
Politecnico di Torino
Master of Science in Mechatronic Engineering

Master of Science Degree Thesis

Development and testing of an industrial vision
application for robot guidance using OpenCV library

Supervisor:
Prof. Marcello Chiaberge

 Candidate:
 Enrico Mollo

December 2023

II

Abstract

The purpose of this thesis work is the development of an open-source industrial vision
application for robot guidance, implemented in Python language using Open CV library.
The developed program aims to be a free-of-license alternative to the vision software of
the industrial machine Supata®, entirely designed, realized, and programmed by E.P.F.
Elettrotecnica. It consists of a vibrating platform (the Supata® itself), a camera with a
light source, and a robot, to compose a smart feeder system that singularizes parts
randomly loaded into it and prepares them for following stations.

This work covers all the development phases of this application, from the initial camera
configuration to the achievement of the final output: detect pieces that can be picked, their
orientation and grip point's cartesian coordinates, and, finally, the density distribution on
the platform. The procedure starts with the calibration of the camera, necessary to
eliminate the lens distortion effects, followed by the definition of the correlation between
the 2D pixel coordinates of the image and the 3D millimetres coordinates of the robot.

Once the camera is ready and the input image of the platform is acquired, the main
program operates on two sides: a setup side, performed only the first time a new piece is
considered, and a processing side, performed every time a new image is acquired.
The setup side includes the definition of the master image and all the concerning
parameters and features. On the processing side, after an initial selection based on the
shape of the objects, the program compares every piece with the master, computing its
orientation and the coordinates of the grip point. Then, after a final control to check the
presence of obstacles in the grip area, the final list of pickable pieces is returned, as well
as their orientation and grip point coordinates.
Besides the coordinate computation, it also gives an information about the distribution of
the remaining pieces on the vibrating platform.

The comparison phase between a generic piece and the master is the core of this project
and the most challenging aspect of the whole work, since it is the key to make this

III

program applicable for every kind of piece, no matter the shape, the material, or the
colour. To accomplish this task, a fundamental technique in computer vision known as
feature matching is adopted, where the features of two images are detected, described,
and matched by specific algorithms, implemented through dedicated OpenCV functions:
in particular, the algorithms considered for this project are SIFT and ORB for the
detection and the description of the features, and Brute-Force and FLANN for the
matching.

Finally, to test the program, a set of experiments has been prepared in which six different
combinations of detector/descriptor and matcher algorithms have been applied on four
pieces with very different physical characteristics: for each test it has been considered as
quality evaluation criteria the number of well-matched and wrong-matched pieces, the
computational time, and the precision with respect to the currently implemented industrial
vision software on Supata®, based on Cognex libraries. The results of the tests show how
the combination of ORB as detector and descriptor algorithm with FLANN plus
homography as matcher algorithm has the best performance for every quality criterion,
revealing itself as a promising starting point for future improvements.

IV

Acknowledgments

I would like to thank the staff of E.P.F. Elettrotecnica for the opportunity they gave me
and for introducing me to the world of robotics. A special thanks to Giulio Pugliese for
supporting me along all the developing of this thesis work and to Professor Marcello
Chiaberge for being my supervisor.
My parents, my girlfriend, and my friends already know how thankful I am for the love
and support they showed me along the way.

VI

List of Contents

Chapter 1: introduction.. 1
1.1 Work presentation .. 1
1.2 Concerning Supata® .. 2
1.3 Concerning OpenCV .. 3
1.4 Solution approach .. 4

Chapter 2: camera calibration ... 7
2.1 Introduction .. 7
2.2 Hardware and software .. 8
2.3 Distortions, intrinsics, extrinsics .. 10
2.4 ChArUco board .. 12
2.5 Code ... 13

Chapter 3: pose estimation .. 21
3.1 Introduction .. 21
3.2 Camera model .. 22
3.3 Code ... 26

Chapter 4: segmentation into object candidates .. 32
4.1 Introduction .. 32
4.2 Grip constraints definition and master selection .. 33
4.3 Segmentation ... 36
4.4 Digital image basics ... 37
4.5 Thresholding .. 38
4.6 Contours, areas, and centroids ... 44
4.7 Candidate objects identification ... 47

VII

Chapter 5: master features ... 49
5.1 Introduction .. 49
5.2 Collision avoidance area .. 49
5.3 Grip point and master orientation .. 50
5.4 Keypoints area ... 51

Chapter 6: feature matching .. 52
6.1 Introduction .. 52
6.2 Features .. 52
6.3 SIFT ... 54
6.4 ORB ... 57
6.5 Matchers ... 58
6.6 Code ... 59

Chapter 7: pickable objects and grip point .. 70
7.1 Introduction .. 70
7.2 Grip point ... 70
7.3 Canny edge detection for obstacle avoidance area .. 72
7.4 Definitive list of pickable objects .. 76
7.5 Pixels-to-millimetres conversion ... 78

Chapter 8: density .. 79
8.1 Introduction .. 79
8.2 Density computation .. 80

Chapter 9: tests .. 83
9.1 Tests presentation .. 83
9.2 Confrontation results .. 87
9.3 Computational time .. 92

Chapter 10: conclusions .. 94

Bibliography .. 97

1

Chapter 1: introduction

1.1 Work presentation

In recent years, with the transition to smart factories and Industry 4.0, machine vision has
become one of the most important research fields for industrial automation, since it gives
to industrial equipment the ability to ‘see’ the surrounding world and make real-time fast
decisions based on this vision.
Robots, in particular, when provided with industrial vision can understand and recognize
shapes, calculate volumes, identify objects and fulfil much more complex contact-free
tasks as measuring, improving the product quality, the overall systems efficiency and the
operator’s health and safety, reducing labour costs and, in general, optimizing
manufacturing and logistics.

The aim of this thesis work is the development of an industrial vision application for robot
guidance for the E.P.F. Elettrotecnica machine Supata®, consisting of a vibrating
platform (the Supata® itself), a camera with a light source, and a robot, to compose a
smart feeder system that singularizes parts randomly loaded into it and prepares them for
following stations.
This application, implemented in Python language using OpenCV library, aims to be a
valid alternative, in terms of performances, to the software currently implemented on
Supata® based on Cognex libraries, but completely open-source and free-of-license.

This work covers all the software development phases, from the initial camera
configuration to the detection of the pieces that can be picked, their orientation, the
cartesian coordinates of grip point, and, finally, the density distribution on the platform.

Chapter 1: introduction

2

1.2 Concerning Supata®

Supata® (Figure 1.1) is an industrial machine completely designed, programmed, and
realized by E.P.F. Elettrotecnica, including mechanical, electrical and software. It is a
digital, intelligent, flexible feeding module for industrial automation sector, equipped
with a high-precision customizable integrated vision system.

It consists of a manipulator able to pick pieces from a vibrating platform: the robot can
recognize the well-posed pieces and when all of them have been moved away, new pieces
are loaded on the platform that randomly re-distributes the new pieces with a vibrating
motion regulated by two separate motors, one on the left and one on the right side of the
platform. Every time the vibrating platform re-distributes the pieces, the camera takes a
picture, the system recognizes the well-posed pieces and returns the grip point coordinates
and the piece rotation angle to the manipulator that proceeds with the grip operation.

Figure 1.1: Supata® machine

Chapter 1: introduction

3

As the company website [1] states, Supata® is designed and suitable for:

• Be simply integrated into existing lines.
• Produce small batches with frequent production changes.
• Be configurable according to different applications.
• Manage components with different sizes and geometries.
• Replace rigid and unreliable vibratory feeders.
• Create a simple system, always ready for new products, with a single interface.
• Obtain fast and regular cycle times.
• Improve efficiency and quality of production processes, eliminating costly

rework.
• Ensure traceability throughout the production chain.
• Gain a competitive advantage.

Also, by adopting A.I., the productivity can be improved by 17-20% by optimizing
quality. Errors can be eliminated reducing costly rework and the overall efficiency is
maximized, while costs are reduced.

Nowadays Supata® system is used for different fields of industrial production as
automotive, food and beverage, medical, gadgets, household appliances, household goods
and all production sectors where the use of mechanical vibrators are required.

1.3 Concerning OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and
machine learning software library, supporting C++, Python, Java and MATLAB and
compatible with Windows, Linux, Android and Mac OS.
The library has more than 2500 optimized algorithms for computer vision that can be used
for simple operations of image processing as geometric transformation, thresholding,
histogram equalization but also for more specific applications as edges and contours
detection, template matching, image segmentation and to solve very complex tasks as

Chapter 1: introduction

4

feature matching. That’s why OpenCV algorithms are
widely used in companies, research groups and by
governmental bodies to detect and recognize faces,
track moving objects, find similar images in a
database and so on, with more than 47 thousand
people of user community and over 18 million of
estimated downloads all over the world.

Since this project concerns a computer vision
problem, OpenCV library is the core element to find
the solution, and the main OpenCV functions
implemented in the code are going to be discussed
and explained in detail in the following chapters.

1.4 Solution approach

After this introduction, each chapter will deal with a different part of the code
development, while the last chapters are dedicated to the test phase and the conclusions.
To give a clearer idea of how this project has been organized, a general scheme of the
code development is reported below, and it is subdivided into its main steps, that are
briefly resumed according to the chapters organization order.

Figure 1.2: OpenCV logo [2]

DENSITY

PICKABLE OBJECTS and GRIP POINT

FEATURE MATCHING

MASTER FEATURES

SEGMENTATION into OBJECT CANDIDATES

POSE ESTIMATION

CAMERA CALIBRATION

Chapter 1: introduction

5

1) Camera calibration. This step is quite common in computer vision application
since it is necessary to eliminate the lens distortion effect. The program receives
as input several images of a special chessboard-like pattern called ChArUco
board, placed in different positions and returns two parameters, characteristics of
the lens used to undistort any input image.

2) Pose estimation. Once the undistorted image is acquired, it is fundamental to find
a correlation between the 2D image world in pixels and the 3D real world in
millimetres. The program places the global reference frame (Xw Yw Zw) and
returns all the parameters necessary to find the pixel-to-mm transformation. Once
all the parameters are known, the correlation is obtained by inverting the pinhole
camera model equation.

3) Segmentation into candidate objects. First, the user must indicate the grip
constraints, to avoid the collision between the robot and the platform borders, and
the master image. With a very important step known as segmentation, based on
the thresholding operation, the program obtains the blob (silhouette) of every
piece in the platform, where the segmentation parameters are chosen by the user.
The program also computes, for each piece, the blob centroid and the area, that is
compared with the master blob area: if it is included in a certain tolerance range,
the corresponding piece is considered as candidate object.

4) Master features. All the operation concerning the master are performed only the

first time that a new kind of piece is considered, while all the other operations are
performed every time a new image is acquired. In this phase the user must impose
four important features operating directly on the master image: the collision
avoidance area, the master grip point, the master orientation, and the keypoints
area. The collision avoidance area is the space that must be obstacle-free to
consent the grip, and it is defined by tracing two polygons around the piece. The
master grip point is simply indicated by a dot, while the master orientation by an
arrow. Finally, the keypoints area is the area of interest for the feature matching:
it is defined as a polygon and every keypoint outside the polygon is not considered
for the matching.

5) Feature matching. This is the core of the whole project: each candidate object is
separated in a target image that is compared to the master by their features
(keypoints) which are detected, described, and matched by specific algorithms.
The detectors/descriptors chosen for this project are ORB and SIFT, while the
matchers are Brute-Force, FLANN, and FLANN + homography. Differently from
segmentation, this procedure leads to a comparison not based on the shape of the
pieces, but on their features, independently from their pose: this makes the
program applicable for every piece, no matter the shape, the material, or the

Chapter 1: introduction

6

colour, discarding wrong-posed pieces and obtaining the rotation angle of the
target pieces with respect to the master (orientation).

6) Pickable objects and grip point. Once the rotation is obtained, for each target
piece the software computes the coordinates in pixels of the grip points, and the
presence of obstacles in the collision avoidance area is checked through the Canny
edge detection method. If a target piece passes all these controls, it is classified as
pickable, and the coordinates of its grip point are converted from pixels to
millimetres and provided to the user along with the piece rotation.

7) Density. Once all the pickable pieces have been moved away, it is possible to
obtain an information about how the remaining pieces are distributed on the
platform by applying again the thresholding. This information is needed to decide
if new pieces must be loaded on the plane, or they must be vibrated instead.

7

Chapter 2: camera calibration

2.1 Introduction

Camera calibration is the first step for any computer vision project work, since we can
say that the ‘eyes’ of industrial robots consist in one or more cameras and their lenses,
optical devices characterized by undesired effects as distortion.
Therefore, the main goal of camera calibration is to correct those effects, obtaining the
necessary sets of parameters to correct the camera view, from which it is possible to
acquire the undistorted images to be processed in the following part of the project.

The base principle of the calibration procedure consists in the realization of a chessboard-
like pattern with well-known square sizes. From several pictures of this chessboard taken
by the camera, the program returns all the camera parameters to correct the original
images and therefore to obtain their undistorted version.
For a matter of robustness, it has not been used a simple black-and-white squares pattern
but a special one called ChArUco board, that is going to be described afterwards in detail.

To summarise, in this chapter the workstation setup, the hardware, and the software used
for the image acquisition are first presented and they will be followed by a brief
theoretical digression about the camera distortion model and the description of the
ChArUco board. Then the code procedure to obtain the calibration parameters will be
described by presenting the main functions used in the code.

INPUT
• reference

chessboard
CAMERA

CALIBRATION

OUTPUT
• distortion

correction

Chapter 2: camera calibration

8

2.2 Hardware and software

The workstation for this first part of the project consists of a platform, a vertical support,
a ring light, and a camera: the support is placed perpendicularly to the platform, and the
camera is mounted on the support at 90 cm from the platform so that the centre of the lens
results above the centre of ring light (Figure 2.1). This guarantees the platform
illumination without projecting on it the shadow of the camera and, with this
configuration, the lamp does not interfere with the camera view.

Concerning hardware, the camera adopted is a streaming camera Basler acA2500-14gm,
revised and commercialized by Cognex as CAM-CIC-5000-24-CG: it is characterized by
GenICam protocol compatibility, and data interface GigE Vision, where GigE is an

Figure 2.1: workplace setup. The full equipment (left) includes the platform on whitch the

pieces are randomly distributed (bottom right), a ring light and the camera (top right)

Chapter 2: camera calibration

9

interface standard introduced in 2006 for high-performance
industrial cameras, developed applying the Gigabit
Ethernet communication protocol and widely used around
the world since it allows fast image transfer using low-cost
standard cables, assuring robust performance over very
long lengths. The lens is an Edmund Optics TechSpec-
33304.
The three devices are shown in Figure 2.3.

As for software, to write a python code able to communicate with the camera and acquire
images, it has been implemented Harvester, a free-use Python library for image
acquisition process in computer vision applications, which main features are:

• Image acquisition through GenTL Producers (libraries that have C interface and
offer consumers a way to communicate with cameras over physical transport layer
dependent technology hiding the detail from the consumer)

• Multiple loading of GenTL Producers in a single Python script.

• GenICam (Generic Interface for Cameras)
feature node manipulation, where GenICam
protocol provides generic programming
interface for all kinds of devices, regardless of
their interface technology (GigE, ethernet in
our case, but also USB3 cameras) or what
features they implement, as long as they are compliant to the GenICam standard.

Figure 2.2: GigE logo

[3]

Figure 2.3: camera and lens. From left to right: Cognex CAM-CIC-5000-24-CG [4], Basler

acA2500-14gm [5], and Edmund Optics TechSpec-33304 [6]

Figure 2.4: GenICam logo [7]

Chapter 2: camera calibration

10

This library has been fundamental to connect us to the camera, acquiring the images and
changing the principal camera parameters such as exposure time and brightness (gain).

