

POLITECNICO DI TORINO

Master degree in Computer Engineering

	

Master Degree Thesis

Library definition for an automotive
ECU API layer

(using Model-Based approach)

Advisor
Prof. Massimo Violante

Candidate
Luca Zannella

Internship tutor
Ing. Emilio Bertrand

November 2023

 2

Sommario

ACRONYMS ... 4

1. INTRODUCTION ... 5

1.1 METATRON OVERVIEW ... 5

1.2 THESIS GOALS .. 6

1.3 HARDWARE PLATFORM – HDS9 .. 7

1.4 PROTOTYPE STAGES BEFORE INDUSTRIALIZATION .. 8

2. EMBEDDED SOFTWARE ARCHITECTURE IN THE AUTOMOTIVE FIELD ... 10

2.1 ARCHITECTURE LAYERS .. 10

2.2 MODEL-BASED DESIGN APPROACH .. 12

2.3 V-DIAGRAM OF MBD FLOW .. 14

3. GENERAL PURPOSE AUTOMOTIVE HW ECU .. 19

3.1 HARDWARE ARCHITECTURE ... 20

3.2 CAN COMMUNICATION .. 22

4. API LEVEL DESIGN .. 26

4.1 API FILE DESCRIPTION .. 26

5. SW INTEGRATION ON THE REAL TARGET ... 32

5.1 MATLAB CONFIGURATION PARAMETERS FOR CODE GENERATION .. 32

5.2 WORKFLOW FROM MATLAB TO ECU .. 36

6. MODELING ENVIRONMENT AND LIBRARY DESIGN ... 44

6.1 CUSTOM STORAGE CLASSES ... 44

6.2 MATLAB PROJECT ARCHITECTURE .. 45

6.3 BLOCKS LIBRARY DESIGN .. 47

6.3.1 “UPDATE” BLOCK LIBRARY .. 48

6.3.2 “IMPORT DBC” BLOCK LIBRARY .. 50

6.3.3 “CANRX_MESSAGE” BLOCK LIBRARY .. 53

6.3.4 “CANTX_MESSAGE” BLOCK LIBRARY .. 58

6.3.5 “GENCODE” BLOCK .. 61

6.4 BLOCKS VALIDATION .. 64

7. DEMO APPLICATION - RAIL PRESSURE REGULATOR AND FUEL TANK MANAGEMENT 70

7.1 SYSTEM REQUIREMENTS .. 70

7.1.1 FUEL RAIL PRESSURE CONTROL .. 70

7.1.2 FUEL LEVEL MONITORING .. 70

7.1.3 TANK VALVE MANAGEMENT ... 71

7.1.4 COMMUNICATION WITH PCM .. 71

7.1.5 SENSOR/ACTUATOR MANAGEMENT ... 72

7.2 SYSTEM ARCHITECTURAL DESIGN ... 73

7.2.1 BOM DESCRIPTION .. 74

7.3 SOFTWARE ARCHITECTURAL DESIGN .. 74

 3

7.4 SYSTEM DEVELOPMENT ... 78

7.4.1 CAN RX MODULE ... 78

7.4.2 PRESSURE SENSOR MODULE .. 78

7.4.3 FUEL LEVEL MODULE .. 79

7.4.4 TANK CONTROL MODULE ... 80

7.4.5 PRV CONTROL MODULE ... 80

7.4.6 CAN TX MODULE .. 85

7.4.7 ACTUATOR COMMANDS MODULE .. 85

7.4.8 UTILS MODULE ... 86

7.5 SOFTWARE INTEGRATION .. 88

8. CONCLUSION ... 90

ACKNOWLEDGMENTS ... 91

BIBLIOGRAPHY .. 92

 4

ACRONYMS

• API Applica+on Programming Interface
• BOB Break Out Box
• BOM Bill Of Material
• BSW Basic So>ware Layer
• CAN Controller Area Network
• CNG Compressed Natural Gas
• CRF Fiat Research Center
• DBC Database CAN
• DLC Data Length Code
• DSL Domain-Specific Language
• ECM Engine Control Module
• ECU Electronic Control Unit
• EPR Electronic Pressure Regulator
• FI Frequency Input
• FLCU Fuel Line Control Unit
• FO Frequency Output
• GPL Liquefied Petroleum Gas
• HDS Heavy Duty System
• HEGO Heated Exhaust Gas Oxygen sensor
• HIL Hardware-in-the-loop
• HS High Side
• I/O Input/Output
• LIN Local Interconnect Network
• LNG Liquefied Natural Gas
• LS Low Side
• LUT Lookup Table
• MBD Model Based Design
• MCAL Microcontroller Abstrac+on Layer
• MCU Micro Controller Unit
• MIL Model-in-the-loop
• OBD On-board diagnos+c
• OEM Original Equipment Manufacturer
• OTV On Tank Valve
• PIL Processor-in-the-loop
• PIM PlaUorm-Independent Model
• PWM Pulse-Width Modula+on
• SIL So>ware-in-the-loop
• SRD System Requirement Document
• UEGO Universal Exhaust Gas Oxygen sensor

 5

1. Introduc4on

In the last decades, the automo+ve industry has undergone a big transforma+on from different point
of views, and it has reshaped the way vehicles are designed and manufactured.
Environmental sustainability is becoming a crucial factor in this change and thanks to technological
advancement, the challenge of reducing gas emission and improving the energy efficiency of vehicles
can be addressed.
For this purpose, more sustainable alterna+ve fuels were sought and, natural gas and hydrogen have
emerged as promising candidates.
This thesis project is done in collabora+on with the Metatron S.p.A. company, which is specialized in
the design and produc+on of pressure regulator and Engine Control Units for alterna+ve fuels.

1.1 Metatron Overview

At the beginning of 90s, the Fiat Research Center (CRF) group iden+fied in the natural gas fuel the
best solu+on for reducing gas emission from the internal combus+on engine both for passenger cars
and heavy-duty systems.
To launch the industrial produc+on of these natural gas systems, CRF found the Tartarini company
in Bologna (specialized in ‘a>ermarket’ systems for conversion of gasoline engines to methane) as a
partner for the development and produc+on. The first adopted solu+on was ‘bifuel’ (natural gas and
gasoline supply) for light system and ‘monofuel’ (only natural gas) for heavy-duty systems such as
commercial vehicles and public transport.

In 1998 some resources detached from Tartarini and created Metatron, s+ll located at Bologna, with
the goal to manufacture and sell CNG/LNG systems to OEM and not for the ‘a>ermarket’ field.
Metatron became the exclusive supplier for Fiat Auto and IVECO of the main components for these
type of systems, in par+cular electronic control unit and pressure regulator. A>er that, between 2008
and 2010 Metatron founded in Volvera (TO) a new division devoted to electronics technologies and
their applica+ons, acquiring from CRF resources that allowed to be independent from Fiat while
maintaining different collabora+ons. This new division developed a secondary control unit for GPL
systems of Fiat.
In few years, China became the major buyer of Metatron’s pressure regulators with its producers of
heavy-duty engines.

In 2014 Metatron acquired the control of Digigroup, a society specialized in development and supply
of electronics components for Automo+ve Info telema+c (ITS) and the following year was founded
a new society called Metatronix, regarding all electronics applica+ons.
A>er 4 years, in 2018, due to increasing differences between ITS and Powertrain field, Metatron
decided to make Metatronix completely autonomous and to reinforce the group crea+ng the
Metatron Research Center.

In 2021, Landi Renzo Group signed a binding agreement for the acquisi+on of Metatron S.p.A. with
the goal to reinforce and accelerate the posi+on as leader in the supply of systems and components
for Natural Gas and Hydrogen mobility in the Mid&Heavy-duty field which is going to grow quickly
in the coming years.

 6

1.2 Thesis goals

In the past years Metatron has designed a powerful solu5on for an Engine Control Module,
called HDS. This ECU has been widely used to cover a great and different range of alterna5ve
fueled engines, with several architecture such as 4/6/8/12 cylinders engines mainly for heavy
duty vehicles (both with 12V or 24V power supply systems) with different scopes (Trucks,
Buses, Off-road vehicles, Agriculture tractors, Locomo5ves, Industrial/Civil Cogenera5on
applica5ons, …) according to the latest pollutant emission standards and to the latest safety
and cybersecurity standards (such as ISO26262 or ISO/SAE 21434).

The result of this development process is a very flexible hardware/soWware automo5ve
general purpose plaXorm that Metatron started to use as a rapid prototyping or proof-of-
concept unit internally as basis for several spin-off project (such as Transmission Control Unit,
Tank Control Unit, Pressure Regulator Control Unit, Injec5on Control Unit,…).

Consequently, Metatron is now capable to propose a cheap and robust automo5ve solu5on
able to manage the typical automo5ve sensors/actuators, that allows to its customers to
easily integrate their own applica5on soWware (using the Model-Based approach) to be used
to validate their concepts to control an automo5ve system with two main and big
advantages:

1. Drama5cally decreasing the investments typically needed for the concept phase,
significantly reducing the 5me to market of the solu5on;

 7

2. Validate and define the requirements for a tailored produc5on control unit.

The ul5mate goal of this thesis project is to explore and to iden5fy a set of rules/guidelines
to allow an easy integra5on of the customer applica5on soWware on the HDS hardware
plaXorm.

To reach this target the idea is to make available to the customers a proprietary library
already integrated in the development environment (MATLAB/Simulink) that make the
modeling of the applica5on soWware much easier and faster.

Since the soWware applica5on is developed following a Model-Based approach and thanks
to this library the customers will have at his disposal some Simulink blocks that help him with
his workflow.

In par5cular, there has been created blocks to interface with the I/O channels, the
communica5on layer (CAN and DBC integra5on) and the automa5c genera5on of the code
from the model.

Finally, the added value of this solu5on is the automa5on of some procedures that could
inevitably lead to errors if hand made.

1.3 Hardware plaCorm – HDS9

HDS stands for Heavy Duty System and it is an Engine Control Unit used for alterna5ve fueled
vehicles. This ECU has been created by Metatron using a high level of technology in terms of
hardware components and it sa5sfies the requirements of the latest emission standards
(EUVI/CHINAVI), on-board diagnos5c (EOBD) and func5onal safety standards (ISO26262).

This ECU has been used as plaXorm for the development of the thesis work. Thanks to its
performance and its hardware specifica5ons it is an op5mal general purpose embedded
plaXorm where test and validate every type of automo5ve applica5on soWware. The
hardware characteris5cs of this plaXorm will be explained in detail later. Here it can be seen
the picture of the HDS9.

Figure 1 - HDS9

 8

1.4 Prototype stages before industrializa4on

Before arriving at the industrializa5on phase of a final product, it is followed a certain
development flow made by different types of prototypes that are necessary for a great work.

The star5ng point of this flow can be called ‘Proto A’ and it is basically laboratory
instrumenta5on. An example of this first prototype can be the ‘CompactRIO’ made by
Na5onal Instrument, it is a real-5me embedded controller and its main characteris5c is to
have reconfigurable I/O modules and a FPGA module. Thanks to this characteris5c the
CompactRIO is extremely modular and reconfigurable according to your needs.
It is made by a chassis where can be agached the I/O modules and it also include a
microprocessor for implemen5ng control algorithms.
It is used as first prototype step because it can be adopted for the development of any
product in case you don’t have a hardware plaXorm as HDS9.
The advantages of this prototype are:

- Flexibility: components can be easily swapped, upgraded or reconfigured enabling
engineers to test various product. This flexibility accelerates the development process
and facilitates the discovery of op5mal solu5ons.

- Scalability: as the product’s complexity and requirements evolve, addi5onal modules
can be integrated, accommoda5ng changes in func5onality or performance.
Scalability minimizes the need to redesign the en5re system for incremental
improvements.

- Reusability: this type of prototype can be repurposed in other subsequent projects
reducing the overall development 5me and cost and, in this way, it is covered the
ini5al investment.

On the other hand, the main disadvantage could be the performance limita5on because a
dedicated plaXorm with another type of microprocessor could have beger performance and
it would get closer to the final product.

Figure 2 – CompactRIO

The next prototype step can be called ‘Proto B’ and it is essen+ally the role that plays in our case the
HDS9. In this step there is a generic plaUorm oversized in terms of power and hardware and in such

 9

a way is possible to develop every type of applica+on so>ware that may require different type of
I/O.
In this step having a good plaUorm with all the basic func+onality easily accessible is crucial for the
success of the final product and the goal of this thesis goes in that direc+on. In this way the user will
have access to the hardware layer in an easier way and it will be able to develop his applica+on
staying at a higher level of abstrac+on facilita+ng his workflow.

The last step is called ‘Proto C’ and it is obtained by cujng out all that is not necessary from ‘Proto
B’ in order to reduce produc+on costs. For example, if is not strictly necessary a microprocessor with
the same performance of ‘Proto B’ it might be convenient install in the final product a less powerful
one or if are not necessary all the I/O channel there could be deleted those that are not used. This
prototype is the final product and then, a>er different test and valida+on phases, it will be
industrialized.

Figure 3 – Prototype stages

Proto A Proto B Proto C

 10

2. Embedded soOware architecture in the automo4ve field

The embedded so>ware architecture, as shown in the figure 4, follows the key principles of
AUTOSAR.
The basic idea behind AUTOSAR is the separa+on of the applica+on so>ware layer and the hardware
layer. This leads to greater portability across different hardware plaUorm.
Moreover, the so>ware is divided into autonomous so>ware components that can be developed,
tested and updated independently. This modular approach simplifies complex so>ware
management and enhances components reusability.

The scheme of the embedded so>ware architecture can be represented in this image.

2.1 Architecture layers

The structure is divided in three different layers:

- Basic So<ware Layer (BSW)

This layer provides a series of so>ware modules that are essen+ally to use and communicate
with different peripherals of MCU. It is composed by other different layers, each of them with
a different purpose.
The lowest layer of the BSW is the Microcontroller Abstrac+on Layer (also called MCAL) and
it is strong dependent on the MCU in use, in fact it usually changes according to the type of
microcontroller. It is very important because it contains drivers for accessing peripherals.
The layer colored in orange is the ECU Abstrac+on Layer and his main purpose is to abstract
the MCAL layer from upper layers and provides all the APIs for making available external and
internal drivers. In this way upper layers of the ECU are independent from the hardware in
use.
The top layer colored in green is the Service Layer and it provides basic services for the

Figure 4 – So?ware Architecture

 11

applica+on. Some basic services are: Opera+ng System func+onality, communica+on
services, memory services, ECU state management, etc.
The last layer of the BSW that is linked with all the other three is the Complex Driver and it
is useful for wri+ng func+on or drivers of external devices that are connected with our
system.

- ApplicaEon AbstracEon Layer

The idea behind the project of this thesis is based on this layer, in fact the real strength of an
architecture of this kind is to have this pillow layer which allows you to separate the
Applica+on Layer from the BSW Layer. In this way for example if you change the hardware
plaUorm you do not have to change the en+re applica+on so>ware.
This meets the needs of customers who want to develop the applica+on layer in-house, so
the company can make available only the hardware plaUorm with a dedicated Applica+on
Abstrac+on Layer.
This layer, that we internally also call ‘API Layer’, is the core of the architecture in fact it links
the Applica+on Layer with the BSW Layer and it has the goal of making these two layers
independently.
Basically it implements the scheduling of the applica+on so>ware modules in different OS
tasks and it is responsible for the I/O communica+on with the lower layer.
All the APIs available in this layer are wrilen in C code and they are directly integrated in the
development environment (Mathworks), but they will be analyzed in detail later.

- ApplicaEon Layer

This is the highest layer of the architecture and it implements the specific automo+ve
applica+on. It is always distributed in different so>ware modules with the scope to have
more scalability, reusability and an easier implementa+on of the en+re applica+on.
The specific automo+ve applica+on will be developed in MATLAB/Simulink using a model-
based approach and in this way there will be many advantages. Following these guidelines
the workflow will be more understandable and easier to manage.
Finally, different so>ware modules can communicate each other exchanging input and
output data that they can use for their control logics or in general their purpose.

