




Summary

Identifying a movieŠs genre from a single frame may pose challenges but is
entirely achievable. Various movie genres exhibit unique visual elements and stylistic
cues that hint at their identity. For instance, action Ąlms often feature fast-paced
scenes, intense lighting, and dynamic camera angles. In contrast, horror movies
tend to create dark, mysterious settings with unsettling audio cues. Comedies
typically present bright, colorful frames with exaggerated expressions and physical
humor. Additionally, clothing, set design, and the overall atmosphere of the
frame contribute valuable clues to the movieŠs genre. By examining these distinct
components, viewers can make informed guesses about the movieŠs genre.

Convolutional Neural Networks (CNNs) have found diverse applications in
movie classiĄcation, including genre prediction. Early research focused on audio-
visual cues within movie previews, such as camera movements and sound effects, for
mood-based genre analysis. Later, CNNs were applied to movie trailers, achieving
higher accuracy. Movie posters have also been explored for genre prediction, with
varying degrees of success. Some studies utilized deep learning models, signiĄcantly
improving accuracy. In addition, text-based approaches, such as predicting movie
titles from plot summaries, have been employed, reaching substantial hit rates
across genres. These works collectively demonstrate the evolving landscape of using
neural networks and machine learning for movie genre classiĄcation and attribute
prediction.

My research aligns with prior studies that leverage deep learning to classify
movie shots or frames based on visual attributes, rather than relying solely on movie
posters. These studies demonstrate the effectiveness of deep learning in accurately
categorizing movie shots, with some achieving high accuracy rates. Additionally,
they explore innovative techniques such as combining multiple models and utilizing
data-driven approaches to discover editing patterns within movies. In my research,
I aim to extend this line of inquiry by investigating the relationship between genre
identiĄcation and movie frames while excluding movie posters. Furthermore, I plan
to explore the potential advantages of incorporating vectorscope images into existing
models to potentially enhance their performance. Through these investigations, I
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hope to contribute to the ongoing advancements in genre classiĄcation techniques
and provide insights into the utility of using movie frames and their vectorscope
representations for this purpose.

In my research, acquiring a suitable dataset was crucial. Although online
services provide movie data with genre labels, copyright restrictions prevented
their use. As a result, I collected and constructed my dataset using the repository,
which includes over 3,000 movies with more than 30,000 captioned clips and 1,000
hours of video. From this extensive dataset, I extracted relevant information from
tables. I performed a various operations to create the table, which included 27,077
rows with videoid and genre information. To reĄne the dataset further, I used
Python libraries like pafy and OpenCV. I created a function to Ąlter videos and
obtained the table, reducing the rows to 17,724. Next, I addressed grayscale videos.
It assessed pixel variations within frames and identiĄed grayscale videos based on
color content. The resulting dataset, contained 16,263 rows, excluding grayscale
frames and ensuring meaningful color information for analysis and processing.

After Ąltering and reĄning the dataset, I obtained 16,263 rows across 23
different genres. However, the dataset exhibited a skewed distribution, with some
genres signiĄcantly underrepresented. To address this issue, I limited the dataset
to the eight most frequently occurring genres and assigned movies to a maximum
of two genres. To collect the data, I utilized the youtube_dl library. This library
helped me extract frames from movie clips based on parameters such as the start
frame, interval, and genre. To optimize efficiency, I parallelized the frame extraction
process using the multiprocessing library, signiĄcantly reducing the extraction
time. I also applied grayscale checks to avoid extracting frames from grayscale
videos. The resulting dataset used binary encoding to represent genres for efficient
data management and enabled multi-label classiĄcation. For the train-test split,
I divided the dataset into training and testing sets, ensuring a balanced genre
distribution in both subsets. I also created visualizations to analyze and compare
genre distributions within different datasets. Additionally, I implemented two
splitting approaches: random split and separate movies split, to evaluate the
modelŠs generalization abilities.

To integrate vectorscope analysis into the research, IŠve created a dedicated
script that systematically processes images. This script involves resizing the images,
converting them into arrays, and extracting color channel data for further analysis.
These preparatory steps are crucial for generating vectorscope representations, which
help in understanding color characteristics within the frames. Additionally, IŠve
applied data augmentation techniques to enrich the dataset and enhance the modelŠs
robustness and generalization. This includes operations like rotations, Ćips, color
adjustments, and more. Data augmentation is crucial for training machine learning
models effectively, especially for tasks like genre classiĄcation. IŠve implemented
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two data augmentation strategies: one that applies transformations uniformly to
all frames and another that focuses on augmenting underrepresented genres more
aggressively. These strategies aim to address imbalanced class distributions in the
dataset. To facilitate data loading for training and testing, IŠve created a custom
class that takes care of loading and preprocessing frames, including resizing and
normalizing. It ensures that the data is ready to be fed into Convolutional Neural
Networks (CNNs) for model training.

The initial phase of experimentation primarily revolved around selecting
the most suitable dataset conĄguration, considering factors like augmentation. It
also involved Ąne-tuning critical hyperparameters, particularly the learning rate and
the identiĄcation of the point where overĄtting becomes apparent. Furthermore,
these early experiments provided insights into the computational time required for
calculations. These initial trials were conducted using the AlexNet model, serving
as an initial benchmark for performance evaluation. They aimed to establish
preliminary results and make comparisons between the raw image dataset and the
vectorscope dataset. The outcome of these initial experiments prompted the formu-
lation of two distinct approaches for the Ąnal tests and some slight modiĄcations
and simpliĄcations to the problem. Firstly, due to the underperformance of the
model with 8 classes, I decided to merge some of the classes, resulting in having
only 4 classes. I also decided to abandon the idea of multi-label classiĄcation, which
led to beneĄcial results. Lastly, both datasets - the raw dataset and vectorscope
representations dataset - went through data augmentation that focused on under-
represented classes. This decision stemmed from the performance Ąndings and the
computational efficiency of vectorscope calculations, even with augmented data.

The concluding experiments utilized the two previously mentioned datasets
and four distinct models: AlexNet, VGG-16, ResNet-50, and Vision Transformer.
The optimal results were achieved using ResNet-50 for raw frames, obtaining an
accuracy of 60.54%, and VGG-16 for vectorscope representations, with an accuracy
of 45.73%.

In the Ąnal phase, the experiments were replicated for the dataset where
frames from a single clip did not appear in both the training and testing datasets.
As anticipated, these yielded inferior results due to greater dissimilarity between
the training and testing sets. Once more, ResNet-50 produced the highest accuracy
for raw frames at 51.55%, while VGG-16 performed the best for vectorscope
representations with an accuracy of 43.81%.

In order to thoroughly assess the potential for improvement, I opted to
undertake a binary classiĄcation experiment focusing on the two largest classes. The
outcome of these experiments was promising, with the best-performing experiment
achieving an accuracy of 76.87%. This positive result indicates a notable success in
the binary classiĄcation task.
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In general, the overall results are suboptimal. However, a noteworthy
aspect is the accuracy of experiments conducted on vectorscope representations.
Not only were they nearly twice as fast, but their accuracy remained consistent
across different experiment conditionsŮperforming well on both simpler and more
challenging datasets (random distribution of data versus movies separated between
training and testing datasets). Another area for potential improvement is the
dataset itself. The dataset used was automatically collected with basic Ąltering
and limited to a small number of clips. Despite the current limitations in accuracy
measures, the results show promise for future research, especially with the prospect
of a larger and more comprehensive dataset.
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1. Introduction

Identifying the genre of a movie from a single frame can be challenging, but
not impossible. Different movie genres have distinct visual elements and stylistic
techniques that can give away their identity. For example, action movies often have
fast-paced scenes with intense lighting and dynamic camera angles, while horror
movies may use dark and shadowy settings with eerie sound effects. Comedies
often feature bright and colorful frames with exaggerated facial expressions and
physical comedy. Additionally, the costumes, set design, and overall tone of the
frame can also provide clues to the movieŠs genre. By examining these various
elements, viewers can make an educated guess about the genre of the movie they
are watching.

While a movie frame can provide helpful clues to identify the genre of a
movie, it can also be misleading. Sometimes a single frame may not capture the
essence of the movieŠs overall genre or storyline. For example, a horror movie may
have a few scenes that take place during the day with bright lighting, which can
make it appear to be a different genre, such as a drama or romance. Additionally,
some movies may intentionally use a mix of genres or subvert genre expectations,
making it difficult to categorize them based on a single frame. In these cases, it
is necessary to watch the entire movie and take into account its overall tone and
themes to accurately identify its genre.

One way to manipulate the perception of a movieŠs genre is through the
use of color. Color is a powerful tool in Ąlmmaking and can signiĄcantly impact
how a Ąlm is perceived. Different colors can evoke various emotions and set the
tone for the entire movie. For example, warm colors like red, orange, and yellow are
often associated with action, adventure, and excitement. In contrast, cool colors
like blue, green, and purple can create a more calming and relaxing mood and
are often used in dramas or romantic movies. Horror movies often employ dark
and muted colors like black, gray, and brown to create a foreboding and ominous
atmosphere. Comedies frequently utilize bright and vibrant colors to establish a
lighthearted and cheerful tone. Overall, color is an essential aspect of Ąlmmaking,
and Ąlmmakers often carefully select and use colors to help convey the genre and
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mood of their Ąlms.

The topic of movies and Convolutional Neural Networks might seem distant
at Ąrst, but in the era of ArtiĄcial Intelligence gradually permeating various aspects
of life, culture, and new industries, itŠs actually easy to Ąnd ways to incorporate
Machine Learning into the movie industry. One of the Ąrst things that may
come to mind is the implementation of recommendation systems in streaming
and broadcasting services. Additionally, CNNs can be used in movie-making to
identify similarities and patterns among movies belonging to speciĄc categories.
Neural networks have revolutionized the movie industry, enabling Ąlmmakers to
create incredible visual effects and improve various aspects of the Ąlmmaking
process. For example, machine learning algorithms can aid in everything from
pre-production planning to post-production editing. During pre-production, neural
networks can analyze scripts and generate ideas for storylines or even generate
entirely new content. During Ąlming, machine learning can assist with scene
and camera setup, allowing for more precise and efficient Ąlming. After Ąlming,
neural networks can be employed for special effects and color grading to enhance
the visual aspects of the movie. Additionally, machine learning can assist in
audience analysis, predicting which movies will be popular and determining the
most effective marketing strategies. Overall, the utilization of neural networks in
the movie industry has greatly improved the efficiency and quality of movie-making.

The goal of the project is to explore the possibility of implementing CNNs
for both, classifying movie frames by genre, and utilizing vectorscopes to connect
the color of a shot with a particular genre. Vectorscopes are valuable tools in video
production that allow professionals to measure and analyze the color accuracy of
their footage. They display chrominance information as a graph, with the horizontal
axis representing the red-green color balance and the vertical axis representing the
blue-yellow balance. Filmmakers can use vectorscopes to assess if the colors in their
footage are properly balanced and make adjustments accordingly. Vectorscopes
are particularly useful during post-production for color grading, ensuring that
the Ąnal product is visually appealing and accurate. With the rise of digital
video, vectorscopes have become essential for maintaining the quality of video
work. Building upon this knowledge, there is a possibility of automating the
coloring process of movies in post-production. The initial step involves Ąnding the
connection between raw movie frames and the genre they represent. Subsequently,
the images will be processed through vectorscopes to extract color-related data,
which will serve as a basis for further experiments. In the classiĄcation stage,
various CNN models will be tested to determine the most suitable one.

The Ąrst step in the project is to collect the movie frame data. Free-to-
use datasets typically do not provide movie frames associated with genres, but
rather offer movie descriptions and genres, or short YouTube video clips. However,
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YouTube provides a vast library of movie clips, trailers, and other videos that can
be utilized to train machine learning models for recognizing and classifying movie
frames based on their genre, color, or other visual features. With this knowledge, it
is possible to retrieve movie frames using YouTube libraries in Python and create
a custom dataset for the project.

After collecting and preprocessing the data, the next step is to conduct the
tests. The initial tests will focus on classifying movie genres using a subset of the
dataset. Utilizing the movie frames database and their corresponding descriptions,
which primarily include the genres they represent, I will train the network by
considering only the movie frames and the genres they represent. To create a more
realistic scenario where a movie can belong to multiple genres, I will explore the
topic of multi-label classiĄcation. This approach, widely used in image recognition
and computer vision research, involves training a CNN to classify images into
multiple categories simultaneously, rather than assigning each image to a single
label. Multi-label classiĄcation using CNNs allows for a more comprehensive
representation of the diverse genres that a movie can encompass.

In the initial phase of testing, a subset of the dataset will be utilized,
starting with raw movie frames and later incorporating vectorscope images. The
primary objective of these tests is to identify the optimal model for the given tasks,
considering both accuracy measures and computation time. By experimenting with
different models, architectures, and parameters, I aim to Ąnd the most effective
approach for classifying movie frames based on genre using both raw frames and
vectorscope representations. Once the initial testing phase is complete, the entire
dataset will be employed to conduct Ąnal tests. This expanded dataset will provide
a more comprehensive and representative sample, allowing for further Ąne-tuning
of the models and parameters. To ensure an unbiased evaluation, a train-to-test
split of 85% for training and 15% for testing will be employed, ensuring that the
models are assessed on previously unseen data. During the testing phase, various
performance metrics will be evaluated, including accuracy, precision, recall, and F1
score, to gauge the effectiveness of the models in classifying movie frames by genre.
Additionally, computation time will be measured to assess the efficiency of each
model in processing and classifying a large volume of movie frames.

To create a more realistic scenario, the dataset will be split in a manner
that ensures frames from the same movie are not shared between the train and test
datasets. This approach helps to simulate a scenario where the model is required
to generalize well to unseen movies, as it cannot rely on prior knowledge of frames
from the same movie during training. The testing phase will be conducted for both
raw movie frames and vectorscope images using the same CNN model that was
selected earlier. This allows for a direct comparison of the modelŠs performance on
both types of representations.
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The experiments will be conducted using a variety of approaches, including
the utilization of pretrained models such as AlexNet, as well as the exploration of
custom architectures. By employing pretrained models like AlexNet, which have
been trained on large-scale datasets such as ImageNet, we can leverage their learned
features and transfer their knowledge to our movie frame classiĄcation task.
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2. Related Work

2.1 Movie Genre Classification

The usage of Convolutional Neural Networks (CNNs) has been studied
for various applications, including the classiĄcation of movies based on different
features such as genre, sentiment, and content.

In 2002, Zeeshan Rasheed and Mubarak Shah [1] undertook research on
genre classiĄcation using movie previews. Their objective was to analyze audio-
visual cues within the previews, such as camera movements, sound effects, and
lighting, which contribute to the creation of mood and atmosphere. The authorsŠ
methodology involved several steps. Firstly, they determined shot length by
detecting changes in shots and extracting a key frame positioned at the midpoint of
each shot. They then examined visual disturbances within the scenes by analyzing
scene motion and assigning gray levels to moving pixels. This allowed them
to differentiate between static and moving scenes. The visual disturbance was
measured as the ratio of moving pixels to the total number of pixels in a slice, with
action movies typically exhibiting more local motion. Furthermore, the researchers
focused on non-action movies and analyzed them based on lighting characteristics,
classifying them into one of three genres: comedy, horror, or drama (other). As for
action movies, their analysis concentrated on identifying audio peaks that indicated
the presence of Ąre or explosions within a shot.

In 2016, Gabriel S. Simões et al. [2] proposed using CNNs for pattern
recognition and classiĄcation of movie genres. This approach aimed to leverage
the fact that videos are composed of images and focused on movie trailers, which
are short clips that showcase the highlights of the movie and are often used to
promote it. The researchers considered movie trailers simply as a sequence of
movie frames and used CNNs to analyze these frames and classify the movie genre
based on the visual features present in the frames. To achieve this, the authors
created a new classiĄcation method called CNN-MoTion (Convolutional Neural
Networks for Movie Trailer ClassiĄcation). They used a large dataset of movie
trailers and preprocessed them to extract the frames and convert them into images.
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They then trained a CNN model on these images to learn the visual features that
are indicative of different movie genres. The CNN-MoTion model was able to
achieve an accuracy of 65.31% in classifying the movie genre, which is a signiĄcant
improvement over the previous state-of-the-art methods.