2.3 Distortions, intrinsics, extrinsics

Since we are dealing with just one camera, it’s possible to adopt the so-called pinhole
camera model to ideally describe the mathematical relationship between the 3D real world
coordinates of a point and its projection onto the 2D image plane.
However, since this model does not consider the presence of a real lens, the obtained
image results to be distortion-free while, it’s well-known that in real-life applications,
pinhole cameras introduce distortions to images in a significant way.

There are two major kinds of distortion, radial and tangential:

• Radial distortion: it makes straight lines appear curved and its effect is more
significant as a point is more distant from the centre of the image (Figure 2.5). It
can be mathematically described as:

(2.1) 𝑥𝑟𝑎𝑑𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (2.1)

(2.2) 𝑦𝑟𝑎𝑑𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6) (2.2)

(2.3) 𝑟2 = 𝑥2 + 𝑦2 (2.3)

• Tangential distortion: it makes images appear nearer than expected because of the
non-perfectly parallel alignment between the lens and the imaging plane. It can be
mathematically described as:

(2.1) 𝑥𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟
2 + 2𝑥2)] (2.4)

(2.2) 𝑦𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦 + [𝑝1(𝑟

2 + 2𝑦2) + 2𝑝2𝑥𝑦] (2.5)

The parameters of this first set (k1, k2, p1, p2, k3) are known as distortion coefficients.

Chapter 2: camera calibration

11

Anyway, two more sets of parameters are necessary for the calibration, and they are
known as intrinsic and extrinsic parameters of the camera:

• Intrinsic parameters: they are specific to a camera, and they can be gathered into
a 3X3 matrix called camera matrix, usually noted as A or K:

(2.6) 𝐾 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] (2.6)

where (fx, fy, cx, cy) are the focal length and the optical centre of the camera.
This matrix, unique for each specific camera and lens combination, is used to
correct the image centre position and possible rotation due to focal length,
mapping the coordinates of the 3D points in the camera system to the pixel
coordinates in the 2D image system.

• Extrinsic parameters: they are gathered into a 4X4 roto-translation matrix,

mapping the coordinates of a 3D real point into another coordinate system, for
example the 3D camera system.

Concerning the camera pinhole model and the different coordinates systems that
characterises it, a more thorough and complete analysis will be debated in the next
chapter, while dealing with pose estimation.

Figure 2.5: radial distortion examples [8]

Chapter 2: camera calibration

12

2.4 ChArUco board

A ChArUco board is a chessboard-like pattern that combines a classic black-and-white
squares chessboard with special markers called ArUco. They are synthetic square markers
composed of a black squared background and an inner white binary matrix that
determines the marker identifier, denoted as the marker id.

One of the most important characteristics of ArUco markers is their well-defined
orientation: given a generic ArUco marker, its four corners are identified and listed in a
specific clockwise order from 0 (top left corner in the original order) to 3.
This listing order does not change if the marker is rotated, implying that, if a reference
frame is associated to a corner, it will remain fixed in that corner, no matter the orientation
of the board.

ChArUco boards combine the benefits of both classic chessboard and ArUco markers
(Figure 2.6): corners can be refined more accurately as for chessboards but their detection
results to be faster because of ArUco markers properties. Furthermore, the property for
which all the ArUco marker corners maintain their listing order no matter the rotation of
the board is still valid, and, because of markers versatility, some occlusions or partial
views don’t compromise the detection of the board, conversely to what happens if a
simple chessboard is adopted instead.

In the program section, it will be described how to create a ChArUco board and how to
define it in the code.

Figure 2.6: ChArUco board composition [9]

Chapter 2: camera calibration

13

2.5 Code

The first step consists in acquiring images with the camera, with the functions provided
by the Harvesters library that also consents to regulate exposure time, brightness (gain)
and pixel format.

The second step consists in defining and printing the board.
To create it, it has been used the python codes MarkerPrinter.py and
MarkerPrinterGUI.py provided by Josh Chien [10] that allows the user to select all the
board geometrical parameters as dictionary, rows and columns number, square and
marker length (in meters) and page border sizes (in meters), where the dictionary is a
predefined set that indicates the number of bits and markers contained in the board. For
example, DICT_6X6_1000 means that the dictionary is composed by 1000 markers, with
size 6x6 bits (Figure 2.7).

To select the best combination of these parameters, different boards have been printed,
considering that the total number of markers must not to be too low (lower precision in
the pose estimation process) or too high (markers too small to be detected) and must be
contained in a A3 paper sheet (297X420 mm).
From these attempts it has been noticed that the program correctly detects all the markers
if the top and bottom left and right squares are black (even number of rows and columns)
and, at the end, the board with the following parameter has been adopted (Figure 2.8):

- Dictionary: DICT_6X6_1000
- Rows: 15
- Columns: 23
- Square length [m]: 0.0175
- Marker length [m]: 0.012
- Border page x [m]: 0.01
- Border page y [m]: 0.01

Figure 2.7: MarkerPrinterGUI.py interface example [11]

Chapter 2: camera calibration

14

Those parameters, except on the border page x and y, are used to describe the board in
the code, by creating a dedicated class with the function cv.aruco.CharucoBoard():

Function 2.1: cv.aruco.CharucoBoard() [12]

• Input:
o (ROWS, COLS): number of rows and columns of the board.
o SQUARE_LENGHT: in millimetres.
o MARKER_LENGHT: in millimetres.
o aruco_dict: board dictionary.

• Output:

o board: board class.

Once the chessboard has been printed and the program section to acquire images is ready,
it is finally possible to start the calibration procedure, where the program finds the
chessboard corners, i.e., the points where two black squares touch each other, and, by

Figure 2.8: definitive ChArUco board

Chapter 2: camera calibration

15

knowing the size of a square in mm, converts their 2D image coordinates into 3D real
world coordinates. The first set of 2D points is known as image points set, while the
second set is known as object points set.
In this case, since the board is planar, also the object points set result to be a 2D points
set.

First, to achieve a good result, it is mandatory to take several pictures of the chessboard
in different positions and with different orientations (at least 10), so, 20 different images
of the board have been acquired for this phase (Figure 2.9).

Figure 2.9: board calibration images

Chapter 2: camera calibration

16

For each image, a grey version is produced, then, the program detects the markers (shown
in Figure 2.10) from the grey image with the function cv.aruco.detectMarkers():

Function 2.2: cv.aruco.detectMarkers() [13]

• Input:
o image: greyscale of image.

• Output:

o markerCorners: list of the pixel coordinates of the corners of the
detected markers, returned, for each marker, in clockwise order,
starting with top left.

o markerIds: list of detected marker ids.
o rejectedImgPoints: list of possible invalid markers.

Figure 2.10: ArUco markers. In the detail (top left) it can be seen in a clearer way the detected
markers (blue squares), their ordered ids (blue numbers), and the top left corner of each marker

identified with a pink square

Chapter 2: camera calibration

17

Therefore, the marker corners, the corners ids, the grey image, and the board are used as
inputs for the function cv.aruco.interpolateCornersCharuco() to obtain the interpolated
ChArUco corners (308 corners, shown in Figure 2.11), by calculating the homography
correlation between ChArUco plane and image projection.

Function 2.3: cv.aruco.interpolateCornersCharuco() [14]

• Input:
o markerCorners: from cv.aruco.detectMarkers().
o markerIds: from cv.aruco.detectMarkers().
o image: greyscale image.
o board: as defined in cv.aruco.CharucoBoard.

• Output:
o resp: number of detected squares.
o charucoCorners: list of pixel coordinates of the interpolated

chessboard corners.
o charucoIds: list of the interpolated chessboard corners identifiers.

Figure 2.11: ChArUco corners. In the detail (top left) it can be seen in a clearer way the

detected corners, identified by green squares and their ordered ids (green numbers)

Chapter 2: camera calibration

18

If the number of squares detected (resp) is greater than a threshold chosen by the user (20
in this case), the corners and their ids of all the images are collected in lists. Corner list,
id list, board, and image size are finally used as inputs in the function
cv.aruco.calibrateCameraCharuco() to get the camera matrix and the distortion
coefficients:

Function 2.4: cv.aruco.calibrateCameraCaruco() [15]

• Input:

o charucoCorners: list of all the interpolated corners.
o charucoIds: list of all the interpolated corners identifiers.
o board: as defined in cv.aruco.CharucoBoard.
o imageSize: input image size.

• Output:
o cameraMatrix: matrix K as previously defined.
o distCoeffs: distortion coefficients (k1, k2, p1, p2, k3) as previously

defined.

The result is the acquisition of both camera matrix and distortion coefficients set:

K = [
63784.7042 0 1228.26881

0 63468.4528 1022.51891
0 0 1

]

distCoeff =

(

−15.0520757
−0.945085157
0.0133808090
0.0444127560

−0.000462258376)

One last step before applying the corrective parameters to the image consists in obtaining
a new camera matrix based on a free scale parameter alpha between 0 and 1 with the
function cv.getOptimalNewCameraMatrix(), where 0 means that only sensible pixel from
the original image are retrieved, while 1 means that all the original image pixels are kept.

Chapter 2: camera calibration

19

Function 2.5: cv.getOptimalNewCameraMatrix() [16]

• Input:

o cameraMatrix: from cv.aruco.calibrateCameraCharuco().
o distCoeffs: from cv.aruco.calibrateCameraCharuco().
o imageSize: input image size.
o alpha: set at 1.
o newImgSize: input image size.

• Output:
o newCameraMatrix: new matrix K.

The new camera matrix is:

K = [
63136.6493 0 1232.28102

0 62738.8758 1023.49849
0 0 1

]

Now, given the final camera matrix and the distortion coefficients, it is possible to see the
result of this correction applied to one of the images, for example the first one, by using
the function cv.undistort():

Function 2.6: cv.undistort() [17]

• Input:

o src: distorted image.
o cameraMatrix: from cv.getOptimalNewCameraMatrix().
o distCoeffs: as defined in cv.aruco.calibrateCameraCharuco().
o cameraMatrix: from cv.getOptimalNewCameraMatrix().

• Output:

o dst: corrected image.

Chapter 2: camera calibration

20

The result of this last step can be finally seen in Figure 2.12, where the distorted and the
undistorted images are compared: the fact that the two pictures are almost
indistinguishable is a proof of the high camera-lens combination quality.

Figure 2.12: undistorted image and distorted image comparison. Because of the high quality of

the lens, the distorted image (left) is almost identical to the undistorted one (right)

21

Chapter 3: pose estimation

3.1 Introduction

Once the intrinsic parameters of the camera are known (camera matrix and distortion
coefficients), it is possible to use them to calculate the pose of an object in space, or rather
its translation and rotation with respect to a coordinate system.
To perform this computation, it will be used the ChArUco board already adopted in the
previous chapter: this operation result will lead to the definition of a global reference
frame from which the pixel-to-millimetres conversion scale from the 2D image world to
the 3D real world will be found.

One main assumption must be considered before starting: to simplify computations, the
camera XY plane is assumed to be parallel to the world XY plane, or also the coordinate
axis Z, perpendicular to the image plane, is considered coincident with the Z axis of the
camera. This is true only if the camera is correctly placed above the platform, with very
small rotations around the X and Y axes.
This means that, since the global coordinate system origin shall correspond to a corner of
the board, there will be no translation along Z: the pixel-to-millimetres conversion will
basically be a 2D problem.

INPUT
• undistorted

chessboard
POSE

ESTIMATION

OUTPUT
• global reference
• px-to-mm

conversion

Chapter 3: pose estimation

22

It will be shown that one of the functions implemented also returns the camera rotation
angles around X and Y: to obtain the desired setup configuration the user must then
manually adjust the camera pose to set those angles as close as possible to zero.

In this chapter will describe in detail the pinhole camera model, already mentioned in the
previous part, followed by the correlation between world system, camera system and
image system. Then, the pose estimation procedure and its main functions will be
discussed through the code.

3.2 Camera model

To better understand the pose estimation process, it is mandatory to introduce more in
detail the pinhole camera model (represented in Figure 3.1), where the view of a scene is
obtained by projecting 3D points into the image 2D world using a perspective
transformation that involves three different cartesian reference systems, written in
homogeneous form:

• Pw = (Xw Yw Zw 1)T : world (global) reference frame, representing the
coordinates of a point in the real 3D world in millimetres. It is useful to indicate
it also in the standard form as pw = (Xw Yw Zw)

T.

• Pc = (Xc Yc Zc 1)T : camera reference frame, representing the coordinates
of a point with respect to the lens of the camera in millimetres, where its standard
form is pc = (Xc Yc Zc)

T.

• p = (u v 1)T : image reference frame, representing the coordinates on a point
in the 2D image world in pixels, where the origin conventionally corresponds to
the top-left corner of the image.

Chapter 3: pose estimation

23

Starting from a point with known global coordinates, its coordinates in the camera frame
are obtained as:

(3.1) 𝑃𝑐 = 𝑅𝑡𝑃𝑤 = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31
0

𝑟32
0

𝑟33 𝑡𝑧
0 1

]𝑃𝑤 (3.1)

where Rt is the roto-translation matrix between the two frames, R is the rotation matrix,
and t the translation vector. The form [R|t] will be used in the Equation 3.5:

(3.1) 𝑅𝑡 = [
𝑅 𝑡
0 1

] = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31
0

𝑟32
0

𝑟33 𝑡𝑧
0 1

] (3.2)

 ↓

 [𝑅|𝑡] = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] (3.3)

Figure 3.1: pinhole camera model [18]

Chapter 3: pose estimation

24

The passage from camera frame to image frame is then performed by multiplying the
camera matrix K by the camera coordinates in standard form:

(3.1) 𝑠𝑝 = 𝐾𝑝𝑐 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] 𝑝𝑐 (3.4)

where s is an arbitrary projecting scale factor.
Finally, the complete transformation from global frame to image frame can be written as:

(3.1) 𝑠𝑝 = 𝐾[𝑅|𝑡]𝑃𝑤 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] 𝑃𝑤 (3.5)

Figure 3.2 shows the two main frames useful for the conversion, where the origin of p
coincides with the top-left corner of the image, while the origin of pw is placed on the
image plane, Zw is perpendicular to it and the other two axes are oriented according to
the board pattern.

Figure 3.2: reference frames representation. The image frame (u v) has the origin coincident

with the top left corner of the image, while the global frame (Xw Yw Zw) has the origin coincident
with the top right edge of the board and the Z axis entering the page.

Chapter 3: pose estimation

25

This is the theory behind the transformation from 3D real points to 2D image points.
However, the goal now is to obtain the inverse relationship since, in the end, the program
shall be able to transform a point in the image plane into a set of real coordinates for the
robot.

First, the Equation 3.5 can be rewritten as:

(3.1) 𝑠𝑝 = 𝐾(𝑅𝑝𝑤 + 𝑡) (3.6)

 ↓

 𝑠 [
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]([

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] [
𝑋𝑤
𝑌𝑤
0
] + [

𝑡𝑥
𝑡𝑦
𝑡𝑧

]) (3.7)

where Zw = 0.
Then, through the following passages, it is possible to find Xw and Yw by inverting the
matrices K and R:

(3.1) 𝑠𝑝 = 𝐾(𝑅𝑝𝑤 + 𝑡) → 𝑠𝑝 = 𝐾𝑅𝑝𝑤 + 𝐾𝑡 → 𝑠𝑝 − 𝐾𝑡 = 𝐾𝑅𝑝𝑤 (3.8)

 ↓

 𝑝𝑤 = (𝐾𝑅)

−1(𝑠𝑝 − 𝐾𝑡) (3.9)

The only unknown term on the right side is the projecting scale factor s. Anyway, since
Zw = 0, it can be easily obtained by looking at the last element of each matrix product:

(3.10) 𝑠[(𝐾𝑅)−1𝑝]3 − [(𝐾𝑅)

−1𝐾𝑡]3 = 0 (3.10)

 ↓

 𝑠 =
[(𝐾𝑅)−1𝐾𝑡]3
[(𝐾𝑅)−1𝑝]3

 (3.11)

where [V]3 is the third (last in this case) element of the generic vector V.

