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Summary

In recent years, the spread of malware has increased exponentially, posing a significant challenge
for cybersecurity experts. When facing with the constantly evolving world of unknown threats,
including zero-day attacks, traditional signature-based approaches for malware detection have
been shown to be insufficient. Furthermore, adversaries are adapting by modifying their malicious
code, which reduces the efficacy of signature-based detection. As a solution to these problems,
supervised machine learning models have been used to develop behaviour-based malware detection
systems. These systems are employed to inspect the code in order to identify any malicious or
potentially harmful actions performed by that code.

Supervised learning shows promising results in effectively detecting malicious code, but it
is significantly limited by the considerable amount of manual effort required for labelling both
malware and benign instances. Unsupervised learning methods, while reducing the labelling
effort, often yield lower accuracy, especially in complex tasks such as malware detection. A
potential resolution lies in the adoption of a hybrid approach, called semi-supervised learning
(SsL), which combines labelled and unlabelled data. SsL has the potential to enhance algorithm
performance by taking advantage of a limited number of labelled samples and a large number of
unlabelled data. However, whether SsL offers advantages over supervised learning in the context of
malware detection remains unclear in the current state-of-the-art, given the absence of a rigorous
evaluation.

This thesis focused on semi-supervised learning for malware family classification, aiming to
explore its benefits compared to the supervised approach. In particular, this research objective is
to identify the circumstances under which unlabelled data can be effectively employed to enhance
detection accuracy. To achieve this, I employed an evaluation framework from the current state-
of-the-art that allows to assess rigorously the benefits of Ssl.

The research begins by conducting an extensive review of the recent literature, examining the
various methods proposed in the state-of-the-art for malware detection, with a particular focus
on the image-based approach. Furthermore, state-of-the-art methods for malware detection and
SsL learning are explained in detail, with a comparative analysis of their relative advantages and
drawbacks.

To determine which malware dataset is most suitable for my research objectives, a meticulous
evaluation of existing malware sample datasets is performed. This assessment outlines both the
strengths and weaknesses of each dataset, offering a comprehensive overview crucial for guiding
the selection process. Moreover, this process involves a detailed description of the chosen dataset,
MaleVis, including sample distribution, sample features, and available labels.

Following this, I focused on the development of my research methodology. I employed the
evaluation framework with a range of different traditional machine learning methods. These
algorithms include: Random Forest, K-Nearest Neighbors, Support Vector Machine, Gradient
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Boosting. In combinations with these algorithms, I followed two approaches: the direct employ-
ment of raw pixel data and the extraction of texture feature descriptors, including but not limited
to Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), Principal Component
Analysis (PCA), and Gray-Level Co-Occurrence Matrix (GLCM). Additionally, I further extended
the evaluation framework to encompass the domain of Convolutional Neural Networks.

According to the analysis, it is noteworthy how these algorithms exhibit various behaviours
when faced with different challenges such as dataset distribution, feature input, and the proportion
of labelled data.
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Chapter 1

Introduction

Malware, short for “malicious software”, has experienced an exponential increase over the past
few years, although its roots tracing back to the early days of computing. The origins of malware
can be found in the 1970s, when viruses began to appear on dedicated networks such as the
ARPANET, a precursor to the Internet. One of the earliest known malware instances, the Creeper
virus, displayed the message “I’m the creeper, catch me if you can!”. It represents the beginning
of what would eventually become a complex and continuously evolving threat landscape.

The rapid diffusion of technology directly contributed to the expansion of virus distribution.
Furthermore, the widespread use of computers has facilitated the evolution of malware into more
intricate and sophisticated forms. This increase in both the distribution and the sophistication of
viruses has posed significant challenges in the field of cybersecurity. The 2023 SonicWall Cyber
Threat Report showed that 5.5 billion malware attacks were recorded in 2022, a 2% increase year
over year. While the increase is small, it is being fueled by massive growth in two areas. In 2022,
cryptojacking rose 43% and IoT malware jumped 87%. Together, these increases were more than
enough to offset a 21% drop in global ransomware volume, pushing overall malware trends into
positive territory for the first time since 2018 [1]. This trend is shown in Fig 1.1.

As cyber threats continue to evolve, cybersecurity must adapt and innovate to protect or-
ganisation’s systems and networks. Hence, malware detection is essential to prevent malware
infections and mitigate the potential damage they can cause. Signature-based method for mal-
ware detection is the traditional approach that uses a database of known malware signatures to
identify and remove malicious software. This is effective at detecting known malware threats, but
it may not be able to detect unknown malware, such as zero-day attacks, which is an attack for
which there is no corresponding signature stored in the repository. Additionally, attackers can
avoid detection by modifying their malicious code in order to generate new signatures.

On the other hand, behaviour-based malware detection looks for unusual behavior in files or
systems that may indicate the presence of malware. This approach is more effective when it comes
to detecting unknown threats; however, it may generate more false positives, because legitimate
software may perform unusual activities.

To reduce false positives, machine learning is typically involved: in this method, a machine
learning model is trained on a large dataset of malware and benign samples to identify patterns
of malicious software. In recent times, there has been a significant increase in the use of machine
learning to enhance cybersecurity against malware threats. This represents a fundamental change
in our approach to defend against these harmful software. Machine learning algorithms can analyse
large amounts of data to detect and respond to emerging threats, providing a more proactive and
adaptive defence against evolving cyber threats. Machine learning approaches are divided into
three categories:

• Supervised learning that uses labelled dataset, where the inputs have already been mapped
to the outputs, to train a machine learning model;

• Unsupervised learning that uses unlabelled data and looks for correlation patterns;
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Figure 1.1: 2023 SonicWall Cyber Threat Report [1]

• Semi-supervised learning that is a hybrid approach and combines a small amount of labelled
data with a large amount of unlabelled data during training.

The problem with supervised learning for malware detection is the requirement for human experts
and specialised tools to distinguish between malware and benign samples; therefore, it is an
expensive and time-consuming process. In contrast, while the cybersecurity domain yields a large
volume of unlabelled data that can be employed for unsupervised learning techniques (e.g. network
traffic data, system logs, endpoints log, etc.), these methods achieve lower accuracy levels. It is
possible to overcome the lack of labelled samples by using semi-supervised learning, allowing for
more cost-effective and efficient malware classification.

Therefore, the aim of this thesis is to explore the benefits of using unlabelled data for malware
family classification. To this end, I employed an evaluation framework previously introduced in a
related study. This choice is critical for ensuring a rigorous evaluation of the benefits offered by
semi-supervised learning methods, since the framework formalises a set of requirements that are
essential for conducting an unambiguous assessment. By systematically applying these require-
ments, the evaluation process guarantees a robust and reliable comparison of different malware
classification techniques.

Fig 1.2 illustrates the project workflow. Starting from the analysis of different malware datasets
and considering the corresponding advantages and disadvantages, I opted for the MaleVis dataset,
which contains RGB images of both malicious and benign samples. Detailed information on this
dataset will be provided in Section 6.5.

Next, choosing an image-based approach, the reasons for which will be discussed later in
the Section 7.1, I focused on analysing different image features that could be extracted, and I
chose two primary approaches: direct utilisation of raw pixel data and the extraction of texture
feature descriptors such as Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG),
Principal Component Analysis (PCA), and Gray-Level Co-Occurrence Matrix (GLCM).

The features mentioned above are then used with a selection of traditional machine learning
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Figure 1.2: Project workflow

methods within the evaluation framework. This results in the generation of outcomes for various
feature-classifier combinations.

In addition to employing traditional feature extraction methods, the study leveraged Convo-
lutional Neural Networks to automate the extraction of features directly from images, without
the need for manual feature engineering.

This work is structured as follows: The chapter 2 will introduce essential background terms
and concepts related to malware, providing a comprehensive understanding of its intent, diverse
forms, and the methodologies employed for its detection; the chapter 3 will offer insights into
machine learning explaining the core concepts, algorithms, approaches, and its application in the
field of cybersecurity, highlighting the current challenges; the chapter 4 will introduce related
works, beginning with a comprehensive overview of general approaches to image-based malware
classification, as these methods have shown promise in the field of cybersecurity, and then focus-
ing on the works based on semi-supervised learning; the chapter 5 is dedicated to an in-depth
exploration of the framework used to assess the benefits of semi-supervised learning; the chapter
6 will describe the commonly used datasets in this task, highlighting both their advantages and
limitations, and focusing also on analysing the concept of concept drift associated with outdated
datasets; chapter 7 and 8 will be focused on presenting the methodology I implemented, describing
the various experiments I carried out and the corresponding results. The algorithms I have em-
ployed include both traditional machine learning models (Random Forest, K-Nearest Neighbors,
Support Vector Machine, Gradient Boosting) and deep learning models. Conclusions were drawn
in the chapter 9, together with outlining the potential future works.
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Chapter 2

Background

2.1 Malware

A program that is inserted into a system, usually covertly, with the intent of compromising the
confidentiality, integrity, or availability of the victim’s data, applications, or operating system [2].

Malware attacks are one of the most common cyber threats nowadays, spanning various indus-
tries, including finance, education, and healthcare. It can be distributed through various methods.
Emails, websites, software downloads, removable media are common ways employed by attack-
ers to transmit malware. However, it can also be concealed within various file types, including
executable files (.exe), images, documents, and archives.

2.1.1 Intent of malware

Malware can be used for different purposes, each designed to carry out specific actions [3]:

• Intelligence and intrusion: some malware infiltrates systems to steal private information
as emails or passwords;

• Disruption and extortion: there is a class of malware that locks users’ system to disrupt
its normal functioning (it is called ransomware if the objective is financial gain through
extortion);

• Destruction or vandalism: certain malware destroys computer systems to damage the
network infrastructure;

• Steal computer resources: malware leverages the computing power of infected systems
to run botnets, cryptomining programs (cryptojacking), or send spam emails;

• Monetary gain: malware can be used to acquire and consequently sell the organization’s
intellectual property on the dark web.

2.1.2 Malware forms

There are different types of malware attacks which are categorised differently by various antivirus
vendors (e.g. Kaspersky). This classification helps to understand the different nature of malware
threats, each one with its own behaviour and characteristics [4]:

• Adware: also known as advertisement-supported software, it displays unwanted advertising
on the screen. It can also redirect search results to advertising websites and capture user
data for potential sale to advertisers without the user’s consent. However not all adware is
malicious, but some is legitimate;
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• Spyware: it hides itself on devices monitoring activities and stealing private information;

• Ransomware and crypto-malware: ransomware restricts user access to their systems or
data until a ransom is paid. Crypto-malware is a specific subset of ransomware that encrypts
user files and demands payment within a specified timeframe, often in cryptocurrencies;

• Trojans: it looks like legitimate software leading users to run malicious software on their
computers. Once installed in user’s device, attackers leverage it to delete, copy or modify
user data;

• Worms: malware that can self-replicate itself to infect other computers without any human
action, exploiting system vulnerabilities. It is used to perform various actions e.g. steal
information, delete files etc;

• Virus: piece of code embedded within an application and executed when the app is running.
Once infiltrating a network, it can be used to steal information, perform DDoS attacks, or
execute ransomware attacks.

2.2 Malware detection

Malware detection refers to the process of detecting the presence of malware on a host system or
of distinguishing whether a specific program is malicious or benign [5]. Malware detection can
use two distinct types of analysis: static and dynamic.

2.2.1 Static analysis

Static analysis investigates the code searching for malicious behaviour without executing it, as
in signature-based malware detection. This approach explores all possible execution paths of the
program. Many tools can be used to perform static analysis: debugger, disassembler, decompiler,
and source code analyser. Methods that are used in performing static analysis include File Format
Inspection, String Extraction, Fingerprinting, AV scanning, and Disassembly [6]. The problem
with static analysis is that attackers can use obfuscation techniques to avoid being detected.

2.2.2 Dynamic analysis

Dynamic analysis runs executable file in a protected virtual environment to monitor the program
behaviour and its interaction with the system. It is robust against obfuscation techniques, but
it has the limitation that only one execution of the program at a particular instant of time is
analysed, unlike static analysis. Moreover malware can attempt to detect whether it is run within
a sandbox or virtual machine or actively attack the emulator. Several anti-emulation techniques
exist, which check for certain low-level processor features (e.g., undocumented instructions) or
timings. Once an executable has determined that it is being emulated, it can terminate execution
without performing any malicious actions [5].

2.3 Malware detection approaches

Basic approaches can detect and classify known threats, and they include signature-based ap-
proach, behavioural-based approach, heuristic approach, and model-checking approach. How-
ever, especially signature-based approach fails to detect unknown malware. On the contrary,
behavioural-based and heuristic approaches demonstrate better results in addressing previously
unidentified threats. Additionally, there are other more sophisticated approaches that involve
Machine Learning that can identify some known and unknown malware.
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2.3.1 Signature-based approach

This technique is widely used by antivirus companies. In computer security, a signature is a
specific pattern that allows cybersecurity technologies to recognize malicious threats, such as a
byte sequence in network traffic or known malicious instruction sequences used by families of
malware [7].

Cybersecurity companies maintain large databases of known malware signatures. These databases
are frequently updated. When a software needs to be classified as malware or not, each file in
this database is scanned to compare the signatures.

The advantage of this technique is that it is fast and effective, but it can only identify known
threats. Signature generation can be automated or generated manually by analysts. There are
different techniques to generate a signature [8]:

• String Scanning: this technique compares the byte sequence in the analysed file with
the byte sequences already stored in the database. Since malware nowadays has widely
spread, these databases are rapidly increasing in size. String signature is one solution to
this problem and it has been largely used by anti-virus companies over past years;

• Top-and-Tail Scanning: only the top and the end of the file are taken and the signature
is generated. This technique is more efficient because it is faster and relies on the fact that
often the virus code is at the beginning or at the end of the files. However it can produce
false negatives;

• Entry Point Scanning: the entry-point is the point in the program where its execution
begins. Malware usually changes the entry point so that malicious code is executed before
the real code. This is another faster technique;

• Integrity Checking (Hash Signatures): this technique generates periodically crypto-
graphic checksum (e.g. MD5 and SHA-256) to look for possible changes that may be caused
by malware.

2.3.2 Behaviour-based approach

Threat actors can use obfuscation to bypass static detection techniques.

Behaviour-based detection utilises the behaviour information of the malware during its execu-
tion as the detection basis, which can get rid of the reliance on the feature of malware file itself.
A malware can produce a new variation with different features through shell code, polymorphism,
and metamorphism, but its behaviour is still the same as the original one. Therefore, behaviour-
based malware detection will not be affected by shell code, Polymorphism and Metamorphism,
and therefore can detect new malware [9]. The mechanisms of Polymorphism and Metamorphism
are detailed in Section 2.4.1.

However, some malware binaries do not run properly in protected environments, so this ap-
proach can generate false negatives. Behaviours are extracted with the following procedures [8]:

• Automatic analysis by using sandbox: sandbox is an isolated and controlled environ-
ment where the malicious code can be executed to analyse its behaviour without harming
the host system;

• Monitoring of system calls: tracking system calls made by a process provides insight into
its interaction with the operating system. The detection of suspicious system calls allows
the identification of potentially malicious intentions;

• Monitoring of file changes: this can help in identifying actions such as file creation,
modification, or deletion that may indicate malicious behaviour;

• Comparison of registry snapshots: by comparing these snapshots, it is possible to
detect any unauthorised or malicious changes to the registry, crucial for identifying threats;
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• Monitoring network activities: analysing network activities enables the detection of
anomalies within network traffic that could point to threats;

• Process monitoring: by observing the activities of running processes it is possible to
identify suspicious processes or their interactions with the system.

In behaviour-based detection, first, behaviours are determined by using one of the technique used
above and the dataset is created by subtracting the features using datamining. Then, specific
features from the dataset are obtained and classification done by using ML algorithms [8].

2.3.3 Heuristic-based approach

It is a complex detection method which uses experiences and different techniques such as rules and
ML techniques. Heuristic-based schema can use both strings and some behaviours to generate
rules, and based on that rules it generates signature. It uses API calls, Control Flow Graph
(CFG), n-grams, Opcode, and hybrid features when generates a signature [8]. This approach can
detect different forms of known and also unknown malware, but not all of the new generation of
them. Moreover, it is prone to a high false positive rate.

2.3.4 Model checking-based approach

In this detection approach, malware behaviours are manually extracted and behaviour groups are
coded using linear temporal logic (LTL) to display a specific feature. Program behaviours are
created by looking at the flow relationship of one or more system calls and define behaviours by
using properties such as hiding, spreading, and injecting [8]. As in the previous approach, it can
detect some new malware, but not all new generation of them.

2.4 Detection evasion techniques

Malware actors use various evasion techniques to hide themselves in order to avoid being detected.
There are many evasion strategies that can be classified into two categories:

2.4.1 Static analysis evasion techniques

The most used techniques targeting static analysis are [10]:

• Code obfuscation: obfuscation is when malware deliberately tries to obscure its true intent
to potential victims, and/or attempts to hide portions of code from malware researchers
performing analysis [11]. Common obfuscation techniques are as follows:

– Dead-Code Insertion: obfuscation technique whereby byte code sequences are in-
serted into the binary as to not affect the functionality of the program;

– Registry Reassignment: obfuscation technique which swaps unused registers or
memory variables with those currently used by the program;

– Instruction Substitution: it replaces instructions with equivalent ones;

– Code Transposition: obfuscation technique which utilizes conditional or uncondi-
tional jmp statements to reorder single or blocks of instructions.