 12

2.2 Model-Based Design approach

Model-based design (MBD) is a fundamental approach in the automo+ve field for the development
of real systems and it is used in many other areas.
It is basically the prac+ce of doing simula+on in a development environment to understand the
behavior of a real physical system that will have to be built and controlled.
Each component of the physical system is represented through a model and can cover a wide range
of disciplines such as mechanical, electrical, hydraulic, thermal, pneuma+c, etc.
A physical system is usually defined as a set of components which interact each other exchanging
informa+on or data and perform a certain number of tasks.
In the MBD a model of a physical system tries to reflect the mechanism inside the real system using
fundamental physical laws and engineering principles. Therefore, relying on the accuracy level of the
system descrip+on, the en+re model can be more or less similar to the real one.

A key point of the MBD is the abstrac+on from specific realiza+on technologies using a high-level
language that have a visual approach, so roughly speaking through lines and block.
A graphical tool helps to develop high complex func+on with less effort, specially in real complex
systems where split the en+re model in more simply modules can make the work much easier to do
and understand. One of the most famous tools used in the automo+ve field is Simulink, developed
by MathWorks and directly integrated in MATLAB.
Using support tools, simula+on and valida+on can be executed on the model (MIL) and once the
model is ready and the expected behavior is correct, the Embedded Coder (a tool of MATLAB) will
take care of genera+ng the related so>ware code, following a setup that the user can specify to
obtain the desired code and files generated. This increases a lot the produc+vity and the efficiency
because in this way is much easier generate the applica+on so>ware than write by hand the code of
the en+re model.
Tes+ng the model before the integra+on in the real hardware target leads to reduce poten+ally
expensive physical prototype itera+ons, in fact is possible to verify the design and the requirements
of a system before its construc+on avoiding the waste of resources in terms of costs and +mes.

Figure 5 - Build a valid model

 13

MBD in prac+ce, is based on the separa+on of the applica+on and the infrastructure to enhance the
reusability of the model across different infrastructures. The basic idea of this concept is to model
one +me and build everywhere, for every type of hardware technology.
For all these reasons this type of approach has become very popular in the automo+ve field.
The complete workflow for the development of a system that follows the MBD will be explained
later in the chapter 2.3 going on to detail the steps involved.

 14

2.3 V-diagram of MBD flow

Model-Based Design follows a precise workflow divided in steps described by the V-diagram below.

1. System Requirements

The first important step to do is the analysis of System Requirements. It consists in a file,
generally called System Requirement Document (SRD), that provides a detailed and clear
descrip+on of the system in study and includes the declara+on of all elements that are
necessary for the correct implementa+on and opera+on of the system.
The SRD is organized in a hierarchical way in order to be clear and understandable. At the
higher level are described general system requirements while each ‘child’ of these higher
requirements explain in detail what the individual component should do.
Each requirement must be described in a detail way in order to be follow from the team of
engineers that will develop that component in the future.
System requirements describe the hardware components such as mechanical or electrical
parts and func+onal requirements so func+ons that the system and all its sub-components
should properly perform.
In parallel to this document is also necessary a So>ware Requirements Specifica+on
document that has the goal to describe the func+on that so>ware parts of each system
component should execute.
Each line of so>ware requirement must have a reference to the system requirement to which
is connected, a brief descrip+on of what it should do and an ID in order to draw up, later in
the development of that component, some test case to verify that the so>ware requirement
is sa+sfied and to insert all the test result.
In this way every system requirement is linked with some so>ware requirements and the
workflow is facilitated because the en+re system is more modular. The single system
requirement will be sa+sfied when all its so>ware requirements will work properly.

Figure 6 - V diagram

 15

2. System Design

The next step in the MBD flow is the System Design and it consist in describing all the
modules, components and units that compose the system.
This process of design is at a high level of abstrac+on where an engineer can s+ll evaluate
and es+mate some features about the system such as reliability and costs.
Itera+ons that usually are done in the design of a system will be made in this step so
poten+ally problems can be solved before moving on the next phases of the flow.
Generally, to guarantee an op+mal system design there are some prac+ces to follow.
First of all, the communica+on between engineering teams must be done in the early stages
of the development, so each of them should present many ideas as possible in order to have
the best organiza+on for the success of the project. The goal of all these preliminary stages
is always the same that is to arrive at the development stage having the clearest possible
ideas of what to do and so try to find the best solu+on for the problem before the
implementa+on.
Another prac+ce to follow is to make the design of the system as scalable as possible,
because in this way it is ready to future improvements or addi+ons.
A simple design is the key to success, it should be as clear as possible with the scope of be
understandable by everyone.
Finally, through documenta+on is fundamental to ensure the valida+on and verifica+on in
the next step.

3. So<ware Design

In this step the system is modelled as a PlaUorm-Independent Model (PIM) and in a suitable
Domain-Specific Language (DSL) such as Simulink that is made of blocks that are very close
to many domains like mechanical or electrical.
When the design of the en+re system, that for example in a control system is made by the
plant and the controller, is ready it is possible to simulate it several +mes in Simulink and in
that way it helps to refine the model/controller and consider possible alterna+ves design.
This itera+ve phase which includes the first three stages of the V-diagram is called Model-in-
the-loop tes+ng (MIL).

Figure 7 - Model-in-the-loop tesMng

 16

Since the en+re model exists in a simula+on tool is very useful this type of tes+ng in order to
find possible bugs that in the future phases of the development would be much more serious
in terms of +me and costs. If this type of tes+ng would not possible you should have the real
system for doing test and this is not possible in many cases, furthermore it would cost a lot
of money.

4. Coding

When you are sure that the system behaves as you expected, you can proceed with the code
genera+on of your model. This is an important step because the model that is generated will
run in the real system so you should try to op+mize the implementa+on for the real target
hardware.
There are various tools for the automa+c code genera+on and each of them is designed to
work with a specific program language.
Tools like Embedded Coder in Simulink have a configurator for the automa+c code generator
and permits you to define some guidelines and rules for reaching the desired code
genera+on in terms of file created and programming style.
The main advantage of automa+c code genera+on is that every +me the model change, the
code will update automa+cally so it has the goal to minimize the +me required to write the
code (minimizing also the costs) and to reduce the risk of manual coding errors.
Automa+c code genera+on has become a widely used technique in recent years due to the
increase of complexity of modern systems. As they become more complex, the effort for
developers to manually write the code grow up and this technique offers a solu+on to this
problem.

5. So<ware IntegraEon

Once the code is generated it must be verified that it works and does what is expected and
specially that the results are the same of the model-in-the-loop test phase.
This stage of verifica+on is called So>ware-in-the-loop (SIL) and it essen+ally consists in
running the generated code on a local computer and verify that the controller works
properly.

Figure 8 - So?ware-in-the-loop tesMng

 17

During the simula+on the plant remains in na+ve simula+on tool as Simulink while the
controller running as executable code.
If it works no properly it means that there was an error in the generated code or in the model
so they must be reviewed and corrected.

6. HW/SW IntegraEon

A>er the correct integra+on of the so>ware now is +me to integrate the resul+ng code in
the real embedded hardware like an ECU. In this step the so>ware is deployed in the target
hardware and it is co-simulated with the plant model to verify its correctness.
Also in this step the result must be the same of the previous MIL and SIL tes+ng and if it is
not the case some adjustment must be done.

Figure 9 - Processor-in-the-loop tesMng

This itera+ve test phase is called Processor-in-the-loop (PIL). Here the controller run on the
real embedded target hardware while the plant s+ll remains simulated in the simula+on tool
and so it is missing the real +me. The controller runs at a certain frequency and must
communicates with the plant that is s+ll simulated in the development PC.

7. Vehicle IntegraEon and CalibraEon

In this final step the plant is simulated in a real-+me simulator, so it performs simula+ons
that are very close to the real word such as physical connec+ons, I/O and communica+on
protocols. Real +me means that one second in the simula+on are equivalent to one second
in the real system.
The goal of all this step is to find issues related to interfaces and communica+ons before
going in the real system. The sooner errors are found, the lower is the cost to solve them and
for this reason all these phases are made sequen+ally and itera+vely with the scope of
arriving in the real system without any problem.

 18

Figure 10 - Hardware-in-the-loop tesMng

A>er this final test phase, the product can be released end tested in the real word
environment. Automo+ve customers typically adopt vehicle fleet tests to verify that the
product respects their requirements. Once this last test session has been completed, the
product can be considered as mature and producible. Design phase can be considered as
completed and the produc+on phase starts.

 19

3. General purpose automo4ve HW ECU

An ECU (Electronic Control Unit) is an embedded system that has the purpose of control one or more
electrical systems in the vehicle. Nowadays vehicles are equipped with many ECUs, each of which
plays a specific role and thanks to the communica+on between them the correct func+oning of the
en+re vehicle is guaranteed.
Some examples of the modules implemented in automo+ve field ECUs are the following:

• Engine Control Unit
It controls mul+ple systems to guarantee the correct internal combus+on engine.
Main systems that are controlled include the Fuel Injec+on system, the Igni+on
system and the Variable Valve Timing system.

• Transmission Control Unit
It manages the electronic automa+c transmission using sensors from the car and data
from the Engine Control Unit to calculate the best moment for the change gears in
order to achieve the op+mal performance in terms of fuel economy and shi> quality.

• Door Control Unit
It is responsible for managing the func+ons of a vehicle door such as locking and
closing, windows movements and mirror adjustments.

• Break Control Module (ABS Control Module)
It checks the braking system using data from wheel-speed sensor and from hydraulic
break with the goal of release braking pressure at a wheel that is on the verge of lock
up and start skidding.

• Balery Management System
This module has the purpose to monitor the state of the vehicle balery in terms of
voltage, temperature, current and state of balery cells.

As men+oned before, the hardware plaUorm used for this thesis work is the HDS9 (Figure 1) and it
is an Engine Control Unit for methane applica+on currently in produc+on by Metatron.
It is used in many fields such as medium and heavy-duty vehicles (buses and trucks), off-road vehicles
(tractors and opera+ng machines) and also sta+onary units mainly with natural gas to generate
electricity.

 20

3.1 Hardware architecture

The key elements of this ECU are essen+ally described in these macro areas:

Figure 11 - HDS9 Hardware architecture

1. Input
The available input channels in this plaUorm are of Analog and Digital type. Analog channels
are typically related to voltage sensors, such as temperature, pressure, actuator’s posi+on
feedback, and level sensors. Digital channels are typically used for switches or binary level
sensors.
There are also some specific types of input such as SENT (Single Edge Nibble Transmission,
that is a point-to-point protocol used from sensors to transmit data to the controller) and
Frequency Input, typically used for the speed sensors.
Input include HEGO (Heated Exhaust Gas Oxygen sensor) and UEGO (Universal Exhaust Gas
Oxygen sensor), Cranksha> and Camsha> sensors, and Knock sensor.
The board has also some internal sensor for monitoring the on-board temperature and
pressure.

2. Output
As output channels are available Digital Output and Frequency Output (PWM).
These output channels are necessary to control for example actuators connected to the ECU
and, based to the use case, it can be used a Low Side or a High Side channel to load (mainly
resis+ve and induc+ve loads).

 21

Usually, the Digital Input channels are used for ON/OFF actuators (such as electro valves) or
for lamp indicators. Frequency Output are typically related to propor+onal actuators or gage
indicators.
On the board are also present Peak&Hold Injector drivers and Spark drivers for ac+ve igni+on
coils able to manage up to 8 cylinders. Moreover, some H-bridge DC motor drivers are also
present on the device.

3. Microcontroller
There are several types of microcontrollers for embedded systems from different companies
like Freescale, Intel, Infineon etc. with different specifica+ons.
The one chosen for this board is the NXP MPC577C of Freescale company. It is used for
automo+ve and industrial engine applica+on that require high performances and func+onal
safety (ISO26262).
Here some general features:

o Two independent Power Architecture z7 cores (300 MHz)
o Single z7 core in lockstep that runs the same set of opera+ons at the same +me in

parallel in order to detect and correct possible errors
o 8MB Flash memory
o 512kB SRAM (to have beler performance than DRAM)
o Sigma-Delta and eQADC converters (analog to digital converters)
o eMIOS (enhanced Modular Input Output System) +mer with 32 channels to generate

or measure +me events
o eTPU (Enhanced Time Processor Unit) +mer with 96 channels to perform complex

+ming and I/O management regardless to the CPU

4. CommunicaEon
The hardware plaUorm in use has 4 CAN channels that are fundamental for the
communica+on in the automo+ve field. They permit the communica+on with other systems
in the vehicle and in this way the ECU can work properly. It is also present a LIN channel that
has the same purpose of the CAN, but it is based on a master-slave type of communica+on
instead of a broadcast protocol.

 22

3.2 CAN Communica4on

The Controller Area Network is the system which all the ECUs of a vehicle are interconnected. An
ECU can exchange informa+on through the CAN bus sending broadcast data, so the other nodes of
the network, a>er receiving and checking these data, decide if accept or ignore them.

The physical communica+on happens via the CAN bus wiring harness consis+ng of two wires, CAN
Low and CAN High, that have different voltage levels and are terminated with a 120Ω resistor. In
par+cular, CAN High varies from 2.5V to 3.75V while CAN Low from 1.25V to 2.5V. When both CAN
High and CAN Low voltage is 2.5V the signal is called ‘Recessive’ and it takes on the meaning of
logical 1. Vice versa when CAN High is 3.75V and CAN Low is 1.25 the signal is called ‘Dominant’ and
it is equivalent to the binary value of 0.
Using twisted pairs makes the CAN bus less sensi+ve to induc+ve spikes, electrical fields and other
noise, so it is more robust.

Figure 12 - CAN High & CAN Low

At the physical layer the baud rate of the classical CAN bus (High-Speed CAN) is up to 1Mbit/s but
with the new protocol released in 2012 by Bosch called CAN FD (Flexible Data-Rate) it can go up to
5Mbit/s. This type of data-communica+on protocol is used in modern automo+ve ECUs which need
a higher transfer rate to manage data with larger size in a faster way.

The main advantages of the CAN bus can be resumed as follow:

1. Efficient and low cost
Thanks to a single CAN bus there is a sharp reduc+on of wires, weight end costs.

Figure 13 - Wiring comparison

2. Easily accessible
The CAN bus is easily accessible because is possible to exchange data with all ECUs by a single
access point making also easy diagnos+c, data logging and configura+on.

 23

3. Robust
As men+oned before this bus is robust against disturbances and interferences, so it is very
useful for applica+on that require high levels of safety such as all the vehicles.

4. Priority
CAN messages are priori+zed using the frame ID, in par+cular lower values have higher.

Communica+on is done through CAN frames which can be standard or extended.

Figure 14 - Standard CAN frame

As it shown in the figure 14 the CAN frame is composed in various field which are:
• SOF (start of frame): indicates the beginning of the frame and it is a ‘dominant’ 0.
• ID: is the iden+fier of the message, it uses 11 bit for standard frame and 29 bit for extended

frame (used for heavy-duty vehicles in the J1939 protocol)
• RTR (remote transmission request): indicates if a node is reques+ng a certain frame from

other nodes or is sending new data
• Control: includes the Iden+fier Extension Bit (IDE) that is ‘0’ for the standard frame and the

Data Length Code (DLC) that specifies the length of the data in the message (up to 8 bytes)
• Data: contains the payload to be transmiled of length indicated in the DLC
• CRC (cyclic redundancy check): used for error detec+on
• ACK (acknowledgment): indicates if the node has received data correctly
• EOF (end of frame): indicates the end of CAN frame

Raw CAN data frame without a decoding system are useless. For this reason, to interpret correctly
all the frames that travel on the CAN bus, it is necessary a CAN database called DBC file. It contains
decoding rules for the ID frame to understand signals from the payload.

Figure 15 - InterpretaMon of raw signals

 24

Generally, the messages that are sent or received, consist in one or more signals (in par+cular cases
they have no signals) that describe data.