Chapter 3: pose estimation

26

3.3 Code

The pose estimation code is the continuation of the calibration part: again, one of the
board images, for example the first one, is chosen as reference: the distortion correction
is applied and, as already done in the previous chapter, all the corners ad their Ids are
detected with the function cv.aruco.interpolateCornersCharuco().
Then, the function cv.aruco.estimatePoseCharucoBoard() is used to find the rotation
vector and the translation vector of the board with respect to the origin of the image
reference:

Function 3.1: cv.aruco.estimatePoseChacrucoBoard() [19]

• Input:

o charucoCorners: from cv.aruco.interpolateCornersCharuco().
o charucoIds: from cv.aruco.interpolateCornersCharuco().
o board: as defined in cv.aruco.CharucoBoard.
o cameraMatrix: from cv.getOptimalNewCameraMatrix().
o distCoeffs: from cv.aruco.calibrateCameraCharuco().

• Output:
o retval: Boolean value, true if the pose estimation is valid, false

otherwise.
o rvec: rotation vector of the board in the Rodrigues notation.
o tvec: translation vector of the board.

If retval is true, rvec and tvec are used in the function cv.drawframeAxes() [20] to draw
the reference frame on the board: in Figure 3.3 it is possible to see how the origin is
located on the top right corner of the board edge, the X axis is drawn in red, the Y axis is
green and the Z axis is blue (entering the page).

Chapter 3: pose estimation

27

To have a good estimation of the intrinsic parameters correctness, the reprojection error
is computed as the absolute norm between the coordinates of the interpolated chessboard
corners charucoCorners, previously obtained from
cv.aruco.interpolateCornersCharuco(), and the image points.
The image points, 2D reprojection of 3D points, are obtained from the object points (3D
points) with the function cv.projectPoints() [21], in turn obtained by the function
cv.aruco.getBoardObjectAndImagePoints():

Function 3.2: cv.aruco.getBoardObjectAndImagePoints() [22]

• Input:

o board: as defined in cv.aruco.CharucoBoard.
o charucoCorners: from cv.aruco.interpolateCornersCharuco().
o charucoIds: from cv.aruco.interpolateCornersCharuco().

• Output:
o objPoints: coordinates in millimetres of board marker points.

Figure 3.3: global reference frame

Chapter 3: pose estimation

28

The result of the norm is then divided by the number of image points to get the
arithmetical average and, in the end, the reprojection error results to be equal to 0.06 px:
by converting this error in millimetres, once obtained the conversion scale values, it will
be shown that this error is quite small.

The next step consists into finding the rotation matrix R and the Euler angles, that are
obtained first by applying the function cv.Rodrigues() [23] to rvec, which performs the
Rodrigues inverse transformation, then, by applying to R the MATLAB function
rotm2eul() [24] which returns the three rotation angles in the order Z-X-Y:

R = [
−0.01522158 −0.99732713 −0.07146261
0.99983859 −0.0158642 0.00843344
−0.0095446 −0.0713227 0.99740763

]

↓

θZXY = (
1.5860
0.0095
−0.0714

) [rad] = (
90.8722
0.5469
−4.0901

) [°]

Since the board is planar, possible non-zero angles around X and Y are consequences of
an imprecise positioning of the camera, that results to be non-parallel to the board. As
already mentioned at the beginning of the chapter, the user should manually correct the
camera positioning and repeat the procedure until the resulting X and Y angles values are
very close to zero, but this operation is not simple if executed without specific equipment.
For this reason, few degrees rotation angles around X and Y are considered acceptable.
Now that K, R, and t are known, the last missing term s is obtained by applying the
Equation 3.11. Then, it’s finally possible to apply the Equation 3.10 to obtain the pixels-
to-millimetres conversion for any desired point of the image.

To have an idea of the pixels-to-millimetres conversion scale, a simple geometrical
procedure is proposed: because of the function cv.projectPoints(), the origin O and the
extreme top-left (TL) and down-right (DR) corners pixel coordinates are well known so,
it is possible to calculate the distance between these points and the origin:

(3.10) 𝐷𝑅,𝑂̅̅ ̅̅ ̅̅ ̅ = √(𝑢𝑂 − 𝑢𝐷𝑅)2 + (𝑣𝑂 − 𝑣𝐷𝑅)2 (3.12)

 𝑇𝐿, 𝑂̅̅ ̅̅ ̅̅ ̅ = √(𝑢𝑂 − 𝑢𝑇𝐿)2 + (𝑣𝑂 − 𝑣𝑇𝐿)2 (3.13)

Chapter 3: pose estimation

29

Then, the real-world width distance (WD) and length distance (LD) correspond to:

(3.10) 𝑊𝐷 = 𝑟𝑜𝑤𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (3.14)

 𝐿𝐷 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (3.15)

The conversion scale values are then:

(3.10) 𝑠𝑥 =
𝑊𝐷

𝐷𝑅,𝑂̅̅ ̅̅ ̅̅ ̅
 (3.16)

 𝑠𝑦 =
𝑊𝐿

𝑇𝐿, 𝑂̅̅ ̅̅ ̅̅ ̅
 (3.17)

And the result is: sx = 0.20099 [mm/px] and sy = 0.20035 [mm/px].
The fact that the two scale values are so similar, is another proof that the camera rotation
angles around X and Y are quite small, and so the board squares shapes are not affected
in a significant way by perspective.

Given the conversion scale values it is possible to estimate the maximum value of the
reprojection error in millimetres by multiplying it for the maximum between sx and sy,
and, as previously mentioned, this error results to be quite small:

𝑟𝑒𝑝_𝑒𝑟𝑟𝑜𝑟𝑚𝑚 = 𝑟𝑒𝑝_𝑒𝑟𝑟𝑜𝑟𝑝𝑥 ∗ 𝑚𝑎𝑥(𝑠𝑥, 𝑠𝑦) = 0.06 ∗ 0.20099 = 0.0120594 [𝑚𝑚]

Finally, to estimate the error between the transformation results and the actual
measurements, for each ChArUco corner of the board it has been computed the absolute
value of the difference between the X, the Y, the corner-to-origin (diagonal) distance and
their values directly measured on the printed board.
In Table 3.1 the maximum, the minimum and the average errors in millimetres for each
coordinate are collected, while, Figure 3.4, 3.5, and 3.6, show the MATLAB plots of the
errors for each corner, to give an idea of the error distribution all over the board.
From Table 3.1, the maximum error affecting the corners is less than 0.77 mm on the
diagonal, that is a quite good result.

Chapter 3: pose estimation

30

error [mm] X Y DIAGONAL

maximum 0.5103 0.7286 0.7698

minimum 0.0010 0.0010 0.0004

average 0.1410 0.2595 0.2366

Table 3.1: pose estimation errors

Figure 3.4: X calibration error

Chapter 3: pose estimation

31

Figure 3.5: Y calibration error

Figure 3.4: diagonal calibration error

32

Chapter 4: segmentation into object
candidates

4.1 Introduction

In the previous two chapters, the preparatory steps for the development of the main part
of this thesis project have been examined, that is a quite standard procedure for every
computer vision work: in fact, the program is now ready to acquire distortion-free images
of the platform and convert each pixel coordinates into real world millimetres coordinates,
with respect to the global frame.

Being this the first chapter concerning the main program, it is discussed how, given a
bunch of pieces randomly posed on the platform, the reference piece (the master) is
chosen and how a first, preliminary set of candidate objects is obtained with a procedure
that only involves the shape of the pieces, by comparing each piece with the master.
This procedure is based on a very largely used technique called image segmentation,
which in turn is based on another fundamental image processing method called
thresholding.

INPUT
• initial full image MASTER

SELECTION

OUTPUT
• master image

INPUT
• initial full image IMAGE

SEGMENTATION

OUTPUT
• first set of

candidate objects

Chapter 4: image segmentation into object candidates

33

Differently from the previous two chapters, from this one on, it has been decided to
explain step by step the whole project following the code implementation order. This
means that, as a matter of clarity, theoretical explanations will not be discussed at the
beginning of the chapter but gradually, when required.

4.2 Grip constraints definition and master selection

The very first step of this program consists, obviously, in the acquisition of the full image
of the platform, that is automatically corrected by applying the results of the camera
calibration process. Figure 4.1 shows the first image taken for the final tests section, that
will be used as example from now on for all the code explanations.
The discussion will refer to this particular kind of R-shaped black pieces with the tag 340.

Figure 4.1: 340 full image

Chapter 4: image segmentation into object candidates

34

Once the undistorted image has been acquired it is mandatory, before proceeding, to set
some coordinates constraints on the image to exclude the areas close to the borders of the
platform, to avoid a possible collision of the robot during the grip operation. These
constraints are imposed by the user and are represented by four lines printed on the image
as well as their coordinates (Figure 4.2). When the grip point of each piece will be defined,
if one of them results to be located outside these constraints, the corresponding piece will
not be considered for the grip.

Figure 4.2: grip contraints. N stands for North (red line), E for East (orange line), S for South

(green line), and W for West (blue line)

Chapter 4: image segmentation into object candidates

35

Now, the user must choose the master, that is the reference piece: this is a crucial choice,
since the master will be the reference not only for the pieces considered for this project
discussion, but it will be saved and re-used as reference every time a new batch of pieces
of the same kind is processed.
For this reason, the master must be a well-posed and well-illuminated piece, without other
pieces or any sort of obstacles in its neighbourhood. That’s why it is usually placed ad

hoc on the platform, exclusively for this first operation.
Also, the master image (Figure 4.3) must be cropped with proper sizes: large enough to
consent all the operations that are going to be analysed in detail in the next chapter, but
not too large to cause ambiguity between close pieces during the feature matching phase.

Since a lot of operations in the next phases are based on the sizes of the master image, the
program executes a further step before proceeding over: to be sure that master image
height and length are divisible by two, for a matter of precision, the program

Figure 4.3: choice of the reference piece. The detail (up left) shows the master as a result of the

cropping action (blue rectangle) on the full image

Chapter 4: image segmentation into object candidates

36

automatically corrects the cropping sizes manually imposed by the user, by adding a
column or a row of pixels, if one of the two sizes results to be an odd number.

4.3 Segmentation

Segmentation is an image manipulation technique commonly used in computer vision
applications since it consists in easily distinguishing an object from its background by
detecting its corresponding silhouette, also called blob. The blob resulting from this
operation is, in this case, a black spot shaped as the piece on a white background, as
shown in Figure 4.4.

For this project, the segmentation procedure can be schematized as a sequence of three
operations, where the first, thresholding, is the most important one:

1) Thresholding of the master and of the full image to isolate the pieces from the
background and obtain the blobs.

2) Noise removal by closing operation.

3) Blob grouping by erosion operation. This is necessary only if a piece is
characterized by multiple blobs because of the illumination conditions and it is
not possible to apply adaptive thresholding.

Figure 4.4: master piece and its corresponding blob

Chapter 4: image segmentation into object candidates

37

However, to better understand what thresholding is, and consequently how segmentation
works, it is better to introduce some digital image basics.

4.4 Digital image basics

A digital image is nothing but a matrix of pixels, where each pixel is associated to a vector
of values (channels) called colour space and where each channel assumes a numerical
value (intensity). The combination of colour space kind, number of channels and intensity
values determines the colour of the pixel.

Some of the most used colour spaces (Figure 4.5) are:

• BGR (blue, green, red): the colour space adopted by OpenCV, where the intensity
of each channel goes from 0 to 255. To give some examples, the pixel
characterized by the combination [0, 0, 255] is a red pixel, while the pixel
[0, 255, 255] is a yellow pixel. Remarkable cases are black pixels [0, 0, 0] and
white pixels [255, 255, 255].

• RGB (red, green, blue): the colour space adopted by Matplotlib, a very useful

Python library, ideal to represent multiple images and check pixels coordinates.
This colour space is the inverse of RBG, so the pixel [0, 0, 255] will be blue.
Black and white pixels are unchanged.

• GREYSCALE (black/white): black-and-white colour space, characterized by one
single channel that can assume intensity values from 0 (black) to 255 (white). It
is frequently used for a lot of image manipulation processes as thresholding.

Figure 4.5: OpenCV logo [25] printed with different colour spaces

Chapter 4: image segmentation into object candidates

38

Since it can be useful to swap from a colour space to another, especially from colour to
grey, OpenCV provides very simple methods to easily perform this change.

4.5 Thresholding

In digital image manipulation, thresholding is the simplest segmentation process. Given
a greyscale image, it consists in replacing each pixel of the image with a white pixel if its
intensity value 𝐼𝑖,𝑗 is greater than a threshold T, otherwise it is replaced with a black pixel:
this process is called binary thresholding, while the opposite is called inverted binary
thresholding.

In formulas:

(4.1) 𝐼𝑖,𝑗
𝑏𝑖𝑛 = {

 255 𝑖𝑓 𝐼𝑖,𝑗 > 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.1)

 𝐼𝑖,𝑗
𝑖𝑛𝑣 = {

 0 𝑖𝑓 𝐼𝑖,𝑗 > 𝑇

 255 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.2)

In general, thresholding methods can be subdivided in two major groups:

• Global thresholding: the threshold is applied to every pixel of the image, useful
for homogeneous illumination conditions. Binary, inverted binary and other kinds
as truncated, threshold-to-zero, and inverted threshold-to zero belong to this group
(Figure 4.6).

Chapter 4: image segmentation into object candidates

39

• Adaptive (local) thresholding: an algorithm determines the threshold to be applied
to each pixel basing the computations on the mean of a small neighbourhood
region around the pixel itself or on the Gaussian-weighted sum of the
neighbourhood values. It is useful when the image is characterized by different
lighting conditions (Figure 4.7).

Figure 4.6: global thersholding [26]

Figure 4.7: global and adaptive thresholding comparison [27]

Chapter 4: image segmentation into object candidates

40

Coming back to the code, the user is then asked to select the kind of threshold (standard
or adaptive, normal or inverted), operating directly on both the full image and the master
image, according to the illumination conditions and the background colour: for example,
for grey pieces on a white, well-illuminated background, the best choice is standard
inverted binary thresholding, while a grey or black background with non-homogeneous
illumination could require a normal adaptive thresholding.
The two thresholding values the user has to adjust, called THRESHOLD and ADAPTIVE
in Figure 4.8, are the parameters characterizing the functions cv.threshold() and
cv.adaptiveTreshold().
Of course, these two functions cannot be applied at the same time.

Figure 4.8: thresholding settings window. By regulating the five trackbars (top), the user

imposes the parameters for the thresholding of the full image (centre) and of the master (top
right). The results can be compared in real time with the master itself (bottom right)

Chapter 4: image segmentation into object candidates

41

Function 4.1: cv.threshold() [28]

• Input:
o src: source greyscale image.
o thresh: the THRESHOLD parameter value, from 0 to maxval.
o maxval: maximum value to use with binary and inverted binary,

usually set to 255.
o type: cv.THRESH_BINARY or cv.TRESH_BINARY_INV, for this

work, but it can accept other kinds of thresholding.