• Encryption: it was the first technique used to evade static code analysis and traditional
signature-based detection approach. The body is usually XORed with a key to make it hard
to detect. It infects the system by decrypting itself using a decryption algorithm and a key,
after that it again encrypts itself by the encryption algorithm and generates a new key for
another variant to avoid the detection mechanism. However, encrypted malware can be de-
tected by analyzing the encryption/decryption algorithm because the decryption/encryption
algorithm does not change, e.g., CASCADE was the first encrypted malware [12];
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• Compression: compression represents an additional level of obfuscation on top of a possible
decryption routine and other forms of obfuscation. A Packer is defined as a utility which
enacts some form of compression to the executable, either to reduce files size to avoid entropy
analysis or introduce a layer of obfuscation to the PE header;

• Oligomorphism: since in the encrypted malware the same decryptor is used everytime
making it easier to detect, oligomorphism can be used to overcome this limitation. In this
malware, decryptors are mutated in the malware variant, i.e., it provides set of obfuscated
decryptors [12]. The main limitation is that this set of decryptors is finite.

• Polymorphism: it denotes the ability of malicious code to change its appearance or struc-
ture while preserving its core functionality. Polymorphic malware is similar to oligomorphic
malware, but it can generate millions of decryptors by mutating the instructions in the vari-
ant of the malware to evade the signature matching detection technique. In this malware,
the mutation engine generates an encryption algorithm and a corresponding decryption al-
gorithm, then the malware code and the mutation engine both get encrypted to generate
a new variant of a particular malware. To create this malware obfuscation techniques are
used (e.g. dead code insertion, transposition, registry reassignment etc.) Although it can
generate a large number of different decryptors, still traditional signature based detection
mechanisms can be applied to detect the polymorphic malware by simply finding the original
program using the emulation techniques [12].

• Metamorphism: metamorphism is a sophisticated technique where the malicious code
undergoes complete structural alterations while maintaining its original functionality. In
Metamorphic malware instead of mutating the decryptors the malware body is mutated
itself (i.e., body-polymorphic) to create a new variant without changing its actions to evade
the detection [12]. This malware is very hard to detect by traditional signature scanning
techniques.

• Metamorphic Engine: a Metamorphic Engine is responsible for the obfuscation and
reconstruction of the binary so that the file can remain operational.

2.4.2 Dynamic analysis evasion techniques

There are two modes of dynamic analysis: manual and automated. The manual analysis is when
the analysis process is performed by an expert human with the help of a debugger. Automated,
on the other hand, is the process that is the similar analysis that is performed automatically by
a machine or software, also known as sandbox [13]. On the basis of this, the following can be
distinguished:

• Manual dynamic analysis evasion techniques: These measures include approaches
such as detecting the presence of analysis tools on the system (e.g., Wireshark, TCPDump)
or detecting virtual machines as a sign of analysis environment, but, the majority of manual
analysis evasion techniques are targeted toward debuggers, which are the primary tools of
manual dynamic analysis [13].

– Fingerprinting: most common evasion tactic regarding both manual and automated
analysis, but the techniques are different. It aims to detect signs that attest to the
presence of an analysis environment or debuggers;

– Traps: codes that when traversed or stepped through by debugger, give specific infor-
mation if the debugger is present;

– Debugger Specific: tactic that exploits vulnerabilities that are exclusive to a specific
debugger;

– Targeted: one of the most advanced tactics, the malware encrypts its malicious pay-
load with a specific encryption key. This encryption key, however, is chosen to be an
attribute or variable that could be found only on its target system;

– Control Flow Manipulation: malware exploits the control flow, relying on callbacks,
enumeration functions etc.;
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– Lockout Evasion: malware continues to execute by interfering with the work of the
debugger without searching for its presence;

– Fileless Malware: malware that requires no file, it exploits vulnerability of the target
system and injects malicious code directly into the memory; so since dynamic analysis
monitors behaviour during execution, it’s harder to analyse the malware because there
is no executable.

• Automated dynamic analysis evasion techniques: Manual analysis is effective, but
analysing a large number of malware samples is expensive. Here, the goal is to detect
malicious program in a controlled and contained testing environment called sandbox. The
techniques are as follows, similar to the manual analysis [13]:

– Fingerprinting: differently the manual analysis scenario, here the concept is to detect
signs of the presence of virtual/emulated machine;

– Reverse Turing Test: tactic that looks for human interaction with the system; that
is because a sandbox is an automated machine with no interaction, so if there is no
interaction malware assumes that it is in a sandbox;

– Targeted: the goal here for the malware is to detect the target environment, not the
sandbox as in the previous ones;

– Stalling: based on the concept that sandbox allocates a limited amount of time to
analyse each sample, malware postpones its malicious activity to the post-analysis
stage;

– Trigger-Based: malware waits for triggers; as in the previous case the concept here
is to wait to perform malicious activity out of the sandbox;

– Fileless Malware: as in the manual case, fileless malware can evade also automated
analysis.

2.5 Malware Fundamentals: Summary

The chapter focuses on the foundational understanding of malware, elucidating its various forms
and the underlying intentions. It then delves into the methodologies of malware analysis, detailing
both static and dynamic approaches, along with malware detection strategies, from traditional
signature-based methods to behavioural analysis and the evasion tactics employed by malware
actors.

This comprehensive review of the background, analysis, detection, and evasion techniques
associated with malware serves as a foundational knowledge base for the focus on malware family
classification within this thesis.
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Chapter 3

Machine Learning and
Cybersecurity

The application of machine learning in cybersecurity is increasing over time. There is a general
belief among cybersecurity experts that AI-powered antimalware tools will help detect modern
malware attacks and improve scanning engines. Evidence of this belief is the number of studies
published in the last few years on malware detection techniques that leverage machine learning
[14]. There are many advantages in that [15]:

• Rapidly synthesize large volumes of data: analysts have to deal with a large amount
of data, increasing fast, very hard to manually process in real-time. ML helps to quickly
analyse big data;

• Activate expert intelligence at scale: cycles of training helps to learn from data de-
creasing false positive and allowing models to learn and enforce ground truth defined by
experts;

• Automate repetitive, manual tasks: letting ML to deal with simple repetitive task
allow experts to focus on more complex problem;

• Augment analyst efficiency: ML gives real-time data to analysts, enabling them to focus
the resources on critical vulnerabilities and analyse time-sensitive detections.

Machine learning has been used in a growing set of use cases in cybersecurity (e.g. Malware
Detection, Intrusion Detection System, Phishing Detection, etc.)

3.1 Machine Learning

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on
the use of data and algorithms to imitate the way that humans learn, gradually improving its
accuracy [16].

It is a field that is growing exponentially in many applications, including cybersecurity. Recent
progress in ML has been driven both by the development of new learning algorithms theory, and
by the ongoing explosion in the availability of vast amount of data (often referred to as “big
data”) and low-cost computation [17]. One of the most common uses in cybersecurity is malware
detection and classification. The typical supervised machine learning algorithm consists of roughly
three components [18]:

1. A decision process: A machine learning algorithm will detect a pattern based on some
input data. Typically it is used to perform classification or prediction tasks;
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2. An error function: This function is used to evaluate how good or bad the prediction of
the algorithm is;

3. An updating or optimization process: Based on the difference between the ground
truth and the model prediction, weights are adjusted, and the model retrained until a
certain threshold is met.

3.1.1 Machine learning approaches

Machine learning algorithms can be classified into four categories:

• Supervised learning: It uses a labelled dataset, where the inputs have already been
mapped to the outputs, to train a machine learning model in order to make predictions or
to classify data. This is used in many real-world scenarios, as in Spam detection or Fraud
detection;

• Unsupervised learning: Unlike the previous one, it uses unlabelled data and looks for
correlation patterns, e.g. anomaly detection;

• Semi-supervised learning: It is a hybrid approach between the previous ones and com-
bines a small amount of labelled data with a large amount of unlabelled data during training.
It helps reducing the cost of labelling large amount of data;

• Reinforcement learning: Similarly to the supervised one, it is not trained using labelled
samples. It is instead trained with a trial and error system, offering feedbacks to the
algorithm to learn.

3.1.2 Machine learning algorithms

Common algorithms used include [16]:

• Neural networks: models composed of artificial neurons, inspired by the simplification of
a biological neural network. These neurons are organised in layers, including an input layer,
more hidden layers and one output layer. All nodes are connected and have associated
weights and thresholds. If the output of any node exceeds a certain threshold, the node
is activated and it sends data to the next level. Applications include natural language
translation, image recognition, speech recognition, and image creation;

• Linear regression: algorithm used to predict a value of a variable based on another vari-
able. Assuming a linear relationship between the independent variable and the dependent
variable, its objective is to find a line that represents this relationship;

• Logistic regression: based on a dataset of independent variables, the model makes pre-
dictions for categorical response variables. It is commonly used in classification tasks, such
as spam detection, for dividing data into different categories;

• Clustering: algorithms that search for patterns in data. The data are grouped into clusters
on the basis of how similar they are.

3.2 Semi-Supervised Learning

Historically, supervised learning and unsupervised learning have been the two fundamental types
of task in machine learning. Alongside these, SsL has emerged as a powerful approach that makes
use of both labelled and unlabelled data for training models.

SsL operates in scenarios where the labelled data is sparse or expensive to acquire compared
to the availability of abundant, unlabelled data. This scenario is common in many real-world
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applications, such as anomaly detection, threat detection, and overall security measures. Many
recent research papers and publications have prominently used SsL for malware detection and
classification. These works will be examined in more detail in Chapter 4.

The motivation behind SsL lies in the belief that unlabelled data carry valuable information
about the underlying data distribution, which, when properly utilised, can improve the model’s
generalisation and predictive accuracy. Since unlabelled data carry less information than labelled
data, they are required in large amounts in order to increase prediction accuracy significantly.
This implies the need for fast and efficient SsL algorithms [19].

Semi-supervised learning is based on several fundamental assumptions regarding the data [19]:

• Cluster Assumption: It assumes that data can be divided in clusters and that points
within the same cluster are likely to belong to the same class;

• Manifold Assumption: It assumes that high-dimensional data lie on a low-dimensional
manifold. That means that the learning algorithm can work effectively within a space that
matches that lower dimension. This way, it can bypass the challenges posed by the curse of
high dimensionality;

• Smoothness Assumption: It suggests that label changes across the data distribution
should occur smoothly. In simpler terms, if two points are situated closely within a densely
populated region, their corresponding output labels should also be closely related;

• Low-Density Separation Assumption: This assumption extends the Cluster Assump-
tion by considering that decision boundaries between different classes should lie in low-
density regions, helping to distinguish between different categories more effectively.

In the context of SsL, two key learning paradigms are often distinguished: transductive learning
and inductive learning. These terms refer to different approaches to exploiting labelled and
unlabelled data for model training and prediction.

• Inductive learning: This is what we commonly refer to as Supervised Learning. In this
scenario, the model’s training is performed on a known-labelled dataset, allowing it to learn
underlying patterns and associations between features and labels. Once trained, the model
applies this learnt knowledge to make predictions on new, unseen data instances. There is
no need to retrain the model when new data is added;

• Transductive learning: It aims at classifying the unlabelled input data by exploiting the
information derived from labelled data. However, in this methodology, both the training
and testing datasets are encountered during model training. Transductive learning builds
a model that fits the training and testing data points that have already been observed.
Transduction does not build a predictive model. If a new data point is added to the testing
dataset, the algorithm must be re-run from the start, train the model, and then use it to
predict the labels.

3.2.1 SsL approaches

There are different approaches in SsL:

Self-Training

It starts with the training process using exclusively labelled data. After the initial training, the
trained model is used to predict labels for unlabelled data. These predicted labels are treated
as pseudo-labels and appended to the labelled dataset. Subsequently, the supervised method is
retrained, incorporating its own predictions as supplementary labelled data points. The process
iterates by using the updated model to predict labels for more unlabelled data, generating ad-
ditional pseudo-labelled instances. These instances are added to the labelled dataset, and the
model undergoes further retraining. This iterative loop continues for several cycles.
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Co-Training

It involves training a model using multiple views of the data. In the context of Co-Training,
the concept of “views” refers to different sets of features or perspectives that offer additional
information about each data instance. They are considered sufficient on their own to make
accurate predictions and are assumed to offer unique, non-redundant information about the data
instances.

It begins with a small set of labelled data instances that are labelled with respect to both views
or modalities. A larger pool of unlabelled instances is available for both views. Two separate
classifiers or models are trained independently using different views of the data, initially with the
labelled dataset. During each iteration, the models make predictions on the unlabelled data, and
instances where both models agree confidently are considered trustworthy pseudo-labelled data.
The agreed-upon pseudo-labelled instances are added to the labelled dataset for both views,
expanding the training set. The models are retrained using the augmented labelled dataset, and
the process iterates, with each model learning from the predictions of the other model. The
agreement between models reinforces the confidence in pseudo-labelled instances.

Label Propagation

Label propagation is a semi-supervised learning technique that involves propagating labelled in-
formation across a graph built from both labelled and unlabelled data. In particular, a graph is
constructed where each data point represents a node in the graph. Edges in this graph correspond
to similarities or relationships between data points. These similarities can be calculated using var-
ious metrics, such as distance measures or affinity scores, establishing connections between nodes.
The labelled information is diffused or propagated throughout the graph by iteratively updat-
ing the labels of the unlabelled nodes based on the labels of their neighbouring nodes. This
propagation occurs through the edges of the graph. As the labels propagate, each node aggre-
gates information from its neighbours, leading to agreement on the labels across the graph. This
consensus is reached through iterative label updates.

Minimum Entropy Regularisation

It focuses on high-entropy data points, where the model is uncertain and needs more information,
encouraging the model to make confident predictions in order to improve generalisation and overall
accuracy.

Consistency Regularisation

It enforces that model predictions on the same data point remain consistent despite minor pertur-
bations or data augmentations. It improves model generalisation better and prevents overfitting.

3.2.2 SsL Challenges

In the realm of SsL, several challenges emerge that impact the effectiveness of these methods in
real-world applications. SsL algorithms often make assumptions about data distributions, assum-
ing characteristics such as smoothness or separability of clusters. However, these assumptions
may not always hold true in diverse, complex real-world datasets, compromising the applicability
of SsL techniques.

Another critical challenge lies in the potential propagation of errors and biases present in
the initial labelled data. These inaccuracies can be amplified throughout the SsL iterations,
significantly influencing the model predictions. Ensuring the quality and reliability of labelled
data becomes paramount to prevent the propagation of biases.

Moreover, evaluating the performance of SsL methods poses a challenge. Conventional eval-
uation metrics might not adequately capture the enhancements derived from the incorporation
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of unlabelled data. The improvements in model performance due to SsL might not be effectively
measured or reflected by standard evaluation methodologies.

3.3 Active Learning

In both Active Learning and SsL, unlabelled data is used to improve the performance of the
model in situations with a limited amount of labelled data. The key idea behind active learning
is that a machine learning algorithm can achieve greater accuracy with fewer training labels if it
is allowed to choose the data from which it learns. An active learner may pose queries, usually in
the form of unlabelled data instances to be labelled by an oracle (e.g., a human annotator) [20].
The process of active learning can be described as follows:

1. Initial Training: It begins with a small set of labeled data;

2. Query Strategy: The algorithm selects the most informative or uncertain instances from the
unlabelled dataset based on a predefined query strategy;

3. Human Annotation: The selected instances are presented to an oracle (could be a human
annotator or an automated system) to acquire their labels;

4. Model Update: The newly labelled data is added to the training set, and the model is
retrained using this augmented dataset;

5. Iteration: The process iterates, with the model selecting additional instances for labelling
in subsequent rounds.

3.3.1 Active Learning approaches

Numerous approaches for defining these query strategies have been suggested in the existing
literature:

• Uncertainty Sampling: In this approach active learners query the instances they are least
confident about labelling, assuming that labelling these uncertain instances will provide the
most valuable information for model improvement;

• Query-By-Committee: It involves maintaining a committee C of models, all of which
have been trained on the current labelled dataset, but each model represents a different
and competing hypothesis. Each member of the committee is then allowed to vote on the
labellings of query candidates. The most informative query is considered to be the instance
about which they most disagree;

• Expected Model Change: This method employs a decision-theoretic approach: it focuses
on selecting the data instance that would have the most substantial impact on altering the
current model if we knew its label;

• Expected Error Reduction: This is another decision-theoretic approach that focuses on
choosing the data instance not to change the model significantly, but reducing the model’s
generalization error;

• Variance Reduction: It focuses on reducing generalization error indirectly by minimizing
output variance. In the context of active learning, variance is a measure of the uncertainty
or variability of the model’s predictions.
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3.3.2 Active Learning challenges

While active learning presents promising opportunities in reducing labelling costs and improving
model performance, it also encounters some challenges.

First of all, the choice of query strategy impacts the effectiveness of active learning. Selecting
the most suitable strategy for a particular dataset or problem is crucial.

Active learning relies on an oracle for labelling, which could be a human annotator or an
automated system. Human involvement can introduce biases or inconsistencies.

Instances that the model finds uncertain might not always be the most informative or beneficial
for learning, leading to sub-optimal performance in some cases.

3.4 Classification

Classification attempts to learn the relationship between a set of feature variables and a target
variable of interest. The target attribute in classification is a categorical variable with discrete
values. Given a set of training data points, along with target labels, classification determines the
class label for an unlabelled test case [21]. Two types of classification can be distinguished:

• Binary classifier: this type of classifier is employed when the classification problem has
only two outcomes, and it is employed when the target variable assumes one of two distinct
states;

• Multi-class classifier: classifier used if there are more than two categories in the target
variable, assigning an appropriate class label to the test case from a multitude of possible
categories.

3.4.1 Classification algorithms

Some of the widely used classification algorithms include the following:

Support Vector Machines

The goal of the SVM algorithm is to create the best line or decision boundary that can segregate
the n-dimensional space into classes so that we can easily put the new data point in the correct
category in the future. This best-decision boundary is called a hyperplane.

SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme
cases are called as support vectors, and hence algorithm is termed as Support Vector Machine
[22].

The primary objective of SVM is to find the optimal hyperplane that maximises the distance
from each class. This hyperplane is considered the best, as it achieves the maximum separation
between the classes. There are two types of SVM:

• Linear SVM: this is employed when dealing with linearly separable data, where a dataset
can be divided into two classes using a single straight line;

• Non-linear SVM: this variant is used when working with non-linearly separable data,
where no single straight line can efficiently divide the dataset into two classes. Using
this method, non-linear relationships in the data are transformed into a higher-dimensional
space, where linear separation becomes possible.
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SVM performs more effectively in high-dimensional datasets and when the data is linear. More-
over, it is robust to outliers.

On the other hand, on large datasets SVM tends to yield suboptimal results. Furthermore,
tuning the hyperparameters of SVM, namely the cost (C) and gamma, is a non-trivial task due
to the complexity involved. SVM is primarily designed for binary classification tasks. For multi-
class classification, it requires techniques like one-vs-all (OvA) or one-vs-one (OvO) to extend it
to multiple classes, which can increase complexity.

K-Nearest Neighbours

The k-nearest neighbours algorithm, also known as KNN or k-NN, is a non-parametric, supervised
learning classifier, which uses proximity to make classifications or predictions about the grouping
of an individual data point.

The goal of the k-nearest neighbour algorithm is to identify the nearest neighbours of a given
query point, so that we can assign a class label to that point [23]. To find it, a distance metric
needs to be defined (e.g. Euclidean distance, Manhattan distance, Minkowski distance, Hamming
distance).

K is the number of neighbours to check to assign the label. Lower values of k can have high
variance but low bias, and larger values of k may lead to high bias and lower variance. The choice
of k will largely depend on the input data as data with more outliers or noise will likely perform
better with higher values of k [23].

The KNN algorithm is not only one of the simplest but also highly efficient classification
algorithms. Furthermore, it requires only a k value and a distance metric, so less hyperparameters
compared to other algorithms. Nonetheless, being a “lazy learning algorithm”, it only stores the
training dataset for later use during prediction. That means that it tends to require greater
memory and data storage compared to the other algorithms. Additionally, it does not perform
well with high-dimensional data inputs (curse of dimensionality) and so it is also more prone to
overfitting:

Naive Bayes

Supervised learning algorithm based on Bayes’ Theorem. Bayes theorem provides a way of com-
puting posterior probability P (c|x) from P (c), P (x) and P (x|c). Below the equation:

P (c|x) = P (x|c)P (c)

P (x)

Where:

• P (c|x) is the posterior probability of class (c, target) given predictor (x, attributes);

• P (c) is the prior probability of class;

• P (x|c) is the likelihood which is the probability of the predictor given class;

• P (x) is the prior probability of the predictor.

This approach is based on the assumption that the features of the input data are conditionally
independent given the class, allowing the algorithm to make predictions quickly and accurately
[24].

There are many advantages to this algorithm: first of all, it is regarded as a simpler classifier
due to the ease of estimating its parameters and also fast and efficient. Additionally, The algorithm
can handle a large number of dimensions, which can be challenging for other classifiers to handle
effectively.
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A limitation of this algorithm is the core assumption: conditional independence does not
always hold. Further, another problem is the zero frequency: when a categorical variable does
not exist within the training dataset. In this case, the probability will be zero, and multiplied by
the other conditional probabilities, the posterior probability will be zero too. A possible solution
is to use the smoothing technique.

Decision Tree

They have a tree structure, made of root node, internal nodes, branches and leaf nodes. The
leaf nodes represent all the possible outcomes within the dataset [16]. Decision trees can be
understood as a series of if-else statements. They evaluate conditions and based on whether the
condition is true or false, they proceed to the corresponding next node connected to that decision.
There are various methods available for selecting the best attribute at each node; among these
information gain (difference in entropy before and after a split on a given attribute) and Gini
impurity (probability of misclassifying a randomly selected data point within a dataset if it were
labelled based on the class distribution of that dataset) are widely used as popular criteria for
splitting decision tree models.

One of the advantages of this algorithm is the interpretability: the tree structure is easy to
understand, and it is also straightforward to identify the most important attributes. Moreover, it
can handle different data types (i.e. discrete or continuous values).

However, there are some drawbacks: overfitting when the decision tree is complex, and they
may not generalise well on new data. Further, small variations in the data can lead to significant
differences in the resulting decision tree. Decision trees can be computationally expensive to train
compared to other algorithms, due to the greedy search approach used to construct the tree.

Random forests

Random forests are an ensemble learning technique, meaning they combine the predictions of
multiple decision trees to make a final prediction. Three are the main hyperparameters, which
need to be set before training: node size, number of trees and number of features sampled. The
algorithm predicts a value or category by combining the results of all decision trees.

The presence of many decision trees in a random forest solves the overfitting problem; in fact,
the process of averaging uncorrelated trees helps to reduce the overall variance and prediction
error.

However, this algorithm is obviously more complex, since it consists of many trees, and it
requires more memory and processing power for training and prediction. Other than that, it
shares pros and cons with the decision tree algorithm: it can handle both classification and
regression tasks, but it is a time-consuming process.

Gradient Boosting

Gradient Boosting is another ensemble learning technique. While in Random Forest each tree is
independent, here decision trees are built sequentially, and each new tree focuses on correcting the
errors made by the previous trees. It employs a gradient descent optimisation process to minimise
a loss function: at each iteration, the algorithm computes the gradient of the loss function in
relation to the predictions of the current model and then trains a new weak model to minimise
this gradient.

Since each iteration corrects the error of the previous tree, it can be more accurate than
Random Forest. For the same reason, gradient boosting is well-suited for handling larger dataset.

However, Gradient Boosting might require more computational resources and time compared
to Random Forest due to its iterative nature. Moreover, it is more prone to overfitting, requiring
the application of regularisation techniques.
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Convolutional Neural Network

In deep learning, convolutional neural networks (CNN/ConvNet) is a specialised subclass of Ar-
tificial Neural Networks (ANNs) used in classification and computer vision tasks.

Neural networks or artificial neural networks (ANNs) are comprised of a node layers, containing
an input layer, one or more hidden layers, and an output layer. Each node, or artificial neuron,
connects to another and has an associated weight and threshold. If the output of any individual
node is above the specified threshold value, that node is activated, sending data to the next layer
of the network. Otherwise, no data is passed along to the next layer of the network [25].

CNN uses a special technique called convolution. Convolution, in mathematical terms, refers
to the transformation of two functions into one that expresses how the shape of one is modified
by the shape of the other. CNN, using this operation, provides an efficient automated feature
extraction, while before CNNs, manual and time-consuming feature extraction methods were used
to identify objects in images.

Moreover, CNNs capture the spatial features from an image. Spatial features refer to the
arrangement of pixels and the relationship between them in an image. They help us in identifying
the object accurately, the location of an object, as well as its relation with other objects in an
image. Additionally, convolution technique enhances robustness to noise in the data.

On the contrary it requires a lot of computational effort because of the high number of layers
and parameters. Furthermore, if the dataset is too small it may overfit and it may not generalise
on new data.

Anyway, the accuracy of malware analysis with machine learning methods appears to be
diminishing as malware becomes more sophisticated. While deep learning can provide greater
accuracy. For malware image classification, CNN is very common because of its efficiency in
image classification. The problem is that malware uses binary data that is one-dimensional, while
CNNs solve problems based on two-dimensional images. One usual method is to create two-
dimensional images from a one-dimensional image using the width of the two-dimensional images
targeted. Further, CNNs are primarily used for supervised learning, and high-quality labelled are
fundamental, that is hard in malware classification.

3.4.2 Classification model evaluation

Evaluation is important to understand the performance of the machine learning model. Two of
the most common factors that affect this performance are listed below:

• Overfitting: it happens when a model fits too well on the training data that it cannot
perform well on new data;

• Underfitting: it happens when the model is not able to capture meaningful relationships
between input and output data.

In the context of malware classification, overfitting and underfitting are common challenges. Deal-
ing with both of these two is crucial. A sufficient and diverse dataset for training is necessary, as
well as selecting the right machine learning algorithm, optimising hyperparameters, and using the
right feature representation. Additionally, techniques such as cross-validation and regularisation
can help mitigate these issues.

There are different metrics to evaluate the performance of a classification model, and it is
important to use multiple metrics because a model may perform well on one metric and not on
others. The most common are the following:
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Accuracy

Accuracy is the easiest way to measure the performance of the classifier. It is defined as the ratio
of the correct predictions and the total number of predictions:

Accuracy =
TP + TN

TP + FP + TN + FN

Where:

• True Positive (TP ) is the outcome correctly labelled as positive by the model;

• False Positive (FP ) is the outcome incorrectly labelled as positive by the model, because it
is actually negative;

• True Negative (TN) is the outcome correctly labelled as negative by the model;

• False Negative (FN) is the outcome incorrectly labelled as negative by the model, because
it is actually positive;

Even if it is a very simple and easy to interpret measure, in some cases it is misleading. Indeed,
it is not a good metric when the dataset is imbalanced.

Confusion matrix

It is a table that represents the classification results. Each column represents one class. So we have
a 2-by-2 matrix for binary classification and an n-by-n matrix for multiclass classification where
n is the number of classes. It is extremely useful for measuring the Recall, Precision, Accuracy,
and AUC-ROC curves.

Precision

Precision describes the proportion of correctly predicted positive cases among all the cases that
were predicted as positive:

Precision =
TP

TP + FP

It is a useful metric when False Positives are more significant than False Negatives.

Recall

Recall measures the proportion of actual positive cases that are correctly identified as positive:

Recall =
TP

TP + FN

On the contrary, this is useful when False Negatives are more significant than False Positives.

F1-score

It combines both precision and recall to provide a single measure of a classification model’s
performance. Useful when the dataset is imbalanced.

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall

The drawback of F1-Score is that it treats both false positive and false negative errors equally,
which means it provides a balanced assessment of precision and recall, but does not distinguish
between the varying impacts of these errors. As a result, in scenarios where different errors have
significantly different consequences, it may be necessary to consider alternative evaluation metrics
or to take into account the specific context in which the classification model will be used.
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AUC-ROC

ROC curve (receiver operating characteristic curve) that plots two parameters at all classification
thresholds:

• TruePositiveRate(TPR) = TP
TP+FN

• TrueNegativeRate(TNR) = FP
FP+TN

AUC stands for “Area under the ROC Curve”. It can be defined as the measure of the ability of
a classifier to distinguish between classes. The higher the AUC, the better the performance. So
when it is equal to 1, the classifier is perfectly able to distinguish all positive and negative classes.
When equal to 0, the classifier predicts all negative classes as positives and vice versa.

3.5 Malware detection using Machine Learning

Malware detection using the traditional approach has the major problem of not being able to
detect zero-day attacks. That is why security analysts proposed the behavioral-model approach,
but it is not without limitation, as it can be time-consuming.

Machine Learning is a possible solution to both of these limitations. It is important not only
to detect malware, but also to determine which family a malware belongs to, in order to have
a more comprehensive analysis. The difference between these two tasks, malware detection and
malware family classification, is the output of the system. Malware detection outputs a single
value that indicates whether a software is malicious or not. Malware classification outputs the
probability that a malware belongs to each family.

The traditional machine learning approaches for malware detection or classification do not
work on raw malware, instead they require a preprocessing of data to extract a set of features
from the executable. The type of features can be classified into two groups, similar to the types
of malware analysis: static features and dynamic features [14]:

3.5.1 Static features

Static features are the ones extracted from a piece of the program without executing it. The most
common are [14]:

String analysis

String analysis refers to the extraction of every printable string (ASCII and Unicode-printable
sequence of characters) within an executable or program [14]. Strings can give clues about the
program functionality or about the suspect binary. They can contain references to URLs, file-
names, domain names, IP addresses and so on. It is very simple, but it is usually used with other
static or dynamic techniques to minimize its pitfalls. Indeed, it is a task that consumes a signifi-
cant amount of time and it is prone to errors, given that relevant strings appear significantly less
frequently compared to irrelevant ones and that large binaries can produce an extensive number
of individual strings.

Bytes and opcode N-Grams

N-gram is the most used feature for malware detection and classification. An n-gram is a con-
tiguous sequence of n items from a given sequence of text. N-grams can be extracted from the
bytes sequences representing the malware’s binary content, by looking at the unique combination
of every n consecutive bytes as an individual feature, and from the assembly language source code
referring to the unique combination of every n consecutive opcodes as an individual feature [14].
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Although they are widely used, there are some issues. First of all it is computationally impossible
to enumerate all the n-grams, moreover too many features can lead to curse of dimensionality when
the number of samples is lower. Second, this technique is demonstrated to select features that
occur frequently enough, namely features with low entropy, such as string and padding. Lastly,
minor changes will prevent the feature from appearing, so generalisation cannot be achieved and
this will lead to overfitting.

API function calls

API calls are ideal features for characterising malware behaviour, including malicious activities and
functionalities. Through API calls, the malware interacts with the operating system components,
has access to files and processes, communicates with remote servers, captures user inputs, and so
on. However, also this technique could be compromised by code obfuscation: malware authors
can hide malicious API calls, making them harder to detect.

Entropy

Since the two most used obfuscation techniques by threat actors are compression and encryption, it
is highly interesting for security analysts to understand whether there are encrypted or compressed
segments of code within the executable file. Entropy analysis serves this purpose because files
containing compressed or encrypted code segments typically exhibit higher entropy compared to
native code. In information theory, entropy (or more precisely, Shannon’s entropy) quantifies the
amount of information in a variable [26]. Generally speaking, the entropy of a bytes sequence refers
to its statistical variation. High entropy values indicate that the segment comprises exclusively
unique or distinct values. Indeed, if specific byte values have higher occurrence probabilities, the
resulting entropy value will be lower. The problem is that malicious actors can use tricks to reduce
the entropy value (e.g. to pad “nop” instructions).

Malware representation as a gray scale image

A given malware binary is read as a vector of 8 bit unsigned integers and then organised into a 2D
array. Each of these unsigned integers is mapped to a grayscale value within the range [0, 255].
In this representation, 0 corresponds to black, and 255 corresponds to white. The intermediate
values represent different shades of gray. The bytes are plotted starting from the left and wrapping
to the next row once the end is reached. Fig 3.1 shows this process.

Figure 3.1: Visualizing malware as an image [27]

The width of the image is fixed and the height is allowed to vary depending on the file size
[27]. Grayscale is useful in malware classification, as images of various malware samples within
the same family exhibit visual similarities while distinct from those in different families. However,
there are certain issues associated with this technique. First of all, like most static features, it
suffers from code obfuscation: changing the byte structure of the binary will result in the failure
of the classification process. Second, to construct an image you need to select an image width
which adds a new hyper-parameter to tune. Third, it imposes non-existing spatial correlations
between pixels in different rows, which might not be true [14]. Additionally, grayscale images
may not capture the full complexity of malware, and their effectiveness depends on the specific
features used and the quality of the images.
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Function call graphs

A Function Call Graph (FCG) is a directed graph whose vertices represent the functions of which
a software program is composed, and the edges symbolise function calls. A vertex is represented
by either one of the following two types of functions:

• Local functions, implemented by the programmer to perform specific tasks;

• External functions: provided by the O.S. or system and external libraries [14].

The concept of the call graph in malware classification is that files that share similar call graphs
are likely to have been generated from the same family.

Control Flow Graph

A Control Flow Graph (CFG) is a directed graph in which the nodes represent basic blocks and
the edges represent control flow paths. A basic block is a linear sequence of program instructions
having an entry point (the first instruction executed) and an exit point (the last instruction
executed). A CFG is a representation of all the paths that can be traversed during a program’s
execution [14].

3.5.2 Dynamic features

Dynamic features are those extracted from the execution of malware at runtime [14]. Below are
the most common ones:

Memory and Register’s usage

The behaviour of a computer program can be represented by the values of the memory contents
at runtime [14]. A considerable amount of information can be found in memory, such as active
and terminated processes, Dynamic Link Libraries (DLL), running services, registry, and active
network connections. Furthermore, the analysis provides accurate information about malware
behaviours by extracting memory-based features that can express malware activities and charac-
teristics [28].

Instruction traces

A dynamic instruction trace is a sequence of processor instructions called during the execution
of a program. Contrary to the static instruction trace, dynamic traces are ordered as they are
executed, while static traces are ordered as they appear in the binary file. Dynamic traces are a
more robust measure of the program’s behavior, since code packers and encrypters can obfuscate
and hinder the code instructions from static analysis [14].

Network traffic

As soon as malware infects a host machine, it may establish communication with an external
server to obtain the commands to execute on the victim or to download updates, other malware
or to leak private and sensitive information of the user/device. As a result, the monitoring of
network traffic entering and exiting the network, the traffic within the network and the host
activity, provide helpful information to detect malicious behavior [14].

API call traces

Windows API calls enable virus writers to use these calls for gaining elevated security privileges
and executing malicious actions. Compared to the static version, it is more robust to code
obfuscation.
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3.6 Current challenges

Machine learning for malware detection and classification has to face some issues. The following
are the common ones [29]:

Dataset

Data represent the primary challenge in machine learning problems. First of all, the size of the
dataset impacts the algorithm performance, but building a larger dataset for malware classification
is an expensive task, since it requires for the experts to manually label each sample.

The lack of a standard dataset benchmark also contributed to this issue. Even though malware
binaries are shared generously through Web sites such as VirusShare and VX Heaven, benign
binaries are often protected by copyright laws that prevent sharing [14].