Here is an example of how messages and signals are described in the DBC file.

Figure 16 - CAN messages and signals in DBC file

Through this descrip+on signals are decoded in physical values and they can be effec+vely used.
As it can be seen (figure 16) the message is iden+fied by the CAN ID, preceded by ‘BO_’. It must be
unique (because it represents the address) and in decimal form. Then, in the same row, is described
the name of the message, the DLC and the node of the network who send it.
Below and indented from the message, are present all its signals, each of them start with ‘SG_’. Then
all the parameters of the signals are described to give rules for decoding and read correctly physical
values of the signals.
One of the goals of this thesis work is to give the possibility to integrate directly in MATLAB this type
of file in order to send and receive message as fluently as possible, without addi+onal complica+ons
related to implementa+on details. In this way, when you are modelling your automo+ve system, you
have available some tools (library blocks) that permit you to send or receive message very easily.
The strong point of this work is that you can directly send or use a signal without worrying about
physical implementa+on.

As said before, the board has 4 CAN channels available, each of them is used for a specific purpose.
The CAN 1 channel is set up for the communica+on between the ECU and the
measurement/calibra+on system. Through this channel it is possible to read (measure) and modify
(calibrate) signals and parameters of the ECU. This communica+on is made using XCP protocol, that
is an interface to have access in r/w mode with the memory of the ECU. The memory access is
address-oriented and the associa+ons between symbols and address range is described in the A2L
file. XCP works with a master-slave paradigm, in par+cular the measurement system assumes the
master role while the ECU driver is the slave, so it responds to memory access requests.
This system can work with different type of transport layer, included CAN and CAN FD.
Some of tools that can be used for this purpose are Vector CANape and Etas Inca (for the thesis work
it has been used the first tool).

The CAN 2 channel is used for the intravehicular communica+on, so with the other ECUs of the
vehicle and in heavy-duty system it uses the J1939 protocol. Compared to light vehicles, in the heavy-
duty systems there is a greater trend to make the communica+on as standard as possible. The J1939
protocol comes in handy defining an open standard for the communica+on in the commercial vehicle
area. It comes from the SAE (Society of Automo+ve Engineers) and provides a Higher Layer Protocol
based on CAN physical layer.

The CAN 3 channel is generally used for the vehicle diagnos+c system. It is based on UDS (Unified
Diagnos+c Service) protocol and it is used to check errors and reprogram the ECU, so in case of a
fault is possible to flash a new firmware in the Electronic Control Unit to solve the problem.

 25

UDS works in a client-server modality, in par+cular the tester acts as client sending UDS requests
while the ECU is the server that responds to the client.
To do this you have the possibility to connect a CAN bus interface with the OBD2 connector and start
a diagnos+c session to check the correctness of the system.
The OBD2 connector allows you to access informa+on very easily, it is a connector made by 16 pins
specified by the standard J1962. It is collocated next to the steering wheel usually behind dashboard
panels.

Figure 17 - OBD2 connector

As shown in figure 17 the pin 16 is used to provide balery power and, since nowadays the CAN
protocol is the most used, the pins 6 and 14 will be connected and will act as CAN High and CAN Low
respec+vely.

The CAN 4 channel, also called private CAN, is used to implement a dedicated (and private) network
among the ECM and other engine related smart devices.

Figure 18 - CAN Networks

 26

4. API level design

This step is fundamental to reach the goal of crea+ng a hardware plaUorm ready to be used for
developing the Applica+on layer. The API level, as said before, puts in communica+on the Applica+on
layer with the Basic So>ware layer making available to the user a series of C func+ons.
All these func+ons are collected in a file called ‘api.c’ (and its rela+ve header file ‘api.h’) and
integra+ng them in Simulink through simple blocks, they can be ready for use in the modelling of
the system.
Actually, this file already exists but if the user wants to use an API func+on in his model, it must be
ensured that the func+on follows certain rules to be compa+ble with MATLAB and, a>er that, it
should create the rela+ve block in Simulink (usually by means of a S-Function). The major problem
of this approach is the waste of +me for the crea+on of all single blocks and the relative probability
to introduce errors due to this iterative but manual task. Furthermore, a>er having created the
block, if the user in the future applies some changes to the func+on, it must modify also the related
block.
To solve these problems the API file has been changed with the correct rules and a block library does
what the user did before.
The strong point of this work is that all these C func+ons are transformed in Simulink blocks
automa+cally, so through a ‘click’ all the related blocks are created in the library.
This kind of approach brings a big advantage in the model development, in fact when the API file will
be updated with new func+on or modified, Simulink blocks will be automa+cally adjusted
accordingly. According to this approach, minimizing the number of func+ons in the api file would be
effec+ve and useful for having a clearer workflow.
Later there will be explained details regarding the implementa+on of this feature in the Mathworks
tools ecosystem.

4.1 API file descrip4on

API func+ons covered by the activities for this thesis concern the I/O channels and the
communica+on channels (CAN and DBC integra+on).

The API file contains all the enumera+ve types and data struct that are used by func+ons. They can
be resumed as follow:

• struct tTxPduInfo
It is used for transmijng a CAN message and it contains two fields that are the DLC and the
payload (a uint8 vector of 8 elements since the maximum length of a payload is 8 bytes).

• struct tRxPduInfo
Vice versa it is used for receiving a CAN message and for this reason it also has some fields
related to the diagnos+c that are the “DlcError” (if there is a mismatch in terms of DLC
between the expected DLC and the received DLC), “TimeOut” (if the +me limit for receiving
the message has expired), “NewDataReceived” (report when new data is received),
“ChannelIdErr” (if the channel is different from the expected one)

 27

• struct tPWMInInfo
It is used for receiving informa+on about the PWM input signal. It contains the period and
the duty of the signal.

• enum tCANTxStatus
It enumerates the possible status of the CAN message in transmission. The status of the Tx
message can be disabled, enabled or error.

• enum tCANRxStatus
Idem for a received CAN message, the status can be OK, DLC error, Timeout error, New data
error, Ch ID error and signal out of range (one of the message signals is out of range).

• enum CANRxId
It enumerates all possible ID available for messages of all CAN networks. An example of ID
for the CAN 2 network is ‘CAN2_MSG_RX_000’.

• enum CANTxId
It does the same thing for transmission messages.

• enum DigInPinName
It enumerates all the available digital input pins of the board. An example of a DigInPinName
is ‘DIN_CH_ID_000’ and it is mapped in a par+cular pin of the board (a dedicated file contains
all the maps between name and pin number).

• enum ANIN_Channel
It enumerates all analog input pins of the board.

• enum PWMInPinName
It enumerates all PWM input pins of the board.

• enum PWMOutPinName
It enumerates all PWM output pins of the board. They can be of two different type that are
Low Side and High Side. An example of PWMOutPinName Low Side is
‘PWMOUT_LS_CH_ID_000’.

• enum DigOutPinName
It enumerates all digital output pins of the board in Low Side and High Side.

• enum Std_eDiagStatusT
It enumerates all possible diagnos+c error in the system.

Func+ons that deal with Input/Output channels by conven+on are preceded by ‘API_’ prefix followed
by the type of I/O channel where:

- ANIN: Analog Input
- DIN: Digital Input
- DOUT: Digital Output
- PWMIN: PWM (Pulse Width Modula+on) Input
- PWMOUT: PWM Output

 28

They are described as follows:

• uint16_T API_ANIN_getRawValue (ANIN_Channel u8ANIN_CH_ID)
This func+on returns the raw value (using 16 bit) of the specified analog input channel passed
by parameter. Note that the maximum value of 216-1 is equivalent to 5 V.

• real32_T API_ANIN_getADC (ANIN_Channel numPin)
It returns the value in [V] of the specified analog input channel. It is responsible for the
conversion in Volt based on the channel where for example in the pin ANIN_CH_ID_000 the
maximum value is 5 V while in the ANIN_CH_ID_023 (refers to the power supply) is higher.

• uint8_T API_DIN_getDigIn (DigInPinName numPin)
It returns the value of the specified digital input channel and in details it can take the value
of 1 or 0.

• void API_DIN_setHwPullUp (DigInPinName u8DIN_PU_CH_ID, uint8_T
status)
The func+on enables or disables (based on the status parameter) the hardware pull-up
resistor for the channel specified as parameter.

• uint8_T API_DOUT_setDigOut (DigOutPinName numPin, uint8_T
value)
It sets the value of the specified digital output channel and return a certain value in case of
error such as wrong pin number.

• Std_eDiagStatusT API_DOUT_getDigOutErrorInfo (DigOutPinName
numPin)
It returns the diagnos+c status of the specified digital output pin.

• tPWMInInfo API_PWMIN_getPeriodAndDuty (PWMInPinName
u8PWMIN_CH_ID, uint8_T bNegative)
It returns the period and duty of the PWM input channel specified. The bNega+ve parameter
allows to correctly compute the duty cycle according to the PWM polarity Low Side or High
Side). The period is in microseconds while the duty in percentage.

• void API_PWMOUT_setPeriodAndDuty (PWMOutPinName
u8PWMOUT_CH_ID, uint16_T u16Period, uint16_T u16Duty)
It sets the period and the duty cycle of the specified PWM output channel. The period is
expressed in microseconds and must be in the range [100, 62500] corresponding to a
frequency range of [16, 10000] Hz. If the period is outside the range, it will be saturated. The
duty cycle must be in the range [0, 1].

• Std_eDiagStatusT API_PWMOUT_getPwmOutErrorInfo (PWMOutPinName
numPin)
It provides informa+on about the diagnos+c errors of the specified PWM out channel.

 29

Regarding func+ons that deal with communica+on, the most important and useful for the modeling
phase are:

• tRxPduInfo API_CAN_getRxPduInfo (CANRxId frameID)
It receives from the CAN Rx ID passed as parameter the PDU containing all informa+on about
the message. In par+cular, it is stored in the tRxPduInfo struct and in this way all the
informa+on, included the payload, are available to the user through its fields. As will be
shown later, this approach is very useful in the model development because simply using the
Simulink block associated to this func+on, the user will be able to use all data of the message
in an easy way. Furthermore, since all the informa+on about the message are available,
including possible errors such as +meout error or DLC error, the user will have the possibility
to manage the recep+on of the message based on these errors. Later it will be shown how
this aspect will also automa+cally managed to allow the user the easiest model developing
possible.

• uint8_T API_CAN_setTxPduInfo (CANTxId frameID, tTxPduInfo
data_SwSTXPdu)
It sends to the CAN Tx ID specified the message passed as parameters. In details, the message
is a struct containing the DLC and the payload. Also in this case, the process of sending a
message is automated and directly integrated with DBC files to allow the user a smoother
workflow.

• uint8_T API_CAN_setPduTxEnblDisbl (CANTxId frameID, uint8_T
status)
It enables or disables the transmission of the message specified as parameter.

• tCANTxStatus API_CAN_getPduTxEnblDisblStatus (CANTxId frameID)
It provides the enable status of the transmission message specified as parameter.

• uint8_T API_CAN_setPduRxEnblDisbl (CANRxId frameID, uint8_T
status)
It enables or disables the recep+on of the message specified as parameter.

• tCANTxStatus API_CAN_getPduRxEnblDisblStatus (CANRxId frameID)
It provides the enable status of the receiving message specified as parameter.

• uint8_T API_CAN_getPduTxStatus (CANTxId frameID)
It indicates if the last transmission request has been successful transmiled on the CAN bus.

In addi+on to these, are declared some callbacks that are necessary for each CAN network to specify
certain parameters. These callbacks will not be transformed in blocks because they are not useful in
the Simulink model phase, but they are fundamental later in the integra+on of the code.
For each CAN network are described these callbacks (here there are callbacks of CAN 2 network):

- API_CAN2_setBaudRateCbk (sets the baud rate for the specified CAN network)
- API_CAN2_getDiagStatus (returns the diagnos+c status of the specified CAN network)
- API_CAN2_setIdRxCbk (specifies the ID, aka the address, of receiving messages

according to the DBC file)

 30

- API_CAN2_setIdTxCbk (idem for the transmijng messages)
- API_CAN2_setIdeRxCbk (specified if a receive message is standard or extended

according to the DBC)
- API_CAN2_setIdeTxCbk (idem for transmission messages)
- API_CAN2_getMsgStatusRx (returns the status of a received message, so if it was

properly received)
- API_CAN2_initCbk (sets parameters of messages according to the DBC file, in par+cular

the init value for the transmiled messages, the period which a message has to be received
or transmiled, the DLC, the +meout for receiving messages and the status of enable/disable
of the single message so if it has to be sent/received)

All callbacks that are related to a DBC file were wrilen by hand and could lead to mistakes. For this
reason, all the process of populate the callbacks in the source file has been automated by a specific
tool that does this job instead of user. This aspect will be explored in the next chapter.

API func+ons are translated into Simulink ‘C Caller’ blocks1. This type of MATLAB blocks permits to
call C func+ons declared in external source codes and libraries, so these files must be set in the
configura+on parameters of MATLAB.
When a C Caller block is created, all the values passed by parameter to the function are mapped into
inputs of the block while the return value is the output of the block.

As men+oned before, to ensure that MATLAB is able to create all the blocks, some rules should be
followed for a correct crea+on of the API func+ons:

- Pointers are not recommended because are difficult to integrate in MATLAB, so only
parameters passed by value should be used.

- In case you need to return mul+ple values, you should create a struct containing all the values
and return it, as in the case of ‘API_CAN_getRxPduInfo’ where two different data
return through a struct created ad hoc (these struct should be defined in the header file).

- To visualize input and output names of parameters in the C Caller block you have to put them
also in the prototypes of the header file (api.h) just like in the api source file (api.c). In this
way it will be clearer in the development phase use the C Caller block thanks to the presence
of parameter names instead of a generic ‘input 1’ and ‘input 2’.

In the MATLAB project used for the model development, it could be useful a copy of the original
source file, with the simplification that the body func+on could be empty. This choice has been made
because func+ons in the real source file call in turn other lower-level func+ons and MATLAB would
not be able to handle them. In this way when the automa+c code generator will translate C Caller
blocks in source code, it will only write the name of the func+on and its parameters. This is enough
for the company’s goal because the integra+on with the real source file is done outside MATLAB.

Below is an example of C Caller block created from the API_CAN_getRxPduInfo func+on (figure
19), and as can be seen the received CAN message is ready to be used in your model simply by
dragging a line from the block.
In par+cular, the block has as input the frame ID of the message to receive (in this example it is a
message of the second available CAN network, CAN2), and as output the struct containing all the

1 h#ps://www.mathworks.com/help/simulink/ug/integrate-ccode-ccaller.html

 31

message informa+on. Using a ‘bus selector’ is possible to split the struct in its fields and use them
in the user’s model.

Figure 19 - C Caller block for receiving a CAN message

For those func+ons which have a struct datatype as input parameter (as for example the
API_CAN_setTxPduInfo), the procedure is the reverse that is the use of a bus creator which
“assembles” all single fields in the final struct.

This is another example of C Caller block created from the API_DOUT_setDigOut func+on where
is set to 1 a certain Digital Output pin number and in this way for example, a LED connected to that
pin can be turned on.

Figure 20 - C Caller block for Digital Output

These types of examples should allow easily to understand the poten+al of this approach and how
simple is the communica+on between the model environment and the low level software.

Other func+ons present in the API file are those that are related to the management of the Opera+ng
System (OS). In par+cular, some specific func+ons are used to schedule the different tasks divided
by execu+on +me. When the code of a certain model is generated, it will be composed by a step
func+on (and other file that will explain later) that must be inserted in the right task func+on based
on his execu+on +me. The different execu+on +mes available are 1ms, 2ms, 4ms, 10ms, 50ms,
100ms and 1s. The func+on in the API file that call these tasks is named with ‘API_OS_Task’ plus
the execu+on +me. For example, the API_OS_Task10ms func+on has the purpose to call all
func+ons that must be executed every 10 ms.
The remaining func+ons related to the OS are ‘API_OS_LockOS’ and ’API_OS_UnlockOS’
that lock or unlock the opera+ng system in order to prevent some possible task switching,
‘API_OS_DriverEnable’ and ‘API_OS_DriverDisable’ that enable or disable all
external drivers.
In the future could also be managed func+ons in Simulink regarding the memory management
(NVRAM) and the diagnos+c modules (WWH-OBD) always with the idea of having available some
blocks that allow the user to model more easily.