Movie trailers and posters have been explored extensively for predicting
the genre and other attributes of movies. While movie trailers have been a popular
choice due to their ability to provide a glimpse of the movieŠs content, movie posters
have also been used to predict the genre with a high degree of accuracy. Even
in the midst of visual complexity and a multitude of details, a movie poster can
swiftly convey the genre (such as drama, comedy, horror, etc.) to viewers.

One of the Ąrst ones to utilize movie posters in genre prediction were
Marina Ivasic-Kos et al. [3]. They used 1500 movie posters evenly balanced
across 6 different genres. They considered multi-label classiĄcation task, that
was transformed to single-label task, using distance ranking, Naïve Bayes and
RAKEL. The authors decided to focus on low-level features of movie posters such
as dominant color of the whole poster, texture or color histogram, similarly to
my approach. The highest accuracy they reached was 67% for at least one of two
correctly detected labels but only 14% for two out of two correctly detected labels.

In the past also, Nirman Dave [4] used a dataset of 40,000 movie posters
across 28 different genres to predict the genre using machine learning techniques.
DaveŠs approach involved using a simple 7-layer neural network similar to the VGG
model for multi-label classiĄcation. The neural network was trained on the dataset
of movie posters, and the learned features were used to predict the genre of unseen
posters. DaveŠs approach achieved an accuracy of 50.50%.

In a similar vein to Nirman DaveŠs approach, Gabriel Barney and Kris Kaya
[5] also conducted research in the Ąeld of genre classiĄcation. However, they utilized
different architectures, such as ResNet34 or custom architectures, depending on the
speciĄc experiment. Their work made use of the MovieLens Dataset from Kaggle
[6], which encompasses entries for 45,466 movies spanning across 21 genres. After
Ąltering, they extracted a dataset comprising approximately 35,000 movie posters.
Similar to the methodology adopted in my research, the authors standardized each
image in their dataset to a resolution of 224x224 pixels. However, their results
demonstrated slightly lower accuracy measures compared to the Ąndings of Nirman
Dave. The "all match" accuracy ranged between 6% and 13%, indicating that
the models exhibited limited success in correctly predicting all genres associated
with a given movie poster. On the other hand, the "at least one match" accuracy
ranged between 19% and 45%, suggesting that the models were more consistent in
identifying at least one correct genre for a movie poster.

In line with the research conducted by Marina Ivasic-Kos et al. [3], Nayeem
Hossain et al. [7] also delved into the realm of multi-label classiĄcation for movie
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genres. They employed distance ranking, Naive Bayes, and RAKEL algorithms as
part of their approach. However, in contrast to previous studies, they introduced
a comprehensive ensemble of six distinct deep learning models, including Lenet,
Alexnet, VGG-16, VGG-19, Resnet-50, and a custom model. These models were
utilized to extract relevant features from the movie poster images and subsequently
classify the genres. Remarkably, the custom model proposed by the authors
achieved an impressive accuracy rate of 91.15%. This result represents a signiĄcant
improvement compared to the aforementioned research. The utilization of deep
learning models and the creation of a customized architecture enabled Hossain et
al. to enhance the accuracy and effectiveness of movie genre classiĄcation.

In 2018, Quan Hoang [8] adopted a distinct methodology by employing
Machine Learning techniques to predict movie titles based on plot summaries.
They utilized various approaches, including Naive Bayes, Word2Vec+XGBoost,
and Recurrent Neural Networks, for text classiĄcation. To address the multi-label
problem inherent in genre tagging, they employed methods such as K-binary trans-
formation, rank method, and probabilistic classiĄcation with a learned probability
threshold. For their experiments, the authors utilized a dataset comprising 250,000
movies along with their corresponding plot summaries. By leveraging their chosen
Machine Learning techniques, they achieved a hit rate of 80.5% across 10 genres in
their genre tagging task.

2.2 Deep Learning-Based Classification of Movie

Shots

The goal of my research focuses on movie frames alone without consider-
ing movie posters. Similar approach was taken by Bartolomeo Vacchetti, Tania
Cerquitelli, and Riccardo Antonio [9] who explored the application of deep learning
techniques in classifying movie shots into four categories: full Ągure, half Ągure, half
torso, and close-up. The aim of their research was to assist professionals in creative
Ąelds who frequently encounter unorganized data. To tackle this task, they utilized
the VGG-16 architecture, which had been pretrained on the ImageNet dataset
[10]. To further optimize the modelŠs performance, they employed two datasets:
one comprising RGB images and another containing monochrome images. With a
dataset of 3000 images, the authors achieved an average accuracy of 81.30% using
the VGG-16 architecture. Their research demonstrated the effectiveness of deep
learning in accurately classifying movie shots according to speciĄc visual attributes.

Bartolomeo Vacchetti and Tania Cerquitelli expanded their research in the
Ąeld of Ąlm shot classiĄcation by considering a broader range of shot categories.
In their study [11], they examined eight distinct classes of Ąlm shots: long shot,
medium shot, full Ągure, American shot, half Ągure, half torso, close-up, and
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extreme close-up. To accomplish this, they employed the VGG-16 architecture,
but with a novel approach involving three separate VGG-16 models. These models
were combined using the stacking learning technique to enhance performance. Each
of the three VGG-16 models was trained on a different version of the dataset. The
Ąrst model utilized the original dataset, while the second model used a dataset
with the most relevant patterns highlighted through hypercolumns extraction. The
third model leveraged a dataset that had undergone semantic segmentation. The
predictions from the three models were then combined and used as input for a
MLP model. Unlike their previous study, the authors worked with a signiĄcantly
larger dataset consisting of 10,545 images across the eight aforementioned shot
classes. They achieved impressive results, with a training accuracy of 95.66% and
a validation accuracy of 77.02% for the Ąnal classiĄer. The individual VGG-16
classiĄers exhibited training accuracy values around 95% and testing accuracy
values around 70%.

The research conducted by the same group of researchers delved deeper into
the intersection of machine learning and the movie industry [12]. They introduced
Movie Lens, a data-driven approach aimed at discovering and characterizing editing
patterns through the analysis of short movie sequences. The methodology employed
in this research involved leveraging the Levenshtein distance, the K-Means algorithm,
and a Multilayer Perceptron (MLP). To gather the necessary data, the authors
utilized the Cinescale dataset, which provided labels for each movie, and extracted
frames from the available movies. They categorized the frames into eight different
types of shots: extreme long shot, long shot, medium long shot, medium shot,
medium close-up, close-up, extreme close-up, and foreground shot. To further
increase the number of classes, they applied K-Means clustering and calculated
the Levenshtein distance. This resulted in a total of 4, 8, 16, or 32 classes. The
accuracy of the classiĄcation models was evaluated based on the number of classes
utilized. The results showed accuracies of 93%, 88%, 81%, and 77% for 4, 8, 16, or
32 classes, respectively. These Ąndings highlight the effectiveness of the approach in
accurately identifying and characterizing editing patterns within movie sequences.

In line with previous studies, my research aims to establish a connection
between genre identiĄcation and movie frames, rather than relying solely on movie
posters. Furthermore, I plan to investigate the potential beneĄts of incorporating
vectorscope images into the existing models to enhance their performance and
potentially improve accuracy. By exploring these avenues, I aim to contribute to
the ongoing advancements in genre classiĄcation techniques and provide insights
into the effectiveness of utilizing movie frames and their vectorscope representations
for this purpose.
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3. Methodology

3.1 Dataset

For the research IŠm conducting, my Ąrst task was to Ąnd a suitable dataset.
This dataset needed to include movie frames with assigned labels indicating their
genres. Although there are several online services like SHOTDECK [13], Flim [14],
and SHOT.CAFE [15] that provide data collected in this manner, I couldnŠt utilize
them due to copyright restrictions.

Therefore, I had to devise a method to gather the data and construct the
dataset myself. Fortunately, I stumbled upon the CondensedMovies repository
[16], which proved to be valuable. This dataset encompasses over 3,000 movies,
featuring more than 30,000 professionally captioned clips, totaling over 1,000 hours
of video. Additionally, it includes over 400,000 facetracks and precomputed features
from 6 different modalities. The dataset also provides links to movie clips from the
MOVIECLIPS YouTube channel [17] and a brief description for each clip. Since
my research solely required movie frames and their corresponding genres, the most
relevant Ąles within the dataset were clips.csv [Table 3.1], that contained 34,185
rows of data, and movie_info.csv [Table 3.2], that contained 2,894 rows of data.

videoid ... title clip_name imdbid

Sv-BxH3SVS8 ... Les Misérables One Day More Scene tt1707386

g8pt9OoaPlY ... Shazam! Dr. Sivana Attacks Scene tt0448115

4-BWFsE_TQE ... Good Boys Frat House Fight Scene tt7343762

iPcAns5pKVw ... mother! The Agony of Birth Scene tt5109784

YHvTfLaOREg ... CharlotteŠs Web I Can Talk! Scene tt0070016

Table 3.1: clips.csv with Ąve exemplary rows
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imdbid genre country

tt0020629 "[ŠDramaŠ, ŠWarŠ]" [ŠUSAŠ]

tt0068767 "[ŠActionŠ, ŠDramaŠ, ŠRomanceŠ]" [ŠHong KongŠ]

tt0021814 "[ŠFantasyŠ, ŠHorrorŠ]" [ŠUSAŠ]

tt0021884 "[ŠDramaŠ, ŠHorrorŠ, ŠSci-FiŠ]" [ŠUSAŠ]

tt0068909 "[ŠDramaŠ, ŠFantasyŠ, ŠMusicalŠ]" "[ŠItalyŠ, ŠUSAŠ]"

Table 3.2: movie_info.csv with Ąve exemplary rows

The original tables I worked with were presented above [Table 3.1, Table
3.2]. In the clips.csv table, along with the videoid, title, clip_name, and
imdbid columns, there were additional columns like year, clip_idx, clip_tot,
and upload_year that were not relevant to my research. The imdbid column acted
as a foreign key, while the videoid column served as the primary key and contained
an extended YouTube link directing to the corresponding movie clip. The second
table, movie_info.csv, contained columns for imdbid, genre, and country. The
imdbid column acted as the primary key, and it was used later to perform a join
operation with the clips.csv table. This join operation resulted in the creation
of the movieclips_all.tsv table [Table 3.3]. Moving forward, I decided to work
with .tsv Ąles as they were easier to read and manipulate. All the table operations
were performed using PythonŠs pandas library, utilizing dataframes.

imdbid ... videoid genre

tt0448115 ... Ok63vpXNhNc [ŠActionŠ, ŠAdventureŠ, ŠComedyŠ]

tt0069995 ... r0iSxOsPGl8 [ŠDramaŠ, ŠHorrorŠ, ŠThrillerŠ]

tt0073440 ... dbX-ekoWGWE [ŠComedyŠ, ŠDramaŠ, ŠMusicŠ]

tt1386932 ... 9aR0JkmZLk0 [ŠActionŠ, ŠBiographyŠ, ŠDramaŠ]

tt0332375 ... VlMy5-BAjzo [ŠComedyŠ, ŠDramaŠ]

Table 3.3: movieclips_all.tsv with Ąve exemplary rows

The table displayed above [Table 3.3] shows the outcome of the join opera-
tion between the two previously mentioned tables. It comprises 27,077 rows. The
original table includes six columns: imdbid, title, clip_name, year, videoid,
and genre. However, only the videoid and genre columns are relevant for further
analysis and developments.

In the next step of Ąltering the dataset, I applied various techniques using
the pafy and OpenCV libraries. I created a function called video_available(link)
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[Listing A.1] that took a YouTube video link from the table as input and returned ei-
ther True or False, indicating if the video was available or not. Based on this output,
the corresponding table row was either discarded or appended to a new dataframe.
This process resulted in a new table called movieclips_available_only.tsv,
which had the same structure as movieclips_all.tsv 3.3], but with a reduced
number of rows, speciĄcally 17,724 rows.

Subsequently, I encountered the need to eliminate links to YouTube videos
that were in grayscale, as they proved to be irrelevant for the vectorscope analysis.
To accomplish this, I implemented the color_check(link) [Listing A.2] function,
which examined the pixel variations within a previously extracted frame. The
function calculated the sum of these variations, determined the ratio between the
differences and the image size, and compared it to a predeĄned threshold. Based
on this comparison, the videos were either discarded or retained.

For the task, I utilized the cv2.split(frame) function from the OpenCV

library. This function is speciĄcally designed to split a multi-channel image, such
as a frame from a video, into its individual color channels. By applying this
function, the input frame is transformed into a list of separate image channels, with
each channel representing a speciĄc color. When working with RGB images, the
cv2.split() function returns a list consisting of three channels: one for the red
channel, one for the green channel, and one for the blue channel. These channels
are represented as matrices, where each matrix element corresponds to the intensity
of the respective color at a particular pixel. To determine whether the frame
represents a grayscale movie, I utilized the NumPy library. SpeciĄcally, I employed
the np.count_nonzero(abs(r-g)) function, where r and g are the matrices rep-
resenting the separate red and green color channels, respectively. By calculating
the absolute difference between the two color channels and counting the number of
non-zero elements, we obtain an indication of the amount of color variation in the
frame. The next step involves summing up the outputs of np.count_nonzero()

for each color channel and dividing the result by the total size of the frame. This
calculation yields a ratio that represents the proportion of non-zero color differences
in the frame relative to its overall size. Finally, if the obtained ratio is lower
than 0.005, the frame is discarded as it likely represents a grayscale movie. This
threshold value serves as a criterion to distinguish between predominantly grayscale
frames and frames with signiĄcant color variation. By applying this process, we can
effectively identify and exclude grayscale frames from further analysis or processing,
focusing only on frames that contain meaningful color information.

Consequently, I obtained the Ąnal dataset called movieclips_final.tsv,
which contained 16,263 rows after this Ąltering process.
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3.1.1 Reducing the Dataset

After Ąltering the dataset, I obtained a substantial amount of data compris-
ing 16,263 rows across a diverse range of 23 different genres. However, I encountered
a challenge as some genres were signiĄcantly underrepresented, with only 6 links
associated with the least represented genres, while the most represented genre had
a staggering 6,945 links. This skewed distribution posed difficulties for conducting
accurate experiments, as certain genres lacked sufficient representation. To address
this issue and ensure a balanced distribution, I made the decision to limit the
number of genres to the eight most frequently occurring ones. This approach would
allow for a more equitable distribution of representatives across genres, facilitating
more reliable and comprehensive experiments. Additionally, in order to streamline
the multi-label classiĄcation process, I opted to assign a movie to a maximum
of two genres. The Ąnal selection of eight genres, along with their respective
representation in the dataset, are as follows:

• Comedy: 7512,

• Drama: 6945,

• Action: 4340,

• Adventure: 3305,

• Romance: 3083,

• Crime: 2976,

• Thriller: 2214,

• Horror: 1718.

12



Methodology

Figure 3.1: Number of occurrences of each genre

3.1.2 Collecting the Data

Once I had Ąnalized the dataset, consisting of 16,106 rows with genres and
corresponding links to movie clips, I proceeded with the data collection process.
To extract the frames from the movie clips, I utilized the youtube_dl Python
library, leveraging the functionality provided by the extract_frame(link, genre,

start_frame, interval, folder_path) function [Listing A.3]. This function
played a crucial role in the data collection pipeline, as it required several input
parameters. Firstly, the function took the link to the movie clip as an argument,
which served as the source for frame extraction. Additionally, the genre associated
with the movie was also provided as input, allowing for proper categorization
and organization of the extracted frames. Moreover, the function required the
speciĄcation of the start_frame and interval parameters, both measured in
seconds. The start_frame parameter was particularly useful, as it enabled the
exclusion of initial frames that typically consisted of advertisements or opening
credits. By specifying a suitable value for start_frame, we ensured that the
extraction process commenced at an appropriate point within the video. The
interval parameter played a signiĄcant role in determining the frequency at which
frames were extracted. It indicated the time duration, in seconds, between each
extracted frame. By adjusting this parameter, we could control the granularity of
the extracted frames, striking a balance between capturing sufficient information
and avoiding redundancy. To prevent the extraction of end credits, which often
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appear towards the conclusion of a video, I chose to extract frames up until
approximately three-fourths of the videoŠs duration. This approach ensured that
the last extracted frame would capture a representative moment from the movie,
while excluding the end credits. Lastly, the function required the speciĄcation of
the folder_path, which determined the destination folder where the extracted
frames were saved. This parameter facilitated the organization and storage of
the collected data, ensuring easy access and retrieval during subsequent stages
of the project. By employing the extract_frame() function in conjunction with
the youtube_dl library and appropriately conĄguring its parameters, I was able
to efficiently collect and extract frames from the movie clips, contributing to the
development of a robust and comprehensive dataset.