Moreover, in particular for malware detection and classification, class imbalance is one of the
main limitations: the number of malware samples could be disproportionate to the number of
benign samples, or the number of samples belonging to one family could be disproportionate
to the number of other families samples. Given that, accuracy is not a reliable metric for the
model evaluation. Indeed, a model that predicts the majority class for all examples in the test
set will have a high classification accuracy. In other words, the classifier might be biased towards
the majority classes and achieve very poor classification rates on the minority classes. It might
happen that the classifier predicts everything as the major class and ends up ignoring the minor
classes. This is called the accuracy paradox [14]. Other more reliable metrics in this case are
precision, recall and F1-score.

Outdated datasets are also another issue.

Obfuscated malware

Modern stealthy malware attacks hide their behavior in virtual environments and security tools.
This technique makes the malware challenging to be detected [29]. To put it in the machine
learning context, an attacker’s aim is to fool the machine learning detector by camouflaging a
piece of malware in feature space by inducing a feature representation highly correlated to benign
behavior. The ability of the attacker to bypass machine learning solutions is related to their
knowledge about features and machine learning models to target [14].

Implementation time

This is a common challenge encountered by machine learning experts. Different kinds of algorithms
might be used simultaneously in the empirical experiment; it takes longer to detect malware [29].
Furthermore, several elements contribute to this extended processing time. For instance, programs
that run slowly or are resource-intensive may reduce the overall efficiency of the detection process.
Data overload is another common issue, especially when dealing with extensive datasets, which can
extend the time needed for analysis. Additionally, the requirements of certain machine learning
algorithms, both in terms of computing power and memory, can lead to longer processing times.
This can be a drawback when promptly detection is crucial.

Type of analysis

It might influence the performance of the model, since some malware can’t be detected through
static analysis. Even though static analysis is popular among researchers, it is also contributed
to one of the limitations in detecting malware [29]. To address the drawbacks of static analysis
there are many solutions that combine both static and dynamic analysis. By leveraging from each
approach these solutions aim to improve the overall efficiency of malware detection.
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Malware features

The feature attributes chosen must be independent of each other or have a low correlation co-
efficient. Highly correlated features contain redundant information, and this can increase the
computational complexity. Furthermore, this can make the model sensitive to minor variations
in the training data. When the same data are perturbed slightly or when new data is added,
the model’s coefficients may change significantly. This sensitivity can result in unpredictable and
unreliable model behaviour.

Besides, many issues arise due to the large number of unrelated or duplicate characteristics.
One of them includes confusion about the learning algorithm, since the algorithm may not be
able to understand which attributes are significant for making accurate predictions. In addition,
having too many attributes can result in over-fitting. These problems can lead to a reduced
classification accuracy [29].

To mitigate these problems and achieve optimal model performance, feature selection tech-
niques are often employed to choose a subset of the most relevant and informative attributes while
discarding irrelevant or redundant ones.

Classification method

There are many classification methods used for malware detection as previously explained, and
the performance is different based on several critical variables including dataset, features and
hyperparameters.

Additionally, distinguishing between malware families is a more challenging problem than a
binary classification of malware and benign files [29]. This complexity arises from various factors:
for example, malware actors could use polymorphism to change code and behavior of the malicious
software, requiring different detection strategies even within the same family. Moreover, some
features that are effective to detect a specific family may not be useful for another, due to the
significant variations in the characteristics of different malware families. Another crucial problem
is related to the out-of-distribution detection, the process of detecting samples that do not belong
to the training distribution. The algorithm should be able to detect samples that belong to
unknown families.

High false positive rate

False positives in the context of malware detection occur when a benign program is wrongly
labelled as malicious one. There are many reasons why this is a concern.

First of all, high false positive rates can result into a waste of important resources, as security
teams may need to investigate and handle each false alarm. This can be time-consuming and
costly.

Moreover, users may face interruptions or inconveniences when benign files are mistakenly
marked as malware, affecting their overall experience.

Additionally, repeated false positives can damage trust in the security software or system.
Users may start to disregard alerts, assuming that they are likely false alarms. The acceptable
false positive rate in malware detection needs to be very low. There are some methods that are
more likely to generate false positives.

Concept drift

Concept drift refers to the change in the underlying relationships between input and output data
over time. In the domain of malware detection and classification, using machine learning models
that assume that there are static relationships in the data will lead to degrading predictive per-
formance. That’s because malware continuously changes over time. Malicious actors continually
modify and adapt their techniques to avoid detection, leading to variations in the characteristics

32



Machine Learning and Cybersecurity

of malware. Therefore, it is important to understand when a model is degrading because it may
no longer be capable of accurately identifying new malware threats. Hence, it is essential to
periodically assess the model’s performance and, when necessary, retrain it with novel malware
samples. This approach ensures that the model remains up-to-date and capable of effectively
classifying the latest malware variants, reducing the risk of false negatives in malware detection
and classification systems. There are also other solutions to address concept drift, and they will
be outlined throughout this thesis.

3.7 Cybersecurity and Machine Learning: A recap

This chapter provides an overview of key concepts in machine learning within the context of
cybersecurity. It explores various machine learning approaches and algorithms, with a particular
emphasis on Semi-Supervised and Active learning, which are the fundamental approaches of this
thesis. These are highlighted for their significance in enhancing model efficiency when labelled
data is limited.

The chapter further explores the implementation of machine learning in cybersecurity, exam-
ining its role in threat detection, and addressing the associated challenges.

The synthesis of these concepts and methodologies allows for a comprehensive understanding
of how machine learning can be used to enhance cybersecurity defences in an ever-evolving digital
landscape.
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Chapter 4

Related works

Machine learning techniques have been widely used in the field of malware detection in recent
times. Numerous research papers have been published, adopting a various range of approaches,
from traditional machine learning algorithms to deep learning methods. These studies have pre-
sented encouraging outcomes, showing the efficacy of employing machine learning in the field of
malware detection.

4.1 Image-based approach

Due to promising results and the continuous growth in the field of image processing in machine
learning, in recent years researchers have been converting malware executables into images and
categorising them based on features from images by applying image processing-based techniques.

C.V. Bijitha et al. [30] presented a detailed study on image processing-based malware classi-
fication techniques, focused on three questions:

1. What are the various methods used by researchers to convert executables into images?
(Images from Executable Binary Distributions that does not involve any disassembly or
execution of samples; Images from Opcodes by Executable Disassembly, from disassembling
the executables to construct images, which appears more meaningful compared to binary
data; Images from API Calls by Executable Execution, the best way for identifying malware
behavioral features that can be executed)

2. What visual features can effectively characterize malware? (Texture Analysis and Image
Processing Hashes)

3. What are the image classification techniques adopted by the researchers, and how much
accurate they are? (Classification Based on Hand Crafted Features and Deep Learning
Based Classification Method).

They identified also open issues in this area, like obfuscation, zero-day malware, cross-family
malware, the byte plot (which contains only byte distribution) that cannot capture the behavioural
aspects of the malware executable, and the fact that the feature engineering-related workarounds
where excessive domain knowledge is required endure significant issues when employing machine
learning techniques for such applications. The attackers could utilise the information about the
feature set in their favour and exploit the system.

Tran The Son et al. [31] evaluated the classification performance of various machine learning
classifiers (i.e. k-NN, NB, SVM, CNN) fed by malware images in various dimensions (i.e., 128×128,
64×64, 32×32, 16×16), on three different datasets including Malimg, Malheur and BIG2015. The
experiment results obtained by four different classifiers on the Malimg dataset look very good.
Whereas on Malheur and BIG2015 datasets in which there exists a bad classification. It can

34



Related works

be explained that images of a given malware family provided by Malimg dataset are very much
similar in texture and dimension; therefore, it is easy for a classifier to do classification. While
variants of some malware families in the Malheur dataset are observed to be very different. It is a
big challenge for a classifier to learn and classify a new instance of malware. The type of classifier
is another factor that affects the accuracy of classification. KNN provides the best performance,
NB the worst. CNN instead shows accuracy very similar to SVM but it is more complicated: that
is because grayscale malware images are very simple, and using a complicated network for learning
and classifying might not be effective. In terms of input size, the highest accuracy value with
K-NN is reached with 32x32 and tends to decrease when the size of the input images increases.
That is due to the fact that k-NN relies on Euclidean distance to decide the nearest neighbours,
so too many pixels make it get confused. Instead, under 32, there is a lack of important features.

Baraa Tareq Hammad et al. [32] proposed a malware classification (MC) method with excellent
accuracy and without using any data augmentation or other balancing strategies. It consists of
the following steps:

1. Dataset prepation: 2D malware images are created from the malware binary files. Malware
binaries are used to construct eight-bit vectors and a grayscale image is created from these
vectors;

2. Visualized Malware Pre-processing: the visual malware images need to be scaled to fit the
CNN model’s input size maintaining the malware images’ primary textual characteristics;

3. Feature extraction: both hand-engineering (Tamura) and deep learning (GoogLeNet) tech-
niques are used to extract the features in this step;

4. Classification: to perform malware classification,k-Nearest Neighbor (KNN), Support Vector
Machines (SVM), and Extreme Learning Machine (ELM) are employed.

The results indicated that this method can efficiently classify malware even when the dataset is
unbalanced. The proposed method’s accuracy rate was higher than both the hand-crafted feature
and Deep Feature techniques.

4.2 Semi-supervised approach

Because of the limited availability of labels and the high cost of acquiring them, a lot of re-
cent works have adopted Semi-Supervised approach. Several of them are image-based malware
classification approaches.

Ding, Y. et al. [33] proposed a malware classification (MC) method based on Portable Exe-
cutable (PE) file header. The model first converts the malware binary to grayscale, then pre-train
the neural network with unlabelled data to learn generic representations of malware samples, and
finally finetunes the model with only a small amount of labelled data to learn malware classifica-
tion capabilities. The proposed algorithm experimented on the open-source Virus-MNIST dataset.
Multiple neural network algorithms are used to train the malware classification model (ResNet,
DenseNet, MobileNet, VGG etc.). Experiments show that the pre-training process proposed in
this method can improve the performance of the model, but for the problem that the performance
of traditional malware classification methods continues to degrade with the evolution of malware,
this method can only reduce the manual annotation workload required to retrain the model.

Tan Gao et al. [34] proposed a malware classification model based on malware visualisation
and co-training of classifiers. First, binary files are processed through visual methods; then
the global and local features of the gray images are extracted and fused by a special method
(canonical correlation analysis) to eliminate the exclusion between different feature variables.
Finally, collaborative learning using a Tri-training algorithm is proposed to continuously train
and optimise the classifier by introducing features of unlabelled samples. The datasets used are
i.e. Malimg and Microsoft. The results show that this improved collaborative learning reduces
the cost of labelling and, moreover, it can continuously improve the model performance through
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the input of unlabelled samples, achieving higher classification accuracy, but it increases the time
overhead.

Rui Shu et al. [35] proposed a framework that uses hyperparameter optimisation with semi-
supervised learning and Bayesian optimization to search a large hyperparameter space. The basis
of the framework is Pseudo-labeling: it works by iteratively propagating labels from labelled
data to unlabelled data. Moreover, if the percentage of minority class in the training dataset is
low (under a certain threeshold), it further adaptively integrates an optimised oversampler into
the framework (called SMOTE). The selected classifier is Random Forest. Dapper framework is
evaluated with three security datasets that cover different security tasks: Twitter Spam, Malware
URLs, CIC-IDS-2017. Standard semi-supervised learning algorithms do not adequately address
the class imbalance issue. When decreasing the label rate, the imbalanced issue even gets worse.
That is why this framework introduces SMOTE. But SMOTE might bring in an increment of
false positive rate. This might result from the pseudo-labelling process, which infers the original
minority class even to majority class. Moreover, Dapper with label spreading provides even better
performance than supervised learning with 100% labelled training data, but with as low as 10%
of original labelled data required.

Jan Koza et al. [36] proposed a comparison between two semi-supervised algorithms for deep
neural networks on a large real-world malware dataset. The first one is Pseudo-labeling, which
uses unlabelled samples, classified with high confidence, as if they were the actual labels. The
second is implemented in two variants: Π-model (compares two predictions of the same state
of the network using different inputs and different droppedout neurons; the second prediction is
augmented multiplying it with noise) and temporal ensembling (compares the predictions of the
network in the current epoch with the prediction obtained in the previous epoch). Based on their
experiments, they determined that the performance of the fully supervised learning depends on
the number of labelled data. Instead Pseudo-labeling and Π-model have higher accuracy of low
ratios of the labels (under 10%). Also, it seems that Π-model outperforms Pseudo-labeling, as its
accuracy is higher in most of the measurements.

Salma Abdelmonem et al. [37] proposed an enhanced version of the Π-model, which combines
supervised learning with semi-supervised information, making it more accurate and consistent.
This work compares three supervised learning models: Four-Layer CNN, ResNet50 and LeNet-8
and selects the best one in terms of accuracy and complexity to be included in the final proposed
semi-supervised model. It uses the Malimg dataset. The results show that semi-supervised model
performs better than supervised one when the ratio of labelled samples is as low as 20%. This
is because supervised learning models overfit when the data is small. On the other side semi-
supervised Π-model add regularisation techniques on top of the supervised learning model to
prevent overfitting.

Shuwei Wang at al. [38] proposed an improved malware image rescaling algorithm (IMIR)
based on local mean algorithm: it extends the sampling range to the edge of sliding window.
Then it adjusts the calculation method of step length and adds a fill step to fit the malware
images. Its main goal of IMIR is to reduce the loss of information from samples during the process
of converting binary files to image files. They designed a classifier model with one-dimensional
convolutional neural network which is suitable for malware classification with image features
extracted by IMIR. Then they optimised the classifier through weak coupling semi-supervised
learning based on SGAN. SGAN (Semi-Supervised GAN) trains both the generator and the semi-
supervised classifier at the same time: it uses the supervised learning with labelled samples to
train model for judging categories, and the unsupervised learning with unlabelled samples to
train model for judging true or false. Through weak coupling they can retain the weak links of
supervised part and unsupervised part of SGAN, improving the accuracy of malware classification
by making classifiers more independent of discriminators. Identified issues in this paper are the
loss of GAN that is hard to optimise and the “mean” operation in IMIR that may be a bit rough.

Giovanni Apruzzese et al. [39] researched previous works utilising the combination of labelled
and unlabelled data for Cyber Threat Detection (CTD) and found out that none of such works
addressed the benefits of unlabelled data in SsL. Therefore, they formalised the evaluation require-
ments that enable one to assess the impact of unlabelled data in the development of an SsL model.
To address this problem, they proposed an original Cybersecurity Evaluation Framework for SsL
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(CEF-SsL) for assessing the benefits of unlabelled data in SsL for previous and future works: this
aims to provide a practical assessment of SsL methods by using any fully labelled dataset, while
simultaneously considering the deployment budget and ensuring the statistical significance of the
results. The chapter 5 will provide a detailed description of this work.

4.3 Concept drift mitigation strategies

As mentioned above, concept drift is one of the primary challenges of machine learning for cyber-
security. Several solutions exist to address and prevent the ageing of classification models.

A prevalent approach found in the literature is to retrain the model. However, a challenge
arises when the model is retrained too often, resulting in insufficient new data to effectively
enhance the model. Conversely, retraining less frequently can lead to a time period where the
model’s reliability is compromised. Additionally, manual labelling is expensive, and models need
to be updated often with new examples. Due to this reason, researchers have developed different
mitigation strategies, for instance to identify a restricted set of optimal items for labelling (active
learning).

In the context of network intrusion Andresini et al.[40] proposed INSOMNIA, a semi-supervised
intrusion detector which continuously updates the underlying ML model as network traffic char-
acteristics are affected by concept drift. It employs a deep neural network (DNN) as its core
classifier. To mitigate the latency caused by model updates, they employ active learning tech-
niques. This approach focuses on updating the model using newly acquired data points that offer
the highest potential for information gain.

To evaluate this system they used TESSERACT [41]. Tesseract proposed a new metric named
AUT (Area Under Time) to effectively measure model’s performance over time within the concept
drift context and compare different malware classifiers. The authors also emphasise the impor-
tance of adhering to temporal constraints when training and testing models to accurately portray
the model’s performance. This involves arranging the training data preceding the test data and
segmenting the test data into consecutive time periods of equal duration. They proposed a frame-
work designed for evaluating trade-offs between performance and cost of techniques to mitigate
time decay such as active learning. Their experiments reveal that Deep Learning is actually the
algorithm most robust to time decay. This phenomenon might be attributed to the feature repre-
sentation within the latent feature space automatically discerned by deep learning, which appears
to exhibit enhanced resilience to time decay within the specific experimental context they explore.

Another solution is to design more robust feature spaces, but this is not without challenges.
In their work, Adam Duby et al. [42] evaluated feature robustness against concept drift for the
malware classification problem. They used an approach based on dynamic features, since they
are more challenging for attackers to manipulate. This is due to the fact that dynamic features
need to mantain certain semantics to ensure malware’s functionality, which can be compromised
during manipulation attempts. They used in particular two sets of dynamic features: process
handle counts by type, and named memory-mapped files. Their experiments showed that the
selected features are more robust against drift over state-of-the-art API based feature sets.

Alternatively, there is another approach, named classification with rejection, where predictions
with low confidence resulting from instances affected by drift are rejected. Roberto Jordaney et al.
[43] proposed TRANSCEND, a framework that performs classification with rejection to identify
ageing classification models in vivo during deployment, much before the machine learning model’s
performance starts to degrade. This framework uses a conformal evaluator, a tool that evaluates
the quality of predictions made by the classifier. Its design is based on conformal prediction theory,
which aims to quantify the level of confidence or uncertainty associated with the predictions
generated by a model. This tool employs the concept of nonconformity to detect and discard
new instances deviating from the training distribution, which are prone to being inaccurately
classified. However, this solution does not scale to larger datasets and it is computationally
complex. Moreover, the performance of this system relies on the definition of “dissimilarity”, and
as proved in [44], in settings with high data dimensionality, it could be bad.
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Related works

Limin Yang et al. [44] proposed CADE, a system that can detect drifting samples that deviate
from existing classes, and provide explanations to reason the detected drift. The system uses con-
trastive learning to learn how to compare and contrast pairs of samples, and uses distance-based
explanations to reason the detected drift. Contrastive learning uses the labels in the training data
to learn a distance function that measures the similarity of two samples. CADE’s computational
overhead is smaller than existing methods, and its detection runtime overhead is significantly
lower than that of Transcend.