 32

5. SW integra4on on the real target

When the MBD of your applica+on is completed and the MIL tes+ng itera+on is done with the
expected result, it is +me to automa+cally generate the code with the scope to integrate it in the
real target HW. To generate the code in the correct manner, it must be declared some configura+on
parameters in MATLAB. These parameters permit to create a so>ware that is compa+ble with the
ECU and the SW implementa+on strategies. A>er this step, trough other tools, is possible to
generate the ‘.s19’ and ‘.a2l’ files that will be flashed in the ECU.

5.1 MATLAB configura4on parameters for code genera4on

MATLAB makes available to the user many parameters that determine how the code generator
produces code and builds an executable program.
The most important file generated from MATLAB are the following:

- model.c (contains the code for the model algorithm implementa+ons and it is made by
three main func+ons that are model_ini+alize, model_step, model_terminate)

- model.h (is the header file of model.c and contains the declara+ons of data structures,
signals and calibra+ons used in the model. It also contains the prototypes of the three
func+ons explained in the source file)

- model_private.h (contains local data that the model requires. It is automa+cally
included along with model.h in model.c)

- model_types.h (provides user-defined types that the model requires)
- model_data.c (contains the declara+ons for the parameters data structure and the

constant I/O blocks)
- rtwtypes.h (contains data types required by the generated code)

Concerning the func+ons generated in model.c, only model_ini+alize and model_step func+ons are
necessary, without the terminate func+on. Furthermore, is not necessary the genera+on of a main
func+on since ‘API_OS_Task’ will take care to call the generated func+ons in ‘model.c’.

Configura+on parameters are divided in mul+ple fields, each of which concern a specific aspect of
the code genera+on. The main ones are described below:

 33

Figure 21 - General parameters

The System target file (figure 21) describes the file configura+on used to control the code genera+on
based on the final HW target and, in this case, it is set to ‘ert.tcl’ (embedded real-+me target). In
contrast with ‘grt.tlc’ (generic real-+me target) that is used for a generic target (such as the host PC),
the ‘ert.tlc’ has a beler speed and memory op+miza+on since the target is an Embedded system, so
with lower power and space memory.
The language used for the code genera+on is the C. It follows the language standard C99 and the
MISRA C 2012 guidelines. They have the scope to make easier some code characteris+cs in the
embedded systems field such as security, safety, portability and reliability.
For what concern the build process, the MinGW64 is used to build the executable program and the
build configura+on op+on is set to ‘Faster Builds’ for op+mizing the build +me.

Figure 22 - OpMmizaMon parameters

 34

As shown in the figure 22, MATLAB makes also available many op+miza+on parameters for saving
space memory and computa+onal power. All these op+miza+ons are related to the target in use,
that in this case is an Embedded plaUorm, in fact in these types of systems do not have all resources
that can take for granted in a generic PC.
The first op+on ‘Default parameter behavior’ is set to ‘Inlined’ to not allocate memory for
represen+ng block parameters. In this way it reduces global RAM usage and increases efficiency of
the generated code. The same scope has the second parameter that permit to pass reusable
subsystem outputs as structure reference (pointer to it) to op+mize the memory usage.
The following two flag disable the ini+aliza+on of inports/outports and internal work structures, so
the user will manage them. Then are available other parameters always with the scope to op+mize
the code generated, as for example the flag ‘Use memcpy for vector assignment’ that avoid for loops
or ‘Eliminate superfluous local variables’ that increases the memory efficiency.

Figure 23 - Interface parameters

These parameters (figure 23) manage the interface of the generated code. The ‘Shared code
placement’ is set to ‘Shared loca+on’ to place the code for u+lity func+ons in a shared folder. In the
support flags, only floa+ng-point numbers are enabled for code genera+on while the others are
disable, so for example complex numbers cannot be generated.
The ‘Code interface packaging’ set on ‘Nonreusable func+on’ permits to generates nonreusable code
alloca+ng model data structures in a sta+c way.
The array layout is le> to default as ‘Column-major’, so the matrix elements of the columns are
con+guous in memory, and the transport layer used follows the TCP/IP mechanism.
As men+oned before the terminate func+on is not required, so the rela+ve flag is disable.
Furthermore, since it is necessary only the ini+alize and step func+ons, all API genera+ons for
signals, parameters and I/O are disable.

 35

Figure 24 - Code style parameters

Code style parameters (figure 24) configures the appearance of the generated code. Through these
parameters is possible to have a code that is conform to a specific standard, such in this case the
MISRA C.
The first parameter ‘Parenthesis level’ is set to ‘Standards’ to have beler code readability and to be
conform to MISRA requirement. An important parameter is the ‘Preserve extern keyword in func+on
declara+ons’ that permits to generate the model entry point func+ons, model_ini+alize() and
model_step(), with the keyword ‘extern’ that explicitly indicates an external linkage.
The ‘Cas+ng modes’ parameter is set to ‘Standards compliant’ to sa+sfy some MISRA rules, for
example it can replace bitwise XOR opera+ons with rela+onal opera+ons to sa+sfy the 10.1 MISRA
rule.

In the Code Placement sec+on of the configura+on parameters windows, is possible to set the
format of the file packaging. In par+cular, with the op+on ‘Modular’ all files described at the
beginning of the chapter are generated, while using ‘Compact’ model_data.c, model_private.h,
model_types.h are included in the source and header file.

 36

Figure 25 - Data type replacement parameters

The data type replacement (figure 25) sec+on permits to replace built-in data type name with user-
defined names in the code genera+on. In this case are used the default coder typedefs but in case
of specific requests by a customer, is possible through the ‘Specify custom data type names’ flag to
modify all names wri+ng the desired ones.

5.2 Workflow from MATLAB to ECU

Once the MBD of a system is completed and the MIL tes+ng is done with the expected results, as
explained in the chapter before, the code of the model will be generated automa+cally. To run the
so>ware in the real hardware and test it, some steps have to be done.
In the PC used for development/test of the Model-Based applica+on, should be created a project
folder where insert all necessary files used for the project.
For a clearer understandability of the project architecture, the three layers of the SW architecture
have been divided in different folders (BSWL, API, MBSL). The MBSL folder is dedicated for the
applica+on, in fact it shall contain all the source code files generated from the applicative models by
MATLAB during the code genera+on.
The next step is to link these applica+on files to the API layer, and this is done by including all the
model header files in the API file.

The API file, as explained in previous chapters, contains some func+ons related to the OS that are
executed at specific +mes. The ‘API_OS_Init’ is in charge to do the task rou+ne for the system
ini+aliza+on, so all the model_ini+alize() func+ons generated from MATLAB must be inserted here.
In this way all models’ ini+aliza+ons will be executed at the right +me.

 37

Figure 26 - API_OS_Init

As the figure 26 shows, ‘API_OS_Init’ func+on contains all ini+aliza+ons tasks such as the
EEPROM ini+aliza+on, the variables ini+aliza+ons or the I/O ini+aliza+ons. At line 4524 of the code
in the figure, all the applica+on ini+aliza+on func+ons are inserted, and in this example, there are
some func+ons related to the Demo Applica+on that has been developed for tes+ng the created
library.

A>er that, model_step() func+ons must be inserted in the ‘API_OS_Task’ func+on based on the
frequency at which the task has to run. In the example below (figure 27) is shown the
‘API_OS_Task50ms’ containing all tasks that must be run every 50ms. At the line 4700 are
inserted two step func+ons derived from the related Simulink models. Obviously, the order in which
func+ons are inserted depends on the applica+on logic, so if is necessary to run model A first than
model B, the order will be the same in the code.

Figure 27 - API_OS_Task50ms

Once this is done, is possible to proceed with the build of the project to transform the source code
into an executable so>ware for the embedded system. There are many so>ware tools available for
this task and in this case, it has been used ‘HighTec Development PlaUorm’.
A>er having selected the microcontroller used in the ECU, this tool manages the en+re build process
of the project so compiler, assembler and linker. The final result is the crea+on of two different files
that are the ‘.elf’ and the ‘.s19’.

 38

Figure 28 - Build project with HighTec

The ELF file (Executable and Linkable Format) is a standard file format for executable files, object
code and shared libraries, it contains informa+on for the execu+on of a program such as data
memory addresses. The s19 file (S-Record file) contains the machine code compiled and it is used to
program the EEPROM (non-vola+le memory of the microcontroller).

The next step is the crea+on of the A2L file through some tools developed by Vector. The A2L file
contains informa+on about memory address and data type of all data objects (parameters, maps,
signals, etc.) and, together with the s19 file, will be flash in the ECU.
It has been created a batch file to execute some instruc+ons that allow the correct crea+on of the
file:

- Through the Vector ASAP2 Merger tool, all A2L files belonging to the source codes of the
project are merged into a single one, that will be called with the name of the project. It works
with a master-slave paradigm, so is present a Master A2L file (Header A2L) that described
rules for communica+ng with the ECU and it is merged with all the others that contains
symbols.

Figure 29 - ASAP2 Merger tool

- Through the Vector ASAP2 Updater, all the symbol addresses present in the A2L file are

updated based on the ELF file generated from the last build process. This is done because
object addresses may change from a build process to another and, if the A2L file is not
update, the en+re project may no longer work properly.

 39

Figure 30 - ASAP2 Updater tool

When the A2L and S19 files are ready, they can be flashed in the ECU using a tool called CANape,
developed by Vector. CANape is a plaUorm able to connect with the ECU and perform many tasks
including:

- Flashing (upload a new so>ware in the ECU via XCP/CCP protocol, UDS or Ethernet)

Figure 31 - Flash via CANape

- Data acquisi+on and analysis (measurement and processing of data and signals from ECU)

Figure 32 - Data acquisiMon

- Calibra+on (modify parameters and flash it to reach the expected behaviors of the system)

 40

Figure 33 - CalibraMon

To start a session with CANape for flashing and tes+ng your MBD applica+on in the ECU, you should
create a new CANape project (in a dedicated folder) defining all rela+ve configura+ons and files
needed to the project execu+on (such as S19 and A2L).

The figure below shows the physical links that must be done for the correct configura+on of the
environment work. The PC communicates with ECU through CANape using the XCP protocol.

Figure 34 - Physical links

From a prac+cal point of view, the ECU is connected to a power supply and, as shown in the figure
below, in this case it is set to 12V in DC.

Figure 35 - ECU connected with power supply

 41

The next step is to connect Vector CANape device to both the ECU and the PC. Concerning the
connec+on with the PC is used an USB type B cable while a VGA port is used for the connec+on with
the ECU.
As it can be seen (Figure 36), it is used the CAN 1 channel (as explained in the chapter 3.2) to
exchange data with the PC and it is also necessary a termina+on resistor of 120 Ω (the lille black
box in the figure below between CANape and CAN 1 connector).

Figure 36 - ConnecMon between PC and ECU

A>er correctly sejng all the connec+ons, is possible to launch the CNA file (CANape configura+on
file of the project). The tool will immediately no+ce that the so>ware in the ECU is different from
the one in the PC (basically looking the EPK, Figure 37) and is necessary to flash the new so>ware.

Figure 37 - So?ware version check

 42

The tool makes available to the user three type of flash (Figure 38). ‘CALIB’ stands for calibra+ons
and is used when the applica+on so>ware is the same but change only calibra+on parameters.
‘APPLICATIVE’ is used when the applica+on part is different from the precedent one, for example if
is added a gain block in the control module. The ‘BOOT’ flash is used in specific cases when is
necessary to change the boot code in the memory (the code executed when the ECU is turned on).

Figure 38 - Flash types

The first +me that is flashed a new so>ware version, calibra+on values in the so>ware may differ
from the displayed ones in CANape (Figure 39). The tool asks to the user if he wants to upload those
in the so>ware to the work screen of CANape or vice versa if he wants to download the old values
present in CANape to the ECU.

Figure 39 - Cache synchronizaMon

A>er this step, if the user changes some calibra+on values during his test in CANape and flash them
in the ECU memory, the two version of so>ware will be aligned and the precedent popup will not
appear in the next working sessions.

 43

From a technical point of view, applica+on and calibra+ons sec+ons are divided in two different
memory areas. This is done for a beler management of the two sec+ons and for enhance the
security. Having the calibra+on sec+on independent permits, in case of errors during the calibra+on
wri+ng, to preserve the applica+ve sec+on. Furthermore, it can be subdivided in more sec+ons
based on their purpose and in this way is possible to give restricted accesses.

Figure 40 - Flash memory scheme

When the ECU is turned on, the MCU starts from the bootloader its rou+ne tasks and, if is present
an applica+on so>ware (checking the rela+ve key presence), it updates the Stack Pointer with its
first instruc+on. Then all calibra+on parameters are taken from the CAL ROM sec+on of the flash
memory and are copied in the CAL RAM sec+on.
When calibra+ons are flashed from CANape to ECU, they are directly wrilen to the CAL ROM and
they will remain when the ECU will turn off.
If the applica+on so>ware should be flashed, the applica+on key presence (located in a common
storage area accessible by both the applica+on and boot sec+on) is canceled, and via CANape a
request shall be sent for wri+ng in the applica+on sec+on memory via XCP protocol. A>er that, will
be possible to overwrite the applica+on sec+on with the new applica+on so>ware and to enable
again the key presence.

The overall workflow from MATLAB to the ECU can be resumed in the following schema.

Figure 41 - Workflow from MATLAB to ECU

 44

6. Modeling environment and Library design

As previously explained, the model environment used for this thesis work is MATLAB and it is one of
the most famous tools for the Model-Based Design of systems.

MATLAB makes available a large number of libraries and, integrated with Simulink, is possible to
develop complex systems with a MBD approach in an easy and fast way.
Furthermore, the community of MATLAB is very large and so in case of problems is easier to find
online resources and receive support.

For these types of works is very useful to use a MATLAB ‘Project’, that is an environment where is
easier to manage files of different types including: MATLAB files, DBC files, source code files,
requirements file, reports, generated files etc.

For the descrip+on of the modeling environment, it has been considered the demo applica+on
developed to test and validate the created library. It tries to follow the basic rules and hints that a
good project development should have.

6.1 Custom Storage Classes

To meet some specific implementa+on requirement, there has been created some custom storage
classes that add some features to default MATLAB classes.

The custom storage class ‘Calibra+on’ has been created for all parameters that must be tunable
(calibratable) during the following phases of tes+ng.
To do this, it has been defined in MATLAB a new memory sec+on called ‘CalRam’ that is a sec+on of
the RAM dedicated to calibra+on parameters and it is characterized by a pragma sec+on.
A pragma is a direc+ve that gives the possibility to assign addi+onal informa+on to the compiler and
in this way decide some compila+on details which are generally not modifiable.
Using this direc+ve, MATLAB will add the pragma sec+on to the code when it declares all parameters
saved as ‘Calibra+on’.
These figures show how the memory sec+on is created and then how MATLAB declares all
calibra+on parameters in the generated code with the correctly use of the pragma statement.

Figure 43 - Pragma secMon use

Figure 42 - CAL RAM creaMon

 45

The same procedure is done for the ‘Map’ custom storage class that is an extended class of the
Lookup Table (LUT). In this way all the parameters of the LUT declared as ‘Map’ could be modified
since is stored in the CalRam memory sec+on. This is important when you have to find the right
parameters of the table through various simula+ons.

The last two custom classes created are named ‘Signal’ (used for input/output) and ‘TestPoint’ (used
for intermediate signals).

I/O signals are used with the custom class ‘Signal’, in par+cular input signals shall be imported from
other models while output signals are declared as extern.
TestPoint signals are those that are used inside the model and only in that model. However, from a
“code genera+on” point of view they are treated as output signals so they are declared as extern
and they can be visualized in the measurement tool later.

