, it can be seen that the model a>er summing all three contributes of the PID, gives 
in output the duty cycle (saturated with minimum and maximum value calibratable) of the PWM 
signal that control the valve actuator. 
A duty cycle saturated to 100% means that the valve is completely opened and, vice versa, when the 
system is disabled the duty cycle is 0 in order to close the valve and deny the passage of natural gas. 
 

 
Figure 91 - PRV control module 

 
The MIL phase of this module has been developed in Simulink using a Test Harness. It is another 
Simulink model that isolates the module under test and, through various s+muli, verifies the output. 
To do this, a closed loop control system is created emula+ng the plant, so at each step +me the 
actual Rail Pressure and the target Rail Pressure to give as input to the PID controller are known. 
The Powertrain Control Module is in charge of managing the desired engine torque, in par+cular it 
manages injec+on +mes and gives the command to open injectors. In this way is generated a fuel 
quan+ty varia+on that is described by a signal 𝑄2%3  (45

46
) where ‘m’ is the mass of the fuel and for 

this reason is necessary to keep a certain rail pressure ac+ng on the PRV. The signal 𝑄2%3  and the 
duty cycle of the square wave used to control the PRV are combined in a LUT to compute the delta 
of the actual Rail pressure to send in input to the PID controller. The fuel quan+ty varia+on (𝑄2%3) is 
created using the signal builder of Simulink. 
 
The test harness is represented in the figure 92 and as it can be seen the controller is represented 
by the grey subsystem which is connected to the real model of the PRV control. As men+oned before 
the duty cycle and the 𝑄2%3  are combined to produce the delta pressure that is summed to the 
previous pressure to give the new actual pressure. Then this pressure is saturated between [0:50] 
bar (the range of the rail pressure) and filtered in the EMWA filter to produce a clearer pressure to 
send as input to the controller. Both the 𝑄2%3  and the Target Rail Pressure signals are created using 
the signal editor and as shown there have been tested sta+c and dynamic case of these two signals.  
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Figure 92 - Test Harness PID 

 
The figure 93 shows the pressure changes of the LUT. In the X axis is present the gas flow rate [kg/h] 
while in the Y axis the DC range [%]. If for example the flow rate is empty and the valve is completely 
opened, the rail pressure will have a posi+ve pressure varia+on of 5 bar in the unitary step. 
 

 
Figure 93 - LUT of delta pressure 

To find the right values of the PID parameters (Kp, Ki, Kd) various test has been made. Each parameter 
affects the contribu+on of the propor+onal, integral and deriva+ve part. To start the calibra+on of 
parameters both pressure target and flow rate are set to sta+c, in par+cular the Rail Pressure Target 
to reach is 25 bar and the flow rate is 20 kg/h. 
To beler understand the behavior of the controller, are logged many parameters such as all the P-I-
D contributes, the duty cycle acted to the valve, the flow rate and, the most important, the 
comparison between target and real rail pressure. 
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Figure 94 - SimulaMon data inspector, 1 

From the simula+on data inspector (figure 94) is highlighted in blue the comparison between 
measured and desired rail pressure and it can be seen that in about 1 second, star+ng from 0 bar, 
the Rail pressure reach the pressure goal of 25 bar with a slight overshoot. 
Star+ng from the PID parameters obtained from this first simula+on, the next step is to create a 
simula+on more similar to reality, so target pressure and flow rate varying over +me.  
 

 
Figure 95 - SimulaMon data inspector, 2 

 
The results (figure 95) show how the PID controller works to follow the desired rail pressure at each 
step +me ac+ng on the duty cycle (xsDC) to keep the error as minimum as possible. 



 
 

 85 
 

In the future months will be conducted various test (HIL) in the fluid dynamics laboratory to verify 
the correct func+onality of the PID controller implemented in an Electronic Pressure Regulator (EPR). 
 

7.4.6 CAN TX module 
 
The module is responsible to send messages to PCM module via CAN. It uses the block library to 
automa+cally create subsystems related to each message and the final result is visible in the figure 
96.  
 

 
Figure 96 - CANTX module 

 
The messages created are those present in the DBC file imported, ‘FLCU_TO_PCM_001’ contains the 
fuel level and the LED enable signal. ‘FLCU_TO_PCM_002’ contains the rail pressure and the 
‘FLCU_TO_PCM_003’ all the diagnos+c status of all sensors/actuators.  
 

7.4.7 Actuator commands module 
 
This module (figure 97) is in charge of managing the actuators present in the FLCU. To do this, are 
used API blocks library automa+cally created that concern with I/O. In par+cular, OTVs and LED are 
managed with digital output block library, so it is only necessary to pass to the C Caller block the 
DOUT pin channel related to the actuator and the binary enable state (converted to ‘uint8’ to be 
aligned with the API func+on) as input. 
The PRV is managed via PWM, so it is used the PWMOUT library block with the duty cycle produced 
by the PRV control module. The PWM channel and the period of the square wave are also passed as 
input to correctly call the API func+on. 
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Figure 97 - Actuator commands module 

 

7.4.8 U4ls module 
 
This last module manages (figure 98) all diagnos+c signals of sensors and actuators and produce in 
output the system enable system based on the overall system status. If one of all sensors or actuators 
has some problem, the system will be disable. 
 

