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Abstract 
 
 
 
 
 
The purpose of this thesis work is the development of an open-source industrial vision 
application for robot guidance, implemented in Python language using Open CV library. 
The developed program aims to be a free-of-license alternative to the vision software of 
the industrial machine Supata®, entirely designed, realized, and programmed by E.P.F. 
Elettrotecnica. It consists of a vibrating platform (the Supata® itself), a camera with a 
light source, and a robot, to compose a smart feeder system that singularizes parts 
randomly loaded into it and prepares them for following stations.  
 
This work covers all the development phases of this application, from the initial camera 
configuration to the achievement of the final output: detect pieces that can be picked, their 
orientation and grip point's cartesian coordinates, and, finally, the density distribution on 
the platform. The procedure starts with the calibration of the camera, necessary to 
eliminate the lens distortion effects, followed by the definition of the correlation between 
the 2D pixel coordinates of the image and the 3D millimetres coordinates of the robot. 
 
Once the camera is ready and the input image of the platform is acquired, the main 
program operates on two sides: a setup side, performed only the first time a new piece is 
considered, and a processing side, performed every time a new image is acquired. 
The setup side includes the definition of the master image and all the concerning 
parameters and features. On the processing side, after an initial selection based on the 
shape of the objects, the program compares every piece with the master, computing its 
orientation and the coordinates of the grip point. Then, after a final control to check the 
presence of obstacles in the grip area, the final list of pickable pieces is returned, as well 
as their orientation and grip point coordinates. 
Besides the coordinate computation, it also gives an information about the distribution of 
the remaining pieces on the vibrating platform. 
  
The comparison phase between a generic piece and the master is the core of this project 
and the most challenging aspect of the whole work, since it is the key to make this
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program applicable for every kind of piece, no matter the shape, the material, or the 
colour. To accomplish this task, a fundamental technique in computer vision known as 
feature matching is adopted, where the features of two images are detected, described, 
and matched by specific algorithms, implemented through dedicated OpenCV functions: 
in particular, the algorithms considered for this project are SIFT and ORB for the 
detection and the description of the features, and Brute-Force and FLANN for the 
matching. 
 
Finally, to test the program, a set of experiments has been prepared in which six different 
combinations of detector/descriptor and matcher algorithms have been applied on four 
pieces with very different physical characteristics: for each test it has been considered as 
quality evaluation criteria the number of well-matched and wrong-matched pieces, the 
computational time, and the precision with respect to the currently implemented industrial 
vision software on Supata®, based on Cognex libraries. The results of the tests show how 
the combination of ORB as detector and descriptor algorithm with FLANN plus 
homography as matcher algorithm has the best performance for every quality criterion, 
revealing itself as a promising starting point for future improvements. 
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Chapter 1: introduction 
 
 
 
 
 

1.1 Work presentation 
 
In recent years, with the transition to smart factories and Industry 4.0, machine vision has 
become one of the most important research fields for industrial automation, since it gives 
to industrial equipment the ability to ‘see’ the surrounding world and make real-time fast 
decisions based on this vision. 
Robots, in particular, when provided with industrial vision can understand and recognize 
shapes, calculate volumes, identify objects and fulfil much more complex contact-free 
tasks as measuring, improving the product quality, the overall systems efficiency and the 
operator’s health and safety, reducing labour costs and, in general, optimizing 
manufacturing and logistics. 
 
The aim of this thesis work is the development of an industrial vision application for robot 
guidance for the E.P.F. Elettrotecnica machine Supata®, consisting of a vibrating 
platform (the Supata® itself), a camera with a light source, and a robot, to compose a 
smart feeder system that singularizes parts randomly loaded into it and prepares them for 
following stations. 
This application, implemented in Python language using OpenCV library, aims to be a 
valid alternative, in terms of performances, to the software currently implemented on 
Supata® based on Cognex libraries, but completely open-source and free-of-license. 
 
This work covers all the software development phases, from the initial camera 
configuration to the detection of the pieces that can be picked, their orientation, the 
cartesian coordinates of grip point, and, finally, the density distribution on the platform. 
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1.2 Concerning Supata® 
 
Supata® (Figure 1.1) is an industrial machine completely designed, programmed, and 
realized by E.P.F. Elettrotecnica, including mechanical, electrical and software. It is a 
digital, intelligent, flexible feeding module for industrial automation sector, equipped 
with a high-precision customizable integrated vision system. 
 
It consists of a manipulator able to pick pieces from a vibrating platform: the robot can 
recognize the well-posed pieces and when all of them have been moved away, new pieces 
are loaded on the platform that randomly re-distributes the new pieces with a vibrating 
motion regulated by two separate motors, one on the left and one on the right side of the 
platform. Every time the vibrating platform re-distributes the pieces, the camera takes a 
picture, the system recognizes the well-posed pieces and returns the grip point coordinates 
and the piece rotation angle to the manipulator that proceeds with the grip operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1: Supata® machine 
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As the company website [1] states, Supata® is designed and suitable for: 
 

• Be simply integrated into existing lines. 
• Produce small batches with frequent production changes. 
• Be configurable according to different applications. 
• Manage components with different sizes and geometries. 
• Replace rigid and unreliable vibratory feeders. 
• Create a simple system, always ready for new products, with a single interface. 
• Obtain fast and regular cycle times. 
• Improve efficiency and quality of production processes, eliminating costly 

rework. 
• Ensure traceability throughout the production chain. 
• Gain a competitive advantage. 

 
Also, by adopting A.I., the productivity can be improved by 17-20% by optimizing 
quality. Errors can be eliminated reducing costly rework and the overall efficiency is 
maximized, while costs are reduced. 
 
Nowadays Supata® system is used for different fields of industrial production as 
automotive, food and beverage, medical, gadgets, household appliances, household goods 
and all production sectors where the use of mechanical vibrators are required. 
 
 
 
 
 

1.3 Concerning OpenCV 
 
OpenCV (Open Source Computer Vision Library) is an open source computer vision and 
machine learning software library, supporting C++, Python, Java and MATLAB and 
compatible with Windows, Linux, Android and Mac OS. 
The library has more than 2500 optimized algorithms for computer vision that can be used 
for simple operations of image processing as geometric transformation, thresholding, 
histogram equalization but also for more specific applications as edges and contours 
detection, template matching, image segmentation and to solve very complex tasks as 
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feature matching. That’s why OpenCV algorithms are 
widely used in companies, research groups and by 
governmental bodies to detect and recognize faces, 
track moving objects, find similar images in a 
database and so on, with more than 47 thousand 
people of user community and over 18 million of 
estimated downloads all over the world. 
 
Since this project concerns a computer vision 
problem, OpenCV library is the core element to find 
the solution, and the main OpenCV functions 
implemented in the code are going to be discussed 
and explained in detail in the following chapters. 
 
 
 
 
 

1.4 Solution approach 
 
After this introduction, each chapter will deal with a different part of the code 
development, while the last chapters are dedicated to the test phase and the conclusions. 
To give a clearer idea of how this project has been organized, a general scheme of the 
code development is reported below, and it is subdivided into its main steps, that are 
briefly resumed according to the chapters organization order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.2: OpenCV logo [2] 

DENSITY

PICKABLE OBJECTS and GRIP POINT

FEATURE MATCHING

MASTER FEATURES

SEGMENTATION into OBJECT CANDIDATES

POSE ESTIMATION

CAMERA CALIBRATION



Chapter 1: introduction 
 
 

 

5 
 

1) Camera calibration. This step is quite common in computer vision application 
since it is necessary to eliminate the lens distortion effect. The program receives 
as input several images of a special chessboard-like pattern called ChArUco 
board, placed in different positions and returns two parameters, characteristics of 
the lens used to undistort any input image. 
 

2) Pose estimation. Once the undistorted image is acquired, it is fundamental to find 
a correlation between the 2D image world in pixels and the 3D real world in 
millimetres. The program places the global reference frame (Xw Yw Zw) and 
returns all the parameters necessary to find the pixel-to-mm transformation. Once 
all the parameters are known, the correlation is obtained by inverting the pinhole 
camera model equation. 
 

3) Segmentation into candidate objects. First, the user must indicate the grip 
constraints, to avoid the collision between the robot and the platform borders, and 
the master image. With a very important step known as segmentation, based on 
the thresholding operation, the program obtains the blob (silhouette) of every 
piece in the platform, where the segmentation parameters are chosen by the user. 
The program also computes, for each piece, the blob centroid and the area, that is 
compared with the master blob area: if it is included in a certain tolerance range, 
the corresponding piece is considered as candidate object. 

 
4) Master features. All the operation concerning the master are performed only the 

first time that a new kind of piece is considered, while all the other operations are 
performed every time a new image is acquired. In this phase the user must impose 
four important features operating directly on the master image: the collision 
avoidance area, the master grip point, the master orientation, and the keypoints 
area. The collision avoidance area is the space that must be obstacle-free to 
consent the grip, and it is defined by tracing two polygons around the piece. The 
master grip point is simply indicated by a dot, while the master orientation by an 
arrow. Finally, the keypoints area is the area of interest for the feature matching: 
it is defined as a polygon and every keypoint outside the polygon is not considered 
for the matching. 
 

5) Feature matching. This is the core of the whole project: each candidate object is 
separated in a target image that is compared to the master by their features 
(keypoints) which are detected, described, and matched by specific algorithms. 
The detectors/descriptors chosen for this project are ORB and SIFT, while the 
matchers are Brute-Force, FLANN, and FLANN + homography. Differently from 
segmentation, this procedure leads to a comparison not based on the shape of the 
pieces, but on their features, independently from their pose: this makes the 
program applicable for every piece, no matter the shape, the material, or the 
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colour, discarding wrong-posed pieces and obtaining the rotation angle of the 
target pieces with respect to the master (orientation). 
 

6) Pickable objects and grip point. Once the rotation is obtained, for each target 
piece the software computes the coordinates in pixels of the grip points, and the 
presence of obstacles in the collision avoidance area is checked through the Canny 
edge detection method. If a target piece passes all these controls, it is classified as 
pickable, and the coordinates of its grip point are converted from pixels to 
millimetres and provided to the user along with the piece rotation. 
 

7) Density. Once all the pickable pieces have been moved away, it is possible to 
obtain an information about how the remaining pieces are distributed on the 
platform by applying again the thresholding. This information is needed to decide 
if new pieces must be loaded on the plane, or they must be vibrated instead. 
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Chapter 2: camera calibration 
 
 
 
 
 

2.1 Introduction 
 
Camera calibration is the first step for any computer vision project work, since we can 
say that the ‘eyes’ of industrial robots consist in one or more cameras and their lenses, 
optical devices characterized by undesired effects as distortion. 
Therefore, the main goal of camera calibration is to correct those effects, obtaining the 
necessary sets of parameters to correct the camera view, from which it is possible to 
acquire the undistorted images to be processed in the following part of the project. 
 
The base principle of the calibration procedure consists in the realization of a chessboard-
like pattern with well-known square sizes. From several pictures of this chessboard taken 
by the camera, the program returns all the camera parameters to correct the original 
images and therefore to obtain their undistorted version. 
For a matter of robustness, it has not been used a simple black-and-white squares pattern 
but a special one called ChArUco board, that is going to be described afterwards in detail. 
 
 

 
 
To summarise, in this chapter the workstation setup, the hardware, and the software used 
for the image acquisition are first presented and they will be followed by a brief 
theoretical digression about the camera distortion model and the description of the 
ChArUco board. Then the code procedure to obtain the calibration parameters will be 
described by presenting the main functions used in the code. 
 

INPUT
• reference 

chessboard
CAMERA 

CALIBRATION

OUTPUT
• distortion 

correction
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2.2 Hardware and software 
 
The workstation for this first part of the project consists of a platform, a vertical support, 
a ring light, and a camera: the support is placed perpendicularly to the platform, and the 
camera is mounted on the support at 90 cm from the platform so that the centre of the lens 
results above the centre of ring light (Figure 2.1). This guarantees the platform 
illumination without projecting on it the shadow of the camera and, with this 
configuration, the lamp does not interfere with the camera view. 
 
 

 
 
 
Concerning hardware, the camera adopted is a streaming camera Basler acA2500-14gm, 
revised and commercialized by Cognex as CAM-CIC-5000-24-CG: it is characterized by 
GenICam protocol compatibility, and data interface GigE Vision, where GigE is an 

 
Figure 2.1: workplace setup. The full equipment (left) includes the platform on whitch the 

pieces are randomly distributed (bottom right), a ring light and the camera (top right) 
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interface standard introduced in 2006 for high-performance 
industrial cameras, developed applying the Gigabit 
Ethernet communication protocol and widely used around 
the world since it allows fast image transfer using low-cost 
standard cables, assuring robust performance over very 
long lengths. The lens is an Edmund Optics TechSpec-
33304. 
The three devices are shown in Figure 2.3. 
 
 

 
 
 
As for software, to write a python code able to communicate with the camera and acquire 
images, it has been implemented Harvester, a free-use Python library for image 
acquisition process in computer vision applications, which main features are: 
 

• Image acquisition through GenTL Producers (libraries that have C interface and 
offer consumers a way to communicate with cameras over physical transport layer 
dependent technology hiding the detail from the consumer) 
 

• Multiple loading of GenTL Producers in a single Python script. 
 

• GenICam (Generic Interface for Cameras) 
feature node manipulation, where GenICam 
protocol provides generic programming 
interface for all kinds of devices, regardless of 
their interface technology (GigE, ethernet in 
our case, but also USB3 cameras) or what 
features they implement, as long as they are compliant to the GenICam standard. 

 
Figure 2.2: GigE logo 

[3] 

 
Figure 2.3: camera and lens. From left to right: Cognex CAM-CIC-5000-24-CG [4], Basler 

acA2500-14gm [5], and Edmund Optics TechSpec-33304 [6] 

 
Figure 2.4: GenICam logo [7] 
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This library has been fundamental to connect us to the camera, acquiring the images and 
changing the principal camera parameters such as exposure time and brightness (gain). 
 