The figure 44 shown a use case example of these created storage class. On the le> is present the
LUT called ‘zvRailPConv1’ and it is related to a ‘Map’ object in the data dic+onary with the same
name. In the line coming out of the LUT is connected a ‘TestPoint’ called ‘zsRailPressureTmp’, as
explained before it is a signal that remains in the current model and is not used from other models.
A>er that is present a switch that permits to set a fixed value instead the real signal if a enable
parameter is turned on. This parameter (zfRAILPRESSURE_VALUE) and the fixed value
(zfRAILPRESSURE_EN) are saved in the data dic+onary as ‘Calibra+on’ and so they are modifiable in
CANape during the HIL. Outgoing from the switch is present a ‘Signal’ that can be used in other
models.

Figure 44 - Custom storage class example

6.2 MATLAB Project architecture

A project should follow a modular architecture with the goal of making the work environment well-
structured for improving the comprehensibility and facilita+ng the system development.
A>er having created a new MATLAB project, should be created folders for different working areas,
so for example a library folder where to put all files inherent to the library blocks, and a model folder
containing all files of system models.
Regarding models of the system, they are divided by different task (e.g. igni+on module, injec+on
module, turbo module, etc.) each of which is in turn composed of mul+ple simulink models divided
by execu+on +me. Each model has an associated data dic+onary that contains all its data such as
parameters, signals or lookup tables.

 46

Upstream of all data dic+onaries is present a data dic+onary that is linked with all the others and so
it contains data of all models. This is done because each model will be linked with this ‘father’ data
dic+onary to visualize and use data of all the other models.
Downstream of all models is present a data dic+onary containing all the enumera+ve data types and
data struct of the project. It will be linked and so available to all models allowing its use.

In the figure below is shown the folder management of the Demo Applica+on (chapter 7) in MATLAB.
As it can be seen, in the ‘DemoApp’ folder are present all different models, each of which has the
Simulink model, the data dic+onary associated and a test harness model to verify the correct
func+onality of the model (MIL).
In the ‘Librerie’ folder are present the library and all files associated to it like the API file, custom
class files and DBC files. Then is present the data dic+onary ‘father’ (DDLib.sldd) and the data
dic+onary of all enumera+ves and data type (eAxle_enum.sldd)

Figure 45 - Project folder management in MATLAB

MATLAB provides a very useful tool for visualizing all dependencies between project files that is
called ‘Dependency Analyzer’. It helps the user to understand the links present between the various
models and data dic+onaries.

As it is shown in the figure 46, all models (characterized by the red label and the suffix “.slx”) are
connected with the ‘father’ data dic+onary (called in this example ‘DDLib.sldd’ and with yellow label)
and, as said before, each model can use signals of other models. Each model data dic+onary is
connected to ‘eAxle_enum.sldd’ for having access to all enumera+ve data types.
The created library for this thesis work (‘eAXLE_LIB.slx’) could have access to the data dic+onary of
enumera+ve data types but it cannot be linked with the other data dic+onaries.

 47

Figure 46 - Dependency Analyzer

6.3 Blocks library design

To create a new library is necessary to start Simulink and click on ‘Blank Library’. Using your own
library in addi+on to the exis+ng ones, allows the user to have some func+onal blocks available that
help the model development. These blocks library performs ac+ons with the aim of reducing
development +me and avoid errors due to human mistakes.

All blocks that require an input from the user such as click a bulon, are created simply by adding a
new empty subsystem to the library model and modifying its mask. Through the ‘Mask Editor’ of the
block is possible to create a block library with which to dialog using bulons, check box, editable
parameters etc. All bulons are related to a specific script file (saved in the same folder of the project
with the suffix “.m”) that is executed at the +me the bulon is pressed. These script files are wrilen
in MATLAB programming language that is similar to the C language.

To have available the created library directly in the library browser some ac+ons have been
performed following guidelines in the MathWorks website2. This leads to the advantage of having
all blocks available directly in the model by simply dragging and dropping them.

The mainly blocks that have been created are resumed in the following table.

Block name Descrip0on Reference
Update Update enumera,ve types and

API func,on blocks
6.3.1

Import DBC Import in MATLAB DBC files and
generate related callbacks in API
file

6.3.2

CANRX_MESSAGE Receive message belonging to
DBC files imported

6.3.3

2 h#ps://www.mathworks.com/help/simulink/ug/adding-libraries-to-the-library-browser.html

 48

CANTX_MESSAGE Send message belonging to DBC
files imported

6.3.4

GenCode Build model wrapper to manage
I/O signals and generate code

6.3.5

The figure 47 shows the created library and its blocks.

Figure 47 - Created library

6.3.1 “Update” block library

In the MATLAB environment, when you start a new project, you have to create one by one in the
appropriate data dic+onary all enumera+ve data types that are present in the API file. Once you
have done, if are necessary some updates or if there are new data types in the API file that must be
added, you must modify the data dic+onary by hand ac+ng one data type at a +me. The same
problem concerns the crea+on of C Caller blocks for using API func+ons and this can take a lot of
+me.

This block library has been created whenever is required to create or update all the enumera+ve
data types and C Caller blocks from the API file.
When you have just created your new MATLAB project for the model-based design of your
applica+on, you should add the API source and header files in your project folder and declare them
in the library configura+on parameters under the heading ‘Code informa+on’.

 49

Figure 48 - "Update" block library

The block shown in figure 48 is composed of two bulons, the “Update Enum” bulon is in charge to
add all the enumera+ve data types and data struct from the API header file to the ‘eAxle_enum.sldd’
(the data dic+onary used for this purpose). Before do this, it deletes all entries of the data dic+onary
in order to start with the original state (where the data dic+onary is empty), so in case the bulon is
pressed for an update it correctly regenerates all enumera+ve data types.
A>er that, through the “Simulink.importExternalCTypes” func+on used in the script, it
effec+vely adds entries to the data dic+onary and then it converts all storage types of ‘Na+ve Integer’
to ‘uint8’, to be aligned with the code genera+on implementa+on. This is the data dic+onary of the
enumera+ve types a>er having pressed the “Update Enum” bulon and, as it can be seen from the
figure 49, all data types are created (enumera+ve data types denoted by the yellow grid and struct
data types by the three black lines) and the storage type of each data is ‘uint8’.

Figure 49 - "Update enum" result

The second bulon ”Update Blocks” performs the same ac+ons with the API func+ons, so it creates
all C Caller blocks with the scope of calling the API func+on associated. When the bulon is pressed,
present C Caller blocks are eliminated for the same reason of the previous case, then is created a ‘C
Caller block Init’ that has the scope of generate all the other blocks. The script updates the list of the
available func+ons in the ‘C Caller Init’ (figure 50) and then it creates them one by one.
As the figure 51 shows, a>er having pressed the “Update Blocks” bulon in the library will be present
in an orderly manner all the C Caller blocks, ready to be used in the model.

 50

Figure 50 - C Caller Init block

This block library is very useful because it permits to configure the work environment quickly and
easily. Its strong point is the scalability because large numbers of enumera+ve data types or different
func+ons are not a problem since all the work is automa+cally done.

6.3.2 “Import DBC” block library

When it is necessary to receive or transmit messages via CAN, the user should implement in Simulink
the composi+on of signals for every message that must be used. This process can take a lot of +me
and the risk of making mistakes is present since many things must be implemented such as
encapsula+on of payload, data conversions, signal resolu+on and units.
To have a beler management of CAN messages and consequently use them in the model
development, the integra+on of DBC files in MATLAB is fundamental.
For this scope, it has been created a specific block. It gives the possibility to the user to add or delete
a DBC file in the project and integrates in MATLAB all its messages and signals. Furthermore, is
possible to automa+cally generate all callbacks (specified in chapter 4.1) that are related to DBC files
in the API file (and programmatically populate the file during the DBC import procedure).

To manage messages and signals, two different classes have been defined. The ‘Message’ class, used
for managing all messages has the following proper+es:

- Name (name of the CAN message)
- ID (represent the address of the message expressed in hexadecimal form)
- NetworkType (indicates if it belongs to CAN1, CAN2, CAN3 or CAN4 network)
- UniqueID (flag that indicates if the message address is unique or not)
- DLC (Data Length Code of the message, the length of the payload in byte)
- Period (period in [ms] which a message must be received/transmiled)
- Timeout (+me limit within which wait a message)
- Enable (flag that indicates if the message can be transmiled/received)

Figure 51 - "Update Blocks" result

 51

- Type (Extended or Standard message)
- MboxId (the frame ID associated to the message)
- Role (if is a transmiled or received message)
- Signals (list of all its signals)

The ‘SignalOfMsg’ class used for all message signals is composed by:

- Name (name of the signal)
- BitStart (start bit of the signal in the message payload)
- Length (bit length of the signal)
- ByteOrder (if expressed in Lille Endian (Intel) or Big Endian (Motorola))
- ValueType (if the signal is signed or unsigned)
- Factor (precision factor of the signal)
- Offset (possible offset of the signal)
- Min (min value it can take)
- Max (max value it can take)
- Unit (unit of measurement)
- Comment (signal comment string from DBC file)

For what concerns the mapping between MboxId available (frame ID) and messages in DBC files it
has been created a class called ‘canMap’ that manages this rela+onship. This class contains the list
of all MboxId available, a flag that indicates if each frame ID exist in the API file (so if it has been
managed at low level), the name of the possible message associated (empty if no message is
associated yet) and the number of total messages associated. For a clearer management of network
and messages, it is created an object of this class for each CAN network and for each ‘Role’. For
example, the CAN2 network will have a ‘canMap’ object for messages in recep+on (called CAN2RX)
and another for those in transmission (called CAN2TX).

Figure 52 - "Import DBC" block library

A>er opening the block library, the first ac+on to do is to add a new DBC file in MATLAB pressing the
‘Add DBC’ bulon (figure 52). At that moment, an open file dialog appears to choose the DBC file
from the file system and then the tool will ask the user to select the CAN Network and the
transmission node (figure 53).

 52

Figure 53 - Select CAN network and transmission node

This is done because based to transmission node, the tool can understand which messages are
transmiled and which are received (since in the DBC file each message has among its proper+es the
transmission node). Then it will update the correct canMap related to the selected CAN Network.
The script will analyze the DBC file and based to its syntax (figure 16, chapter 3.2), it will create
message and signal objects saving them in a specific file called as the DBC with the suffix ‘.mat’ (type
of MATLAB file used to store data). A>er saving the objects, the ‘Import DBC’ block will show all the
message proper+es of the selected one in the popup menu (in the example of the figure 52 it is
shown the ‘FLCU_TO_PCM_003’ message, including a popup that shows the signals associated to
the message). The script is predisposed for changing all message proper+es and consequently
update the MATLAB object but for the moment, the user can only modify the flag for enabling or
disabling the message.
If the user adds more DBC files, they will integrate with the exis+ng ones, so the block library will
assign new MboxId from those not yet occupied (checking from the canMap) and it will check the
address univocity for the network of belonging.
All DBC files imported are visible through the first popup called ‘DBC imported’.

Figure 54 - Message properMes

 53

The next step a>er impor+ng all DBC files into MATLAB, is to generate automa+cally all callbacks
related to messages. Pressing the ‘Generate callbacks’ bulon, the script will write in the correctly
code por+on of the API file all the proper+es of the messages. As shown in the figure 55, in the API
file are present some markers (line 3111 and 3143 highlighted of the example code) that have the
purpose to indicate the star+ng and ending point of the callback in such a way the script knows
where to write the code.
Every +me the callbacks are generated, the script deletes the old ones and rewrite the new ones. In
this way is easier to manage update of exis+ng messages or add more.
The big advantage of this feature is to eliminate all possible human errors due to incorrect
transcrip+on of message callbacks.
The ‘Generate DBC file’ bulon is inac+ve and in the future can be used for regenerate the DBC file
according to all modifies done by the user.

Figure 55 - Callbacks generated automaMcally

The last thing that the user can do with this block is to delete an imported DBC file using the ‘Delete
DBC selected’ bulon. In this way, a>er having chosen the DBC file to delete through the first popup
and pressed the bulon, the script will automa+cally update the callbacks to be aligned with the DBC
files imported at that +me.

6.3.3 “CANRX_MESSAGE” block library

A>er integra+ng DBC files, for using them is necessary to send and receive their messages. This block
library (and its dual) concludes the management and integra+on of CAN communica+on in the
MATLAB environment. It makes available to the user a simple way to use signals of received

 54

messages in the model development and for doing this, it is integrated with all DBC files imported
thanks to the previous block library explained.

Figure 56 – CANRX_MESSAGE block

As it is shown in the figure 56 the user has available all messages of DBC files imported in MATLAB
and they are viewable through the two popups. A>er selec+ng the message and pressing the ‘Create’
bulon, the tool will create a subsystem with all message signals as output and the user will be able
to use them directly in the model. The created subsystem also has two diagnos+c outputs called
with the name of the message plus ‘_Status’ and ‘_BitStatus’ and they are used to check the
diagnos+c status of the message.

The ‘_Status’ signal describes through the enumera+ve data type ‘tCANRxStatus’ (page 27) the
diagnos+c status of the message but it can represent only one state of error. For this reason, error
state is displayed following a priority order. The most important error is the ‘Channel ID’ error
because in presence of this error the message is not received. In case there were other errors besides
this one, they will not be displayed due to priority management. Con+nuing with the priori+es order,
there is the TimeOut error, it means that the +me limit imposed to receive the message has expired,
so that message will be lost. The next error is the DLC error, it means that the DLC of the message
received is not equal to the expected one. A>er that, the NewDataReceived state indicates when a
new message is received raising a bit to 1. For transforming it to an error it has been inserted a ‘NOT’
block in such a way the error status rises when the new message is not arrived (before the Timeout
error). The last error in order of priority is the SignalOutOfRange error and it means that one of the
message signals assumes an out-of-range value.

To inves+gate deeper and visualize all possible status error, it is used the ‘_BitStatus’ signal. It is a bit
word made by 8 bit, each of which represent a specific status error. To compose it, every status has
been weighted by a mul+ple of 2 and summing all of them you get the bit word.
In the figure 57 it can be seen the subsystem created a>er having pressed the ‘Create’ bulon of the
library block and it is composed, as men+oned before, from two diagnos+c signals and the message
signals (in this case the message contains only the signal ‘csPCM_TO_FLCU_001_EnableFLCU’).

 55

Figure 57 - CAN RX subsystem

If the user presses ‘CreateAll’ a window like the one in the figure 58 will appear to ask the rate of
messages that he wants to receive. Selec+ng the rate in [ms] the tool will create all subsystems as
those in figure 57, one for each message.

Figure 58 - CreateAll messages

The CANRX subsystem is in turn composed from other subsystems that permit its purpose, so it is
created from a script using other blocks library, specially made for this scope.

Figure 59 - CAN RX subsystem composiMon

As shown in the figure 59 there are other blocks that do different task. The upper part is in charge
of giving in output the message signals while the bolom part takes care about diagnos+c status
errors.

 56

Figure 60 - CAN_RX_MESSAGE

The first subsystem in the upper le> corner of figure 59, called ‘CAN_RX_MESSAGE’, is described in
the figure 60. It takes the frameID associated to the selected message and call the
‘API_CAN_getRxPduInfo’ func+on to receive the message (through the C Caller block created
using the library, chapter 4.1 figure 19). The C Caller block gives as output the CAN frame (containing
the payload and the error fields) and it is spun off using a bus selector.

The ‘Error_Analyzer’ subsystem (figure 61) takes in input all the errors of the message and, based to
priority, gives in output the two error signals (they are denoted as ‘Temp’ because is s+ll missing
the SignalOutOfRange error that is managed in another part of the subsystem). As it is shown below
(figure 61) the priority concept is modeled in MATLAB using a cascade of switch blocks (that can be
interpreted as IF-THEN-ELSE) so if the first switch is verified (it passes the true condi+on) the others
are ignored. Each switch corresponds to a possible error status described by a constant value, for
example the ‘ChannelIdErr’ is represent by the number 4 because it is its enumera+ve (accordingly
to the enum data dic+onary).
For crea+ng the bit word status, each error signal is mul+plied by a power of two and they are
summed.

