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Summary

Precision agriculture has made significant progress in recent years by utilizing technology to
optimize crop production, enhance farming efficiency, and automate harvesting processes.
Autonomous navigation is a critical component for ground rovers in the agricultural
field. This thesis focuses on developing an advanced autonomous navigation system for
a rover operating within row-based crops. A position-agnostic system is proposed to
address the challenging situation when standard localization methods, like GPS, fail due
to unfavorable weather or obstructed line-of-sight. This breakthrough is especially vital
in densely vegetated regions, including areas covered by thick tree canopies or pergola
vineyards.

The primary objective of the control system is to navigate through entire rows, effectively
avoiding obstacles in its path. To ensure versatility across crop types with different row
spacing, the rover is designed to operate within the entire inter-row area for crops with
small row spacing or predefined lanes for crops with larger ones. The navigation system
utilizes a vision-based approach, relying on an RGB-D camera for real-time video streaming
analysis to detect and identify row spaces and obstacles. Then, a NMPC (Non-linear
Model Predictive Control) strategy is used to compute trajectory and control sequence.
The proposed navigation system is implemented in Python and runs into a ROS2 (Robot
Operating System 2) dedicated subsystem. Moreover, the strategy proposed can also be
employed in navigation with similar constraints, i.e., a long straight path between two
"walls", such as in passages, galleries, etc.

A distinctive feature of this system is its ability to recognize and approach objects of
interest, such as fruit boxes. Upon identifying a target, the system adjusts its navigation
to approach the target object and then resumes its row traversal until it reaches the end
of the row. However, the primary scope of this work is the navigation system, so basic
image segmentation techniques are employed as a demonstration to identify the targets
and validate the approaching and recovery maneuvers.

Extensive experimentation is conducted on simulated and real vineyards to demonstrate
the competitive advantages of the proposed solution. The controller has exhibited
robustness in handling heterogeneity in crop density, height, and other environmental
factors. Moreover, it successfully navigates through pergola vineyards and maintains
functionality on rough terrains. This research contributes to the ongoing efforts to advance
precision agriculture and autonomous navigation in row-based crop environments.
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Chapter 1

Introduction

In recent years, precision agriculture has made significant strides in harnessing technology
to optimize crop production, enhance the efficiency of farming operations, and reduce
agricultural waste [1]. Modern agricultural systems are now expected to not only gather
vital data from the environment but also to make informed decisions based on this
information and execute actions with precision and impeccable timing.

Particularly, row-based crops represent a pivotal focus in precision agriculture. They
constitute more than 75% of all planted acres of cropland across the United States [2].
Research in this domain encompasses various aspects, such as crop localization [3], path
planning [4], navigation, monitoring, harvesting [5], spraying, and vegetative assessment.

This project was born at the PIC4SeR (PoliTo Interdepartmental Centre for Service
Robotics)1 in a wider context that focuses on service robotics for the development of
highly innovative solutions in several fields such as precision agriculture, smart cities,
well-being, cultural heritage, and space applications. The development of a novel controller
for row-based crops aligns seamlessly with the center’s research endeavors in the field of
agriculture.

Objective of the project

This thesis is aimed to develop a robust navigation system for a rover operating within
row-based crops. A particularly challenging situation in this context arises when standard
localization methods, such as GPS, fail to achieve the desired precision, often due to
unfavorable weather conditions or line-of-sight obstructions. This situation is particularly
evident in densely vegetated areas, such as those covered by dense tree canopies.

To address these challenges and adapt to several environmental conditions, a position-
agnostic system is proposed. This approach not only avoids the issues related to integration
and localization systems but also excels in scenarios where traditional methods fall short.

1www.pic4ser.polito.it

1

www.pic4ser.polito.it


Introduction

The primary objective of the control system is to navigate through entire rows, effectively
avoiding obstacles in its path. Furthermore, to enhance the versatility of this solution
across several types of crops with varying row spacing, the rover is designed to operate
within inter-row spaces for crops with small row spacing or within predefined lanes, such
as the right half of the row space, for crops with larger row spacing, such as zucchinis.

In addition to these challenges, the controller must exhibit robustness in the face of
heterogeneity in crop density, variations in crop height, and other environmental factors. It
should seamlessly handle situations involving very high canopies or pergolas and maintain
its functionality on rough terrains.

A distinctive feature of this system is its ability to recognize and approach objects of
interest, such as fruit boxes. Upon identifying a target, the system adjusts its navigation
to approach the target object, then resumes its row traversal until it reaches the end of
the row. It is important to note that the scope of this work does not encompass the
comprehensive development of target recognition mechanisms. Instead, a basic color filter
is employed as a demonstration to identify the target and validate the approaching and
recovery maneuvers.

Organization of this work

In this chapter, we have introduced the context and goals of this thesis while summarizing
the adopted methodology. The subsequent chapters are organized as follows:

• Chapter 2 provides an extensive review of the state of the art in navigation systems
for agricultural contexts. This chapter discusses the advantages and challenges of
various solutions proposed in the field.

• Chapter 3 serves as a dedicated introduction to the realm of Computer Vision tools,
setting the stage for their pivotal role in this project.

• Chapter 4 focuses on mobile robots, particularly emphasizing kinematics models and
the Model Predictive Control (MPC) controller.

• Chapter 5 offers a detailed presentation of the proposed controller designed in this
thesis project to achieve the desired goals.

• Chapter 6 describes the robot platform employed in this work and outlines the
evaluation metrics for the project. It includes the presentation and analysis of tests
conducted in both simulated and real-world scenarios.

• Chapter 7 concludes the thesis, summarizing the findings and discussing potential
future developments in the field.

• The Appendices contains additional insights on several topics cited throughout the
thesis, providing supplementary information to enhance the reader’s understanding,
such as homogeneous coordinates, quaternions, etc.

2



Chapter 2

State of the art in navigation
system for agriculture

This thesis project focuses on developing a navigation system for precision agriculture. In
this context, the straightforward solution involves utilizing Global Navigation Satellite
System (GNSS) signals to localize agricultural rovers in the field and navigate them using
standard procedures. However, in densely vegetated areas, such as those covered by dense
tree canopies, GNSS fails to achieve the desired precision due to obstructed line-of-sight.
To address this limitation, various methods have been proposed in the literature. In this
chapter, I will present some of these approaches.

There are two main strategies:

• Refining odometry and GNSS positioning with other technologies, such as Computer
Vision (CV), where cameras are employed to capture and interpret visual information
from the environment. This information can then be used to refine the rover’s
localization.

• An alternative approach involves developing navigation systems that are not reliant
on precise localization. Instead of depending on an absolute position, these systems
operate based on relative positioning or other environmental cues.

Each of these approaches has its advantages and challenges, and the choice between
them depends on the specific requirements of the precision agriculture application and the
characteristics of the environment in which the rover operates.

2.1 Localized navigation systems
In the pursuit of successful navigation within agricultural environments, a primary strategy
involves harnessing various technologies to enhance the localization precision of rovers
traversing expansive fields. One such technology is the Global Navigation Satellite System
(GNSS), bolstered by all possible improvements and corrections, proving effective in open
fields with smaller crops. Another avenue explores the integration of visual perception

3
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through approaches like Visual Odometry (VO). The objective remains the augmentation
of rover position precision, thereby ensuring reliable movement feedback for effective UGV
motion control.

2.1.1 Global Navigation Satellite System
Global Navigation Satellite System (GNSS) refers to navigation systems providing users
with a three-dimensional positioning solution through passive ranging using radio signals
from orbiting satellites [6]. Each satellite continuously transmits data indicating its
location and current time, and receivers use this information to determine their positions.
The timing of satellite transmissions is crucial, with nanosecond-level accuracy required.
Ground stations regularly update and synchronize satellite transmissions, which, along
with on-board atomic clocks, ensures precise timing. While triangulation theoretically
requires only three satellites, GNSS receivers utilize four (minimum) to account for three
position axes and a time correction [7].

Various GNSS systems are currently in use worldwide, including the American Global
Positioning System (GPS), Russian Global Navigation Satellite System (GLONASS),
European Galileo, and Chinese Compass. Factors contributing to GNSS error include
satellite position and number, receiver clock timing, ionospheric and atmospheric delays,
and multipath effects. In mobile robot applications, GPS latency, typically around 200 to
300 milliseconds, may limit updates to approximately 5 Hz. Fast-moving robots might
need local motion integration for proper control due to these latency limitations.

GPS applications typically operate with a resolution of around 15 meters. Differential
Global Positioning System (DGPS) improves this by utilizing a second static receiver
at a known position, correcting errors, and achieving resolutions of approximately 1
meter. Incorporating carrier signal phase information further enhances precision, enabling
resolutions of 1 cm for point positions. For mobile robots, the DGPS technique requires
a stationary reference unit within kilometers’ range of the robot. Real-Time Kinematics
(RTK) correction is the real-time version of the DGPS technique. Multi-GNSS receivers,
considering signals from different navigation systems, enhance accuracy and performance.

In precision agriculture, multi-GNSS receivers demonstrated superior accuracy, particu-
larly in challenging conditions like orchards and mountainous areas, offering precise
positioning for applications such as yield monitoring and variable rate applications.
However, the increased cost of multi-GNSS may be justified for users requiring precise
farm operations and research in conditions with poor visibility.

2.1.2 Visual odometry systems
Visual Odometry (VO) aim is to measure the pose of a system using the information
provided by a set of successive images. So, it can provide reliable movement feedback in
UGV motion control [8]. The idea is to evaluate the relative movement of a solid camera
having occurred during a time interval tk − tk+1, comparing the image pair Ik and Ik+1,
acquired in the ordered time instants tk and tk+1, respectively.

The available image processing algorithms for VO applications have two main approaches:
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• Feature-based algorithms: detect and track specific features or details in successive
images.

• Appearance-based algorithms: examine changes in appearance across successive
frames by extracting information regarding pixel displacement using the template
matching process (presented in Sec. 3.2.3).

To enhance accuracy and reliability, VO systems are often integrated with sensors such
as Inertial Measurement Unit (IMU), GPS technology, or wheel and track encoders. This
integration helps mitigate error accumulation during long missions.

Let us consider the VO system proposed by [8] and represented schematically in Fig.
2.1: it is an appearance-based algorithm that exploits Normalized Cross Correlation (NCC)
as a cost function for template matching.

The relative movement of Ik+1 with respect to Ik, in terms of translation [û, v̂]T [pixels]
and rotation θ̂ [deg], is performed by assessing the position of the templates Tk in the
subsequent image Ik+1. Then, the relative movement of the camera is estimated by knowing
the position of the template Tk in Ik.

However, the accuracy of this approach is limited by the digital discretization of the
FOV performed by the digital camera, i.e., it is related to the adopted image resolution.
Increasing the image resolution, while increasing the accuracy, increase also the required
computed load, which does not fit with the real-time requirement of some VO applications
or requires too expensive technologies.

To address these challenges, [8] proposed an enhanced VO algorithm. Translation and
rotation are computed as the weighted centroids of a neighborhood around the maximum
of the discrete cross-correlation function. This approach allows for more accurate UGV
movement evaluation with continuous values, significantly enhancing precision.

Visual Odometry remains a pivotal component in UGV motion control, providing
valuable insights into the vehicle’s relative movement and aiding in navigation and control
strategies.

2.2 Position-agnostic navigation systems
In certain agricultural environments characterized by dense canopies and abundant
vegetation, the reliability of Global Navigation Satellite System (GNSS) sensors diminishes,
particularly in seasons of heightened foliage such as spring and summer. This scenario
strengthens the need for alternatives to reduce the cost of the system without affecting
its robustness. Visual Odometry (VO), as detailed in Section 2.1.2, emerges as a viable
solution for field navigation challenges. However, its applicability encounters limitations,
especially in prolonged outdoor trajectories with repetitive visual patterns, typical of
extensive row crop fields.

To overcome the precision localization challenge, position-agnostic vision-based naviga-
tion algorithms have been extensively explored. The fundamental concept involves real-time
analysis of data from a camera to generate velocity commands without explicit knowledge
of the current field position. Diverse methodologies have been proposed, ranging from the
utilization of a Deep Reinforcement Learning (DRL) agent for action determination to the
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Figure 2.1: Scheme of the visual odometry pipeline presented in [8].

integration of a segmentation model and a proportional controller aimed at aligning the
robot with the center of the row. These innovative approaches strive to enhance navigation
adaptability in complex agricultural landscapes.
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2.2.1 Deep Reinforcement Learning approach
Traditional navigation algorithms conventionally compartmentalize the process into distinct
stages for perception, planning, and control, potentially accumulating errors across
sub-modules. In contrast, policy learning methods offer a paradigm shift by directly
mapping raw input data to actions, fostering the creation of a sensorimotor agent through
the integration of vision and control systems. This paradigm shift streamlines the entire
navigation algorithmic pipeline [9].

Of particular note is model-free Deep Reinforcement Learning (DRL), which optimizes
a parametric policy without requiring explicit knowledge of the environment’s dynamic
model. This flexibility empowers agents to navigate in previously unseen environments,
like curved rows. The model’s position-agnostic nature allows the robot to traverse the
end of the row without the need for global localization.

However, applying DRL to agricultural settings, such as vineyards, introduces specific
challenges. The constrained geometry of vineyards may prematurely terminate episodes
due to collisions, limiting the diversity of encountered states during policy training. To
address this, [9] introduced a technique involving the continuous alteration of the robot’s
starting point during training. Additionally, given the absence of information about the
robot’s position, key details such as distance or heading with respect to the goal are not
included in the input state.

2.2.2 Segmentation-based controllers
An alternative approach leverages semantic segmentation to analyze the input images
and a simpler controller to compute the corresponding velocity commands. For instance,
a custom Deep Convolutional Neural Network (CNN) can be employed for segmenting
specific Region of Interest in the input image, such as the crops delimiting a row. Notably,
both [10] and [11] propose a custom CNN based on MobileNetV3 [12] as the backbone of
their architectures. The segmentation mask is then analyzed to find the free space between
the crops, and a straightforward proportional controller computes the velocity commands.
The pipeline schema of this approach, as presented in [11], is illustrated in Fig. 2.2.

To determine the coordinate of the center of the free space from the segmented mask,
[11] proposes summing the values in the columns and searching for clusters of zero,
indicating areas where no crops are present. However, this solution is limited to scenarios
where physical space exists between the left and right crop boundaries. In contrast, for
environments like pergola vineyards, where no space exists in all the cells of a range of
columns (due to the presence of the pergola in the upper part of the image), this method
fails. To address this limitation, [10] introduces a novel approach that selects the desired
central pixel as the minimum of the histogram of columns in the segmented mask. This
modification ensures robust performance even when columns are not empty.

A similar strategy has been proposed by [13]. However, to determine the set point
for adjusting the vehicle’s heading, this research opts to identify the sky region between
the crops. The rationale behind this choice lies in the consistent nature of the sky, which
remains relatively unchanged throughout seasons in contrast to the varying appearance of
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Figure 2.2: Pipeline of the vision-based controller presented in [11].

crops. To achieve sky segmentation, the research uses the green channel of the image and
employs a thresholding process, computationally less demanding than the CNN approach
utilized by [11, 10]. Once the sky is segmented, also in this study, a basic PID controller is
employed to align the rover’s heading with the desired set point.

Figure 2.3: Image processing algorithm for autonomous navigation proposed by [13].

[14] instead decides to train a Deep Convolutional Neural Network to directly output
one of a discrete set of moves for the rover. The rover’s actions are determined as follows:

1. It moves forward only if both sides of tree rows are visible in the camera FOV.

2. It turns left or right if and only if one side of a row can be perceived.
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3. It stops driving and prepares for headland turning upon detecting the last row.

To facilitate network training, the researchers propose a sample collection method that
enables the robot to autonomously drive and gather data without human intervention or
remote control, eliminating the need for manual labeling of training samples. Techniques
such as batch normalization, dropout, data augmentation, and 10-fold cross-validation are
employed to enhance the network’s generalization capabilities.

On the contrary, [15] proposed utilizing the Hough Transform to extract the boundary
lines between trees and the terrain. The Hough Transform is a robust feature extraction
technique that identifies straight lines in an image through a transformation between the
Cartesian space and a parameter space. One key advantage of the Hough Transform is
its ability to detect straight lines even when pixels are not perfectly aligned, making it
effective in handling breaks caused by noises. In this approach, the Hough Transform is
applied to identify the left and right borders of the trees, and the desired reference path is
then computed as the middle line between these borders.

To enhance the clarity of the input image for the Hough Transform, the input
frame undergoes a segmentation process using a graph partitioning classification. This
segmentation classifies the frame into three categories: terrain, trees, and sky. Subsequently,
the terrain class is selected, filtered, and provided as input to the Hough Transform for
accurate extraction of the desired reference path.

2.2.3 Non-linear Model Predictive Control in row-crops
In their work, [16] proposes a comprehensive navigation system based on the analysis of
the Point Cloud Data (PCD) derived from the fusion of data from four RGBD cameras,
aimed at expanding the Field of View (FOV) of the algorithm. Initially, a CV algorithm is
employed to detect and estimate tree trunk positions by identifying shadows in the PCD
generated by the presence of trees. Subsequently, the reference path is constructed as a
local path that is iteratively updated utilizing the positions of the trees obtained from the
vision system.

To facilitate row traversals, a Voronoi diagram is employed, while a spiral model is
applied for headland maneuvers. Furthermore, a Non-Uniform Rational Spline (NURBS)
curve is computed to connect different sections of the path, providing a smooth and
continuous reference for the robot to follow. This approach enables the integration of
both in-row and headland navigation during path computation, accommodating various
orchard layouts beyond rectangular shapes. Moreover, it offers a more consistent reference
compared to the conventional straight-line following approach, taking into account the
robot’s orientation.

The path following is executed using a Non-linear Model Predictive Control (NMPC)
scheme, optimizing the error between the computed and desired paths over the entire
prediction horizon. This approach ensures efficient navigation while considering specific
constraints such as actuator saturation.
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2.3 Remarks
In summary, the navigation system plays a pivotal role in modern precision agriculture,
with extensive research exploring various methodologies. An established solution involves
the utilization of GNSS systems, often enhanced by corrections from multiple receivers
and RTK corrections. While GNSS positioning can complement odometry systems, its
accuracy is affected by dense canopies and trees.

Alternative methods, such as Visual Odometry (VO), have been investigated to localize
rovers using image streams from cameras. However, challenges arise in row-crop fields
due to environmental repetitiveness. To address these issues, position-agnostic systems
have been proposed. These systems directly map sensor data to rover velocity commands
without relying on fixed Reference Frames. For instance, [11, 10, 13] proposed to segment
the input image to compute a set point in the camera frame and to use a proportional
controller to align the rover towards the set point. These methods, however, fail in the
case of pergola vineyards or high trees in which the sky is not visible [11, 13] or the crops
are not uniform on both sides [10]. [15] also decides to use an input segmentation system
to cluster the system into terrain, crops, and sky, but then it computes a reference path to
be followed. Segmentation-based methods, however, encounter difficulties in dealing with
different seasons, and with unexpected obstacles in the path.

Decision algorithms provide another avenue, with DRL agents trained by [9] for
decision-making and CNN trained by [14] to output actions from a discrete set. Additionally,
[16] introduced a path-following NMPC approach, leveraging a PCD from four cameras to
generate the reference path.
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Chapter 3

Fundamentals of Computer
Vision

The ability of robots to effectively interact with their environment hinges upon their
capacity to perceive and understand the surrounding world. One interesting approach
similar to human perception involves exploiting the sense of vision. In today’s technological
landscape, cameras offer a cost-effective, versatile, and widely applicable sensor solution
compared to more specialized alternatives such as LIDARs or GPS systems. This chapter
will introduce the fundamental tools and concepts essential for implementing Computer
Vision (CV) applications in robotics, highlighting the pivotal role of vision-based perception
in enabling robots to navigate and comprehend their surroundings.