 
 
 
 

2.3 Distortions, intrinsics, extrinsics 
 
Since we are dealing with just one camera, it’s possible to adopt the so-called pinhole 
camera model to ideally describe the mathematical relationship between the 3D real world 
coordinates of a point and its projection onto the 2D image plane. 
However, since this model does not consider the presence of a real lens, the obtained 
image results to be distortion-free while, it’s well-known that in real-life applications, 
pinhole cameras introduce distortions to images in a significant way. 
 
There are two major kinds of distortion, radial and tangential: 
 

• Radial distortion: it makes straight lines appear curved and its effect is more 
significant as a point is more distant from the centre of the image (Figure 2.5). It 
can be mathematically described as: 
 
 

(2.1) 𝑥𝑟𝑎𝑑𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (2.1) 

   
(2.2) 𝑦𝑟𝑎𝑑𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6) (2.2) 
   
(2.3) 𝑟2 = 𝑥2 + 𝑦2 (2.3) 

 
 

• Tangential distortion: it makes images appear nearer than expected because of the 
non-perfectly parallel alignment between the lens and the imaging plane. It can be 
mathematically described as: 
 
 

(2.1) 𝑥𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟
2 + 2𝑥2)] (2.4) 

   
(2.2) 𝑦𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦 + [𝑝1(𝑟

2 + 2𝑦2) + 2𝑝2𝑥𝑦] (2.5) 
 
 
The parameters of this first set (k1, k2, p1, p2, k3) are known as distortion coefficients. 



Chapter 2: camera calibration 
 
 

 

11 
 

 
 
 
Anyway, two more sets of parameters are necessary for the calibration, and they are 
known as intrinsic and extrinsic parameters of the camera: 
 

• Intrinsic parameters: they are specific to a camera, and they can be gathered into 
a 3X3 matrix called camera matrix, usually noted as A or K: 

 
 

(2.6) 𝐾 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] (2.6) 

 
 
where (fx, fy, cx, cy) are the focal length and the optical centre of the camera. 
This matrix, unique for each specific camera and lens combination, is used to 
correct the image centre position and possible rotation due to focal length, 
mapping the coordinates of the 3D points in the camera system to the pixel 
coordinates in the 2D image system. 

 
• Extrinsic parameters: they are gathered into a 4X4 roto-translation matrix, 

mapping the coordinates of a 3D real point into another coordinate system, for 
example the 3D camera system. 
 

 
Concerning the camera pinhole model and the different coordinates systems that 
characterises it, a more thorough and complete analysis will be debated in the next 
chapter, while dealing with pose estimation. 
 

 
Figure 2.5: radial distortion examples [8] 
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2.4 ChArUco board 
 
A ChArUco board is a chessboard-like pattern that combines a classic black-and-white 
squares chessboard with special markers called ArUco. They are synthetic square markers 
composed of a black squared background and an inner white binary matrix that 
determines the marker identifier, denoted as the marker id. 
 
One of the most important characteristics of ArUco markers is their well-defined 
orientation: given a generic ArUco marker, its four corners are identified and listed in a 
specific clockwise order from 0 (top left corner in the original order) to 3. 
This listing order does not change if the marker is rotated, implying that, if a reference 
frame is associated to a corner, it will remain fixed in that corner, no matter the orientation 
of the board.  
 
ChArUco boards combine the benefits of both classic chessboard and ArUco markers 
(Figure 2.6): corners can be refined more accurately as for chessboards but their detection 
results to be faster because of ArUco markers properties. Furthermore, the property for 
which all the ArUco marker corners maintain their listing order no matter the rotation of 
the board is still valid, and, because of markers versatility, some occlusions or partial 
views don’t compromise the detection of the board, conversely to what happens if a 
simple chessboard is adopted instead. 
 
 

 
 
In the program section, it will be described how to create a ChArUco board and how to 
define it in the code. 
 
 

 
Figure 2.6: ChArUco board composition [9] 
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2.5 Code 
 
The first step consists in acquiring images with the camera, with the functions provided 
by the Harvesters library that also consents to regulate exposure time, brightness (gain) 
and pixel format. 
 
The second step consists in defining and printing the board. 
To create it, it has been used the python codes MarkerPrinter.py and 
MarkerPrinterGUI.py provided by Josh Chien [10] that allows the user to select all the 
board geometrical parameters as dictionary, rows and columns number, square and 
marker length (in meters) and page border sizes (in meters), where the dictionary is a 
predefined set that indicates the number of bits and markers contained in the board. For 
example, DICT_6X6_1000 means that the dictionary is composed by 1000 markers, with 
size 6x6 bits (Figure 2.7). 
 
 

 
 
 
To select the best combination of these parameters, different boards have been printed, 
considering that the total number of markers must not to be too low (lower precision in 
the pose estimation process) or too high (markers too small to be detected) and must be 
contained in a A3 paper sheet (297X420 mm). 
From these attempts it has been noticed that the program correctly detects all the markers 
if the top and bottom left and right squares are black (even number of rows and columns) 
and, at the end, the board with the following parameter has been adopted (Figure 2.8): 
 

- Dictionary: DICT_6X6_1000 
- Rows: 15 
- Columns: 23 
- Square length [m]: 0.0175 
- Marker length [m]: 0.012 
- Border page x [m]: 0.01 
- Border page y [m]: 0.01 

 
Figure 2.7: MarkerPrinterGUI.py interface example [11] 
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Those parameters, except on the border page x and y, are used to describe the board in 
the code, by creating a dedicated class with the function cv.aruco.CharucoBoard(): 
 
 
Function 2.1: cv.aruco.CharucoBoard() [12] 
 

• Input: 
o (ROWS, COLS): number of rows and columns of the board. 
o SQUARE_LENGHT: in millimetres. 
o MARKER_LENGHT: in millimetres. 
o aruco_dict: board dictionary. 

 
• Output: 

o board: board class. 
 

 
 
Once the chessboard has been printed and the program section to acquire images is ready, 
it is finally possible to start the calibration procedure, where the program finds the 
chessboard corners, i.e., the points where two black squares touch each other, and, by 

 
Figure 2.8: definitive ChArUco board 
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knowing the size of a square in mm, converts their 2D image coordinates into 3D real 
world coordinates. The first set of 2D points is known as image points set, while the 
second set is known as object points set. 
In this case, since the board is planar, also the object points set result to be a 2D points 
set. 
 
First, to achieve a good result, it is mandatory to take several pictures of the chessboard 
in different positions and with different orientations (at least 10), so, 20 different images 
of the board have been acquired for this phase (Figure 2.9). 
 

 

 
Figure 2.9: board calibration images 
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For each image, a grey version is produced, then, the program detects the markers (shown 
in Figure 2.10) from the grey image with the function cv.aruco.detectMarkers(): 
 
 
Function 2.2: cv.aruco.detectMarkers() [13] 
 

• Input: 
o image: greyscale of image. 

 
• Output: 

o markerCorners: list of the pixel coordinates of the corners of the 
detected markers, returned, for each marker, in clockwise order, 
starting with top left. 

o markerIds: list of detected marker ids. 
o rejectedImgPoints: list of possible invalid markers. 

 
 

 

 
Figure 2.10: ArUco markers. In the detail (top left) it can be seen in a clearer way the detected 
markers (blue squares), their ordered ids (blue numbers), and the top left corner of each marker 

identified with a pink square 
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Therefore, the marker corners, the corners ids, the grey image, and the board are used as 
inputs for the function cv.aruco.interpolateCornersCharuco() to obtain the interpolated 
ChArUco corners (308 corners, shown in Figure 2.11), by calculating the homography 
correlation between ChArUco plane and image projection.  
 
Function 2.3: cv.aruco.interpolateCornersCharuco() [14] 
 

• Input: 
o markerCorners: from cv.aruco.detectMarkers(). 
o markerIds: from cv.aruco.detectMarkers(). 
o image: greyscale image. 
o board: as defined in cv.aruco.CharucoBoard. 
 

• Output: 
o resp: number of detected squares. 
o charucoCorners: list of pixel coordinates of the interpolated 

chessboard corners. 
o charucoIds: list of the interpolated chessboard corners identifiers. 

 
 

 
Figure 2.11: ChArUco corners. In the detail (top left) it can be seen in a clearer way the 

detected corners, identified by green squares and their ordered ids (green numbers) 
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If the number of squares detected (resp) is greater than a threshold chosen by the user (20 
in this case), the corners and their ids of all the images are collected in lists. Corner list, 
id list, board, and image size are finally used as inputs in the function 
cv.aruco.calibrateCameraCharuco() to get the camera matrix and the distortion 
coefficients: 
 
 
Function 2.4: cv.aruco.calibrateCameraCaruco() [15] 

 
• Input: 

o charucoCorners: list of all the interpolated corners. 
o charucoIds: list of all the interpolated corners identifiers. 
o board: as defined in cv.aruco.CharucoBoard. 
o imageSize: input image size. 
 

• Output: 
o cameraMatrix: matrix K as previously defined. 
o distCoeffs: distortion coefficients (k1, k2, p1, p2, k3) as previously 

defined. 
 

 
 
The result is the acquisition of both camera matrix and distortion coefficients set: 
 
 

K = [
63784.7042 0 1228.26881

0 63468.4528 1022.51891
0 0 1

] 

 
 

distCoeff =  

(

 
 

−15.0520757
−0.945085157
0.0133808090
0.0444127560

−0.000462258376)

 
 

 

 
 
 
One last step before applying the corrective parameters to the image consists in obtaining 
a new camera matrix based on a free scale parameter alpha between 0 and 1 with the 
function cv.getOptimalNewCameraMatrix(), where 0 means that only sensible pixel from 
the original image are retrieved, while 1 means that all the original image pixels are kept. 
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Function 2.5: cv.getOptimalNewCameraMatrix() [16] 

 
• Input: 

o cameraMatrix: from cv.aruco.calibrateCameraCharuco(). 
o distCoeffs: from cv.aruco.calibrateCameraCharuco(). 
o imageSize: input image size. 
o alpha: set at 1. 
o newImgSize: input image size. 
 

• Output: 
o newCameraMatrix: new matrix K. 

 
 
 
The new camera matrix is: 
 
 

K = [
63136.6493 0 1232.28102

0 62738.8758 1023.49849
0 0 1

] 

 
 
Now, given the final camera matrix and the distortion coefficients, it is possible to see the 
result of this correction applied to one of the images, for example the first one, by using 
the function cv.undistort(): 
 
 
Function 2.6: cv.undistort() [17] 

 
• Input: 

o src: distorted image. 
o cameraMatrix: from cv.getOptimalNewCameraMatrix(). 
o distCoeffs: as defined in cv.aruco.calibrateCameraCharuco(). 
o cameraMatrix: from cv.getOptimalNewCameraMatrix(). 

 
• Output: 

o dst: corrected image. 
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The result of this last step can be finally seen in Figure 2.12, where the distorted and the 
undistorted images are compared: the fact that the two pictures are almost 
indistinguishable is a proof of the high camera-lens combination quality. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.12: undistorted image and distorted image comparison. Because of the high quality of 

the lens, the distorted image (left) is almost identical to the undistorted one (right) 
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Chapter 3: pose estimation 
 
 
 
 
 

3.1 Introduction 
 
Once the intrinsic parameters of the camera are known (camera matrix and distortion 
coefficients), it is possible to use them to calculate the pose of an object in space, or rather 
its translation and rotation with respect to a coordinate system. 
To perform this computation, it will be used the ChArUco board already adopted in the 
previous chapter: this operation result will lead to the definition of a global reference 
frame from which the pixel-to-millimetres conversion scale from the 2D image world to 
the 3D real world will be found. 
 
 

 
 
 
One main assumption must be considered before starting: to simplify computations, the 
camera XY plane is assumed to be parallel to the world XY plane, or also the coordinate 
axis Z, perpendicular to the image plane, is considered coincident with the Z axis of the 
camera. This is true only if the camera is correctly placed above the platform, with very 
small rotations around the X and Y axes. 
This means that, since the global coordinate system origin shall correspond to a corner of 
the board, there will be no translation along Z: the pixel-to-millimetres conversion will 
basically be a 2D problem. 

INPUT
• undistorted 

chessboard
POSE 

ESTIMATION

OUTPUT
• global reference
• px-to-mm 

conversion
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It will be shown that one of the functions implemented also returns the camera rotation 
angles around X and Y: to obtain the desired setup configuration the user must then 
manually adjust the camera pose to set those angles as close as possible to zero. 
 
In this chapter will describe in detail the pinhole camera model, already mentioned in the 
previous part, followed by the correlation between world system, camera system and 
image system. Then, the pose estimation procedure and its main functions will be 
discussed through the code. 
 
 
 
 
 

3.2 Camera model 
 
To better understand the pose estimation process, it is mandatory to introduce more in 
detail the pinhole camera model (represented in Figure 3.1), where the view of a scene is 
obtained by projecting 3D points into the image 2D world using a perspective 
transformation that involves three different cartesian reference systems, written in 
homogeneous form: 
 

• Pw = (Xw Yw Zw 1)T : world (global) reference frame, representing the 
coordinates of a point in the real 3D world in millimetres. It is useful to indicate 
it also in the standard form as pw = (Xw Yw Zw)

T. 
 

• Pc = (Xc Yc Zc 1)T : camera reference frame, representing the coordinates 
of a point with respect to the lens of the camera in millimetres, where its standard 
form is pc = (Xc Yc Zc)

T. 
 