Federico Barbero et al. [45] proposed TRANSCENDENT, a framework built on Transcend to
overcome its limitations. They proposed new conformal evaluators that aim to minimise compu-
tational overhead.

4.4 Insights from Related Works

In this chapter, an extensive survey explores two primary approaches for malware classification:
the Image-based approach and Semi-Supervised Learning. The chapter begins with a critical
analysis of various image-based algorithms, highlighting their strengths and limitations in the
domain of malware classification. Subsequently, the exploration expands to analyse various SsL
techniques applied in the context of malware family identification and categorisation. Several
studies and methodologies are discussed, highlighting the efficacy of SsL in handling limited
labelled data while leveraging the potential of extensive unlabelled datasets. However, also the
limitations and the open issues associated with SSL approaches are emphasised.

Particularly noteworthy is the evaluation framework introduced within the related works,
which serves as a principal component in this project. This framework enables a rigorous evalua-
tion of the benefits associated with SsL, addressing a notable gap in previous works.

Furthermore, the chapter provides an in-depth analysis of concept drift, a phenomenon preva-
lent in dynamic environments, along with various strategies designed to effectively address this
challenge. This exploration allows for a comprehensive understanding of the dynamic nature of
malware threats and the adaptability required in defence mechanisms to mitigate these evolving
adversarial strategies.
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Chapter 5

Cybersecurity Evaluation
Framework for SsL

Initially, the authors discussed the challenges of labelling data in CTD, which are more difficult
than in other domains:

• The intrinsic confidentiality which strongly discourages data sharing;

• Attackers constantly adapt their strategies as well as the environment being protected grows
and evolves, leading to the phenomenon of concept drift;

• Even security experts find it challenging to verify the ground truth of a sample;

• Data augmentation is difficult in CTD. For instance, changing a single byte can turn many
malicious samples into benign ones.

So, acquiring labels in CTD is an issue that motivates SsL methods to be investigated. Further-
more, they claimed that a dataset that is usable for realistic CTD applications of ML must meet
the following criteria:

• It must be large enough to capture all the underlying characteristics of the environment to
protect, and of the threats to defend against;

• The ratio of benign/malicious samples must be balanced enough to allow efficient detection
without generating excessive false alarms;

• It must have accurate ground truth;

• It must be continuously updated.

Imbalanced dataset is a common issue, as introduced before in this thesis. There are many
techniques to overcome this issue. The most used one is sampling: a preprocessing technique,
so it is applied on training data to reduce the imbalance ratio between classes. The following
methods can be distinguished:

• Over-sampling: It consists of increasing the size of the minority class by duplicating
randomly selected samples;

• Under-sampling: It consists of decreasing the size of the majority class by removing
randomly selected samples;

• Hybrid sampling: It consists of applying both previous techniques.
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The problem with sampling is that there is no guarantee that achieving good accuracy on a
balanced dataset will necessarily result in reliable performance in a real-world highly imbalanced
scenario, especially when dealing with highly imbalanced data.

In fact, as stated by Harsurinder Kaur et al. [46], over-sampling tends to increase the size
of the data space, which results in a situation of overfitting and takes more time in the training
phase. However, under-sampling removes some set of samples randomly from the majority class
where lies the possibility of losing informative samples.

Although, as cited above, Apruzzese et al. [39] in their paper asserted that a dataset must
be balanced in CTD, the oversampling techniques that they applied in the presence of data-
imbalance did not lead to significant changes. This problem requires further analysis, and it will
be expounded upon through a detailed explanation of the implemented methodology in Section
7.3.1, followed by the presentation of the correlated results in Section 8.3.

5.1 Requirements to assess SsL benefits

CEF-SsL framework can be applied to assess the benefits of SsL in CTD. Below is an explanation
of the foundational terminology employed to define specific requirements used for evaluating the
advantages of SsL, as referenced in the cited paper:

Let L be a given labelling budget. Let L be any labelled dataset containing sample-label
pairs, obtained by using L. Let L be a superset of L. Let U be an unlabelled dataset containing
samples of which the ground truth is not known. Finally, let F be another labelled dataset which
represents future data. Let D be a fully labelled dataset, used to derive F, U, L, L. Fig 5.1 shows
the diagram of the partitions creation process.

Let µ be any performance metric, e.g., accuracy or F1-score. Let SL be a model trained on L,
and SL be a model trained on L. The goal of a semi-supervised learning (SsL) method is using
U alongside any L obtained with L to devise a model SsL. After deployment, SsL should predict
the ground truth of the samples in F by achieving a performance µ(SsL) s.t.: µ(SL) < µ(SsL) <
µ(SL).

The deployment of a semi-supervised model SsL requires to invest some budget, B. Such
budget can be seen as the sum of three elements U ( investment for obtaining U), L (investment
for generating L) and ϵ (extra operation for developing SsL that is not related to labelling the
samples in L). By using L, the organisation eventually obtains a labelled dataset L, whose
composition depends on the cost of labelling each individual sample x in L; let Cx denote such
cost, L can be defined as:

P
x∈L Cx.

The ROI (return on investment) of any solution can be expressed as the ratio between its

expected performance and its development budget; in the case of SsL: ROI(SsL) = µ(SsL)
B(SsL) .

The 7 requirements that must be maintained for any CTD task to ensure a clear and unequiv-
ocal assessment of the advantages of SsL methods are:

1. Lower bound: It is necessary to evaluate a lower bound model that only uses L and makes
no use of U. If the performance metric achieved by SsL is approximately the same of the
one achieved by SL, there is no practical benefit in using the unlabelled data. It may also
be that µ(SsL) < µ(SL), meaning that using U is detrimental;

Figure 5.1: D is first split into F and L. Then L is further split into L according to L, and the
leftout samples are considered as unlabelled U [39]
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2. Ablation Study: It is necessary to always consider a ‘vanilla’ model SsL that uses the
unlabelled data in a trivial way together with a L randomly sampled from D. The ‘vanilla’
SsL allows to gauge (i) the smallest improvement provided by U via comparisons with SL;
and also (ii) the smallest cost induced by using U, because the randomness of L and the
lack of supervision make the corresponding ϵ minimal. Moreover, SsL serves as a baseline
for an ablation study to simulate worst case scenarios in which any operation that relies on
U to refinely compose L is not functional in practice;

3. Upper Bound: It is necessary to train an upper bound model SL on L and evaluate its
performance on F as µ(SL). Motivation: The SL serves to assess the performance achievable
by augmenting L until it reaches L. Moreover, if µ(SL) ≈ µ(SL), then investing in U to
develop any SsL may not be worth it in the first place;

4. Statistical Significance: It is necessary to verify the statistical significance of any eval-
uation result. The huge search space for composing L from D may lead to erratic results.
Hence, different draws of L (and, preferably, also of L and F) must be assessed and conclu-
sions must be drawn after statistically significant comparisons;

5. Transparency:It is necessary to ensure full transparency on the composition of L, L, U
and F (size and balance ratios in terms of class composition);

6. Reproducibility:Any evaluation must be supported with information that allow its repro-
ducibility;

7. Multiple Settings: It is necessary to evaluate any model by considering multiple deploy-
ment settings.

5.2 Implementation

The unlabelled data U used to develop any SsL is beneficial if it is shown that: (i) µ(SL)≪ µ(SL),

and (ii) ROI(SsL) is better than both ROI(SL) and ROI(SsL). Let
−−→
ML denotes an array of ML

methods, and (n, k) is a pair of integers that regulate the ‘runs’. The proposed framework can be
divided into three stages, as illustrated in Fig 5.2:

• Prepare, that uses L to partition D into L, U and F;

• Run, which (i) train SL on L and test it on F as µ(SL); account for all operational costs
as ϵ(SL); (ii) train SL on L and test it on F as µ(SL); account for all operational costs as
ϵ(SL); (iii) use L and U to devise SsL and test it on F as µ(SsL); account for all operational
costs as ϵ(SsL); Then, if the SsL method does not make any assumptions on L, then this
framework uses U and the previously drawn L as input for the SsL method, otherwise it
generates a new L considering the specifications of the SsL method and use it with U as
inputs, finally SsL is trained and tested on F accounting for all operational costs as ϵ(SsL);

• Iterate, to obtain statistically significant results, it performs multiple ‘runs’ Finally the
aggregated results of each method can be validated via e.g. Student t-test.

The output are two (n, k)-dimensional arrays, whose elements include the results of all the models

devised through
−−→
ML on each run, i.e.: −→µ , containing the performance on ‘future’ data; and −→ϵ ,

containing any cost incurred during the development (not related to labelling).

The authors used CEF-SsL to assess binary classifiers in their evaluation. Consequently, in
some cases, they aggregated all samples from different malicious families into a single malicious
class. But this thesis aims not only to separate malicious software from legitimate software,
but also to categorise them. Evaluations of SsL methods in multiclass classification settings are
challenging as stated in this paper.

Applying CEF-SsL in similar settings is possible, i.e., by manually specifying the cost to
label each malicious sample and performing hundreds of runs of CEF-SsL, but this is empirically
difficult from a research perspective. This paper outlines the following challenges:

41



Cybersecurity Evaluation Framework for SsL

Figure 5.2: Evaluation Framework for SsL

• Randomly choosing a limited amount of samples from N malicious classes: some datasets
only have a very limited number of samples for some classes; there are many approaches to
mitigate this problem, e.g. aggregate samples in macro classes, removing classes with few
samples or aggregate these in another class; however all these methods may introduce some
errors;

• Composing appropriate partitions L, U and F: since in the context of real-world scenarios
benign events are typically more prevalent than malicious ones, a limited labeling budget
raises the question, “How many samples per class should be included in L?” And what
about U and F? There is the possibility of using the relative distribution in a dataset, but
it may introduce bias or skew the results to favour the majority class.

In conclusion, they used this framework to perform the first statistically validated benchmark of 9
selected SsL methods on 9 well-known datasets for CTD. These SsL techniques represent variations
of two established SsL approaches:“self learning via pseudo-labelling” and “active learning via un-
certainty sampling”. In particular, the study examines three distinct pseudo-labelling techniques,
three distinct active learning techniques, and three hybrid methods that combine pseudo-labeling
with active learning:

Pseudo Labelling

They defined:

• SsL: using all pseudo labels regardless of their confidence;

• πSsL: using only the pseudo labels with the highest confidence c ≥ 99%;

• π̂SsL: which repeats the previous operation another time. They use πSsL to predict the
remaining U, and insert the corresponding pseudo-labelled samples with c ≥ 99% in the
‘mixed’ L.

Active Learning

The budget for labelling samples is divided into two equal parts. The first half of the budget is
used to train the initial learner, and the second half is used to assign the correct labels to specific
samples based on the threshold c. To prevent any bias, random selection is used to choose the
‘actively labeled’ samples from among those that meet the specified criteria. Due to this random
selection process, the framework repeats the selection five times for each active learning method.
They defined:

• αSsLl: using low confidence samples c < 1% ;

• αSsLh: using high confidence samples c ≥ 99%;

• αSsLo: using the other samples 1% < c < 99%.
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Pseudo-Active Learning

Pseudo Labelling and Active Learning are combined by using π̂SsL as the initial learner (but
developed with half of the initial L), which produces three ‘pseudo-active’ methods (απSsLl,
απSsLo, α

πSsLh) in the same way as in the ‘pure’ active learning.

5.3 Performance Assessment and Statistical Validation

The considered ML methods use the Random Forest (RF) learning algorithm because (i) they
have been widely adopted by previous work, (ii) they perform well at low computational costs
and can be parallelised, (iii) their performance is similar to other algorithms, but they require less
training time. Additional evaluation of other algorithms can be done. The results reveal that SsL
methods are better than supervised ones, however, in some cases they can degrade performance.
Thus, they proved that there exists a substantial margin for improvement of the SsL methods for
CTD.

They used F1-score as a performance metric, computing the average F1-score achieved by each
method in

−−→
ML on each dataset, across all the different combinations of L and C. They evaluated

execution time as the metric for ϵ.

For statistical validation, they used the Wilcoxon ranksum [47]. This test involves the com-
parison of two populations to assess a specific null hypothesis, denoted as H0. The test outputs
a z-value which is used to determine a p-value: H0 can be accepted or rejected on the basis of
p, according to a target significance level. H0 assumes that the two populations are statistically
equivalent: a large p-value suggests that the two groups are similar(so H0 should be accepted),
while a small p-value suggests that the two groups are different, favoring H0 rejection. The sig-
nificance level is set to 0.05, implying that if p > 0.05 then the two populations are equivalent;
conversely, if p ≤ 0.05, the two populations are different. For each dataset, they compared the
populations containing the performance of the baseline SL against: (i) the best ‘pure’ pseudo-
labelling method; and (ii) the best active learning method.

5.4 CEF-SsL Overview

This chapter includes an exploration of the framework’s foundational concepts. It delineates the
underlying assumptions of the framework’s application, while providing an in-depth analysis of
the requirements used for evaluating the advantages of SsL. Furthermore, it provides a detailed
breakdown of the methodology chosen for the assessment, describing the step-by-step implemen-
tation process. It provides the explanation of the self-learning and active learning approaches,
offering insights into the selection and application of evaluation metrics alongside the statistical
validation methods.

In this thesis, this framework was tailored to suit the adopted image-based approach, in-
corporating various algorithms beyond the Random Forest model employed in the original one,
including deep learning methodologies.
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Chapter 6

Dataset

As mentioned above, datasets pose significant challenges when utilizing machine learning for
malware classification. Above some of the most recent and widely used datasets in the literature:

6.1 SOREL-20M

SOREL-20M (Sophos-ReversingLabs-20 Million) dataset is a large-scale dataset consisting of
nearly 20 million files with pre-extracted features and metadata, high-quality labels derived from
multiple sources, information about vendor detections of the malware samples at the time of
collection, and additional “tags” related to each malware sample to serve as additional targets
[48]. Despite it is a large dataset which makes it interesting for analysis, the main limitation is
the absence of labels for malware families. Therefore, this dataset is deemed unsuitable for the
purpose of this thesis.

6.2 Microsoft Malware Classification Challenge

As part of the Microsoft Malware Classification Challenge announced in 2015, a nearly 0.5 ter-
abyte dataset was released, consisting of 21,741 malware samples. This dataset is divided into
two parts, 10,868 samples for training and the other 10,873 samples for testing. In addition to
its role in the Kaggle competition, this dataset has become widely adopted as a standard bench-
mark for researching and modelling malware behaviour. It consists of a set of known malware
files representing a mix of 9 different families. Each malware file has an identifier, a 20-character
hash value uniquely identifying the file, and a class label, which is an integer representing one of
the 9 family names to which the malware may belong. For each file, the raw data contain the
hexadecimal representation of the file’s binary content, without the header (to ensure sterility).
The dataset also includes a metadata manifest, which is a log containing various metadata in-
formation extracted from the binary, such as function calls, strings, etc [49]. This dataset also
suffers from class imbalance. But it provides the possibility to extract various features (opcodes,
function calls, and ngrams) and also to generate grayscale graphical representations.

6.3 BODMAS

Researchers have faced limitations in studying issues like concept drift and malware family evo-
lution due to the absence of two critical capabilities in existing open PE malware datasets: re-
cent/timestamped malware samples and well-curated family information. For these reasons, the
BODMAS dataset was released. It contains 57,293 malware samples and 77,142 benign samples
collected from August 2019 to September 2020, with carefully curated family information (581
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families) [50]. For each sample there is both the original PE binary as well as a pre-extracted fea-
ture vector that shares the same format with existing datasets such as Ember [51] and SOREL20M
[48]. The family label information provided in this dataset is significantly more comprehensive
compared to existing datasets. For example, the Microsoft dataset [49] only includes 9 families,
whereas this dataset offers a much broader range of family labels. Datasets such as SOREL-20M
do not contain family labels. Combining this dataset with existing datasets such as Ember and
SOREL-20M, researchers could have malware samples span over three years to study malware
evolution and potential concept drift of classifiers [50]. But a large number of training families
will immediately increase the difficulty of training an accurate multi-class classifier. Moreover,
it is highly imbalanced i.e., only 14 families have samples greater than 1000 and more than 100
malware families have only 1 sample in the whole dataset.

6.4 Malimg

As previously explained, researchers are increasingly using image processing-based techniques for
malware classification in recent years. The first step is to convert the malware binary into an
image. Then, extract the features from the image. Next, based on the extracted features, classify
the executable into different families. The Malimg Dataset contains 9,339 malware byteplot images
from 25 different families. Executable binaries represented as a sequence of bits are grouped into
8-bit vectors, where each element can have a value between 0 and 255. When generating a
grayscale image, the value 0 is transformed into black, 255 becomes white, and the remaining
values are assigned various shades of gray. Following the guidelines proposed by Nataraj et al.
[27], the width of the images is typically maintained at a constant value, while the height is
adjusted to correspond to the size of the executable file. Fig 6.1 illustrates samples from different
malware families in the dataset. An advantage of this dataset is that it comprises images, so

Figure 6.1: Variants of malware from Malimg

samples don’t require pre-processing when applying image-based analysis. On the other hand, the
dataset exhibits significant class imbalance. For instance, there are 2949 samples representing the
Allaple.A family, whereas only 80 samples pertain to the Skintrim.N family. Moreover, malware
binaries are not available.