Upon executing the frame extraction process, I soon became aware of the
considerable computational time required to complete the task. Realizing the need
for optimization, I sought to implement the powerful Pool() function from the
multiprocessing Python library. This approach proved instrumental in improving
the efficiency of the solution by leveraging all available CPU cores. By utilizing the
Pool() function, I was able to parallelize the frame extraction code, distributing
the workload across multiple cores simultaneously. This enabled me to collect the
entire dataset in a signiĄcantly reduced timeframe, achieving speeds up to ten times
faster compared to the initial implementation. To further enhance the extraction
process, I made adjustments to the parameters of the extract_frame() function.
I set the start_frame parameter to 2 seconds, ensuring that the extraction process
commenced slightly beyond the initial moments of the video. Additionally, I set the
interval parameter to 10 seconds, allowing for a more spaced-out extraction of
frames. This adjustment struck a balance between capturing an adequate number of
frames and avoiding excessive redundancy, resulting in a more representative sample
of frames from each video. Before extracting frames from a particular video link, I
implemented a check to ensure its availability. This preliminary veriĄcation helped
to avoid extracting frames from broken or inaccessible links, ensuring the integrity
and reliability of the collected data. Furthermore, I performed a grayscale check
on the video to determine if it was already in grayscale format. After completing
the frame extraction process using the optimized approach, I successfully obtained
a total of 45,845 frames from the dataset. This achievement was made possible
through the implementation of multiprocessing techniques, parameter adjustments,
and thorough veriĄcation checks. These optimizations collectively contributed to a
signiĄcant improvement in the efficiency and effectiveness of the frame extraction
process. The resulting dataset of extracted frames now provides a comprehensive
foundation for conducting further analysis and experimentation.

The extracted data was saved in a structured format within the data.tsv

Ąle [Table 3.4]. To ensure efficient data management and facilitate future analysis,
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I employed a speciĄc formatting strategy. Instead of storing the genre information
as a string, I opted for a more streamlined approach by mapping each genre to
a binary value. In this format, I designated the path to the Ąle as the primary
key, ensuring a unique identiĄer for each frame. This key served as a reference
point for easy retrieval and linking of relevant information during subsequent data
processing tasks. For each frame, the genre information was represented using a
binary encoding system. If a frame belonged to a particular genre, it was assigned
a binary value of 1. Conversely, if a frame did not fall within that genre, it was
assigned a binary value of 0. This mapping approach allowed for efficient and
compact representation of the genre information, reducing storage requirements
and facilitating streamlined data manipulation. Additionally allowed to implement
the multi-label classiĄcation. The process was executed in a loop that ran through
folders and saved the data inside a dataframe, which was later saved as a data.tsv

Ąle [Listing A.4].

path genre Action Adventure ... Thriller

frames/

ŠActionŠ 1 0 ... 0Action/

06Its9LhIHQ/

1196.jpg

.../1196.jpg [ŠActionŠ, ŠAdventureŠ] 1 1 ... 0

.../1196.jpg [ŠThrillerŠ] 0 0 ... 1

.../46.jpg [ŠActionŠ, ŠThrillerŠ] 1 0 ... 1

.../736.jpg [ŠActionŠ, ŠThrillerŠ] 1 0 ... 1

Table 3.4: data.tsv with Ąve exemplary rows

In addition to the genres listed in the provided table [Table 3.4], the absent
genres include Comedy, Crime, Drama, Horror, and Romance.

3.1.3 Train Test Split

To effectively train Convolutional Neural Networks (CNNs), it is crucial
to provide separate datasets for both training and testing (validation) purposes.
The objective is to feed the network with the training set during a series of epochs
to optimize its performance, and subsequently evaluate the networkŠs ability to
accurately classify and predict labels by running the test set through the trained
network. To ensure the fairness and reliability of the evaluation process, it is
essential that both the training and test sets exhibit a similar distribution of data.
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This means that the genres represented within each set should be representative of
the overall dataset. To achieve this, I made the decision to split the full dataset into
distinct subsets, allocating approximately 85% of the data for training purposes
and reserving the remaining 15% for testing. This partitioning strategy ensures
that the CNNs receive an ample amount of data for training while also enabling
a comprehensive evaluation of their performance on unseen samples during the
testing phase. By maintaining a balanced distribution of genres within both the
training and test sets, we can effectively assess the networkŠs ability to generalize
and make accurate predictions on new, unseen data. This partitioning approach
provides a robust foundation for training, evaluating, and Ąne-tuning the CNN
models, ultimately enhancing their overall performance and predictive capabilities.

The distribution of data is a crucial aspect to consider when analyzing
datasets. In Figure 3.2, we can observe the representation of data and gain valuable
insights. To ensure accurate comparisons, the values have been normalized [Listing
A.6], allowing us to focus on the ratios of distributions among different datasets.
While visually examining the Ągure, it may appear that there are slight variations
between the distributions. However, it is important to note that the primary focus
lies in the order of class sizes in the datasets rather than the minor differences in
their shapes. This means that regardless of the dataset size, the relative order of
magnitude is preserved.

To facilitate the proper analysis and visualization of the data, I developed a
custom function called get_genre_distribution(df) [Listing A.5]. This function
was designed to streamline the process by taking a dataframe as input, generating
a Ągure displaying the distribution of genres, and returning a dictionary with the
assigned genres and their corresponding values. To begin, within the function, I
implemented a series of iterative steps to accurately extract the genre information
from the dataframe. Initially, I iterated over the dataframe to create a list of
unique genre combinations. This step ensured that each genre combination was
accounted for and provided a comprehensive overview of the different genres present
in the dataset. Subsequently, I performed another iteration over the list of genre
combinations. This time, the objective was to isolate individual genres from the
combinations and create a new list containing only single genres. This separation
allowed for a more granular analysis and a better understanding of the distribution
of each genre in the dataset. Finally, leveraging the obtained list of single genres,
I constructed a dictionary where each genre was assigned a value based on its
occurrence in the dataset. This dictionary, serving as the output of the function,
provided a comprehensive overview of the genre distribution within the dataset,
facilitating further analysis and interpretation.
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Figure 3.2: Distribution of data among test and training datasets

Figure 3.1 displays the distribution of genres for 5 different .tsv Ąles. The
Ąle containing all the data, data.tsv, was divided into training and testing sets
using two different approaches.
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In the Ąrst approach, the data was split randomly, and the result-
ing frames were assigned to two separate Ąles: data_train_random.tsv and
data_test_random.tsv [Listing A.7]. To achieve this, the code utilizes the
train_test_split() function from the sklearn Python library. This function
takes a dataframe and the desired split ratio as inputs and returns two subsets. In
this case, I opted to allocate 85% of the dataset for training and 15% for testing
purposes.

To further explore the data, I employed a second approach for
dividing the dataset, resulting in the creation of two distinct Ąles:
data_train_separate_movies.tsv and data_test_separate_movies.tsv [List-
ing A.8]. Unlike the random split approach, this method ensures that frames
from the same movie are never present in both the training and testing sets. This
separation mimics a more realistic scenario, where the model is trained on one set
of movies and tested on another set that it has never encountered during training.
By implementing this approach, we can evaluate the modelŠs ability to generalize
and make accurate predictions on unseen movies, providing valuable insights into
its performance in real-world scenarios.

3.2 Data Transformations

3.2.1 Vectorscope

My research primarily aims to establish a correlation between the color
palettes employed in movie frames and the corresponding cinematic genres they
represent. To accomplish this objective, I am employing vectorscopes as the
instrumental tools for analysis.

Vectorscopes are specialized tools used in visual analysis, particularly in
video and Ąlm production. They help to graphically display and interpret the
distribution of colors within an image or video frame. Vectorscopes provide insights
into how different colors are being used, allowing for the assessment of color
balance, saturation, and other chromatic characteristics. In essence, vectorscopes
help professionals in the visual arts industry to better understand and manipulate
color elements in their work.

To integrate the vectorscope tool into my research methodology, I developed
a dedicated script titled vectorscope.py, as detailed in Listing A.9. This script
plays a crucial role in the process of applying vectorscope analysis. The code,
presented within Listing A.9, follows a systematic sequence of operations.

The initial steps encompass the opening of the target image, followed by a
resizing operation that ensures compatibility with subsequent computations. The
resized image is then translated into a NumPy array, thereby facilitating efficient
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data manipulation and analysis. Within this array, pertinent data pertaining to in-
dividual color channels is meticulously extracted and isolated into distinct variables.
This preparatory phase is an essential prerequisite for subsequent transformations
that ultimately culminate in the creation of the Ąnal vectorscope representation,
as illustrated in Figure 3.4.

Figure 3.3: Example of the raw image

Figure 3.4: Example of the vectorscope image
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3.2.2 Data Augmentation

To broaden the dataset synthetically, I opted to implement data aug-
mentation techniques strategically. Data augmentation, widely used in machine
learning and computer vision, involves purposefully applying various modiĄcations
to existing data to achieve two goals: enhancing dataset diversity by creating
plausible variations of original data points and reinforcing modelsŠ robustness and
generalization.

By seamlessly integrating data augmentation into the training process, I
enriched the datasetŠs content, potentially boosting learning algorithm performance.
This involves operations like geometric transformations (rotations, translations,
Ćips), color adjustments, noise addition, and occlusion simulations. These trans-
formations introduce new instances that retain core features while incorporating
realistic deviations.

This expansion curbs overĄtting risks, enabling the model to grasp a wider
array of patterns. Models trained on this augmented dataset are expected to excel
in accuracy and adaptability to real-world data. This deliberate augmentation
effort aligns with the goal of crafting a more effective machine learning framework.

The effectiveness of these augmentation techniques will be rigorously tested
in later project stages. Through thorough evaluation and validation of the aug-
mented dataset, the impact on model performance will be accurately gauged. This
entails benchmark tests and comparisons to understand how augmentation enhances
the modelŠs adaptability to real scenarios. This iterative process aims to validate
the hypothesis that data augmentation signiĄcantly improves the modelŠs learning
capacity and prediction accuracy.

The set of transformations I chose to implement uses several operations,
such as random cropping, horizontal and vertical Ćipping, color manipulation,
and blurring. Each operation plays a crucial role in shaping a comprehensive
augmentation strategy aimed at diversifying the dataset. The parameters gov-
erning the degree of these transformations were intentionally selected through a
randomized process, as shown in Listing A.10. These transformative procedures
were executed within the generate_modified_image(image_path) function, as
outlined in Listing A.11.

In the subsequent workĆow, images were loaded within a loop and sub-
sequently subjected to the transformation routines. While the original images
were preserved in their unadulterated states, a new images were introduced by
incorporating the outcomes of these transformations. This augmentation approach
was strategically employed on 70% of the image collection, chosen at random.

The results of the earlier mentioned transformations were shown in Figures
3.5, 3.6, 3.7 and 3.8.
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Figure 3.5: Raw image before the
transformation

Figure 3.6: Raw image after the
transformation

Figure 3.7: Raw image before the
transformation

Figure 3.8: Raw image after the
transformation
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The transformations led to the acquisition of a training set comprising
66,205 images, as opposed to the original 38,968 samples prior to augmentation.
Simultaneously, the initial test set of 6,877 images remained unaltered. The
distribution of genres within the augmented dataset is visually represented in
Figure 3.9, mirroring the patterns observed in the original distribution, as depicted
in Figure 3.1.

Figure 3.9: Number of occurrences of each genre in augmented dataset

The issue that augmentation failed to address is the imbalanced distribution
of data. This discrepancy is evident in Figures 3.1 and 3.9, where genres such as
horror, crime, and thriller are signiĄcantly underrepresented. To mitigate this, I
developed an alternative approach to data augmentation. This involved a strategic
focus on augmenting the number of samples within the earlier mentioned genres.
Although the image transformations remained unchanged, I modiĄed the execution
of the loop. In the previous version, the script randomly transformed 70% of the
data. However, in this iteration, I took a different route. I initially extracted the
combination of genres attributed to each movie. If the genres included horror,
crime, thriller, or romance, there was a 90% likelihood of the frame undergoing
transformation. For the remaining samples, the likelihood of transformation was
reduced to 10%.

As a result of this adaptation, the issue of imbalanced class distribution
was somewhat alleviated, as depicted in Figure 3.10. However, itŠs important to
note that this approach was executed in the context of a multilabel classiĄcation
problem. The resulting training dataset comprised 54,123 samples, reĆecting the
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outcomes of this adjustment.

Figure 3.10: Number of occurrences of each genre in augmented dataset with
focus on rare genres

The same procedure was applied to a dataset in which frames from the
same movie were not shared between the training and testing datasets. This
resulted in the acquisition of 66,417 frames [Figure 3.11] when applying uniform
transformations to all frames, and 54,179 frames [Figure 3.12] when speciĄcally
targeting underrepresented genres.
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Figure 3.11: Number of occurrences of each genre in augmented dataset for
frames separated among datasets

Figure 3.12: Number of occurrences of each genre in augmented dataset for
frames separated among datasets with focus on rare genres

In the context of the vectorscope analysis, I contemplated two distinct
approaches:

1. Utilizing both the original and transformed raw images and subjecting them
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to vectorscope analysis.

2. Directly applying various transformations to the vectorscope images them-
selves.

After careful consideration, I opted for the Ąrst approach. This decision was
inĆuenced by the recognition that the vectorscope extracts very speciĄc information
from images. Implementing transformations directly on the vectorscope images
could potentially introduce alterations that might negatively impact classiĄcation
results. For instance, common transformations like image cropping could signiĄ-
cantly disrupt the vectorscopeŠs distribution, while altering colors might manipulate
the key parameter derived from the vectorscope analysis. Ultimately, the choice to
analyze the original and transformed raw images using the vectorscope was deemed
more conducive to preserving the inherent insights generated by this analytical
tool, thus ensuring a more stable basis for subsequent classiĄcation processes. The
differences between ram images and vectorscope images are shown on Figures 3.13,
3.14, 3.15 and 3.16.
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Figure 3.13: Raw image before the
transformation

Figure 3.14: Vectorscope of the raw
image

Figure 3.15: Raw image after the
transformation

Figure 3.16: Vectorscope of the im-
age after the transformation

3.2.3 Loading the Data

To load the dataset inside of the CNN I needed to create a custom
MovieFrameDataset(Dataset) [Listing A.12] class that inherited from the Dataset

class from Python torch library.

The Dataset class is a fundamental component of the torch.utils.data

library in PythonŠs PyTorch framework. It provides an interface to load and process
data for machine learning tasks, such as training and evaluation of deep learning
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models. The Dataset class serves as an abstraction for a collection of data samples
and their corresponding labels (if applicable). It is designed to be Ćexible and
can handle various types of data, including images, text, audio, and more. By
encapsulating the data in a Dataset object, it becomes easier to manipulate and
transform the data in a consistent manner. To use the Dataset class, you typically
create a custom subclass that inherits from it and implement two key methods:

• __len__(): this method returns the total number of samples in the dataset,

• __getitem__(index): this method allows you to retrieve a speciĄc sample
and its associated label (if available) given its index. It should return the
sample and label in a format that can be processed by your model.

By implementing these methods, I could access individual samples from the
dataset using indexing, iterate over the dataset, and leverage PyTorch data loading
utilities. Once I have created my Dataset object, I could use it in conjunction
with other components of the torch.utils.data library, such as DataLoader, to
efficiently load and preprocess the data in batches, shuffle the data, and parallelize
data loading across multiple threads.