• p =  (u v 1)T : image reference frame, representing the coordinates on a point 
in the 2D image world in pixels, where the origin conventionally corresponds to 
the top-left corner of the image. 
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Starting from a point with known global coordinates, its coordinates in the camera frame 
are obtained as: 
 

(3.1) 𝑃𝑐 = 𝑅𝑡𝑃𝑤 = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31
0

𝑟32
0

𝑟33 𝑡𝑧
0 1

]𝑃𝑤 (3.1) 

 
 
where Rt is the roto-translation matrix between the two frames, R is the rotation matrix, 
and t the translation vector. The form [R|t] will be used in the Equation 3.5: 
 

(3.1) 𝑅𝑡 = [
𝑅 𝑡
0 1

] =  [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31
0

𝑟32
0

𝑟33 𝑡𝑧
0 1

] (3.2) 

   
 ↓  
   

 [𝑅|𝑡] = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] (3.3) 

 
Figure 3.1: pinhole camera model [18] 
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The passage from camera frame to image frame is then performed by multiplying the 
camera matrix K by the camera coordinates in standard form: 
 

(3.1) 𝑠𝑝 = 𝐾𝑝𝑐 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] 𝑝𝑐 (3.4) 

 
where s is an arbitrary projecting scale factor. 
Finally, the complete transformation from global frame to image frame can be written as: 
 
 

(3.1) 𝑠𝑝 = 𝐾[𝑅|𝑡]𝑃𝑤 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] 𝑃𝑤 (3.5) 

 
 
Figure 3.2 shows the two main frames useful for the conversion, where the origin of p 
coincides with the top-left corner of the image, while the origin of pw is placed on the 
image plane, Zw is perpendicular to it and the other two axes are oriented according to 
the board pattern. 

 
Figure 3.2: reference frames representation. The image frame (u v) has the origin coincident 

with the top left corner of the image, while the global frame (Xw Yw Zw) has the origin coincident 
with the top right edge of the board and the Z axis entering the page.  
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This is the theory behind the transformation from 3D real points to 2D image points. 
However, the goal now is to obtain the inverse relationship since, in the end, the program 
shall be able to transform a point in the image plane into a set of real coordinates for the 
robot. 
 
First, the Equation 3.5 can be rewritten as: 
 
 
(3.1) 𝑠𝑝 = 𝐾(𝑅𝑝𝑤 + 𝑡) (3.6) 
   
 ↓  
   

 𝑠 [
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]([

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] [
𝑋𝑤
𝑌𝑤
0
] + [

𝑡𝑥
𝑡𝑦
𝑡𝑧

]) (3.7) 

 
 
where Zw = 0. 
Then, through the following passages, it is possible to find Xw and Yw by inverting the 
matrices K and R: 
 
 
(3.1) 𝑠𝑝 = 𝐾(𝑅𝑝𝑤 + 𝑡)  →  𝑠𝑝 = 𝐾𝑅𝑝𝑤 + 𝐾𝑡  →  𝑠𝑝 − 𝐾𝑡 = 𝐾𝑅𝑝𝑤   (3.8) 
   
 ↓  
   
 𝑝𝑤 = (𝐾𝑅)

−1(𝑠𝑝 − 𝐾𝑡) (3.9) 
 
 
The only unknown term on the right side is the projecting scale factor s. Anyway, since 
Zw = 0, it can be easily obtained by looking at the last element of each matrix product: 
 
 
(3.10) 𝑠[(𝐾𝑅)−1𝑝]3 − [(𝐾𝑅)

−1𝐾𝑡]3 = 0 (3.10) 
   
 ↓  
   

 𝑠 =
[(𝐾𝑅)−1𝐾𝑡]3
[(𝐾𝑅)−1𝑝]3

 (3.11) 

 
 
where [V]3 is the third (last in this case) element of the generic vector V. 
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3.3 Code 
 
The pose estimation code is the continuation of the calibration part: again, one of the 
board images, for example the first one, is chosen as reference: the distortion correction 
is applied and, as already done in the previous chapter, all the corners ad their Ids are 
detected with the function cv.aruco.interpolateCornersCharuco(). 
Then, the function cv.aruco.estimatePoseCharucoBoard() is used to find the rotation 
vector and the translation vector of the board with respect to the origin of the image 
reference: 
 
 
Function 3.1: cv.aruco.estimatePoseChacrucoBoard() [19] 

 
• Input: 

o charucoCorners: from cv.aruco.interpolateCornersCharuco(). 
o charucoIds: from cv.aruco.interpolateCornersCharuco(). 
o board: as defined in cv.aruco.CharucoBoard. 
o cameraMatrix: from cv.getOptimalNewCameraMatrix(). 
o distCoeffs: from cv.aruco.calibrateCameraCharuco(). 
 

• Output: 
o retval: Boolean value, true if the pose estimation is valid, false 

otherwise. 
o rvec: rotation vector of the board in the Rodrigues notation. 
o tvec: translation vector of the board. 

 
 
 
If retval is true, rvec and tvec are used in the function cv.drawframeAxes() [20] to draw 
the reference frame on the board: in Figure 3.3 it is possible to see how the origin is 
located on the top right corner of the board edge, the X axis is drawn in red, the Y axis is 
green and the Z axis is blue (entering the page). 
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To have a good estimation of the intrinsic parameters correctness, the reprojection error 
is computed as the absolute norm between the coordinates of the interpolated chessboard 
corners charucoCorners, previously obtained from 
cv.aruco.interpolateCornersCharuco(), and the image points. 
The image points, 2D reprojection of 3D points, are obtained from the object points (3D 
points) with the function cv.projectPoints() [21], in turn obtained by the function 
cv.aruco.getBoardObjectAndImagePoints():  
 
 
Function 3.2: cv.aruco.getBoardObjectAndImagePoints() [22] 

 
• Input: 

o board: as defined in cv.aruco.CharucoBoard. 
o charucoCorners: from cv.aruco.interpolateCornersCharuco(). 
o charucoIds: from cv.aruco.interpolateCornersCharuco(). 
 

• Output: 
o objPoints: coordinates in millimetres of board marker points. 

 

 
Figure 3.3: global reference frame 
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The result of the norm is then divided by the number of image points to get the 
arithmetical average and, in the end, the reprojection error results to be equal to 0.06 px: 
by converting this error in millimetres, once obtained the conversion scale values, it will 
be shown that this error is quite small. 
 
The next step consists into finding the rotation matrix R and the Euler angles, that are 
obtained first by applying the function cv.Rodrigues() [23] to rvec, which performs the 
Rodrigues inverse transformation, then, by applying to R the MATLAB function 
rotm2eul() [24] which returns the three rotation angles in the order Z-X-Y: 
 
 

R = [
−0.01522158 −0.99732713 −0.07146261
0.99983859 −0.0158642 0.00843344
−0.0095446 −0.0713227 0.99740763

] 

 
↓ 

 

θZXY = (
1.5860
0.0095
−0.0714

) [rad] = (
90.8722
0.5469
−4.0901

) [°] 

 
 
Since the board is planar, possible non-zero angles around X and Y are consequences of 
an imprecise positioning of the camera, that results to be non-parallel to the board. As 
already mentioned at the beginning of the chapter, the user should manually correct the 
camera positioning and repeat the procedure until the resulting X and Y angles values are 
very close to zero, but this operation is not simple if executed without specific equipment. 
For this reason, few degrees rotation angles around X and Y are considered acceptable. 
Now that K, R, and t are known, the last missing term s is obtained by applying the 
Equation 3.11. Then, it’s finally possible to apply the Equation 3.10 to obtain the pixels-
to-millimetres conversion for any desired point of the image. 
  
To have an idea of the pixels-to-millimetres conversion scale, a simple geometrical 
procedure is proposed: because of the function cv.projectPoints(), the origin O and the 
extreme top-left (TL) and down-right (DR) corners pixel coordinates are well known so, 
it is possible to calculate the distance between these points and the origin: 
 
 
(3.10) 𝐷𝑅,𝑂̅̅ ̅̅ ̅̅ ̅ = √(𝑢𝑂 − 𝑢𝐷𝑅)2 + (𝑣𝑂 − 𝑣𝐷𝑅)2 (3.12) 
   
 𝑇𝐿, 𝑂̅̅ ̅̅ ̅̅ ̅ = √(𝑢𝑂 − 𝑢𝑇𝐿)2 + (𝑣𝑂 − 𝑣𝑇𝐿)2 (3.13) 
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Then, the real-world width distance (WD) and length distance (LD) correspond to: 
 
 
(3.10) 𝑊𝐷 = 𝑟𝑜𝑤𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (3.14) 
   
 𝐿𝐷 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (3.15) 

 
 
The conversion scale values are then: 
 
 

(3.10) 𝑠𝑥 = 
𝑊𝐷

𝐷𝑅,𝑂̅̅ ̅̅ ̅̅ ̅
 (3.16) 

   

 𝑠𝑦 = 
𝑊𝐿

𝑇𝐿, 𝑂̅̅ ̅̅ ̅̅ ̅
 (3.17) 

 
 
And the result is:  sx = 0.20099 [mm/px] and sy = 0.20035 [mm/px]. 
The fact that the two scale values are so similar, is another proof that the camera rotation 
angles around X and Y are quite small, and so the board squares shapes are not affected 
in a significant way by perspective. 
 
Given the conversion scale values it is possible to estimate the maximum value of the 
reprojection error in millimetres by multiplying it for the maximum between sx and sy, 
and, as previously mentioned, this error results to be quite small: 
 
 
𝑟𝑒𝑝_𝑒𝑟𝑟𝑜𝑟𝑚𝑚 = 𝑟𝑒𝑝_𝑒𝑟𝑟𝑜𝑟𝑝𝑥 ∗ 𝑚𝑎𝑥(𝑠𝑥, 𝑠𝑦) = 0.06 ∗ 0.20099 = 0.0120594 [𝑚𝑚] 

 
  
Finally, to estimate the error between the transformation results and the actual 
measurements, for each ChArUco corner of the board it has been computed the absolute 
value of the difference between the X, the Y, the corner-to-origin (diagonal) distance and 
their values directly measured on the printed board. 
In Table 3.1 the maximum, the minimum and the average errors in millimetres for each 
coordinate are collected, while, Figure 3.4, 3.5, and 3.6, show the MATLAB plots of the 
errors for each corner, to give an idea of the error distribution all over the board. 
From Table 3.1, the maximum error affecting the corners is less than 0.77 mm on the 
diagonal, that is a quite good result. 
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error [mm] X Y DIAGONAL 

maximum  0.5103 0.7286 0.7698 

minimum 0.0010 0.0010 0.0004 

average 0.1410 0.2595 0.2366 
 

Table 3.1: pose estimation errors 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 3.4: X calibration error 
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Figure 3.5: Y calibration error 

 
Figure 3.4: diagonal calibration error 
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Chapter 4: segmentation into object 
candidates 
 
 
 
 
 

4.1 Introduction 
 
In the previous two chapters, the preparatory steps for the development of the main part 
of this thesis project have been examined, that is a quite standard procedure for every 
computer vision work: in fact, the program is now ready to acquire distortion-free images 
of the platform and convert each pixel coordinates into real world millimetres coordinates, 
with respect to the global frame. 
 
Being this the first chapter concerning the main program, it is discussed how, given a 
bunch of pieces randomly posed on the platform, the reference piece (the master) is 
chosen and how a first, preliminary set of candidate objects is obtained with a procedure 
that only involves the shape of the pieces, by comparing each piece with the master. 
This procedure is based on a very largely used technique called image segmentation, 
which in turn is based on another fundamental image processing method called 
thresholding. 
 
 

 

INPUT
• initial full image MASTER 

SELECTION

OUTPUT
• master image

INPUT
• initial full image IMAGE 

SEGMENTATION

OUTPUT
• first set of 

candidate objects
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Differently from the previous two chapters, from this one on, it has been decided to 
explain step by step the whole project following the code implementation order. This 
means that, as a matter of clarity, theoretical explanations will not be discussed at the 
beginning of the chapter but gradually, when required. 
 
 
 
 
 

4.2 Grip constraints definition and master selection 
 
The very first step of this program consists, obviously, in the acquisition of the full image 
of the platform, that is automatically corrected by applying the results of the camera 
calibration process. Figure 4.1 shows the first image taken for the final tests section, that 
will be used as example from now on for all the code explanations. 
The discussion will refer to this particular kind of R-shaped black pieces with the tag 340. 
 
 

 

 
Figure 4.1: 340 full image 
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Once the undistorted image has been acquired it is mandatory, before proceeding, to set 
some coordinates constraints on the image to exclude the areas close to the borders of the 
platform, to avoid a possible collision of the robot during the grip operation. These 
constraints are imposed by the user and are represented by four lines printed on the image 
as well as their coordinates (Figure 4.2). When the grip point of each piece will be defined, 
if one of them results to be located outside these constraints, the corresponding piece will 
not be considered for the grip. 
 
 

 
 
 
 
 

 
Figure 4.2: grip contraints. N stands for North (red line), E for East (orange line), S for South 

(green line), and W for West (blue line) 
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Now, the user must choose the master, that is the reference piece: this is a crucial choice, 
since the master will be the reference not only for the pieces considered for this project 
discussion, but it will be saved and re-used as reference every time a new batch of pieces 
of the same kind is processed. 
For this reason, the master must be a well-posed and well-illuminated piece, without other 
pieces or any sort of obstacles in its neighbourhood. That’s why it is usually placed ad 

hoc on the platform, exclusively for this first operation. 
Also, the master image (Figure 4.3) must be cropped with proper sizes: large enough to 
consent all the operations that are going to be analysed in detail in the next chapter, but 
not too large to cause ambiguity between close pieces during the feature matching phase. 
 
 

 
 
Since a lot of operations in the next phases are based on the sizes of the master image, the 
program executes a further step before proceeding over: to be sure that master image 
height and length are divisible by two, for a matter of precision, the program 

 
Figure 4.3: choice of the reference piece. The detail (up left) shows the master as a result of the 

cropping action (blue rectangle) on the full image 
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automatically corrects the cropping sizes manually imposed by the user, by adding a 
column or a row of pixels, if one of the two sizes results to be an odd number. 
 
 
 
 
 

4.3 Segmentation 
 
Segmentation is an image manipulation technique commonly used in computer vision 
applications since it consists in easily distinguishing an object from its background by 
detecting its corresponding silhouette, also called blob. The blob resulting from this 
operation is, in this case, a black spot shaped as the piece on a white background, as 
shown in Figure 4.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For this project, the segmentation procedure can be schematized as a sequence of three 
operations, where the first, thresholding, is the most important one: 
 

1) Thresholding of the master and of the full image to isolate the pieces from the 
background and obtain the blobs. 
 