3.1 Image Formation
Firstly, the fundamental process of image formation and capture will be discussed as
a cornerstone in the domain of CV systems. This initial step is pivotal as it lays the
foundation for subsequent image analysis and interpretation. Essentially, this process
entails projection, whereby the three-dimensional world is mapped onto a two-dimensional
plane. From the physical point of view, light emanating from the external environment
converges onto a two-dimensional surface, such as the human retina or the semiconductor
chip equipped with an array of light-sensitive elements found in modern cameras. In this
transformation, the depth information is lost, and, for this reason, it is not possible to
distinguish a bigger object sufficiently far from the observation point of view and a smaller
closer object (to overcome this problem, a possible approach is discussed in Sec. 3.4, which
introduces the principles of stereo vision).

3.1.1 Pin-hole camera model
The simplest camera model is the pin-hole camera model. This concept was employed in
the creation of the first camera (Fig. 3.1): within a completely enclosed and darkened
chamber, a small aperture is made on one side. Light enters through this aperture, allowing
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images to be visible and captured on a light-sensitive medium (such as photographic film).
The size of the aperture directly influences the amount of light that enters the camera,
affecting the brightness of the resulting images. However, a larger aperture comes at the
cost of reduced image sharpness. Convex lenses play a pivotal role in forming images
similar to those produced by a pinhole, but due to their larger diameter, they permit a
more substantial amount of light to pass through. It is also noteworthy that the image
formed on the opposite wall to the aperture is inverted with respect to the external world.

Figure 3.1: Camera obscura depiction of A. Kircher (Ars Magna, 17th century). [17]

The central perspective imaging model is a modified version of the previous one, and it
is commonly used in Computer Vision (CV). In this model, the image plane is positioned
at z = f , with f focal length of the camera [mm], with respect to the camera Reference
Frame (RF) (located in correspondence of the pin-hole) and oriented as shown in Fig. 3.2.

Analyzing the scheme in Fig. 3.2 and using similar triangles, it is possible to obtain the
transformation between a point at the world coordinates P = (X, Y, Z) and the projected
point on the image plane p = (x, y).

x = f
X

Z
, y = f

Y

Z
(3.1)

The perspective projection from the world RF to the image plane exhibits the following
characteristics:

1. It maps a 3-component input vector (representing the three-dimensional world) onto
a two-dimensional space (the image plane): R3 → R2.

2. Straight lines in the three-dimensional world are projected as straight lines on the
image.

3. Parallel lines in the world are projected as parallel lines on the image plane only if
they are also parallel to the image plane itself; otherwise, they will intersect at a
vanishing point.
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Figure 3.2: Central perspective imaging model. The image plane is located between the
point P in the world and the camera origin (the pin-hole) to obtain a non-inverted image.
[18]

4. Conic sections in the world are transformed into conics on the image plane, although
not necessarily identical ones. For instance, a circle may be projected as an ellipse
due to the perspective transformation.

5. The mapping is not injective (one-to-one): multiple points in the world can be mapped
to the same point on the image plane, particularly all points in the world lying on
the straight line passing through the camera’s origin and the point on the image
plane. This characteristic is responsible for the loss of depth information of objects
following the perspective transformation.

6. Since the internal angles are not preserved, this transformation does not preserve
shape: is not conformal. Examples of conformal transformation are translations,
rotations, and scaling.
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3.1.2 Intrinsic and extrinsic matrix
Starting from Eq. 3.1, it is possible to rewrite the image plane points in homogeneous
coordinates p̃ = (x′, y′, z′)T where

x′ = f ·X, y′ = f · Y, z′ = Z (3.2)

The tilde underlines that a general vector is expressed in homogeneous coordinates (see
Appendix A for a brief discussion about homogeneous coordinates). Then, exploiting Eq.
3.1 and Eq. 3.2, the correspondent non-homogeneous image plane coordinates are

x = x′

z′ , y = y′

z′ (3.3)

Let’s also consider the world coordinate in homogeneous form P̃ = (X, Y, Z, 1)T .
Moreover, in general, the camera will have a generic pose with respect to a different RF of
interest, e.g., the robot RF, or the fixed world RF. From now on, all the vectors expressed
in the camera RF will be denoted with the apex C , while vectors in the world RF with 0.
For this reason, it is important to underline the relation between the two RFs:

P̃ 0 = T 0
C · P̃ C (3.4)

where T 0
C represent the homogeneous transformation between a coordinate vector (represen-

tation of a point in the space) expressed in camera RF and the correspondent vector
expressed in the world RF.

In a digital camera, the image plane is not continuous, but is composed of a grid of
small light-sensitive devices called photo-diode. So, also the images generated from a
digital camera are a grid of small elements called pixels. Each pixel corresponds to a
photo-diode, and can be denoted as a two-dimensional vector of coordinates (u, v); since u
and v represent an index on a grid, they are non-negative integers (the origin is on the
top-left corner of the image, as shown in Fig. 3.2). The transformation between the pixel
indexes (u, v) and the image plane coordinates (x, y) is

u = x

ρw
+ u0, v = y

ρh
+ v0 (3.5)

where ρw and ρh are the width and height of a single photo-diode [mm] and (u0, v0) are
the coordinates of the principal points, a.k.a. the point of intersection between the optical
axis (the z axis of the camera RF) and the image plane. If we combine these results with
Eq. 3.1, we obtain

u = f

ρw

X

Z
+ u0 = fw

X

Z
+ u0

v = f

ρh

Y

Z
+ v0 = fh

Y

Z
+ v0 (3.6)

or in homogeneous coordinates p̃ = (u′, v′, w′)T :
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u′ = fw ·X + u0 · Z
v′ = fh · Y + v0 · Z
w′ = Z (3.7)

It is important to notice that fw and fh are adimensional quantities since they are the
ratio between two distances [mm]. From the homogeneous pixel coordinates it is possible
to recover the non-homogeneous ones:

u = u′

w′ , v = v′

w′ (3.8)

To summarize this process, it is possible to write the perspective projection transforma-
tion in homogeneous coordinates in linear form.

p̃ =


u′

v′

w′

 =


fw 0 u0

0 fh v0

0 0 1

 ·


1 0 0 0
0 1 0 0
0 0 1 0

 · (T 0
C)−1 ·


X

Y

Z

1


= KN(T 0

C)−1P̃ 0

= CP̃ 0

where:

1. K is the camera parameters matrix, it contains the four parameters that describe
the camera fw, fh, u0, v0.

2. N is called the projection matrix.

3. The product KN is the intrisic matrix: it is the relation between the pixel
homogeneous coordinates and the three-dimensional world coordinates expressed in
camera RF.

4. (T 0
C)−1 is the extrinsic matrix.

5. The matrix C = KN (T 0
C)−1 is a 3 × 4 homogeneous transformation that converts a

point expressed in homogeneous coordinate in the world RF P̃ 0 into the correspondent
point expressed in homogeneous coordinate in the image RF p̃.

Finally, using the non-linear Eq. 3.8 it is possible to obtain the pixel coordinates (u, v)
corresponding to a generic point P 0.
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Figure 3.3: Field of view of a camera. [19]

3.1.3 Field of View
The Field of View (FOV) of a camera is "the portion of the scene that projects onto the
retina of the camera" [19]. It is a function of both the camera focal length f and the
physical effective area of the retina (the area of the light-sensitive film exposed in the
camera; see Fig. 3.3).

Analyzing the system’s geometry and regarding the FOV as a cone, as depicted in Fig.
3.3, we can define the FOV as 2θ, where:

θ = arctan a

2f (3.9)

Here, a represents the diameter of the sensor used [mm], and f denotes the camera’s
focal length [mm].

A more in-depth analysis takes into account the distinctions between the vertical
and horizontal planes, considering that the film is typically rectangular. With these
considerations, it is possible to define the FOV as "an open rectangular pyramid that
subtends angles 2θh and 2θv in the horizontal and vertical planes respectively" [18]. These
angles are defined as follows:

θh = arctan Wρw

2f = arctan W

2fw

θw = arctan Hρh

2f = arctan H

2fh
(3.10)

where W and H are the number of pixels of the image in the horizontal and vertical
direction respectively.

It is important to notice that:

• Since ρw × ρh is the physical dimension of a single sensor (a.k.a. a single pixel),
Wρw ×Hρh is the size of the entire light-sensitive chip inside the camera.

• Eq. 3.9 and 3.10 essentially convey the same concept. In Eq. 3.9 a and f are both
distances, so their ratio is adimensional; the same results are obtained in Eq. 3.10
with Wρw (or Hρh) and f (both distances), or with two adimensional quantities such
as W and fw (or H and fh).
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3.2 Image Filtering
In real-world scenarios, where images are inevitably influenced by various forms of noise
and disturbances, the application of image filtering is crucial in digital signal processing.
Whether in the context of Computer Vision, medical imaging, or remote sensing, the use
of image filtering methods contributes significantly to improving the overall robustness
and clarity of visual data, enabling more accurate analysis and interpretation.

3.2.1 Monodic Operations
Monodic operations are the simplest class of image-processing operations. Given an input
image of size W ×H, it processes each pixel independently with the same function f and
returns as output another image of the same size as the input one. This process can be
formally written as

O[u, v] = f(I[u, v]), ∀(u, v) ∈ I (3.11)

and it is schematically presented in Fig. 3.4.

Figure 3.4: Monadic image-processing operations. Each output pixel is a function of the
corresponding input pixel (shown in red). [18]

For instance, a first monadic operation is the change of the datatype of each pixel, e.g.,
from uint8 (integer in range [0, 255]) to double precision values in the range [0,1]. Another
basic operation is the conversion of a color image to the corresponding grey-scale image.
It is important to notice that a color image has 3-dimension (since each pixel is a 3-tuple
representing the color, e.g., RGB format), while a grey-scale image is a 2-dimension grid:
at each pixel is associated a number representing its grey-scale level.

Moreover, frequently utilized unary operations include thresholding operations, which
involve selecting specific pixels within a given range from a gray-scale image. Additionally,
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some operations focus on manipulating the distribution of gray-scale levels within the
image. This distribution can be quantified and visualized through a histogram of the
image, where each bin corresponds to a gray-scale level (e.g., in a uint8 image, each bin
represents an integer within the range [0, 255]).

In certain situations, the input image may not cover the entire spectrum of available
levels. For instance, an underexposed image may lack pixels with high values. In such
cases, a straightforward linear mapping, as depicted in Eq. 3.12, can be employed to
stretch the histogram and span the complete range of values.

pnew(u, v) = pold(u, v) · 255
max(pold(u, v)) ∀(u, v) ∈ I (3.12)

Likewise, using a similar approach, histogram normalization or histogram equalization
can be defined. This method utilizes a linear mapping to obtain a linear cumulative
distribution of pixel intensities, resulting in a uniform histogram where each bin contains
an equal number of pixels.

Image stretching and histogram normalization do not introduce new information to
the input image; consequently, subsequent image processing steps may not experience
significant improvements. Nevertheless, these operations can enhance the image from a
human observer’s perspective.

3.2.2 Dyadic Operations
Dyadic operations involve the manipulation of two input images of identical dimensions,
yielding a single output matrix of the same size as the input images. Each output pixel’s
value is determined by a function of the corresponding pixels in the two input images
(refer to Fig. 3.5 for a schematic illustration).

O[u, v] = f(I1[u, v], I2[u, v]), ∀(u, v) ∈ I1 (3.13)

Figure 3.5: Dyadic image-processing operations. Each output pixel is a function of the
two corresponding input pixels (shown in red). [18]

Some useful dyadic operations are binary arithmetic operators such as addition,
subtraction, element-wise multiplication, max, min, etc. Moreover, for example, this
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technique is used in green-screen technology: after the subject is distinguished from the
green background, it is obtained a mask of the same size as the input image, with binary
values differentiating subject (1 or True) from the background (0 or False). Then, the
output image is constructed as

O[u, v] = I1[u, v] · M [u, v] + I2[u, v] · (1 − M [u, v]), ∀(u, v) ∈ I1 (3.14)

where I1 is the subject image with the green screen background, I2 is the new background
image (same size of I1), M is the binary mask obtained from I1 (also of the same size of
I1) and · represent the element-wise multiplication (or the logical and). To better explain
the formula, in the output image all the pixels selected by the mask are taken from the
subject image I1, while all the others are a copy of the corresponding ones in the new
background image I2.

3.2.3 Spatial Operations
Spatial image operations are performed on a single input image and return a single output
image of the same dimensions. Each pixel in the output image is a function of all the
pixels in a neighborhood of the corresponding pixel in the input image (refer to Fig. 3.6
for a schematic illustration).

O[u, v] = f(I[u+ i, v + j]), ∀(i, j) ∈ W , ∀(u, v) ∈ I (3.15)

Figure 3.6: Spatial image processing operations. The red-shaded region shows the window
W , which is the set of pixels used to compute the output pixel (shown in red). [18]

The mathematical operations that describes a linear spatial filter is convolution O =
K ⊗ I defined as
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O[u, v] =
Ø

(i,j)∈W
I[u+ i, v + j]K[i, j], ∀(i, j) ∈ W , ∀(u, v) ∈ I (3.16)

where K ∈ Rw×w is called convolution kernel and is element-wise multiplied with the
window of pixels W , for every output pixel. In other words, the kernel K is the matrix of
weight of a weighted sum within the window. It is important to notice that:

• Different kernels correspond to different functions, such as smoothing, edge detection,
etc.

• Convolution is a computationally expensive operation: a N ×N input image with a
w × w kernel requires w2N2 multiplications and an equal number of additions.

• If the image has multiple color planes (e.g., the RGB format), the convolution is
performed independently for each input plane with the kernel K.

• Convolution is not well-defined at the edges of the input image since the window
W will contain pixels outside the input image (not defined pixels). Lots of different
approaches can be defined to overcome this problem, such as assigning a fixed value
(e.g., 0) to all the pixels outside the input image, replicating the value of the pixels
at the border of the image, or not considering the results when the window exceeds
the boundary of the image (the output image will be smaller than the input one).

A first important kernel is the Gaussian kernel. It is defined from the corresponding
2D Gaussian function

G(u, v) = 1
2πσ2 e

− u2+v2
2σ2 (3.17)

This function is symmetric about the origin, has a unitary volume under the curve,
and its spread in both directions is controlled by the variance σ2 (refer to Fig. 3.7 for an
example). Convolution with this kernel is suitable for image smoothing.

Edge detection

Another important application for linear kernels is edge detection. The basic idea is that a
very rapid variation of the intensity of the grey level is a reliable indication of an edge.
Let us consider the horizontal first-order derivative of the grey level, and rewrite it as a
symmetrical first-order difference

p′[u⋆, v] = 1
2(p[u⋆, v + 1] − p[u⋆, v − 1]), ∀(u, v) ∈ I (3.18)

that is equivalent to convolution with a 1D kernel

K =
è
−1

2 0 1
2

é
(3.19)

Starting from this idea, many kernels can be constructed, such as the Sobel Kernel
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(a) Gaussian function shown as intensity image (b) 2D Gaussian function.

Figure 3.7: Gaussian kernel of size 31 × 31 with σ2 = 25.

Du =


−1 0 1
−2 0 2
−1 0 1

 (3.20)

It is important to notice that the derivative kernel in the vertical direction is simply
the transpose of the horizontal one. Then, the gradient along the horizontal or vertical
direction can be computed as

∇uI = Du ⊗ I

∇vI = DT
u ⊗ I (3.21)

where ∇i represent the gradient along the i-direction and D the derivative kernel such as
the Sobel kernel presented in Eq. 3.20.

Moreover, must be considered that the derivative accentuates high-frequency noise [18],
so usually a smoothing operation is performed before taking the derivative.

∇uI = Du ⊗ (G(σ) ⊗ I) (3.22)
and using the associative property of convolution

∇uI = (Du ⊗ G(σ)) ⊗ I = DoGu(σ) ⊗ I (3.23)
where DoG represent the derivative of the Gaussian, in the u-direction, that can be
computed analytically from Eq. 3.17 obtaining

DoGu(u, v) = − u

2πσ2 e
− u2+v2

2σ2 (3.24)
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The standard deviation σ must be tuned according to the scale of the edges that the
system should detect: larger σ implies increased smoothing and so only edges of large
features will be detected, while fine texture will be attenuated. The transpose of this
kernel can be used for vertical gradient (as shown in Fig. 3.8).

(a) Derivative of the Gaussian in the u-direction. (b) Derivative of the Gaussian in the v-direction.

Figure 3.8: Derivative of the Gaussian kernel of size 31 × 31 with σ2 = 25.

A step further in the edge detection problem is to consider the second derivative: an
edge is no longer defined as a pixel with a high gradient, but it is a maximum in the local
neighborhood. So, we need to compute the second derivative and determine where this is
zero. The Laplacian operator can be defined as

∇2I = ∇2
uI + ∇2

vI = L ⊗ I (3.25)

or, in other words, as the sum of the second spatial derivative in both horizontal and vertical
direction. Considering that it is possible to rewrite the second order derivative in the
u-direction (in the v-direction it is simply the transpose one) as a discrete finite-difference
equation

p′′[u⋆, v] = p[u⋆, v + 1] − 2p[u⋆, v] + p[u⋆, v − 1], ∀(u, v) ∈ I (3.26)

that is equivalent to convolution with a derivative kernel

D2
u =


0 0 0
1 −2 1
0 0 0

 , (3.27)
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it is possible to obtain the Laplacian kernel

L = D2
u + D2

u
T =


0 1 0
1 −4 1
0 1 0

 (3.28)

An important characteristic of L is that it is isotropic, so responds equally to edges in any
direction.

Usually, the second derivative is used in conjunction with a Gaussian smoothing

L ⊗ (G(σ) ⊗ I) = (L ⊗ G(σ)) ⊗ I = LoG(σ) ⊗ I (3.29)

where L is the Laplacian kernel defined above. The LoG can be also computed analytically
as

LoGu(u, v) = 1
πσ4 (

2 + v2

2σ2 − 1)e− u2+v2
2σ2 (3.30)

which is known as the Marr-Hildreth operator, or the Mexican hat kernel and it is
shown in Fig. 3.9.

(a) Laplacian of Gaussian function shown as
intensity image

(b) 2D Laplacian of Gaussian function.

Figure 3.9: Laplacian of Gaussian kernel of size 31 × 31 with σ2 = 25.

Inherent limitations are present in all of these approaches, as they tend to associate
intensity edges with the boundaries of objects. For example, shadows may exhibit extremely
sharp edges, yet they cannot be classified as distinct "objects." Additionally, the object
of interest may exhibit a limited contrast when compared to its background, leading to
unreliable boundary detection.
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Template Matching

The convolution kernel can be also seen as an image (or a part of), so the goal of the
application can be to find the part of our input image most similar to the kernel chosen.
In this context, the kernel is usually referred to as template. So, template matching can be
expressed as

O[u, v] = s(T ,W [u, v]), ∀(u, v) ∈ I (3.31)

where W [u, v] is the window of size w × w centered in (u, v), T is the template (same size
of W) and s(I1, I2) is a function of two equally sized images that returns a scalar measure
of the similarity of the two inputs.