My custom MovieFrameDataset(Dataset) subclass takes three inputs:
root_dir, csv, and transform. The root_dir parameter represents the path
to the parent folder where the frames are stored. It serves as the base directory
for accessing the frames. The csv parameter contains the exact location of each
frame within the dataset, along with the corresponding genres assigned to each
frame. This information is essential for accessing and associating the frames with
their respective genres during the dataset loading process. Lastly, the transform

parameter contains the transformation applied to the input image [Figure 3.17]
to ensure consistency with the CNN. In the provided code, the frames are resized
to a resolution of 224x224 pixels and centered. Additionally, the images are
normalized to facilitate faster calculations, as shown in Figure 3.18. ItŠs important
to note that this transformation is only applied to the raw images on both training
and testing set, as the vectorscope images do not require any transformation.
By incorporating these functionalities within the MovieFrameDataset(Dataset)

subclass, the dataset can be effectively loaded, accessed, and preprocessed for
training or evaluation purposes.
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Figure 3.17: Example of a raw frame

Figure 3.18: Example of a transformed frame

Following these stages, the train_set and test_set operate as inputs
for the DataLoader class within the torch.utils.data library. The parameters
employed in the conducted experiments are supplied to the program via the
command line, utilizing the parse_args library as demonstrated in Listing A.14.
The images are loaded in batches and are either transformed or preserved as
vectorscope representations, as depicted in Figures 3.19 and 3.20.
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Figure 3.19: Example of loaded raw data

Figure 3.20: Example of loaded vectorscope representations
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4. Experiments

In terms of the experimental process, the main focus was to evaluate how
a single model performs with different versions of the dataset, as well as to assess
various models in different scenarios. Initially, the goal was to check the modelŠs
performance using the original dataset and to see if adding augmented data brings
any improvements. Additionally, comparisons were made between raw images
and vectorscope images, considering both overall performance and calculation
time. These initial evaluations were carried out using a slightly modiĄed version of
the AlexNet model. Following this, the experimentation broadened to include a
range of models, each tested with the different dataset variations (with or without
augmentation, for both raw images and vectorscope images). This approach allowed
for a comprehensive understanding of how different models perform under varying
circumstances. Lastly, the selected models underwent testing in a more realistic
setting. This involved scenarios where frames from a single movie could potentially
appear in both the training and test datasets. This aspect of the testing provided
insights into how well the models could generalize to more practical situations.

4.1 Model Selection

In this section, I will elaborate on the selection of three speciĄc models for
experimentation: AlexNet [18], VGG-16 [19], and ResNet50 [20].

4.1.1 AlexNet

AlexNet [Figure 4.1] represents a notable convolutional neural network
(CNN) model that left a lasting mark on the Ąeld of computer vision and deep
learning. Introduced in 2012 by Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton [18], it marked a signiĄcant shift by substantially improving the performance
of image classiĄcation tasks in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). One of the distinct characteristics of AlexNet is its depth
and capacity to extract intricate hierarchical features from images. Comprising a
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total of eight layers of neurons, this architecture is made up of Ąve convolutional
layers followed by three fully connected layers. An innovation it introduced was
the integration of the ReLU (RectiĄed Linear Unit) activation function, which
not only addressed the vanishing gradient problem but also expedited training
convergence. The rationale behind selecting AlexNet for your research is solid
due to its transformative impact on the realm of computer vision. It served as a
breakthrough, showcasing that deep neural networks could outperform traditional
methods in image classiĄcation tasks. Its architectural innovations, including the
use of multiple layers and ReLU activations, laid a strong foundation for subsequent
advancements in the Ąeld of deep learning architectures.

Figure 4.1: AlexNet model diagram

4.1.2 VGG-16

VGG-16 [Figure 4.2] stands as a convolutional neural network (CNN)
architecture that occupies a distinct place within the realm of computer vision.
Its notable characteristic lies in its deep structure, comprising 16 layers, which
contributes to its capability in capturing intricate features from images. VGG-
16 gained prominence for its strong performance in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) and its ability to handle complex image
classiĄcation tasks. Incorporating VGG-16 into my research is a well-justiĄed
decision, based on its consistent usage in previous studies exploring both cinematic
and CNN-related applications. This architecture has been a recurrent choice in
numerous papers investigating visual analysis within the cinematic domain. Its
demonstrated success across various visual recognition tasks makes it a Ątting
choice for my current investigation. By opting for VGG-16, my intention is to
leverage a model that has already proven its capacity to effectively handle intricate
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features and patterns in cinematic frames.

Figure 4.2: VGG-16 model diagram

4.1.3 ResNet-50

ResNet-50 [Figure 4.3] is a notable convolutional neural network (CNN)
architecture that holds a distinct signiĄcance in the realm of computer vision. Its
distinguishing feature lies in its deep structure, comprising 50 layers, which results
in a remarkable capability to capture intricate features from images. Introduced in
2015, ResNet-50 gained prominence for its exceptional performance in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), demonstrating its adeptness
in handling complex image classiĄcation tasks. Incorporating ResNet-50 into my
research stems from its proven track record of outperforming AlexNet, another
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model IŠve utilized. ResNet-50 has exhibited superior performance, especially
when dealing with intricate visual recognition tasks. Its demonstrated ability to
understand complex features in images aligns with my researchŠs primary objective
of enhancing genre classiĄcation accuracy in movie frames. By leveraging ResNet-50,
I aim to capitalize on its established superiority over AlexNet, thus maximizing the
potential for more accurate and effective genre classiĄcation in my investigation.

Figure 4.3: ResNet-50 model diagram

The only changes made to the models involve adapting the output of their
Ąnal layers to align with the total number of classes, which in this instance is 8.
Additionally, itŠs worth noting that all the models presented here offer the option
to utilize pretrained versions trained on the ImageNet dataset [10].
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4.2 Loss Function

The subsequent step was to choose the objective function, a signiĄcant
component in the Ąeld of machine learning and optimization. This function
measures the difference between the predicted values produced by a model and
the actual ground truth values present in the training data. The primary aim of a
machine learning algorithm is to minimize this difference, often referred to as the
loss function. In supervised learning tasks, the loss function calculates the error
between the predicted outputs and the real target values. It provides essential
guidance for adjusting the modelŠs parameters during the training process, with
the goal of decreasing the error and enhancing its predictive abilities. Various
types of loss functions are available, each tailored to speciĄc tasks. For instance,
in regression tasks, the Mean Squared Error (MSE) is a commonly used metric,
while in classiĄcation tasks, the Cross-Entropy Loss (also known as Log Loss) is
frequently employed. The choice of a suitable loss function depends on the nature
of the problem and the intended behavior of the model during the training phase.

I opted for the Cross-Entropy Loss as my choice of loss function due to its
suitability for classiĄcation tasks like the one IŠm addressing. Cross-Entropy Loss is
particularly effective when dealing with problems involving multiple classes, as in my
genre classiĄcation endeavor. It not only captures the disparity between predicted
and actual class probabilities but also penalizes larger errors more heavily, leading
to more robust and accurate model training. Given that my research involves
assigning movie frames to speciĄc genres, the nature of the problem aligns well
with the strengths of the Cross-Entropy Loss in handling multi-class classiĄcation
scenarios.

In addition to employing the Cross-Entropy Loss, I implemented the Stochas-
tic Gradient Descent (SGD) optimization algorithm to Ąne-tune the parameters of
my models during training. SGD is a fundamental optimization technique com-
monly used in machine learning tasks, including neural network training. Stochastic
Gradient Descent operates by iteratively updating the modelŠs parameters based
on the gradients of the loss function with respect to these parameters. Unlike
traditional gradient descent, which computes gradients over the entire training
dataset, SGD performs updates on smaller subsets, or mini-batches, of the data.
This approach introduces randomness into the optimization process, which can help
escape local minima and accelerate convergence. SGD is known for its efficiency
and ability to handle large datasets, making it particularly advantageous when
working with extensive image datasets like mine. The inherent stochastic nature
of SGD allows the optimization process to navigate through the parameter space
in a more dynamic manner, ultimately facilitating the modelŠs convergence to a
suitable solution. By combining the Cross-Entropy Loss with Stochastic Gradient
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Descent, I aimed to enhance the training process of my models, leading to improved
accuracy and efficiency in classifying movie frames into their respective genres.

The Ąnal training-related aspect I chose to incorporate was the step-down
policy. This strategy involves a dynamic adjustment of the learning rate during
the training process, and it is commonly utilized in machine learning models,
including neural networks. The primary objective of this approach is to Ąnd a
balance between swift convergence in the initial training stages and Ąne-tuning in
the later stages. At its core, the step-down policy encompasses the reduction of
the learning rate, generally by a predetermined factor, following a speciĄc count
of training epochs or iterations. This reduction enables the optimization process
to take more substantial strides in the initial phases, thereby facilitating rapid
convergence. As training advances and the optimization process approaches a
potential minimum, the learning rate is diminished, allowing for more delicate
reĄnements to the model parameters. By integrating the step-down policy, the
training process becomes more adaptable and effective, avoiding overshooting and
permitting the model to settle into a more optimal local minimum. This technique
frequently yields enhanced generalization and overall convergence of the model.
Its utility becomes particularly evident when dealing with intricate datasets or
deep architectures, where a well-balanced learning rate adjustment strategy is
pivotal for successful training. For the implementation of this policy, I employed
the StepLR() function from the torch.optim library [Listing B.1]. This function
necessitates three parameters: the optimizer (SGD), the step size (indicating the
number of epochs before the learning rate reduction), and the gamma factor (used
as a multiplicative coefficient for the learning rate decrease).

4.3 Hyperparameter Tuning

In the pursuit of building robust and accurate models for the genre classiĄ-
cation of movie frames, an essential phase involves Ąne-tuning the hyperparameters
of the chosen neural network architectures. Hyperparameters play a critical role in
shaping the behavior and performance of the models, inĆuencing aspects such as
convergence speed, generalization ability, and overall effectiveness. This section
outlines the process of hyperparameter tuning and details the initial trials con-
ducted to identify optimal conĄgurations. Hyperparameter tuning is a crucial step
in model development, requiring a systematic exploration of various parameter
settings to strike the right balance between underĄtting and overĄtting. The aim is
to discover hyperparameter values that facilitate the modelŠs capacity to generalize
well on unseen data while maintaining strong performance on the training data.
Additionally, the section delves into the initial trials, which serve as a starting
point for gauging the modelŠs response to different hyperparameter setups.
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The hyperparameters under my consideration encompass:

1. Batch size dictates the number of training examples utilized in each iteration
during gradient descent. A larger batch size can lead to faster convergence
but requires more memory.

2. Learning Rate controls the step size taken in the direction of minimizing
the loss function during optimization. A higher learning rate may accelerate
convergence, but a lower value might lead to more stable and accurate results.

3. Momentum is a factor that introduces inertia into the optimization process,
allowing the optimization algorithm to accumulate velocity in directions
with consistent gradients. It helps overcome local minima and accelerates
convergence.

4. Weight decay is a regularization technique that adds a penalty term to the loss
function based on the magnitudes of the modelŠs parameters. It discourages
overly large parameter values, reducing the risk of overĄtting.

5. Number of epochs denotes how many times the entire training dataset is
iterated over during training. It affects how many times the model updates
its parameters and can inĆuence both underĄtting and overĄtting.

6. Step size indicates the frequency at which the learning rate is adjusted during
training. It determines how often the learning rate is reduced to facilitate
convergence as training progresses.

7. Gamma is a multiplier applied to the learning rate during each step size
interval. It governs the extent of the learning rate reduction and impacts the
modelŠs adaptability and convergence behavior.

The selection of the batch size was inĆuenced by the available computational
memory. In the beginning, I opted for larger batches containing 256 images; however,
this proved to be excessive and strained the GPUŠs capacity. To mitigate this issue,
I progressively reduced the batch size until the challenges were resolved, ultimately
settling at 64. Momentum and weight decay values were chosen arbitrarily.

Among the parameters requiring signiĄcant attention, the adjustment of
the learning rate and the determination of the number of epochs assumed central
importance in the optimization process. Given the incorporation of the step-down
policy in my implementation, a strategic approach was taken for these critical
parameters. I started with relatively high learning rates, understanding that they
would be reduced as training advanced. ItŠs important to note that different learning
rate values were used for the original raw frames and their corresponding vectorscope
representations. However, the initial adoption of these higher learning rates posed a
challenge with loss values resulting in NaN (Not-a-Number) occurrences, impacting
the training process. To address this issue, a considered course of action was taken.
Subsequent adjustments to the learning rate played a role in addressing this problem,
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restoring training stability. Eventually, after iterative reĄnements, learning rates
were set at 0.005 for raw frames and 0.001 for vectorscope representations. This
decision aimed to Ąnd a balance between fast convergence and stable learning,
enabling the modelŠs learning progression while preventing undesirable Ćuctuations
during training.

The appropriate number of epochs was identiĄed by conducting the training
and assessing the loss plots, as well as the associated loss values at various epoch
checkpoints. This analysis revealed the stage at which the training loss consistently
decreased, while the test loss either leveled off or displayed signs of increase. This
moment served as a signiĄcant indicator, signifying the delicate balance between
model convergence and the potential for overĄtting. Figures 4.4, 4.5, and 4.6 depict
the loss plots corresponding to the preliminary experiments carried out on the raw
frames across various data augmentation approaches on AlexNet model.

Figure 4.4: Loss plot for raw frames without data augmentation, ran for 25 epochs
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Figure 4.5: Loss plot for raw frames with data augmentation on all samples, ran
for 25 epochs

Figure 4.6: Loss plot for raw frames with data augmentation on rare classes, ran
for 25 epochs

Upon careful examination of the provided plots, a clear pattern emerges:
the onset of overĄtting becomes noticeable before the 10th epoch, as evident from
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the test loss exhibiting an upward trend. Notably, when considering scenarios
involving data augmentation, as depicted in Figures 4.5 and 4.6, a distinct pattern
unfolds, with the initial training loss surpassing that of the test loss. This pattern
highlights the inĆuence of data augmentation on early model training stages.
The inclusion of the augmented dataset appears to impact the training process,
resulting in discernible loss dynamics between the training and test datasets. This
observation emphasizes the need for a comprehensive exploration of these dynamics
to ensure the modelŠs resilience and adaptability. One plausible reason for this
phenomenon could be the increased similarity of data in the examples involving
data augmentation. This similarity might extend the learning process as the model
aims to recognize these analogous patterns, contributing to the observed divergence
between training and test loss.

Similar situation appears when training the model on vectorscope represen-
tation of frames what can be seen on Figures 4.7, 4.8, and 4.9.

Figure 4.7: Loss plot for vectorscope frames without data augmentation, ran for
25 epochs
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Figure 4.8: Loss plot for vectorscope frames with data augmentation on all
samples, ran for 25 epochs

Figure 4.9: Loss plot for vectorscope frames with data augmentation on rare
classes, ran for 25 epochs

In the case of vectorscope representations, the occurence of overĄtting
becomes evident around the 10th epoch. Similarly, in the experiments involving
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data-augmented datasets, a parallel issue arises, related to that observed in the raw
frames experiments. Notably, training losses surpass test losses, and the rationale
behind this phenomenon may align with the explanation for the divergence witnessed
in the raw frames scenario. Another distinction worth noting is that, unlike the
raw frames scenario, the test setŠs loss doesnŠt experience an increase but rather
stabilizes on a plateau.

The outcomes of the initial runs are illustrated in Tables 4.1 and 4.2. The
metrics employed for assessing the experiments were:

• Precision is the proportion of correctly predicted positive instances out of
all instances predicted as positive. It focuses on the accuracy of positive
predictions.

• Recall, also known as Sensitivity or True Positive Rate, is the proportion of
correctly predicted positive instances out of all actual positive instances. It
emphasizes the modelŠs ability to capture all relevant instances.

• F1-score, is the harmonic mean of precision and recall. It provides a balanced
measure that considers both false positives and false negatives, making it
useful for imbalanced datasets, like the one IŠm dealing with.

• Support represents the number of actual occurrences of each class in the
dataset. It gives context to precision and recall values by indicating the size
of each class.

• Micro average calculates precision, recall, and F1-score across all classes by
summing up the individual true positives, false positives, and false negatives
and then calculating the metrics. ItŠs suitable for imbalanced datasets.

• Macro average calculates precision, recall, and F1-score for each class separately
and then takes their average. It treats all classes equally and doesnŠt consider
class imbalances.

• Weighted average calculates precision, recall, and F1-score for each class
separately and then takes their weighted average, where the weight is the
support of each class. It addresses class imbalances.