2) Noise removal by closing operation. 
 

3) Blob grouping by erosion operation. This is necessary only if a piece is 
characterized by multiple blobs because of the illumination conditions and it is 
not possible to apply adaptive thresholding. 

 
Figure 4.4: master piece and its corresponding blob 
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However, to better understand what thresholding is, and consequently how segmentation 
works, it is better to introduce some digital image basics. 
 
 
 
 
 

4.4 Digital image basics 
 
A digital image is nothing but a matrix of pixels, where each pixel is associated to a vector 
of values (channels) called colour space and where each channel assumes a numerical 
value (intensity). The combination of colour space kind, number of channels and intensity 
values determines the colour of the pixel. 
 
Some of the most used colour spaces (Figure 4.5) are: 
 

• BGR (blue, green, red): the colour space adopted by OpenCV, where the intensity 
of each channel goes from 0 to 255. To give some examples, the pixel 
characterized by the combination [0, 0, 255] is a red pixel, while the pixel 
[0, 255, 255] is a yellow pixel. Remarkable cases are black pixels [0, 0, 0] and 
white pixels [255, 255, 255]. 

 
• RGB (red, green, blue): the colour space adopted by Matplotlib, a very useful 

Python library, ideal to represent multiple images and check pixels coordinates. 
This colour space is the inverse of RBG, so the pixel [0, 0, 255] will be blue. 
Black and white pixels are unchanged. 
 

• GREYSCALE (black/white): black-and-white colour space, characterized by one 
single channel that can assume intensity values from 0 (black) to 255 (white). It 
is frequently used for a lot of image manipulation processes as thresholding. 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.5: OpenCV logo [25] printed with different colour spaces 
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Since it can be useful to swap from a colour space to another, especially from colour to 
grey, OpenCV provides very simple methods to easily perform this change. 
 
 
 
 
 

4.5 Thresholding 
 
In digital image manipulation, thresholding is the simplest segmentation process. Given 
a greyscale image, it consists in replacing each pixel of the image with a white pixel if its 
intensity value 𝐼𝑖,𝑗 is greater than a threshold T, otherwise it is replaced with a black pixel: 
this process is called binary thresholding, while the opposite is called inverted binary 
thresholding. 
 
In formulas: 
 
 

(4.1) 𝐼𝑖,𝑗
𝑏𝑖𝑛 = {

 255 𝑖𝑓 𝐼𝑖,𝑗 > 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.1) 

   

 𝐼𝑖,𝑗
𝑖𝑛𝑣 = {

 0 𝑖𝑓 𝐼𝑖,𝑗 > 𝑇

 255 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.2) 

 
 
In general, thresholding methods can be subdivided in two major groups: 
 

• Global thresholding: the threshold is applied to every pixel of the image, useful 
for homogeneous illumination conditions. Binary, inverted binary and other kinds 
as truncated, threshold-to-zero, and inverted threshold-to zero belong to this group 
(Figure 4.6). 
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• Adaptive (local) thresholding: an algorithm determines the threshold to be applied 
to each pixel basing the computations on the mean of a small neighbourhood 
region around the pixel itself or on the Gaussian-weighted sum of the 
neighbourhood values. It is useful when the image is characterized by different 
lighting conditions (Figure 4.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.6: global thersholding [26] 

 
Figure 4.7: global and adaptive thresholding comparison [27] 
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Coming back to the code, the user is then asked to select the kind of threshold (standard 
or adaptive, normal or inverted), operating directly on both the full image and the master 
image, according to the illumination conditions and the background colour: for example, 
for grey pieces on a white, well-illuminated background, the best choice is standard 
inverted binary thresholding, while a grey or black background with non-homogeneous 
illumination could require a normal adaptive thresholding. 
The two thresholding values the user has to adjust, called THRESHOLD and ADAPTIVE 
in Figure 4.8, are the parameters characterizing the functions cv.threshold() and 
cv.adaptiveTreshold(). 
Of course, these two functions cannot be applied at the same time. 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 4.8: thresholding settings window. By regulating the five trackbars (top), the user 

imposes the parameters for the thresholding of the full image (centre) and of the master (top 
right). The results can be compared in real time with the master itself (bottom right) 
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Function 4.1: cv.threshold() [28] 
 

• Input: 
o src: source greyscale image. 
o thresh: the THRESHOLD parameter value, from 0 to maxval. 
o maxval: maximum value to use with binary and inverted binary, 

usually set to 255. 
o type: cv.THRESH_BINARY or cv.TRESH_BINARY_INV, for this 

work, but it can accept other kinds of thresholding. 
 

• Output: 
o dst: output greyscale image. 

 
 
 
Function 4.2: cv.adaptiveThreshold() [29] 

 
• Input: 

o src: source greyscale image. 
o thresh: THRESHOLD value, from 0 to maxval. 
o maxval: maximum value, usually set to 255. 
o adaptiveMethod: mean-based or gaussian-based adaptive 

thresholding. For this work it has been chosen the gaussian method 
cv.ADAPTIVE_THRESH_GAUSSIAN_C since it results less 
sensitive to noise. 

o blockSize: the ADAPTIVE parameter value, it is the size of pixel 
neighbourhood used to calculate the local threshold. It can assume 
only odd values equal or greater than 3. 

o C: constant subtracted from the weighted mean; it is set to 5 but it can 
assume any value. 
 

• Output: 
o dst: output greyscale image. 

 
 
 
To have a better vision of the different results when the two functions are adopted on the 
same image, Figure 4.9 shows the resulting adaptive and standard thresholding applied to 
another kind of pieces, tagged as diapason188. 
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However, selecting the correct set of thresholding parameters could not be enough to 
obtain a good result, since the user might occur in two problems: noise in the form of 
randomly distributed black pixels and non-uniformity of the blob. 
The solutions for both of those issues are based on a kind of techniques called 
morphological operations, three of those are used for this work (Figure 4.10): 
 

• Dilation: given a kernel, (usually squared), it dilates the white areas. In a black-
and-white image the operation results to be very simple: if the kernel is, for 
example, a 3X3 square, the eight pixels surrounding each white pixel are turned 
into white. 
 

• Erosion: inverse of dilation, where the black areas are expanded and white pixels 
surrounding a black one, are turned into black. 
 

• Closing: dilation followed by erosion to eliminate unwanted black points on a 
white background. Usually, those black or white isolated points are the result of 
the thresholding applied to the background noise.  

 
 

 
Figure 4.9: adaptive and standard (global) thresholding on diapason188. From left to right: 

master, adaptive thresholding result, and standard (global) thresholding result 

 
Figure 4.10: bitwise operations examples [30], [31] 
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To solve the noise issue, the program applies a closing operation with a fixed 5X5 square 
kernel, while, to solve the non-uniformity of the blob, an additional user operation is 
required. 
The non-uniformity of the blob is a significant issue for the contour detection phase and 
may occur when the piece is not planar and reflects the source light in different ways or 
when the piece is characterized by holes or protrusions. Usually, this problem is 
automatically solved when adaptive thresholding is adopted: however, it may happen that 
the user must impose standard thresholding because of illumination conditions, obtaining 
multiple isolated blobs. The solution is a simple erosion operation where the number of 
iterations is set to 1 and the user selects the kernel size by adjusting the EROSION 
parameter (Figure 4.11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To summarise, given the full image and the master, the user must select the kind of 
thresholding (standard/adaptive, normal/inverted) to properly separate the objects from 
the background, then, if needed, he must unify multi-blobs by setting the erosion kernel 
sizes. 
The result is the final segmentation, shown in Figure 4.12. 
 

 
Figure 4.11: erosion and closing. By applying erosion 
and closing on the result of standard thresholding, the 

noise effect is eliminated and the blob appears as a 
uniform spot 
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4.6 Contours, areas, and centroids 
 
Now that the segmentation phase is completed, from Figure 4.12 it is possible to notice 
how some blobs correspond to wrong-posed pieces or to huge groups of pieces too close 
to each other to be considered by the robot. 
The next step consists then into excluding those blobs by computing the area of the master 
blob and, fixed a tolerance range, selecting the blobs from the full image whose area is 
included in that range. 
 
To find the area of each blob it is mandatory to find the contour first, starting with the 
master: the contour, i.e. the curve that joins all the continuous points along the blob 

 
Figure 4.12: final segmentation. On the full image a normal (not inverted) adaptive 

thresholding with ADAPTIVE parameter equal to 21 has been applied 
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boundary, is detected by the program with the function cv.findContours() [32] but it is 
selected by the user (Figure 4.13), since there could be more than a single detected contour 
if the piece presents holes or big zones with high intensity gradient, as shown in Figure 
4.14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The possibility of choosing the contour makes it possible, in many cases, to avoid the 
erosion operation seen before: in the example shown in Figure 4.14, the blob (obtained 
with adaptive thresholding) is characterized by three different contours (green curves). 
However, it can clearly be seen that the second one is enough to effectively describe by 

 
Figure 4.13: master contour 

selection window 

 
Figure 4.14: diapason188 multiple contours 
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itself the whole piece shape: erosion would have been mandatory if the three contours 
had significant importance in the definition of the piece shape. 
Given the master contour, its area and momentum are computed with cv.contourArea() 
[33] and cv.moments() [34]: the area is fundamental for the pieces blobs detection, while, 
from the momentum, it is possible to compute the coordinates of the centre of mass 
(centroid) of the blobs, indicated as cx and cy. That is another reason why the contour 
must be as uniform and well-shaped as possible, since too different contours from the 
ideal shape of the piece would lead to centroid misplacing. 
 
At this point, before proceeding with areas comparison, as a matter of precision the 
program crops a new master from the original full image, identical in size and orientation 
to the previous one, but the image centre is now coincident with the centroid of the blob: 
this is the definitive master image that is going to be saved as a reference for the entire 
process. 
In Figure 4.15, it is possible to notice a very little difference between the two masters: 
this implies that the user must not be extremely precise with the initial master cropping, 
since it will centre itself at this point of the process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.15: definitive reference (master) image. The 

new master image (right) is simply a new version of the 
master image cropped by the user whose centre coincides 

with the centre of mass of the master blob 
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4.7 Candidate objects identification 
 
This is the last candidate objects identification step, now that all the contours and the 
master blob area are available. The procedure can be schematized as: 
 

1) The generic blob area from the full image is computed from the blob contour with 
cv.contourArea(). 
 

2) A tolerance range, for example ±80% of the master blob area, is considered. 
 

3) The generic blob area is compared with the tolerance range: if it is included, the 
corresponding object is considered a candidate object, otherwise it is ignored. 
 

4) The generic candidate object centroid coordinates cx and cy are computed. 
 

5) cx and cy are compared with three sets of coordinate limits, the last two of which 
and their functions will be defined in detail in the next chapters: 
 

• Grip constraints, defined at the beginning of this chapter, to be sure that 
the centroid falls in the safety area for the robot. 
 

• Crop limit, to guarantee that the target image for the feature matching 
phase can be cropped from the full image. 

 
• Grip limit, to guarantee that the collision avoidance area can be defined, 

no matter the rotation angle of the piece. 
 

If all the three checks are passed, the centroid and its corresponding piece are 
collected in the candidate objects set. 
 

This procedure takes place every time the camera takes a new picture of the platform, and 
the result is printed on screen: as shown in Figure 4.16, the program shows all the detected 
contours (green), and the candidate objects by drawing their centroids (red), their 
minimum area rectangle (blue), and the Ids that characterise the objects from now on 
(blue). 
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Figure 4.16: candidate object detection on the full image 
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Chapter 5: master features 
 
 
 
 
 

5.1 Introduction 
 
This is going to be a quite short chapter, since it concerns the definition of all those 
parameters that must be determined by the user before proceeding with feature matching: 
collision avoidance area, master grip point, master orientation, and keypoints area. 
 
 

 
 
As for the master thresholding parameters and the master blob area, all these values must 
be set only the first time a new kind of pieces is considered. 
 
 
 
 
 

5.2 Collision avoidance area 
 
The first operation on the master image is the definition of the collision avoidance area, 
i.e., the area that must result obstacle-free to consent the grip by the robot. 
It is defined by the user as the area in-between two polygons: an inner one (blue) is first 
determined by drawing the vertexes and it must be very close to the piece, then, once the 

INPUT
• master image

MASTER 
FEATURES

OUTPUT
• collision 

avoidance area
• master grip point
• master orientation
• keypoints area
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inner polygon is closed, the user must trace also the outer one (red) according to the grip 
characteristics of the robot (Figure 5.1). 
 
In this phase it is also computed the maximum 
distance between the centre of the master image and 
the vertexes of the outer polygon: if the distance 
between the centre of a candidate piece blob and one 
of the four grip constraints of the full image is lower 
or equal to that maximum distance, the piece is 
automatically excluded. This operation is performed 
to guarantee the possibility to crop for each candidate 
object an image large and high enough to host the red 
polygon, no matter its rotation around the centroid. 
This limit, called grip limit, is one of the two 
limitations considered at the end of the previous 
chapter. 
The method adopted to determine if that area is 
obstacle-free or not is based on the Canny edge 
detection method, explained in detail in Chapter 7. 
 
 
 
 
 

5.3 Grip point and master orientation 
 
The next simple but crucial operations are the 
definition of the reference grip point and the 
orientation of the master: the user indicates a point on 
the master and defines an arrow with origin in the 
centre of the image, indicating the orientation of the 
master with respect to the horizontal (Figure 5.2). 
 
For the grip point, the program computes the distance 
from the centre of the image and the angle between 
this segment and the horizontal, while, for the 
arrowhead, since its length has just representation 
purposes, it is enough to compute the angle. 
All those parameters are necessary to the computation 
of the grip point cartesian coordinates of the generic 
piece and its orientation.  