Sum of absolute differences

SAD s =
q

(u,v)∈I |I1[u, v] − I2[u, v]|

ZSAD s =
q

(u,v)∈I

---1I1[u, v] − Ī1
2

−
1
I2[u, v] − Ī2

2---
Sum of squared differences

SSD s =
q

(u,v)∈I (I1[u, v] − I2[u, v])2

ZSSD s =
q

(u,v)∈I

11
I1[u, v] − Ī1

2
−

1
I2[u, v] − Ī2
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Normalized Cross correlation

NCC s =
q

(u,v)∈I I1[u, v] · I2[u, v]ñq
(u,v)∈I I

2
1 [u, v] ·

q
(u,v)∈I I

2
2 [u, v]

ZNCC s =
q

(u,v)∈I

1
I1[u, v] − Ī1

2
·
1
I2[u, v] − Ī2

2
òq

(u,v)∈I

1
I1[u, v] − Ī1

22
·
q

(u,v)∈I

1
I2[u, v] − Ī2
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Table 3.1: Similarity measures for two equal-sized image regions I1 and I2. I1 and I2
are the mean value in the regions I1 and I2 respectively. The Z-prefix indicates that the
measure accounts for zero-offsets. [18]

Different functions have been proposed as measured for the similarity between the two
image regions; some of them have been presented in Tab. 3.1. It is important to analyze
some of the characteristics of these functions:

• Sum of the Absolute Differences (SAD) and Sum of the Squared Differences (SSD)
return a value that is > 0, and return 0 if the two inputs are perfectly equal, while
Normalized Cross Correlation (NCC) yields a score in the range [−1,+1], with +1 in
case of perfect match.
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• Each similarity function has a zero-offset version, underlined with the Z-prefix, that
accounts for offsets between the two input images: ZSAD(T ,T + β) = 0, β ∈ R
(analog results also for ZSSD and ZNCC).

• Only cross-correlation functions NCC and ZNCC are invariant to gain variation:
NCC(T , αT ) = 1, α ∈ R, while the other measures will indicate a high degree of
dissimilarity.

• NCC and ZNCC are computationally more expensive than the others, and also their
result cannot be defined in case of denominator equal to zero, a.k.a. when the pixels
in one (or both) of the two input images are all equal to zero (for NCC) or to the
mean value (ZNCC).

• All these methods fail in case of relative scale or rotation, even small, of the two input
images. Moreover, the square template includes also some pixels from the background
together with the "subject": template matching can encounter some difficulties in
case the background is changed. This problem is usually referred to as mixed pixel
problem and can be attenuated using non-parametric similarity measures such as the
census metric and the rank transform.

• Usually, several rules can be checked before a match is accepted, for instance, a
threshold can be applied to the similarity functions, or more information about the
motion of the camera or the subject can be used to try to avoid false matches.

Morphological Operations

Finally, another category of spatial operations is grounded in the application of non-linear
functions to the pixels within windows. These functions include measures such as variance,
maximum, minimum, and median. A distinct sub-category is found within mathematical
morphology, where each pixel in the output is determined by a non-linear function applied
to a subset S of the window W. Typically, S is referred to as the structuring element.
This particular class of operations, as the name suggests, deals with the manipulation
of object shapes. These filters preserve only objects that can encompass the structuring
element S, while other shapes are either diminished or removed from the output image
(refer to Fig. 3.10).

Morphological operation can be expressed in operator form:

• Erosion, that corresponds to use f(·) = min(·) within the pixels in the window, is
O = I ⊖ S.

• Dilation, that correspond to use f(·) = max(·) within the pixels in the window, is
O = I ⊕ S.

• Opening, shown in Fig. 3.10, is the sequence of erosion, then dilation, and it "opens
up gaps". It is denoted as O = I ◦ S = (I ⊖ S) ⊕ S and it is a very powerful tool in
cleaning the images and removing noises.
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Figure 3.10: Opening example. Binary images with 0 (grey) or 1 (white). The structuring
element for each row is shown in red in the last column. The first column represents the
original image, the second is the image after the erosion by the corresponding structuring
element, and the third one is the output after the second column is dilated. [18]

• Closing, shown in Fig. 3.11, is the sequence of dilation, then erosion, and it "closes
gaps". It is denoted as O = I • S = (I ⊕ S) ⊖ S and it is the inverse sequence of
operation of Opening.

3.2.4 Shape changing
Finally, there is a category of image processing operations designed to modify an image’s
shape or size.

One of the most straightforward and familiar operations in this context is cropping.
This operation entails selecting all pixels within a specified Region of Interest (ROI),
defined by specific coordinate ranges (u, v).

Another significant operation involves image resizing. To reduce the image’s dimensions,
a common technique is "sub-sampling." In this approach, only every mth pixel in both the u-
and v-directions is retained, with m ∈ Z+ serving as the sub-sampling factor. Consequently,
the output image contains only 1/m2 of the pixels present in the input image, resulting in
substantial memory savings. It is essential to acknowledge that sub-sampling can reduce
the image’s spatial sampling rate, potentially leading to spatial aliasing of high-frequency
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Figure 3.11: Closing example. Binary images with 0 (grey) or 1 (white). The structuring
element for each row is shown in red in the last column. The first column represents the
original image, the second is the image after dilatation by the corresponding structuring
element, and the third one is the output after the second column is eroded. [18]

components, particularly those associated with texture or sharp edges [18]. Therefore,
under the Shannon-Nyquist sampling theorem, a low-pass spatial filter, such as image
blurring or the Gaussian kernel discussed in Sec. 3.2.3, should be applied to the input
image before sub-sampling. Conversely, the inverse operation is pixel replication, where
each pixel in the input image is substituted with a window of size m×m, featuring the
same pixel value in the output image. Once again, the application of a smoothing operation
serves to mitigate the impact of the window’s edges.

A far more sophisticated method, as the one used in the OpenCV library [20], considers
that the resizing operation maps the input pixel grid to the destination one. So, if two
scale factors fv and fu are provided (one for horizontal scaling and the other for vertical
scaling) the theoretical mapping will be

O[u, v] = I[ u
fu
,
v

fv
] ∀(u, v) ∈ O (3.32)

with fu, fv < 1 for image downsizing, and fu, fv > 1 for image up. However, this equation
is not always feasible, since the pixel index must be integer numbers, while u

fv
as well as v

fv

are in general floating-point numbers. To overcome this problem, a polynomial function
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is fit into some neighborhood of the computed pixel ( u
fu
, v

fv
), and then the value of the

polynomial at ( u
fu
, v

fv
) is taken as the interpolated pixel value [20].

Finally, it’s important to note that these methods are not suitable for depth images,
such as those described in Sec. 3.4, because this resizing approach can alter the 3D shape
of the reconstructed scene. A potential solution to this challenge is presented in [21],
where the depth images are scaled while preserving the same aspect ratio between height
and width, followed by a padding step to achieve the final size (refer to Fig. 3.12 for a
schematic representation of the proposed solution).

Figure 3.12: Resizing RGB-D images. The two columns show two different examples: the
images of a keyboard and a flashlight. In the first row, the original images are presented,
while in the second the resized ones are shown. The differences in the shape of the objects
can be easily seen. Finally, in the last row, a possible idea of solution is presented. [21]

3.3 Image Segmentation
Image segmentation is a crucial task in Computer Vision that involves dividing an image
into meaningful regions or segments [18]. The goal is to group pixels or pattern elements
into summary representations that highlight important and distinctive properties [19].
This process can be compared to the statistical concept of clustering [22].

The segmentation process is typically divided into three key sub-problems [18]:

1. Classification: In this step, every pixel is assigned to one of a predetermined set
of classes, often based on specific application requirements. For instance, classes
could represent different colors, objects, or motion characteristics. The assumption is
that regions within the image are homogeneous concerning a certain pixel property.
Although misclassifications can occur, later stages of the process address and correct
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them. Simple classification rules often involve thresholding on gray-scale or color
information.

2. Representation: Once pixels of the same class are identified, they are connected to
form spatial sets S1 . . . Sm. Each set can be represented in various ways, such as by
defining the boundaries of the connected region.

3. Features extraction: In the final step, each set Si is described using scalar or
vector-valued features that convey information about its size, position, shape, or
other relevant characteristics.

The segmentation process plays a critical role in CV applications, enabling the analysis
of visual data by breaking it down into more manageable and meaningful parts. It finds
uses in a wide range of fields, including object recognition, scene analysis, and image
understanding.

3.4 3D Reconstruction
In Sec. 3.1.1, we emphasized the loss of depth information inherent in the image formation
process. In this section, we will introduce the stereopsis technique for reconstructing the
three-dimensional structure of the world using a pair of images captured from different
viewpoints. Specifically, we will focus on the dense stereo matching approach, which
enables the retrieval of world coordinates P = (X, Y, Z) for each pixel within the image.
Typically, this technique employs a stereo pair of images obtained from two RGB cameras
with parallel optical axes, separated by a well-defined and precisely measured distance
known as the camera baseline.

The Epipolar Constraint

In the stereo vision process, the initial step involves the fusion of features observed by two
or, in more general cases, multiple cameras. Under the assumption that the cameras are
internally (the internal parameters of the camera such as the focal length f , etc, are known)
and externally calibrated (well-defined and fixed positions of these stereo cameras in space),
this section will elucidate that the matching challenge between pairs of pixels is constrained
by the requirement that pixel pairs from the two images must lie on corresponding epipolar
lines within both images.

As illustrated in Fig. 3.13, the point P = (X, Y, Z) in the physical world, the optical
centers O and O′ of the two cameras, as well of the two projection p and p′ of P onto the
two images all lie on the same plane referred to as the epipolar plane. The camera baseline
(the line between O and O′) intersects the two image planes in e and e′ respectively,
which are called the epipoles of the two cameras. An alternative interpretation is that
e′ represents the projection of the optical center O from the first camera onto the image
plane Π′ of the second camera, and vice versa. Furthermore, the intersection between
the epipolar plane and the two images’ planes generates two lines, referred to as epipolar
lines. Both the projected point p and p′, as well as the two epipoles e and e′ must lie on
those lines, namely l and l′. In simpler terms, when the projection p is known, along with
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Figure 3.13: Epipolar geometry. In this figure, as well as in Fig. 3.2 the virtual image
plane is located between the pin-hole O or O′ and the point in the external world. [19]

the relative pose of the cameras, it becomes feasible to compute the epipolar line l′ in
the second image plane, as depicted in Fig. 3.14, then p′ must lie on l′. This geometric
property of stereo vision systems is termed the "epipolar constraint."

To summarize, within the stereopsis pipeline, establishing correspondences between
pixels in the two images is a pivotal task. The presence of epipolar constraints significantly
restricts the search for these correspondences. Given a pixel p in the first image, it is only
necessary to seek its corresponding counterpart p′ along the epipolar line l′ within the
second image, as opposed to scanning the entire image.

Figure 3.14: Epipolar constraint. [19]

In a lot of modern stereo cameras (as the one better described in Sec. 6.1.2), the two
cameras are aligned with parallel optical axes (and so perpendicular to the baseline). In
this configuration, the epipolar lines are horizontal in the image planes, and a very simple
inverse relation can be established between the 3D depth Z and the disparity d

d = fwb

Z
(3.33)

where b and Z are both distances, namely the baseline and the 3D-depth, fw is the
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horizontal focal length (in pixel) as defined in Sec. 3.1.2, and the disparity d describes the
relation between the coordinate of a pixel in the two images.

uL = uR + d(u, v) v′ = v (3.34)

Additionally, it should be noted that Z must be positive, as objects situated behind the
camera are not observable. Consequently, this condition dictates that d > 0 and uL > uR.
In simpler terms, this implies that the search for the corresponding pixel in the right image
must encompass all the pixels in the same row, with the added condition that the pixel in
the right image should be to the left of the corresponding pixel in the left image. So the
problem of reconstructing the 3D scene can be re-conducted to estimate the disparity map
d(u, v) for all pixels (u, v) in an image pair.

Dense correspondence

In order to be able to reconstruct the 3D scene, a.k.a. find world coordinates P = (X, Y, Z)
for each pixel within the image, we have to find the horizontal shift of a pixel between
the two images of a stereo pair (estimate the disparity map d(u, v)). During years of
research, a lot of possible algorithms have been proposed to efficiently and robustly solve
this problem. However, let me introduce a very simple approach to have a basic idea of
how these algorithms work.

Algorithm 1 Template matching algorithm for a stereo pair.
1: procedure Template matching(IL, IR, H, V,W )
2: ▷ IL and IR are the left and right images of the stereo pair
3: ▷ The image pair has a resolution of H × V pixels.
4: ▷ The template T will be a square of side W pixels.
5: for i in V do
6: for j in H do
7: ▷ We are now considering pixel (i, j) of the first (left) image.
8: Select the window T1 across the selected pixel
9: for k in H do

10: ▷ We are now considering pixel (i, k) of the second (right) image.
11: Select the window T2 across the selected pixel
12: Correspondence cost function C(T1, T2) between the two windows in the

two images.
13: end for
14: Select the pair (T1, T2) that maximize the cost function C(T1, T2)
15: d(i, j) = k − j
16: end for
17: end for
18: return d ▷ The disparity map is finally returned.
19: end procedure

In order to choose the corresponding pixel in the right image between the possible ones
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(same row, uR < uL), a template matching approach like the one introduced in Sec. 3.2.3
can be used.

However, this algorithm is not impervious to errors and failures. For instance, in
man-made scene such as the picket fence in Fig. 3.15, where regular vertical features are
present, this algorithm struggle to decisively determine the optimal match for the template.
With only two cameras, there is no real solution to this problem; however, it is possible
to detect it. The ambiguity ratio is defined as the ratio between the height of the second
peak (indicating the second-best match) and the maximum value of the correspondence
cost function (representing the highest peak). A high ratio denotes a result fraught with
uncertainty (where the second-best match closely resembles the first one), while conversely,
very low values suggest successful outcomes.

Figure 3.15: Failure of the Template matching approach. The template will match well
at different disparities. This problem occurs in any scene with repeating patterns. [18]

Another significant challenge within this approach is occlusion. As demonstrated in
Fig. 3.16, the presence of point 3 is exclusive to the left camera. Dense stereo matching
will try to find a correspondent point in the right image, despite the absence of such a
match. Consequently, the correspondence cost function records low values for every pixel
within the right image. This situation is commonly referred to as a "weak peak" and is a
frequent occurrence in real-world images, particularly at the boundaries of objects where
rapid depth variations occur.

Reconstruction

The final step in the 3D reconstruction pipeline is recovering the world coordinates
P = (X, Y, Z) for each pixel within the image, given the camera intrinsic and extrinsic
calibration and the disparity map d(u, v).

As anticipated in Eq. 3.33, in a parallel axis stereo camera rig (see Fig. 3.17) a
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Figure 3.16: Occlusion in stereo vision. The fields of view of the two cameras are shown
as colored sectors. Points 1 and 7 fall outside the overlapping view area and are seen by
only one camera each. Point 5 is occluded from the left camera and point 3 is occluded
from the right camera. The order of points seen by the cameras is given under each of the
two. [18]

Figure 3.17: Stereo geometry for a parallel axis stereo camera rig. View of the XY
plane, where the world RF is positioned on the first camera. b represents the baseline of
the stereo pair. [18]

very simple inverse relation can be established between the depth Z and the disparity d.
Considering the red and the blue triangles,

X = Z tan θ1, X − b = Z tan θ2 (3.35)

where b is the baseline. The two angles can be expressed in terms of the horizontal
coordinate u in the two images
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tan θi = ui − u0

fw
, i = L,R (3.36)

Substituting Eq. 3.36 in Eq. 3.35, eliminating X, and solving for Z we obtain

Z = fwb

uL − uR
= fwb

d
= Tx

d
(3.37)

that corresponds to the previously anticipated relation. Usually, the product fwb is referred
to as Tx and it is a distance [mm]. It is possible also to recover the X- and Y -coordinates
given the pixel indexes (u, v)

X = b(uL − u0)
d

Y = b(vL − v0)
d

(3.38)

It is essential to note that because the disparity d = uL − uR represents the difference
between two integer values, it is inherently an integer itself. Furthermore, as demonstrated
previously, it must also be positive. Therefore, in the context of the stereopsis process,
the disparity map d(u, v) constitutes a grid of positive integer values, resulting in depth
values being quantized. This phenomenon is more evident with high values of depth
(low disparity), as shown in Fig. 3.18. A similar analysis can be applied to the X- and
Y -coordinates, although, in these cases, they are directly proportional to a ratio between
integers (uL − u0 and d), so they can assume a wider range of values.

Figure 3.18: Point-cloud generated using a simulated stereo camera in Gazebo
environment. The quantized plane of the depth Z parallel to the XY plane can be
easily seen. The higher the depth value, the higher the space between consecutive planes.
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3.5 Point Clouds
Point Clouds, as well as other types of 3D data representation, serve as indispensable
tools in CV applications, since they can capture the positional information of the objects.
Therefore, this section will introduce fundamental operations that can be performed using
a Point Cloud Data (PCD). Must be underlined that processing a PCD is a challenging
task, due to the absence of connectivity information which leads to ambiguity about the
surface information. [23]

Firstly, the outcome of the 3D reconstruction process can be archived in the form
of a PCD, essentially constituting a collection of points. Each point within the cloud
carries information about its spatial coordinates P = (X, Y, Z) relative to a specific RF
(representing the 3D reconstruction of a pixel within the depth frame). Furthermore, when
leveraging RGB images captured by the stereo camera, it becomes feasible to associate
also color information with each point P . In this scenario, the generated PCD takes the
form of 6-tuples, denoted as (X, Y, Z,R,G,B), with each tuple corresponding to a distinct
point/pixel from the image. 3D PCDs has some important characteristics:

• Non-Euclidean data space: Since PCDs do not have a "gridded array structure"[23],
they can be considered as non-Euclidean representation. In particular, PCDs are
discrete manifolds [24], since they are a globally non-euclidean data space, while
locally they can appear Euclidean. It is the same phenomenon of the approximation
of the Earth’s surface: locally, from our perspective is flat and Euclidean, while
globally it is a sphere.

• Unstructured data space: As mentioned before PCDs are not distributed over a
regular grid [25]. It is interesting to notice that RGB-D images like the ones analyzed
in Sec. 3.4 are, on the contrary, a structured dataset, since they are arranged on the
pixels grid.

• Unordered set: PCDs are a set of points in R3 and each point is defined autonomous-
ly within this space [26] rather than from its position in an array. So, PCDs are
invariant to permutation [27]: the order in which the points are processed does not
change the resulting shape or set.

• Invariant to rigid transformation: PCDs preserve their geometric structure when
rigid transformations are applied on the set [27], such as scaling, rotation, etc.

• Irregularities or missing data: PCDs generated by real sensors can be affected by
multiple obstructions and irregularities that can affect the acquisition process. For
instance, the density of the PCD can be non-uniform, with unevenly sampled zones,
or completely missing zones. Moreover, this representation is subjected to a lot of
noise [28].

Voxelization

It is possible to convert a PCD into a grid structure, which can be considered as the
3D analog of the pixel grid used in images. In this grid structure, each cell, or voxel,
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contains information about the volumetric area it represents. This information can include
whether the area is visible, occluded, or self-occluded, or more detailed attributes such as
color, depending on the requirements of the application. Unlike PCDs, voxel grids do not
explicitly encode their spatial position. Instead, their position is inferred based on their
index coordinates in the 3D grid. This structured grid representation makes voxel grids a
form of structured Euclidean data, distinguishing them from the unstructured nature of
PCDs [23].

Figure 3.19: Example of voxelization of a PCD of an airplane to a 30×30×30 volumetric
occupancy grid. [25]

Voxel-based methods have gained interest in recent years, primarily due to their
capability to extend well-established 2D grid operations to the 3D voxel grid. While these
methods have demonstrated good performance, they are burdened by significant memory
consumption issues stemming from the sparsity of voxels. The sparsity of voxels leads to
inefficient computation when convolutions are performed over non-occupied regions, and it
also imposes limitations on voxel resolution. Moreover, these limitations are in addition to
the quantization artifacts introduced through the voxelization process [25].

3D Bounding boxes

In order to summarize information about an object (and so reduce memory occupation),
bounding boxes are an effective tool. They efficiently summarize the volumetric occupancy
of 3D objects, thereby providing a compact yet informative representation. As illustrated
in Fig. 3.20, a PCD is enclosed by bounding boxes, which can be aligned with the principal
moments of the object or the global fixed RF.