• Output:
o dst: output greyscale image.

Function 4.2: cv.adaptiveThreshold() [29]

• Input:

o src: source greyscale image.
o thresh: THRESHOLD value, from 0 to maxval.
o maxval: maximum value, usually set to 255.
o adaptiveMethod: mean-based or gaussian-based adaptive

thresholding. For this work it has been chosen the gaussian method
cv.ADAPTIVE_THRESH_GAUSSIAN_C since it results less
sensitive to noise.

o blockSize: the ADAPTIVE parameter value, it is the size of pixel
neighbourhood used to calculate the local threshold. It can assume
only odd values equal or greater than 3.

o C: constant subtracted from the weighted mean; it is set to 5 but it can
assume any value.

• Output:
o dst: output greyscale image.

To have a better vision of the different results when the two functions are adopted on the
same image, Figure 4.9 shows the resulting adaptive and standard thresholding applied to
another kind of pieces, tagged as diapason188.

Chapter 4: image segmentation into object candidates

42

However, selecting the correct set of thresholding parameters could not be enough to
obtain a good result, since the user might occur in two problems: noise in the form of
randomly distributed black pixels and non-uniformity of the blob.
The solutions for both of those issues are based on a kind of techniques called
morphological operations, three of those are used for this work (Figure 4.10):

• Dilation: given a kernel, (usually squared), it dilates the white areas. In a black-
and-white image the operation results to be very simple: if the kernel is, for
example, a 3X3 square, the eight pixels surrounding each white pixel are turned
into white.

• Erosion: inverse of dilation, where the black areas are expanded and white pixels
surrounding a black one, are turned into black.

• Closing: dilation followed by erosion to eliminate unwanted black points on a
white background. Usually, those black or white isolated points are the result of
the thresholding applied to the background noise.

Figure 4.9: adaptive and standard (global) thresholding on diapason188. From left to right:

master, adaptive thresholding result, and standard (global) thresholding result

Figure 4.10: bitwise operations examples [30], [31]

Chapter 4: image segmentation into object candidates

43

To solve the noise issue, the program applies a closing operation with a fixed 5X5 square
kernel, while, to solve the non-uniformity of the blob, an additional user operation is
required.
The non-uniformity of the blob is a significant issue for the contour detection phase and
may occur when the piece is not planar and reflects the source light in different ways or
when the piece is characterized by holes or protrusions. Usually, this problem is
automatically solved when adaptive thresholding is adopted: however, it may happen that
the user must impose standard thresholding because of illumination conditions, obtaining
multiple isolated blobs. The solution is a simple erosion operation where the number of
iterations is set to 1 and the user selects the kernel size by adjusting the EROSION
parameter (Figure 4.11).

To summarise, given the full image and the master, the user must select the kind of
thresholding (standard/adaptive, normal/inverted) to properly separate the objects from
the background, then, if needed, he must unify multi-blobs by setting the erosion kernel
sizes.
The result is the final segmentation, shown in Figure 4.12.

Figure 4.11: erosion and closing. By applying erosion
and closing on the result of standard thresholding, the

noise effect is eliminated and the blob appears as a
uniform spot

Chapter 4: image segmentation into object candidates

44

4.6 Contours, areas, and centroids

Now that the segmentation phase is completed, from Figure 4.12 it is possible to notice
how some blobs correspond to wrong-posed pieces or to huge groups of pieces too close
to each other to be considered by the robot.
The next step consists then into excluding those blobs by computing the area of the master
blob and, fixed a tolerance range, selecting the blobs from the full image whose area is
included in that range.

To find the area of each blob it is mandatory to find the contour first, starting with the
master: the contour, i.e. the curve that joins all the continuous points along the blob

Figure 4.12: final segmentation. On the full image a normal (not inverted) adaptive

thresholding with ADAPTIVE parameter equal to 21 has been applied

Chapter 4: image segmentation into object candidates

45

boundary, is detected by the program with the function cv.findContours() [32] but it is
selected by the user (Figure 4.13), since there could be more than a single detected contour
if the piece presents holes or big zones with high intensity gradient, as shown in Figure
4.14.

The possibility of choosing the contour makes it possible, in many cases, to avoid the
erosion operation seen before: in the example shown in Figure 4.14, the blob (obtained
with adaptive thresholding) is characterized by three different contours (green curves).
However, it can clearly be seen that the second one is enough to effectively describe by

Figure 4.13: master contour

selection window

Figure 4.14: diapason188 multiple contours

Chapter 4: image segmentation into object candidates

46

itself the whole piece shape: erosion would have been mandatory if the three contours
had significant importance in the definition of the piece shape.
Given the master contour, its area and momentum are computed with cv.contourArea()
[33] and cv.moments() [34]: the area is fundamental for the pieces blobs detection, while,
from the momentum, it is possible to compute the coordinates of the centre of mass
(centroid) of the blobs, indicated as cx and cy. That is another reason why the contour
must be as uniform and well-shaped as possible, since too different contours from the
ideal shape of the piece would lead to centroid misplacing.

At this point, before proceeding with areas comparison, as a matter of precision the
program crops a new master from the original full image, identical in size and orientation
to the previous one, but the image centre is now coincident with the centroid of the blob:
this is the definitive master image that is going to be saved as a reference for the entire
process.
In Figure 4.15, it is possible to notice a very little difference between the two masters:
this implies that the user must not be extremely precise with the initial master cropping,
since it will centre itself at this point of the process.

Figure 4.15: definitive reference (master) image. The

new master image (right) is simply a new version of the
master image cropped by the user whose centre coincides

with the centre of mass of the master blob

Chapter 4: image segmentation into object candidates

47

4.7 Candidate objects identification

This is the last candidate objects identification step, now that all the contours and the
master blob area are available. The procedure can be schematized as:

1) The generic blob area from the full image is computed from the blob contour with
cv.contourArea().

2) A tolerance range, for example ±80% of the master blob area, is considered.

3) The generic blob area is compared with the tolerance range: if it is included, the
corresponding object is considered a candidate object, otherwise it is ignored.

4) The generic candidate object centroid coordinates cx and cy are computed.

5) cx and cy are compared with three sets of coordinate limits, the last two of which
and their functions will be defined in detail in the next chapters:

• Grip constraints, defined at the beginning of this chapter, to be sure that
the centroid falls in the safety area for the robot.

• Crop limit, to guarantee that the target image for the feature matching
phase can be cropped from the full image.

• Grip limit, to guarantee that the collision avoidance area can be defined,

no matter the rotation angle of the piece.

If all the three checks are passed, the centroid and its corresponding piece are
collected in the candidate objects set.

This procedure takes place every time the camera takes a new picture of the platform, and
the result is printed on screen: as shown in Figure 4.16, the program shows all the detected
contours (green), and the candidate objects by drawing their centroids (red), their
minimum area rectangle (blue), and the Ids that characterise the objects from now on
(blue).

Chapter 4: image segmentation into object candidates

48

Figure 4.16: candidate object detection on the full image

49

Chapter 5: master features

5.1 Introduction

This is going to be a quite short chapter, since it concerns the definition of all those
parameters that must be determined by the user before proceeding with feature matching:
collision avoidance area, master grip point, master orientation, and keypoints area.

As for the master thresholding parameters and the master blob area, all these values must
be set only the first time a new kind of pieces is considered.

5.2 Collision avoidance area

The first operation on the master image is the definition of the collision avoidance area,
i.e., the area that must result obstacle-free to consent the grip by the robot.
It is defined by the user as the area in-between two polygons: an inner one (blue) is first
determined by drawing the vertexes and it must be very close to the piece, then, once the

INPUT
• master image

MASTER
FEATURES

OUTPUT
• collision

avoidance area
• master grip point
• master orientation
• keypoints area

Chapter 5: master features

50

inner polygon is closed, the user must trace also the outer one (red) according to the grip
characteristics of the robot (Figure 5.1).

In this phase it is also computed the maximum
distance between the centre of the master image and
the vertexes of the outer polygon: if the distance
between the centre of a candidate piece blob and one
of the four grip constraints of the full image is lower
or equal to that maximum distance, the piece is
automatically excluded. This operation is performed
to guarantee the possibility to crop for each candidate
object an image large and high enough to host the red
polygon, no matter its rotation around the centroid.
This limit, called grip limit, is one of the two
limitations considered at the end of the previous
chapter.
The method adopted to determine if that area is
obstacle-free or not is based on the Canny edge
detection method, explained in detail in Chapter 7.

5.3 Grip point and master orientation

The next simple but crucial operations are the
definition of the reference grip point and the
orientation of the master: the user indicates a point on
the master and defines an arrow with origin in the
centre of the image, indicating the orientation of the
master with respect to the horizontal (Figure 5.2).

For the grip point, the program computes the distance
from the centre of the image and the angle between
this segment and the horizontal, while, for the
arrowhead, since its length has just representation
purposes, it is enough to compute the angle.
All those parameters are necessary to the computation
of the grip point cartesian coordinates of the generic
piece and its orientation.

Figure 5.1: collision avoidance

area

Figure 5.2: master grip point

and orientation arrow

Chapter 5: master features

51

5.4 Keypoints area

Keypoints are the main protagonists of the feature
matching process, that will be largely discussed in the
next chapter. Just to introduce them in a very
synthetic way, keypoints are interesting points in an
image detected by a specific algorithm and compared
to other keypoints of another image: if two keypoints
from two different images have similar
characteristics, the program matches them with
another dedicated algorithm.
Nevertheless, it may happen that just a limited area of
the master image has significant characteristics for
the comparation: for this reason, the user can trace a
third polygon (Figure 5.3) to consider only the
keypoints included in that area, gaining a lot of
computational time in the next phases.

Figure 5.3: keypoints area

52

Chapter 6: feature matching

6.1 Introduction

This chapter represents the main core of the whole project since it is about the part of the
program that compares each candidate object with the master, finds its relative orientation
angle, and performs a further control to exclude more wrong pieces. The basic concept
behind this procedure is feature matching.

Again, this chapter will follow the code order, presenting at first a brief theoretical
description of two features detectors and descriptors called SIFT and ORB, and two
matchers called Brute-Force (BF) and FLANN, in additional to homography for what
concerns SIFT. Then, it will describe the procedure to obtain the pieces orientation as the
difference angle between each piece rotation and the master rotation.

6.2 Features

To better understand what features are and how feature matching works, it is better to
introduce them with an example. Let’s consider Figure 6.1 as a very simple game where

INPUT
• initial full image
• master image
• key-points-area

FEATURE
MATCHING

OUTPUT
• orientations
• new potential

pickable objects

Chapter 6: feature matching

53

the player must find in the full picture the objects represented in the small rectangular
windows, going from A to F.

To accomplish this simple quest, the human brain, through the eyes, looks for relevant
characteristics in each window and in the full image as changing in colour, light gradients,
or peculiar shapes. Those characteristics are the so-called features.
Then, once the features have been detected, the brain elaborates a description of each
feature and looks for similar descriptions in the windows and in the full image: if two
features have same characteristics, they are matched.

This, in program language, is feature matching. The program is then composed of:

1) Detectors: algorithms that look for features in an image. The more these features
are characterized, the easier and more precise is the tracking: for example, corners,
edges, or blobs are good features, while flat areas are bad features.

2) Descriptors: algorithms that look for the features found by the detector in another
image. SIFT and ORB are both detectors and descriptors.

3) Matchers: algorithms that match similar features of different images, like Brute-

Force and FLANN.

Figure 6.1: features example [35]

Chapter 6: feature matching

54

6.3 SIFT

SIFT (Scale Invariant Feature Transform) is an algorithm that detects keypoints and
computes their descriptors proposed in 2004 by David Lowe in his paper [36]. The
keypoints detected and described by SIFT result to be robust and matchable to large
datasets of objects. Also, many keypoints can be generated for small objects, like the
master image obtained in the previous chapters.
To briefly explain the algorithm procedure, it has been followed the 5-steps explanation
provided by OpenCV, based on the Lowe paper organization:

1) Scale-space extrema detection: the main issue with simple detectors as Harris or
Shi-Tomasi is that they are rotation invariant (the corner is found no matter the
rotation) but not scale invariant, since it is not possible to use the same window
with constant sizes to detect keypoints with different scales.
For this reason, SIFT at first separates scale-space into several octaves forming a
Gaussian pyramid, where octaves number depends on the original image size and
each octave size is half of the previous one. Then, a scale-space filtering approach
is adopted by computing Difference of Gaussians (DoGs) as the difference of
Gaussian blurring of an image with two different scale values σ and kσ, where σ
is the scaling parameter. This process is done for different octaves in the pyramid
(Figure 6.2).

Figure 6.2: DoG on different image octaves [37]

Chapter 6: feature matching

55

Once the DoGs are computed, a pixel in an image is compared with its 8
neighbours and the 9 pixels in the next and previous scale (Figure 6.3): if the pixel
is a local extremum, it means that its scale better represents it, and it is considered
as a potential keypoint.

2) Keypoint localization: some keypoints resulting in the previous step as low
contrast keypoints and edge keypoints are of weak interest: for this reason,
potential keypoints locations are refined using Taylor expansion for a more
accurate result, excluding all the keypoints with intensity lower than a threshold
(contrastThreshold).

Because of the strong DoGs response for edges, the Hessian matrix H is computed
for each keypoint to obtain the principal curvatures since, for weak keypoints,
the principal curvature across the edge is much larger than the principal curvature
along it. The parameter that takes into account this situation is defined by the ratio
between the squared trace and the determinant of H:

(6.1) 𝑅 =
𝑇𝑟(𝐻)2

𝐷𝑒𝑡(𝐻)
 (6.1)

If R is greater than a threshold (edgeThreshold), the keypoint is excluded.

3) Orientation assignment: to guarantee rotation invariance, for each keypoint
gradient intensity and direction in its neighbourhood are computed. Then, a 36-
bin histogram is created, covering 360°: the highest histogram peak and any other
peak above 80% of the highest peak are considered to compute orientation.

Figure 6.3: keypoint
identification [38]

https://en.wikipedia.org/wiki/Principal_curvature

Chapter 6: feature matching

56

However, since there could be several peaks, several keypoints can be created
with same location but different orientation, affecting matching stability.

4) Keypoint descriptor: for each keypoint, the descriptor is created as a 128-bin
vector, obtained from a 16X16 neighbourhood around the keypoints, divided into
4X4 sub-blocks from which 8-bins histogram is created.
The descriptor results to be highly distinctive and invariant as possible to external
variations as illumination or perspective changes.

5) Keypoint matching: two keypoints are matched by identifying their nearest
neighbours. However, it may happen that the 2nd closest match is very close to the
1st because of noise or other reasons: in this case, if the ratio between the 1st closest
distance and the 2nd is greater than a threshold, the match is rejected: this
procedure is called Lowe ratio test, since it is presented by Lowe in its paper
where, with a threshold of 0.8, it eliminates the 90% of false matches with a waste
of only 5% of correct matches (Figure 6.4).
However, for this work the threshold has been fixed to 0.75 as a compromise
between the value proposed by Lowe and the minimum value of 0.7 proposed by
OpenCV for the matching tutorials.

This test will be performed for both SIFT and ORB method, independently from
the kind of matcher algorithm adopted.