 
Figure 5.1: collision avoidance 

area 

 
Figure 5.2: master grip point 

and orientation arrow 
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5.4 Keypoints area 
 
Keypoints are the main protagonists of the feature 
matching process, that will be largely discussed in the 
next chapter. Just to introduce them in a very 
synthetic way, keypoints are interesting points in an 
image detected by a specific algorithm and compared 
to other keypoints of another image: if two keypoints 
from two different images have similar 
characteristics, the program matches them with 
another dedicated algorithm. 
Nevertheless, it may happen that just a limited area of 
the master image has significant characteristics for 
the comparation: for this reason, the user can trace a 
third polygon (Figure 5.3) to consider only the 
keypoints included in that area, gaining a lot of 
computational time in the next phases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3: keypoints area 
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Chapter 6: feature matching 
 
 
 
 
 

6.1 Introduction 
 
This chapter represents the main core of the whole project since it is about the part of the 
program that compares each candidate object with the master, finds its relative orientation 
angle, and performs a further control to exclude more wrong pieces. The basic concept 
behind this procedure is feature matching. 

 
Again, this chapter will follow the code order, presenting at first a brief theoretical 
description of two features detectors and descriptors called SIFT and ORB, and two 
matchers called Brute-Force (BF) and FLANN, in additional to homography for what 
concerns SIFT. Then, it will describe the procedure to obtain the pieces orientation as the 
difference angle between each piece rotation and the master rotation. 
 
 
 
 
 

6.2 Features 
 
To better understand what features are and how feature matching works, it is better to 
introduce them with an example. Let’s consider Figure 6.1 as a very simple game where 

INPUT
• initial full image
• master image
• key-points-area

FEATURE 
MATCHING

OUTPUT
• orientations
• new potential 

pickable objects
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the player must find in the full picture the objects represented in the small rectangular 
windows, going from A to F.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To accomplish this simple quest, the human brain, through the eyes, looks for relevant 
characteristics in each window and in the full image as changing in colour, light gradients, 
or peculiar shapes. Those characteristics are the so-called features. 
Then, once the features have been detected, the brain elaborates a description of each 
feature and looks for similar descriptions in the windows and in the full image: if two 
features have same characteristics, they are matched. 
 
This, in program language, is feature matching. The program is then composed of: 
 

1) Detectors: algorithms that look for features in an image. The more these features 
are characterized, the easier and more precise is the tracking: for example, corners, 
edges, or blobs are good features, while flat areas are bad features. 
 

2) Descriptors: algorithms that look for the features found by the detector in another 
image. SIFT and ORB are both detectors and descriptors. 

 
3) Matchers: algorithms that match similar features of different images, like Brute-

Force and FLANN. 
 
 

 
Figure 6.1: features example [35] 



Chapter 6: feature matching 
 
 

 

54 
 

6.3 SIFT 
 
SIFT (Scale Invariant Feature Transform) is an algorithm that detects keypoints and 
computes their descriptors proposed in 2004 by David Lowe in his paper [36]. The 
keypoints detected and described by SIFT result to be robust and matchable to large 
datasets of objects. Also, many keypoints can be generated for small objects, like the 
master image obtained in the previous chapters. 
To briefly explain the algorithm procedure, it has been followed the 5-steps explanation 
provided by OpenCV, based on the Lowe paper organization: 
 

1) Scale-space extrema detection: the main issue with simple detectors as Harris or 
Shi-Tomasi is that they are rotation invariant (the corner is found no matter the 
rotation) but not scale invariant, since it is not possible to use the same window 
with constant sizes to detect keypoints with different scales. 
For this reason, SIFT at first separates scale-space into several octaves forming a 
Gaussian pyramid, where octaves number depends on the original image size and 
each octave size is half of the previous one. Then, a scale-space filtering approach 
is adopted by computing Difference of Gaussians (DoGs) as the difference of 
Gaussian blurring of an image with two different scale values σ and kσ, where σ 
is the scaling parameter. This process is done for different octaves in the pyramid 
(Figure 6.2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.2: DoG on different image octaves [37] 
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Once the DoGs are computed, a pixel in an image is compared with its 8 
neighbours and the 9 pixels in the next and previous scale (Figure 6.3): if the pixel 
is a local extremum, it means that its scale better represents it, and it is considered 
as a potential keypoint. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

2) Keypoint localization: some keypoints resulting in the previous step as low 
contrast keypoints and edge keypoints are of weak interest: for this reason, 
potential keypoints locations are refined using Taylor expansion for a more 
accurate result, excluding all the keypoints with intensity lower than a threshold 
(contrastThreshold). 
 
Because of the strong DoGs response for edges, the Hessian matrix H is computed 
for each keypoint to obtain the principal curvatures since, for weak keypoints, 
the principal curvature across the edge is much larger than the principal curvature 
along it. The parameter that takes into account this situation is defined by the ratio 
between the squared trace and the determinant of H: 
 
 

(6.1) 𝑅 =
𝑇𝑟(𝐻)2

𝐷𝑒𝑡(𝐻)
 (6.1) 

 
 
If R is greater than a threshold (edgeThreshold), the keypoint is excluded. 
 

3) Orientation assignment: to guarantee rotation invariance, for each keypoint 
gradient intensity and direction in its neighbourhood are computed. Then, a 36-
bin histogram is created, covering 360°: the highest histogram peak and any other 
peak above 80% of the highest peak are considered to compute orientation. 

 
Figure 6.3: keypoint 
identification [38] 

https://en.wikipedia.org/wiki/Principal_curvature
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However, since there could be several peaks, several keypoints can be created 
with same location but different orientation, affecting matching stability. 
 

4) Keypoint descriptor: for each keypoint, the descriptor is created as a 128-bin 
vector, obtained from a 16X16 neighbourhood around the keypoints, divided into 
4X4 sub-blocks from which 8-bins histogram is created. 
The descriptor results to be highly distinctive and invariant as possible to external 
variations as illumination or perspective changes. 
 

5) Keypoint matching: two keypoints are matched by identifying their nearest 
neighbours. However, it may happen that the 2nd closest match is very close to the 
1st because of noise or other reasons: in this case, if the ratio between the 1st closest 
distance and the 2nd is greater than a threshold, the match is rejected: this 
procedure is called Lowe ratio test, since it is presented by Lowe in its paper 
where, with a threshold of 0.8, it eliminates the 90% of false matches with a waste 
of only 5% of correct matches (Figure 6.4). 
However, for this work the threshold has been fixed to 0.75 as a compromise 
between the value proposed by Lowe and the minimum value of 0.7 proposed by 
OpenCV for the matching tutorials. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This test will be performed for both SIFT and ORB method, independently from 
the kind of matcher algorithm adopted. 
 

 

 
Figure 6.4: Lowe ratio test [39] 
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6.4 ORB 
 
ORB (Oriented FAST and Rotated BRIEF) is an algorithm proposed in 2011 by Ethan 
Rublee, Vincent Rabaud, Kurt Konolige and Gary R. Bradski in their paper [40] and 
developed at OpenCV Labs that results to be a good alternative to SIFT and SURF (SIFT 
was patented in 2011 so not free) in terms of computation cost and matching performance. 
As the name says, it is based on two algorithms for keypoints detection and description, 
by improving their performances: 
 

• FAST (Features from Accelerated and Segmented Test) detector: every pixel p in 
an image is compared with its 16 neighbours in a circular area that are classified 
as brighter, darker, or similar to p. If more than 8 pixels are darker or brighter, p 
is a keypoint. 
 

• BRIEF (Binary Robust Independent Elementary Feature) descriptor: it takes all 
the keypoints from the detector and converts them into a binary feature vector. 
Each vector represents a keypoint and it consists in a binary 128-512 bits string. 

 
At first, ORB creates a pyramid, similarly to what SIFT does as a multiscale 
representation of the image, where each scale has a lower resolution. Then, it applies 
FAST detector to find keypoints, followed by Harris corner measure to select the top N 
among them.  
However, FAST doesn’t provide orientation so, a modification is required: for each 

keypoint it is computed the intensity weighted centroid of the patch with located corner 
at centre. The orientation is the direction of the vector that goes from the corner point to 
the centroid, while the rotation invariance property comes from the computation of the 
moments of the patch. 
 
Once the keypoints have been detected, they need to be described by the BRIEF algorithm 
that poorly performs with rotation, so another modification is required. 
First, the image is smoothered with a Gaussian kernel to prevent unwanted high-
frequency noise effect. Then, to maintain the BRIEF characteristics, ORB ‘steers’ BRIEF 

that creates a vector and a patch for each keypoint and performs a set of n binary tests, 
whose binary vector result defines a feature. Then, for any feature set of n binary tests it 
is defined the 2Xn matrix S, containing the pixel coordinates. S is then rotated using the 
orientation angle and obtaining the rotated matrix Sθ, used to compute the keypoint 
descriptor. 

However, one of the issues with steered BRIEF is that each bit feature loses the 
characteristic property of having a large variance close to 0.5 that now becomes more 
distributed, and the feature becomes less discriminative. To solve this problem and to 
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guarantee the test uncorrelation at the same time, ORB runs each test again for all the 
patches and orders them by their distance from the ideal value of 0.5 forming the vector 
T. At this point, ORB creates a vector R in which, at first, the first test of T is inserted 
and, at the same time, removed from T. The next T test is then removed from T and 
compared with all the R tests: if its absolute correlation is lower than a threshold it is 
added to R, otherwise it is discarded. This procedure is repeated until R contains 256 
tests: if at the end there are less than 256 tests, the threshold is raised, and the procedure 
starts again. This method is called rBRIEF. 

As for matching, the main difference with SIFT is the use of a multi-probe LSH that 
makes this algorithm faster than SIFT that adopts a traditional LSH. 
 
 
 
 
 

6.5 Matchers 
 
Matcher algorithms are responsible for the matching between the training set of keypoints 
from the first image and the target set of keypoints from the second one. 
This paragraph introduces the two matchers proposed by OpenCV, i.e., Brute-Force and 
FLANN: 
 

• Brute-Force (BF): it is the simpler, since for each keypoint of the first set, its 
descriptor is matched with all the descriptors of the second set, returning the 
closest one. The computation is based on the Euclidean distance between the 
keypoints when it is applied to SIFT, while it is based on the Hamming distance 
when it is applied to ORB. 
 

• FLANN: Fast Library for Approximate Nearest Neighbours, contains a collection 
of algorithms optimized for large datasets and high dimensional features. 
 

To obtain more accurate results, it is also possible to apply a technique called 
homography, very common when the goal is to obtain the perspective transformation of 
an object. Even if we are not dealing with perspective, given the fact that pieces on the 
platform must have the same pose of the master to be considered, this technique can be 
useful anyway, since it implements algorithms like RANSAC that estimate the matches 
correctness, collecting only the good ones (inliers) and excluding the bad ones (outliers). 
In this project, homography will be applied only to the combinations SIFT+FLANN and 
ORB+FLANN. 
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6.6 Code 
 
As already mentioned in the introduction, the purpose of this part of the code is to obtain 
the orientation of the pieces in terms of rotation angle with respect to the master piece 
orientation, imposed by the user in the last chapter. 
 
The feature matching code is divided in two main parts: the first one is on the master side, 
and it must be performed just one time for each kind of pieces, like all the other master 
operations. The first passage of this phase is to obtain the master keypoints by creating 
the required class with the OpenCV functions cv.SIFT_create() or cv.ORB_create() and 
setting all their characteristic parameters. The choice of some of those parameters is not 
trivial and it depends on lots of factors as illumination conditions, background colour, and 
camera resolution: for this reason, those parameters are chosen empirically for each piece, 
after many trials that are going to be discussed in the tests chapter. 
 
 
 
Function 6.1: cv.SIFT_create() [41] 

 
• Input: 

o nfeatures: number of features to retain, ranked by their local contrast 
score. 

o nOctaveLayers: number of layers in each octave, here set to 5. 
o contrastThreshold: threshold to reject weak features in low-contrast 

regions. It must be decreased to detect more keypoints. 
o edgeThreshold: threshold to reject edge-like features. It must be 

increased to detect more keypoints. 
o sigma: sigma corresponding to the octave 0 of the input image. Here it 

is fixed at its optimal value 1.6 but it can be increased in case of weak 
camera with soft lenses. 

o enable_precise_upscale: Boolean value. If true, prevents localization 
bias. 
 

• Output: 
o sift: class SIFT. 
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Function 6.2: cv.ORB_create() [42] 
 

• Input: 
o nfeatures: maximum number of features to retain. 
o scaleFactor: pyramid decimation ratio, always > 1 but it must be nor 

too high (dramatic degradation of feature matching score), neither too 
close to 1 (computation speed would decrease). Here fixed to the 1.2 
default value. 

o nlevels: number of pyramid levels, here fixed to 10. 
o edgeThreshold: size of the border where features are not detected. 
o firstLevel: pyramid level corresponding to the source image, here 

fixed to the default value 0. 
o WTA_K: number of points produced by each element of rBRIEF 

descriptor, here fixed to the default value 2. 
o scoreType: algorithm used to rank features. Here it is used the default 

HARRIS_SCORE, corresponding to the 0 value. 
o patchSize: size of the patch used by rBRIEF. 
o fastThreshold: threshold characterizing FAST detector. 
 

• Output: 
o orb: class ORB. 

 
 
 
Once the algorithm class is defined, master keypoints and their descriptors are obtained 
with sift.detectAndCompute() or orb.detectAndCompute() and saved in a file to be used 
for every future application with the same pieces. 
 
Function 6.3: sift.detectAndCompute() [43] 

 
• Input: 

o image: greyscale image. 
 

• Output: 
o kp: KeyPoint class [44], whose accessible attributes are pt 

(coordinates of the keypoints), size (neighbourhood diameter), angle 
(rotation with respect to the horizontal), response (by which the 
strongest keypoints have been selected), octave (pyramid layer), and 
class_id (object class). 

o des: descriptors. 
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Function 6.4: orb.detectAndCompute() [45] 
 

• Input: 
o image: greyscale image. 

 
• Output: 

o kp: KeyPoint class [46], whose accessible attributes are pt 
(coordinates of the keypoints), size (neighbourhood diameter), angle 
(rotation with respect to the horizontal), response (by which the 
strongest keypoints have been selected), octave (pyramid layer), and 
class_id (object class). 

o des: descriptors. 
 