3.5.1 Clustering
Clustering algorithms for 3D spatial databases offer an attractive means of identifying
classes within the data. Similar to the image segmentation discussed in Sec. 3.3, the
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Figure 3.20: PCD with the corresponding bounding box aligned with the principal
moments of the object (green) and its bounding box aligned with the axis of the RF (red).
[29]

primary objective is to partition the input dataset into meaningful classes, facilitating the
summarizing of information such as pose, shape, and more for each class.

In this chapter, the challenge of clustering is approached by leveraging the spatial
properties of a PCD, specifically the 3D coordinates of each point in the input dataset.
This stands in contrast to the image segmentation discussed in Sec. 3.3, where the color
properties of pixels were predominantly utilized. Furthermore, the clustering problem
is addressed through unsupervised approaches, where the algorithm’s training phase is
conducted without prior knowledge of the "correct" class for each point.

In general, clustering algorithms can be divided into two macro families:

• Partitioning algorithms know a priori the number of the clusters k, then divide
the points of the dataset into the clusters. The algorithm can be summarized in two
iterative steps:

– A data assignment step, in which each data point is assigned to its nearest
centroid, for instance based on the squared Euclidean distance (k-means clustering
algorithm);

– A centroid update step then recalculates optimal centroids based on the cluster
assignments from the previous step.

This iterative approach is guaranteed to converge to a result, but the result may be a
local optimum, i.e., not necessarily the best possible outcome [30].

• Hierarchical algorithms, instead, create a hierarchical decomposition of the input
dataset. This process can be visualized as a dendrogram, which is essentially a tree
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that successively splits the dataset into smaller subsets until each subset contains
only one object. Consequently, each node in the dendrogram represents a distinct
cluster [31]. Notably, hierarchical algorithms do not require the number of clusters as
input. However, a termination condition (e.g., a critical distance between all clusters)
must be defined to exit the splitting loop.

In this work, as well as in the project related, I will use the Open3D [29] implementation
of the DBSCAN algorithm [31]. This implementation employs a hierarchical algorithm
to partition the input dataset into k meaningful clusters, along with a noise cluster that
encompasses points not belonging to any cluster. The approach hinges on leveraging density
information, defining a cluster as a high-density region in space that is well-separated from
others. The low-density regions between clusters contain only noise points.

In particular, the algorithm starts with an arbitrary point p within the dataset and
associates to it all point density-reachable from the point itself. Two parameters must
be tuned for the effectiveness of the algorithm: the minimum number of points denoted
as MinPts, which must be present in a neighborhood of radius ϵ around a point within a
cluster.

(a) Initial point-cloud. (b) Point-cloud clusters

Figure 3.21: Point-cloud clusters founded using DBSCAN [31] algorithm implemented
using Open3D[29] with a distance to neighbors in a cluster ϵ = 0.02 [m], and the minimum
number of point to form a cluster MinPts = 10. In the figure, points that are not
highlighted are considered as noise.

3.5.2 Acquisition technologies
Various sensors and technologies are employed to capture 3D data and create PCDs, each
with its characteristics and suitability for specific applications.

One accessible technology is the RGB-D camera, capable of capturing both color (RGB)
and depth information on a per-pixel basis in real-time. Depth frames in RGB-D cameras
can be obtained through different technologies, such as:

• Stereoscopic cameras, which determine depth by comparing disparities between two
spaced sensors, as presented previously in Sec. 3.4.
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• Structured light cameras, which actively project infrared light patterns onto the scene
and use a different perspective camera to analyze the visual distortion of the patterns
for depth reconstruction, as represented in Fig. 3.22.

• Time-of-flight (ToF) sensors, which calculate depth based on the time it takes for
signals emitted from an infrared light source to travel to the target object and return
to an infrared sensor.

Figure 3.22: Principle of structured light based RGB-D camera. Depth information is
extracted by analyzing the distortion in the projected pattern. [32]

Many methods in literature aim to reconstruct 3D geometry from RGB-D sensor data,
making it possible to process also depth information alone and convert it into a PCD in
real-time, ideal for various robotics applications.

Another category of sensors, such as Laser Imaging Detection and Rangings (LIDARs),
is more reliable but expensive. LIDARs use ultraviolet and visible light signals to estimate
depth information by measuring the time it takes for light to travel to an object and return
to the sensor. These sensors are employed in performance-critical applications, and their
working principles can be adapted for different scenarios. Traditional LIDAR scanners
rotate mirrors to scatter laser bursts and achieve a 360° horizontal FOV. Recently, Solid
State LIDARs without moving parts have been developed, offering a cost-effective and
reliable alternative, but with a more limited FOV. Both 2D planar and 3D LIDARs are
available, each suited for different use cases.
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Chapter 4

Mobile robots

In this chapter, we explore the critical connection between a robot’s perception of its
environment and the subsequent actions it undertakes. Our focus narrows down to robots
operating in two-dimensional spaces, particularly ground, wheeled robots navigating on
flat terrains. This chapter will cover the following key topics:

• Kinematic models: We will explore the fundamental kinematic models that govern
the motion of mobile robots. Starting with the constraints on their motion, we will
construct basic kinematic models such as the unicycle and the bicycle, providing
insights into how these models represent the motion of wheeled robots.

• Autonomous navigation systems: An overview of autonomous navigation systems,
localization, and mapping will be presented. Understanding these components is
essential for a robot to effectively navigate its environment and make informed
decisions.

• Model Predictive Control (MPC): The chapter will introduce the concept of
MPC, a strategy for computing control commands for rovers. We will explore how
MPC utilizes a predictive model of the robot to optimize its trajectory over a specified
time horizon. Moreover, we will discuss the Model Predictive Path Integral (MPPI)
controller, an evolution of MPC, and its implementation in the ROS2 Nav2 package.

This foundational knowledge lays the groundwork for understanding how these robots
effectively interact with and navigate their surroundings.

4.1 Kinematic models
Non-holonomic constraints

Wheeled vehicles encounter certain constraints that restrict their local mobility, although
these constraints typically do not entirely preclude achieving arbitrary poses. Let’s think
about the parking of a car: it is not possible to move it sideways, but parallel parking is
possible only with an appropriate sequence of maneuvers.
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To illustrate this phenomenon, let’s consider the example of a single steered wheel
moving on a flat surface. Its configuration, i.e. position and orientation, is described by
the vector q = [x y θ]T , where (x, y) are the coordinate of the contact point between
the wheel and the ground and θ represents the wheel orientation w.r.t x axis, as depicted
in Fig. 4.1. Thus, the wheel’s movement can be characterized by the function q(t).

Figure 4.1: Single wheel rolling on a plane. [33]

In the case of non-slipping wheel motion, the velocity of the contact point should
have no component in the direction perpendicular to the wheel’s orientation, meaning
the velocity vector should align with the wheel’s orientation. Using the velocity vector
v⃗ = (ẋ, ẏ), this requirement, known as the pure rolling constraint, can be expressed as:

ẏ

ẋ
= dy

dt
· dt
dx

= dy

dx
= tan θ (4.1)

Such a constraint can be expressed in Pfaffian form, a linear expression in terms of
generalized velocities q̇ = [ẋ ẏ θ̇]T (as will be discussed later), as follows:

ẏ

ẋ
= tan θ = sin θ

cos θ
ẏ cos θ = ẋ sin θ

ẋ sin θ − ẏ cos θ = 0
[sin θ − cos θ 0] q̇ = 0

(4.2)

This constraint is non-holonomic, since it does not imply any loss of accessibility in
the wheel configuration space [34]. In other words, it’s feasible to move the wheel from
any initial configuration qi to any final configuration qf through a suitable sequence of
motions without violating the pure rolling constraint.

In the general case, let q ∈ Rn the vector generalized coordinates that describes the
configuration of the robot, with the assumption that the robot’s configuration space C (i.e.,
the set of all possible configurations) coincides with Rn. The robot’s motion is defined by
the function q(t) and can be subject to constraints.

We classify constraints as holonomic (or integrable) if they can be written as:

hi(q) = 0, i = 1, . . . , k < n (4.3)
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Holonomic constraints effectively reduce the dimension of the accessible configuration
space to a subspace of C with a dimension of n− k.

Constraints that involve both the generalized coordinates and their derivatives (veloci-
ties) are called kinematic constraints and, in general, they are expressed as

ai(q, q̇) = 0, i = 1, . . . , k < n (4.4)

These kinematic constraints restrict the possible instantaneous motion of the system,
constraining the set of generalized velocities that can be obtained in each configuration.
Often, these constraints can be expressed in Pfaffian form, meaning they are linear in the
generalized velocities, as:

aT
i (q)q̇ = 0, i = 1, . . . , k < n (4.5)

or, in matrix form, as:
AT (q)q̇ = 0 (4.6)

If there are k holonomic constraints, this implies the existence of k kinematic constraints,
as demonstrated by the following equivalence:

dhi(q)
dt

= dhi(q)
dq

q̇ = aT
i (q)q̇ = 0, i = 1, . . . , k (4.7)

However, the reverse is not always true. Kinematic constraints can be reduced to
holonomic constraints only when they are integrable. If not, they are called non-holonomic
or non-integrable. Non-holonomic constraints do not imply any loss of accessibility in C
(the number of generalized coordinates cannot be reduced), but they do constrain the
velocities to a subspace with a dimension of n− k.

Derivation of the kinematics models

The matrix representation of the kinematic constraints in Eq. 4.6 makes it clear that the
n− k admissible generalized velocities can be found within the null space of AT (q).

Denoting with {g1(q), . . . , gn−k(q)} a base of the null space N(AT (q)), it is possible
to define the admissible trajectories as the solution of the non-linear dynamical system

q̇ =
mØ

j=1
gj(q)uj = G(q)u, m = n− k (4.8)

that represents the kinematic model of the constrained system. The trajectory q(t) results
from integration and depends on the initial position.

Within this context, u ∈ Rm represents the control inputs. The dimension of the
generalized velocities is effectively reduced to m = n − k due to the non-holonomic
constraints. Additionally, it’s essential to note that this system is driftless, meaning that
a zero input results in zero velocity output. Lastly, it is important to recognize that the
choice of the gj(q) basis isn’t unique. Consequently, the selection of the input vector u is
not unique either. The components of u may have physical interpretations and can be
linked to available control inputs, but this is not an exclusive requirement.
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Unicycle model

The simplest model we can introduce is the unicycle, a vehicle with a single steerable
wheel. Its configuration is described by q = [x y θ]T and it is subject to the pure rolling
constraint [sin θ − cos θ 0] q̇ = 0.

Figure 4.2: Unicycle model, a vehicle with a single steerable wheel. [33]

A base for the null space of the constraint matrix is:

g1(q) = [cos θ sin θ 0]T

g2(q) = [0 0 1]T
(4.9)

Thus, we have:

G(q) =


cos θ 0
sin θ 0

0 1

 (4.10)

and, from Eq. 4.8, we can obtain the unicycle kinematic model:

q̇ =


ẋ

ẏ

θ̇

 = G(q)u =


cos θ
sin θ

0

 v +


0
0
1

ω (4.11)

In this case the input u = [v, ω] have a physical meaning and is related to straightforward
control inputs: v is the driving velocity (modulus of the velocity of the contact point) and
ω is the steering velocity.

A unicycle would not be practically useful, due to its balancing problems. From a
kinematic point of view, however, it is equivalent to more stable structures, such as:

• Differential drive vehicles represented in Fig. 4.3a. (x, y) are the coordinates of
the middle point of the wheel axis, θ the vehicle heading. The physical inputs are
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the rotation velocities of the two wheels, ωR and ωL, that are related to the input of
the unicycle by

v = r(ωR + ωL)
2 ω = r(ωR − ωL)

d
(4.12)

• Synchro dive vehicle represented in Fig. 4.3b. The equivalence is straightforward,
since both drive and steer velocity are common to the three wheels. Coordinates
(x, y) can represent here any point of the chassis, while θ is the wheels heading (the
chassis has constant heading).

(a) Differential drive vehicle (b) Synchro drive vehicle

Figure 4.3: Models equivalent to the unicycle from a kinematic point of view. The solid
wheels are the active ones, while the white ones are passive. [34]

Bicycle model

A slightly more complex model is the bicycle, a vehicle with a steered front wheel and
a fixed rear one, mounted at a distance L from the front one. A possible choice for the
generalized coordinates is q = [x y θ ϕ]T , where (x, y) are the coordinates of the
contact point of the rear wheel, θ is the heading of the vehicle with respect to x axis, and
ϕ is the steering angle of the front wheel, as shown in Fig. 4.4.

There are two pure rolling constraints, one for each wheel:

ẋF sin (θ + ϕ) − ˙yF cos (θ + ϕ) = 0
ẋ sin θ − ẏ cos θ = 0

(4.13)

where (xF , yF ) are the coordinates of the contact point of the front wheel. We can
rewrite the first constraint as a function only of the generalized coordinates q, using the
rigid body property,

xF = x+ L cos θ
yF = y + L sin θ

(4.14)
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Figure 4.4: Bicycle model schematic. [33]

obtaining
ẋ sin(θ + ϕ) − ẏ cos(θ + ϕ) − Lθ̇ cosϕ = 0

ẋ sin θ − ẏ cos θ = 0
(4.15)

We can rewrite these constraints in the general matrix form presented previously in Eq.
4.6, where in this case

AT (q) =
C

sin θ − cos θ 0 0
sin(θ + ϕ) − cos(θ + ϕ) −L cos θ 0

D
(4.16)

The rank of AT is 2 and, consequently, its null space has dimension 4 − 2 = 2. A possible
base for the null space of AT is formed by the columns of

G(q) =


cos θ cosϕ 0
sin θ cosϕ 0

sin ϕ
L 0
0 1

 (4.17)

With this choice the kinematic model obtained is

q̇ =


ẋ

ẏ

θ̇

ϕ̇

 = G(q)u =


cos θ cosϕ
sin θ cosϕ

sin ϕ
L

0

u1 +


0
0
0
1

u2 (4.18)

where input u2 = ω is the steering velocity of the front wheel. Instead, u1 depends on the
drive of the vehicle:

• If the bicycle has front drive, we have directly u1 = v where v is the driving velocity
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of the front wheel. The resulting model is the following:
ẋ

ẏ

θ̇

ϕ̇

 =


cos θ cosϕ
sin θ cosϕ

sin ϕ
L

0

 v +


0
0
0
1

ω (4.19)

• If the vehicle has back drive, we can derive u1 observing that the first two equations
must coincide with those of the unicycle (Eq. 4.11), as the back wheel has the same
generalized coordinates of a unicycle. This leads to set

u1 = v

cosϕ (4.20)

where v is the drive velocity of the back wheel. The resulting kinematic model is
ẋ

ẏ

θ̇

ϕ̇

 =


cos θ
sin θ
tan ϕ

L

0

 v +


0
0
0
1

ω (4.21)

Also the bicycle presents balance problems in practice, but also in this case we have
equivalent structures from the kinematic point of view, such as the tricycle and the
automobile shown in Fig. 4.5. In both cases, we may have rear or front drive. The point
(x, y) is the midpoint of the back wheel axis, θ represents the vehicle heading, and ϕ is the
steering angle.

(a) Tricycle (b) Automobile

Figure 4.5: Models equivalent to the bicycle from a kinematic point of view. [34]
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4.2 Navigation
For a rover to navigate effectively within its environment, it must tackle three fundamental
challenges: trajectory planning, localization, and control. Trajectory planning involves
determining the desired path the rover should follow, respecting constraints, and optimizing
its motion. Localization, on the other hand, revolves around precisely determining the
rover’s position and orientation within its environment. Finally, control strategies are
essential to ensure that the rover follows the planned trajectory and responds to changing
conditions in real-time. These three challenges are essential components of implementing
a feedback control system for the rover’s autonomous movement.

Trajectory planning and control

The planning strategy aims to guide the rover from its initial configuration qi to a target
configuration qf . This task necessitates adherence to non-holonomic kinematic constraints
and input constraints while often accommodating additional requirements such as obstacle
avoidance, energy consumption reduction, and path curvature limitations.

This challenge can be decomposed into two distinctive phases:

1. Path Selection: This phase involves identifying the geometric path that the robot
should ideally follow.

2. Timing Law Definition: It associates precise timing information to execute the
path effectively.

Traditionally, these two phases are addressed by separate entities: the planner and
controller. However, a more versatile approach entails the use of optimal control strategies,
which allow to determine a control law that transfers the state of the dynamical system
from qi to qf . This approach seeks to minimize a relevant cost functional along the path,
as exemplified by the Model Predictive Control (MPC) method detailed in Sec. 4.3.

Localization and mapping

The implementation of any feedback controller for trajectory tracking requires the knowledge
of the configuration (position and orientation) at any time instant. Incremental encoders
mounted on the wheel actuators provide measurements of wheel rotations, but do not
directly provide the position and orientation of the vehicle w.r.t. to a fixed RF. This
necessitates real-time localization procedures to estimate the robot’s configuration.

The simplest yet less reliable solution is based on odometry. Given the robot’s
configuration qk at time tk, the next configuration qk + 1 is determined by forward
integration of the kinematic model using the applied inputs vk and ωk.

Irrespective of the integration algorithm, instead of using the nominal commands vk

and ωk, it is preferable to reconstruct them starting from measurements, to overcome
errors due to the non-idealities of actuators. However, this method is inherently susceptible
to drift (error accumulation), due to several factors:
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• Inaccuracy of the initial configuration q0.

• Wheel slippage.

• Measurement noise.

• Numerical errors introduced by the discrete integration.

• Inaccuracy in the kinematic parameters or in the model used for integration.

Active localization methods are more robust and reliable, since they exploit measure-
ments from both odometry and "external" sensors, such as proximity, distance, vision,
etc. Moreover, they may also perform comparisons with a map of the environment, given
a priori or reconstructed by the robot during its motion. Estimates obtained through
odometry are corrected using information from other sensors via probabilistic filters. These
methods estimate, together with the robot configuration, the uncertainty associated with
such an estimate, through a probability density function or belief.

The most commonly employed approaches include the Extended Kalman Filter (EKF),
where probability densities are supposed to be multivariate Gaussian, and particle filters.
In the latter, probability densities are approximated by a set of weighted particles in a
multidimensional space, where higher weights indicate a higher likelihood that a particle
accurately represents the robot’s actual pose.

The problem of mapping pertains to establishing a consistent representation of the
environment in which the robot operates based on its pose knowledge. Different mapping
methods can be used, according to the specific application of interest:

• Maps based on landmarks are stochastic maps that contain a probabilistic description
of some salient elements (landmarks), such as doors, corners, etc.

• Maps based on occupancy grid consists of a cell grid, where each cell has associated
the probability of being occupied.

While landmark-based maps offer a more compact representation with lower memory
occupancy and can employ approaches similar to localization, occupancy grid-based maps
provide more intuitive environment models that can be updated swiftly for navigation
purposes.

When a robot navigates a completely unknown environment, both the localization and
mapping problems must be solved concurrently. This scenario gives rise to the concept of
Simultaneous Localization And Mapping (SLAM). In this context, the robot constructs
a map of the environment while simultaneously determining its own localization. An
approach to tackle this problem could involve using the EKF in combination with a
landmark-based map. Estimations consider an augmented state that includes both the
robot’s pose and the positions of landmarks within the map.
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4.3 Model Predictive Control
In the dynamic and complex world of mobile robot navigation, the Model Predictive
Control (MPC) strategy has emerged as a powerful and adaptive tool. As mobile robots
traverse diverse environments, ranging from industrial facilities to outdoor terrains, the
need for precise and responsive control becomes increasingly paramount. MPC, unlike
traditional control methods, offers a forward-looking approach that considers the dynamic
interplay of factors such as robot kinematics, sensor data, and environmental obstacles in
real time. This enables mobile robots to make decisions that are not only reactive but also
proactive, enhancing their ability to navigate safely and efficiently.