• Samples average calculates precision, recall, and F1-score for each instance
separately and then takes their average. ItŠs used for multilabel classiĄcation
when each instance can belong to multiple classes.
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Genre Precision Recall F1-score Support

action 0.531 0.652 0.585 1921

adventure 0.539 0.647 0.588 1882

comedy 0.603 0.725 0.658 2481

crime 0.431 0.444 0.437 705

drama 0.551 0.721 0.624 2587

horror 0.455 0.492 0.473 865

romance 0.423 0.413 0.418 555

thriller 0.369 0.340 0.354 588

micro avg 0.532 0.630 0.577 11584

macro avg 0.488 0.554 0.517 11584

weighted avg 0.527 0.630 0.573 11584

samples avg 0.532 0.649 0.571 11584

Table 4.1: Results of AlexNet run for raw frames without data augmentation, for
25 epochs

Genre Precision Recall F1-score Support

action 0.451 0.544 0.493 1921

adventure 0.456 0.473 0.464 1882

comedy 0.516 0.741 0.608 2481

crime 0.293 0.140 0.190 705

drama 0.458 0.768 0.574 2587

horror 0.382 0.320 0.348 865

romance 0.286 0.178 0.220 555

thriller 0.269 0.073 0.115 588

micro avg 0.457 0.542 0.496 11584

macro avg 0.389 0.405 0.377 11584

weighted avg 0.435 0.542 0.470 11584

samples avg 0.457 0.566 0.494 11584

Table 4.2: Results of AlexNet run for vectorscope frames without data augmenta-
tion, for 25 epochs

Given the substantial dataset imbalance, my primary focus will be on
evaluating the F1-score and the weighted average. Tables 4.1 and 4.2 demonstrate
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that raw frames exhibit slightly better results compared to their vectorscope coun-
terparts. ItŠs also important to highlight the signiĄcant computational advantage of
vectorscope calculations, with a runtime of approximately 10-15 minutes, notably
faster than the 30-45 minutes required for raw frames. Another noteworthy obser-
vation is the reduced F1-score achieved through vectorscope calculations, especially
for classes with limited representation, which I attempted to address through data
augmentation techniques.

Genre
F1-score

Supportraw frames vec frames

aug all aug rare aug all aug rare

action 0.573 0.564 0.496 0.488 1921

adventure 0.578 0.585 0.454 0.434 1882

comedy 0.663 0.661 0.599 0.611 2481

crime 0.416 0.430 0.153 0.218 705

drama 0.628 0.628 0.567 0.572 2587

horror 0.452 0.455 0.328 0.377 865

romance 0.404 0.411 0.114 0.181 555

thriller 0.341 0.363 0.075 0.155 588

weighted avg 0.567 0.542 0.470 0.468 11584

Table 4.3: Results of AlexNet runs with data augmentation, for 25 epochs

Table 4.3 provides a comprehensive depiction of the F1-score values across
a range of conducted experiments. The data presented in the table reveals that the
average F1-score results exhibit a slight reduction for the augmentation approach
targeting speciĄcally the less represented frames. However, this reduction is
counterbalanced by a notable increase in the F1-scores for individual genres classiĄed
as rare (e.g., the F1-score for the thriller genre escalates from 0.075 for all augmented
frames to 0.155 for the augmented frames focusing on rare instances), particularly
apparent in the context of vectorscope representations. Examining the context
of raw frames, an interesting trend emerges: there is an improvement in the
modelŠs performance with regard to less commonly represented frames, though
this enhancement is relatively small. Additionally, it is worth noting that for raw
frames, the outcomes without any augmentation demonstrate better results.
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4.4 Modifications to the Experiment - Merging

Classes

Because the F1-scores were low in prior experiments [Tables 4.1, 4.2 and
4.3], particularly for the vectorscope representations of frames, I chose to simplify
the experiment by combining classes based on my own criteria.

Up to this point, I have been addressing a multi-label classiĄcation problem
in which a movie could be assigned to a maximum of two genres out of the following
eight:

• Drama,

• Comedy,

• Action,

• Adventure,

• Horror,

• Crime,

• Thriller,

• Romance.

Analyzing the initial class distribution, which I obtained during the Ąrst
phase of class reduction, where I assumed that a movie could belong to a maximum
of two genres (as shown in Figure A.1, I noticed that the second most prominent
category comprises the combination of Action and Adventure classes. Similarly, I
found that Comedy and Romance frequently appear together, and thus, I merged
them into a single category. Moreover, I identiĄed Thriller, Horror, and Crime as
genres that could be grouped due to their related semantic meanings. Consequently,
I condensed the genres into four classes, each with the following representations
[4.10]:

• Action and Adventure: 16277 (later referred to as Act_Adv),

• Thriller, Horror and Crime: 12869 (Thr_Hor_Cri),

• Comedy and Romance: 10768 (Com_Rom),

• Drama: 5931 (Drama).
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Figure 4.10: Data distribution for the single label classiĄcation task

Subsequently, I implemented data augmentation for all frames based on
the current distribution, as depicted in Figure 4.10. The characteristics of the
image alterations precisely match the transformations applied to frames in the
previous experiments. These transformations were applied to 90% of the Drama
frames, 40% of the Thr_Hor_Cri frames, 30% of the Com_Rom frames, and 10%
of the Act_Adv frames. Consequently, I achieved the following distribution for the
training set, as shown in Figure 4.11:

• Thr_Hor_Cri: 15336,

• Act_Adv: 15194,

• Com_Rom: 11865,

• Drama: 9571.
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Figure 4.11: Data distribution for the single label classiĄcation task after the
data augmentation

Regarding the testing set it wasnŠt altered by the transformations so itŠs
distribution is similar to the original one depicted on Figure 4.10:

• Act_Adv: 2486,

• Thr_Hor_Cri: 1894,

• Com_Rom: 1604,

• Drama: 893.

4.4.1 Experiments on the Modified Dataset

The initial experiments conducted on the new dataset aimed to determine
the optimal number of epochs for the Ąnal experiments. I maintained the use
of the three models previously selected, and I introduced an additional model in
subsequent experiments. Furthermore, I retained the same loss function employed
in the earlier experiments. Simplifying the problem to single-label classiĄcation
allowed for the evaluation of the modelŠs performance based on accuracy as well.

The initial experiment utilized an AlexNet model and ran for 10 epochs,
as shown in Figure 4.12. In the plot, it is evident that the loss begins to stabilize
around the 4th epoch. Regarding the model evaluation, as presented in Table
4.4, the parameter values were improved compared to the multi-label classiĄcation
experiments. However, the least represented class, which is Drama in this case,
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still yielded the worst result. With the implementation of single-label classiĄcation,
I achieved an accuracy of 52.26%, enabling a direct comparison with the accuracies
of other models.

Genre Precision Recall F1-score Support

drama 0.415 0.217 0.285 893

act_adv 0.608 0.605 0.607 2486

com_rom 0.519 0.496 0.507 1604

thr_hor_cri 0.458 0.581 0.512 1894

micro avg 0.523 0.523 0.523 6877

macro avg 0.500 0.475 0.478 6877

weighted avg 0.521 0.523 0.516 6877

samples avg 0.523 0.523 0.523 6877

Table 4.4: Results of AlexNet run for raw frames, for 10 epochs

Figure 4.12: Loss plot of AlexNet run for raw frames, for 10 epochs

The second model evaluated on the updated dataset was VGG-16 ran for 8
epochs [Tbale 4.13]. Once more, the model begins to exhibit signs of overĄtting
around the 4th epoch, with slightly improved results compared to the AlexNet,
especially for the Drama class [Figure 4.5]. VGG-16 achieved an accuracy of 54.75%.
The sole aspect where VGG-16 lags behind is the computation time, which will be
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emphasized in subsequent sections.

Genre Precision Recall F1-score Support

drama 0.446 0.225 0.299 893

act_adv 0.637 0.631 0.634 2486

com_rom 0.522 0.541 0.531 1604

thr_hor_cri 0.490 0.596 0.538 1894

micro avg 0.547 0.547 0.547 6877

macro avg 0.524 0.498 0.500 6877

weighted avg 0.545 0.547 0.540 6877

samples avg 0.547 0.547 0.547 6877

Table 4.5: Results of VGG-16 run for raw frames, for 8 epochs

Figure 4.13: Loss plot of VGG-16 run for raw frames, for 8 epochs

The Ąnal model tested was ResNet-50, trained for 8 epochs [Figure 4.14].
As expected, overĄtting begins even before the 4th epoch. ResNet outperforms
the previous models by a signiĄcant margin, starting with an accuracy of 60.46%.
Regarding the other metrics presented in Table 4.6, the scores are more balanced
and notably higher for the less represented Drama class.
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Genre Precision Recall F1-score Support

drama 0.542 0.420 0.473 893

act_adv 0.685 0.698 0.692 2486

com_rom 0.583 0.575 0.579 1604

thr_hor_cri 0.543 0.594 0.568 1894

micro avg 0.605 0.605 0.605 6877

macro avg 0.588 0.572 0.578 6877

weighted avg 0.604 0.605 0.603 6877

samples avg 0.605 0.605 0.605 6877

Table 4.6: Results of ResNet-50 run for raw frames, for 8 epochs

Figure 4.14: Loss plot of ResNet-50 run for raw frames, for 8 epochs

Following the trial runs, I decided to use 4 epochs, a choice that was
subsequently validated in experiments involving vectorscope representations.

4.4.2 Model Selection - Vision Transformer

With the experimentŠs slight modiĄcation, I opted to explore another
model, speciĄcally the Vision Transformer [21] introduced in 2021. The Vision
Transformer (ViT) represents a groundbreaking advancement in deep learning
architecture, transforming the Ąeld of computer vision. In contrast to traditional
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Convolutional Neural Networks (CNNs), ViT leverages self-attention mechanisms
to capture global image patterns, replacing localized operations. It dissects images
into patches and treats them as sequences, resembling the methodology of Natural
Language Processing (NLP) models. This shift has resulted in enhanced image
classiĄcation capabilities and adaptability to tasks such as object detection and
image captioning.

ViTŠs versatility extends to Ąne-tuning pre-trained models for speciĄc
tasks, making it a popular choice across various domains. Additionally, it has
facilitated the development of multimodal models, bridging visual and textual data
for applications in natural language understanding and more. Ultimately, ViT
redeĄnes computer vision and propels artiĄcial intelligence forward by effectively
handling diverse data sources. In my experiment, IŠm speciĄcally utilizing the
ViT-Base-16 model to assess its performance and suitability in the context of my
research on movie genre classiĄcation.

Figure 4.15: ViT model diagram [21]
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5. Results

After conducting thorough analyses in the preceding sections, I have chosen
to evaluate four distinct models in my research:

1. AlexNet,

2. VGG-16,

3. ResNet-50,

4. Vision Transformer.

Using these models, I will explore four variations of the experiment, each
with its own unique dataset distribution:

1. raw frames randomly distributed between the training and testing sets.

2. vectorscope representations of frames randomly allocated between the training
and testing sets.

3. raw frames distributed in a manner that ensures frames from the same movie
are not present in both the training and testing sets.

4. vectorscope representations of frames distributed to prevent frames from the
same movie appearing in both the training and testing sets.

The purpose of these sixteen experiment variations is to provide in-depth
insights into how the selected models perform with different dataset distribu-
tions, ultimately advancing our understanding of movie genre classiĄcation. All
experiments were conducted for 4 epochs across the four aforementioned models.

5.1 Raw Frames - Random Distribution

To begin, I conducted the test on raw frames with random distribution,
resulting in the following accuracy rates:

1. AlexNet: 50.49%,

2. VGG-16: 54.08%,

3. ResNet-50: 60.54%,
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4. Vision Transformer: 56.07%.

Similar to the preliminary experiments, the Resnet-50 model consistently
delivers the best results, including computation time per one epoch (all experiments
were performed on the same GPU - NVIDIA RTX A6000):

1. AlexNet: 35 minutes,

2. VGG-16: 102 minutes,

3. ResNet-50: 35 minutes,

4. Vision Transformer: 47 minutes.

In these experiments, ResNet has demonstrated both superior effectiveness
and efficiency. The loss plot of the best model is shown in Figure 5.1.

Figure 5.1: Loss plot of ResNet-50 run for raw frames, for 4 epochs

As indicated in Table 5.1, the metric results closely resemble those of the
trial runs, with consistent performance across all classes and a minor reduction in
performance for the least represented class, Drama.
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Genre Precision Recall F1-score Support

drama 0.534 0.449 0.488 893

act_adv 0.677 0.688 0.682 2486

com_rom 0.592 0.576 0.584 1604

thr_hor_cri 0.554 0.574 0.568 1894

micro avg 0.605 0.605 0.605 6877

macro avg 0.589 0.577 0.582 6877

weighted avg 0.604 0.605 0.604 6877

samples avg 0.605 0.605 0.605 6877

Table 5.1: Results of ResNet-50 run for raw frames, for 4 epochs

As depicted in Table 5.2, the majority of classes were accurately predicted.
However, Drama was consistently misclassiĄed with other genres, Com_Rom was
frequently misclassiĄed as Thr_Hor_Cri and Act_Adv, and Act_Adv was often
misclassiĄed as Thr_Hor_Cri and vice versa.

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 401 164 134 194

Act_Adv 106 1710 228 442

Com_Rom 131 276 924 273

Thr_Hor_Cri 113 377 276 1128

Table 5.2: Confusion matrix of ResNet-50 run for raw frames, for 4 epochs

5.2 Vectorscope Representations - Random Dis-

tribution

In the second series of experiments, we conducted tests by running models
on vectorscope representations of frames with a random distribution, which led to
the following accuracy results:

1. AlexNet: 43.11%,

2. VGG-16: 45.73%,

3. ResNet-50: 42.69%,

4. Vision Transformer: 43.90%.

While the differences in accuracy are not substantial, ResNet-50 performed
the least effectively among these models, with the highest accuracy achieved by
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VGG-16. However, itŠs worth noting that this superior performance came at a cost,
as VGG-16 required the longest training time per epoch in this set of experiments,
as shown below:

1. AlexNet: 17 minutes,

2. VGG-16: 59 minutes,

3. ResNet-50: 19 minutes,

4. Vision Transformer: 26 minutes.

Despite the longer training time, VGG-16 outperformed the other models.
You can view the loss plot for the VGG-16 experiment in Figure 5.2.

Figure 5.2: Loss plot of VGG-16 run for vectorscope representations, for 4 epochs

The results obtained from the vectorscope experiments cannot be directly
compared to the trial runs, as they generally yielded lower accuracy. This is
expected since vectorscope representations contain less data than raw frames. The
report for the best experiment in this section is detailed in Table 5.3.
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Genre Precision Recall F1-score Support

drama 0.332 0.142 0.199 893

act_adv 0.537 0.508 0.522 2486

com_rom 0.444 0.494 0.468 1604

thr_hor_cri 0.409 0.508 0.453 1894

micro avg 0.457 0.457 0.457 6877

macro avg 0.430 0.413 0.410 6877

weighted avg 0.453 0.457 0.448 6877

samples avg 0.457 0.457 0.457 6877

Table 5.3: Results of VGG-16 run for vectorscope representations, for 4 epochs

Regarding the confusion matrix [Table 5.4], itŠs evident that for vectorscope
representations, correct classiĄcations are not as straightforward. In the case of the
least represented class, Drama, the incorrect prediction Thr_Hor_Cri occurred
nearly as frequently as the correct prediction. The same pattern is observed for the
other classes, with the exception of Act_Adv, which is often correctly classiĄed.

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 127 236 203 327

Act_Adv 90 1263 435 698

Com_Rom 56 388 793 367

Thr_Hor_Cri 465 357 276 962

Table 5.4: Confusion matrix of VGG-16 run for vectorscope representations, for 4
epochs

5.3 Raw Frames - "Separate" Distribution

In the subsequent series of tests, I evaluated the models using raw frames
that were further divided in such a way that frames from the same movie could
be present in both the training and testing sets. The resulting accuracies were as
follows:

1. AlexNet: 46.86%,

2. VGG-16: 48.78%,

3. ResNet-50: 51.55%,

4. Vision Transformer: 50.24%.
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As anticipated, in comparison to the previous experiment conducted with
raw frames, ResNet-50 emerged as the most suitable solution for the task, with the
following training times:

1. AlexNet: 35 minutes,

2. VGG-16: 116 minutes,

3. ResNet-50: 42 minutes,

4. Vision Transformer: 44 minutes.

In this speciĄc instance, ResNet-50 exhibited a less efficient training time
compared to AlexNet, with a signiĄcant gap. However, when taking its overall
performance into consideration, it remains a recommended choice. You can examine
the loss plot of the ResNet-50 experiment in Figure 5.3. The primary distinction
between the loss plots of randomly distributed frames and those that are separated
lies in the distance between the validation and training loss. This difference is a
result of the frames in the testing and training sets being more dissimilar from each
other than in previous experiments.