 
 
 
At this point, all the operations on the master are performed and every line of code from 
now on is going to be repeated every time the program runs. 
On the target side, the procedure is quite similar for what concerns the keypoints detection 
and description, since the class type and its parameters are the same: the additional step 
is the definition of the matcher type with cv.BFMatcher.create() or 
cv.FlannBasedMatcher(). 
 
 
 
Function 6.5: cv.BFMatcher.create() [47] 

 
• Input: 

o normType: NORM_L1 or NORM_L2 for SIFT, NORM_HAMMING 
or NORM_HAMMING2 for ORB. 
 

• Output: 
o bf: class BF. 
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Function 6.6: cv.FlannBasedMatcher() [48] 
 

• Input: 
o indexParams: dictionary to specify the algorithm to be used, it 

depends on the detector/descriptor. 
o searchParams: dictionary to specify the number of times the tree in 

the indexParams dictionary should be recursively traversed. High 
values lead to better results but are more time consuming.  
 

• Output: 
o flann: class FLANN. 

 
 
 
The initialization code lines for cv.FlannBasedMatcher() are shown in Figure 6.5 for SIFT 
and in Figure 6.6 for ORB. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, before starting with the detection it is necessary to prepare the target images: 
for each candidate object detected at the end of Chapter 4, the program crops two images 
centred in the object centroid but with different sizes. At this point the meaning of the so-
called crop limit and grip limit (also imposed at the end of Chapter 4) becomes clear: the 

 
Figure 6.5: FLANN initialization for SIFT 

 
Figure 6.6: FLANN initialization for ORB 
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centroid of a generic candidate object must be far enough from the borders of the full 
image so that the target image relative to that piece can be cropped, having the same size 
of the master (crop limit) and also it must be possible to crop a second image with twice 
the size of the grip limit to guarantee that every point of the collision avoidance area 
polygons are contained in the cropped image, no matter the rotation. The first one of these 
two images is used as target in the matching phase, while the second one will be used in 
the next chapter for the Canny edge detection method application. 
 
Once the target image is cropped, the target keypoints are detected and described with the 
same functions and the same parameters used for the master, while the matches are 
obtained and collected with bf.knnMatch() or flann.knnMatch(), but only if the master 
keypoint of a pair is contained in the keypoint area defined in Chapter 4. 
 
 
 
Function 6.7: bf.knnMatch() [49] 
 

• Input: 
o queryDescriptors: des from the target image. 
o trainDescriptors: des from the reference image.  
o k: count of best matches found per each query descriptor. Fixed at 2. 

 
• Output: 

o matches: each element is k or less matches for the same query 
descriptor. 

 
 
 
 
Function 6.8: flann.knnMatch() [50] 
 

• Input: 
o queryDescriptors: des from the target image. 
o trainDescriptors: des from the reference image.  
o k: count of best matches found per each query descriptor. Fixed at 2. 

 
• Output: 

o matches: each element is k or less matches for the same query 
descriptor. 
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The retained matched keypoints are then converted into numerical coordinates to make 
them easily readable by the program and the user and the Lowe ratio test is applied to 
eliminate all those pairs for which the ratio between the Euclidean distances of the two 
keypoints is less than 0.75. If the Lowe ratio test is passed, the match is classified and 
collected as ‘good’. 
 
If the matching algorithm also considers the homography application, it is implemented 
at this point with the function cv.findHomography(), that provides a binary mask to apply 
to each pair where 0 means bad matching and 1 good matching. 
 
 
Function 6.9: cv.findHomography() [51] 

 
• Input: 

o srcPoints: coordinates of the points on the target image. 
o dstPoints: coordinates of the points on the reference image. 
o method: method used to compare homography, here it is always used 

RANSAC. 
o ransacReprojThreshold: maximum allowed reprojection error to 

consider a point pair as inlier. It is usually taken between 1 and 10, 
here is fixed to 7. 
 

• Output: 
o mask: output inliers mask. 

 
 
 
Before starting to work with angles, all the pairs are subject to a multi-check condition 
that classifies and collects a pair as ‘very good’ if: 
 

• The homography mask (if present) is 1. 
 

• The difference of the distances between the two keypoints and the centre of their 
own corresponding image is less than a small number of pixels, 10 in this project, 
since two matched keypoints should be ideally placed at the same distance from 
the centroid of the piece. This is done to avoid huge mismatches that may happen 
when in the target image is also present a second piece, or part of it, and the 
matcher considers the keypoints from this piece instead of the keypoints of the 
desired main one. 

 
To practically visualize what has been done until now, Figure 6.7 shows the result of a 
well-posed piece (21st piece, referring to the full image in Figure 4.16) with the target on 



Chapter 6: feature matching 
 
 

 

65 
 

the left and the master on the right. The keypoints and the ‘very good’ match pairs are 

shown with the function cv.drawMatches() [52] that represents the keypoints as a circle 
with a segment inside, where the circle size indicates the keypoint size and the segment 
indicates the keypoint orientation, while the matches are represented by coloured lines. 
Of course, no keypoint outside the keypoints area previously defined on the master is 
matched. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This passage results to be a very important check since it already discards lots of wrong 
pieces: as shown in Figure 6.8, if a piece has completely wrong pose, the number of pairs 
found is very low or even zero. It is then possible to ignore wrong pieces by simply 
imposing a minimum number of matched pairs that must be classified as ‘very good’. 
 
Anyway, the control on the ‘very good’ matches number is still not sufficient to discard 

all the wrong posed pieces, since it may happen that a minimum number of ‘very good’ 

matches is found, as in cases of symmetry conditions as also shown in Figure 6.8. This 
issue will be automatically solved with the check on the collision avoidance area in the 
next chapter. 

 
Figure 6.7: matching result on a well-posed piece. The applied algorithm is 

SIFT+FLANN+H 
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If both checks are passed, the angles of each keypoint in the pair, indicated from now on 
with subscript 1 for the target and 2 for the master, are obtained from the original result 
of bf.knnMatch() or flann.knnMatch() and the difference angle θ is computed at first as: 
θ = θ1 − θ2, where −180° ≤ θ1, θ2 ≤ 180°. 
However, while dealing with angle difference, this is not sufficient, since a simple 
algebraic difference does consider the ±180° convention: for example, if θ1 = −150° 
and θ2 = 70°, the difference angle is θ = −220° < −180°, while the desired result 
should have been 140° in the opposite direction. 
 
To correct all those records, a function has been implemented, whose notations refer to 
Figure 6.9, in which are represented four goniometric circles corresponding to the 
position of a generic master keypoint pt2 with coordinates x2 and y2 in the four quadrants. 
The computation of the difference angle depends on the position of the target point pt1 
with respect to the position (coordinates) of pt2: if pt1 falls in the circular arc between the 
green points, the standard equation (written in green) is valid, otherwise the corrected 
equation (written in red) is valid. 
 
 

(3.1) 𝑓𝑜𝑟 [
𝑥2 > 0 
𝑦2 > 0 

]  𝑎𝑛𝑑 [
𝑥2 < 0 
𝑦2 > 0 

] : 𝜃 = {
𝜃1 − 𝜃2

360° − |𝜃1 − 𝜃2|
 (6.2) 

   

 𝑓𝑜𝑟 [
𝑥2 < 0 
𝑦2 < 0 

]  𝑎𝑛𝑑 [
𝑥2 > 0 
𝑦2 < 0 

] : 𝜃 = {
𝜃1 − 𝜃2

−(360° − |𝜃1 − 𝜃2|)
 (6.3) 

   
 −180° ≤ 𝜃, 𝜃1, 𝜃2 ≤ 180° (6.4) 

 

 
Figure 6.8: matching result on wrong-posed pieces. The target piece on the left (5th in the full 
image) has no match pairs, while the one on the right (the 9th) presents match pairs even if its 

pose is incorrect 



Chapter 6: feature matching 
 
 

 

67 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then, to be sure that the convention is respected, a fast check is carried out: 
 
 

(3.1) 𝜃 = {
360° + 𝜃 𝑖𝑓 𝜃 < −180°

−(360° − 𝜃) 𝑖𝑓 𝜃 > 180°
 (6.5) 

 
 
This angle function is then applied to every ‘very good’ match pair and the result is a list 

of difference angles as long as the number of pairs: the next step is then to obtain from 
that list a single value assignable to the piece with a simple averaging operation. 
 
To do so, it could be possible to think that it is enough to compute the average of all the 
remaining difference angles to get the final angle value, but there is one more geometrical 
issue that could arise. 
Let’s consider Figure 6.10, which shows a generic master piece on the right and a generic 
target piece on the left, where the black arrows are the orientations, and the coloured 
arrows identify three generic pairs of well-matched keypoints. 

 
Figure 6.9: graphical representation of the difference angles function 
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Now, let’s assume that the difference angle θ between the two pieces is somehow known 

and it corresponds to -120° as in the Figure 6.10: ideally, the difference angles between 
the three keypoints is expected to be  -120° too, but in practice, because of many non-
ideal factors as perspective or illumination, the three difference angles assume different 
values, for example, something like -117.7°, -121.8°, -124.1°. 
Anyway, despite those differences, the average of the three angles results to be -121.2°, 
that is a good approximation, close to the measured -120°. 
The problem arises for rotation angles close to 180°: in fact, if the three obtained 
difference angles are something like 177.7°, -178.2°, -175.9°, the average results to be -
58.8° that is a completely wrong result. 
To prevent this possibility, the average is only computed by considering the modules of 
the difference angles, while the sign is assigned to this result with a simple but effective 
method: if more than a half of the angle signs are positive, the final sign will be positive, 
otherwise it will be negative. 
 
If the adopted method is a simple averaging, as in this case, it is also necessary to reject 
all possible outliers before proceeding with the computation, where the outliers are 
difference angles whose value is very far from the ideal, as result of mismatching due to 
factors like imperfections on the piece, illumination, and so on. 
The adopted method to eliminate them is the IQR method (interquartile range) and 
consists in the identification of two limits above and below which all the elements of a 
dataset are eliminated. 
In detail, at first the interquartile range (iqr) of the difference angle modules data set is 
defined as the difference of the 75th and the 25th percentile: 
 
 
(3.1) 𝑖𝑞𝑟 = 𝑞75 − 𝑞25 (6.6) 

 
Figure 6.10: example of three generic well-matched keypoints 
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Then, the two limits are computed as: 
 
 
(3.1) 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑞25 − 𝑖𝑞𝑟 ∗ 𝑡 (6.7) 
   
 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑞75 + 𝑖𝑞𝑟 ∗ 𝑡 (6.8) 

 
 
Where t is a threshold empirically fixed at 0.5 for this work. 
Once those limits are defined, all the difference angle modules are checked, and a 
definitive list is obtained: at this point it is enough to average the modules and assign 
them the sign as specified above to finally obtain the piece orientation. 
 
The next chapter will describe all the operations that lead to the identification of the 
definitive object list and their grip point coordinates. 
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Chapter 7: pickable objects and grip point 
 
 
 
 
 

7.1 Introduction 
 
This chapter describes all controls and checks performed to obtain the final pickable 
objects list and the coordinates of their grip point. 
At the end of the last chapter, a new list of potential pickable objects based on the 
keypoints matching and their orientation has been obtained: now, the first passage 
consists in finding the grip point coordinates of each piece and then, by checking the 
absence of obstacles in the collision avoidance area, drawing up the definitive list of 
pickable objects, giving to the user their visual representation in the full image. 
 

 

 
 
 
 
 

7.2 Grip point 
 
The grip point location of a generic object is simply computed with trivial geometrical 
operations: Figure 7.1 shows on the right the master piece characterized by its orientation 
and the master grip point (blue dot) rotated by an angle θg1 (master grip angle) with 
respect to the horizontal, while on the left it shows a generic target piece, rotated by the 

INPUT
• initial full image
• pickable objects
• grip point
• rotations
• pp-to-mm 

conversion

PICKABLE 
OBJECTS and 
GRIP POINT

OUTPUT
• pickable objects 

graphical 
representation

• cartesian grip 
point coordinates 
and rotation



Chapter 7: pickable objects and grip point 
 
 

 

71 
 

difference angle θ with respect to the master. The target grip point (green dot) has 

coordinates xg2 and yg2 and it is rotated by an angle θg2 (target grip angle) with respect to 
the horizontal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First, to obtain xg2 and yg2, θg2 is computed as: 
 
 
(2.1) 𝜃𝑔2 = 𝜃𝑔1 + 𝜃 (7.1) 

 
 
where θg1 is the master grip angle obtained from the master grip point definition in 
Chapter 5. The equation 6.5 is applied to θg2 to be sure that the ±180° convention is 
achieved.  
Once obtained θg2, the grip point coordinates on the target side are then computed as: 
 
 

(2.1) {
𝑥𝑔2 = 𝑑2 cos 𝜃𝑔2
𝑦𝑔2 = 𝑑2 sin 𝜃𝑔2

 (7.2) 

 
 
where it is supposed d1 ≅ d2. This is an important assumption: because of illumination 
or perspective effects that afflict the blob shape, those distances could vary of some 
pixels, since the blob centroid is not exactly the same for the two pieces. However, in 
practice, this approximation does not compromise the result in a significant way. 
 

 
Figure 7.1: target grip point coordinates and angle 
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7.3 Canny edge detection for obstacle avoidance area 
 
To check the presence or the absence of obstacles in the collision avoidance area, the 
Canny edge detection method is applied: this algorithm, largely used for this kind of 
applications, searches high intensity changes in an image and classifies them as edges 
with the assumption that the background colour is considered uniform and with a high 
contrast with respect to the piece. This assumption is easily realizable for this kind of 
applications. 
Below a brief schematic explanation of how this method works, according to the 
documentation provided by OpenCV [53]: 
 

1) Given an image, a 5X5 Gaussian filter is applied to remove noise, since edge 
detection is an operation quite susceptible to noise effects. 
 