Figure 61 - Error Analyzer

 57

To complete the two diagnos+c signals is also necessary the ‘SignalOutOfRange’ error but it is
managed separately because it is a property of the single message signal and not of the en+re
message. For doing this all ‘SignalOutOfRange’ errors of each message signal (that comes from the
‘CANRX_SIGNAL_LITTLE_ENDIAN’ block as will be shown later) are inserted in an AND block that
gives as output the ‘SignalOutOfRange’ error of the message (in the example in figure 59 there is
only one input in the AND block because there is only one signal but in case of mul+ple signals the
AND block would adapt with the same number of input). In this way, if just one signal is out of range
(denoted by a 0), the signal ‘SigOutOfRange’ (output of AND block) will be zero (the NOT block raises
the error flag) and the two diagnos+c signals can be completed in the ‘MSG_STATUS’ subsystem
(figure 62).

Figure 62 - MSG_STATUS subsystem

In the figure above in the lower right corner it also can be seen the composi+on of the bit word
status where each bit means a specific diagnos+c error.
For what concern the extrac+on of single signals from the payload data, the block
‘CANRX_SIGNAL_LITTLE_ENDIAN’ (figure 59) has this purpose. Through the informa+on about the
signal, this block is able to extract the correct bits from the en+re payload and create the correct
signal. In case of a message with more than one signal, it will be present a block of this type for each
one.
Inside this block is also done the check of the ‘SignalOutOfRange’, in par+cular the signal is saturated
to the minimum and maximum value before going out from the subsystem. Then it is compared the
signal before and a>er the satura+on block and, if they are different, it means that the signal value
is out of range.
A>er this step, the user will have the opportunity through the ‘Fix_’ block (in the figure 59 is called
‘Fix_csPCM_TO_FLCU_001_EnableFLCU’ because it assumes the name of the message signal) to
enable a fixed value for that signal instead the real one.
As the figure 63 shown, each signal has two calibra+ons. The first calibra+on, cfSIGNALNAME_EN,
has the purpose to enable the fixed value represented by the second calibra+on,
cfSIGNALNAME_VALUE. Through a switch block is checking if the enable calibra+on is equal to one,
and in that case, the signal output will take the value of the value calibra+on. Otherwise, if it is zero
the signal remains the original one. This type of approach is used very o>en during the test phases

 58

because thanks to these calibra+ons the user can test some values inside the opera+ng range of the
signal.

Figure 63 - Fix subsystem

6.3.4 “CANTX_MESSAGE” block library

From the dual side, this block has the purpose to send CAN messages in the network. The window
that appears is the same as in the ‘CANRX_MESSAGE’ block (figure 56) but the messages proposed
to the user are the transmiled messages instead received messages. The aspect of the created
subsystem for each message is similar to the receive ones, in fact it has as inputs all message signals
that are going to be send (figure 64, in this example the message FLCU_TO_PCM_001 is composed
by two signals that are ‘FuelLevel’ and ‘FuelLevelLow’).

Figure 64 - CAN TX subsystem

Also in this case, the subsystem is composed by other subsystems that have different role. The
‘CANTX_SIGNAL_LITTLE_ENDIAN’ (figure 65) blocks have the purpose to compose the payload of the
message. Based to the signal informa+on such as start bit, number of bits, factor etc., each signal
data is routed to a bitwise OR to create the en+re payload data.

 59

Figure 65 - CAN TX subsystem composiMon

Inside the ‘CANTX_SIGNAL_LITTLE_ENDIAN’ block (figure 66) is present the ‘Fix_’ subsystem, since
also in this case is possible to send specific values using the calibra+ons (they are called with the
same syntax in received messages). The block is inserted before the crea+on of the signal data in
order to put the right values in the payload, original signal or fixed signal.

Figure 66 - CANTX_SIGNAL_LITTLE_ENDIAN

The Bitwise OR block in the figure 65, that is adapted based to the number of signals, sends to the
‘CAN_TX_MESSAGE’ block the payload data. This subsystem (figure 67) is in charge of sending the
CAN frame to the associated frameID (MboxId) and, as shown in the figure below, it is done
automa+cally using the message informa+on. The tool uses the ‘API_CAN_setTxPduInfo’
block crea+ng, through a bus creator, the CAN frame composed by the DLC and the payload.

 60

It also makes available to the user a calibra+on, called ‘csMessageName_En’ that enable or disable
the state of message transmission. The calibra+on is converted in ‘uint8’ according to the func+on
parameter.

Figure 67 - CAN_TX_MESSAGE subsystem

 61

6.3.5 “GenCode” block

When the model development is finished, MATLAB takes care of genera+ng the related code. To
properly handle signals between different modules, certain opera+ons need to be carried out. This
block has the scope to do these ac+ons, in addi+on to the code genera+on, that are necessary for
the correct workflow of the project and that were done by the user, having the possibility to make
mistakes or forgeUulness.

For what concern Lookup tables, they are used crea+ng a ‘Map’ object in the data dic+onary of the
model and specifying its table and breakpoint vectors. This block has been created to have a clearer
representa+on of the LUTs in the code generated, in fact it updates all the struct type defini+on
names before the code genera+on in such a way each Lookup table will have the struct type name
equal to the LUT object name plus ‘_str’ at the end (to indicate that it is a struct). Furthermore, it
assigns the name of each LUT object to the related LUT block in the model.

As can be seen from the figures above, the LUT called ‘zvRailPConv’ is declared as a Map in a pragma
sec+on (figure 69), so due to the fact that is stored in the CAL RAM, it is calibratable in the test
phases. Furthermore, its data type has been set with the same name of the LUT (figure 68). In this
way the code generated is clearer and more understandable.

As men+oned before, this block takes care about the management of signals. Since complex systems
are divided in several models, signals are o>en shared between them. In par+cular a signal produced
by a certain model can be used from another model (for this reason is used a main root data
dic+onary that includes all data dic+onaries). The tool created does opera+ons through a script
before and a>er the code genera+on following the flow below.
Before to proceed with the code genera+on the script does the following tasks:

- Check if Input signals are present in the data dic+onary of the project and set
‘ImportFromFile’ as Storage Class. If the header file from where to import the signal is not
present it gives error because is not possible use the signal.

- Set the parameters Min, Max, Data type and Unit of the inport blocks equal to the signal
associated. It is necessary for the report created at the end of the model.

- Check if Output signals are present in the data dic+onary and set the storage class as
‘ExportedGlobal’ in such a way they are declared as ‘extern’ in the code generated.

- Set the parameters Min, Max, Data type and Unit of the outport blocks equal to the signal
associated.

Then the code genera+on started:
- Update and generate code of the model.

Figure 68 - Typedef struct definiMon

Figure 68 – LUT object definiMon

 62

- Save the most important generated files in a directory created ad hoc for the current model
(‘.c’, ‘.h’, ‘_private.h’, ‘_types.h’, ‘.a2l’).

- Save shared files in a directory common to all project models.

A>er the code genera+on phase the script:

- Sets for each Output signal ‘ImportFromFile’ as storage class and assign the name of the
current model (adding ‘.h’ at the end) as header file in such a way the next model that uses
that signal will have already set up the correct header file.

- Saves all changes of the data dic+onary father.

The script that does all these ac+ons is inserted inside a block library in a dedicated bulon called
‘Generate code’ (figure 70). The following block is meant to be used at the end of the design of each
model.

Figure 70 - "GenCode" block library

When the user has finished the model design it should wrap the model in a subsystem obtaining a
new block with inputs and outputs. The first bulon in the block called ‘Build wrapper’ has the scope
to join all inputs in a single block, link the inports to the related signal and lock/unlock the OS to
avoid conflic+ng with other OS task during the acquisi+on of that signals.

Figure 71 - Build wrapper result

As is shown in the figure 71, all the input ports enter in the green block and with ‘Goto’ and ‘From’
blocks the signals are sent in the subsystem of the model. Inside the ‘IN PORTS’ green block it can
be seen (figure 72) from the blue trident shaped symbol that the inport is connected to the signal
object denominated in the same way. Furthermore, are present the C Caller blocks
‘API_OS_LockOS’ and ‘API_OS_UnlockOS’ to do the ac+ons men+oned before. To ensure the
correct order of execu+on, that is Lock the OS, assign the signal object to the inport and then Unlock
the OS, block priori+es were changed through their proper+es. The ‘API_OS_LockOS’ has 1 as
priority, the square block interposed between inports and outports (it has no func+on, only to pass

 63

the signal from one side to the other) has priority 2 and finally the ‘API_OS_UnlockOS’ has
priority 3.

Figure 72 - IN PORTS block

The result of the priority orders in the generated code is the following:

Figure 73 - Signals assignment avoiding conflicts

The last bulon ‘Generate report’ has the scope to generate a specific report for the current model
to describe it. This bulon was already present and was created by previous colleagues.

 64

6.4 Blocks valida4on

A>er having created the new library, all blocks must be validated to be ensure that they work as
expected.
To validate I/O blocks is necessary to interface with the pins on the board and know the mapping
with the related channel IDs.
The Break-Out Box (BOB) (figure 74) is used in these situa+ons for having available all physical pins
of the board and doing test. It replicates all pins and each of them has a specific ID number (e.g.
B50).
The test equipment changes according to the project and to the development phase of the product.
For the rapid prototyping it is possible to connect some electronic components such as resistors or
LEDs and measure voltages through tester or oscilloscope for tes+ng the model func+onali+es
directly in the hardware.
Dedicated HIL benches with real or emulated loads can be used in more advanced phases of the
project.

The mapping between pin numbers and MATLAB channel ID is made at a lower layer and a file that
describe it is necessary for connec+ng electronic devices to the correct pin number. For example,
the pin B53 is mapped to the channel ID ‘DOUT_LS_CH_ID_000’ so in the model phase if the user
set a Digital Output LS to a certain value, he should check the result through that pin of the Break-
Out Box.

Figure 74 – HDS9 Break Out Box

With the BOB is possible to test and validate blocks that use Input and Output channels such as the
example in the figure 20 which is present a Digital Output set to one. Connec+ng a LED, in this case
it occurs that effec+vely when the channel is set to one, it turns on.

 65

Figure 75 - LED on

Regarding communica+on blocks, they have been validated through a real use case for a test
implementa+on of the third CAN channel as possible intravehicular channel communica+on. To do
this, it has been created a DBC file containing the largest possible number of messages and every
possible task frequency. The goal is to check if all these messages are sent and transmiled correctly
using CAN 3.

Figure 76 - DBC file

As shown in the figure 76, each message has from one to eight byte as DLC and, for simplicity, one
signal for each byte. The ID starts from 0x300 (since all messages are standard and not extended)
and increases by one for each message, the cycle +me to send or receive the message is 10, 50, 100

 66

or 1000 ms. The network has two nodes where ‘EAXLE’ is the transmiler (the ECU) and ‘TESTER’ is
the receiver (the PC). All message names are fic++ous and start with C3 (stands for CAN 3), then are
followed by RX or TX to indicate their role in the network and at the bolom there is an incremental
string that start from ‘AAA’.

A>er this first step, the DBC file has been imported in MATLAB through the “Import DBC” block
library and the result is visible in the figure 77. In this case is shown the ‘C3RXAAA’ message and its
proper+es. By default, the +meout is set as three +mes the period.
The tool assigns a different MboxId for each message and checks if the address is unique. In case it
is not unique the flag ‘UniqueID’ would be disable.

Figure 77 - DBC imported in MATLAB

For what concern the design of this valida+on applica+on, there has been created one model for
each period and for each role. This is done because each model will run in different OS task based
on its frequency. Each model also has a data dic+onary where all signals are saved.

Models for received messages have the only scope to receive messages of a certain period and
visualize, through CANape, their signals. From the dual side, models for transmiled messages have
to send some fic++ous signals.
Using the ‘CANRX_MESSAGE’ and ‘CANTX_MESSAGE’ blocks library, all subsystems of messages are
created automa+cally in the model in a few seconds. In this use case, it can be appreciated the +me
saving that these blocks have provided since before, the crea+on and integra+on of the DBC file in
MATLAB could take three weeks.

 67

Figure 78 - CAN3_RX_1000ms

The figure 78 shows the model created for received messages with period 1000ms. All the outports
connected to the green block are created automa+cally using the ‘Build wrapper’ bulon of the block
library and, consequently, all signals are connected to each related outport.

Figure 79 - CAN3_TX_1000ms

On the other hand, the Figure 79 shows the model for transmiled messages with period 1000ms.
To send signals, some calibra+ons have been created and saved in the data dic+onary appropriate.
In this way, in the next valida+on step with CANape, is possible to modify the transmiled signals
and verify that the communica+on channel works properly.
A>er having done all models for all types of messages, it is possible to automa+cally generate the
code and, through the ‘Import DBC’ block, generate all the callbacks related to the DBC messages.
The final step is to flash the so>ware in the ECU following the flow explained in the chapter 5.2 and
though CANape visualize all signals messages.
For the thesis, the ‘TESTER’ node in the network is done by the PC using a Peak dongle (PCAN-USB,
visible in the figure 80) connected to the CAN 3. Through a tool called ‘PCAN-view’, a network sniffer,
is possible to visualize network messages as well as send them. A>er having opened the tool is
necessary to set the type of messages that are Standard or Extended. In this case it is set to Standard
since all messages created in the DBC file have the ID of that type.

 68

Figure 80 - Peak dongle

To validate the func+onality of the program developed for this test, it has been tested both received
and transmiled messages. The figure 81 shows a simple check to ensure the func+onality of CAN 3.
On the le> side of the screen is present the PCAN-View tool that as said before plays the ‘TESTER’
role. Consequently, the received messages in PCAN-View are those transmiled by EAXLE, vice versa
the transmiled messages in PCAN-View are received by EAXLE.
On the right side of the screen is shown Vector CANape tool that represents EAXLE messages.

For what concern transmiled messages (EAXLE -> TESTER), it can be seen from PCAN-View that are
received all messages from ID 0x600 to 0x631. In addi+on to that it has been done another type of
test, changing the value of the signal ‘SGN1_cal100ms_CAN3’ from 0x01 to 0x08 (since it is a
calibra+on it is modifiable from CANape), is received the updated message value in fact, the blue
circle shows that. This signal is used from all messages that have cycle +me 100ms and it represents
the first byte of the payload.
In addi+on to the message with ID 0x616, it is correctly updated in messages with ID 0x601, 0x606,
0x611, 0x621, 0x626, 0x631.

On the other hand (TESTER -> EAXLE), for tes+ng received messages it has been created a new
message to transmit from the TESTER. To correctly create the message all setups must be done
according to the DBC file, so in this case since is sent the message with ID 0x300, the DLC is set to 1
and the cycle +me is set to 100ms. The payload data sent is 0x05 and from CANape is visible the
correct payload circled in red. In this case the message received is the ‘csC3RXAAA_Sgn1’ and its
status is CAN_RX_OK since the recep+on has no problem.

 69

Figure 81 - CAN 3 funcMonality

 70

7. Demo Applica4on - Rail pressure regulator and Fuel tank
management

To have a complete valida+on of the created library, a demo applica+on has been developed. The
scope is to follow the en+re workflow from requirements to SW integra+on in order to emulate (in
a simplified way) the crea+on of a real work project: a Fuel Line Control Unit.

The Fuel Line Control Unit (FLCU) is an important component of the fuel delivery system in internal
combus+on engines. Its primary func+on is to regulate and monitor the fuel flow, ensuring op+mal
performance and efficiency.

7.1 System requirements

The FLCU system must meet specific requirements to ensure proper fuel management. They
describe the purpose of each component of the system and how they are interconnected with the
other components.
The following subchapters represent the key requirements for the FLCU.