4.3.1 Introduction to the control strategy
Model Predictive Control (MPC) is a general and flexible approach to linear and non-linear
system control. This solution allows us to deal directly with constraints, such as input
constraints (e.g., limits in the actuators, maximum velocities, etc.), and state or output
constraints (e.g., obstacles avoidance, etc.). Moreover, this solution manages systematically
the trade-off performance/command effort. MPC is widely used in automotive systems,
aerospace systems, chemical processes, robotics, biomedical devices, etc.

Physical limitations in actuator devices impose hard constraints on the control input
u(t), represented as saturation constraints. These constraints can be described as:

uL ≤ u(t) ≤ uU ∀t ≥ 0. (4.22)

where uL and uU are the lower and upper bounds, respectively. Usually, these bounds
are symmetric with respect to the origin: given a maximum value uM , then uL = −uM

and uU = uM . These saturation constraints can also be expressed as a non-linear static
function of the control input as

us(t) =


uL if u(t) ≤ uL

u(t) if uL ≤ u(t) ≤ uU

uU if u(t) ≥ uU

∀t ≥ 0. (4.23)

When input saturation is active, the feedback control system becomes non-linear. In this
situation, the control system operates without feedback, and exceeding the input bounds
can lead to unexpected behaviors like large overshoot, reduced performance, or, in the
worst-case scenario, instability.

It is important to note that, in the presence of saturation, traditional stability analysis
of the feedback system using linear systems tools (e.g., pole and eigenvalue analysis)
is not applicable. Constraint satisfaction cannot be addressed directly by these tools
and must be verified a posteriori through simulation. If the system does not meet the
input requirements, one common approach is to slow down the transient response of
the control system, typically by selecting dominant closed-loop poles with larger time
constants. However, this strategy may result in an insufficient trade-off between transient
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performance and constraint satisfaction. To prevent such performance degradation, the
design procedure must explicitly account for input constraints.

Saturation constraints are effectively handled when the control input is obtained through
a discrete-time finite horizon optimal design procedure, such as the Linear-Quadratic (LQ)
optimal control. Given a linear, discrete-time system

x(k + 1) = Ax(k) + Bu(k) x(k) ∈ Rn,u(k) ∈ Rnu (4.24)

the optimal input sequence computed at time k,

u⋆(k|k) = [u(k|k),u(k + 1|k), . . . ,u(k +Hp − 1|k)]T

can be found as
u⋆(k|k) = arg min

u(k|k)
J (x(k|k),u(k|k)) (4.25)

The length Hp of the finite optimization horizon [0, Hp − 1] is referred to as prediction
horizon. The cost function J (x(k|k),u(k|k)) is computed by evaluating the predicted
state response up to the prediction horizon starting from the initial state x(k|k) = x(k).
The "|k" symbol underlines that the sequence is evaluated at time k.

To account for the presence of input saturation uL ≤ u(k) ≤ uU , ∀k ≥ 0, the
following constraints are added to the optimization problem.

uL ≤ u(k|k) ≤ uU

uL ≤ u(k + 1|k) ≤ uU

...
uL ≤ u(k +Hp − 1|k) ≤ uU

(4.26)

where uL and uU are the upper and lower bounds respectively.

The Receding Horizon (RH) principle

Suppose that, at a time k, the optimal input signal u⋆(k : k +Hp|k) has been computed
solving the corresponding optimization problem. In this scenario, u⋆(k : k +Hp|k) is an
open-loop input: it depends on x(k), but not on x(k̃), k̃ > k. If we apply the entire
sequence for the entire time interval [k, k +Hp − 1], no feedback action is involved. This
can lead to increased errors and disturbances, and a reduction in precision and adaptability.
[35]

To overcome this problem, the Receding Horizon (RH) principle can be exploited. It
can be defined by the following recursive procedure:

1. At time k:

(a) Compute u⋆(k : k +Hp|k) by solving the corresponding optimization problem.
(b) Apply only the first input value u(k) = u⋆(k|k) and keep it constant for a

sampling time interval.
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2. Repeat steps 1a-1b for k + 1, k + 2, . . .

If the model and the cost function are time-invariant, the RH principle implicitly defines
a non-linear, time-invariant, static, state feedback control law [36] of the form

u(k) = K(x(k)) (4.27)

Unfortunately, the analytical expression of K(x(k)) cannot be computed in general.
Moreover, this controller introduces non-linearity in the state equation of the controlled
system (if not already present). Finally, the RH procedure can be also employed in the
context of finite horizon LQ unconstrained control to obtain a feedback controller.

The MPC methodology

Constrained finite horizon optimal control and feedback Receding Horizon (RH) lead to the
Model Predictive Control (MPC) methodology. In particular, MPC leverages a dynamical
model of the plant to predict the future behavior of the variables of interest and compute
an optimal control action.

"MPC is like playing chess" [36]. Similar to a chess player, the MPC controller selects
a move by visualizing the game scenario and trying to anticipate the opponent’s sequence
of moves. If the opponent makes an unexpected move in the next turn, the controller must
adjust its game plan to counteract this move (RH feedback).

The MPC strategy computes the solution online, making it computationally expensive.
Additionally, it relies on a plant model for prediction. In practice, simplified plant models
are often used to reduce computational complexity. Since the optimization problem solved
by the controller is generally non-convex, an efficient numerical algorithm is required to
find a solution (usually a local minimum in non-convex scenarios). For an example of such
an optimizer, you can refer to Appendix C.

Figure 4.6: MPC schematic. In this case a Non-linear Model Predictive Control (NMPC)
controller is used to follow the reference signal r.

Let consider a linear, discrete-time, Multiple-Input Multiple-Output (MIMO) system

x(k + 1) = Ax(k) + Bu(k)
y(k + 1) = Cx(k) + Du(k)

(4.28)
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where x(k) ∈ Rn is the state, u(k) ∈ Rnu is the command input and y(k) ∈ Rny is the
output. Moreover, let’s assume a zero-regulation problem, i.e. control all the states to zero.
Then, the MPC control input is computed by solving at each sampling time k the problem

min
u(k|k)

Hp−1Ø
i=0

(∥x(k + i|k)∥2
Q + ∥u(k + i|k)∥2

R) + ∥x(k +Hp|k)∥2
S

s.t.
I

x(k + 1) = Ax(k) + Bu(k)
uL ≤ u(k + i|k) ≤ uU i = 0, 1, . . . , Hp − 1

(4.29)

and, according to the RH principle, by applying the first element of the minimizer.

u(k) = u⋆(k|k) (4.30)

It is important to notice that in Eq. 4.29 ∥∗∥W represents the weighted vector norm.
Here, Q is the matrix of state cost weights, R accounts for the input cost and allows us to
manage the trade-off between performances and command activity, while S weights the
terminal cost.

State and output constraints can be added to the problem to obtain particular
performances. Moreover, it is important to notice that a longer prediction horizon provides
more degrees of freedom within the optimization problem but simultaneously increases its
complexity. To mitigate this phenomenon, various techniques, such as variable blocking,
can be employed. Variable blocking involves grouping control moves to hold their values
constant for multiple prediction steps, effectively reducing the number of optimization
variables.

In case of a non-linear system

x(k + 1) = f(x(k),u(k))
y(k + 1) = h(x(k),u(k))

(4.31)

the NMPC control input is computed, in an analog way, by solving at each sampling time
k the problem

min
u(k|k)

Hp−1Ø
i=0

(∥x(k + i|k)∥2
Q + ∥u(k + i|k)∥2

R) + ∥x(k +Hp|k)∥2
S

s.t.
I

x(k + 1) = f(x(k),u(k))
uL ≤ u(k + i|k) ≤ uU i = 0, 1, . . . , Hp − 1

(4.32)

and, as in the linear case, by applying the first element of the minimizer.

Conceptual issues

MPC is a powerful technique in the realm of control systems, offering a general and flexible
approach for managing complex Multiple-Input Multiple-Output (MIMO) systems. One
of its key strengths lies in its intuitive formulation, which relies on optimality concepts
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to craft control strategies. MPC also excels in accounting for constraints and addressing
input saturation, even when these constraints are subject to variations over time. This
method efficiently navigates the delicate trade-off between system performance and input
activity, all while providing optimal trajectories over finite time intervals. Remarkably,
MPC achieves a unified computation of both optimal trajectories and control laws [35].

However, the online computational cost of MPC can be high, which may limit its
real-time applications. Additionally, MPC encounters challenges when dealing with
unstable zero dynamics, as do most control methods. Moreover, since the feedback
control action is realized through the RH principle via the solution to a finite horizon
constrained optimization problem [36], two issues arise:

• Feasibility of the optimization problem for every point of the state space, i.e., for every
sampling time. In particular fulfillment of state/output constraints is not guaranteed
in general.

• Stability of the closed loop system.

Only in linear MPC with convex constraints, the optimization problem is convex, so it is
guaranteed that numerical algorithm converges to the global optimum, while the non-linear
formulation can find only local optima in general. Moreover, in contrast to linear MPC,
which necessitates linearization of system dynamics, Non-linear Model Predictive Control
(NMPC) directly employs non-linear models, making it particularly suited for systems
with complex behavior. While linear MPC demands complex constraint convexification
for non-convex constraints, NMPC easily accommodates simple inequalities to define
constraints. Its flexibility also allows for seamless integration with other techniques, such
as Artificial Potential Fields, opening doors to innovative control strategies.

Up to this point, full state feedback has been assumed in MPC design. However, in
many cases, the use of a state observer is required to estimate unmeasured states and filter
out noise. State estimation can be obtained using either an asymptotic state observer or a
Kalman filter. In the presence of measurement noise and process disturbance, asymptotic
estimation is not feasible, and an error exists in the estimated state. To accommodate
this state estimation error, constraint tightening can be incorporated into MPC design.
Nevertheless, this approach results in more complex optimization problems.

4.3.2 Model Predictive Path Integral Controller
The optimal control approach, which seeks to determine an optimal sequence of controls
(or a control law) by considering a given cost function and the system dynamics, seamlessly
integrates trajectory planning and execution. However, it’s important to note that for
systems characterized by nonlinear dynamics and non-convex cost functions, solving the
optimal control problem poses substantial computational challenges.

In this section, I will introduce the Model Predictive Path Integral (MPPI) controller
proposed in [37]. It is a MPC algorithm based on the path integral control framework.
By merging the strengths of hierarchical methods (first planning a trajectory and then
applying a simple feedback controller) and optimal control paradigms, it avoids dividing
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the problem into separate planning and execution phases. This unified approach simplifies
problem formulation and delivers optimal behavior while considering the system dynamics.

One of the remarkable features of this algorithm is its capability to accommodate
objective functions that are neither required to be convex nor differentiable, offering
enhanced flexibility. The controller presented in [37] has been effectively implemented in
the Nav21 platform designed for ROS2.

The Model Predictive Path Integral (MPPI) algorithm is a variant of MPC designed to
compute control velocity for a robot through an iterative approach. Using the previous
time step’s best control solution and the robot’s current state, a set of randomly sampled
perturbations from a Gaussian distribution are applied. These noised controls are forward
simulated to generate a set of trajectories within the robot’s motion model. Subsequently,
these generated trajectories are evaluated using a predefined set of cost functions to identify
the optimal trajectory within the batch. A soft max function is employed to determine
the best control based on the trajectory scores. This process iterates multiple times until
a converged solution is achieved.

The iterative update law discovered through this research can be effectively applied
within an MPC framework. In this context, optimization is performed dynamically, with
trajectory optimization taking place before executing a single control input, followed by
re-optimization at the following time step. Given that the path integral control provides a
formula for optimizing the entire sequence of controls, rather than just the current time
instant, the unexecuted part of the control sequence can be re-used to initialize subsequent
optimizations. This proves critical for the algorithm’s performance since, for a complex
system operating at a reasonable control frequency, only a limited number of iterations
can be performed within each time step.

It’s important to note that the accurate positioning of the rover is essential for the
effective implementation of this solution. To achieve this, localization methods and sensors
such as IMU and GPS must be employed.

The MPPI controller has been subjected to rigorous testing in a practical setting,
specifically, with an autonomous off-road rally car model (see Fig. 4.7). Researchers
employed the controller to address the challenge of navigating an approximately ellipsoidal
racetrack, treating it as a finite-horizon optimal control problem.

The comprehensive cost function designed for this task consists of four terms:

• A cost for staying on the track. Moreover, if a given trajectory leaves the track, then
the dynamics are set to zero and the car remains in its current location for the rest
of the simulation.

• A cost for achieving a desired velocity.

• A control cost, in order to deal with the performance/command effort trade-off.

• A cost on the side-slip angle introduced to enhance the vehicle’s stability.

1https://navigation.ros.org/index.html
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Figure 4.7: Time-lapse video of the cornering maneuver of the Auto-Rally car. [37]

In the challenging rally scenario, the MPPI controller demonstrated its real-world
applicability by effectively addressing the intricate dynamics of off-road racing.
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Chapter 5

The proposed navigation
system

This thesis proposes a position-agnostic system, that not only avoid the issues related
to integration and localization systems but also excels in scenarios where traditional
methods, such as GPS, fail to achieve the desired precision, often due to unfavorable
weather conditions or line-of-sight obstructions.

The controller takes in input a Point Cloud Data (PCD) (data representation presented
in Sec. 3.5) message, and it must compute a velocity Twist command as output (in
particular a linear velocity vx and an angular velocity ωz), that the rover will use to move.
The input PCD can be derived from different sources, including RGBD cameras or 3D
LIDAR sensors. Alternatively, RGB images and depth frames can be used as separate
inputs to generate the PCD through the 3D reconstruction process introduced in Sec. 3.4.
The latter is the more computationally expensive one, since it requires reconstructing the
scene inside the controller process, while using a LIDAR should provide the best result,
since this technology produces a 360° uniform, light, and precise PCD. However, since
RGBD cameras are very general, reusable, and quite cheap sensors, and since these devices
(such as the one presented in Sec. 6.1.2) compute and provide directly the PCD in their
FOV, the most tested solution is the one exploiting as input the PCD generated from an
RGBD camera.

So the controller should be able to process in real-time the input PCD and for each one
compute the corresponding velocity output. Since the rover is designed to navigate through
rows in agricultural environments where high-speed travel is unnecessary, a reasonable
minimum control frequency for the system is 15Hz.

As introduced in Sec. 1, the primary objective of the control system is row navigation,
ensuring effective obstacle avoidance. The rover’s versatility is enhanced to accommodate
various crop types and row spacing, from small-row crops where it operates within inter-row
spaces to larger-row crops, where it adheres to predefined lanes, such as the right half of
the row space. The controller must exhibit robustness in varying crop density, height, and
other environmental factors, even when dealing with high canopies or rough terrains.

Furthermore, the system is designed to recognize and approach specific objects, such as
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fruit boxes. Once a target object is identified, the system adapts its navigation to approach
the object, pausing momentarily when it reaches the target. This momentary stop serves
to showcase the correctness of the maneuver and, in the future, may be utilized to perform
specific tasks related to the target. Following the brief pause, the system resumes its
row traversal until it reaches the end of the row, demonstrating a seamless integration of
targeted object recognition into the overall navigation strategy.

This comprehensive system aims to address the complexity of agricultural environments
and enhance the autonomous capabilities of agricultural rovers.

5.1 The computation graph
The schematic of the proposed system is shown in Fig. 5.1.

Figure 5.1: Computation graph of the proposed solution. The thick lines correspond to
the principal data flows.

The RGBD camera data undergo analysis by two main subsystems:

• The Point Cloud Analysis node extracts information and computes two lines
delimiting intra-row space. The subsequent NMPC Controller node uses a
Non-linear Model Predictive Control (NMPC) strategy to compute the control
sequence, minimizing input variation, distance from the lane center, misalignment
with row direction, and maximizing distance traveled.
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• The object recognition pipeline starts with the RGB Segmentation node. It is
important to note that the scope of this work does not encompass the comprehensive
development of target recognition mechanisms. Instead, a basic color filter is employed
as a demonstration to identify the target and validate the approaching and recovery
maneuvers. Then the Object analysis node clusters the segmented points into
objects, and then computes their position in space. Finally, the Target approach
validates target reaching.

Moreover, a Fallback Controller node is added to the system to manage faulting
situations in which the rover rotates toward a row crop and does not see the free space in
front of him. This node is a very simple controller that aligns and moves back the rover to
the last correctly computed center of the intra-row space. This objective is done with a
very simple proportional controller, where the feedback is represented by the odometry of
the rover managed in ROS2 (see Appendix. D) by the TF2 subsystem. First, the controller
moves back the rover toward the center of the free space, then it rotates it in the direction
of the row, to have the free space in its FOV.

Finally, a Visualization node can be optionally employed to visualize in real-time
the vision analysis and the results of the NMPC objective minimization, in particular the
predicted trajectory. Moreover, if a target is recognized in the current frame a marker is
added to the figure. This node is essential to debug and check the correct behavior of the
system.

The system is orchestrated by a Behavior Tree, overseeing high-level logic, mission
switches, start/stop commands, failure detection, and initiating fallback procedures.

5.2 The control algorithm
5.2.1 The vision algorithm for row detection
The PCD Analysis node is responsible for detecting the row in the input PCD. This
node can be utilized with either an input RGBD image (reconstructing the PCD using the
pipeline illustrated in Sec. 3.4) or a PCD, and it associates a callback function to process
each incoming message. The output of this procedure includes the array of obstacle points
and two lines representing the borders of the row, where each line is defined by two real
numbers ai, bi ∈ R : y = aix+ bi, i ∈ [l, r].

Let’s consider the whole procedure from the PCD to the extraction of obstacles and
the lines.

The first part consists of reducing the input PCD to a set of 2D points:

1. The PCD is scaled to meters if it’s not already in that unit.

2. It undergoes a transformation from the camera RF to the rover RF.

3. Down-sampling is performed using voxelization (refer to Sec. 3.5) at a specified
resolution (e.g., 5 cm).

4. The number of points at this moment is recorded for subsequent reference.
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Figure 5.2: Example of the graph provided by the Visualization node on the left with its
corresponding position in the vineyard on the right. The PCD computed by the camera
mounted on the rover is analyzed and a step of the NMPC pipeline is performed. All the
results are shown in real time on the graph on the left.

5. Cropping of the PCD is done to eliminate points that are too far and lack sufficient
precision, as well as points in the sky and on the ground. A minimum height threshold
is set to ensure the removal of ground points even in cases where the rover is not
perfectly parallel to the ground plane due to rough terrains.

6. Statistical outlier removal is applied to filter the PCD.

7. If the current number of points is less than a given specific percentage of the number
of points computed at (4), the row is considered empty. Otherwise, the z-coordinate
is removed to obtain a set of 2D points.

Continuing from the 2D points array, the subsequent steps of the pipeline are as follows:

1. A grid map is generated at a specified resolution, matching the one used in the
down-sampling process.

2. The 2D grid is illuminated from the rover’s perspective (and hence the camera),
shadowing all the occupied areas (considering space behind an occupied cell as also
occupied).

3. A morphological filtering process is applied to the binary grid to eliminate noise and
fill gaps between occupied zones.
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4. The contours of the occupied zones are computed. Subsequent analysis depends on
the number of distinct zones detected:

• If only one contour is detected, the system first checks for an evident hole in
the occupied zone. If present, indicating that at the end of the depth range,
some points have connected the left and right crops, the points are divided
into two clusters using this visible, far point as a separator. If no such hole is
evident, information from the past frame is used. For example, if in the previous
frame, only the right row was visible, then in the subsequent frame, the only
area present should again be on the right side. This information is utilized
to determine whether the cluster represents the left or right side. If previous
frames are not available, the main trend in the cluster of points is used to decide
whether this cluster is the left or right one.

• If two contours are detected, it is a straightforward case where the two areas
represent the left and right row crops, delineating the space.

• If multiple contours are detected, the two extreme zones are associated with the
left and right borders. The remaining contours are iteratively united with the
closest one.