Figure 6.4: Lowe ratio test [39]

Chapter 6: feature matching

57

6.4 ORB

ORB (Oriented FAST and Rotated BRIEF) is an algorithm proposed in 2011 by Ethan
Rublee, Vincent Rabaud, Kurt Konolige and Gary R. Bradski in their paper [40] and
developed at OpenCV Labs that results to be a good alternative to SIFT and SURF (SIFT
was patented in 2011 so not free) in terms of computation cost and matching performance.
As the name says, it is based on two algorithms for keypoints detection and description,
by improving their performances:

• FAST (Features from Accelerated and Segmented Test) detector: every pixel p in
an image is compared with its 16 neighbours in a circular area that are classified
as brighter, darker, or similar to p. If more than 8 pixels are darker or brighter, p
is a keypoint.

• BRIEF (Binary Robust Independent Elementary Feature) descriptor: it takes all
the keypoints from the detector and converts them into a binary feature vector.
Each vector represents a keypoint and it consists in a binary 128-512 bits string.

At first, ORB creates a pyramid, similarly to what SIFT does as a multiscale
representation of the image, where each scale has a lower resolution. Then, it applies
FAST detector to find keypoints, followed by Harris corner measure to select the top N
among them.
However, FAST doesn’t provide orientation so, a modification is required: for each

keypoint it is computed the intensity weighted centroid of the patch with located corner
at centre. The orientation is the direction of the vector that goes from the corner point to
the centroid, while the rotation invariance property comes from the computation of the
moments of the patch.

Once the keypoints have been detected, they need to be described by the BRIEF algorithm
that poorly performs with rotation, so another modification is required.
First, the image is smoothered with a Gaussian kernel to prevent unwanted high-
frequency noise effect. Then, to maintain the BRIEF characteristics, ORB ‘steers’ BRIEF

that creates a vector and a patch for each keypoint and performs a set of n binary tests,
whose binary vector result defines a feature. Then, for any feature set of n binary tests it
is defined the 2Xn matrix S, containing the pixel coordinates. S is then rotated using the
orientation angle and obtaining the rotated matrix Sθ, used to compute the keypoint
descriptor.

However, one of the issues with steered BRIEF is that each bit feature loses the
characteristic property of having a large variance close to 0.5 that now becomes more
distributed, and the feature becomes less discriminative. To solve this problem and to

Chapter 6: feature matching

58

guarantee the test uncorrelation at the same time, ORB runs each test again for all the
patches and orders them by their distance from the ideal value of 0.5 forming the vector
T. At this point, ORB creates a vector R in which, at first, the first test of T is inserted
and, at the same time, removed from T. The next T test is then removed from T and
compared with all the R tests: if its absolute correlation is lower than a threshold it is
added to R, otherwise it is discarded. This procedure is repeated until R contains 256
tests: if at the end there are less than 256 tests, the threshold is raised, and the procedure
starts again. This method is called rBRIEF.

As for matching, the main difference with SIFT is the use of a multi-probe LSH that
makes this algorithm faster than SIFT that adopts a traditional LSH.

6.5 Matchers

Matcher algorithms are responsible for the matching between the training set of keypoints
from the first image and the target set of keypoints from the second one.
This paragraph introduces the two matchers proposed by OpenCV, i.e., Brute-Force and
FLANN:

• Brute-Force (BF): it is the simpler, since for each keypoint of the first set, its
descriptor is matched with all the descriptors of the second set, returning the
closest one. The computation is based on the Euclidean distance between the
keypoints when it is applied to SIFT, while it is based on the Hamming distance
when it is applied to ORB.

• FLANN: Fast Library for Approximate Nearest Neighbours, contains a collection
of algorithms optimized for large datasets and high dimensional features.

To obtain more accurate results, it is also possible to apply a technique called
homography, very common when the goal is to obtain the perspective transformation of
an object. Even if we are not dealing with perspective, given the fact that pieces on the
platform must have the same pose of the master to be considered, this technique can be
useful anyway, since it implements algorithms like RANSAC that estimate the matches
correctness, collecting only the good ones (inliers) and excluding the bad ones (outliers).
In this project, homography will be applied only to the combinations SIFT+FLANN and
ORB+FLANN.

Chapter 6: feature matching

59

6.6 Code

As already mentioned in the introduction, the purpose of this part of the code is to obtain
the orientation of the pieces in terms of rotation angle with respect to the master piece
orientation, imposed by the user in the last chapter.

The feature matching code is divided in two main parts: the first one is on the master side,
and it must be performed just one time for each kind of pieces, like all the other master
operations. The first passage of this phase is to obtain the master keypoints by creating
the required class with the OpenCV functions cv.SIFT_create() or cv.ORB_create() and
setting all their characteristic parameters. The choice of some of those parameters is not
trivial and it depends on lots of factors as illumination conditions, background colour, and
camera resolution: for this reason, those parameters are chosen empirically for each piece,
after many trials that are going to be discussed in the tests chapter.

Function 6.1: cv.SIFT_create() [41]

• Input:

o nfeatures: number of features to retain, ranked by their local contrast
score.

o nOctaveLayers: number of layers in each octave, here set to 5.
o contrastThreshold: threshold to reject weak features in low-contrast

regions. It must be decreased to detect more keypoints.
o edgeThreshold: threshold to reject edge-like features. It must be

increased to detect more keypoints.
o sigma: sigma corresponding to the octave 0 of the input image. Here it

is fixed at its optimal value 1.6 but it can be increased in case of weak
camera with soft lenses.

o enable_precise_upscale: Boolean value. If true, prevents localization
bias.

• Output:
o sift: class SIFT.

Chapter 6: feature matching

60

Function 6.2: cv.ORB_create() [42]

• Input:
o nfeatures: maximum number of features to retain.
o scaleFactor: pyramid decimation ratio, always > 1 but it must be nor

too high (dramatic degradation of feature matching score), neither too
close to 1 (computation speed would decrease). Here fixed to the 1.2
default value.

o nlevels: number of pyramid levels, here fixed to 10.
o edgeThreshold: size of the border where features are not detected.
o firstLevel: pyramid level corresponding to the source image, here

fixed to the default value 0.
o WTA_K: number of points produced by each element of rBRIEF

descriptor, here fixed to the default value 2.
o scoreType: algorithm used to rank features. Here it is used the default

HARRIS_SCORE, corresponding to the 0 value.
o patchSize: size of the patch used by rBRIEF.
o fastThreshold: threshold characterizing FAST detector.

• Output:
o orb: class ORB.

Once the algorithm class is defined, master keypoints and their descriptors are obtained
with sift.detectAndCompute() or orb.detectAndCompute() and saved in a file to be used
for every future application with the same pieces.

Function 6.3: sift.detectAndCompute() [43]

• Input:

o image: greyscale image.

• Output:
o kp: KeyPoint class [44], whose accessible attributes are pt

(coordinates of the keypoints), size (neighbourhood diameter), angle
(rotation with respect to the horizontal), response (by which the
strongest keypoints have been selected), octave (pyramid layer), and
class_id (object class).

o des: descriptors.

Chapter 6: feature matching

61

Function 6.4: orb.detectAndCompute() [45]

• Input:
o image: greyscale image.

• Output:

o kp: KeyPoint class [46], whose accessible attributes are pt
(coordinates of the keypoints), size (neighbourhood diameter), angle
(rotation with respect to the horizontal), response (by which the
strongest keypoints have been selected), octave (pyramid layer), and
class_id (object class).

o des: descriptors.

At this point, all the operations on the master are performed and every line of code from
now on is going to be repeated every time the program runs.
On the target side, the procedure is quite similar for what concerns the keypoints detection
and description, since the class type and its parameters are the same: the additional step
is the definition of the matcher type with cv.BFMatcher.create() or
cv.FlannBasedMatcher().

Function 6.5: cv.BFMatcher.create() [47]

• Input:

o normType: NORM_L1 or NORM_L2 for SIFT, NORM_HAMMING
or NORM_HAMMING2 for ORB.

• Output:
o bf: class BF.

Chapter 6: feature matching

62

Function 6.6: cv.FlannBasedMatcher() [48]

• Input:
o indexParams: dictionary to specify the algorithm to be used, it

depends on the detector/descriptor.
o searchParams: dictionary to specify the number of times the tree in

the indexParams dictionary should be recursively traversed. High
values lead to better results but are more time consuming.

• Output:
o flann: class FLANN.

The initialization code lines for cv.FlannBasedMatcher() are shown in Figure 6.5 for SIFT
and in Figure 6.6 for ORB.

However, before starting with the detection it is necessary to prepare the target images:
for each candidate object detected at the end of Chapter 4, the program crops two images
centred in the object centroid but with different sizes. At this point the meaning of the so-
called crop limit and grip limit (also imposed at the end of Chapter 4) becomes clear: the

Figure 6.5: FLANN initialization for SIFT

Figure 6.6: FLANN initialization for ORB

Chapter 6: feature matching

63

centroid of a generic candidate object must be far enough from the borders of the full
image so that the target image relative to that piece can be cropped, having the same size
of the master (crop limit) and also it must be possible to crop a second image with twice
the size of the grip limit to guarantee that every point of the collision avoidance area
polygons are contained in the cropped image, no matter the rotation. The first one of these
two images is used as target in the matching phase, while the second one will be used in
the next chapter for the Canny edge detection method application.

Once the target image is cropped, the target keypoints are detected and described with the
same functions and the same parameters used for the master, while the matches are
obtained and collected with bf.knnMatch() or flann.knnMatch(), but only if the master
keypoint of a pair is contained in the keypoint area defined in Chapter 4.

Function 6.7: bf.knnMatch() [49]

• Input:
o queryDescriptors: des from the target image.
o trainDescriptors: des from the reference image.
o k: count of best matches found per each query descriptor. Fixed at 2.

• Output:

o matches: each element is k or less matches for the same query
descriptor.

Function 6.8: flann.knnMatch() [50]

• Input:
o queryDescriptors: des from the target image.
o trainDescriptors: des from the reference image.
o k: count of best matches found per each query descriptor. Fixed at 2.

• Output:

o matches: each element is k or less matches for the same query
descriptor.

Chapter 6: feature matching

64

The retained matched keypoints are then converted into numerical coordinates to make
them easily readable by the program and the user and the Lowe ratio test is applied to
eliminate all those pairs for which the ratio between the Euclidean distances of the two
keypoints is less than 0.75. If the Lowe ratio test is passed, the match is classified and
collected as ‘good’.

If the matching algorithm also considers the homography application, it is implemented
at this point with the function cv.findHomography(), that provides a binary mask to apply
to each pair where 0 means bad matching and 1 good matching.

Function 6.9: cv.findHomography() [51]

• Input:

o srcPoints: coordinates of the points on the target image.
o dstPoints: coordinates of the points on the reference image.
o method: method used to compare homography, here it is always used

RANSAC.
o ransacReprojThreshold: maximum allowed reprojection error to

consider a point pair as inlier. It is usually taken between 1 and 10,
here is fixed to 7.

• Output:
o mask: output inliers mask.

Before starting to work with angles, all the pairs are subject to a multi-check condition
that classifies and collects a pair as ‘very good’ if:

• The homography mask (if present) is 1.

• The difference of the distances between the two keypoints and the centre of their
own corresponding image is less than a small number of pixels, 10 in this project,
since two matched keypoints should be ideally placed at the same distance from
the centroid of the piece. This is done to avoid huge mismatches that may happen
when in the target image is also present a second piece, or part of it, and the
matcher considers the keypoints from this piece instead of the keypoints of the
desired main one.

To practically visualize what has been done until now, Figure 6.7 shows the result of a
well-posed piece (21st piece, referring to the full image in Figure 4.16) with the target on

Chapter 6: feature matching

65

the left and the master on the right. The keypoints and the ‘very good’ match pairs are

shown with the function cv.drawMatches() [52] that represents the keypoints as a circle
with a segment inside, where the circle size indicates the keypoint size and the segment
indicates the keypoint orientation, while the matches are represented by coloured lines.
Of course, no keypoint outside the keypoints area previously defined on the master is
matched.

This passage results to be a very important check since it already discards lots of wrong
pieces: as shown in Figure 6.8, if a piece has completely wrong pose, the number of pairs
found is very low or even zero. It is then possible to ignore wrong pieces by simply
imposing a minimum number of matched pairs that must be classified as ‘very good’.

Anyway, the control on the ‘very good’ matches number is still not sufficient to discard

all the wrong posed pieces, since it may happen that a minimum number of ‘very good’

matches is found, as in cases of symmetry conditions as also shown in Figure 6.8. This
issue will be automatically solved with the check on the collision avoidance area in the
next chapter.

Figure 6.7: matching result on a well-posed piece. The applied algorithm is

SIFT+FLANN+H

Chapter 6: feature matching

66

If both checks are passed, the angles of each keypoint in the pair, indicated from now on
with subscript 1 for the target and 2 for the master, are obtained from the original result
of bf.knnMatch() or flann.knnMatch() and the difference angle θ is computed at first as:
θ = θ1 − θ2, where −180° ≤ θ1, θ2 ≤ 180°.
However, while dealing with angle difference, this is not sufficient, since a simple
algebraic difference does consider the ±180° convention: for example, if θ1 = −150°
and θ2 = 70°, the difference angle is θ = −220° < −180°, while the desired result
should have been 140° in the opposite direction.

To correct all those records, a function has been implemented, whose notations refer to
Figure 6.9, in which are represented four goniometric circles corresponding to the
position of a generic master keypoint pt2 with coordinates x2 and y2 in the four quadrants.
The computation of the difference angle depends on the position of the target point pt1
with respect to the position (coordinates) of pt2: if pt1 falls in the circular arc between the
green points, the standard equation (written in green) is valid, otherwise the corrected
equation (written in red) is valid.

(3.1) 𝑓𝑜𝑟 [
𝑥2 > 0
𝑦2 > 0

] 𝑎𝑛𝑑 [
𝑥2 < 0
𝑦2 > 0

] : 𝜃 = {
𝜃1 − 𝜃2

360° − |𝜃1 − 𝜃2|
 (6.2)

 𝑓𝑜𝑟 [
𝑥2 < 0
𝑦2 < 0

] 𝑎𝑛𝑑 [
𝑥2 > 0
𝑦2 < 0

] : 𝜃 = {
𝜃1 − 𝜃2

−(360° − |𝜃1 − 𝜃2|)
 (6.3)

 −180° ≤ 𝜃, 𝜃1, 𝜃2 ≤ 180° (6.4)

Figure 6.8: matching result on wrong-posed pieces. The target piece on the left (5th in the full
image) has no match pairs, while the one on the right (the 9th) presents match pairs even if its

pose is incorrect

Chapter 6: feature matching

67

Then, to be sure that the convention is respected, a fast check is carried out:

(3.1) 𝜃 = {
360° + 𝜃 𝑖𝑓 𝜃 < −180°

−(360° − 𝜃) 𝑖𝑓 𝜃 > 180°
 (6.5)

This angle function is then applied to every ‘very good’ match pair and the result is a list

of difference angles as long as the number of pairs: the next step is then to obtain from
that list a single value assignable to the piece with a simple averaging operation.

To do so, it could be possible to think that it is enough to compute the average of all the
remaining difference angles to get the final angle value, but there is one more geometrical
issue that could arise.
Let’s consider Figure 6.10, which shows a generic master piece on the right and a generic
target piece on the left, where the black arrows are the orientations, and the coloured
arrows identify three generic pairs of well-matched keypoints.