 
Figure 98 - UMls module 

 
The module combines in an AND block the CAN message received for the FLCU system enabling, the 
actuator diagnos+c signal (representa+ve of all actuators) and the sensor diagnos+c signal 
(representa+ve of all signals) with the scope of arrest immediately the FLCU system in case of failure. 
 
The actuators diagnos+c (figure 99) is made by API ‘ErrorInfo’ blocks that gives informa+on about 
the status of a specific I/O channel.  
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Figure 99 - Actuator diagnosMc 

 
All these blocks give as output ‘0’ if the actuator works properly and a value higher than 0 if there is 
some error. The correct state is reached when the sum of all these values is 0, so in this case the 
actuators diagnos+c signal (xsActuatorDiag) is set to 1 (to be aligned with the FLCU system enable 
CAN message). 
 
The sensors diagnos+c (figure 100) check if all raw value measured in [V] are in the correct range 
[0.5-4.5] V and if the tank manifold pressure sensor is equal to the tank pressure opened at that 
moment. 
 

 
Figure 100 - Sensor diagnosMc 

If one of the two checks fails, the AND block gives ‘0’ as result and the model disable all the FCLU 
system. 
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7.5 SoOware integra4on 
 
A>er finishing the model design and the MIL phase, is +me to integrate the automa+c code 
generated in the real target hardware. When each single module has been developed and tested, 
the code is generated inside the model through the appropriate block library and the final result is 
a folder containing all source codes. As explained in the chapter 5.2, each module func+on bust be 
called in the right API_OS_task to be executed at the correct frequency and, when the API file is 
ready, all step explained in that chapter can be done. A>er flashing in the ECU the ‘s19’ and ‘a2l’ file 
is possible to start the HIL phase. 
 
The Tank Control is taken as example of this phase and in the figure 101 is shown the ini+al test 
configura+on. The biggest graph represents the value of pressures over +me and the two tank 
pressure are ini+ally full at 700 bar. With the parameter windows is possible to view and modify all 
fixed values that represent calibra+ons. The bolom right graph represent the status of the valve and 
they are also replicated above in a numeric window. 
 

 
Figure 101 - IniMal condiMon test in CANape 

 
 
To verify the proper func+oning of the system, the two tank pressures are modified manually to 
obtain the switch tank (close a valve and open the other) from the controller. 
As is shown in the figure 102, when the ac+ve tank (Tank n.2) reaches the switch tank threshold 
(difference pressure higher than 20 bar) at 679 bar, the controller closes the OTV2 and open the 
OTV1. This ac+on is visible in the bolom right graph at about 6.5 sec when the two lines interchange. 
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Figure 102 - Switch tank 

 
Another feature that should be test in this module is the valve closure in case of empty tanks. In this 
example (figure 103) the empty tank threshold is set to 5 [bar] and when both tanks reach 4 bar the 
graph (and the numeric window) show that valve states are set to 0 [bar]. 
 

 
Figure 103 - Valve closure 
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8. Conclusion 
 
Have a general purpose HW plaUorm able to manage the main automo+ve sensors and actuators 
and in parallel a dedicated library for the development phase, allows the customer to integrate in a 
faster way every type of applica+on so>ware. Reduce the ini+al cost investment and the 
development +me, implies a shorter +me to market of the product with a higher profit. 
 
The overall work of this thesis can be considered sa+sfactory. The Demo Applica+on developed with 
the HW plaUorm and the dedicated library, demonstrates the achievement of goals. Thanks to the 
added features in MATLAB, it has been possible to model the system more easily and quickly. 
As said in the chapters before, all ac+ons done by these library blocks were done by the user taking 
a lot of +me and with the risk of making mistakes. 
 
Avoid typing errors means reducing model design loops and so development +me. Reduce 
development +me means saving money and a lower +me-to-market. 
 
At the moment, the main benefits encountered in the modeling of the FLCU system brought by the 
library, concern the integra+on with the I/O channels, which is possible to easily manage some 
actuators, and the implementa+on of the DBC files in MATLAB thanks to which is possible to send 
and receive CAN messages directly in the model. 
 
In the future, possible addi+ons and enhancements will make the library increasingly complete and 
func+onal for modeling a general applica+on in the automo+ve field. 
 
Some possible addi+on to be implemented regard the management of: 

- Diagnos+c (OBD2) 
- Memory 
- Injectors 
- Igni+on coils 
- Lambda sensors (HEGO and UEGO) 
- Func+onal safety (ISO26262) 
- Knock sensors 
- H-bridges 
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