2) A Sobel kernel is used to compute the horizontal and vertical first derivatives of 
intensity, Gx and Gy, from which the edge gradient G and the direction angle γ are 
computed as: 

 
 

(2.1) 𝐺 = √𝐺𝑥2 + 𝐺𝑦2 (7.3) 

   

(2.2) 𝛾 = tan−1 (
𝐺𝑦

𝐺𝑥
) (7.4) 

 
 
 

3) Every pixel is then checked in the gradient direction to verify if it is a local 
minimum in its neighbourhood and, consequently, considerable as a possible 
edge. 
 

4) The possible edges gradients are compared to two thresholds called minVal and 
maxVal: if an edge gradient is greater than maxVal it is for sure and edge, if it is 
lower than minVal, it is not an edge. Otherwise, if it falls between the two 
thresholds, it is classified edge or non-edge according to its connectivity: if it is 
connected to sure edges, it is an edge as well, otherwise it is a non-edge. 
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Figure 7.2 shows the result of this method applied, as an example, to the master image: 
the edges appear as contours-like white lines on a black background. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The application of this method to find obstacles in the collision avoidance area is quite 
simple: it is enough to apply the Canny edge method to the target piece and check the 
presence of edges by counting the number of white pixels: the absence of white pixels 
means no detected obstacles. 
The tricky part is to limit the application of the Canny edge method to the collision 
avoidance area only. 
To explain in a clearer way this procedure, it is better to adopt again a schematic 
explanation since some passages are non-trivial, by showing the resulting image of each 
step, where the inner and the outer polygons are shown just for a matter of explanation 
(the images used and obtained in the code do not present polygons). 
To give an interesting example, it has been chosen the 17th piece referring to Figure 4.16, 
since it is discarded from the pickable objects list for the presence of another piece in its 
collision avoidance area: 
 

1) For a generic piece, the outer and inner polygons, defined by the user in Chapter 
5, are rotated of θ and each point of the outer polygon is checked to be sure that 

the full polygon falls inside the grip constraints. 
Figure 7.3 shows the new target image cropped in the last chapter with twice the 
size of grip limit. It also shows the master and the inner and outer polygons for 
both images. 
 

 
Figure 7.2: Canny edge method applied to the master 

image 
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2) On the target image, the Canny edge method 
is applied with the function cv.Canny() [54] , 
that receives as input the target image, 
minVal, and maxVal, to return the edge image 
shown in Figure 7.4. Here minVal and 
maxVal are fixed at 100 and 200. 

 
 

 
 

 
 
 
 

3) On the edge image, the area inside the inner 
polygon turns black (Figure 7.5). This 
operation, as the next ones, are performed 
with the purpose to isolate the collision 
avoidance area from the full target image. 
 
 
 

 
 
 
 
 

 

 
Figure 7.3: target image for Canny edge. It also shows 
the comparison between the collision avoidance area 
polygons on the new target (left) and on the master 

(right) 

 
Figure 7.4: edge image 

 
Figure 7.5: black inner 

polygon area on edge image 
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4) A black stencil with same sizes of the target image (twice the grip limit) is created 
(Figure 7.6). 

 
5) On the stencil, the area inside the outer polygon turns white (Figure 7.7). The fact 

that the images have sizes twice the grip limits guarantees that the outer polygon 
is drawable no matter the θ value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

6) The control mask image is created by 
applying the bitwise operation AND, 
implemented with the function 
cv.bitwise_and() [55]: it receives as inputs the 
stencil and the edge image and returns an 
output image where the black part of the 
stencil stays black, while on the white part the 
correspondent part of the edges image is 
superimposed (Figure 7.8). 
 

 
 

7) The number of white pixels in the control mask image is counted. However, since 
for many reasons, as noise or strong shadows under the piece, the number of white 
pixels is usually non-zero even in complete absence of obstacles, a small threshold 
for the minimum number of white pixels is chosen, for example 15 pixels. 
In this example, in the control area there are 30 white pixels, so, the piece is not 
going to be considered as pickable. 

 
The pieces that pass this last check are listed and collected as the definitive list of pickable 
objects. 

 
Figure 7.6: black stencil 

 
Figure 7.7: white outer 

polygon area on black stencil 

 
Figure 7.8: control mask image 
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This step implicitly introduces an important check, since it automatically excludes all the 
wrong-posed pieces that however present a consistent number of ‘very good’ match pairs. 
Figure 7.9 shows the results of the Canny edge detection method applied to the 9th piece, 
presented in the last chapter in Figure 6.8 to give an example of this kind of problem. This 
piece, that can be named 340-L, is the symmetric flipped version of the 340-R, and they 
both have quite similar features. In Figure 7.9 it can be seen how the program interprets 
this symmetry problem as the presence of an obstacle in the collision avoidance area. 
This is a very useful property of this method, but it can be insufficient when the flipped 
version is much more like the master or when the collision avoidance area is defined by 
simpler or bigger polygons: to solve this more generic problem it is necessary to 
implement piece-specific controls as it is going to be discussed in Chapter 10. 
 
 

 
 
 
 
 

7.4 Definitive list of pickable objects 
 
At this point, the pickable objects must be represented. Figure 7.10 shows the final result, 
whose legend is reported here: 
 

• Red rectangles: minimum rectangles that identify the candidate objects blobs 
found in Chapter 4. 

 
• Red dots: centroids of the blobs that respect the limits imposed in Chapter 4. 

 

 
Figure 7.9: Canny edge on 340-L. From left to right: the master (340-R), the 9th piece (340-L), 

and its control mask image 
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• Red arrows: result of the feature matching. Pieces without the arrow are pieces 
that did not pass the keypoints check. The angle in degrees with respect to the 
horizontal is also printed. 
 

• Blue circles: grip points. 
 

• Green circles: identify the pieces that also passed the collision avoidance area 
check.  

 
 

 
 
 
Beside the visual representation, it is also given a list of all the pickable pieces with their 
grip point coordinates in the full image and the difference angles with respect to the 
master (Table 7.1). 
 
 

 
Figure 7.10: pickable objects representation on the full image 
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piece id u [px] v [px] θ [deg] 
2 1352 1622 -60 
12 1297 1225 0 
14 1003 1162 -9 
20 1240 820 156 
21 1797 851 -40 
23 688 717 -139 
24 1477 596 -166 

 
Table 7.1: pickable pieces image coordinates and orientation 

 
 
 
 

7.5 Pixels-to-millimetres conversion 
 
At this point, the last thing to do is to apply the Equations 3.9 and 3.11 to the pixel 
coordinates p to obtain the millimetres coordinates pw, always considering Zw = 0 and 
where K, R, s, and t are the parameters found in Chapter 3. 
 
(3.10) 𝑝𝑤 = (𝐾𝑅)

−1(𝑠𝑝 − 𝐾𝑡) (3.9) 
   

 𝑠 =
[(𝐾𝑅)−1𝐾𝑡]3
[(𝐾𝑅)−1𝑝]3

 (3.11) 

 
The result of the conversion is tabulated in Table 7.2, where only x and y are shown, since 
the orientation doesn’t change: this happens because the transformation of θ1 and θ2 in 
the global reference frame is the same for both the angles and it is cancelled on the two 
subtrahends when the difference angle is obtained (Equations 6.2 and 6.3) 
 

piece id x [mm] y [mm] 
2 247.57 176.34 
12 168.37 188.51 
14 156.7 247.24 
20 87.58 201.1 
21 92 90 
23 68.77 311.29 
24 41.04 94.76 

 
Table 7.2: pickable pieces world coordinates 
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Chapter 8: density 
 
 
 
 
 

8.1 Introduction 
 
This is the last chapter before the experimentation part that will provide the practical 
results of what has been analysed and described until now. 
In the introduction it has been presented the Supata® machine as a robot that picks pieces 
from an automated platform that randomly redistributes them through a vibrating action. 
The peculiarity of the platform is that it can vibrate in different ways according to the 
distribution of the remaining pieces, thanks to its multi-motors system: for example, if at 
the end of the gripping phase, there are a lot of non-pickable objects of the right side of 
the platform, it vibrates to redistribute them in the most uniform possible way, activating 
the left-motor. 
Thanks to the vision software described below the operations to move the pieces on the 
vibrating plane and to load pieces on it are completely automatic and the system adapts 
to the real current state. 
 
The main goal of this last part of the code is to give to the machine an indicative 
information of how the pieces are distributed in the left and in the right half of the platform 
in percentage. According to this distribution, four possibilities are considered: 
 

• If the left side is empty and the right side is full, the right motor activates, moving 
the pieces to the left. 
 

• If the right side is empty and the left side is full, the left motor activates, moving 
the pieces to the right. 

 
• If both sides are full but all the pieces are not pickable, both the motors activate 

to overturn or to distance the pieces. 
 

• If both sides are empty, new pieces are loaded on the platform. 
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This information is achieved through well-known procedures adopted in the previous 
chapters: thresholding, contours detection, and white pixels counting. 
 
 

 
 
 
 
 

8.2 Density computation 
 
Given an image, the thresholding procedure, characterized by the same settings adopted 
in Chapter 4 to find the candidate object list, is applied to isolate the pieces from the 
background but, since the counting of white pixels results to be simpler, the thresholding 
output image is inverted by applying the simple bitwise operation NOT with the function 
cv.bitwise_not() [56] (Figure 8.1). 
 
 

 
 
 
 
 

INPUT
• thresholding 

parameters
• master blob area
• percentage 

threshold

DENSITY

OUTPUT
• pieces occupancy 

info for vibration 
command

 
Figure 8.1: full image thresholding for density. The result of thresholding procedure adopted in  

Chapter 4 (left) is inverted (right) to easily count white pixels 
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Then, the closed contours are filled to obtain a more precise representation on the blobs 
(Figure 8.2) and the resulting image is subdivided into the half-left image and the half-
right image as shown in Figure 8.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.3: left half and right half of the density image 

 
Figure 8.2: full density image 
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To obtain the number of pieces in the two sides, it is sufficient to separately count the 
number of white pixels in the left and in the right side and divide the two results by the 
master blob area (also obtained in Chapter 4). Then, to compute the pieces percentage, it 
is enough to multiply the two values by 100 and divide them by their sum. For example, 
the results for Figure 8.3 are: 
 

- White pixels left = 46498 
- White pixels right = 33038 
- Master blob area = 2582.5 

 
- Number of computed pieces (left, right) = (18, 13) 
- Number of counted pieces (left, right) = (16, 11) 
- Percentage of computed pieces (left, right) = (58%, 42%) 
- Percentage of counted pieces (left, right) = (59%, 41%) 

 
By comparing the computed and the counted values, it is possible to see that the 
differences are quite small and largely acceptable, since the result must just provide an 
idea of the pieces distribution. 
However, since the area of a blob can vary a lot depending on its corresponding piece 
pose, it may happen that a blob that appears much greater that the master blob is 
interpreted by the program as a collection of pieces, while it corresponds to just one 
completely wrong-posed piece. To improve the approximation correctness in this cases, 
the user can set a corrective multiplicative parameter (1 by default) applied to the number 
of computed pieces that empirically increases or reduces the final percentages. 
 
At this point, once the two percentages have been obtained, the user must set two 
thresholds, TA and TB, that defines the vibrating mode ranges of the platform. If N1 is the 
number of computed pieces in the left side, N2 is the number of computed pieces in the 
right side, and Np is the total number of pickable pieces, the four possibilities are: 
 

• N1 < TB and N2 > TA: move the pieces to the left. 
 

• N1 > TA and N2 < TB: move the pieces to the right. 
 

• N1 > TA, N2 > TA and Np = 0: overturn/distance the pieces  
 

• N1 < TA and N2 < TA: load new pieces. 
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Chapter 9: tests 
 
 
 
 
 

9.1 Tests presentation 
 
This chapter presents and describes the results of the open-source OpenCV-based code 
discussed until now. To understand their quality, those results are compared with the ones 
obtained with the Cognex industrial vision software currently employed on Supata® 
machine that will be considered as a baseline. 
To obtain a significant number of data, it has been decided to consider four pieces with 
different characteristics, tabulated in Table 9.1, whose masters are represented in Figure 
9.1. For convenience, the pieces will be named from now on as 340-R (right), 
diapason188, filo033, and fioregrigia: 
 

• 340-R: black piece on white background, classified as matte since it poorly 
reflects light. Its R-like shape has no axes of symmetry, and its thinness leads to 
a low number of detected keypoints with respect to the other pieces: for this 
reason, it has been chosen as starting piece for the empirical choice of the 
ORB/SIFT functions parameters. 
 

• diapason188: silvery-shiny piece, very reflective to the light source. Since it 
appears white, a green background has been adopted. Differently from 340-R, it 
presents a larger area and more interesting features such as the central hole or the 
terminal groove. It also does not present any symmetries. 
 

• filo033: grey piece, white background, low reflectivity. Even if it can be classified 
as thin, the number of interesting features is quite high because of its complex 
shape. Unlike the previous pieces, it presents one axis of symmetry that could lead 
to ambiguity in the grip point location: this problem is easily solved by excluding 
the two ends from the keypoint area. 
 

• fioregrigia: grey piece, black background. By comparing Figure 9.5 with Figure 
9.3, 9.2, and 9.4, it is possible to see that this piece has significantly bigger 
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dimensions compared to the other pieces. Even if it is not shiny, it presents high 
illumination gradients, due to the complex shape of the piece. Like filo033, it 
presents one axis of symmetry and, consequently, problems for the grip point 
location: to solve this problem it is possible to consider in the keypoint area only 
the central part that appears as a white square-like shape. However, this piece is 
affected by another issue, largely discussed in the next chapter, that leads to the 
identification of wrong-posed pieces as pickable: this issue cannot be easily 
solved by the techniques discussed until now. 

 

 
 
Table 9.2 tabulates the camera exposure time in milliseconds and the gain chosen to 
obtain the images. These parameters are of major importance since they define the 
illumination conditions and the contrast characterizing the full images. 
 