Figure 6.9: graphical representation of the difference angles function

Chapter 6: feature matching

68

Now, let’s assume that the difference angle θ between the two pieces is somehow known

and it corresponds to -120° as in the Figure 6.10: ideally, the difference angles between
the three keypoints is expected to be -120° too, but in practice, because of many non-
ideal factors as perspective or illumination, the three difference angles assume different
values, for example, something like -117.7°, -121.8°, -124.1°.
Anyway, despite those differences, the average of the three angles results to be -121.2°,
that is a good approximation, close to the measured -120°.
The problem arises for rotation angles close to 180°: in fact, if the three obtained
difference angles are something like 177.7°, -178.2°, -175.9°, the average results to be -
58.8° that is a completely wrong result.
To prevent this possibility, the average is only computed by considering the modules of
the difference angles, while the sign is assigned to this result with a simple but effective
method: if more than a half of the angle signs are positive, the final sign will be positive,
otherwise it will be negative.

If the adopted method is a simple averaging, as in this case, it is also necessary to reject
all possible outliers before proceeding with the computation, where the outliers are
difference angles whose value is very far from the ideal, as result of mismatching due to
factors like imperfections on the piece, illumination, and so on.
The adopted method to eliminate them is the IQR method (interquartile range) and
consists in the identification of two limits above and below which all the elements of a
dataset are eliminated.
In detail, at first the interquartile range (iqr) of the difference angle modules data set is
defined as the difference of the 75th and the 25th percentile:

(3.1) 𝑖𝑞𝑟 = 𝑞75 − 𝑞25 (6.6)

Figure 6.10: example of three generic well-matched keypoints

Chapter 6: feature matching

69

Then, the two limits are computed as:

(3.1) 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑞25 − 𝑖𝑞𝑟 ∗ 𝑡 (6.7)

 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑞75 + 𝑖𝑞𝑟 ∗ 𝑡 (6.8)

Where t is a threshold empirically fixed at 0.5 for this work.
Once those limits are defined, all the difference angle modules are checked, and a
definitive list is obtained: at this point it is enough to average the modules and assign
them the sign as specified above to finally obtain the piece orientation.

The next chapter will describe all the operations that lead to the identification of the
definitive object list and their grip point coordinates.

70

Chapter 7: pickable objects and grip point

7.1 Introduction

This chapter describes all controls and checks performed to obtain the final pickable
objects list and the coordinates of their grip point.
At the end of the last chapter, a new list of potential pickable objects based on the
keypoints matching and their orientation has been obtained: now, the first passage
consists in finding the grip point coordinates of each piece and then, by checking the
absence of obstacles in the collision avoidance area, drawing up the definitive list of
pickable objects, giving to the user their visual representation in the full image.

7.2 Grip point

The grip point location of a generic object is simply computed with trivial geometrical
operations: Figure 7.1 shows on the right the master piece characterized by its orientation
and the master grip point (blue dot) rotated by an angle θg1 (master grip angle) with
respect to the horizontal, while on the left it shows a generic target piece, rotated by the

INPUT
• initial full image
• pickable objects
• grip point
• rotations
• pp-to-mm

conversion

PICKABLE
OBJECTS and
GRIP POINT

OUTPUT
• pickable objects

graphical
representation

• cartesian grip
point coordinates
and rotation

Chapter 7: pickable objects and grip point

71

difference angle θ with respect to the master. The target grip point (green dot) has

coordinates xg2 and yg2 and it is rotated by an angle θg2 (target grip angle) with respect to
the horizontal.

First, to obtain xg2 and yg2, θg2 is computed as:

(2.1) 𝜃𝑔2 = 𝜃𝑔1 + 𝜃 (7.1)

where θg1 is the master grip angle obtained from the master grip point definition in
Chapter 5. The equation 6.5 is applied to θg2 to be sure that the ±180° convention is
achieved.
Once obtained θg2, the grip point coordinates on the target side are then computed as:

(2.1) {
𝑥𝑔2 = 𝑑2 cos 𝜃𝑔2
𝑦𝑔2 = 𝑑2 sin 𝜃𝑔2

 (7.2)

where it is supposed d1 ≅ d2. This is an important assumption: because of illumination
or perspective effects that afflict the blob shape, those distances could vary of some
pixels, since the blob centroid is not exactly the same for the two pieces. However, in
practice, this approximation does not compromise the result in a significant way.

Figure 7.1: target grip point coordinates and angle

Chapter 7: pickable objects and grip point

72

7.3 Canny edge detection for obstacle avoidance area

To check the presence or the absence of obstacles in the collision avoidance area, the
Canny edge detection method is applied: this algorithm, largely used for this kind of
applications, searches high intensity changes in an image and classifies them as edges
with the assumption that the background colour is considered uniform and with a high
contrast with respect to the piece. This assumption is easily realizable for this kind of
applications.
Below a brief schematic explanation of how this method works, according to the
documentation provided by OpenCV [53]:

1) Given an image, a 5X5 Gaussian filter is applied to remove noise, since edge
detection is an operation quite susceptible to noise effects.

2) A Sobel kernel is used to compute the horizontal and vertical first derivatives of
intensity, Gx and Gy, from which the edge gradient G and the direction angle γ are
computed as:

(2.1) 𝐺 = √𝐺𝑥2 + 𝐺𝑦2 (7.3)

(2.2) 𝛾 = tan−1 (
𝐺𝑦

𝐺𝑥
) (7.4)

3) Every pixel is then checked in the gradient direction to verify if it is a local
minimum in its neighbourhood and, consequently, considerable as a possible
edge.

4) The possible edges gradients are compared to two thresholds called minVal and
maxVal: if an edge gradient is greater than maxVal it is for sure and edge, if it is
lower than minVal, it is not an edge. Otherwise, if it falls between the two
thresholds, it is classified edge or non-edge according to its connectivity: if it is
connected to sure edges, it is an edge as well, otherwise it is a non-edge.

Chapter 7: pickable objects and grip point

73

Figure 7.2 shows the result of this method applied, as an example, to the master image:
the edges appear as contours-like white lines on a black background.

The application of this method to find obstacles in the collision avoidance area is quite
simple: it is enough to apply the Canny edge method to the target piece and check the
presence of edges by counting the number of white pixels: the absence of white pixels
means no detected obstacles.
The tricky part is to limit the application of the Canny edge method to the collision
avoidance area only.
To explain in a clearer way this procedure, it is better to adopt again a schematic
explanation since some passages are non-trivial, by showing the resulting image of each
step, where the inner and the outer polygons are shown just for a matter of explanation
(the images used and obtained in the code do not present polygons).
To give an interesting example, it has been chosen the 17th piece referring to Figure 4.16,
since it is discarded from the pickable objects list for the presence of another piece in its
collision avoidance area:

1) For a generic piece, the outer and inner polygons, defined by the user in Chapter
5, are rotated of θ and each point of the outer polygon is checked to be sure that

the full polygon falls inside the grip constraints.
Figure 7.3 shows the new target image cropped in the last chapter with twice the
size of grip limit. It also shows the master and the inner and outer polygons for
both images.

Figure 7.2: Canny edge method applied to the master

image

Chapter 7: pickable objects and grip point

74

2) On the target image, the Canny edge method
is applied with the function cv.Canny() [54] ,
that receives as input the target image,
minVal, and maxVal, to return the edge image
shown in Figure 7.4. Here minVal and
maxVal are fixed at 100 and 200.

3) On the edge image, the area inside the inner
polygon turns black (Figure 7.5). This
operation, as the next ones, are performed
with the purpose to isolate the collision
avoidance area from the full target image.

Figure 7.3: target image for Canny edge. It also shows
the comparison between the collision avoidance area
polygons on the new target (left) and on the master

(right)

Figure 7.4: edge image

Figure 7.5: black inner

polygon area on edge image

Chapter 7: pickable objects and grip point

75

4) A black stencil with same sizes of the target image (twice the grip limit) is created
(Figure 7.6).

5) On the stencil, the area inside the outer polygon turns white (Figure 7.7). The fact

that the images have sizes twice the grip limits guarantees that the outer polygon
is drawable no matter the θ value.

6) The control mask image is created by
applying the bitwise operation AND,
implemented with the function
cv.bitwise_and() [55]: it receives as inputs the
stencil and the edge image and returns an
output image where the black part of the
stencil stays black, while on the white part the
correspondent part of the edges image is
superimposed (Figure 7.8).

7) The number of white pixels in the control mask image is counted. However, since
for many reasons, as noise or strong shadows under the piece, the number of white
pixels is usually non-zero even in complete absence of obstacles, a small threshold
for the minimum number of white pixels is chosen, for example 15 pixels.
In this example, in the control area there are 30 white pixels, so, the piece is not
going to be considered as pickable.

The pieces that pass this last check are listed and collected as the definitive list of pickable
objects.

Figure 7.6: black stencil

Figure 7.7: white outer

polygon area on black stencil

Figure 7.8: control mask image

Chapter 7: pickable objects and grip point

76

This step implicitly introduces an important check, since it automatically excludes all the
wrong-posed pieces that however present a consistent number of ‘very good’ match pairs.
Figure 7.9 shows the results of the Canny edge detection method applied to the 9th piece,
presented in the last chapter in Figure 6.8 to give an example of this kind of problem. This
piece, that can be named 340-L, is the symmetric flipped version of the 340-R, and they
both have quite similar features. In Figure 7.9 it can be seen how the program interprets
this symmetry problem as the presence of an obstacle in the collision avoidance area.
This is a very useful property of this method, but it can be insufficient when the flipped
version is much more like the master or when the collision avoidance area is defined by
simpler or bigger polygons: to solve this more generic problem it is necessary to
implement piece-specific controls as it is going to be discussed in Chapter 10.

7.4 Definitive list of pickable objects

At this point, the pickable objects must be represented. Figure 7.10 shows the final result,
whose legend is reported here:

• Red rectangles: minimum rectangles that identify the candidate objects blobs
found in Chapter 4.

• Red dots: centroids of the blobs that respect the limits imposed in Chapter 4.

Figure 7.9: Canny edge on 340-L. From left to right: the master (340-R), the 9th piece (340-L),

and its control mask image

Chapter 7: pickable objects and grip point

77

• Red arrows: result of the feature matching. Pieces without the arrow are pieces
that did not pass the keypoints check. The angle in degrees with respect to the
horizontal is also printed.

• Blue circles: grip points.

• Green circles: identify the pieces that also passed the collision avoidance area
check.

Beside the visual representation, it is also given a list of all the pickable pieces with their
grip point coordinates in the full image and the difference angles with respect to the
master (Table 7.1).

Figure 7.10: pickable objects representation on the full image

Chapter 7: pickable objects and grip point

78

piece id u [px] v [px] θ [deg]
2 1352 1622 -60
12 1297 1225 0
14 1003 1162 -9
20 1240 820 156
21 1797 851 -40
23 688 717 -139
24 1477 596 -166

Table 7.1: pickable pieces image coordinates and orientation

7.5 Pixels-to-millimetres conversion

At this point, the last thing to do is to apply the Equations 3.9 and 3.11 to the pixel
coordinates p to obtain the millimetres coordinates pw, always considering Zw = 0 and
where K, R, s, and t are the parameters found in Chapter 3.

(3.10) 𝑝𝑤 = (𝐾𝑅)

−1(𝑠𝑝 − 𝐾𝑡) (3.9)

 𝑠 =
[(𝐾𝑅)−1𝐾𝑡]3
[(𝐾𝑅)−1𝑝]3

 (3.11)

The result of the conversion is tabulated in Table 7.2, where only x and y are shown, since
the orientation doesn’t change: this happens because the transformation of θ1 and θ2 in
the global reference frame is the same for both the angles and it is cancelled on the two
subtrahends when the difference angle is obtained (Equations 6.2 and 6.3)

piece id x [mm] y [mm]
2 247.57 176.34
12 168.37 188.51
14 156.7 247.24
20 87.58 201.1
21 92 90
23 68.77 311.29
24 41.04 94.76

Table 7.2: pickable pieces world coordinates

79

Chapter 8: density

8.1 Introduction

This is the last chapter before the experimentation part that will provide the practical
results of what has been analysed and described until now.
In the introduction it has been presented the Supata® machine as a robot that picks pieces
from an automated platform that randomly redistributes them through a vibrating action.
The peculiarity of the platform is that it can vibrate in different ways according to the
distribution of the remaining pieces, thanks to its multi-motors system: for example, if at
the end of the gripping phase, there are a lot of non-pickable objects of the right side of
the platform, it vibrates to redistribute them in the most uniform possible way, activating
the left-motor.
Thanks to the vision software described below the operations to move the pieces on the
vibrating plane and to load pieces on it are completely automatic and the system adapts
to the real current state.

The main goal of this last part of the code is to give to the machine an indicative
information of how the pieces are distributed in the left and in the right half of the platform
in percentage. According to this distribution, four possibilities are considered:

• If the left side is empty and the right side is full, the right motor activates, moving
the pieces to the left.

• If the right side is empty and the left side is full, the left motor activates, moving
the pieces to the right.

• If both sides are full but all the pieces are not pickable, both the motors activate

to overturn or to distance the pieces.

• If both sides are empty, new pieces are loaded on the platform.

Chapter 8: density

80

This information is achieved through well-known procedures adopted in the previous
chapters: thresholding, contours detection, and white pixels counting.

8.2 Density computation

Given an image, the thresholding procedure, characterized by the same settings adopted
in Chapter 4 to find the candidate object list, is applied to isolate the pieces from the
background but, since the counting of white pixels results to be simpler, the thresholding
output image is inverted by applying the simple bitwise operation NOT with the function
cv.bitwise_not() [56] (Figure 8.1).

INPUT
• thresholding

parameters
• master blob area
• percentage

threshold

DENSITY

OUTPUT
• pieces occupancy

info for vibration
command

Figure 8.1: full image thresholding for density. The result of thresholding procedure adopted in

Chapter 4 (left) is inverted (right) to easily count white pixels

Chapter 8: density

81

Then, the closed contours are filled to obtain a more precise representation on the blobs
(Figure 8.2) and the resulting image is subdivided into the half-left image and the half-
right image as shown in Figure 8.3.

Figure 8.3: left half and right half of the density image

Figure 8.2: full density image

Chapter 8: density

82

To obtain the number of pieces in the two sides, it is sufficient to separately count the
number of white pixels in the left and in the right side and divide the two results by the
master blob area (also obtained in Chapter 4). Then, to compute the pieces percentage, it
is enough to multiply the two values by 100 and divide them by their sum. For example,
the results for Figure 8.3 are:

- White pixels left = 46498
- White pixels right = 33038
- Master blob area = 2582.5

- Number of computed pieces (left, right) = (18, 13)
- Number of counted pieces (left, right) = (16, 11)
- Percentage of computed pieces (left, right) = (58%, 42%)
- Percentage of counted pieces (left, right) = (59%, 41%)

By comparing the computed and the counted values, it is possible to see that the
differences are quite small and largely acceptable, since the result must just provide an
idea of the pieces distribution.
However, since the area of a blob can vary a lot depending on its corresponding piece
pose, it may happen that a blob that appears much greater that the master blob is
interpreted by the program as a collection of pieces, while it corresponds to just one
completely wrong-posed piece. To improve the approximation correctness in this cases,
the user can set a corrective multiplicative parameter (1 by default) applied to the number
of computed pieces that empirically increases or reduces the final percentages.

At this point, once the two percentages have been obtained, the user must set two
thresholds, TA and TB, that defines the vibrating mode ranges of the platform. If N1 is the
number of computed pieces in the left side, N2 is the number of computed pieces in the
right side, and Np is the total number of pickable pieces, the four possibilities are:

• N1 < TB and N2 > TA: move the pieces to the left.

• N1 > TA and N2 < TB: move the pieces to the right.

• N1 > TA, N2 > TA and Np = 0: overturn/distance the pieces

• N1 < TA and N2 < TA: load new pieces.