6.5 MaleVis

It is a corpus involving byte images of 26 (25+1) classes. Here, 1 class represents the “legitimate”
samples while the rest of the 25 classes correspond to different malware types. To construct this
corpus, they first extracted the binary images from malware files (supplied by Comodo Inc) in
3 channel RGB form. Following to having vertically long images, the images are resized in 2
different square sized resolution (224x224 and 300x300 pixels) [52]. MaleVis dataset involves a
total of 9100 training and 5126 validation RGB images. Therefore, it is necessary to convert these
RGB images into grayscale images. All the training classes involve 350 image samples while the
validation set has various numbers of images. Further, the binaries are available if you contact
them. Details of this dataset are shown in Table 6.1 where the distribution of the training set is
illustrated.
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Class ID Family Malware Category Sample Number
#1 Adposhel Adware 350
#2 Agent Trojan 350
#3 Allaple Worm 350
#4 Amonetize Adware 350
#5 Androm Backdoor 350
#6 Autorun Worm 350
#7 BrowseFox Adware 350
#8 Dinwood Trojan 350
#9 Elex Trojan 350
#10 Expiro Virus 350
#11 Fasong Trojan 350
#12 HackKMS Riskware 350
#13 Hlux Worm 350
#14 Injector Trojan 350
#15 InstallCore Adware 350
#16 MultiPlug Adware 350
#17 Neoreklami Adware 350
#18 Neshta Virus 350
#19 Other - 350
#20 Regrun Trojan 350
#21 Sality Virus 350
#22 Snarasite Trojan 350
#23 Stantinko Trojan 350
#24 VBA Macro Malwares 350
#25 VBKrypt Trojan 350
#26 Vilsel Trojan 350

Table 6.1: MaleVis dataset.

6.6 Virus-MNIST

Image classification dataset consisting of 10 executable code varieties and 51,880 examples (48,422
training and 3,454 test). Specifically, the dataset comprises thumbnail images that bear resem-
blance to the well-knownMNIST handwritten digits dataset. However, in this case, the thumbnails
are created by reshaping potential malware code into image arrays. The designation of 9 virus
families for malware derives from unsupervised learning of class labels (K-Means clustering) to
match the standard MNIST format and multi-class [53]. It explores a dataset that contains static
analysis data: Raw PE byte stream rescaled to a 32 x 32 greyscale image using the Nearest Neigh-
bor Interpolation algorithm and then flattened to a 1024 bytes vector. The PE malware samples
were downloaded from virusshare.com while PE non malicious examples from portableapps.com
[54]. By testing 10 or more MD5 hash values against the VirusTotal.com database, they assigned
the broad types and example executable names. It is available on Kaggle and Github. Fig 6.2
shows the abstract images derived for each of the 10 classes, with “0” as the only one that is
non-malicious.

It is a large scale dataset and choosing a 32x32 pixel representation for the PE header offers
advantages to deep learning algorithms that rely on powers of 2 (stride length), to construct
their convolutional layers. However, this dataset exhibits an imbalanced distribution of samples.
Moreover there is a 20:1 ratio between malware and beneware, so non-malicious executables
should be added. Additionally, results from benchmarking on this dataset shows the highest
false-negative rate for malware is class “0” or beneware that gets flagged as potentially malicious.
This behaviour may reflect the inexactness of the PE header as an indicator of malware, or the
hijacking of benign header characteristics to disguise malware in the first 1024 bytes. The higher
false-negative rates may also originate in the KMeans approach, given the clustering excluded
the non-malicious cases to simplify the generation of 9 malware families as independent groups
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Figure 6.2: Virus-MNIST showing 10 classes [53].

from beneware. Further investigation may explore whether other clustering approaches benefit
the class distinctions [53].

6.7 VirusShare

VirusShare is a repository of malware samples to provide security researchers, incident responders,
forensic analysts, and the morbidly curious access to samples of live malicious code [55]. All
samples are delivered in password-protected zip-files for safety. Each zip file contains 131,072
samples if the number in the zip name falls between 0 and 148. However, if the zip file is
numbered 149 or higher, it contains 65,536 samples. The higher-numbered zip files contain more
recent samples, allowing for the study of both new and old malware. However, the zip files do not
include any labels indicating the specific malware contained within or their respective families.
To assign tags to the malware, external support is required, specifically the assistance of vx-
underground. The main drawback is that the website explicitly prohibits the use of automated
scripts for downloading malware, making the process of constructing the dataset time-consuming.

6.8 VirusTotal

VirusTotal is a website that provides the capability to analyse files and detect potential malware
within them. It offers a platform where users can submit files for scanning and obtain reports on
any identified malicious content or suspicious behaviour. Additionally, VirusTotal offers access
to a vast dataset of malware samples. The main drawbacks of using the VirusTotal dataset are
the limited number of samples available and the requirement to submit a form on the website to
obtain information about the family of a specific malware by providing its hash.

6.9 Concept Drift Analysis through Malware Datasets

The most used datasets have been collected years ago, which makes them old in terms of malware
evolution. It is indeed a fact that malicious actors continuously develop new malware to evade
detection, and these new samples might have characteristics and behaviours that differ from the
older ones. This results in changes in the data distribution, a phenomenon known as concept
drift.
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As already explained before, concept drift affects the performance of the machine learning
models over time causing them to become obsolete. Employing older datasets enables the sim-
ulation of historical threat environments and allows evaluating the adaptability of the model to
shifting distributions. By training on older data and validating on recent data, the model’s ability
to handle concept drift can be assessed effectively.

Moreover, ensuring an accurate train-test split is essential; otherwise, the model could suffer
from temporal bias, a phenomenon that arises when experiments assume a consistent feature
distribution between test-time and train-time, leading to potentially poor performance due to
the dynamic evolution of malware behaviours and techniques. On the contrary, training a model
only on recent data might overfit to the specific characteristics of that time period. Predictions
are more robust when older data are incorporated into the model, since it generalises better to
different eras.

Distinct from the other datasets, BODMAS is more recent, but it spans a short time-frame
(2019-2020). In [50] the authors used this dataset to study the impact of concept drift on malware
classifiers. In particular, they trained a multi-class Gradient Boosting Decision Tree (GBDT)
classifier on the malware samples in the first month of BODMAS and then they evaluated the
performance of the classifier in the remaining 12 months.

Additionally, Alejandro Guerra-Manzanares et al. [56] merge different data sources to create
an expansive dataset containing samples spanning all years of Android history. Moreover, it is also
the first dataset to include the time variable in the Android malware detection issue. As Android
malware is a non-stationary phenomenon, it is an alive and constantly evolving phenomenon that
should be placed into its temporal context. In this regard, the timestamp of apps allows the
investigation and characterisation of concept drift in Android apps and its proper detection to
build more effective and robust models.

Addressing label bias, since each AV engines’ own naming rules and there does not exist
any convention on malware family naming, the authors scanned all the dataset samples using
VirusTotal AV engine and they labeled each sample based on the majority of the vote. The issue
with this approach, as discussed in [57], is its limited effectiveness due to its failure to consider
the independence of AV engines, thereby decreasing the model’s performance.

Their experiments demonstrated that choosing a reputable AV engine outperforms label ag-
gregation, despite the possibility of a higher false positive rate, which could potentially lead
researchers to lean towards the label aggregation approach. However, the drawback is associated
with consumer engines, as they can give rise to a misleading perception of majority support for
the label aggregation approach. In fact, researchers noted that certain AV engines exhibited close
F1 scores and showed significant similarities in their training logs, suggesting the possibility of
the existence of analogous AV engines. However, while the labels provided by consumer-supplier
engines may seem standardised and reliable, this could lead researchers to place unwarranted
trust in consumer engines as the ground truth, even when they might not be suitable for label
aggregation. The authors recommended to remove these consumer engines, but this action could
result in the discarding of a significant amount of data, inflating the number of singleton labels
and minority families.

Another approach is to elect one reputable AV engine. However, the issue with this approach is
the feature preference problem, since an AV engine that prefers one feature might give a different
family name than the one that picks another feature.

6.10 Comparative Analysis of Malware Datasets: Summary

The exploration of various malware datasets has provided insights into their diverse characteristics,
strengths, and limitations. Among the various datasets explored, several critical limitations have
been identified that impact their applicability to specific research objectives.

• Absence of Malware Family Labels: Some datasets are limited to the malware detection
process due to the absence of comprehensive labels distinguishing different malware families;
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• Lack of Malware Binaries: Certain datasets lack access to malware binaries, preventing
the in-depth analysis required for understanding malicious code behaviours and functional-
ity;

• Imbalanced Class Distributions: Unbalanced class distributions within datasets pose
challenges, impacting the effectiveness of training models, potentially leading to biased
learning outcomes and inaccurate predictions;

• Absence of a Benign Class: Datasets that lack a benign class essential for comparative
analysis limit their utility in distinguishing between malicious and non-malicious instances;

• Absence of Recent and Timestamped Data: An additional limitation prevalent in
several malware datasets is the absence of recent or time-stamped data. This limitation
restricts the analysis of concept drift, a critical aspect in understanding the evolving nature
of malware over time.

Each of these constraints highlights the importance of careful selection of datasets specific to
particular research objectives. Understanding these limitations enables researchers to align the
attributes of the dataset with the analysis objective.
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Chapter 7

Proposed method

The main purpose of this thesis is to analyse which are the limitations of the Semi-Supervised
approach compared to the Supervised one and how to overcome these. More in detail the aim is
to identify which are the circustamces under which the unlabelled data can be used to improve
the performance accuracy.

To assess the benefits of unlabelled data, I used the CEF-SsL framework explained in the
Chapter 5. The CEF-SsL implementation code is available at https://github.com/hihey54/

CEF-SsL. This framework was designed for binary classification, so I needed to modify it in order
to suit the goal of this work, which involves multi-class classification.

To experiment with the limitations of the SsL (Semi-Supervised Learning) approach, the initial
step involved understanding and determining the specific features that need to be extracted.
Then I experimented with different algorithms beyond the Random Forest implemented in the
framework, and not limited to traditional machine learning, in order to make comparisons between
their different results.

In Section 7.1 of this chapter, the motivations that prompted me to start with an image-
based approach will be outlined, encompassing various approaches and techniques employed in
extracting meaningful features from images specifically tailored for the classification of malware.

In Section 7.2, I will introduce the work environment I used and the support libraries. In the
upcoming sections, which represent the core of this research, various algorithmic approaches will
be explored while delving into their implementation specifics.

Section 7.3 will detail the modifications made to the original framework to align it with my
specific problem, including the set of specific parameters and the incorporation of various tech-
niques.

Moving to Section 7.4, an overview detailing the feature inputs will be provided, including an
explanation of the handling of raw pixels and the methodologies for extracting texture features.

Additionally, Section 7.5 will encompass the implementation details of the adopted traditional
machine learning algorithms. Subsequently, in Section 7.6, comprehensive insights into the CNN
architecture and associated hyperparameters will be presented.

Lastly, Section 7.7 will present the combined dataset utilised for subsequent experiments.

7.1 Image-based malware classification

The use of visualisation-based malware analysis approaches to analyse malware and classify them
has grown significantly over the past few years. As explained in [30], the popularity stems from
two factors: First, effectiveness in detecting new variants of malware. Malware writers create new
variants by reusing distinctive modules from existing malware, so the similarities in binary code
could be effectively captured and aid in the detection process. Secondly, the image processing
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field is constantly being the hot area of research, and new feature engineering techniques keep
evolving, which could help the cybersecurity community combat malware.

In image-based malware classification, machine learning algorithms can be either traditional
models based on handcrafted features or deep learning models that learn features on their own.

The use of image processing methods in the field of malware detection and/or classification
initially focused on analysing texture. In the context of images, texture describes the variations in
colour, intensity, or surface characteristics within an image such as smoothness, softness, rough-
ness, etc. There are many feature extraction techniques, in my experiment the ones that I used
are:

• Local Binary Pattern(LBP): This technique computes a local representation of the tex-
ture. To create this local representation, each pixel is compared with its neighbouring pixels.
It tests whether the surrounding points are greater than or less than the central point: if
the intensity of the center pixel is greater-than-or-equal to its neighbour, then the value
assigned is 1, otherwise 0. This binary number is generated for each set of neighbours, and
the results are collected into a binary string. Subsequently, this binary string is converted
into a decimal value, and this numerical representation is stored in a 2D LBP array with the
same width and height as the input image. This entire procedure is repeated for each pixel
within the image. Next, a histogram that represents the distribution of these quantized
LBP values is created, where the x-axis corresponds to the different LBP pattern (integers),
and the y-axis represents the frequency of occurrence of each value;

• Gray Level Co-occurrence Matrix (GLCM): This technique calculates how often pairs
of pixel intensities with specific spatial relationships or directions occur in the image, cre-
ating a matrix. In particular, the procedure involves determining the intensity value of the
reference pixel and the neighbouring pixel in a specified direction (commonly defined by
angles like 0, 45, 90, and 135 degrees). This process is repeated for all pixels in the image,
resulting in a matrix where each element corresponds to the number of times a specific
intensity pair occurs in the defined spatial relationship and direction. Once you have the
GLCM matrix, you can compute various statistical properties that serve as descriptors of
the texture or patterns in the image. Common properties include:

– Contrast: high contrast values indicate the presence of significant variations between
pixel intensities;

– Homogeneity: the degree of similarity between pixels within an image. Higher values
indicate more uniform regions;

– Correlation: the degree to which changes in pixel intensity values are connected or
correlated with each other;

– Energy: it quantifies the uniformity of the image. Higher energy values indicate a more
uniform texture;

– Dissimilarity: it measures how different the gray levels of neighboring pixels are.

• Histogram of Oriented Gradient (HOG): This technique computes histograms of gra-
dient orientations in an image. First, the image is divided into small cells and for each pixel
in the cell gradients are computed. Gradients represent the intensity changes in both the
x (horizontal) and y (vertical) directions. The magnitude and orientation of the gradients
are calculated for each pixel within the cell. Next, the gradient orientations are grouped
into predefined bins or histograms and for each pixel in the cell the gradient magnitude is
accumulated into the corresponding histogram bin based on its orientation. The cells are
then grouped into larger blocks, and the histograms of the cells within a block are concate-
nated to form a single feature vector. This feature vector is then normalised to make it
more robust to changes in contrast. The feature vectors of all blocks are concatenated to
form the final HOG descriptor for the image.

In the literature, the most commonly employed conventional algorithms for malware classification
include K-Nearest Neighbours (KNN), Support Vector Machine (SVM), and Random Forest (RF).
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Figure 7.1: Legion - technical specification [58].

While in deep learning, Convolutional Neural Networks (CNNs) have emerged as the preferred
choice among researchers. Many researchers have utilised various pre-trained CNN models such as
VGG16, ResNet50, Inception v3, among others. The transfer learning approach, which involves
fine-tuning these pre-trained CNN models on specific malware datasets, has become a popular
and effective strategy in achieving high accuracy in malware classification tasks.

7.2 Work environment and tools used

In this section, I will describe the working environments that were used to develop the machine
learning tool, as well as the libraries that were utilised to implement the algorithms.

7.2.1 Legion

The HPC@POLITO supercomputing initiative, managed by the Department of Automation and
Informatics of the Polytechnic University of Turin (DAUIN), provides resources for advanced
computing and technical support for academic and educational research activities [58]. Three
clusters are available at this center: CASPER, HACTAR, and LEGION. The one I used was
LEGION. It is an InfiniBand cluster with a performance exceeding 21 TFLOPS (measured with
only 14 nodes) with the characteristics illustrated in the Fig 7.1.

7.2.2 Google Colaboratory

Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free access
to computing resources, including GPUs and TPUs [59]. It is designed for data science, machine
learning, and artificial intelligence (AI) research. The Jupyter notebooks run on Google’s cloud
servers. Users can create, edit, and run Python code directly in the browser. Libraries commonly
used in Data science and machine learning are pre-installed in Colab, including NumPy, Pandas,
and Matplotlib.

7.2.3 Support library: Scikit-learn and PyTorch

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algo-
rithms for medium-scale supervised and unsupervised problems. This package focuses on bringing
machine learning to non-specialists using a general-purpose high-level language. Emphasis is put
on ease of use, performance, documentation, and API consistency. It has minimal dependencies
and is distributed under the simplified BSD license, encouraging its use in both academic and
commercial settings [60]. It depends only on NumPy and SciPy to facilitate easy distribution.
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Family Sample Number Family Sample Number
Adposhel 494 Injector 495
Agent 470 InstallCore 500
Allaple 478 MultiPlug 499
Amonetize 497 Neoreklami 500
Androm 500 Neshta 497
Autorun 496 Other 1832
BrowseFox 493 Regrun 485
Dinwood 499 Sality 499
Elex 500 Snarasite 500
Expiro 501 Stantinko 500
Fasong 500 VBA 500
HackKMS 499 VBKrypt 496
Hlux 500 Vilsel 496

Table 7.1: Samples distribution of MaleVis dataset.

NumPy is a Python library that provides multidimensional arrays and matrices along with
along with a comprehensive set of high-level mathematical functions to operate on these objects
efficiently.

SciPy is another popular Python library built on top of NumPy that provides a wide range
of modules for various scientific computations, including optimisation, integration, interpolation,
linear algebra, statistical functions, and much more. Scikit-learn is the library used in the imple-
mentation of the CEF-SsL framework.

However, Scikit-learn is mostly used for machine learning, while PyTorch is used for deep
learning. Deep learning frameworks have often focused on either usability or speed, but not both.
PyTorch is a machine learning library that shows that these two goals are in fact compatible: it
provides an imperative and Pythonic programming style that supports code as a model, makes
debugging easy, and is consistent with other popular scientific computing libraries, while remaining
efficient and supporting hardware accelerators such as GPUs [61]. In the context of image-based
malware classification, deep learning has been an effective solution. To implement neural networks,
this library was used.