Figure 5.3: Loss plot of ResNet-50 run for raw frames, for 4 epochs

As indicated in Table 5.5, the results are predictably less favorable than
those with random frames distribution. Nevertheless, an accuracy exceeding 50%
remains valuable for future research, particularly as this experiment simulates a
more realistic scenario.
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Genre Precision Recall F1-score Support

drama 0.341 0.325 0.333 750

act_adv 0.621 0.592 0.606 2503

com_rom 0.478 0.487 0.482 1607

thr_hor_cri 0.486 0.513 0.500 2090

micro avg 0.516 0.516 0.516 6950

macro avg 0.481 0.480 0.480 6950

weighted avg 0.517 0.516 0.516 6950

samples avg 0.516 0.516 0.516 6950

Table 5.5: Results of ResNet-50 run for raw frames, for 4 epochs

Similarly to section 5.1 majority of the classes were predicted correctly
[Table 5.6] with slightly lesser results, especially regarding the Drama class. When
it comes to the Com_Rom it is often misclassiĄed as Thr_Hor_Cri, which is often
mistaken for Act_Adv.

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 244 141 160 205

Act_Adv 144 1483 289 587

Com_Rom 163 320 783 341

Thr_Hor_Cri 165 445 407 1073

Table 5.6: Confusion matrix of ResNet-50 run for raw frames, for 4 epochs

5.4 Vectorscope Representations - "Separate"

Distribution

In the Ąnal series of experiments, I assessed the performance of models
using vectorscope representations of frames with a distinct distribution, which
resulted in the following accuracy outcomes:

1. AlexNet: 42.58%,

2. VGG-16: 43.81%,

3. ResNet-50: 42.68%,

4. Vision Transformer: 42.17%.

Once again, similar to the results in Section 5.2, the VGG-16 model per-
formed the best. WhatŠs intriguing is the close similarity between the results of these
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experiments and the ones in Section 5.2 despite the differences in the experimental
modalities compared to raw frames. In the case of vectorscope representations, the
absolute difference in performance between the separate distribution and random
distribution experiments is approximately half the size. However, VGG-16 still lags
in terms of computation time, with the following training times:

1. AlexNet: 17 minutes,

2. VGG-16: 47 minutes,

3. ResNet-50: 23 minutes,

4. Vision Transformer: 25 minutes.

Despite the extended training duration, VGG-16 surpassed the performance
of the other models. You can examine the loss plot for the VGG-16 experiment in
Figure 5.4.

Figure 5.4: Loss plot of VGG-16 run for vectorscope representations, for 4 epochs

In this section, the outcomes closely resemble those in Section 5.2, showing
lower accuracy than the experiments conducted on raw frames. The comprehensive
report for the best experiment in this section is provided in Table 5.7.
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Genre Precision Recall F1-score Support

drama 0.330 0.187 0.239 750

act_adv 0.476 0.437 0.456 2503

com_rom 0.405 0.428 0.416 1607

thr_hor_cri 0.444 0.537 0.486 2090

micro avg 0.438 0.438 0.438 6950

macro avg 0.414 0.397 0.399 6950

weighted avg 0.434 0.438 0.432 6950

samples avg 0.438 0.438 0.438 6950

Table 5.7: Results of VGG-16 run for vectorscope representations, for 4 epochs

The confusion matrix (refer to Table 5.8) for vectorscope representations in
the "separate" distribution experiments reveals the least favorable results compared
to the other experiments, as initially anticipated.

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 140 214 167 229

Act_Adv 121 1095 483 804

Com_Rom 77 470 688 372

Thr_Hor_Cri 86 522 360 1122

Table 5.8: Confusion matrix of VGG-16 run for vectorscope representations, for 4
epochs

5.5 Binary Classification

With consistently inadequate results, I opted to explore the last possible
simpliĄcation to the problem: binary classiĄcation. I chose to narrow down the
dataset to the two largest classes, Thr_Hor_Cri and Act_Adv [refer to Figures
5.5, 5.6, 5.7 and 5.8].
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Figure 5.5: Data distribution of the
training dataset for random frame dis-
tribution

Figure 5.6: Data distribution of the
training dataset for "separate" frame
distribution

Figure 5.7: Data distribution of the
testing dataset for random frame dis-
tribution

Figure 5.8: Data distribution of the
testing dataset for "separate" frame
distribution

I decided to follow the path identiĄed earlier - the raw frames were processed
through the ResNet-50 model, and vectorscope representations were handled by
the VGG-16 model. The results of the initial experiment yielded an accuracy of
76.87%, indicating a promising aspect of the experiments. However, for binary
classiĄcation, the result remains low. The detailed classiĄcation report is presented
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in Table 5.9 and the confusion matrix in Table 5.10.

Genre Precision Recall F1-score Support

act_adv 0.811 0.773 0.791 2486

thr_hor_cri 0.719 0.763 0.741 1894

micro avg 0.769 0.769 0.769 4380

macro avg 0.765 0.768 0.766 4380

weighted avg 0.771 0.769 0.769 4380

samples avg 0.769 0.769 0.769 4380

Table 5.9: Results of ResNet-50 run for raw frames, for 5 epochs

Genre Act_Adv Thr_Hor_Cri

Act_Adv 1921 565

Thr_Hor_Cri 448 1446

Table 5.10: Confusion matrix of ResNet-50 run for raw frames, for 5 epochs

With vectorscopes, the situation is more unfavorable than anticipated,
resulting in an accuracy of 63.49% on the VGG-16 model. The detailed results are
presented in Tables 5.11 and 5.12.

Genre Precision Recall F1-score Support

act_adv 0.811 0.773 0.791 2486

thr_hor_cri 0.719 0.763 0.741 1894

micro avg 0.769 0.769 0.769 4380

macro avg 0.765 0.768 0.766 4380

weighted avg 0.771 0.769 0.769 4380

samples avg 0.769 0.769 0.769 4380

Table 5.11: Results of VGG-16 run for vec frames, for 5 epochs

Genre Act_Adv Thr_Hor_Cri

Act_Adv 1921 565

Thr_Hor_Cri 448 1446

Table 5.12: Confusion matrix of VGG-16 run for vec frames, for 5 epochs
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Additional experiments concentrated on a "separate" frames distribution.
Similar to prior experiments, the results are diminished. The accuracy for raw
frames tested on ResNet-50 is 70.22%, indicating a correlation between raw frames
and movie genres. Detailed results are provided in the tables 5.13 and 5.14.

Genre Precision Recall F1-score Support

act_adv 0.744 0.691 0.717 2503

thr_hor_cri 0.719 0.763 0.741 2090

micro avg 0.702 0.702 0.702 4593

macro avg 0.702 0.703 0.701 4593

weighted avg 0.705 0.702 0.703 4593

samples avg 0.702 0.702 0.702 4593

Table 5.13: Results of ResNet-50 run for raw frames, for 5 epochs

Genre Act_Adv Thr_Hor_Cri

Act_Adv 1730 773

Thr_Hor_Cri 595 1495

Table 5.14: Confusion matrix of ResNet-50 run for raw frames, for 5 epochs

Just as in the case of experiments conducted on four classes, the decline
in dataset performance is less pronounced when using vectorscope representations
compared to raw frames. For vectorscope representations processed with VGG-16
in the ŠseparateŠ distribution, the accuracy was 60.09% [refer to Tables 5.15 and
5.16].

Genre Precision Recall F1-score Support

act_adv 0.649 0.583 0.614 2503

thr_hor_cri 0.555 0.622 0.587 2090

micro avg 0.601 0.601 0.601 4593

macro avg 0.602 0.603 0.600 4593

weighted avg 0.606 0.601 0.602 4593

samples avg 0.601 0.601 0.601 4593

Table 5.15: Results of VGG-16 run for vec frames, for 5 epochs
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Genre Act_Adv Thr_Hor_Cri

Act_Adv 1460 1043

Thr_Hor_Cri 790 1300

Table 5.16: Confusion matrix of VGG-16 run for vec frames, for 5 epochs
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6. Conclusions

In general, the overall outcomes fall short of expectations. However, a
noteworthy observation directs to the accuracy exhibited in experiments utilizing
vectorscope representations. Not only did these experiments demonstrate a nearly
double the increase in speed, but their accuracy also displayed consistency across
diverse experimental conditions. This included successful performance on both
simpler and more challenging datasets, such as those featuring a random distribution
of data versus datasets where movies were separated between training and testing
sets.

One notable observation lies in the distinct performance of each model,
with ResNet-50 emerging as the most proĄcient choice for raw frames, achieving an
accuracy of 60.54%. Conversely, VGG-16 demonstrated its superiority in handling
vectorscope representations, attaining an accuracy of 45.73%. ItŠs worth highlighting
that although VGG-16 excelled in accuracy, it concurrently exhibited an extended
training duration compared to alternative models, rendering it the slower option.
For a comprehensive overview of the average performance of all models and their
corresponding epoch times, refer to Figure 6.1. Notably, ResNet-50 surpasses all
models in terms of accuracy while maintaining the second-best computational
efficiency, whereas VGG-16 stands out as the slowest option.
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Figure 6.1: Model accuracies in relation to the duration of each epoch

Another crucial aspect to consider in interpreting results is the inherent
difficulty of the task. ItŠs not always feasible to accurately classify the genre of a
movie based solely on a movie frame, let alone the extracted color data. Examples
of misclassiĄcation are illustrated below.

The initial example [Figure 6.2] depicts an image from a movie belonging
to the class Act_Adv that was inaccurately classiĄed as Com_Rom. The misclas-
siĄcation in this instance can be rationalized. The scene contains numerous lively
and vibrant colors, implying a sense of happiness. Additionally, there is a person
wearing a costume and a smiling girl in the background.
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Figure 6.2: Example of Act_Adv frame classiĄed as Com_Rom

The second example [Figure 6.3] illustrates a typical misclassiĄcation where
Act_Adv is wrongly classiĄed as Thr_Hor_Cri. This misclassiĄcation is justiĄable
when considering the predominantly dark colors in the frame. Additionally, the
person in the frame appears nervous and has a bloody scar on their forehead.

Figure 6.3: Example of Act_Adv frame classiĄed as Thr_Hor_Cri

The next example [Figure 6.4] depicts Com_Rom misclassiĄed as Drama,
representing another instance of a common mistake, as many movies can be broadly
categorized as drama. In this example, there are no close-ups in the frame, people
are not displaying emotions, and the colors are dull with nothing particularly
standing out.
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Figure 6.4: Example of Act_Adv frame classiĄed as Thr_Hor_Cri

The Ąnal example [Figure 6.5] is noteworthy as it represents an uncommon
situation where Thr_Hor_Cri is misclassiĄed as Com_Rom. In this case, the frame
depicts an elegant woman with a slight smile, red lipstick, and jewelry, suggesting
the possibility of the movie being a romance.

Figure 6.5: Example of Act_Adv frame classiĄed as Thr_Hor_Cri

Another facet open for potential enhancement revolves around the dataset
itself. The dataset employed was generated automatically, incorporating basic
Ąltering and limited to a small collection of clips. Despite the current constraints
in accuracy measures, the results exhibit promise for future research, particularly
when considering the prospect of employing a larger and more comprehensive
dataset.
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A.1 Filtering the Dataset

The provided Python code snippet serves the purpose of verifying the
availability of a video.

1 de f v ideo_ava i l ab l e ( l i n k ) :
2 # checking i f v ideo i s a v a i l a b l e
3 u r l = ’ https : //www. youtube . com/watch?v=’ + l i n k
4

5 t ry :
6 pafy . new( u r l )
7 re turn True
8 except OSError :
9 re turn Fal se

10 except :
11 re turn Fal se

Listing A.1: Python video_available() function

The provided Python code snippet is used to determine whether a YouTube
video is in grayscale or not.

1 de f color_check ( l i n k ) :
2 u r l = ’ https : //www. youtube . com/watch?v=’ + l i n k
3

4 t ry :
5 vPafy = pafy . new( u r l )
6 play = vPafy . g e tbe s tv ideo ( pre f type=’webm ’ )
7

8 video = cv2 . VideoCapture ( play . u r l )
9

10 f p s = i n t ( v ideo . get ( cv2 .CAP_PROP_FPS) )
11

12 # vid_len = vPafy . l ength
13

14 # we want to ex t r a c t one frame from the 2 second o f the v ideo
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15 frame_num = i n t ( fp s ∗ 2)
16

17 # pr in t ( ’ frame to ex t r a c t : ’ , frame_num)
18

19 current_frame = 0
20

21 whi le ( True ) :
22 # read frame
23 ret , frame = video . read ( )
24

25 i f r e t :
26 i f current_frame == frame_num :
27 # cv2 . imshow ( ’ frame ’ , frame )
28

29 # s p l i t t i n g b , g , r channe l s
30 b , g , r = cv2 . s p l i t ( frame )
31

32 # g e t t i n g d i f f e r e n c e s between (b , g ) , ( r , g ) , (b , r )
33 # channel p i x e l s
34 r_g = np . count_nonzero ( abs ( r−g ) )
35 r_b = np . count_nonzero ( abs ( r−b) )
36 g_b = np . count_nonzero ( abs ( g−b) )
37

38 # sum of d i f f e r e n c e s
39 diff_sum = f l o a t ( r_g+r_b+g_b)
40

41 # f i n d i n g r a t i o o f diff_sum with r e s p e c t to s i z e
42 # of image
43 r a t i o = diff_sum / frame . s i z e
44

45 i f r a t i o > 0 . 0 0 5 :
46 # pr in t ( " image i s c o l o r " )
47 ret_val = True
48 e l s e :
49 # pr in t ( " image i s g r e y s c a l e " )
50 ret_val = False
51

52 break
53 # current_frame += 1
54 e l s e :
55 current_frame += 1
56 e l s e :
57 ret_val = False
58 break
59

60

61 # r e l e a s e VideoCapture
62 video . r e l e a s e ( )
63

70



Data Preprocessing

64 cv2 . destroyAllWindows ( )
65

66 re turn ret_val
67

68 except :
69 re turn Fal se

Listing A.2: Python color_check() function

A.2 Limiting the Dataset

Distribution of all available movie genre combinations:

• Drama: 5931,

• Action, Adventure: 5319,

• Comedy: 4052,

• Adventure, Comedy: 3979,

• Comedy, Drama: 3090,

• Crime, Drama: 2329,

• Action, Drama: 1746,

• Comedy, Romance: 1740,

• Drama, Romance: 1683,

• Adventure, Drama: 1478,

• Horror, Thriller: 1361,

• Horror: 1327,

• Adventure: 1276,

• Action: 1248,

• Action, Thriller: 1204,

• Action, Comedy: 1160,

• Comedy, Horror: 1072,

• Action, Crime: 919,

• Comedy, Crime: 902,

• Action, Horror: 859,

• Drama, Horror: 793,

• Drama, Thriller: 679,

• Thriller: 455,

• Romance: 203,

• Romance, Thriller: 168,

• Crime: 156,

• Adventure, Horror: 154,

• Comedy, Thriller: 131,

• Crime, Horror: 109,

• Crime, Thriller: 80,

• Horror, Romance: 72,

• Action, Romance: 71,

• Crime, Romance: 56,

• Adventure, Thriller: 43.
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Figure A.1: Number of occurrences of combinations of genres
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A.3 Collecting the Data

The provided Python code snippet serves the purpose of extracting frames
from a youtube video.