83

Chapter 9: tests

9.1 Tests presentation

This chapter presents and describes the results of the open-source OpenCV-based code
discussed until now. To understand their quality, those results are compared with the ones
obtained with the Cognex industrial vision software currently employed on Supata®
machine that will be considered as a baseline.
To obtain a significant number of data, it has been decided to consider four pieces with
different characteristics, tabulated in Table 9.1, whose masters are represented in Figure
9.1. For convenience, the pieces will be named from now on as 340-R (right),
diapason188, filo033, and fioregrigia:

• 340-R: black piece on white background, classified as matte since it poorly
reflects light. Its R-like shape has no axes of symmetry, and its thinness leads to
a low number of detected keypoints with respect to the other pieces: for this
reason, it has been chosen as starting piece for the empirical choice of the
ORB/SIFT functions parameters.

• diapason188: silvery-shiny piece, very reflective to the light source. Since it
appears white, a green background has been adopted. Differently from 340-R, it
presents a larger area and more interesting features such as the central hole or the
terminal groove. It also does not present any symmetries.

• filo033: grey piece, white background, low reflectivity. Even if it can be classified
as thin, the number of interesting features is quite high because of its complex
shape. Unlike the previous pieces, it presents one axis of symmetry that could lead
to ambiguity in the grip point location: this problem is easily solved by excluding
the two ends from the keypoint area.

• fioregrigia: grey piece, black background. By comparing Figure 9.5 with Figure
9.3, 9.2, and 9.4, it is possible to see that this piece has significantly bigger

Chapter 9: tests

84

dimensions compared to the other pieces. Even if it is not shiny, it presents high
illumination gradients, due to the complex shape of the piece. Like filo033, it
presents one axis of symmetry and, consequently, problems for the grip point
location: to solve this problem it is possible to consider in the keypoint area only
the central part that appears as a white square-like shape. However, this piece is
affected by another issue, largely discussed in the next chapter, that leads to the
identification of wrong-posed pieces as pickable: this issue cannot be easily
solved by the techniques discussed until now.

Table 9.2 tabulates the camera exposure time in milliseconds and the gain chosen to
obtain the images. These parameters are of major importance since they define the
illumination conditions and the contrast characterizing the full images.

 340-R diapason188 filo033 fioregrigia
shape thin normal thin wide
symmetries 0 0 1 1
piece colour black grey grey grey
piece texture matte shiny matte matte
background colour white green white black

Table 9.1: pieces features

 340-R diapason188 filo033 fioregrigia
exposure time [ms] 90 100 120 120
gain 70 70 70 70

Table 9.2: setup features

Figure 9.1: master images. From left to right: 340-R, diapason188, filo033, fioregrigia

Chapter 9: tests

85

Then, the thresholding characteristics defining the candidate object detection (Table 9.3)
and the ORB and SIFT parameters (Table 9.4 and 9.5) for the feature matching phase are
tabulated for every piece. All the tabulated values refer to the OpenCV functions
presented in Chapter 4 for the thresholding and in Chapter 6 for the feature matching.

 340-R diapason188 filo033 fioregrigia
thresholding / 111 212 124
erosion kernel / 0 0 0
adaptive parameter 21 / / /
inverted/normal normal inverted normal inverted
standard/adaptive adaptive standard standard standard

Table 9.3: thresholding features

 340-R diapason188 filo033 fioregrigia
nfeatures 3000 3000 3000 3000
nOctaveLayers 5 5 5 5
contrastThreshold 0.003 0.01 0.003 0.003
edgeTreshold 60 60 60 100
sigma 1.6 1.6 1.6 1.6
enable_precision_upscale True True True True

Table 9.4: SIFT parameters

 340-R diapason188 filo033 fioregrigia
nfeatures 500 500 500 500
scaleFactor 1.2 1.2 1.2 1.2
nlevels 10 30 10 10
edgeTreshold 5 10 50 30
firstLevel 0 0 0 0
WTA_K 2 2 2 2
scoreType 0 0 0 0
patchSize 31 31 31 31
fastThreshold 5 5 5 5

Table 9.5: ORB parameters

Chapter 9: tests

86

Considering all those settings, it has been decided to acquire three images for each piece
so that the analysis results can be consistent.
Figure 9.2, 9.3, 9.4, and 9.5 show the four triplets (the masters are taken from the first
image of each triplet).

Figure 9.2: 340-R test images

Figure 9.3: diapason188 test images

Figure 9.4: filo033 test images

Figure 9.5: fioregrigia test images

Chapter 9: tests

87

9.2 Confrontation results

This paragraph shows the results obtained for each piece and the first considerations to
establish which algorithm combinations works better between ORB and SIFT with Brute-
Force, FLANN, and FLANN plus homography. However, since the procedure is the same
every time, for every piece, and for every algorithm combination, the complete passages
are shown only for the first image of the first piece (340-R), while for the other pieces
only the table with the results shall be reported.

First, the Cognex results are obtained and tabulated (Table 9.6). Then, for each piece it is
calculated the difference between the x and y coordinates in pixels, always indicated as u
and v since they refer to the image reference system, and the rotation θ in degrees. Then,
the code results are obtained using the six matching combinations. In Table 9.7,
corresponding to ORB+BF, are reported the identity numbers of the piece referring to
Figure 9.6, the coordinates u, v, and θ, and the modules of their difference with respect to
Cognex.

Figure 9.6: 340-R, 1st image with ORB+BF

Chapter 9: tests

88

piece id u v θ
2 1348 1623 -59
12 1297 1222 0
14 1001 1158 -9
20 1240 826 153
21 1792 849 -40
23 684 722 -142
24 1474 601 -168

Table 9.6: Cognex results for 340-R, 1st image

To distinguish ‘good’ and ‘bad’ pieces, it has been decided that every piece with |Δθ| >

5° is considered ‘bad’. No checks on |Δu| and |Δv| are performed because the grip point

is manually imposed by the user in both software (this and Cognex) so, the presence of a
difference of some pixels that has nothing to do with the code is highly probable: for this
reason, |Δu| and |Δv| can only give a qualitative idea of the cartesian coordinates

differences.

piece id u v θ |Δu| |Δv| |Δθ|
2 1351 1626 -57 3 3 2
12 1299 1225 -2 2 3 2
14 1004 1161 -10 3 3 1
20 1236 823 152 4 3 1
21 1797 850 -40 5 1 0
23 683 715 -143 1 7 1
24 1482 596 -161 8 5 7

Table 9.7: ORB+BF results for 340-R, 1st image. The row underlined in blue corresponds to
the master, while the row underlined in orange corresponds to a ‘bad piece’, since the angle

difference is greater than 5° (red cell).

To verify if one algorithm is better than the others, this procedure is performed for all the
other five combinations. Then, for each one the mean of the differences is computed by
considering only the ‘good pieces’ as:

(9.1) {

𝜇𝑢 = |∆𝑢|̅̅ ̅̅ ̅̅

𝜇𝑣 = |∆𝑣|̅̅ ̅̅ ̅̅

𝜇𝜃 = |∆𝜃|̅̅ ̅̅ ̅̅
 (9.1)

Chapter 9: tests

89

Figure 9.7 shows the result of the μ analysis for all the pieces and for all the algorithm

combinations.

From this first comparison, it is possible to see that the three μ values are quite similar for

all the algorithm combinations, so, it is mandatory to proceed with the bad pieces analysis
to decide which one is better.
However, before showing the results concerning the bad pieces analysis, it is necessary
to explain how they are classified.

• BP (bad pieces): all the pieces that for any reason cannot be considered. They
include OTP, WP, and MP.

• OTP (out of tolerance pieces): pieces for which 5° < |Δθ| ≤ 10°.

• WP (wrong pieces): pieces for which |Δθ| > 10°.

• MP (missed pieces): pieces not recognized as pickable.

Table 9.8, 9.9, 9.10, and 9.11 present BP, for each algorithm and for each piece, as
absolute number of bad pieces and as percentage referred to the total number of pieces,
while OTP, WP, and MP are expressed in percentages referred to BP. Their absolute value
is shown in Figure 9.8.

Figure 9.7: μ analysis histogram

Chapter 9: tests

90

 μu μv μθ BP OTP WP MP
ORB+BF 4 3 2 2 11% 100% 0% 0%
ORB+FLANN 4 3 2 1 6% 100% 0% 0%
ORB+FLANN+H 4 3 2 0 0% / / /
SIFT+BF 4 3 3 5 28% 40% 60% 0%
SIFT+FLANN 4 3 3 6 33% 50% 50% 0%
SIFT+FLANN+H 4 4 2 2 11% 50% 50% 0%

Table 9.8: 340-R results

 μu μv μθ BP OTP WP MP
ORB+BF 3 3 2 4 15% 50% 25% 25%
ORB+FLANN 3 3 2 3 12% 0% 100% 0%
ORB+FLANN+H 3 3 2 4 15% 75% 0% 25%
SIFT+BF 3 4 2 4 15% 25% 25% 50%
SIFT+FLANN 3 4 2 4 15% 25% 25% 50%
SIFT+FLANN+H 3 3 1 5 19% 40% 0% 60%

Table 9.9: diapason188 results

 μu μv μθ BP OTP WP MP
ORB+BF 1 2 2 1 4% 100% 0% 0%
ORB+FLANN 1 2 2 0 0% / / /
ORB+FLANN+H 1 1 1 0 0% / / /
SIFT+BF 2 2 2 7 25% 86% 14% 0%
SIFT+FLANN 2 2 2 7 25% 86% 14% 0%
SIFT+FLANN+H 1 2 1 1 4% 100% 0% 0%

Table 9.10: filo033 results

 μu μv μθ BP OTP WP MP
ORB+BF 3 4 2 3 23% 0% 100% 0%
ORB+FLANN 3 3 1 6 46% 50% 50% 0%
ORB+FLANN+H 2 3 1 0 0% / / /
SIFT+BF 3 4 2 4 31% 50% 50% 0%
SIFT+FLANN 2 4 1 5 38% 40% 60% 0%
SIFT+FLANN+H 3 4 1 1 8% 0% 100% 0%

Table 9.11: fioregrigia results

Chapter 9: tests

91

It is clear, according to this last histogram, that the best algorithms are the two that adopt
the FLANN matcher + homography combination: ORB+FLANN+H and
SIFT+FLANN+H.
ORB+FLANN+H presents the lowest number of BP, all included in the diapason188 case
that is the most sensitive piece to the illumination conditions, since it is the only shiny
piece. This highlights how the illumination conditions are important for the matching
results since the matching function parameters depend on those conditions. It is
reasonable to think that this algorithm could be able to correctly find all the pieces by
finding the correct external parameters settings, for example, reducing the exposure time
(reduce luminosity), changing the background colour and, consequently, find the correct
ORB parameters combination.

Figure 9.8: BP analysis histogram

Chapter 9: tests

92

9.3 Computational time

To choose an algorithm instead of another, the accuracy is not enough: it is also
fundamental to consider the time each one takes to perform the feature matching. For
each image and for each algorithm combination the computational time in seconds has
been obtained: again, Table 9.12 shows the procedure just for 340-R, but it has been
repeated in the same way for all the other pieces.

 image 1 image 2 image 3
ORB+BF 0,799 0,774 0,758
ORB+FLANN 0,793 0,794 0,775
ORB+FLANN+H 0,311 0,322 0,252
SIFT+BF 1,345 1,239 1,336
SIFT+FLANN 2,739 2,477 2,616
SIFT+FLANN+H 2,953 2,791 3,069

Table 9.12: 340-R time analysis

Once all data are collected the mean μt and the standard deviation σt over all the twelve
images have been computed. The results are shown in Table 9.13 and in Figure 9.9.

 μt [s] σt
ORB+BF 0,737 0,034
ORB+FLANN 0,756 0,048
ORB+FLANN+H 0,223 0,052
SIFT+BF 0,728 0,372
SIFT+FLANN 1,289 0,859
SIFT+FLANN+H 1,406 0,975

Table 9.13: global time analysis

Chapter 9: tests

93

From this analysis it is clear how the ORB+FLANN+H algorithm is the best without any
possible comparison with SIFT+FLANN+H, which turns out to be the worst one, with a
difference of more than a second. However, this is not the only pro: all the ORB
algorithms have a standard deviation σt much smaller than the SIFT one: this means that
the SIFT computational time depends a lot on the image characteristics, while the ORB
computational time is not only lower, but it is also less affected by image content and
more robust to noise and variations.

As a result, it is clear how the best choice is the ORB+FLANN+H algorithm.

Figure 9.9: computational time histogram

94

Chapter 10: conclusions

The goal of this thesis project was to develop a free-of-license, open-source industrial
vision application for robot guidance, able to detect well-posed pieces and then provide
the coordinates of the grip point and the orientation of the pieces to a manipulator, no
matter the dimensions, the material, or the pieces shape.
The discussion started with the presentation of standard vision operations such as camera
calibration and pose estimation and it proceeded with the description of the main program,
from the initial settings to the achievement of the final output. Eventually, Chapter 9 has
described how the ORB+FLANN+H algorithm combination has the best performance in
terms of precision, number of well-posed pieces detected, and computational time,
revealing that the combination mentioned above might be a promising starting point for
future improvements.

In fact, given the results of the tests, it can be said that this software is a valid base for a
new series of improvements aiming to reduce errors and to increase the performance
quality of each step in the entire process, such as:

• Improvement of the calibration capabilities: currently, the distortion model does
not consider the perspective effect both between camera plane and object plane
and between camera lens and camera sensor. This would allow to use worse
hardware by compensating with the software and would generalize for different
camera mount positions, also improving the pose estimation precision.
.

• Improvement of the pose estimation precision also by adopting high-precision
instrumentation to reduce as possible the angular error on the camera and,
consequently, the pose estimation error. Moreover, it can be made more user-
friendly, letting the user to impose the origin frame location and the axis
orientation, independently by the ChArUco standards.

• Improvement of the feature matching precision, focusing on the

ORB+FLANN+H algorithm. Referring to the tests, this critical aspect can be

Chapter 10: conclusions

95

expressed as the reduction of |Δu|, |Δv|, and |Δθ|, and can be achieved by
increasing the number of detected keypoints and well-matched pairs by finding
the best settings for the ORB+FLANN+H parameters.

• Introduction of a specific function based on image resolution, illumination
conditions, contrast, piece characteristics, and background colour that
automatically sets the optimal ORB+FLANN+H parameters. This is probably the
most time-demanding aspect, since it requires a great number of experiments with
different cases.

• Reduction of the computational time by optimizing the code.

• Introduction of the possibility of implementing specific control functions for

problematic pieces. A very effective example to explain this problem is the
fioregrigia, where some pieces that are turned upside down are recognized as
pickable, as it can be seen in Figure 10.1.
This happens because the 2D projection of a well-posed fioregrigia is almost
identical to the projection of a flipped piece and the program does not distinguish
between the features of a well-posed piece and its flipped version. Even for a
human operator this would be a hard task by simply looking at the picture.
To solve this ambiguity, it is then necessary to implement a piece-specific control
code to check for small, known details.

• Management of several masters at the same time. An example of this

implementation can be the 340 pieces: the 340-R has been considered during the
whole project but, with this implementation, the 340-L can be considered at the
same time as well.

• Implementation of the AI to improve matching precision and learning capability

of the program so that it can adapt to every type of piece.