7.3 CEF-SsL implementation for multi-class classification

In my experiments, I used the MaleVis dataset [52]. This choice derives from the necessity of
including a benign class within the dataset to enable the process of malware family classification.
The Malimg dataset, widely employed in image-based malware classification, lacks the inclusion
of a benign class. Hence, the MaleVis dataset emerged as the most fitting option to meet the
requirements of this research. It comprises a total of 14,226 samples, which are further classified
into 12,394 malicious samples and 1,832 benign samples.

The MaleVis dataset is well balanced within its malicious classes, with no class having a
significantly smaller number of samples, with consistent sample counts among the classes. This
addresses the challenges outlined earlier regarding the expansion of this framework into multi-class
classification scenarios. In particular, the lack of classes with inadequate sample sizes mitigates
any concerns surrounding the random selection of a limited number of samples from the malicious
classes. However, there is a moderate difference between the number of samples in the malicious
classes and the number of samples in the benign class (“Other” family), as it is illustrated in the
Table 7.1

Consistent with the original framework, I have preserved the 80:20 split, as it is common in
CTD tasks. The other parameters I set are: n = 2, k = 3 which are a pair of integers that regulate
the runs of CEF-SsL; different costs of labelling: 1=malicious and benign samples have same cost;
2=malicious samples have twice the cost of benign samples; 5=malicious samples have five times
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the cost of benign samples. These are the costs of labelling defined by the original framework,
that is tailored for binary classification.

Other parameters defined are two different values of the labelling budget, 50 and 100. The ac-
tive budget is 0.5 meaning that half of the labelling budget is used to develop the first learner, and
then the remaining half is used to assign the correct label to those samples that meet a specific con-
fidence threshold: samples whose confidence is above (100−high confidence window/2) are con-
sidered to be of “high confidence” and samples whose confidence is below (low confidence window/2)
are considered to be of “low confidence” where high confidence window and low confidence window
are 0.2. The confidence thresholds remain consistent across all family classes. The active learning
trials are 2.

7.3.1 Multiple binary classifiers

To adapt the original framework to multi-class classification settings, one approach is to use
multiple binary classifiers. This strategy iterates over all different malicious families, one at
a time, performing a binary classification One-vs-One each time. Each iteration in detail is a
binary classification between a specific malware family class and the benign class. The results are
aggregated from all the binary classifiers.

Nevertheless, when dealing with imbalanced classes, this may lead to biased models or poor
classification results. Similarly to the original framework, to mitigate the imbalance between ma-
licious and benign classes, I also used an oversampling technique called SMOTE, which stands
for Synthetic Minority Over-sampling Technique, provided by the imbalanced-learn (imblearn)
library, that extends scikit-learn. SMOTE creates “synthetic” examples rather than by over-
sampling with replacement. The minority class is over-sampled by taking each minority class
sample and introducing synthetic examples along the line segments joining any/all of the k mi-
nority class nearest neighbours. Synthetic samples are generated in the following way: Take the
difference between the feature vector (sample) under consideration and its nearest neighbour.
Multiply this difference by a random number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point along the line segment between
two specific features [62].

However, using multiple binary classifiers can be computationally expensive, especially with
a large number of malware families. Moreover, it simplifies the classification task and does not
consider potential relationships or shared characteristics between families, not capturing the full
complexity of malware classification. To determine which approach is most suitable for this
specific problem, the outcomes of this strategy were compared with the results obtained using the
method detailed in the following section.

7.3.2 Multi-class classifier

As the previous assumptions can introduce limitations in the malware classification process, I
have also adapted this framework to perform a multi-class classification approach considering all
the malware families simultaneously.

Hence, I considered as the F-score value the weighted mean between the values for all the
classes. Furthermore, to modify active learning techniques for multi-class classification, I follow
the approach of selecting the sample with the greatest probability value among all classes and
subsequently comparing this score to the threshold to determine its placement within a specific
confidence range.

For the sake of practicality, I also maintained a distinct labelling cost only between the benign
and malware classes, since it is not feasible due to the extensive time required. However, in the
context of multi-class classification, these labelling costs can vary, especially among different mal-
ware families. For instance, a rarer malware family may incur different labelling costs compared to
a more common one. Nevertheless, conducting an exhaustive search for all possible combinations
of varying costs across numerous malware families can be unfeasible due to the vast number of
potential combinations. The number of combinations increases exponentially with the number of
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classes, leading to significant computational complexity and time requirements. To illustrate, in
a scenario with 26 distinct classes, each having three possible cost factors (1x, 2x, and 5x), the
total number of combinations would be approximately 326 ≈ 2.541.865.828.329. For this reason, I
considered a uniform cost per malicious sample, assigning the same labelling cost to all malicious
samples. This would mean that each malicious sample has a labelling cost of, for example, 100,
and the benign class could have a cost of 100 or 200 or 500 based on the defined criteria (the
same, twice or five times the cost of malicious samples).

Also in this scenario, I employed SMOTE to address the issue of severe dataset imbalance,
therefore when the cost of labelling malicious data is five times higher compared to labelling
benign data.

7.4 Image-based with handcrafted features

As RGB images are used, the initial step involved converting them into grayscale images. Af-
terward, they were resized to dimensions of 128x128. The following steps depend on the specific
features employed:

7.4.1 Raw pixel data

Machine learning models can be trained using directly grayscale malware images, where in the
grayscale pixel values serve as the features of the input images, rather than relying on features
extracted by image descriptors.

In this process, the resized images were flattened into 1D arrays and each of the resulting arrays
was then labelled with its corresponding malware family. These labelled arrays were subsequently
combined and appended together to form a new training set for the machine learning algorithm.

7.4.2 HOG feature descriptor and PCA

To compute the HOG feature descriptor, I used the hog() function provided by the Scikit-image
library. I configured the HOG parameters as follows: I specified the number of gradient orienta-
tions as 4, set the cell size to (8, 8) pixels, defined the number of cells for each block as (2, 2) and
applied block normalisation using the L2-Hys method.

PCA (Principal Component Analysis) is a commonly used dimensionality reduction technique.
I used the PCA() function available in the scikit-learn library to reduce the dimensionality of
the HOG features, setting the number of components to 50, to keep only the most informative
principal components. Algorithm 1 illustrates the application of these functions to extract hog
features with reduced dimensions.

Algorithm 1 HOG Feature Extraction + PCA

Input: Grayscale Image
Output: Reduced-dimension HOG features

1: Define HOG parameters (e.g., cell size, block size, etc.)
2: Compute HOG features using scikit-image:
3: FHOG ← hog(image)
4: Apply PCA for dimensionality reduction
5: Initialise a PCA object with the desired number of components(n components):
6: pca← PCA(n components = 50)
7: Compute PCA features using the fit transform method:
8: FPCA ← pca.fit transform(FHOG)
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7.4.3 LBP feature descriptor

I used the local binary pattern() function from the Scikit-image library to compute the LBP feature
descriptor. A radius of 1 was chosen, which defined the radius of the circular neighbourhood used
to compute LBP. The number of sampling points was set to 8 times the selected radius, allowing
for comprehensive sampling within the neighbourhood. In order to simplify the texture analysis
process, the ‘uniform’ method was used for LBP computation. Then, a histogram of LBP patterns
was created. This is shown in the Algorithm 2

Algorithm 2 LBP Feature Extraction

Input: Grayscale Image
Output: Histogram of LBP features

1: Specify LBP parameters: the radius R and the number of neighbors P
2: Compute LBP features:
3: FLBP ← local binary pattern(image, P,R,method = ’uniform’) using scikit-image
4: Compute LBP histogram:
5: LBPhist ← numpy.histogram(FLBP, bins, range)
6: Normalize LBPhist

7.4.4 GLCM feature descriptor

To compute the gray-level co-occurrence matrix I used the graycomatrix() function provided by the
Scikit-image library. The function takes several parameters to specify: (i) the distances between
the reference pixel and its neighbouring that I set to [1] focusing only on adjacent pixel pairs; (ii)
the angles at which pixel pairs are considered and I selected different directions (0, 45, 90 and 135
degrees) to capture information in different directions; (iii) symmetric, set to true, means that the
glcm is computed symmetrically for each angle; (iv) normed set to true means that the values in
the glcm are divided by the sum of all values resulting in a probability matrix where each element
is the probability of a specific pixel pair occurring in the specific direction.

Then I used the graycoprops() function to calculate a feature from this matrix as a compact
representation of it. The texture properties I considered are: energy, correlation, dissimilarity,
homogeneity, and contrast. Algorithm 3 shows the glcm features extraction process.

Algorithm 3 GLCM Feature Extraction

Input: Grayscale Image
Output: GLCM properties

1: Calculate the Gray-Level Co-occurrence Matrix (GLCM) using graycomatrix:
2: glcm← graycomatrix(image, distances, angles, levels)
3: Extract GLCM properties using graycoprops:
4: properties← graycoprops(glcm)

7.5 ML models with handcrafted features

Any classifier that supports the predict proba method provided by scikit-learn library can be
employed. In particular, I conducted tests with some of the most prevalent algorithms commonly
employed in the field of malware classification. The adopted implementations are as follows, with
adjustments tailored to specific cases in the experiments, detailed and documented in Chapter 8.

7.5.1 Random Forest

The classifier I first used is Random Forest, that is, as already mentioned, the implementation
provided by the CEF-SsL framework, using the scikit-learn library. The Random Forest model
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consists of 100 trees and the ‘gini’ criterion is chosen for splitting nodes. There is no imposed
limit on the maximum depth of the individual decision trees, and no specific class weights are
assigned, meaning that all classes are treated equally in terms of importance.

7.5.2 Support Vector Machine

The Support Vector Machine (SVM) is another simple algorithm in the field of machine learning.
It was originally designed to perform binary classification, but subsequent advancements have
enabled it to execute multiclass classification tasks as well. The SVM classifier is provided with
scikit-learn, and I configure it to use the Radial Basis Function (RBF) kernel, which is a suitable
choice for handling non-linear data.

7.5.3 K-Nearest Neighbors

As outlined in the relevant literature, numerous investigations have employed the k-Nearest Neigh-
bors (k-NN) algorithm for image-based malware classification and have achieved good results. I
used the KNeighborsClassifier from scikit-learn setting the number of nearest neighbours to 5.

7.5.4 HistGradientBoosting

The use of a Gradient Boosting Classifier is not as prevalent in the field of malware classification
compared to the other methods mentioned, but recent research has demonstrated its remarkable
accuracy.

Histogram-Based Gradient Boosting, as other gradient boosting algorithms, builds an ensemble
of decision trees where each tree corrects the errors of the previous ones. It minimise a loss
function by iteratively adding decision trees. However, it uses histogram-based binning to divide
continuous features into discrete bins, making it more memory-efficient and faster when compared
to traditional gradient boosting algorithms. I employed this type of Gradient Boosting classifier,
since it is much faster than GradientBoostingClassifier for big datasets (n samples >= 10000).

I used the HistGradientBoostingClassifier provided by the scikit-learn library. The hyperpa-
rameters have been set as follows: a maximum of 100 iterations of the boosting process; a learning
rate of 0.1 is used to control each tree’s influence on the final prediction for stability; a fixed ran-
dom seed of 42 for reproducible output across multiple function calls; and 1 as the maximum
number of leaves for each tree.

7.6 Image-based with Neural Networks

The convolutional neural network (CNN) I used in this study comprises several layers, including
2 convolutional layers and 2 fully connected layers. The purpose of this network is to classify
grayscale images into one of 26 different classes.

In addition to the network architecture, I set the parameters as follows: I used the Cross-
Entropy Loss as the objective function during training; the Adam optimizer is employed for
updating the model’s parameters; I experimented with different image sizes (32,64,128), different
batch size (64,128,256) and different learning rate (0.1, 0.01, 0.001).

As the framework requires the classifier to support the predict proba method, that is not
directly available for CNN models in PyTorch like it is in scikit-learn for some classifiers, I used
the trained model’s output to which is applied the Softmax function to obtain class probabilities.
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Family Sample Number Family Sample Number
Adposhel 494 Injector 495
Agent 470 InstallCore 500
Allaple 478 Instantaccess 431
Alueron.gen!J 198 Lolyda.AA1 213
Amonetize 497 MultiPlug 499
Androm 500 Neoreklami 500
Autorun 496 Neshta 497
BrowseFox 493 Regrun 485
Dinwood 499 Sality 499
Elex 500 Snarasite 500
Expiro 501 Stantinko 500
Fakerean 381 VB.AT 408
Fasong 500 VBA 500
HackKMS 499 VBKrypt 496
Hlux 500 Vilsel 496

Table 7.2: Samples distribution of the blended dataset.

7.7 Blended dataset

An additional experiment was conducted to create a more comprehensive dataset, in which a
combined dataset was generated by merging data from MaleVis and Malimg. Specifically, this
dataset includes all the malware families from the MaleVis dataset along with five families from
the Malimg dataset. This blended dataset is illustrated in Tab 7.2.

The objective was to enhance the dataset’s diversity. This addition could potentially provide
the model with a broader spectrum of malicious characteristics for more comprehensive learning
and improved generalisation.

The selection of the five classes for integration was based on their sample sizes, with the
aim of similarity to MaleVis. This choice allows us to incorporate a diverse set of images while
maintaining a balanced dataset without causing significant imbalance.
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Chapter 8

Results

In this chapter, I will present the results of the experiments that were detailed in Chapter 7. The
primary objective of this study is to conduct an in-depth comparison between traditional machine
learning models with hand-crafted features and deep learning models. To illustrate the results I
will present tabulated data that showcases:

1. The average F1-scores achieved by each method during their application to machine learn-
ing;

2. The average execution time, considered as the “cost” of each method, without taking into
account other additional costs for the sake of simplicity;

These scores are determined based on a range of different combinations of labelling budget L and
the cost of labelling C.

To perform a statistical comparison between methods, I employed the Wilcoxon test, following
the approach in the original framework, utilising the mannwhitneyu() function available in the
SciPy library. The pseudocode in Algorithm 4 illustrates the procedural steps to conduct the
Wilcoxon test. This was done to evaluate the performance of the baseline SL compared to (i) the
most effective pure pseudo-labelling method and (ii) the most effective active learning method.
The resulting p-values and z-values from these comparisons are documented in tables.

Algorithm 4 Mann-Whitney U Test

1: function MannWhitneyUTest(group1, group2)
2: all data← combine(group1, group2)
3: ranked data← rank(all data)
4: n1← len(group1)
5: n2← len(group2)
6: U1← sum ranks for group1
7: U2← sum ranks for group2
8: U← min(U1,U2)
9: N← n1 + n2

10: z← U−n1·n2
2 +0.5q

n1·n2·(N+1)
12

11: p← 2 · norm.cdf(z)
12: return U, z,p-value
13: end function

The experimental setup, as previously outlined in Chapter 7, involved specific resource re-
quirements from the cluster. Each task was executed using a single 8-core CPU operating at 2.10
GHz, and a 10 GB RAM allocation. Additionally, it made use of one GPU. These configurations
were consistently applied across all experiments.
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In the tables reporting all the methods F1-score and execution times averages, dark blue cells
outline the best ‘pure’ pseudo-labelling method, while blue cells the best active learning method.

In tables that display Wilcoxon statistics, a green cell signifies that the use of unlabelled data
leads to performance enhancement, red cells indicate a decrease in performance, and grey cells
represent equivalency.

8.1 Binary Classifiers for Malware Family Classification re-
sults

This section will present the results obtained from four distinct machine learning models (RF,
SVM, KNN, HGBM) when applied to four different feature inputs (Raw pixels, HOG features,
GLCM features, LBP features).

As mentioned above, malware instances originating from the same family tend to exhibit
comparable texture features. However, I have observed that certain malware families show an
even higher degree of feature similarity. This phenomenon becomes even more evident when
employing raw pixel data as input, in contrast to the utilisation of texture feature descriptors.
The pixel values across different images within the same class are nearly identical. However,
when texture feature descriptors are applied, even though the distinctions are minimal, they
remain discernible.This emphasises that texture features can capture subtle distinctions between
images, while raw pixel data tend to be highly uniform within the same class. In particular, the
malware families that exhibit identical texture features include VBA and Vilsel.

Figures 8.1, 8.2, 8.3, 8.4. 8.5 and 8.6 visually highlight the remarkably similar features exhibited
by these two classes. This similarity becomes even more pronounced when using raw pixel values
in the classification process as shown in Figures 8.7 and 8.8

Figure 8.1: GLCM features of VBA family

Figure 8.2: GLCM features of Vilsel family
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Figure 8.3: HOG features of VBA family

Figure 8.4: HOG features of Vilsel family

Figure 8.5: LBP features of VBA family

Figure 8.6: LBP features of Vilsel family
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Figure 8.7: Raw pixels of VBA family

Figure 8.8: Raw pixels of Vilsel family

In the context of multiple binary classifiers, when the features are nearly identical, the clas-
sifiers become highly skilled at making accurate predictions for those families. Nevertheless, av-
eraging F1 scores from different classifiers, especially when some families have perfect F1 scores,
can significantly impact the overall performance measure. Consequently, the resultant average F1
score might not accurately reflect the effectiveness of the classifiers in handling the entire dataset
or all distinct categories.

8.1.1 Random forest results

As the model that uses GLCM features with 100 trees shows overfitting, a more simplified version
of the random forest model was employed, utilising 80 trees, with the objective of reducing the
complexity of the model and improving generalisation capabilities. Transitioning to a different
feature set, such as HOG and LBP features, provides alternative insights: the models using HOG
and LBP features did not show overfitting issues even with a higher number of trees; this could
suggest that these features might generalise better.