 

 340-R diapason188 filo033 fioregrigia 
shape thin normal thin wide 
symmetries 0 0 1 1 
piece colour black grey grey grey 
piece texture matte shiny matte matte 
background colour white green white black 

 
Table 9.1: pieces features 

 
 

 340-R diapason188 filo033 fioregrigia 
exposure time [ms] 90 100 120 120 
gain 70 70 70 70 

 
Table 9.2: setup features 

 

 
Figure 9.1: master images. From left to right: 340-R, diapason188, filo033, fioregrigia 
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Then, the thresholding characteristics defining the candidate object detection (Table 9.3) 
and the ORB and SIFT parameters (Table 9.4 and 9.5) for the feature matching phase are 
tabulated for every piece. All the tabulated values refer to the OpenCV functions 
presented in Chapter 4 for the thresholding and in Chapter 6 for the feature matching. 
 
 

 340-R diapason188 filo033 fioregrigia 
thresholding / 111 212 124 
erosion kernel / 0 0 0 
adaptive parameter 21 / / / 
inverted/normal normal inverted normal inverted 
standard/adaptive adaptive standard standard standard 

 
Table 9.3: thresholding features 

 
 

 340-R diapason188 filo033 fioregrigia 
nfeatures 3000 3000 3000 3000 
nOctaveLayers 5 5 5 5 
contrastThreshold 0.003 0.01 0.003 0.003 
edgeTreshold 60 60 60 100 
sigma 1.6 1.6 1.6 1.6 
enable_precision_upscale True True True True 

 
Table 9.4: SIFT parameters 

 
 

 340-R diapason188 filo033 fioregrigia 
nfeatures 500 500 500 500 
scaleFactor 1.2 1.2 1.2 1.2 
nlevels 10 30 10 10 
edgeTreshold 5 10 50 30 
firstLevel 0 0 0 0 
WTA_K 2 2 2 2 
scoreType 0 0 0 0 
patchSize 31 31 31 31 
fastThreshold 5 5 5 5 

 
Table 9.5: ORB parameters 
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Considering all those settings, it has been decided to acquire three images for each piece 
so that the analysis results can be consistent. 
Figure 9.2, 9.3, 9.4, and 9.5 show the four triplets (the masters are taken from the first 
image of each triplet). 
 

 
Figure 9.2: 340-R test images 

 
Figure 9.3: diapason188 test images 

 
Figure 9.4: filo033 test images 

 
Figure 9.5: fioregrigia test images 
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9.2 Confrontation results 
 
This paragraph shows the results obtained for each piece and the first considerations to 
establish which algorithm combinations works better between ORB and SIFT with Brute-
Force, FLANN, and FLANN plus homography. However, since the procedure is the same 
every time, for every piece, and for every algorithm combination, the complete passages 
are shown only for the first image of the first piece (340-R), while for the other pieces 
only the table with the results shall be reported. 
 
First, the Cognex results are obtained and tabulated (Table 9.6). Then, for each piece it is 
calculated the difference between the x and y coordinates in pixels, always indicated as u 
and v since they refer to the image reference system, and the rotation θ in degrees. Then, 
the code results are obtained using the six matching combinations. In Table 9.7, 
corresponding to ORB+BF, are reported the identity numbers of the piece referring to 
Figure 9.6, the coordinates u, v, and θ, and the modules of their difference with respect to 
Cognex. 
 

 
Figure 9.6: 340-R, 1st image with ORB+BF 
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piece id u v θ 
2 1348 1623 -59 
12 1297 1222 0 
14 1001 1158 -9 
20 1240 826 153 
21 1792 849 -40 
23 684 722 -142 
24 1474 601 -168 
 
Table 9.6: Cognex results for 340-R, 1st image 

 
 
To distinguish ‘good’ and ‘bad’ pieces, it has been decided that every piece with |Δθ| > 

5° is considered ‘bad’. No checks on |Δu| and |Δv| are performed because the grip point 

is manually imposed by the user in both software (this and Cognex) so, the presence of a 
difference of some pixels that has nothing to do with the code is highly probable: for this 
reason, |Δu| and |Δv| can only give a qualitative idea of the cartesian coordinates 

differences. 
 
 
piece id  u v θ |Δu| |Δv| |Δθ| 
2 1351 1626 -57 3 3 2 
12 1299 1225 -2 2 3 2 
14 1004 1161 -10 3 3 1 
20 1236 823 152 4 3 1 
21 1797 850 -40 5 1 0 
23 683 715 -143 1 7 1 
24 1482 596 -161 8 5 7 

 
Table 9.7: ORB+BF results for 340-R, 1st image. The row underlined in blue corresponds to 
the master, while the row underlined in orange corresponds to a ‘bad piece’, since the angle 

difference is greater than 5° (red cell). 
 
 
To verify if one algorithm is better than the others, this procedure is performed for all the 
other five combinations. Then, for each one the mean of the differences is computed by 
considering only the ‘good pieces’ as:  
 
 

(9.1) {

𝜇𝑢 = |∆𝑢|̅̅ ̅̅ ̅̅

𝜇𝑣 = |∆𝑣|̅̅ ̅̅ ̅̅

𝜇𝜃 = |∆𝜃|̅̅ ̅̅ ̅̅
 (9.1) 
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Figure 9.7 shows the result of the μ analysis for all the pieces and for all the algorithm 

combinations.  
 

 
 
From this first comparison, it is possible to see that the three μ values are quite similar for 

all the algorithm combinations, so, it is mandatory to proceed with the bad pieces analysis 
to decide which one is better. 
However, before showing the results concerning the bad pieces analysis, it is necessary 
to explain how they are classified. 
 

• BP (bad pieces): all the pieces that for any reason cannot be considered. They 
include OTP, WP, and MP. 
 

• OTP (out of tolerance pieces): pieces for which 5° < |Δθ| ≤ 10°. 
 

• WP (wrong pieces): pieces for which |Δθ| > 10°. 
 

• MP (missed pieces): pieces not recognized as pickable. 
 
 
Table 9.8, 9.9, 9.10, and 9.11 present BP, for each algorithm and for each piece, as 
absolute number of bad pieces and as percentage referred to the total number of pieces, 
while OTP, WP, and MP are expressed in percentages referred to BP. Their absolute value 
is shown in Figure 9.8. 

 
Figure 9.7: μ analysis histogram 
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 μu μv μθ BP OTP WP MP 
ORB+BF 4 3 2 2 11% 100% 0% 0% 
ORB+FLANN 4 3 2 1 6% 100% 0% 0% 
ORB+FLANN+H 4 3 2 0 0% / / / 
SIFT+BF 4 3 3 5 28% 40% 60% 0% 
SIFT+FLANN 4 3 3 6 33% 50% 50% 0% 
SIFT+FLANN+H 4 4 2 2 11% 50% 50% 0% 

 
Table 9.8: 340-R results 

 
 
 μu μv μθ BP OTP WP MP 
ORB+BF 3 3 2 4 15% 50% 25% 25% 
ORB+FLANN 3 3 2 3 12% 0% 100% 0% 
ORB+FLANN+H 3 3 2 4 15% 75% 0% 25% 
SIFT+BF 3 4 2 4 15% 25% 25% 50% 
SIFT+FLANN 3 4 2 4 15% 25% 25% 50% 
SIFT+FLANN+H 3 3 1 5 19% 40% 0% 60% 
 

Table 9.9: diapason188 results 
 
 
 μu μv μθ BP OTP WP MP 
ORB+BF 1 2 2 1 4% 100% 0% 0% 
ORB+FLANN 1 2 2 0 0% / / / 
ORB+FLANN+H 1 1 1 0 0% / / / 
SIFT+BF 2 2 2 7 25% 86% 14% 0% 
SIFT+FLANN 2 2 2 7 25% 86% 14% 0% 
SIFT+FLANN+H 1 2 1 1 4% 100% 0% 0% 
 

Table 9.10: filo033 results 
 
 
 μu μv μθ BP OTP WP MP 
ORB+BF 3 4 2 3 23% 0% 100% 0% 
ORB+FLANN 3 3 1 6 46% 50% 50% 0% 
ORB+FLANN+H 2 3 1 0 0% / / / 
SIFT+BF 3 4 2 4 31% 50% 50% 0% 
SIFT+FLANN 2 4 1 5 38% 40% 60% 0% 
SIFT+FLANN+H 3 4 1 1 8% 0% 100% 0% 
 

Table 9.11: fioregrigia results 
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It is clear, according to this last histogram, that the best algorithms are the two that adopt 
the FLANN matcher + homography combination: ORB+FLANN+H and 
SIFT+FLANN+H. 
ORB+FLANN+H presents the lowest number of BP, all included in the diapason188 case 
that is the most sensitive piece to the illumination conditions, since it is the only shiny 
piece. This highlights how the illumination conditions are important for the matching 
results since the matching function parameters depend on those conditions. It is 
reasonable to think that this algorithm could be able to correctly find all the pieces by 
finding the correct external parameters settings, for example, reducing the exposure time 
(reduce luminosity), changing the background colour and, consequently, find the correct 
ORB parameters combination. 
 
 
 
 
 
 

 
Figure 9.8: BP analysis histogram 
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9.3 Computational time 
 
To choose an algorithm instead of another, the accuracy is not enough: it is also 
fundamental to consider the time each one takes to perform the feature matching. For 
each image and for each algorithm combination the computational time in seconds has 
been obtained: again, Table 9.12 shows the procedure just for 340-R, but it has been 
repeated in the same way for all the other pieces. 
 
 

 image 1 image 2 image 3 
ORB+BF 0,799 0,774 0,758 
ORB+FLANN 0,793 0,794 0,775 
ORB+FLANN+H 0,311 0,322 0,252 
SIFT+BF 1,345 1,239 1,336 
SIFT+FLANN 2,739 2,477 2,616 
SIFT+FLANN+H 2,953 2,791 3,069 

 
Table 9.12: 340-R time analysis 

 
 
Once all data are collected the mean μt and the standard deviation σt over all the twelve 
images have been computed. The results are shown in Table 9.13 and in Figure 9.9. 
 
 

 μt [s] σt 
ORB+BF 0,737 0,034 
ORB+FLANN 0,756 0,048 
ORB+FLANN+H 0,223 0,052 
SIFT+BF 0,728 0,372 
SIFT+FLANN 1,289 0,859 
SIFT+FLANN+H 1,406 0,975 

 
Table 9.13: global time analysis 
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From this analysis it is clear how the ORB+FLANN+H algorithm is the best without any 
possible comparison with SIFT+FLANN+H, which turns out to be the worst one, with a 
difference of more than a second. However, this is not the only pro: all the ORB 
algorithms have a standard deviation σt much smaller than the SIFT one: this means that 
the SIFT computational time depends a lot on the image characteristics, while the ORB 
computational time is not only lower, but it is also less affected by image content and 
more robust to noise and variations. 
 
As a result, it is clear how the best choice is the ORB+FLANN+H algorithm. 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 9.9: computational time histogram 
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Chapter 10: conclusions 
 
 
 
 
 
The goal of this thesis project was to develop a free-of-license, open-source industrial 
vision application for robot guidance, able to detect well-posed pieces and then provide 
the coordinates of the grip point and the orientation of the pieces to a manipulator, no 
matter the dimensions, the material, or the pieces shape. 
The discussion started with the presentation of standard vision operations such as camera 
calibration and pose estimation and it proceeded with the description of the main program, 
from the initial settings to the achievement of the final output. Eventually, Chapter 9 has 
described how the ORB+FLANN+H algorithm combination has the best performance in 
terms of precision, number of well-posed pieces detected, and computational time, 
revealing that the combination mentioned above might be a promising starting point for 
future improvements. 
 
In fact, given the results of the tests, it can be said that this software is a valid base for a 
new series of improvements aiming to reduce errors and to increase the performance 
quality of each step in the entire process, such as: 
 

• Improvement of the calibration capabilities: currently, the distortion model does 
not consider the perspective effect both between camera plane and object plane 
and between camera lens and camera sensor. This would allow to use worse 
hardware by compensating with the software and would generalize for different 
camera mount positions, also improving the pose estimation precision. 
. 

• Improvement of the pose estimation precision also by adopting high-precision 
instrumentation to reduce as possible the angular error on the camera and, 
consequently, the pose estimation error. Moreover, it can be made more user-
friendly, letting the user to impose the origin frame location and the axis 
orientation, independently by the ChArUco standards. 

 
• Improvement of the feature matching precision, focusing on the 

ORB+FLANN+H algorithm. Referring to the tests, this critical aspect can be 
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expressed as the reduction of |Δu|, |Δv|, and |Δθ|, and can be achieved by 
increasing the number of detected keypoints and well-matched pairs by finding 
the best settings for the ORB+FLANN+H parameters. 
 

• Introduction of a specific function based on image resolution, illumination 
conditions, contrast, piece characteristics, and background colour that 
automatically sets the optimal ORB+FLANN+H parameters. This is probably the 
most time-demanding aspect, since it requires a great number of experiments with 
different cases. 

 
• Reduction of the computational time by optimizing the code. 

 
• Introduction of the possibility of implementing specific control functions for 

problematic pieces. A very effective example to explain this problem is the 
fioregrigia, where some pieces that are turned upside down are recognized as 
pickable, as it can be seen in Figure 10.1. 
This happens because the 2D projection of a well-posed fioregrigia is almost 
identical to the projection of a flipped piece and the program does not distinguish 
between the features of a well-posed piece and its flipped version. Even for a 
human operator this would be a hard task by simply looking at the picture. 
To solve this ambiguity, it is then necessary to implement a piece-specific control 
code to check for small, known details. 

 
• Management of several masters at the same time. An example of this 

implementation can be the 340 pieces: the 340-R has been considered during the 
whole project but, with this implementation, the 340-L can be considered at the 
same time as well. 

 
• Implementation of the AI to improve matching precision and learning capability 

of the program so that it can adapt to every type of piece. 
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Figure 10.1: fioregrigia problem. The full image (left) corresponds to the resulting image of the 

ORB+FLANN+H algorithm applied to the 2nd fioregria image. On the right, from top to 
bottom: the master, a well-posed piece, and a wrong-posed piece. Although the wrong-posed 

piece is flipped with respect to the master, it is recognized as pickable since the features in the 
keypoint area (white central area) are very similar to the well-posed piece ones 
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