Chapter 10: conclusions

96

Figure 10.1: fioregrigia problem. The full image (left) corresponds to the resulting image of the

ORB+FLANN+H algorithm applied to the 2nd fioregria image. On the right, from top to
bottom: the master, a well-posed piece, and a wrong-posed piece. Although the wrong-posed

piece is flipped with respect to the master, it is recognized as pickable since the features in the
keypoint area (white central area) are very similar to the well-posed piece ones

97

Bibliography

1.1 - Intel, What is machine vision,

(https://www.intel.com/content/www/us/en/manufacturing/what-is-
machine-vision.html)

1.2 [1] EPF, Supata®, (https://www.epf.it/en/supata/)

1.3 - OpenCV, About, (https://opencv.org/about/)
 - OpenCV, Image processing on OpenCV,

(https://docs.opencv.org/4.x/d2/d96/tutorial_py_table_of_contents_imgp
roc.html)

 [2] OpenCV, Media Kit, (https://opencv.org/resources/media-kit/)

2.2 - Automate, GigE Vision Standard, (https://www.automate.org/a3-
content/vision-standards-gige-vision)

 - Wikipedia, GigE Vision, (https://en.wikipedia.org/wiki/GigE_Vision)

 [3] Wikipedia, GigE Vision Logo,
(https://de.wikipedia.org/wiki/GigE_Vision#/media/Datei:GigE_Vision_
Logo.svg)

 [4] Cognex CAM-CIC-5000-20-CG datasheet

 [5] Basler, Basler ace acA2500-14gc,
(https://www.baslerweb.com/en/products/cameras/area-scan-
cameras/ace/aca2500-14gc/#specs)

 [6] Edmund Optics, 16mm UC Series Fixed Focal Length Lens,
(https://www.edmundoptics.eu/p/16mm-uc-series-fixed-focal-length-
lens/2970/)

 - GitHub, Harvesters, (https://github.com/genicam/harvesters#about-
harvester)

 [7] EMVA, GenICam introduction, (https://www.emva.org/standards-
technology/genicam/introduction-new/)

https://www.intel.com/content/www/us/en/manufacturing/what-is-machine-vision.html
https://www.intel.com/content/www/us/en/manufacturing/what-is-machine-vision.html
https://www.epf.it/en/supata/
https://docs.opencv.org/4.x/d2/d96/tutorial_py_table_of_contents_imgproc.html
https://docs.opencv.org/4.x/d2/d96/tutorial_py_table_of_contents_imgproc.html
https://opencv.org/resources/media-kit/
https://www.automate.org/a3-content/vision-standards-gige-vision
https://www.automate.org/a3-content/vision-standards-gige-vision
https://en.wikipedia.org/wiki/GigE_Vision
https://de.wikipedia.org/wiki/GigE_Vision#/media/Datei:GigE_Vision_Logo.svg
https://de.wikipedia.org/wiki/GigE_Vision#/media/Datei:GigE_Vision_Logo.svg
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca2500-14gc/#specs
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca2500-14gc/#specs
https://www.edmundoptics.eu/p/16mm-uc-series-fixed-focal-length-lens/2970/
https://www.edmundoptics.eu/p/16mm-uc-series-fixed-focal-length-lens/2970/
https://github.com/genicam/harvesters#about-harvester
https://github.com/genicam/harvesters#about-harvester
https://www.emva.org/standards-technology/genicam/introduction-new/
https://www.emva.org/standards-technology/genicam/introduction-new/

Bibliography

98

2.3 - Wikipedia, Pinhole camera model,
(https://en.wikipedia.org/wiki/Pinhole_camera_model)

 - OpenCV, Camera Calibration,
(https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html)

 [8] OpenCV, Camera Calibration and 3D Reconstruction,
(https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html)

2.4 - OpenCV, Detection of ArUco Boards,
(https://docs.opencv.org/4.x/db/da9/tutorial_aruco_board_detection.html
)

 [9] OpenCV, Detection of ChArUco Boards,
(https://docs.opencv.org/4.x/df/d4a/tutorial_charuco_detection.html)

 [10]
[11]

GitHub, OpenCVMarkerPrinter, 2019, Josh Chien,
(https://github.com/dogod621/OpenCVMarkerPrinter)

 [12] OpenCV, cv::aruco::CharucoBoard Class Reference,
(https://docs.opencv.org/3.4/d0/d3c/classcv_1_1aruco_1_1CharucoBoar
d.html)

 - OpenCV, Detection of ArUco Markers,
(https://docs.opencv.org/3.4/d5/dae/tutorial_aruco_detection.html)

 - OpenCV, Camera Calibration,
(https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html)

 [13] OpenCV, Aruco markers, module functionality was moved to objected
module,
(https://docs.opencv.org/4.x/d9/d6a/group__aruco.html#ga3bc50d61fe4
db7bce8d26d56b5a6428a)

 [14]
[15]

OpenCV, ArUco Marker Detection,
(https://docs.opencv.org/3.4/d9/d6a/group__aruco.html)

 [16]
[17]

OpenCV, Camera Calibration and 3D Reconstruction,
(https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html)

3.1 - OpenCV, Pose Estimation,
(https://docs.opencv.org/3.4/d7/d53/tutorial_py_pose.html)

3.2 [18] OpenCV, Camera Calibration and 3D Reconstruction,
(https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html)

 - Stackoverflow, Computing x,y coordinate (3D) from image point,
(https://stackoverflow.com/questions/12299870/computing-x-y-
coordinate-3d-from-image-point)

3.3 [19] OpenCV, ArUco Marker Detection,
(https://docs.opencv.org/3.4/d9/d6a/group__aruco.html#gab098ca62482
9bcbf7d9ebb8479887c3a)

https://en.wikipedia.org/wiki/Pinhole_camera_model
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/db/da9/tutorial_aruco_board_detection.html
https://docs.opencv.org/4.x/db/da9/tutorial_aruco_board_detection.html
https://docs.opencv.org/4.x/df/d4a/tutorial_charuco_detection.html
https://github.com/dogod621/OpenCVMarkerPrinter
https://docs.opencv.org/3.4/d0/d3c/classcv_1_1aruco_1_1CharucoBoard.html
https://docs.opencv.org/3.4/d0/d3c/classcv_1_1aruco_1_1CharucoBoard.html
https://docs.opencv.org/3.4/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/d9/d6a/group__aruco.html#ga3bc50d61fe4db7bce8d26d56b5a6428a
https://docs.opencv.org/4.x/d9/d6a/group__aruco.html#ga3bc50d61fe4db7bce8d26d56b5a6428a
https://docs.opencv.org/3.4/d9/d6a/group__aruco.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga7a6c4e032c97f03ba747966e6ad862b1
https://docs.opencv.org/3.4/d7/d53/tutorial_py_pose.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://stackoverflow.com/questions/12299870/computing-x-y-coordinate-3d-from-image-point
https://stackoverflow.com/questions/12299870/computing-x-y-coordinate-3d-from-image-point
https://docs.opencv.org/3.4/d9/d6a/group__aruco.html#gab098ca624829bcbf7d9ebb8479887c3a
https://docs.opencv.org/3.4/d9/d6a/group__aruco.html#gab098ca624829bcbf7d9ebb8479887c3a

Bibliography

99

 [20] OpenCV, Camera Calibration and 3D Reconstruction,
(https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#gab3ab7bb2b
dfe7d5d9745bb92d13f9564)

 - OpenCV, Camera Calibration,
(https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html)

 [21] OpenCV, Camera Calibration and 3D Reconstruction,
(https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga1019495a2c
8d1743ed5cc23fa0daff8c)

 [22] OpenCV, ArUco Marker Detection,
(https://docs.opencv.org/3.4/d9/d6a/group__aruco.html#ga0c158c55c50
df8354930927d819f7e9d)

 [23] OpenCV, Camera Calibration and 3D Reconstruction,
(https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga61585db66
3d9da06b68e70cfbf6a1eac)

 [24] MathWorks, rotm2eul(),
(https://it.mathworks.com/help/robotics/ref/rotm2eul.html)

4.4 - Matplotlib, (https://matplotlib.org/)

4.5 [25] OpenCV, Media Kit, (https://opencv.org/resources/media-kit/)

 - Wikipedia, Thresholding (image processing),
(https://en.wikipedia.org/wiki/Thresholding_(image_processing))

 [26]
[27]

OpenCV, Image Thresholding,
(https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html)

 [28]
[29]

OpenCV, Miscellaneous Image Transformations,
(https://docs.opencv.org/4.x/d7/d1b/group__imgproc__misc.html)

 [30] OpenCV, Eroding and Dilating,
(https://docs.opencv.org/3.4/db/df6/tutorial_erosion_dilatation.html)

 [31] OpenCV, More Morphology Transformations,
(https://docs.opencv.org/3.4/d3/dbe/tutorial_opening_closing_hats.html)

4.6 - OpenCV, Contours: Getting Started,
(https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html)

 [32]
[33]
[34]

OpenCV, Structural Analysis and Shape Descriptors,
(https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html)

6.2 [35] OpenCV, Understanding Features,
(https://docs.opencv.org/4.x/df/d54/tutorial_py_features_meaning.html)

https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#gab3ab7bb2bdfe7d5d9745bb92d13f9564
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#gab3ab7bb2bdfe7d5d9745bb92d13f9564
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga1019495a2c8d1743ed5cc23fa0daff8c
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga1019495a2c8d1743ed5cc23fa0daff8c
https://docs.opencv.org/3.4/d9/d6a/group__aruco.html#ga0c158c55c50df8354930927d819f7e9d
https://docs.opencv.org/3.4/d9/d6a/group__aruco.html#ga0c158c55c50df8354930927d819f7e9d
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga61585db663d9da06b68e70cfbf6a1eac
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga61585db663d9da06b68e70cfbf6a1eac
https://it.mathworks.com/help/robotics/ref/rotm2eul.html
https://matplotlib.org/
https://opencv.org/resources/media-kit/
https://en.wikipedia.org/wiki/Thresholding_(image_processing)
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/3.4/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/3.4/d3/dbe/tutorial_opening_closing_hats.html
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
https://docs.opencv.org/4.x/df/d54/tutorial_py_features_meaning.html

Bibliography

100

6.3 [36] Distinctive Image Features from Scale-Invariant Keypoints, January 5th,
2004, David G. Lowe

 - Medium, Introduction to SIFT (Scale Invariant Feature Transform),
March 16th, 2019, Deepanshu Tyagi, (https://medium.com/data-
breach/introduction-to-sift-scale-invariant-feature-transform-
65d7f3a72d40)

 - Wikipedia, Scale-Invariant feature transform,
(https://en.wikipedia.org/wiki/Scale-invariant_feature_transform)

 [37]
[38]

OpenCV, Introduction to SIFT (Scale-Invariant Feature Transform),
(https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html)

 [39] OpenCV, Feature Matching with FLANN,
(https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
)

6.4 [40] ORB: An efficient alternative to SIFT or SURF, 2011, Ethan Rublee,
Vincent Rabaud, Kurt Konolige, Gary R. Bradski

 - OpenCV, ORB (Orientaed Fast and Rotated BRIEF),
(https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html)

 - Medium, Introduction to ORB (Orientaed Fast and Rotated BRIEF),
January 1st, 2019, Deepanshu Tyagi, (https://medium.com/data-
breach/introduction-to-orb-oriented-fast-and-rotated-brief-
4220e8ec40cf)

6.5 - OpenCV, Feature Matching,
(https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html)

 - OpenCV, Feature Matching + Homography to find Objects,
(https://docs.opencv.org/4.x/d1/de0/tutorial_py_feature_homography.ht
ml)

6.6 [41] OpenCV, cv::SIFT Class Reference,
(https://docs.opencv.org/4.x/d7/d60/classcv_1_1SIFT.html)

 [42] OpenCV, cv::ORB Class Reference,
(https://docs.opencv.org/4.8.0/db/d95/classcv_1_1ORB.html)

 [43]
[45]

OpenCV, cv::Feature2D Class Reference,
(https://docs.opencv.org/4.x/d0/d13/classcv_1_1Feature2D.html)

 [44]
[46]

OpenCV, cv::KeyPoint Class Reference,
(https://docs.opencv.org/4.x/d2/d29/classcv_1_1KeyPoint.html)

 [47] OpenCV, cv::BFMatcher Class Reference,
(https://docs.opencv.org/4.7.0/d3/da1/classcv_1_1BFMatcher.html)

https://medium.com/data-breach/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40
https://medium.com/data-breach/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40
https://medium.com/data-breach/introduction-to-sift-scale-invariant-feature-transform-65d7f3a72d40
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html
https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html
https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf
https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf
https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://docs.opencv.org/4.x/d1/de0/tutorial_py_feature_homography.html
https://docs.opencv.org/4.x/d1/de0/tutorial_py_feature_homography.html
https://docs.opencv.org/4.x/d7/d60/classcv_1_1SIFT.html
https://docs.opencv.org/4.8.0/db/d95/classcv_1_1ORB.html
https://docs.opencv.org/4.x/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
https://docs.opencv.org/4.x/d2/d29/classcv_1_1KeyPoint.html
https://docs.opencv.org/4.7.0/d3/da1/classcv_1_1BFMatcher.html

Bibliography

101

 [48] OpenCV, cv::FlannBasedMatcher Class Reference,
(https://docs.opencv.org/3.4/dc/de2/classcv_1_1FlannBasedMatcher.htm
l)

 - OpenCV, Feature Matching,
(https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html)

 [49]
[50]

OpenCV, cv::DescriptorMatcher Class Reference,
(https://docs.opencv.org/4.7.0/db/d39/classcv_1_1DescriptorMatcher.ht
ml)

 [51] OpenCV, Camera Calibration and 3D Reconstruction,
(https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga4abc2ece9f
ab9398f2e560d53c8c9780)

 [52] OpenCV, Drawing Function of Keypoints and Matches,
(https://docs.opencv.org/4.x/d4/d5d/group__features2d__draw.html)

 - INTELLIGENZA ARTIFICIALE ITALIA, Come rimuovere e gestire i
valori anomali con python nel machine learning, Team I.A. Italia,
(https://www.intelligenzaartificialeitalia.net/post/come-rimuovere-e-
gestire-i-valori-anomali-con-python-nel-machine-learning)

7.3 [53] OpenCV, Canny Edge Detection,
(https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html)

 [54] OpenCV, Feature Detection,
(https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga0
4723e007ed888ddf11d9ba04e2232de)

 [55] OpenCV, Operations on arrays,
(https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga60b4d0
4b251ba5eb1392c34425497e14)

8.2 [56] OpenCV, Operations on arrays,
(https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga0002cf
8b418479f4cb49a75442baee2f)

https://docs.opencv.org/3.4/dc/de2/classcv_1_1FlannBasedMatcher.html
https://docs.opencv.org/3.4/dc/de2/classcv_1_1FlannBasedMatcher.html
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://docs.opencv.org/4.7.0/db/d39/classcv_1_1DescriptorMatcher.html
https://docs.opencv.org/4.7.0/db/d39/classcv_1_1DescriptorMatcher.html
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga4abc2ece9fab9398f2e560d53c8c9780
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga4abc2ece9fab9398f2e560d53c8c9780
https://docs.opencv.org/4.x/d4/d5d/group__features2d__draw.html
https://www.intelligenzaartificialeitalia.net/post/come-rimuovere-e-gestire-i-valori-anomali-con-python-nel-machine-learning
https://www.intelligenzaartificialeitalia.net/post/come-rimuovere-e-gestire-i-valori-anomali-con-python-nel-machine-learning
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga60b4d04b251ba5eb1392c34425497e14
https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga60b4d04b251ba5eb1392c34425497e14
https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga0002cf8b418479f4cb49a75442baee2f
https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga0002cf8b418479f4cb49a75442baee2f