1 de f extract_frame ( l ink , genre , start_frame , i n t e r v a l , fo lder_path ) :
2

3 genre_str = genre . r e p l a c e ( " ’ " , " " ) . r e p l a c e (
4 " [ " , " " ) . r e p l a c e ( " ] " , " " ) . r e p l a c e ( " " , " " ) . r e p l a c e ( " , " , "_" )
5

6 i f os . path . e x i s t s ( fo lder_path + " / " + genre_str + " / " + l i n k ) :
7 pr in t ( fo lder_path + " / " + genre_str + " / " + l i n k + " e x i s t s " )
8 re turn
9 e l s e :

10 c reate_d i r ( fo lder_path + " / " + genre_str + " / " + l i n k )
11 pr in t ( " Creat ing f o l d e r . . . " + fo lder_path + " / " + genre_str )
12

13 u r l = ’ https : //www. youtube . com/watch?v=’ + l i n k
14

15 vPafy = pafy . new( u r l )
16 play = vPafy . g e tbe s tv ideo ( pre f type=’webm ’ )
17

18 video = cv2 . VideoCapture ( play . u r l )
19

20 f p s = i n t ( v ideo . get ( cv2 .CAP_PROP_FPS) )
21

22 vid_len = vPafy . l ength
23

24 # we want to get the f i r s t frame at start_frame seconds
25 # and then each frame a f t e r the next i n t e r v a l seconds
26 s tar t_va lue = start_frame ∗ f p s
27 i n t e r v a l _ f p s = i n t e r v a l ∗ f p s
28 # we stop at the 3/4 o f the v ideo because o f the f a c t
29 # that v ideos u sua l l y conta in some ending c r e d i t s
30 stop_value = i n t (3/4 ∗ f p s ∗ vid_len )
31

32 frame_numbers = [ s tar t_va lue ]
33

34 whi le frame_numbers [ −1] + i n t e r v a l _ f p s < stop_value :
35 frame_numbers . append ( frame_numbers [ −1] + i n t e r v a l _ f p s )
36

37 current_frame = 0
38

39 whi le ( True ) :
40 # read frame
41 ret , frame = video . read ( )
42

43 i f r e t :
44 i f current_frame in frame_numbers :
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45 name = folder_path + " / " + genre_str +\
46 " / " + l i n k + " / " + s t r ( current_frame ) + ’ . jpg

’
47

48 i f os . path . i s f i l e (name) :
49 pr in t (name + " e x i s t s " )
50 e l s e :
51 pr in t ( " Creat ing . . . " + name)
52 cv2 . imwrite (name , frame )
53

54 # s h u t i l . move(name , des t )
55 current_frame += 1
56 e l s e :
57 current_frame += 1
58 e l s e :
59 break
60

61 i f current_frame > frame_numbers [ −1 ] :
62 break
63

64 # r e l e a s e VideoCapture
65 video . r e l e a s e ( )
66

67 cv2 . destroyAllWindows ( )

Listing A.3: Python extract_frame() function

The provided Python code snippet serves the purpose of creating the
data.tsv Ąle.

1 # Loop over s u b f o l d e r s in the parent f o l d e r
2 f o r s u b f o l d e r in os . l i s t d i r ( parent_fo lder ) :
3

4 subfo lder_path = os . path . j o i n ( parent_fo lder , s u b f o l d e r )
5

6 i f os . path . i s d i r ( subfo lder_path ) :
7

8 # Loop over sub−s u b f o l d e r s in the s u b f o l d e r
9 f o r subsub fo lde r in os . l i s t d i r ( subfo lder_path ) :

10 subsubfolder_path = os . path . j o i n ( subfolder_path ,
subsub fo lde r )

11

12 f o r frame in os . l i s t d i r ( subsubfolder_path ) :
13

14 frame_path = os . path . j o i n ( subsubfolder_path , frame )
15

16 i f os . path . e x i s t s ( frame_path ) :
17 current_genres = s u b f o l d e r . s p l i t ( ’_ ’ )
18 binary_genre_l i s t = [ ]
19
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20 f o r genre in g e n r e _ l i s t :
21 i f genre in current_genres :
22 binary_genre_l i s t . append (1)
23 e l s e :
24 binary_genre_l i s t . append (0)
25

26 re lat ive_frame_path = frame_path [ 3 : ]
27

28 row_l i s t = [ relat ive_frame_path , current_genres ]
+ binary_genre_l i s t

29

30 row = pd . DataFrame ( [ row_l i s t ] , columns=header )
31

32 data_df = data_df . append ( row . i l o c [ 0 ] ,
ignore_index=True )

33

34 data_df . to_csv ( r ’ . . \ f i l e s \ data . t sv ’ , sep=" \ t " )

Listing A.4: Python code for creating the data.tsv Ąle

The provided Python code is used to show the distribution of training and
testing subsets of the data fed into the CNN.

1 de f ge t_genre_di s t r ibut ion ( df ) −> d i c t :
2

3 ex i s t i ng_genre s = {}
4

5 # Loop over s u b f o l d e r s in the parent f o l d e r
6 f o r index , row in df . i t e r r o w s ( ) :
7

8 genre = ’_ ’ . j o i n ( a s t . l i t e r a l _ e v a l ( row [ ’ genre ’ ] ) )
9

10 i f genre not in ex i s t i ng_genre s :
11 ex i s t i ng_genre s [ genre ] = 1
12 e l s e :
13 ex i s t i ng_genre s [ genre ] += 1
14

15

16 ex i s t i ng_genre s = d i c t ( so r t ed ( ex i s t i ng_genre s . i tems ( ) , key=lambda
x : x [ 1 ] , r e v e r s e=True ) )

17

18

19 s i n g l e _ g e n r e _ l i s t = [ ]
20

21 f o r gen in ex i s t i ng_genre s . keys ( ) :
22

23 gen_l i s t = gen . s p l i t ( ’_ ’ )
24

25 f o r g in gen_l i s t :
26
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27 i f g not in s i n g l e _ g e n r e _ l i s t :
28 s i n g l e _ g e n r e _ l i s t . append ( g )
29

30

31 ex i s t i ng_s ing l e_genr e s = {}
32

33 f o r gen in s i n g l e _ g e n r e _ l i s t :
34

35 i f gen not in ex i s t i ng_s ing l e_genr e s :
36 ex i s t i ng_s ing l e_genr e s [ gen ] = 0
37

38 f o r g in ex i s t i ng_genre s :
39

40 i f gen in g :
41 ex i s t i ng_s ing l e_genr e s [ gen ] += ex i s t i ng_genre s [ g ]
42

43 ex i s t i ng_s ing l e_genr e s = d i c t ( so r t ed ( ex i s t i ng_s ing l e_genr e s . i tems
( ) , key=lambda x : x [ 1 ] , r e v e r s e=True ) )

44

45 p l t . f i g u r e ( f i g s i z e = (10 , 5) )
46

47 p l t . bar ( ex i s t i ng_s ing l e_genr e s . keys ( ) , ex i s t i ng_s ing l e_genr e s .
va lue s ( ) )

48

49 p l t . x l a b e l ( " Genres " )
50 p l t . y l a b e l ( " Occurrence " )
51 p l t . t i t l e ( " Occurence o f genres " )
52

53 re turn ex i s t i ng_s ing l e_gen r e s

Listing A.5: Python distribution_of_data() function
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The provided Python code is used to normalize the values inside of the
dictionary.

1 de f normal ize_dict ( data_dict ) :
2 norm_dict = {}
3

4 f o r key in data_dict :
5 norm_value = f l o a t ( data_dict [ key ] ) /max( data_dict . va lue s ( ) )
6 norm_dict [ key ] = norm_value
7

8 re turn norm_dict

Listing A.6: Python normalize_dict() function

The provided Python code snippet serves the purpose of dividing the
dataset on training and testing split in a random manner.

1 df = df . sample ( f r a c =1) . reset_index ( drop=True )
2 df = df . l o c [ : , ~df . columns . s t r . conta in s ( ’^Unnamed ’ ) ]
3

4 df_train_random , df_test_random = t r a i n _ t e s t _ s p l i t ( df , t e s t _ s i z e
=0.15)

5

6 df_train_random = df_train_random . reset_index ( drop=True )
7 df_test_random = df_test_random . reset_index ( drop=True )

Listing A.7: Python code for splitting the dataset randomly

The provided Python code is used to divide the dataset in a manner which
doesnŠt allow frames of one movie to be in both training and testing dataset.

1 # Add a column with the path o f the movie f o l d e r but without the . jpg
f i l e s

2

3 df [ ’ path_no_fi le ’ ] = df . apply ( lambda row : row [ ’ path ’ ] [ : row [ ’ path ’ ] .
r f i n d ( " \\ " ) ] , a x i s =1)

4

5 df = df [ [ d f . columns [ −1 ] ] + df . columns [ : − 1 ] . t o l i s t ( ) ]
6

7 # Get the pandas s e r i e s with separa te movie paths to l a t e r merge them
with the prev ious t ab l e

8

9 df_path_no_file = df [ ’ path_no_fi le ’ ] . drop_dupl icates ( )
10

11 # S p l i t the pandas s e r i e s
12

13 df_path_no_file = df_path_no_file . sample ( f r a c =1) . reset_index ( drop=
True )

14
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15 df_path_no_file_train_separate_movies ,
df_path_no_fi le_test_separate_movies = t r a i n _ t e s t _ s p l i t (
df_path_no_file , t e s t _ s i z e =0.15)

16

17 df_path_no_fi le_train_separate_movies =
df_path_no_fi le_train_separate_movies . reset_index ( drop=True )

18 df_path_no_fi le_test_separate_movies =
df_path_no_fi le_test_separate_movies . reset_index ( drop=True )

19

20 # Merge t a b l e s and check the d i s t r i b u t i o n o f a t r a i n i n g s e t
21

22 df_train_separate_movies = pd . merge ( df ,
df_path_no_file_train_separate_movies , on=’ path_no_fi le ’ , how=’
inner ’ )

23

24 df_train_separate_movies = df_train_separate_movies [
df_train_separate_movies . columns . t o l i s t ( ) [ 1 : ] ]

25

26 get_genre_di s t r ibut ion ( df_train_separate_movies )
27

28 # Merge t a b l e s and check the d i s t r i b u t i o n o f a t e s t s e t
29

30 df_test_separate_movies = pd . merge ( df ,
df_path_no_file_test_separate_movies , on=’ path_no_fi le ’ , how=’
inner ’ )

31

32 df_test_separate_movies = df_test_separate_movies [
df_test_separate_movies . columns . t o l i s t ( ) [ 1 : ] ]

33

34 get_genre_di s t r ibut ion ( df_test_separate_movies )

Listing A.8: Python code for splitting the dataset for the second experiment

The provided Python code snippet presents a part of vectorscope.py.

1 s r c = Image . open ( raw_image )
2 s r c = s r c . r e s i z e ( (320 , 180) )
3 s r c = asarray ( s r c )
4

5 i f s r c . dtype == np . u int16 :
6 s r c = ( s r c / 2∗∗8) . astype (np . u int8 )
7

8 R, G, B = s r c [ : , : , 0 ] , s r c [ : , : , 1 ] , s r c [ : , : , 2 ]
9

10 Y = (0 .299 ∗ R) + (0 .587 ∗ G) + (0 .114 ∗ B)
11 Cb = ( −0.169 ∗ R) − (0 . 331 ∗ G) + (0 .499 ∗ B) + 128
12 Cr = (0 .499 ∗ R) − (0 . 418 ∗ G) − (0 .0813 ∗ B) + 128
13

14 # t r a d i t i o n a l vec to r s cope o r i e n t a t i o n
15 Cr = 256 − Cr
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16

17 dst = np . z e ro s ( (256 , 256 , 3) , dtype=s r c . dtype )
18

19 f o r x in range ( s r c . shape [ 0 ] ) :
20 f o r y in range ( s r c . shape [ 1 ] ) :
21 dst [ i n t (Cr [ x , y ] ) , i n t (Cb [ x , y ] ) ] = np . array ( [R[ x , y ] , G[ x , y

] , B[ x , y ] ] )
22 # pr in t ( l en ( dst ) )
23

24 cv2 . imwrite ( vec_image , dst )

Listing A.9: Python vectorscope.py code snippet

The provided Python code shows how the data augmentation parameters
for the transformations were chosen.

1 de f generate_random_parameters ( im_width , im_height ) :
2 width = random . rand int ( im_width / 2 , im_width )
3 he ight = random . rand int ( im_height / 2 , im_height )
4

5 br i g h tne s s = random . uniform ( 0 . 2 , 0 . 8 )
6 con t ra s t = random . uniform ( 0 . 2 , 0 . 8 )
7 s a t u r a t i o n = random . uniform ( 0 . 2 , 0 . 8 )
8 hue = random . uniform ( 0 . 1 , 0 . 2 )
9

10 blur_kerne l_s i ze = random . cho i c e ( range (3 , 100 , 2) )
11

12 re turn ( height , width , br ightnes s , contras t , sa turat i on , hue ,
b lur_kerne l_s i ze )

Listing A.10: Python function returning random parameters for image
dransformation used in data augmentation

The provided Python function generates the modiĄed image in data aug-
mentation.

1 de f generate_modified_image ( image_path ) :
2 # Load the image
3 image_path = image_path . r e p l a c e ( " \\ " , " / " )
4 image = Image . open ( image_path )
5 width , he ight = image . s i z e
6

7 (
8 crop_height ,
9 crop_width ,

10 br ightnes s ,
11 contras t ,
12 sa tura t i on ,
13 hue ,
14 blur_kerne l_s ize ,
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15 ) = generate_random_parameters ( width , he ight )
16

17 # Def ine t rans f o rmat i ons to apply to the image
18 trans form = trans forms . Compose (
19 [
20 t rans forms . RandomCrop ( ( crop_height , crop_width ) ) ,
21 t rans forms . RandomHorizontalFlip ( ) ,
22 t rans forms . RandomVerticalFlip ( ) ,
23 t rans forms . C o l o r J i t t e r (
24 br i g h tne s s=br ightnes s , c on t ra s t=contras t , s a t u r a t i o n=

saturat i on , hue=hue
25 ) ,
26 t rans forms . GaussianBlur ( k e rne l_s i z e=blur_kerne l_s i ze ) ,
27 ]
28 )
29

30 # Transform the image
31 transformed_image = transform ( image )
32

33 # # Display the transformed image
34 # p l t . imshow ( transformed_image )
35 # p l t . ax i s ( " o f f " )
36 # p l t . show ( )
37

38 # Extract d i r e c t o r y path
39 directory_path = os . path . dirname ( image_path )
40

41 # Create augmented d i r e c t o r y path
42 augmented_directory_path = directory_path . r e p l a c e ( " _frames " , "

_frames_aug " )
43 c reate_d i r ( augmented_directory_path . r e p l a c e ( " \\ " , " / " ) )
44

45 # Create augmented image f i l e path
46 augmented_image_path = image_path . r e p l a c e ( " _frames " , " _frames_aug

" ) . r e p l a c e (
47 " . jpg " , "_aug . jpg "
48 )
49

50 transformed_image . save ( augmented_image_path . r e p l a c e ( " \\ " , " / " ) )
51

52 re turn augmented_image_path . r e p l a c e ( " raw_frames_aug/ " , " " ) .
r e p l a c e ( " \\ " , " / " )

Listing A.11: Python generate_modified_image() function

80



Data Preprocessing

A.4 Loading the Data

The provided Python code snippet presents the MovieFramesDataset class.