5. From the left and right clusters of points, the border facing the row is selected.
Continuing from the arrays of points representing the left and/or right border of the

row (in meters), a linear weighted fit is applied to detect an initial version of the two
straight polynomials:

• If both borders are represented by a sufficiently large number of unique points (greater
than a given threshold, e.g., 5):

1. Compute the median width between the left and right points. If this value is
smaller than a given threshold, an error is raised since the computed row is too
narrow.

2. Update the current estimate of the width of the row:

ŵk+1 = (1 −K)ŵk+1 +K ·median(w) (5.1)

where K represents the weight of the novelty update.
3. Compute the two linear polynomials starting from the two arrays of points using

a linear weighted fit. The weight is the sum of a term that penalizes more distant
points and a term that penalizes points with a distance from the other side very
different from the estimated mean value (representing points where there may
be an obstacle or a hole in the crops).

• Use the linear fit with the distance weight presented earlier to compute the right
line coefficients. The left ones are computed using the mean width value of the row
computed at past time steps as the distance between the two parallel lines:

al = ar

bl = al + wavg

ñ
1 + a2

l

(5.2)
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• A similar approach is used in the case of left border points only:

ar = al

br = al − wavg

ñ
1 + a2

r

(5.3)

To conclude and refine the results, several closure operations are performed:

1. A safe margin is added to the border of the row. Recalling that we are dealing with
ai, bi ∈ R : y = aix + bi, i ∈ [l, r], we modified the offset of the two lines to move
them away from the crops, but the angular coefficient remains the same to maintain
the direction:

a′
l = al

b′
l = bl −Rm

ñ
1 + a2

l

a′
r = ar

b′
r = br +Rm

ñ
1 + a2

r

(5.4)

where Rm represent the margin. The distance between the two parallel lines (before
and after this operation) is exactly equal to Rm. The rover RF has the y-axis pointing
to the left, so the right border is moved more to the left (+Rm

ð
1 + a2

r in Eq. 5.4),
while the left one is moved more to the right (−Rm

ð
1 + a2

r in Eq. 5.4).

2. Starting from a′
i, b

′
i ∈ R : y = a′

ix+ b′
i, i ∈ [l, r] calculated at the previous step, the

lane lines are adjusted:

• If the trajectory is set to "middle", the rover can use all the space in the intra-row
space, so, no operation is needed, and the process continues to the next points.

• If the trajectory is set to "right", only the right half-space can be used, so:

a′′
l = a′

l + a′
r

2

b′′
l = b′

l + b′
r

2

(5.5)

• A specular operation is performed in the case of the "left" lane:

a′′
r = a′

l + a′
r

2

b′′
r = b′

l + b′
r

2

(5.6)

3. Finally, an error is raised if one of the two lines is too (given a predefined maximum
angle) perpendicular to the x−axis, i.e., the direction of motion of the rover. This
means that if the rover turns to face the crops, an error is raised, and the subsequent
fallback procedure is initiated to realign the rover with row direction.
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As a slightly alternative solution, exploiting the segmentation Convolutional Neural
Network (CNN) used by [10] to recognize the row is possible. With this approach, the
input RGBD image is segmented, reconstructing only the points associated with the
crops. Subsequently, the PCD analysis is performed exclusively on the crops, and the
line delimiting the row is computed on the filtered PCD. In parallel to this operation, the
obstacle points are computed from the complete PCD, as obstacles can also differ from
the crops (e.g., boxes, people, etc.). This method allows for a more targeted and efficient
analysis of the row-specific points, potentially improving the accuracy and performance of
the system.

5.2.2 The NMPC controller
To implement the NMPC controller, the DO-MPC library [38] was chosen for its versatility.
Subsequently, a customized kinematic model and cost function were meticulously tailored
to address the specific requirements and characteristics of the rover’s navigation scenario.
This involved carefully calibrating the model parameters and formulating the cost function
terms, as well as the problem constraints.

The inputs of the NMPC controller are the points representing the obstacles and the two
first-order polynomials representing the two straight lines delimiting the lane, expressed in
the robot RF. Each line is represented by two real numbers ai, bi ∈ R : y = aix+bi, i ∈ [l, r].

Kinematic model

The NMPC approach employed in this project requires a plant model to predict future
states. For this purpose, a modified version of the Unicycle model (introduced in Section
4.1), was selected. In particular, quaternions, discussed deeply in Appendix B, are used
for the representation of the state variable x3 = θ (representing the orientation angle).
This adjustment was motivated by the periodicity of the angle expressed in radians, where
multiple distinct states can represent the same angle.

In this modified model, the angle θ around the Z axis was substituted with the
corresponding quaternion q = (cos(θ/2), 0, 0, sin(θ/2). Leveraging quaternion kinematics,
its derivative q̇ was then employed to describe the rover’s orientation in relation to the input
angular velocity ωz. This approach enhances the representation of orientation, mitigating
the challenges associated with the periodic nature of the angle variable and facilitating
more robust predictions of future states within the NMPC framework.

Starting from the quaternion dynamics

q̇ = 1
2Qω

=


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 ·


ωx

ωy

ωz

 (5.7)

and recalling that we are considering only rotations around Z axis (rover moving on a
plane), q1 = q2 = 0 and ωx = ωy = 0, then:
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q̇ = 1
2


0 0 −q3

q0 −q3 0
q3 q0 0
0 0 q0

 ·


0
0
ωz

 =


−ωz

q3
2

0
0

ωz
q0
2

 (5.8)

q̇1 = q̇2 = 0 for every possible orientation so we can eliminate these two components. So,
we can define two new states for substituting the angle θ, x3 = q0 and x4 = q3.

Moreover, to complete the model, cos θ and sin θ must be expressed as a function of
the new states x3 and x4.

cos θ = cos
3
θ

2 + θ

2

4
=

3
cos θ2

42
−

3
sin θ2

42
= q2

0 − q2
3 = x2

3 − x2
4

sin θ = sin
3
θ

2 + θ

2

4
= 2 cos θ2sin

θ

2 = 2q0q3 = 2x3x4

(5.9)

To summarize, the kinematic model of the unicycle
ẋ

ẏ

θ̇

 =


v cos θ
v sin θ
ω

 (5.10)

has been modified to 
ẋ1

ẋ2

ẋ3

ẋ4

 =


v(x2

3 − x2
4)

v(2x3x4)
−ω x4

2
ω x3

2

 (5.11)

where x1 = x, x2 = y, x3 = cos θ
2 , x4 = sin θ

2 . The inverse relations are

x = x1, y = x2, θ = 2 arctan x4

x3

Constraints

Firstly, input saturation constraints were incorporated into the NMPC minimization
problem, allowing for the specification of maximum linear and angular velocities as
parameters before the system’s initiation.

In addition, non-linear constraints of the form d(x,oi) ≥ R were integrated to ensure
obstacle avoidance, where d(·) represents the Euclidean distance between the rover pose
x and the i-th obstacle oi. The parameter R represents a predetermined safe distance
between the rover and an obstacle point. By eliminating the squared root (due to domain
issues with its derivative) and expressing the constraint in standard form g(. . . ) ≤ 0, the
resulting formulation is:

−(x1 − oi
1)2 − (x2 − oi

2)2 +R2 ≤ 0 (5.12)
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This constraint must hold for each time step tk = 1 . . . TH and for every obstacle point,
providing a robust mechanism for obstacle avoidance throughout the prediction horizon.

Objective function

The core of the NMPC formulation lies in defining an objective function, which is an
optimization problem represented as follows:

C =
n−1Ø
k=0

(l (xk,uk, p)ü ûú ý
lagrange term

+ ∆uT
kR∆ukü ûú ý

r-term

) + m (xn)ü ûú ý
meyer term

(5.13)

One key element of the objective function is the penalty for control inputs, which can be
utilized to smooth the obtained optimal solution and serve as a crucial tuning parameter.
A quadratic penalty on changes is added:

∆uk = uk − uk−1 (5.14)

The DO-MPC library automatically provides the solver with the previous solution of uk−1
for ∆u0. Two parameters, Klin and Kang, are introduced as the diagonal elements of the
matrix R for tuning this quadratic penalty on the two control inputs of the system (linear
velocity and angular velocity, respectively).

Additionally, the objective function is designed to maximize the distance traveled by
the rover in the prediction horizon time interval. So, recalling that max f = min −f , the
terminal (or meyer) term is set as follows

m (x) = −Ktravel
x1 + aavg · x2ñ

1 + a2
avg

(5.15)

Here, Ktravel represents the parameter for weighting this term, aavg = (al + ar)/2 is the
angular coefficient of the line in the middle of the row, and x1, x2 are the coordinates of
the rover in plane at the horizon tk = TH . The distance traveled by the row is projected
onto the middle line to weigh only the distance traveled in the direction of the row.

For the lagrange term, which is evaluated and summed at each time step until the
prediction horizon, two main contributions are defined: one for maintaining a central
trajectory with respect to the lane and one for minimizing misalignment from the row
direction.

l (xk,uk, p) = KlaneClane (xk,uk, p) +KorientationCalignment (xk,uk, p) (5.16)

where Klane and Korientation are the parameters weighing the corresponding contributions.
The cost term for the lane computes a paraboloid that is equal to 0 in the middle of

the row and 1 in correspondence with the line delimiting the borders of the lane. For a
given position x = [x1, x2, x3, x4], x1 = x, x2 = y of the rover, the corresponding cost is:

yl = alx1 + bl

yr = arx1 + br

Clane = 4
(yl − yr)2x

2
2 − 4 (yl + yr)

(yl − yr)2x2 + (yl + yr)2

(yl − yr)2

(5.17)
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For each value of depth x1 a convex-upward parabola is constructed along the axis x2 with
a value of zero in the middle of the lane. The trajectory with the minimum cost (= 0)
aligns perfectly with the middle of the lane.

The cost term for the alignment is computed considering the difference between the
angular coefficient of the middle line aavg = (al + ar)/2 and the angular coefficient of a
straight line oriented as the rover arover. Recalling the trigonometric relation presented in
Eq. 5.9,

arover = tan θ = sin θ
cos θ = 2x3x4

x2
3 − x2

4

Calignment = (aavg − arover)2
(5.18)

5.3 Target approach
The idea behind the target approach relies on the relatively confined space, where standard
navigation procedures already avoid obstacles, including target objects like fruit boxes.
Given that the rover naturally traverses near the targets while evading obstacles, a
straightforward strategy involves momentarily stopping the rover (to perform some task)
as it passes by the target.

The initial component of this target approach pipeline is the RGB Segmentation
node, tasked with segmenting the target in the RGB image. However, the primary scope
of this work is the navigation system, so a basic HSV color filter has been employed as
a demonstration to identify the targets. The mask obtained from the color filter is then
applied to the depth image, eliminating background points.

Subsequently, the Object Analysis node executes the following sequence of operations:

1. Computes the PCD corresponding to the input depth frame using the 3D reconstruc-
tion process outlined in Section 3.4.

2. Performs down-sampling through voxelization to reduce the number of points and
achieve a more uniformly dense PCD.

3. Utilizes the DBSCAN algorithm (detailed in Section 3.5.1) to cluster points into one
or more objects. Multiple target objects may coexist in the same image, such as
distinct fruit boxes at different depths.

4. Considers only the closest target, computing its pose and bounding box.

5. Checks all previously labeled targets to determine if there is one in proximity to the
current object (considering both pose and volume, i.e., bounding box). If the current
object is already labeled, its pose is updated; otherwise, a new label is assigned, and a
new Reference Frame (RF) attached to the object is published in the TF2 subsystem
of ROS2.

The RGB Segmentation and Object Analysis nodes execute their operations upon the
arrival of each image message from the camera.

The final component, the Target Approach node, monitors if the target has been
reached. Utilizing the Row RF, the goal is considered achieved when xrover ≥ xtarget. In
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essence, this node periodically compares the positions of the object and the rover relative
to the Row RF. When the rover is at the same distance or slightly beyond the target,
signifying that the rover is side by side with the target, the node deems the target reached
and dispatches a message to the Behavior Tree (BT) to signal goal accomplishment. The
target label to be reached, and consequently the corresponding RF, is set by the BT using
a ROS2 service within this node. This approach operation, in the final portion, relies solely
on the rover’s odometry system, as the target exits the camera’s FOV.

5.4 The Behavior Tree
The proposed navigation system is governed by a Behavior Tree (BT) (see Appendix D),
completely represented in Fig. 5.3, and implemented using the Python library py_trees1.

Figure 5.3: Behavior Tree (BT) used for orchestrating the navigation system.

Starting from the root, two parallel sub-trees unfold:

• A parallel sub-tree is responsible for listening to topics and updating the corresponding
variables in the Blackboard.

• The Tasks sub-tree. The initial fork checks the Start variable. When a message
arrives in the start topic, the Start blackboard variable is set to True. This sub-tree

1https://py-trees.readthedocs.io/en/devel/introduction.html
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returns SUCCESS, proceeding to the next node, Move or be canceled. A similar
fork monitors the Cancel variable and, if it is True, aborts the mission, otherwise, it
proceeds by ticking the Navigate? node. Upon completion of the Navigate? node
(whether reaching the end-of-the-row, encountering a cancel, or failure), the system
transitions to the Idle node.

The navigation sub-tree is subdivided using a Selector into three distinct branches:

• The high-priority branch activates when a target is detected. Before navigation, it
checks if the target has not already been approached. If not, this branch initiates
navigation toward the target, pausing for a brief duration (simulating future tasks on
the target) before returning SUCCESS or FAILURE (if an error occurs). A decorator is
employed to seamlessly resume the main mission, i.e., reaching the end of the row.

• The mid-priority branch navigates through the row when no target is recognized.

• The low-priority branch is an action branch designed for fallback and recovery tasks.
If this branch also returns FAILURE, the main tree returns FAILURE and transitions
to the Idle state.
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Chapter 6

Tests and experiments

6.1 The experimental platform
6.1.1 Rovers

(a) Jackal UGV (b) Husky UGV

Figure 6.1: Jackal and Husky rovers from Clearpath Robotics used in the real environment
tests.

This research utilized two distinct mobile robots: the Clearpath Robotics1 Jackal UGV
and Husky UGV (shown in Fig. 6.1).

The Jackal UGV is a compact robot designed for indoor and didactic robotics applica-

1https://clearpathrobotics.com/
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tions. It features an onboard computer with GPS, IMU, and WiFi, integrated with ROS2.
The robot’s 4x4 drivetrain, aluminum chassis, and compatibility with various accessories
make it suitable for several scenarios.

The Husky UGV, designed as a field robotics platform, is much bigger and more
powerful. Its robust, low-maintenance design, high-resolution encoders, and lug-tread
tires enable effective navigation across challenging terrains. The Husky UGV serves as
a benchmark in robotics research, providing precise control, customization options, and
compatibility with various accessories.

The complete technical specifications of the two rovers are shown in Tab. 6.1 (Jackal)
and Tab. 6.2 (Husky).

6.1.2 Sensors
The Husky and the Jackal are equipped with several sensors, with a particular emphasis
on RGBD cameras, which will be discussed in the following section.

Additionally, the Husky is equipped with a Velodyne2 3D LIDAR VLP16, which
produces highly uniform and low-payload PCDs. The VLP16 is employed to compare the
performance of the control system using PCDs obtained by the RGBD camera with the
high-precision ones acquired by the LIDAR.

Furthermore, the Husky is equipped with a SwiftNav3 Duro receiver GNSS sensor. This
sensor leverages RTK technology, providing centimeter-level accuracy in location solutions.
It offers accuracy that is 100 times greater than traditional GNSS solutions. The precise
data from this sensor are used to compute an estimate of the rover’s trajectory, enabling
comparisons with a predefined desired trajectory.

The Husky also features a Microstrain4 GX5 Inertial Measurement Unit (IMU). This
sensor computes the odometry of the system, but its reliability diminishes over long paths
(hundreds of meters) due to drift introduced by the numerical integration of accelerations
measured directly by the IMU, and by the wheel slippage.

Intel Realsense RGBD camera D435 and D455

The Jackal UGV has been equipped with an Intel RealSense5 RGBD camera D435, while
the Husky UGV has been equipped with an Intel RealSense RGBD camera D455.

Both depth cameras employ some of the techniques presented in Sec. 3.5.2. Depth
in these models is primarily derived from solving the stereoscopic problem (refer to
Sec. 3.4). To enhance robustness, "active" methods are also used in conjunction with
stereoscopic approaches. These cameras are equipped with an optical infrared light
projector that overlays the observed scene with a semi-random texture. This texture

2https://velodynelidar.com/
3https://www.swiftnav.com/
4https://www.microstrain.com/
5https://www.intelrealsense.com/
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6.1 – The experimental platform

Size and weight
External dimensions (L × W × H) 508 × 430 × 250 mm
Internal dimensions 250 × 100 × 85 mm
Weight 17 kg
Ground Clearance 65 mm
Speed and performance
All-terrain payload 10 kg
Max speed 2.0 m/s
Drive power 500 W
Battery and power system
Capacity 270 Wh
Runtime - basic usage 8 Hours
Runtime - heavy usage 2 Hours
Charge time 4 Hours
Interfacing and communication
Control modes Direct voltage

Wheel Velocity Commands
Linear and angular velocity

Feedback Battery and motor current
Wheel velocity and travel
Integrated GPS receiver
Integrated gyroscope and accelerometer

Drivers and APIs ROS, ROS2, C++, and Python.
Communication Ethernet, USB 3.0, RS232.
Integrated accessories Wireless Game controller

GPS
IMU
On-Board Computer
WIFI Adapter
Accessory Mounting Plates

Computer
CPU Intel Core i3-4330TE, Dual core, 2.4GHz

RAM 8 GB
Enviromental
Operating ambient temperature −20 to 45◦C Not in direct sunlight
Rating IP62

Table 6.1: Technical specifications of Jackal UGV. [39]

facilitates finding correspondences, particularly in scenarios with texture-less surfaces or
dimly lit environments.

In the current systems, these projectors are positioned between the left and right stereo
imagers and are synchronized to turn on only when required. It’s important to note that
this is not a strict requirement. For active stereo depth systems, no a priori knowledge
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Size and weight
External dimensions (L × W × H) 990 × 670 × 390 mm
Internal dimensions 296 × 411 × 155 mm
Weight 50 kg
Wheels 330 mm
Ground Clearance 130 mm
Speed and performance
All-terrain payload 20Kg
Max speed 1.0 m/s
Drivetrain / Drive power 4 × 4 Zero-Maintenance
Max climb grade 45◦(100% Slope )
Max traversal grade 30◦ (58% Slope)
Battery and power system
Capacity 24 V, 20Ah
Runtime - standby 8 Hours
Runtime - nominal usage 3 Hours
Charge time 4 Hours
Interfacing and communication
Control modes Direct voltage

Wheel Velocity Commands
Linear and angular velocity

Feedback Battery voltage
Motor currents
Wheel odometry
Control system output

Drivers and APIs ROS, ROS2, C++, and Python
Communication RS232
Computer
CPU Intel Core i7-6700TE, Quad core, 2.4GHz

RAM 16 GB
Enviromental
Operating ambient temperature -10 to 40◦C Not in direct sunlight
Rating IP 44 (upgrade to IP 55 available)

Table 6.2: Technical specifications of Husky UGV. [40]

of the projection pattern is needed, and there is no requirement for strict stability over
time of these patterns. Additionally, it doesn’t matter if other cameras point at the
same scene with their projectors (changing the pattern). Multiple projectors can improve
overall performance by adding more light and more texture. This property contrasts
with "structured light" depth sensors (presented in Sec. 3.5.2), where there are strong
requirements for pattern stability across time and temperature, leading to increased cost
and susceptibility to external interference.

The main differences between the two models (D435 vs D455) lie in the ideal range and
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Figure 6.2: Intel Realsense Depth Camera D455. [41]

FOV, with the D455 model offering wider specifications, as illustrated by the respective
data sheets in Tables 6.3 (D435) and 6.4 (D455).