7.1.1 Fuel Rail Pressure Control

The Fuel Rail Pressure control is one of the most important requirements for the development of
the FLCU as it directly impacts engine performance and fuel efficiency. By regula+ng the pressure of
the Fuel Rail in a correct manner, many advantages can be achieved such as op+mized combus+on,
precise fuel delivery and reduced emissions.
To do this, a propor+onal-integral-deriva+ve (PID) controller can be employed in order to
con+nuously monitors the actual fuel rail pressure, obtained from pressure sensors of the system,
and compares it to the target pressure provided by the Powertrain Control Module (PCM).
The PCM is an external module that is in charge of managing the desired engine torque and
communicates with the FLCU via CAN.
Based on the comparison between the actual and the desired rail pressure, the PID controller
calculates the appropriate adjustment signal to control the Pressure Regulator Valve (PRV).
The control mechanism of the PRV is based on the Pulse Width Modula+on (PWM) technique.
Modifying the duty cycle of a fixed-frequency square wave signal, the PWM signal controls the
actuator connected to the PRV. In par+cular, if the duty cycle increases, the PRV opens more allowing
more fuel to enter in the fuel rail and increasing its pressure. On the other hand, decreasing the duty
cycle restricts the fuel flow, reducing the pressure in the fuel rail.
The PID controller permits to the FLCU to correctly regulate the fuel rail pressure remaining within
the desired range specified by the PCM.

7.1.2 Fuel Level Monitoring

The fuel level monitoring requirement in the FLCU is necessary for maintaining a correct fuel supply
and preven+ng fuel deple+on.
For this reason, the FLCU interfaces with fuel pressure sensors installed in the fuel tanks also called
On Tank Valve (OTV). These sensors provide con+nuous measurements of the fuel tank pressure,

 71

allowing the FLCU to detect a low fuel level condi+on when the pressure in both tanks falls below a
tuneable threshold. A>er detec+ng a low fuel level condi+on, the FLCU should ac+vate a visual
warning to alert the driver (fuel reserve LED). Addi+onally, it should transmit this informa+on to the
PCM, which can further op+mize engine opera+on based on the actual fuel level.

7.1.3 Tank Valve Management

Tank valve management is required for maintaining balanced fuel flow and pressure between the
fuel tanks. The FLCU employs a dedicated control system for managing the opening and closing of
the tank valves. This control system con+nuously monitors the pressure difference between the
tanks using an addi+onal pressure sensor at the tank manifold (a>er both the OTVs).
For implemen+ng the tank valve management are used solenoid valves as actuators that are
controlled by the FLCU to maintain the pressure difference between the tanks below a configurable
threshold.
By implemen+ng precise tank valve management, the FLCU ensures op+mal fuel distribu+on, trying
to keep consistent fuel pressure throughout the system. This in turn, promotes efficient engine
opera+on and minimizes the risk of fuel starva+on.

7.1.4 Communica4on with PCM

Establishing effec+ve communica+on between the FLCU and the PCM is necessary for coordinated
opera+ons and it is done via CAN.

The communica+on enables seamless exchange of informa+on from the PCM to the FLCU related
to:

- The target fuel rail pressure to ensure the desired engine torque
- The system enabling condi+ons (binary condi+on to ac+vate the FLCU control)

Vice versa the FLCU provides to the PCM informa+on about:
- The diagnos+c status of the sensors
- The diagnos+c status of the actuators (valves and LED)
- The actual rail pressure
- The fuel level informa+on

The CAN database that describes the communica+on is the following.
Received messages:

- PCM_TO_FLCU_001 (ID: 0x110)
EnableFLCU (Signal): Indicates the system enable/disable signal

- PCM_TO_FLCU_002 (ID: 0x220)
TargetRailPressure (Signal): Represents the desired fuel rail pressure

Transmiled messages:
- FLCU_TO_PCM_001 (ID: 0x167)

FuelLevelLow (Signal): Indicates a low fuel level condi+on
FuelLevel (Signal): Indicates the actual fuel level

- FLCU_TO_PCM_002 (ID: 0x123)

 72

RailPressure (Signal): Indicates the actual rail pressure
- FLCU_TO_PCM_003 (ID: 0x145)

Tank1PSDiagStatus (Signal): Diagnos+c status of Tank1 Pressure Sensor
Tank2PSDiagStatus (Signal): Diagnos+c status of Tank2 Pressure Sensor
ManifoldPSDiagStatus (Signal): Diagnos+c status of Manifold Pressure Sensor
RailPSDiagnos+cStatus (Signal): Diagnos+c status of Rail Pressure Sensor
OTV1DiagStatus (Signal): Diagnos+c status of OTV1
OTV2DiagStatus (Signal): Diagnos+c status of OTV2
PRVDiagStatus (Signal): Diagnos+c status of PRV
LedDiagStatus (Signal): Diagnos+c status of LED

7.1.5 Sensor/Actuator Management

Effec+ve management of the pressure sensors within the Fuel Line Control Unit (FLCU) is essen+al
for accurate monitoring and control of the fuel system. The sensor management requirement
includes the following aspects:

- Data Acquisi+on: The FLCU must acquire pressure readings from mul+ple sensors, including
those located before each OTV, before and a>er the PRV (tank manifold pressure sensor and
rail pressure sensor). The FLCU should establish reliable and efficient data acquisi+on
mechanisms to capture sensor data accurately and in a +mely manner.

- Error Handling: The FLCU should implement robust error handling mechanisms to detect and
handle sensor failures or abnormal readings. This includes monitoring sensor output for
inconsistencies, iden+fying sensor malfunc+ons, and genera+ng appropriate error codes.
The FLCU should also have the capability to switch to backup sensors if primary sensors fail,
ensuring con+nuous monitoring and control of the fuel system.

- Diagnos+c Capabili+es: The FLCU should provide diagnos+c func+onality to iden+fy poten+al
sensor faults or actuator anomalies. This result in running diagnos+c algorithms to analyze
sensor data and detect discrepancies, genera+ng diagnos+c signals in case of problems.

With a correct managing of the pressure sensors, the system ensures accurate and reliable
measurement of fuel pressures at different points in the fuel delivery system and addi+onally has an
efficient fault diagnosis procedure. In this way the reliability of the en+re system is enhanced.

 73

7.2 System Architectural Design

For a beler understanding of the system, it is necessary to have a system layout that represent each
component of the system and how is connected with the other elements.
As it can be seen from the figure 82, the FLCU exchange data with other components of the system
that are described in detail a>erwards. The figure shows that it receives data from sensors
(represented by yellow rectangles) and exchange messages via CAN with the PCM module. Green
lines represent actuator controls while blue lines represent the fuel flow.

Figure 82 - System Layout

The following list outlines the main components interfaced with the FLCU:

1. Pressure Sensors: The FLCU interfaces with pressure sensors installed in the fuel tanks to
monitor the tank pressure and with pressure sensor installed before and a>er the PRV. These
sensors provide accurate measurements of the fuel pressure, enabling the FLCU to detect
low fuel level condi+ons.

2. PRV Actuator: The FLCU interfaces with the actuator responsible for controlling the pressure
regulator valve (PRV). The FLCU adjusts the actuator based on the output from the PID
controller to regulate the fuel rail pressure.

3. Tank Valves: The FLCU interfaces with the valves connected to the fuel tanks. These valves
are responsible for controlling the fuel flow between the tanks and the main fuel line. The
FLCU manages the opening and closing of these valves to maintain the pressure difference
within the desired range.

4. PCM Interface: The FLCU establishes a communica+on interface with the Powertrain Control
Module (PCM). It receives the target fuel rail pressure from the PCM for maintaining the
desired pressure level and an enabling signal for the en+re system.

5. LED: The FLCU interfaces also with a LED that turn on in case of low fuel level.

 74

7.2.1 BOM descrip4on

The Bill Of Material (BOM) represent the list of material necessary to develop the system in study
and some other informa+on about them.

Name Descrip0on Type Range
Tank1 pressure sensor Point 1 of chapter 7.2 Analog 0-5 V
Tank2 pressure sensor Point 1 of chapter 7.2 Analog 0-5 V
Manifold pressure sensor Point 1 of chapter 7.2 Analog 0-5 V
Rail pressure sensor Point 1 of chapter 7.2 Analog 0-5 V
Fuel Tank1 Valve Control Point 3 of chapter 7.2 Digital 0-5 V
Fuel Tank2 Valve Control Point 3 of chapter 7.2 Digital 0-5 V
Pressure Regulator Valve
Control

Point 2 of chapter 7.2 PWM 0-5 V

LED Point 5 of chapter 7.2 Digital 0-5 V
Fuel Line Control Unit ECU of the system Analog 8-32 V
Powertrain Control
Module

Extern ECU interfaces
with the FLCU

Analog 8-32 V

7.3 SoOware Architectural Design

To have a clearer idea of how organize the model development is necessary a scheme of the so>ware
architecture that represent all system modules. Each block will be modeled in MATLAB and will
sa+sfy a precise so>ware requirements.

Figure 83 - So?ware architecture

Input Control Output

Simula/on

CAN RX
Tank Ctrl

PRV Ctrl

Rail Subsystem

CAN TX

Pressure
sensors

U"ls

Actuator
commands

Fuel Line Control Unit

Fuel Level

 75

So<ware requirements:

ID Name Descrip0on Notes System req.
chapter
reference

SW_REQ_ID_001 CANRX Read the message
according to the
frame ID every 100
ms

 7.1.4

SW_REQ_ID_001.1 CANRX_ENABLE_SYS Read the message
containing the
enable status of the
system in the frame
ID 0x110

Frame ID
according
to DBC file

7.1.4

SW_REQ_ID_001.2 CANRX_PRAIL_TARGET Read the message
containing the target
rail pressure in the
frame ID 0x220

Frame ID
according
to DBC file

7.1.4

SW_REQ_ID_001.3 CANRX_FIX_VALUES Receive the fix
values of the enable
signal and target rail
pressure signal
instead the original
ones

Frame ID
according
to DBC file

7.1.4

SW_REQ_ID_001.4 CANRX_SAT_PRESS Receive the
saturated value of
the pressure in case
of signal out of range
and warns the user
se^ng the correct
message diag. status

 7.1.4

SW_REQ_ID_002 TANK_CTRL Manage the fuel
tank valves every 50
ms

 7.1.3

SW_REQ_ID_002.1 TANK_CTRL_DSBL_SYS Close all fuel tank
valves in case of
enable status as 0

 7.1.3

SW_REQ_ID_002.2 TANK_CTRL_DIFF_PRESS Keep the difference
pressure between
the two tanks below
a delta calibra,on
set to 20 bar ini,ally

 7.1.3

SW_REQ_ID_002.3 TANK_CTRL_EMPTY_TANK Close both valves in
case of low fuel level

 7.1.3

SW_REQ_ID_003 PRV_CTRL Manage the PRV
based on target
pressure rail and
current pressure rail
every 50 ms

 7.1.1

SW_REQ_ID_003.1 PRV_CTRL_SET_DC Set the Duty Cycle of
the square wave to

 7.1.1

 76

reach the desired rail
pressure

SW_REQ_ID_004 CANTX Send message
according to the
frame ID every 100
ms

 7.1.4

SW_REQ_ID_004.1 CANTX_ACTUAL_PRAIL Send a message to
frame 0x123
containing a signal
with the actual
pressure rail

Frame ID
according
to DBC file

7.1.4

SW_REQ_ID_004.2 CANTX_FUEL_LEVEL Send a message to
frame 0x167
containing a signal
with the actual fuel
level and another
signal containing a
boolean value that
indicates if the fuel
level is low.

Frame ID
according
to DBC file

7.1.4

SW_REQ_ID_004.3 CANTX_DIAGNOSTIC Send a message to
frame 0x145
containing sensors
and actuators
diagnos,c

Frame ID
according
to DBC file

7.1.4

SW_REQ_ID_005 PRESS_SENS Read the pressure
values from the
sensors every 4ms

Analog PIN
according
to the BOB

7.1.5

SW_REQ_ID_005.1 PRESS_SENS_TANK1 Read and convert
using a LUT the
Tank1 pressure

 7.1.5

SW_REQ_ID_005.2 PRESS_SENS_TANK2 Read and convert
using a LUT the
Tank2 pressure

 7.1.5

SW_REQ_ID_005.3 PRESS_SENS_TANK_MANI
FOLD

Read and convert
using a LUT the
manifold pressure

 7.1.5

SW_REQ_ID_005.4 PRESS_SENS _RAIL Read and convert
using a LUT the rail
pressure

 7.1.5

SW_REQ_ID_005.5 PRESS_SENS_RAIL_SAT Read and convert
the saturate level of
rail pressure

 7.1.5

SW_REQ_ID_006 FUEL_LEVEL Manage the fuel
level

 7.1.2

SW_REQ_ID_006.1 FUEL_LEVEL_COMPUTATI
ON

Calculate the fuel
level based on tank1
and tank2 pressure

 7.1.2

SW_REQ_ID_006.2 FUEL_LEVEL_LOW Check if the fuel
level falls below the
threshold

 7.1.2

 77

SW_REQ_ID_007 ACTUATOR_COMMANDS Give commands to
the valves based on
the computa,ons of
control blocks

SW_REQ_ID_007.1 ACTUATOR_COMMANDS_
TANK1_VALVE

Open/Close tank1
valve according to
diagnos,c status
(close in case of
diagnos,c error)

 7.1.3

SW_REQ_ID_007.2 ACTUATOR_COMMANDS_
TANK2_VALVE

Open/Close tank2
valve according to
diagnos,c status
(close in case of
diagnos,c error)

 7.1.3

SW_REQ_ID_007.3 ACTUATOR_COMMANDS_
PRV

Give the command
to PRV based on
computa,on of
control block
according to
diagnos,c status
(DC=0 in case of
diagnos,c error)

 7.1.1

SW_REQ_ID_008 UTILS Manage diagnos,c
of sensors and
actuators

 7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.1 UTILS_TANK1_PRESSURE_
SENSOR

Check if the tank1
pressure sensor
works properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.2 UTILS_TANK2_PRESSURE_
SENSOR

Check if the tank2
pressure sensor
works properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.3 UTILS_MANIFOLD_PRESS
URE_SENSOR

Check if the
manifold pressure
sensor works
properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.4 UTILS_RAIL_PRESSURE_SE
NSOR

Check if the rail
pressure sensor
works properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.5 UTILS_LED Check if the LED
works properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.6 UTILS_PRV Check if the PRV
works properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.7 UTILS_TANK1_VALVE Check if the Tank1
Valve works properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

SW_REQ_ID_008.8 UTILS_TANK2_VALVE Check if the Tank2
Valve works properly

Correct
Range:
0-5 V

7.1.5
Diagnos,c
capabili,es

 78

7.4 System development

The system in study has been developed using a MBD approach. Firstly, it has been created a new
MATLAB project where to put all folders and files related to the system. Next, using the created
blocks library, it has been updated blocks and enumera+ve data types (using the block library in
figure 48) and has been imported the DBC file containing all messages (as shown in the figure 54).
As men+oned before, every module in the so>ware architecture has a corresponding Simulink
model and in turn, a data dic+onary.

7.4.1 CAN RX module

Concerning Input modules, the CANRX model uses the created blocks library to receive messages
declared in the DBC files and makes available to the other models the signals received.
As it is shown in the figure below, the model is inside the subsystem and contains the descrip+on of
the so>ware requirement referred to (in this case the CANRX model is referred to the
SW_REQ_ID_001).

Figure 86 - CANRX module

7.4.2 Pressure Sensor module

The Pressure Sensor module (figure 85) uses the Analog Input blocks for reading voltages from pins
related to all pressure sensors. A>er having received the voltage values, they pass in a EMWA
(Exponen+ally-Weighted Moving Average) filter to smooth out short-term fluctua+ons and then they
are saturated in the range [0.5 – 4.5] V. Then through LUTs, voltage values are converted to the unit
of measurement of pressure (Bar) in order to be used from the other modules. Before output, all
pressure signals pass in a fix block (switch block) to permit to the user to change their values in the
tes+ng phase through calibra+ons.