1 c l a s s MovieFrameDataset ( Dataset ) :
2

3 de f __init__( s e l f , root_dir , csv , trans form=None , raw=False ) :
4

5 super ( ) . __init__ ( )
6 s e l f . root_dir = root_dir
7 s e l f . csv = csv
8 s e l f . t rans form = transform
9 s e l f . raw = raw

10

11 df = pd . read_csv ( csv , sep=" \ t " )
12

13 s e l f . e lements = [ root_dir + p f o r p in df [ ’ path ’ ] . t o _ l i s t ( ) ]
14 s e l f . l a b e l s = [ row . t o _ l i s t ( ) f o r _, row in df . i l o c [ : , −8 : ] .

i t e r r o w s ( ) ]
15 s e l f . l ength = len ( df )
16

17 s e l f . l abe l s_orde r = df . i l o c [ : , −8 : ] . columns . t o l i s t ( )
18

19 de f __len__( s e l f ) :
20

21 re turn s e l f . l ength
22

23 de f __getitem__( s e l f , index ) :
24

25 img = Image . open ( s e l f . e lements [ index ] . r s t r i p ( ) )
26

27 pr in t ( s e l f . e lements [ index ] )
28

29 t a r g e t = s e l f . l a b e l s [ index ]
30

31 i f s e l f . raw :
32 # two f o l l o w i n g s t ep s o f trans form are not enc l o s ed in

trans form
33 # parameter as cropping in that way i s not a v a i l a b l e in

t rans forms
34 # l i b r a r y
35 # they are only used f o r raw images
36 img = trans forms . Res i ze ( (700 , 1000) ) ( img )
37 img = TF. crop ( img , 90 , 0 , 520 , 1000)
38

39 i f s e l f . t rans form i s not None :
40 img = s e l f . t rans form ( img )
41

42
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43 image , l a b e l = img , t a r g e t
44

45 re turn torch . t enso r ( image , dtype=torch . f l o a t 3 2 ) , torch . t ensor
( l abe l , dtype=torch . f l o a t 3 2 )

Listing A.12: Python MovieFramesDataset class

The provided Python code shows how the frames were transformed inside
of the MovieFramesDataset class.

1 # Transforming the data
2 trans form = trans forms . Compose ( [
3 t rans forms . Res i ze ( (224 , 224) ) ,
4 # trans forms . CenterCrop (224) ,
5 t rans forms . ToTensor ( ) ,
6 t rans forms . Normalize ( [ 0 . 4 8 5 , 0 . 456 , 0 . 4 0 6 ] ,
7 [ 0 . 2 2 9 , 0 . 224 , 0 . 2 2 5 ] )
8 ] )

Listing A.13: Python code for transforming the raw frames

The provided Python code snippet illustrates the utilization of the Dataset

and DataLoader classes.

1 # Creat ing the datase t and data l o a d e r s
2 train_frames_type , test_frames_type , t r a i n _ l i s t , t e s t _ l i s t =

choose_data_params (
3 opt [ " frames " ] , opt [ " augmentation " ] , opt [ " da ta_d i s t r ibut i on " ]
4 )
5

6 t r a in_se t_a l l = MovieFrameDataset (
7 " {}/ " . format ( train_frames_type ) ,
8 " f i l e s /{} . t sv " . format ( t r a i n _ l i s t ) ,
9 trans form=transform ,

10 raw=True ,
11 )
12 t e s t_se t_a l l = MovieFrameDataset (
13 " {}/ " . format ( test_frames_type ) ,
14 " f i l e s /{} . t sv " . format ( t e s t _ l i s t ) ,
15 trans form=transform ,
16 raw=True ,
17 )
18

19 t ra in_se t = torch . u t i l s . data . Subset (
20 t ra in_set_a l l , l i s t ( range (0 , i n t ( 0 . 4 ∗ l en ( t r a in_se t_a l l ) ) ) )
21 )
22 t e s t_se t = torch . u t i l s . data . Subset (
23 t e s t_se t_a l l , l i s t ( range (0 , i n t ( 0 . 4 ∗ l en ( t e s t_se t_a l l ) ) ) )
24 )
25
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26 i f not opt [ " t r i a l " ] :
27 t ra in_se t = t ra in_se t_a l l
28 t e s t_se t = te s t_se t_a l l
29

30 pr in t ( " t ra in_se t : " , l en ( t ra in_se t ) )
31 pr in t ( " t e s t_se t : " , l en ( t e s t_se t ) )
32

33 t ra in_loader = DataLoader ( tra in_set , batch_size=BATCH_SIZE, s h u f f l e=
True )

34 t e s t_ loader = DataLoader ( tes t_set , batch_size=BATCH_SIZE, s h u f f l e=
False )

Listing A.14: The utilization of the Dataset and DataLoader classes
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B.1 Loss and Optimization

The provided Python code snippet illustrates the implementation of loss
function, optimizer and the step-down policy.

1 # Def ine l o s s func t i on
2 c r i t e r i o n = nn . CrossEntropyLoss ( )
3 opt imize r = optim .SGD(
4 model . parameters ( ) , l r=LR, momentum=MOMENTUM, weight_decay=

WEIGHT_DECAY
5 )
6 s chedu l e r = optim . l r_schedu l e r . StepLR ( opt imizer , s t ep_s i z e=STEP_SIZE,

gamma=GAMMA)

Listing B.1: The implementation of loss, optimizer and step-down functions
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B.2 Results

B.2.1 Raw Frames - Random Distribution

AlexNet

Additional Ągures and tables for AlexNet experiments in 5.1 section.

Figure B.1: Loss plot of AlexNet run for raw frames, for 4 epochs

Genre Precision Recall F1-score Support

Drama 0.350 0.202 0.256 893

Act_Adv 0.584 0.580 0.582 2486

Com_Rom 0.512 0.480 0.495 1604

Thr_Hor_Cri 0.452 0.571 0.505 1894

micro avg 0.505 0.505 0.505 6877

macro avg 0.475 0.458 0.459 6877

weighted avg 0.500 0.505 0.498 6877

samples avg 0.505 0.505 0.505 6877

Table B.1: Results of AlexNet run for raw frames, for 4 epochs
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Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 180 234 165 314

Act_Adv 124 1441 297 624

Com_Rom 94 368 770 372

Thr_Hor_Cri 116 425 272 1081

Table B.2: Confusion matrix of AlexNet run for raw frames, for 4 epochs

VGG-16

Additional Ągures and tables for VGG-16 experiments in 5.1 section.

Figure B.2: Loss plot of VGG-16 run for raw frames, for 4 epochs
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Genre Precision Recall F1-score Support

Drama 0.442 0.267 0.332 893

Act_Adv 0.632 0.631 0.632 2486

Com_Rom 0.512 0.531 0.522 1604

Thr_Hor_Cri 0.484 0.560 0.519 1894

micro avg 0.541 0.541 0.541 6877

macro avg 0.517 0.497 0.501 6877

weighted avg 0.538 0.541 0.536 6877

samples avg 0.541 0.541 0.541 6877

Table B.3: Results of VGG-16 run for raw frames, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 238 170 214 271

Act_Adv 113 1569 266 538

Com_Rom 89 340 852 323

Thr_Hor_Cri 99 404 331 1060

Table B.4: Confusion matrix of VGG-16 run for raw frames, for 4 epochs

ViT

Additional Ągures and tables for ViT experiments in 5.1 section.
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Figure B.3: Loss plot of ViT run for raw frames, for 4 epochs

Genre Precision Recall F1-score Support

Drama 0.466 0.302 0.367 893

Act_Adv 0.647 0.649 0.648 2486

Com_Rom 0.532 0.557 0.544 1604

Thr_Hor_Cri 0.508 0.570 0.537 1894

micro avg 0.561 0.561 0.561 6877

macro avg 0.538 0.520 0.524 6877

weighted avg 0.558 0.561 0.557 6877

samples avg 0.561 0.561 0.561 6877

Table B.5: Results of ViT run for raw frames, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 270 178 183 262

Act_Adv 106 1614 285 481

Com_Rom 97 310 893 304

Thr_Hor_Cri 107 392 316 1079

Table B.6: Confusion matrix of ViT run for raw frames, for 4 epochs
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B.2.2 Vectorscope Representations - Random Distribution

AlexNet

Additional Ągures and tables for AlexNet experiments in 5.2 section.

Figure B.4: Loss plot of AlexNet run for vectorscope representations, for 4 epochs

Genre Precision Recall F1-score Support

Drama 0.317 0.071 0.115 893

Act_Adv 0.513 0.464 0.487 2486

Com_Rom 0.407 0.489 0.444 1604

Thr_Hor_Cri 0.385 0.509 0.439 1894

micro avg 0.431 0.431 0.431 6877

macro avg 0.405 0.383 0.371 6877

weighted avg 0.428 0.431 0.416 6877

samples avg 0.431 0.431 0.431 6877

Table B.7: Results of AlexNet run for vectorscope representations, for 4 epochs
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Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 63 242 235 353

Act_Adv 29 1153 502 802

Com_Rom 40 397 785 382

Thr_Hor_Cri 67 455 408 964

Table B.8: Confusion matrix of AlexNet run for vectorscope representations, for
4 epochs

ResNet-50

Additional Ągures and tables for ResNet-50 experiments in 5.2 section.

Figure B.5: Loss plot of ResNet-50 run for vectorscope representations, for 4
epochs
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Genre Precision Recall F1-score Support

Drama 0.341 0.101 0.156 893

Act_Adv 0.482 0.488 0.485 2486

Com_Rom 0.403 0.440 0.421 1604

Thr_Hor_Cri 0.396 0.490 0.438 1894

micro avg 0.427 0.427 0.427 6877

macro avg 0.405 0.380 0.375 6877

weighted avg 0.421 0.427 0.414 6877

samples avg 0.427 0.427 0.427 6877

Table B.9: Results of ResNet-50 run for vectorscope representations, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 90 289 223 291

Act_Adv 58 1212 444 772

Com_Rom 41 502 706 355

Thr_Hor_Cri 75 511 380 928

Table B.10: Confusion matrix of ResNet-50 run for vectorscope representations,
for 4 epochs

ViT

Additional Ągures and tables for ViT experiments in 5.2 section.
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Figure B.6: Loss plot of ViT run for vectorscope representations, for 4 epochs

Genre Precision Recall F1-score Support

Drama 0.358 0.097 0.153 893

Act_Adv 0.489 0.512 0.500 2486

Com_Rom 0.419 0.461 0.439 1604

Thr_Hor_Cri 0.406 0.486 0.442 1894

micro avg 0.439 0.439 0.439 6877

macro avg 0.418 0.389 0.384 6877

weighted avg 0.433 0.439 0.425 6877

samples avg 0.439 0.439 0.439 6877

Table B.11: Results of ViT run for vectorscope representations, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 87 285 229 292

Act_Adv 43 1273 457 713

Com_Rom 40 483 739 342

Thr_Hor_Cri 73 562 339 920

Table B.12: Confusion matrix of ViT run for vectorscope representations, for 4
epochs
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B.2.3 Raw Frames - "Separate" Distribution

AlexNet

Additional Ągures and tables for AlexNet experiments in 5.3 section.

Figure B.7: Loss plot of AlexNet run for raw frames, for 4 epochs

Genre Precision Recall F1-score Support

Drama 0.302 0.207 0.245 750

Act_Adv 0.534 0.523 0.529 2503

Com_Rom 0.455 0.444 0.449 1607

Thr_Hor_Cri 0.446 0.516 0.479 2090

micro avg 0.469 0.469 0.469 6950

macro avg 0.434 0.422 0.426 6950

weighted avg 0.464 0.469 0.465 6950

samples avg 0.469 0.469 0.469 6950

Table B.13: Results of AlexNet run for raw frames, for 4 epochs
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Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 155 220 139 236

Act_Adv 134 1310 342 717

Com_Rom 112 395 713 387

Thr_Hor_Cri 113 526 372 1079

Table B.14: Confusion matrix of AlexNet run for raw frames, for 4 epochs

VGG-16

Additional Ągures and tables for VGG-16 experiments in 5.3 section.

Figure B.8: Loss plot of VGG-16 run for raw frames, for 4 epochs
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Genre Precision Recall F1-score Support

Drama 0.314 0.224 0.261 750

Act_Adv 0.586 0.545 0.565 2503

Com_Rom 0.464 0.478 0.471 1607

Thr_Hor_Cri 0.448 0.521 0.482 2090

micro avg 0.488 0.488 0.488 6950

macro avg 0.453 0.442 0.445 6950

weighted avg 0.487 0.488 0.485 6950

samples avg 0.488 0.488 0.488 6950

Table B.15: Results of VGG-16 run for raw frames, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 168 168 163 251

Act_Adv 117 1365 307 714

Com_Rom 118 346 768 375

Thr_Hor_Cri 132 451 418 1089

Table B.16: Confusion matrix of VGG-16 run for raw frames, for 4 epochs

ViT

Additional Ągures and tables for ViT experiments in 5.3 section.
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Figure B.9: Loss plot of ViT run for raw frames, for 4 epochs

Genre Precision Recall F1-score Support

Drama 0.340 0.308 0.323 750

Act_Adv 0.572 0.587 0.579 2503

Com_Rom 0.494 0.435 0.462 1607

Thr_Hor_Cri 0.478 0.523 0.500 2090

micro avg 0.502 0.502 0.502 6950

macro avg 0.471 0.463 0.466 6950

weighted avg 0.501 0.502 0.501 6950

samples avg 0.502 0.502 0.502 6950

Table B.17: Results of ViT run for raw frames, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 231 173 124 222

Act_Adv 171 1469 270 593

Com_Rom 142 389 699 377

Thr_Hor_Cri 136 538 323 1093

Table B.18: Confusion matrix of ViT run for raw frames, for 4 epochs
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B.2.4 Vectorscope Representations - "Separate" Distribu-

tion

AlexNet

Additional Ągures and tables for AlexNet experiments in 5.4 section.

Figure B.10: Loss plot of AlexNet run for vectorscope representations, for 4
epochs

Genre Precision Recall F1-score Support

Drama 0.474 0.144 0.221 750

Act_Adv 0.464 0.409 0.435 2503

Com_Rom 0.385 0.479 0.426 1607

Thr_Hor_Cri 0.420 0.507 0.460 2090

micro avg 0.426 0.426 0.426 6950

macro avg 0.436 0.384 0.385 6950

weighted avg 0.434 0.426 0.417 6950

samples avg 0.426 0.426 0.426 6950

Table B.19: Results of AlexNet run for vectorscope representations, for 4 epochs
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Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 108 208 205 229

Act_Adv 66 1023 582 832

Com_Rom 28 411 769 399

Thr_Hor_Cri 26 561 444 1059

Table B.20: Confusion matrix of AlexNet run for vectorscope representations, for
4 epochs

ResNet-50

Additional Ągures and tables for ResNet-50 experiments in 5.4 section.

Figure B.11: Loss plot of ResNet-50 run for vectorscope representations, for 4
epochs
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Genre Precision Recall F1-score Support

Drama 0.379 0.157 0.222 750

Act_Adv 0.448 0.453 0.451 2503

Com_Rom 0.402 0.412 0.407 1607

Thr_Hor_Cri 0.427 0.490 0.438 2090

micro avg 0.427 0.427 0.427 6950

macro avg 0.414 0.381 0.386 6950

weighted avg 0.424 0.427 0.419 6950

samples avg 0.427 0.427 0.427 6950

Table B.21: Results of ResNet-50 run for vectorscope representations, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 118 244 172 216

Act_Adv 84 1134 458 827

Com_Rom 56 522 662 367

Thr_Hor_Cri 53 630 355 1052

Table B.22: Confusion matrix of ResNet-50 run for vectorscope representations,
for 4 epochs

ViT

Additional Ągures and tables for ViT experiments in 5.4 section.
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Figure B.12: Loss plot of ViT run for vectorscope representations, for 4 epochs

Genre Precision Recall F1-score Support

Drama 0.353 0.169 0.229 750

Act_Adv 0.452 0.415 0.433 2503

Com_Rom 0.391 0.395 0.393 1607

Thr_Hor_Cri 0.424 0.541 0.475 2090

micro avg 0.422 0.422 0.422 6950

macro avg 0.405 0.380 0.382 6950

weighted avg 0.419 0.422 0.414 6950

samples avg 0.422 0.422 0.422 6950

Table B.23: Results of ViT run for vectorscope representations, for 4 epochs

Genre Drama Act_Adv Com_Rom Thr_Hor_Cri

Drama 127 207 187 229

Act_Adv 102 1039 463 899

Com_Rom 59 504 635 409

Thr_Hor_Cri 72 550 338 1130

Table B.24: Confusion matrix of ViT run for vectorscope representations, for 4
epochs
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B.2.5 Binary Classification

Additional Ągures and tables for Binary ClassiĄcation experiments in 5.5
section.

Figure B.13: Loss plot of ResNet-50 run for raw frames, for 5 epochs, random
distribution
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Figure B.14: Loss plot of VGG-16 run for vectorscope representations, for 5
epochs, random distribution

Figure B.15: Loss plot of ResNet-50 run for raw frames, for 5 epochs, "separate"
distribution
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Figure B.16: Loss plot of VGG-16 run for vectorscope representations, for 5
epochs, "separate" distribution
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