General information
External dimensions (L × W × H) 90 × 25 × 25 mm
Ideal Range 0.3 to 3 m
Use environment Indoor/Outdoor
Depth
Depth technology Stereoscopic
FOV 87◦ × 58◦

Resolution Up to 1280 × 720
Frame rate Up to 90 fps
Depth Accuracy < 2% at 2 m
Minimum Depth Distance at Max Resolution 28 cm
RGB
RGB technology Rolling shutter
FOV 69◦ × 42◦

Resolution Up to 1920 × 1080
Frame rate Up to 30 fps
Sensor resolution 2MP

Table 6.3: Technical specifications of Intel Realsense Depth Camera D435. [41]

6.2 The evaluation metrics
For testing and validation, extensive experiments were conducted on both realistically
simulated and real vineyards to illustrate the competitive advantages of the proposed
solution. The metrics used to evaluate the performance of the navigation system include:

• Clearance Time [s], representing the duration the rover takes to fulfill its task of
navigating through the row. A lower value for this metric is indicative of better
performance.
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General information
External dimensions (L × W × H) 124 × 26 × 29 mm
Ideal Range 0.6 to 6 m
IMU Bosch BMI055
Use environment Indoor/Outdoor
Depth
Depth technology Stereoscopic
FOV 87◦ × 58◦

Resolution Up to 1280 × 720
Frame rate Up to 90 fps
Depth Accuracy < 2% at 4 m
Minimum Depth Distance at Max Resolution 52 cm
RGB
RGB technology Global shutter
FOV 90◦ × 58◦

Resolution Up to 1280 × 800
Frame rate Up to 30 fps
Sensor resolution 1MP

Table 6.4: Technical specifications of Intel Realsense Depth Camera D455. [41]

• Mean linear velocity vavg [m/s], serving as a measure of the effectiveness of the
proposed solution. The benchmark is set by the maximum velocity defined for the
rover in the test, and the optimal scenario involves the rover traversing the row at
this maximum speed.

• Cumulative heading average Cum.γavg or standard deviation of the heading
γstd [rad], gauging the oscillation around the trajectory. A lower value for these
metrics signifies more stable navigation.

• Standard deviation of the angular velocity ωstd [rad/s], used to quantify the
oscillation around the trajectory.

• Trajectory Mean Absolute Error (MAE) [m], defined as

MAE = 1
N

NØ
i=1

|yrover − ywanted(xrover)| (6.1)

where N is the number of time steps at which we evaluate the performance. Additional-
ly, the trajectory Mean Squared Error (MSE) [m2] is employed

MSE = 1
N

NØ
i=1

(yrover − ywanted(xrover))2 (6.2)

These metrics serve to quantify the error in the rover’s trajectory concerning a
predefined desired trajectory, such as the center of the row or the lane.
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6.3 Tests in simulation environment
For simulated tests, the Gazebo6 platform, the Jackal model and description, and the
PIC4rl_gym[42] evaluation tool are utilized. This tool automates the assessment of the
aforementioned metrics by executing multiple iterations of the same test and calculating
the corresponding performance metrics.

Fig. 6.3 provides a visual representation of the simulated environment used in the tests.
Notably, the image captures both straight and curved vineyards, offering a comprehensive
simulation scenario for evaluating the proposed navigation system. For the tests in this
environment, a maximum linear velocity of vmax = 0.4 m/s has been set.

Figure 6.3: Gazebo world used for simulation tests.

Results

The extensive simulations conducted in simulated vineyard environments have demonstrated
the reliability and robustness of the proposed navigation system. As illustrated in Fig.
6.4, the rover’s trajectory closely aligns with the desired central path, exhibiting minimal
oscillations in both straight and curved vineyards.

Detailed results are provided in Tab. 6.5 (straight vineyard) and Tab. 6.6 (curved
vineyard), revealing several key performance indicators:

• In both straight and curved vineyards, the rover consistently achieves speeds close
to the maximum limit (vavg ≃ 0.39 m/s for vmax = 0.4 m/s), resulting in effective
clearance times.

6https://gazebosim.org/home
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Tests and experiments

Figure 6.4: Tests in a simulated vineyard using the PCD of the camera as input in two
different scenarios.

• The rover’s trajectory shows minimal oscillations, as indicated by a small standard
deviation of angular velocity (ωstd ≃ 0.05 rad/s), reflecting stable and smooth
behavior.

• Path metrics, including MAE and MSE, are remarkably small, on the order of
centimeters. This demonstrates the rover’s precise adherence to the center of its lane.
In the curved vineyard, a slightly larger path error is observed (MAE up to 20 cm in
the worst case), attributed to the controller’s inclination to cut curves. This behavior
can be mitigated through parameter tuning.

• Interestingly, in both scenarios, the use of input segmentation to detect the crops did
not yield benefits, as the vision algorithm primarily relied on geometric considerations,
and it adversely affected computing capabilities. So, this resulted in a trajectory
with a slightly worse MAE error and a significantly smaller mean linear velocity vavg,
leading to a larger clearance time.

• The algorithm’s consistent performance across different input sensors, including
RGBD cameras, highlights its reliability and versatility. This robustness, even when
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compared to more expensive technologies such as LIDAR, underscores the algorithm’s
adaptability to various sensor configurations. The ability to achieve comparable
results with RGBD cameras suggests a cost-effective alternative for applications
where LIDARs may be cost-prohibitive.

Overall, these findings underscore the effectiveness and versatility of the proposed
navigation system across diverse vineyard scenarios.

Sensor Input Seg Clearance time [s] Cum. γavg [rad] vavg [m/s] ωstd [rad/s] MAE [m] MSE [m2]

LIDAR - 49.528±0.167 0.036±0.001 0.395±0.002 0.034±0.001 0.034±0.001 0.001±0.000
No 52.586±4.130 0.045±0.001 0.377±0.019 0.038±0.001 0.048±0.005 0.003±0.001PCD cam
Yes 68.768±8.545 0.024±0.009 0.303±0.032 0.040±0.002 0.080±0.008 0.009±0.002
No 49.321±0.356 0.011±0.005 0.395±0.001 0.046±0.004 0.104±0.011 0.018±0.004RGBD cam
Yes 57.796±7.277 0.023±0.008 0.351±0.033 0.041±0.003 0.072±0.014 0.008±0.002

Table 6.5: Results of a series of experiments in a simulated straight vineyard. The desired
trajectory is in the middle of the row.

Sensor Input Seg Clearance time [s] Cum. γavg [rad] vavg [m/s] ωstd [rad/s] MAE [m] MSE [m2]

LIDAR - 52.080±0.220 -0.024±0.001 0.397±0.001 0.036±0.001 0.102±0.001 0.015±0.000
No 52.157±0.673 0.002±0.002 0.393±0.002 0.041±0.003 0.068±0.004 0.007±0.001PCD cam
Yes 66.705±1.388 -0.016±0.012 0.322±0.006 0.047±0.003 0.188±0.011 0.049±0.005
No 51.763±0.228 -0.011±0.002 0.394±0.001 0.056±0.007 0.188±0.005 0.051±0.003RGBD cam
Yes 70.645±6.252 -0.026±0.015 0.313±0.023 0.047±0.036 0.213±0.023 0.064±0.011

Table 6.6: Results of a series of experiments in a simulated curved vineyard. The desired
trajectory is in the middle of the row.

6.4 Tests in real-world scenario
In tests in a real vineyard, the Jackal and Husky rovers from Clearpath Robotics, an Intel
Realsense RGBD camera, and a Velodyne 3D LIDAR for comparison have been utilized.

The path metrics presented earlier were evaluated using the Husky UGV. Rover
localization in the row was necessary for comparing its position to a desired path. This is
quite paradoxical, since, as I said in Sec. 1, it is very difficult to localize the system within
this environment (it is for these reasons that I proposed a position-agnostic system).

The odometry system of the IMU of the rover failed to localize the rover due to
significant drifts. In Fig. 6.5 it is visible the drift of the odometry trajectory (on the right),
which is more curved with respect to the more accurate GPS one (on the left).

Visual SLAM methods, like KISS-ICP[43], also failed to correctly localize the system
due to the repetitiveness of the environment, resulting in loop formations and registration
failures in the generated PCD.

The GPS position provided by the MicroStrain GNSS Inertial Sensor was used as
a reference to compute the metrics, along with a precise geo-localization of the row in
the vineyards. In Fig. 6.6 the satellite view of the vineyards is shown together with its
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Figure 6.5: Trajectory measured using the GPS (on the left) and the Odometry (on the
right).

geo-reference in Universal Transverse Mercator (UTM) coordinates. On the image, the
trajectory measured by the GPS of the rover has been superimposed.

This GPS-based reference, however, comes with its challenges, especially in scenarios
where foliage obstructs GPS visibility, leading to signal failures and inaccuracies in position
tracking. These localization complexities underscore the importance of the position-agnostic
controller developed in this project.

Results

The real-world tests conducted in vineyards have validated the results obtained in the
simulated environment, demonstrating the efficacy of the proposed navigation system. In
Fig. 6.7, two segments from tests in a straight vineyard (intra-row distance of around
2 m) are presented, representing both the center and the right lane configurations. In the
center configuration, the rover exhibits straight motion with minimal oscillation and an
offset of a few centimeters from the estimated center of the row. This small deviation can
be attributed to the manual estimation of the lane position based on the geo-referenced
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Figure 6.6: Satellite view of the vineyard. In red is the trajectory followed by the Husky
rover during a test session.

satellite image in Fig. 6.6.
For the right lane configuration in the narrow vineyard (2 m intra-row distance), the

rover displays a more oscillatory behavior, likely due to the proximity of the right lane to
the crops. This behavior is less prominent in the pergola vineyard test (Fig. 6.8) with a
larger intra-row distance (4 m), where the rover shows a smooth convergence to the right
lane without significant oscillations.

Fig. 6.8 illustrates the results of tests conducted in a pergola vineyard, where occasional
discrepancies in the estimated trajectory are observed. These deviations are attributed to
errors introduced by dense canopies obstructing satellite line-of-sight, affecting the GPS
localization system. Moreover, on the bottom part of the figure, it is shown how the rover
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smoothly converges to the right lane from the middle of the row.

Figure 6.7: Tests in a real straight vineyard using the PCD of the camera as input in two
different configuration. On top the desired trajectory is in the middle of the row, while on
the bottom figure, it is in the middle of the right lane.

Detailed results are presented in Tab. 6.7 (straight vineyard) and Tab. 6.8 (pergola
vineyard), highlighting the robust performance of the controller in real scenarios:

• Also in real scenarios, the rover consistently achieves speeds close to the maximum
limit (vavg ≃ 0.399 m/s for vmax = 0.4 m/s and vavg ≃ 0.49 m/s for vmax = 0.5 m/s).

• The rover’s trajectory shows minimal oscillations, as indicated by a small standard
deviation of angular velocity (ωstd ≃ 0.05 rad/s), reflecting stable and smooth
behavior. As discussed, the exception is the narrow straight vineyard in the right
lane configuration, where this metric is slightly larger (ωstd ≃ 0.18 rad/s).
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Figure 6.8: Tests in a real pergola vineyard using the PCD of the camera as input in two
different configuration. On top the desired trajectory is in the middle of the row, while on
the bottom figure, it is in the middle of the right lane.

• Path metrics, including MAE and MSE, are minimal, on the order of centimeters
(up to 20 cm for the narrow vineyard and up to 30 cm for the larger pergola
vineyard). However, it’s important to consider the error in the reference trajectory
when interpreting these results.

The evaluation of the Jackal’s ability to recognize and approach fruit boxes provided
insightful observations. The system demonstrated good effectiveness, achieving a success
rate of 11/14 = 79% in correctly identifying and approaching the target objects. However,
a noteworthy anomaly was identified in 2/14 = 14% of the cases. In these instances,
multiple stops occurred per fruit box, attributable to a failure in the TF2 subsystem of
ROS2, specifically arising from synchronization issues.
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Sensor Position vmax [m/s] γstd [rad] vavg [m/s] ωstd [m/s] MAE [m] MSE [m2]

Centered 0.4 0.031±0.007 0.399±0.000 0.042±0.002 0.165±0.007 0.035±0.000PCD camera
Right lane 0.5 0.388±0.395 0.488±0.007 0.184±0.108 0.204±0.098 0.070±0.044

LIDAR Right lane 0.5 0.0153 0.4989 0.0271 0.1519 0.0294

Table 6.7: Results of a series of experiments in a real straight vineyard. Intra-row space
of around 2.5m.

Sensor Position vmax [m/s] γstd [rad] vavg [m/s] ωstd [m/s] MAE [m] MSE [m2]

Centered 0.4 0.122 0.399 0.063 0.313 0.129PCD camera
Right lane 0.4 0.047 0.399 0.04 0.092 0.011

Table 6.8: Results of a series of experiments in a real pergola vineyard. Intra-row space
of around 4m.

This synchronization issue led to the unintended labeling of the same fruit box twice.
Consequently, the rover’s approach to the target followed an expected sequence, coming to
a stop as intended. However, the system then initiated a restart of the navigation, but it
immediately stopped again upon reaching the new target (same fruit box as the previous
one, second label). Importantly, it’s crucial to highlight that no collisions with the fruit
boxes were detected throughout these occurrences.
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Chapter 7

Conclusion and future works

The developed controller has demonstrated robustness in effectively handling the diverse
challenges presented by variations in crop density, height, and other environmental factors.
Its successful navigation through pergola vineyards and resilient functionality on rough
terrains underscore its adaptability to real-world agricultural conditions. This research
significantly contributes to the continuous advancement of precision agriculture and the
evolution of autonomous navigation systems for row-based crop environments.

Looking ahead, the research lays the groundwork for future investigations and advance-
ments. One crucial avenue for exploration involves meticulous parameter tuning for specific
scenarios, such as navigating through curved or very narrow vineyards. This fine-tuning
process can increase the controller’s adaptability and performance in diverse agricultural
settings.

The controller’s capabilities to perform transitions between rows must be added to
the system to complete the autonomous navigation in a field. To address this challenge,
a multi-camera setup is proposed, featuring three cameras, one front-facing and two
positioned on the sides of the rover. This configuration aims to enhance the rover’s
perception and recognition capabilities, enabling it to turn and identify the characteristics
of the next row. The two side cameras provide additional perspectives, offering a wider
field of view to gather information about adjacent rows and facilitate a smooth turn. The
transition process begins with the front-facing camera identifying the end of the current
row. Once detected, the system triggers the side cameras to assess the characteristics of the
upcoming row, including its spacing, orientation, and potential obstacles. This information
is then fed into the NMPC controller. Leveraging the input from the multi-camera setup,
the NMPC computes an optimized trajectory for the rover’s movement during the turn
and subsequent navigation along the new row.

The long-term vision involves the implementation of a more versatile and robust image
segmentation and recognition algorithm. This enhancement aims to increase the system’s
capabilities not only for target recognition purposes, such as identifying relevant objects
like fruit boxes, but also in refining navigation through advanced row recognition.

In essence, this research project represents a significant stride towards addressing
the challenges posed by row-based crop environments, offering a foundation for ongoing
exploration and innovation in the realm of autonomous agricultural systems.
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Appendix A

Homogeneous Coordinates

Consider a point in a n-dimensional Euclidean space, x ∈ Rn where x represents the
coordinate vector (x1, x2, . . . xn). It is possible to define the corresponding point in
homogeneous coordinates x̃ ∈ Pn (the tilde is used to underline that a given quantity is
homogeneous) as the coordinate vector (x̃1, x̃2, . . . x̃n+1), where

xi = x̃i

x̃n+1
, i = 1, 2, . . . n (A.1)

The linear space where points in homogeneous coordinates reside is commonly called
the projective space Pn. Notably, a vector in Pn has n+ 1 coordinates or degree of freedom.
On the other hand, a homogeneous coordinate vector can be easily constructed from a
Euclidean coordinate vector x = (x1, x2, . . . xn) as

x̃ = (x1, x2, . . . xn, 1) (A.2)

Vectors in Pn can be easily translated or rotated by multiplication with an appropriate
(n+ 1) × (n+ 1) homogeneous transformation matrix T . It is also essential to note that an
Euclidean point x can be mapped not only to x̃ = (x1, x2, . . . xn, 1), but also to x̃′ = αx̃ for
all α /= 0; in other words, a point x ∈ Rn corresponds to a line in Pn. This property holds
great significance in Computer Vision applications since "the relationship between points
and rays is at the core of the projective transformation" [18]. Points in the 2-dimensional
image plane (R2) correspond to lines in the 3-dimensional physical world (projective space
P2).

In P2 a line is defined by a 3-tuple, l̃ = (l̃1, l̃2, l̃3)T , and the corresponding set of points
satisfies the equation:

x̃ : l̃T x̃ = 0 (A.3)

Expanding this representation using Euclidean coordinates x = (x1, x2) results in
l1x1 + l2x2 + l3 = 0, which is the canonical form of a line in R2. All lines, including those
parallels to an axis of the Cartesian plane, can be represented in this form with a 3-tuple l̃
of real numbers.
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Moreover, as a point can be defined by the intersection of two lines l̃1 and l̃2, it is
possible to obtain the line equation of a point

p̃ = l̃1 × l̃2 (A.4)

Similarly, it is also possible to define the line passing through two distinct points (from
p̃1 to p̃2) as

l̃12 = p̃1 × p̃2 (A.5)

In the particular case of two parallel lines l̃1 = (ã, b̃, c̃1) and l̃2 = (ã, b̃, c̃2), using Eq.
A.4, we obtain a point

p̃ =


b̃(c̃2 − c̃1)
ã(c̃1 − c̃2)

0

 (A.6)

Since its last coordinate is equal to 0, this point p̃ ∈ P2 corresponds to a point at
infinity in Euclidean space R2, and, for this reason, is referred to as an ideal point. Using
real numbers, homogeneous coordinates simplify the representation and manipulation of
points and lines at infinity.
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Quaternions

Quaternions are a generalization of complex numbers to a 3D space [35], and they were first
introduced by Sir W. Hamilton in 1843. Their primary utility is to efficiently represent 3D
rotations, whether in a static or dynamic scenario. As a result, quaternions have become
an indispensable component in various technical domains, especially in fields like computer
graphics, robotics, and aerospace.

Quaternions can be defined as element of a 4D linear space H(R) defined on the
real number field, with base {1 i j k} [44]. In particular, {i, j,k} are hypercomplex
numbers that satisfy the following anticommutative multiplication rules:

i2 = j2 = k2 = i ⊗ j ⊗ k = −1
i ⊗ j = −j ⊗ i = k
j ⊗ k = −k ⊗ j = i
k ⊗ i = −i ⊗ k = j

(B.1)

The following notations are equivalent to indicate a quaternion q :

q = q0 + q
= q0 + q1i + q2j + q3k

= cos β2 + u sin β2
= eu β

2

=
3

cos β2 , u1 sin β2 , u2 sin β2 , u3 sin β2

4
= (q0, q1, q2, q3)

= (q0,q) =
C
q0

q

D
=

C
cos β

2
u sin β

2

D

where q0 is the real part, and q is the imaginary (or vector) part. Quaternions are
mathematical objects that include real numbers q = (r,0,0,0), r ∈ R, complex number

87



Quaternions

c = a + ib = (a, b,0,0), a, b ∈ R and also real coordinate vector in a 3D-world p =
(0, p1, p2, p3), pi ∈ R.

Quaternion Algebra

Let us analyze briefly some algebraic operations with quaternions.

• There exists the null element, which is O = (0,0).

• The complex conjugate of a quaternion q = q0 + q is

q∗ .= q0 − q = (q0,−q) = cos β2 − u sin β2 = e−u β
2 (B.2)

• The norm of a quaternion is

|q| = ∥q∥ = ∥q∥2 = |q∗| =
√
q · q∗ =

öõõô 3Ø
i=0

q2
i . (B.3)

A quaternion with unit norm is usually referred to as unit quaternion.