 79

This module, as the name remember, has to run every 4ms so a>er genera+ng the code it will be
inserted in the right OS task.

Figure 85 – Pressure Sensor module

7.4.3 Fuel Level module

Control modules are the core of the system. They are divided in three modules each of which have
a specific control objec+ve. They must be run every 50ms to have an op+mal control of the fuel
delivery system.

The Fuel Level control logic is very simple. Taking in input the two tank pressures from the precedent
module, it checks if both are below a certain calibratable threshold (in this case is equal to 5 bar)
and in that case gives in output the signal (xsLEDEn) to turn on the reserve fuel LED. Furthermore, it
calculates the total fuel level (xsFuelLevel) summing the two tank pressures and repropor+on it in
percentage.

Figure 86 - Fuel Level control module

 80

7.4.4 Tank Control module

The Tank control logic (figure 87) is developed using Stateflow for represen+ng state machines. The
main two state are represented by ‘ON’ / ‘OFF’ and indicate the enabling state of the tanks. The
default entry point is in the ‘OFF’ state where is ini+alized the signal of the state valve (xsValveState)
to 0. The system remains in this state while it is in fuel reserve (both tank pressure below the reserve
threshold) for preserving and not damage the vehicle.
If the FLCU system is enabled (xsSystemAbilita+on==1) the system passes to the ‘ON’ state, where
one of the two tank valve is opened and the natural gas can flow. As explained in the requirements,
the tanks are opened in an alterna+ng manner to avoid big pressure changes, so when the pressure
difference between the tanks is above a calibratable threshold (xsSWITCH_TANK_THR) the control
logic change valve passing from TANK1_ON to TANK2_ON and vice versa. In those states, is set the
valve state signal to the proper value based on the tank to open.
The system returns to the ‘OFF’ state when it receives the signal to disable the FCLU system
(xsSystemAbilita+on=0) or if the fuel is on the verge of running out.

Figure 87 - Tank control module

7.4.5 PRV control module

The PRV control uses a PID controller to control the pressure flow of the natural gas. The controller
is of discrete type since it must run on a real hardware every 50ms.
This module receives the target rail pressure via CAN and the actual rail pressure from sensors. It
calculates the error value subtrac+ng measured pressure from the desired pressure. The error will
be used from the three parts of the PID controller to calculate its proper contribute.

 81

The propor+onal part (figure 88) follows the formula 𝑃 = 𝐾! ∗ 	𝜀[𝑛] where 𝐾! is the propor+onal
gain while 𝜀[𝑛] represent the tracking error in that moment. Its contribute is directly propor+onal
to the error and in Simulink is modeled as in the figure 86.

Figure 88 - ProporMonal part of PID controller

Obviously, the parameter 𝐾! is a calibra+on to permit to be modifiable during various test.

The integral part (figure 89) is propor+onal to the sum over +me of the error and follows the formula
𝐼 = +𝐾" ∗

#[%]
'!
, + 𝐼[𝑛 − 1] where 𝐾" is the integral gain calibratable, 𝑇(is the sampling +me (in this

case is equal to 0.05 since the controller has to run every 50ms) and 𝐼[𝑛 − 1] is the integral
contribu+on in the previous instant. The delay block (characterized by 𝑧)* block) has the scope to
produce in output the signal of the previous instant and besides the input signal has two other
inputs, the ini+al condi+on (represented by 𝑥+) and the external reset (represented by the up arrow)
that impose the ini+al condi+on when is triggered.

Figure 89 - Integral part of the PID controller

The deriva+ve part (figure 90) is propor+onal to the speed of the error signal changing (deriva+ve

over +me) and is characterized by the following formula:
("#"$[%]-

"#
"$
[%)*])	

0
∗ 𝐾1 where 𝑑𝜀 = 	𝜀[𝑛] −

𝜀[𝑛 − 1].
In this case it has been used the average of the last two sample for a beler integra+on.

Figure 90 - DerivaMve part of the PID controller

 82

The overall implanta+on of the PID controller (figure 91) for the PRV management, also takes into
account the system enable signal (xsSystemAbilita+on) to set the DC to 0 in case the system must be
disable. Furthermore, when the system is disabled, all delay blocks are triggered to be reset.
From the figure, it can be seen that the model a>er summing all three contributes of the PID, gives
in output the duty cycle (saturated with minimum and maximum value calibratable) of the PWM
signal that control the valve actuator.
A duty cycle saturated to 100% means that the valve is completely opened and, vice versa, when the
system is disabled the duty cycle is 0 in order to close the valve and deny the passage of natural gas.

Figure 91 - PRV control module

The MIL phase of this module has been developed in Simulink using a Test Harness. It is another
Simulink model that isolates the module under test and, through various s+muli, verifies the output.
To do this, a closed loop control system is created emula+ng the plant, so at each step +me the
actual Rail Pressure and the target Rail Pressure to give as input to the PID controller are known.
The Powertrain Control Module is in charge of managing the desired engine torque, in par+cular it
manages injec+on +mes and gives the command to open injectors. In this way is generated a fuel
quan+ty varia+on that is described by a signal 𝑄2%3 (45

46
) where ‘m’ is the mass of the fuel and for

this reason is necessary to keep a certain rail pressure ac+ng on the PRV. The signal 𝑄2%3 and the
duty cycle of the square wave used to control the PRV are combined in a LUT to compute the delta
of the actual Rail pressure to send in input to the PID controller. The fuel quan+ty varia+on (𝑄2%3) is
created using the signal builder of Simulink.

The test harness is represented in the figure 92 and as it can be seen the controller is represented
by the grey subsystem which is connected to the real model of the PRV control. As men+oned before
the duty cycle and the 𝑄2%3 are combined to produce the delta pressure that is summed to the
previous pressure to give the new actual pressure. Then this pressure is saturated between [0:50]
bar (the range of the rail pressure) and filtered in the EMWA filter to produce a clearer pressure to
send as input to the controller. Both the 𝑄2%3 and the Target Rail Pressure signals are created using
the signal editor and as shown there have been tested sta+c and dynamic case of these two signals.

 83

Figure 92 - Test Harness PID

The figure 93 shows the pressure changes of the LUT. In the X axis is present the gas flow rate [kg/h]
while in the Y axis the DC range [%]. If for example the flow rate is empty and the valve is completely
opened, the rail pressure will have a posi+ve pressure varia+on of 5 bar in the unitary step.

Figure 93 - LUT of delta pressure

To find the right values of the PID parameters (Kp, Ki, Kd) various test has been made. Each parameter
affects the contribu+on of the propor+onal, integral and deriva+ve part. To start the calibra+on of
parameters both pressure target and flow rate are set to sta+c, in par+cular the Rail Pressure Target
to reach is 25 bar and the flow rate is 20 kg/h.
To beler understand the behavior of the controller, are logged many parameters such as all the P-I-
D contributes, the duty cycle acted to the valve, the flow rate and, the most important, the
comparison between target and real rail pressure.

 84

Figure 94 - SimulaMon data inspector, 1

From the simula+on data inspector (figure 94) is highlighted in blue the comparison between
measured and desired rail pressure and it can be seen that in about 1 second, star+ng from 0 bar,
the Rail pressure reach the pressure goal of 25 bar with a slight overshoot.
Star+ng from the PID parameters obtained from this first simula+on, the next step is to create a
simula+on more similar to reality, so target pressure and flow rate varying over +me.

Figure 95 - SimulaMon data inspector, 2

The results (figure 95) show how the PID controller works to follow the desired rail pressure at each
step +me ac+ng on the duty cycle (xsDC) to keep the error as minimum as possible.

 85

In the future months will be conducted various test (HIL) in the fluid dynamics laboratory to verify
the correct func+onality of the PID controller implemented in an Electronic Pressure Regulator (EPR).

7.4.6 CAN TX module

The module is responsible to send messages to PCM module via CAN. It uses the block library to
automa+cally create subsystems related to each message and the final result is visible in the figure
96.

Figure 96 - CANTX module

The messages created are those present in the DBC file imported, ‘FLCU_TO_PCM_001’ contains the
fuel level and the LED enable signal. ‘FLCU_TO_PCM_002’ contains the rail pressure and the
‘FLCU_TO_PCM_003’ all the diagnos+c status of all sensors/actuators.

7.4.7 Actuator commands module

This module (figure 97) is in charge of managing the actuators present in the FLCU. To do this, are
used API blocks library automa+cally created that concern with I/O. In par+cular, OTVs and LED are
managed with digital output block library, so it is only necessary to pass to the C Caller block the
DOUT pin channel related to the actuator and the binary enable state (converted to ‘uint8’ to be
aligned with the API func+on) as input.
The PRV is managed via PWM, so it is used the PWMOUT library block with the duty cycle produced
by the PRV control module. The PWM channel and the period of the square wave are also passed as
input to correctly call the API func+on.

 86

Figure 97 - Actuator commands module

7.4.8 U4ls module

This last module manages (figure 98) all diagnos+c signals of sensors and actuators and produce in
output the system enable system based on the overall system status. If one of all sensors or actuators
has some problem, the system will be disable.

Figure 98 - UMls module

The module combines in an AND block the CAN message received for the FLCU system enabling, the
actuator diagnos+c signal (representa+ve of all actuators) and the sensor diagnos+c signal
(representa+ve of all signals) with the scope of arrest immediately the FLCU system in case of failure.

The actuators diagnos+c (figure 99) is made by API ‘ErrorInfo’ blocks that gives informa+on about
the status of a specific I/O channel.

 87

Figure 99 - Actuator diagnosMc

All these blocks give as output ‘0’ if the actuator works properly and a value higher than 0 if there is
some error. The correct state is reached when the sum of all these values is 0, so in this case the
actuators diagnos+c signal (xsActuatorDiag) is set to 1 (to be aligned with the FLCU system enable
CAN message).

The sensors diagnos+c (figure 100) check if all raw value measured in [V] are in the correct range
[0.5-4.5] V and if the tank manifold pressure sensor is equal to the tank pressure opened at that
moment.

Figure 100 - Sensor diagnosMc

If one of the two checks fails, the AND block gives ‘0’ as result and the model disable all the FCLU
system.

 88

7.5 SoOware integra4on

A>er finishing the model design and the MIL phase, is +me to integrate the automa+c code
generated in the real target hardware. When each single module has been developed and tested,
the code is generated inside the model through the appropriate block library and the final result is
a folder containing all source codes. As explained in the chapter 5.2, each module func+on bust be
called in the right API_OS_task to be executed at the correct frequency and, when the API file is
ready, all step explained in that chapter can be done. A>er flashing in the ECU the ‘s19’ and ‘a2l’ file
is possible to start the HIL phase.

The Tank Control is taken as example of this phase and in the figure 101 is shown the ini+al test
configura+on. The biggest graph represents the value of pressures over +me and the two tank
pressure are ini+ally full at 700 bar. With the parameter windows is possible to view and modify all
fixed values that represent calibra+ons. The bolom right graph represent the status of the valve and
they are also replicated above in a numeric window.

Figure 101 - IniMal condiMon test in CANape

To verify the proper func+oning of the system, the two tank pressures are modified manually to
obtain the switch tank (close a valve and open the other) from the controller.
As is shown in the figure 102, when the ac+ve tank (Tank n.2) reaches the switch tank threshold
(difference pressure higher than 20 bar) at 679 bar, the controller closes the OTV2 and open the
OTV1. This ac+on is visible in the bolom right graph at about 6.5 sec when the two lines interchange.

 89

Figure 102 - Switch tank

Another feature that should be test in this module is the valve closure in case of empty tanks. In this
example (figure 103) the empty tank threshold is set to 5 [bar] and when both tanks reach 4 bar the
graph (and the numeric window) show that valve states are set to 0 [bar].

Figure 103 - Valve closure

 90

8. Conclusion

Have a general purpose HW plaUorm able to manage the main automo+ve sensors and actuators
and in parallel a dedicated library for the development phase, allows the customer to integrate in a
faster way every type of applica+on so>ware. Reduce the ini+al cost investment and the
development +me, implies a shorter +me to market of the product with a higher profit.

The overall work of this thesis can be considered sa+sfactory. The Demo Applica+on developed with
the HW plaUorm and the dedicated library, demonstrates the achievement of goals. Thanks to the
added features in MATLAB, it has been possible to model the system more easily and quickly.
As said in the chapters before, all ac+ons done by these library blocks were done by the user taking
a lot of +me and with the risk of making mistakes.

Avoid typing errors means reducing model design loops and so development +me. Reduce
development +me means saving money and a lower +me-to-market.

At the moment, the main benefits encountered in the modeling of the FLCU system brought by the
library, concern the integra+on with the I/O channels, which is possible to easily manage some
actuators, and the implementa+on of the DBC files in MATLAB thanks to which is possible to send
and receive CAN messages directly in the model.

In the future, possible addi+ons and enhancements will make the library increasingly complete and
func+onal for modeling a general applica+on in the automo+ve field.

Some possible addi+on to be implemented regard the management of:

- Diagnos+c (OBD2)
- Memory
- Injectors
- Igni+on coils
- Lambda sensors (HEGO and UEGO)
- Func+onal safety (ISO26262)
- Knock sensors
- H-bridges

 91

Acknowledgments

I would like to thank the people who helped me through this long university journey, first and
foremost my girlfriend and my family who always supported me in the most difficult +mes and
celebrated in the happiest moments to give me mo+va+on in achieving my goals.

A special thank goes to Emilio, without which this project would not have been possible, for all the
help and dedica+on he has given me in these months.

To all Metatron team who from the beginning treated me as a member of their reality and helped
me in +mes of need.

To professor Violante for his disposi+on and professionalism in carrying out his work.

Wri+ng these words marks the end of one journey and the beginning of another one much longer
and more challenging that will be undertaken with the same perseverance and mo+va+on.

 92

Bibliography

- hlps://www.metatron.it/it/prodoj/ch4-natural-gas-vehicle/ecus/hds
- hlps://autosartutorials.com/autosar-basic-so>ware-bsw/
- hlps://www.synopsys.com/glossary/what-is-model-based-design.html
- hlps://www.collimator.ai/post/model-based-development
- Introduc+on-to-model-based-so>ware-designed M.Violante
- hlps://www.collimator.ai/reference-guides/what-is-automa+c-code-genera+on/
- hlps://en.wikipedia.org/wiki/Electronic_control_unit
- hlps://www.nxp.com/products/processors-and-microcontrollers/power-

architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-
mpc5777c-mcu-for-automo+ve-and-industrial-engine-management:MPC5777C

- hlps://forum.digikey.com/t/overview-of-the-can-bus-protocol/21170
- hlps://support.squarell.com/index.php?/knowledgebase/ar+cle/view/94/0/can-high--can-

low
- hlps://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
- hlps://www.vector.com/int/en/know-how/protocols/xcp-measurement-and-calibra+on-

protocol?etcc_cmp=Calibra+on_EN&etcc_grp=XCP&etcc_med=SEA&etcc_par=Google&etcc
_bky=xcp%20protocol&etcc_mty=e&etcc_plc=&etcc_ctv=449102319289&etcc_bde=c&etcc
_var=CjwKCAjwjOunBhB4EiwA94JWsHS56WeodomCtCJXGrM7TJgswBTLOQgY__LhglC_LToN
mSv0XOPnGBoCGokQAvD_BwE&gclid=CjwKCAjwjOunBhB4EiwA94JWsHS56WeodomCtCJX
GrM7TJgswBTLOQgY__LhglC_LToNmSv0XOPnGBoCGokQAvD_BwE

- hlps://it.mathworks.com/help/ecoder/ug/generate-code-modules.html
- hlps://cdn.vector.com/cms/content/products/asap2/Docs/ASAP2Tool-Set_Manual_EN.pdf
- hlps://www.vector.com/int/en/products/products-a-z/so>ware/canape/canape-

applica+on-areas/#c314093