• The reciprocal of a quaternion q is

q−1 = q∗/|q|
q−1 = q∗ for a unit quaternion.

(B.4)

• Sum: q + p = (q0 + p0)ü ûú ý
real part

+ (q + p)ü ûú ý
imaginary part

• Dot product: q · p =
q3

i=0 qipi.

• Quaternion product (Hamilton product):

q ⊗ p = (q0 + q) ⊗ (p0 + p) = (q0p0 − q · p)ü ûú ý
real part

+ (q0p + p0q + q × p)ü ûú ý
imaginary part

(B.5)

where:

q · p =
3Ø

i=1
qipi is the vector dot product and

q × p =


q2p3 − q3p2

q3p1 − q1p3

q1p2 − q2p1

 is the cross product.

The identity element for the quaternion product is I .= (1, 0) : q⊗I = q, I⊗q = q.
Moreover, the quaternion product is associative, and non-commutative, differently
from the cross product which is non-associative, and anti-commutative.
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Quaternion and Rotations

Moreover, quaternions can be also used to model rotations. Let a 3D vector r = (x, y, z)
be given, and consider a rotation of r about an axis u = (u1, u2, u3) of an angle β :

r′ = T(β,u)r.

Both r and r′ can be seen as the vector parts of quaternions with null real part, given by
(0, r) and (0, r′). It can be proven that, defined the unit quaternion,

q
.=

3
cos β2 , u1 sin β2 , u2 sin β2 , u3 sin β2

4
.

the rotated vector r′ can be computed as

(0, r′) = q ⊗ (0, r) ⊗ q∗

Of course, the inverse rotation (same axis of rotation but opposite angle) can be modeled
with the inverse quaternion q−1 = q∗, since q is a unit quaternion. Moreover, given a
rotation composition

T = T1T2 . . .Tn

the quaternion corresponding to the rotation T is

q = q1 ⊗ q2 ⊗ · · · ⊗ qn

where qi is the quaternion corresponding to the rotation Ti. To better exploit the
composition property, a set of basic rotation/quaternions can be defined:

Rotation around the X axis ↔ T1(ϕ) ↔ q1(ϕ) =
3

cos ϕ2 , sin
ϕ

2 , 0,0
4

Rotation around the Y axis ↔ T2(θ) ↔ q2(θ) =
3

cos θ2 , 0, sin
θ

2 , 0
4

Rotation around the Z axis ↔ T3(ψ) ↔ q3(ψ) =
3

cos ψ2 , 0,0, sin
ψ

2

4
These are called the elementary quaternions.

Quaternion Kinematics

Consider a rigid body rotating with respect to some observer Reference Frame (RF) (fixed),
with angular velocity ω = ω1b1 + ω2b2 + ω3b3 expressed in the body RF (origin in the
center of mass of the body, rotating with it).

The goal is to describe the time evolution of the rotation quaternion q (corresponding
to the body RF) as a function of ω1, ω2, ω3. Note that both the quaternion and the angular
velocity change in time:

q ≡ q(t)
ω = (ω1, ω2, ω3) ≡ ω(t).
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At time t+ ∆t, we have the rotation q(t) at time t composed with the rotation ∆q(t)
occurred from time t to time t+ ∆t. The quaternion at time t+ ∆t is thus given by

q(t+ ∆t) = q(t) ⊗ ∆q(t).

Let ω = |ω| be the angular speed magnitude; then, for a small ∆t, the rotation angle is
ω∆t. Let u be the rotation axis, with |u| = 1, then ω = ωu. So, for small ∆t,

∆q ∼=
C

cos ω∆t
2

u sin ω∆t
2

D
∼=

C
1

uω∆t
2

D
=

C
1

ω∆t
2

D
The quaternion derivative is thus given by

q̇ = lim
∆t→0

q(t+ ∆t) − q(t)
∆t = lim

∆t→0

q ⊗ ∆q − q

∆t =

= lim
∆t→0

q ⊗ (∆q − (1,0))
∆t = lim

∆t→0

q ⊗
11

1, ω∆t
2

2
− (1,0)

2
∆t =

= lim
∆t→0

q ⊗
1
0, ω∆t

2

2
∆t = 1

2q ⊗ (0,ω)

and it is usually referred to as quaternion kinematic equations. Equivalent equations are
the following:

q̇ = 1
2Ωq q̇ = 1

2Qω

where

Ω .=


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 , Q .=


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


Using quaternions, no singularities such as the gimbal lock can occur, and this is a huge

advantage of using quaternions in kinematics applications.
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Appendix C

IPOPT solver for large-scale
non-linear optimization

The general non-linear programming problem can be formulated as follows:

min
x∈Rn

f(x)

s.t. gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU (C.1)

In this formulation, the optimization variables are represented by x ∈ Rn, and they
are bounded within the intervals xL ∈ (R ∪ −∞)n and xU ∈ (R ∪ +∞)n. The objective
function to be minimized is denoted as f(·) : Rn −→ R. Additionally, there are the
constraints defined by g(·) : Rn −→ Rm, subject to lower and upper bounds gL and gU .

It’s worth noting that equality constraints gi(x) = ḡi can also be accommodated within
this framework by setting gL

i = gU
i = ḡi. Furthermore, the functions f(x) and g(x) should

exhibit sufficient smoothness, typically requiring at least once or twice differentiability.
However, they may take on linear or non-linear forms and exhibit convex or non-convex
characteristics [45]. Convex functions, which are characterized by having level curves
that define convex sets, are an extremely valuable class of functions. What makes them
particularly useful is that for convex functions, any local minimum is surely a global
minimum. As a result, when dealing with convex functions, numerical algorithms can be
relied on to find a global minimum.

Interior Point OPTimizer (IPOPT) is an open-source software package for numerically
solving large non-linear optimization problems. In particular, it is suitable for large
problems with a Jacobian matrix of constraint function sufficiently sparse.

IPOPT implements an interior-point line-search filter method. In this paragraph, I will
present only an idea of the algorithm (please refer to [45] for further details).

1. Firstly the inequality constraints are substituted by an equality constraint with a
new slack variable (e.g. gi(x) − s(i) = 0, gL

i ≤ si ≤ gU
i ). So, the variables’ bound
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constraints remain the only inequality constraint (the variables x have been expanded
with all the si). For simplicity purposes, let assume that x span in the range [0,+∞),
so the problem is rewritten as

min
x∈Rn

f(x)

s.t. c(x) = 0
x ≥ 0 (C.2)

where c(x) represents the new equality constraints with the new slack variables.

2. IPOPT constructs the auxiliary barrier problem formulation as an interior point
method

min
x∈Rn

f(x) − µ
nØ

i=1
ln xi

s.t. c(x) = 0 (C.3)

where the variable bound constraints x ≥ 0 have been replaced by the logarithmic
barrier term in the objective function. For any variable xi, if xi −→ 0, then
ln xi −→ −∞, and the objective function goes to infinity. So, the optimal solution to
this problem must be in the interior of the region defined by the variables’ bounds.
µ > 0 is called barrier parameters and controls the influence of the barrier term on
the objective function. It can be proven that, under certain conditions, the optimal
solution for this auxiliary problem converges to the solution of C.1 for µ −→ 0.

2.1. IPOPT solves a first barrier problem with a moderate value of µ (e.g., 0.1)
starting from a user-supplied starting point, with a relaxed accuracy.

2.2. The previous solution is used as the starting point of a new iteration, with a
tighter accuracy, and a lower value of µ.

2.3. Repeat 2.2. until a solution for the problem in Eq. C.1, or at least a point
satisfying the first-order optimality conditions up to user tolerances, has been
found[45].

It is worth noting that this algorithm, along with various other methods, is intended
to find the global minimum of the problem. However, in practice, it often converges to a
local minimum (in a finite time). In non-convex problems, numerous stationary points
may exist, resulting in multiple minima associated with different objective function values.
For this reason, the outcome of an optimization algorithm depends on factors such as
the initial starting point and the maximum number of iterations (or time allocated) [46].
Surely finding the global maximum of a non-convex objective function may require an
infinite amount of time for the algorithm to converge to the solution.
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Appendix D

Introduction to ROS2

Robot Operating System 2 (ROS2) 1, as described in [47], emerges as a robust and powerful
instrument for programming robots. In its essence, ROS2 operates as a middleware,
functioning as an intermediary layer of software between the underlying operating system
and the user’s application (as illustrated in Fig. D.1). This versatile framework provides a
broad spectrum of functionalities, such as drivers, libraries, development tools, integration
capabilities, execution management, and advanced monitoring tools [48]. Despite the
acronym "ROS" stands for "Robot Operating System," ROS2 does not replace traditional
operating systems such as Linux or Windows; instead, it operates as a middleware layer
built on top of them. The numerical label "2" signifies that we are engaging with the
framework’s second generation. The officially supported programming languages are C++
and Python, which are also the most used in Robotics contexts.

Figure D.1: Software layers in a robot. [48]

Given the importance of communication within the ROS2 framework, ROS2 has
adopted the Data Distribution Service (DDS)2 protocol, operating on top of UDP, as its
communication layer. It allows processes to exchange information, providing them with
real-time capabilities, robust security features, and the ability to customize the quality of
service for each connection [48].

1https://www.ros.org/
2https://www.omg.org/omg-dds-portal/
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DDS introduces a Pub/Sub communication paradigm, facilitating the discovery of
publishers and subscribers without relying on a centralized service. This discovery
mechanism uses multicast for initial discovery, subsequently transitioning to unicast
connections. Notably, the DDS ecosystem comprises several vendors, each offering
comprehensive or partial implementations of the DDS standard.

Nodes network

The core computational units within ROS2 are known as Nodes, and they dynamically
interconnect during run-time to compose the application. Each node serves as an active
component responsible for executing specific processing or control tasks. Moreover, since
ROS2 makes intensive use of Objective-Oriented Programming, a node is an object of class
Node, whether it is written in C++ or Python.

The execution of a node can be characterized in two distinct ways:

• Iterative execution: In this mode, the node sets up a timer with an associated
callback responsible for performing a defined control task. This ensures that the
callback is executed at a specific, predefined frequency, making it easier to manage
the computational resources required by the node.

• Event-oriented execution: In this mode, the node associates a callback with
asynchronous events, such as the reception of messages at that particular node. The
node responds to events as they occur.

The collection of nodes and the communication channels connecting them form what is
known as the Computation Graph.

For example, consider the scenario depicted in Fig. D.2. It shows an application that
performs some tasks based on the preprocessed information (people and objects) obtained
from a robot’s RGBD camera. In this example:

• The Control Application node operates at a fixed frequency, utilizing iterative
execution.

• People Perception and Object Perception nodes follow an event-oriented execution
approach, processing each image as it arrives from the camera.

• The hardware sensors, such as the RGBD camera and Laser, provide ROS-compatible
interfaces.

• Multiple nodes can be encapsulated within the same process, as observed in the
People Perception and Object Perception nodes.

This setup exemplifies how ROS2 facilitates the development of robotic applications by
orchestrating the interactions between nodes within the computation graph.
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Figure D.2: Example of a Computation Graph. Each rounded rectangle represents
an independent process, while the ellipses denote the nodes. Subscriptions to topics are
depicted in red, and publications are shown in blue. Additionally, the rounded rectangles
correspond to topics and the pink text within the rectangles denotes the corresponding
message types associated with each topic. [48]

Topics, Services, Actions

In ROS2 each node can access the Computation Graph and communicate with other nodes.
Three types of paradigms are provided by ROS2:

• Publication/Subscription: This is an asynchronous communication method where
nodes publish messages to a topic that reaches its subscribers. A topic accepts
messages of a unique, well-defined type, and supports multiple publishers and multiple
subscribers connected simultaneously. Moreover, the communication is anonymous,
since the subscribers do not generally know which is the correspondent publisher
of the message. This is the most common communication paradigm in ROS2. For
instance, a sensor like a camera can publish images in a topic, while the control
algorithm subscribes to the same topic to use the images for its goal.

• Services: Services involve asynchronous communication in which a node makes a
remote procedure call to another node which will do a computation and return a
result. This type of communication usually requires an immediate response to avoid
problems in the control cycle of the calling node. An example could be a request to
the mapping service to reset a map, with a response indicating if the call succeeded.

• Actions: Actions are asynchronous communications in which a node makes a request
to another node, and waits for a response without blocking state, as in the synchronous
communication. These requests typically take time to complete, and the calling node
may periodically receive feedback or notifications regarding its status — whether it

95



Introduction to ROS2

has finished successfully or encountered an error. The goal of the action can also
be preempted or canceled. An example of this communication type is a navigation
request, which could be time-consuming, requiring periodic updates about its progress.

TF2 subsystem

The TF2 3 subsystem is the geometric transformation subsystem integrated into ROS2. It
enables the definition of various Reference Frames (RFs) within the system and facilitates
the continuous tracking of geometric relationships between them. Using this tool, any
coordinate within one RF can be effortlessly recalculated in another. This subsystem
plays a critical role in numerous applications, including navigation, localization, and
manipulation.

Figure D.3: Example of Reference Frames (RFs) in a robot.

The geometric relationship between RFs involves the application of rotation and
translation operations from one RF to another. Algebraically, this operation is performed
in homogeneous coordinates using the appropriate transformation matrix. Given the
coordinate vector pA = (xA, yA, zA) of a point in RF A and the transformation matrix TA

B

from A to B, it is possible to calculate pB = (xB, yB, zB) as

p̃B = T B
A · p̃A

xB

yB

zB

1

 =
C
RB

A tB
A

0 1

D
·


xA

yA

zA

1

 (D.1)

where

3https://docs.ros.org/en/humble/Concepts/Intermediate/About-Tf2.html
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• The tilde highlights that the vector is expressed in homogeneous coordinates.

• RB
A is the rotation matrix 3 × 3 from RF A to RF B.

• RB
A is the translation vector 3 × 1 from the origin of RF A to the one of RF B.

Moreover, in addition to the complexity of these operations, it is remarkable that these
relationships are highly dynamic in an articulated robot[48].

TF2 organizes RFs in a tree structure, where each RF should have at most one parent
but can have several children. An error will be raised if a RF has more than one parent,
although no error occurs if several trees are not connected. However, it is advisable to
avoid this situation as it could lead to run-time errors and may indicate that the robot’s
model is not accurate.

TF2 can operate within a distributed system, making all information about a robot’s
coordinate RFs available to all ROS2 components in the system. Additionally, TF2 allows
each component in a distributed system to build its own transformation information
database or utilize a central node to gather and store all transform information.

When a node needs to access transformation information, it uses TFListeners. These
objects maintain a buffer containing the latest published TFs and provide an API for:

• Determining if there is a TF transform from one RF to another at time t.

• Obtaining the rotation or translation between two RFs at time t.

• Transforming a coordinate vector from one RF to another at time t.

The buffer may not only contain the TF at time t, but if it has earlier and later TFs,
it performs interpolation. Similarly, RFs A and B may not be directly connected, but
if there are additional RFs in between, TF2 automatically handles the necessary matrix
operations.

Behavior Trees

A Behavior Tree (BT) is a mathematical model used to encode the high-level logic of
an application. In recent years, BT have gained popularity across various applications,
especially in video games and robot control [49]. These structures are usually compared
to Finite State Machines (FSMs), their closest competitors, although they have distinct
characteristics. While FSMs rely on state and transition concepts, BT necessitate thinking
in terms of sequences, fallbacks, and similar constructs.

In a general sense, a tree represents a hierarchical data structure that is recursively
defined, originating from a root node and branching into multiple child nodes. Each child
node can further branch into additional children, creating a tree-like structure. Nodes
without children are typically referred to as leaves of the tree.

The fundamental operation of a BT is the tick, which propagates from the root to the
first active leaves. When a node is ticked, it returns one of the following three values:

• SUCCESS: The node has completed its task successfully.
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• RUNNING: The node has not yet completed its task.

• FAILURE: The mission is failed.

Furthermore, all the BT nodes can be categorized into four distinct classes:

• Control: Control nodes distribute the tick to their children according to a predefined
rule. For example, the Sequence node is a control node that propagates the tick
to its children in sequence until a child returns FAILURE or all children have been
completed.

• Decorators: Decorators are control nodes with only one child. For instance, nodes
that regulate the execution rate of their child nodes are decorators.

• Action: Action nodes implement specific tasks within the application and are
positioned at the leaves of the tree.

• Condition: Condition nodes are action nodes that can only return SUCCESS if the
associated condition is met or FAILURE otherwise. They cannot return RUNNING.

The library of existing nodes can also be easily extended with custom nodes created by
the users.

Finally, a BT incorporates a blackboard, a key/value storage that can be accessed from
all the nodes in the tree. The blackboard is important for facilitating the exchange of
information between nodes.

With these functionalities, users can implement a vast array of logic applications. A
quite standard implementation of these concepts is found in the Behavior Trees library,
behaviourtree.CPP4, where BTs are specified in the XML format. An alternative Python
implementation is provided by the py-tree library5.

Executors

Given that ROS2 operates as an event-based middleware, it is important to highlight how
the system responds to events. Specifically, the orchestration of node execution is handled
by Executors, which harness one or more threads provided by the underlying operating
system to invoke and manage callbacks associated with timers, subscriptions, events, and
more.

The most straightforward approach is the Single-Threaded Executor, where a single
thread processes messages and events sequentially. The thread queries incoming events,
invoking the corresponding callbacks until the node completes its tasks. An alternative is the
Static Single-Threaded Executor, which optimizes the scans of the node’s structure
by performing them only once during node addition.

On the other hand, the Multi-Threaded Executor introduces a level of parallelism
by creating a variable number of threads to facilitate concurrent processing of multiple

4https://www.behaviortree.dev/
5https://py-trees.readthedocs.io/en/release-2.2.x/
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Figure D.4: Example of Behavior Tree (BT) with a fallback strategy for charging battery.
The rounded rectangles denote the control nodes, the circles represent the condition nodes,
and the rectangles correspond to the action nodes. [48]

messages or events. The extent of parallelism within the callback execution hinges on the
callback group to which they belong.

Two distinct types of callback groups exist, each requiring specification upon instan-
tiation:

• Mutually Exclusive: Callbacks within this group are explicitly disallowed from
concurrent execution.

• Reentrant: Callbacks associated with this group are permitted to execute concur-
rently.

Importantly, callbacks from different callback groups may always be executed in parallel.
The Multi-Threaded Executor employs its threads as a resource pool to maximize the
parallel processing of callbacks, all contingent upon these defined conditions.

When the processing duration of callbacks is shorter than the interval between message
and event occurrences, the Executor typically processes them in a first-in, first-out (FIFO)
order. However, if certain callbacks exhibit longer processing times, messages and events
begin to queue up within the lower stack layers. The Executor is informed only about the
presence or absence of messages for specific topics; it uses this information to process the
messages (including services and actions) in a round-robin fashion, although not strictly
adhering to FIFO ordering.

Despite their versatility, the provided executors might not meet the stringent demands of
real-time applications. These applications require predictable execution times, deterministic
behavior, and fine-grained control over execution order. Challenges include complex
scheduling semantics, potential priority issues, and limited execution control. Finally,
Executors also introduce a notable overhead in CPU and memory usage.
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Final remarks

In conclusion, ROS2 represents a significant evolution from its predecessor, ROS1, with
improved real-time capabilities, enhanced security, and cross-platform compatibility.
Its unique combination of flexibility, open-source accessibility, and the support of a
collaborative community make ROS2 an indispensable tool for the development of resilient
and scalable robotic systems.

Nevertheless, ROS2 is dealing with ongoing challenges with real-time communication,
particularly when dealing with heavy payload messages. This critical issue has garnered the
attention of researchers and developers, as evidenced by the innovative solutions presented
in the field, such as Composition [50]. Furthermore, the promising integration of GPU
computing holds the potential to further improve ROS2 to new levels of efficiency and
performance.
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