The results presented in Tables 8.1, 8.3, 8.5, 8.7 and 8.9 can be summarised as follows:

• Among all the features, the most effective ‘pure’ pseudo-labelling technique is the model
that uses all pseudo-labels, except for the model that uses GLCM features where the most
effective one is the model that repeats the operation of the one with high-confidence labels;

• Active learning stands out as the primary strategy for optimising the utilisation of the
labelling budget. However, there is an exception in raw pixel analysis, where the utilisation
of unlabelled data doesn’t yield discernible benefits;

• Models trained with high-confidence labels consistently deliver the poorest performance,
deviating from the expected trend;

62



Results

Method F1-score Execution time

SL 0.985 0.631(s)

SL 0.970 0.249(s)

SsL 0.972 0.974(s)

πSsL 0.968 0.762(s)

π̂SsL 0.971 1.316(s)

αSsLl 0.976 0.580(s)

αSsLo 0.972 0.601(s)

αSsLh 0.961 0.591(s)

απSsLl 0.973 1.133(s)

απSsLo 0.972 1.156(s)

απSsLh 0.960 1.146(s)

Table 8.1: F1-score and Execution Time average Random Forest with Raw pixel.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.297 -1.042

Best active learning αSsLl 0.081 -1.740

Table 8.2: Wilcoxon Statistics Random Forest with Raw Pixels

Method F1-score Execution time

SL 0.976 0.265(s)

SL 0.954 0.224(s)

SsL 0.955 0.583(s)

πSsL 0.953 0.575(s)

π̂SsL 0.955 0.838(s)

αSsLl 0.963 0.521(s)

αSsLo 0.963 0.525(s)

αSsLh 0.947 0.525(s)

απSsLl 0.96 0.886(s)

απSsLo 0.962 0.887(s)

απSsLh 0.95 0.885(s)

Table 8.3: F1-score and Execution Time average RF with LBP features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.341 -0.951

Best active learning αSsLo <0.001 -3.71

Table 8.4: Wilcoxon Statistics RF with LBP features

• The model demanding the most time across all cases is the pseudo-active learning model
employing mid-confidence labels. However, for raw pixels and GLCM features, the sec-
ond pseudo-labelling method utilising high-confidence labels displays similarly high time
requirements.
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Method F1-score Execution time

SL 0.99 0.292(s)

SL 0.977 0.218(s)

SsL 0.977 0.598(s)

πSsL 0.975 0.563(s)

π̂SsL 0.975 0.838(s)

αSsLl 0.982 0.51(s)

αSsLo 0.976 0.516(s)

αSsLh 0.965 0.515(s)

απSsLl 0.979 0.863(s)

απSsLo 0.976 0.867(s)

απSsLh 0.964 0.863(s)

Table 8.5: F1-score and Execution Time average RF with HOG features .

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.824 -0.222

Best active learning αSsLl 0.034 -2.123

Table 8.6: Wilcoxon Statistics RF with HOG features

Method F1-score Execution time

SL 0.983 0.225(s)

SL 0.963 0.185(s)

SsL 0.964 0.481(s)

πSsL 0.963 0.482(s)

π̂SsL 0.964 0.7(s)

αSsLl 0.969 0.43(s)

αSsLo 0.971 0.433(s)

αSsLh 0.956 0.433(s)

απSsLl 0.967 0.729(S)

απSsLo 0.97 0.73(s)

απSsLh 0.959 0.733(s)

Table 8.7: F1-score and Execution Time average RF with GLCM features.

Method p-value z-value

Best ‘pure’ pseudo-labelling π̂SsL 0.202 -1.276

Best active learning αSsLo <0.001 -4.267

Table 8.8: Wilcoxon Statistics RF with GLCM features

The Wilcoxon Statistics presented in Tables 8.2, 8.4, 8.6, 8.8 and 8.10 reveal a consistent
pattern in the results. In each case, active learning techniques consistently demonstrate statisti-
cally significant improvements. But when it comes to raw pixels, both models perform similarly,
showing no clear difference in their effectiveness.
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Method F1-score Execution time

SL 0.993 0.301(s)

SL 0.982 0.229(s)

SsL 0.982 0.621(s)

πSsL 0.979 0.591(s)

π̂SsL 0.979 0.878(s)

αSsLl 0.986 0.53(s)

αSsLo 0.981 0.536(s)

αSsLh 0.97 0.535(s)

απSsLl 0.983 0.901(s)

απSsLo 0.982 0.906(s)

απSsLh 0.969 0.902(s)

Table 8.9: F1-score and Execution Time average RF with all features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.801 -0.252

Best active learning αSsLl 0.004 -2.888

Table 8.10: Wilcoxon Statistics RF with all features

8.1.2 SVM results

Method F1-score Execution time

SL 0.935 0.232(s)

SL 0.856 0.011(s)

SsL 0.854 0.126(s)

πSsL 0.865 0.065(s)

π̂SsL 0.857 0.141(s)

αSsLl 0.89 0.025(s)

αSsLo 0.894 0.029(s)

αSsLh 0.855 0.025(s)

απSsLl 0.89 0.068(s)

απSsLo 0.89 0.077(s)

απSsLh 0.862 0.071(s)

Table 8.11: F1-score and Execution Time average SVM with LBP features.

Method p-value z-value

Best ‘pure’ pseudo-labelling πSsL 0.329 -0.976

Best active learning αSsLo 0.002 -3.158

Table 8.12: Wilcoxon Statistics SVM with LBP features

The findings extracted from Tables 8.11, 8.13, and 8.15 can be summarised as follows:

• For all the features, the most effective ‘pure’ pseudo-labelling techniques is the one that uses
high-confidence labels;
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Method F1-score Execution time

SL 0.922 0.3(s)

SL 0.869 0.013(s)

SsL 0.87 0.163(s)

πSsL 0.877 0.076(s)

π̂SsL 0.872 0.163(s)

αSsLl 0.886 0.029(s)

αSsLo 0.889 0.035(s)

αSsLh 0.863 0.028(s)

απSsLl 0.888 0.078(s)

απSsLo 0.889 0.093(s)

απSsLh 0.873 0.083(s)

Table 8.13: F1-score and Execution Time average SVM with GLCM features.

Method p-value z-value

Best ‘pure’ pseudo-labelling πSsL 0.001 -3.423

Best active learning αSsLo <0.001 -7.285

Table 8.14: Wilcoxon Statistics SVM with GLCM features

Method F1-score Execution time

SL 0.923 0.512(s)

SL 0.865 0.019(s)

SsL 0.865 0.279(s)

πSsL 0.872 0.125(s)

π̂SsL 0.867 0.273(s)

αSsLl 0.886 0.047(s)

αSsLo 0.889 0.055(s)

αSsLh 0.858 0.046(s)

απSsLl 0.888 0.127(s)

απSsLo 0.886 0.152(s)

απSsLh 0.87 0.137(s)

Table 8.15: F1-score and Execution Time average SVM with all features.

Method p-value z-value

Best ‘pure’ pseudo-labelling πSsL <0.001 -3.501

Best active learning αSsLo <0.001 -9.134

Table 8.16: Wilcoxon Statistics SVM with all features

• The best active learning method is in all cases the active learning approach with mid-
confidence labels;

• Active learning appears as the standout strategy for optimising the use of the labelling
budget when using LBP features; while using GLCM and all features both pseudo-labelling
technique and active learning techniques provide improvements;
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Figure 8.9: Probability estimates for SVM algorithm with HOG features

• Interestingly, models trained with the high-confidence labels consistently deliver the poorest
performance;

• There are overfitting issue when dealing with raw pixels and hog features. Figure 8.9
shows the predicted probabilities attributed to each sample for classification. The model
demonstrates an extraordinary degree of confidence in its predictions. The probabilities are
consistently nearly 0 for the negative class and nearly 1 for the positive class. These results
were derived employing both ‘linear’ and ‘rbf ’ kernel;

• In all the cases, the upper bound model is the one requiring the highest time.

The Tables 8.12, 8.14, and 8.16 containing Wilcoxon Statistics highlight that across all in-
stances, the active learning methods consistently exhibit statistically significant enhancements.
And for GLCM features and the model with the combined features also pseudo-labelling improves
performance.

Figure 8.10: Probability estimates for KNN algorithm with LBP features
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8.1.3 KNN results

The KNN model shows overfitting issues when dealing with both raw pixel values and features ex-
traction predictors. In particular this challenge manifests prominently when the classification task
involves distinguishing two specific malware families: VBA and Vilsel. The Figures 8.10 provide
insights into the predicted probabilities assigned by the model to each sample for classification.

It is possible to observe that the model exhibits an exceptionally high level of certainty in its
predictions. The probabilities are consistently 0 for the negative class and 1 for the positive class,
corresponding only to samples with high confidence.

These outcomes were obtained using both the Euclidean distance and the Manhattan distance
with varying values of k, specifically k = 3,5,10,20. Despite the alterations in k and the distance
metrics, the model consistently exhibited this remarkable certainty in its predictions.

8.1.4 HGBM results

To address the overfitting problem that the HistGradientBoosting model showed, the following
steps were taken:

• Model complexity was reduced by imposing a maximum depth limit on the trees (max depth=3);

• The maximum number of iterations was reduced to 80;

• The learning rate was decreased to 0.01;

• The implementation of early stopping was also applied.

Method F1-score Execution time

SL 0.975 4.129(s)

SL 0.937 2.793(s)

SsL 0.942 6.975(s)

πSsL 0.937 5.801(s)

π̂SsL 0.939 8.999(s)

αSsLl 0.929 4.667(s)

αSsLo 0.950 4.917(s)

αSsLh 0.911 4.538(s)

απSsLl 0.928 7.461(s)

απSsLo 0.951 7.607(s)

απSsLh 0.911 7.252(s)

Table 8.17: F1-score and Execution Time average GB with raw pixels.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.09 -1.7

Best active learning απSsLo 0.002 -3.076

Table 8.18: Wilcoxon Statistics GB with raw pixels.

The insights from the Tables 8.19, 8.21, 8.23 and 8.25 are as follows:

• Surprisingly, for most features, utilising all pseudo-labels proves to be the most effective
approach among the ‘pure’ pseudo-labelling methods;
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Method F1-score Execution time

SL 0.955 0.148(s)

SL 0.936 0.123(s)

SsL 0.936 0.297(s)

πSsL 0.934 0.266(s)

π̂SsL 0.933 0.401(s)

αSsLl 0.94 0.242(s)

αSsLo 0.942 0.254(s)

αSsLh 0.926 0.243(s)

απSsLl 0.939 0.378(s)

απSsLo 0.938 0.385(s)

απSsLh 0.922 0.38(s)

Table 8.19: F1-score and Execution Time average GB with LBP features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.92 0.1

Best active learning αSsLo 0.483 -0.701

Table 8.20: Wilcoxon Statistics GB with LBP features.

Method F1-score Execution time

SL 0.97 0.22(s)

SL 0.95 0.173(s)

SsL 0.948 0.408(s)

πSsL 0.948 0.363(s)

π̂SsL 0.946 0.551(s)

αSsLl 0.947 0.299(s)

αSsLo 0.954 0.328(s)

αSsLh 0.93 0.311(s)

απSsLl 0.946 0.486(s)

απSsLo 0.951 0.492(s)

απSsLh 0.926 0.47(s)

Table 8.21: F1-score and Execution Time average GB with HOG Features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.287 1.065

Best active learning αSsLo 0.385 -0.868

Table 8.22: Wilcoxon Statistics GB with HOG Features

• The best active learning method is the one that uses mid-confidence labels, except for the
model using raw pixel where the most effective one is the pseudo-active learning model that
uses mid-confidence labels;

• Active learning stands out as the most efficient approach to make the best use of the labelling
budget only using raw pixels;
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Method F1-score Execution time

SL 0.964 0.188(s)

SL 0.946 0.153(s)

SsL 0.946 0.35(s)

πSsL 0.944 0.333(s)

π̂SsL 0.944 0.503(s)

αSsLl 0.946 0.275(s)

αSsLo 0.952 0.287(s)

αSsLh 0.934 0.281(s)

απSsLl 0.946 0.435(s)

απSsLo 0.949 0.433(s)

απSsLh 0.931 0.425(s)

Table 8.23: F1-score and Execution Time average GB with GLCM features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.909 -0.114

Best active learning αSsLo 0.194 -1.3

Table 8.24: Wilcoxon Statistics GB with GLCM features

Method F1-score Execution time

SL 0.978 0.262(s)

SL 0.961 0.175(s)

SsL 0.959 0.441(s)

πSsL 0.959 0.371(s)

π̂SsL 0.956 0.57(s)

αSsLl 0.956 0.3(s)

αSsLo 0.964 0.327(s)

αSsLh 0.941 0.303(s)

απSsLl 0.954 0.496(s)

απSsLo 0.962 0.511(s)

απSsLh 0.938 0.488(s)

Table 8.25: F1-score and Execution Time average GB with all features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.414 0.817

Best active learning αSsLo 0.273 -1.096

Table 8.26: Wilcoxon Statistics GB with all features

• Notably, models trained on the high-confidence labels consistently exhibit the poorest per-
formance;

• The model requiring the highest execution time is the ‘pure’ pseudo-labelling model that
repeats the operation of the one with high-confidence labels.
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However, the Wilcoxon statistics provided in Tables 8.18, 8.20, 8.22, 8.24 and 8.26 show that in
all cases using both pseudo-labelling and active learning don’t provide any enhancements, except
for the raw pixels where active learning is the best strategy.

8.2 Multi-Class Malware Family Classification results

This section presents the same results of the previous one, but in a multi-class classification
context. Several experiments were made:

• ‘macro’ and ‘weighted’ average to calculate metrics

• ’entropy’ and ‘max’ for choosing the probability along all the classes probability

Nevertheless, across all scenarios, the outcomes consistently revealed that incorporating un-
labelled data did not yield any enhancements. Furthermore, in the context of active learning, it
even resulted in a performance decline.

8.2.1 Random Forest results

The Random Forest model in the context of multi-class classification has 100 trees and there is
no imposed limit on the maximum depth of the individual decision trees.

Tables 8.27, 8.29, 8.31, 8.33 and 8.35 collectively reveal several key findings:

• Across all scenarios, the most effective ‘pure’ pseudo-labelling technique is observed in the
model utilising all pseudo-labels, except for the raw pixels where the most effective is the
model that uses high-confidence pseudo-labels;

Method F1-score Execution time

SL 0.912 19.38(s)

SL 0.84 3.6(s)

SsL 0.826 22.889(s)

πSsL 0.829 10.515(s)

π̂SsL 0.807 20.973(s)

αSsLl 0.791 4.578(s)

αSsLo 0.817 4.67(s)

αSsLh 0.791 4.546(s)

απSsLl 0.781 11.909(s)

απSsLo 0.803 11.93(s)

απSsLh 0.785 11.653(s)

Table 8.27: F1-score and Execution Time average multi-class RF with Raw Pixels.

Method p-value z-value

Best ‘pure’ pseudo-labelling πSsL 0.086 1.729

Best active learning αSsLo 0.003 2.99

Table 8.28: Wilcoxon Statistics multi-class RF with Raw Pixels
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Method F1-score Execution time

SL 0.825 0.733(s)

SL 0.75 0.313(s)

SsL 0.75 1.137(s)

πSsL 0.747 0.827(s)

π̂SsL 0.746 1.344(s)

αSsLl 0.72 0.639(s)

αSsLo 0.723 0.693(s)

αSsLh 0.705 0.717(s)

απSsLl 0.715 1.183(s)

απSsLo 0.719 1.177(s)

απSsLh 0.702 1.176(s)

Table 8.29: F1-score and Execution Time average multi-class RF with LBP features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.915 0.118

Best active learning αSsLo 0.001 3.486

Table 8.30: Wilcoxon Statistics multi-class RF with LBP Features

Method F1-score Execution time

SL 0.885 1.162(s)

SL 0.808 0.348(s)

SsL 0.808 1.584(s)

πSsL 0.805 1.097(s)

π̂SsL 0.807 1.966(s)

αSsLl 0.782 0.75(s)

αSsLo 0.783 0.714(s)

αSsLh 0.765 0.713(s)

απSsLl 0.779 1.574(s)

απSsLo 0.78 1.549(s)

απSsLh 0.762 1.548(s)

Table 8.31: F1-score and Execution Time average multi-class RF with GLCM features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.853 -0.186

Best active learning αSsLo <0.001 3.756

Table 8.32: Wilcoxon Statistics multi-class RF with GLCM Features

• The active learning strategy that shows the best performance is the one that involves mid-
confidence labels;

• In the most instances, models relying on high-confidence labels exhibit poorer performance;

• The model that demands significant computational time corresponds to the ‘pure’ pseudo-
labelling technique that repeats the operation of the one that uses high-confidence labels;
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Method F1-score Execution time

SL 0.917 2.331(s)

SL 0.85 0.484(s)

SsL 0.849 2.877(s)

πSsL 0.845 1.534(s)

π̂SsL 0.833 3.054(s)

αSsLl 0.807 0.823(s)

αSsLo 0.826 0.829(s)

αSsLh 0.807 0.822(s)

απSsLl 0.799 1.901(s)

απSsLo 0.818 1.907(s)

απSsLh 0.803 1.896(s)

Table 8.33: F1-score and Execution Time average multi-class RF with HOG features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.996 0.017

Best active learning αSsLo <0.001 3.992

Table 8.34: Wilcoxon Statistics multi-class RF with HOG Features

Method F1-score Execution time

SL 0.939 2.319(s)

SL 0.872 0.488(s)

SsL 0.871 2.855(s)

πSsL 0.86 1.636(s)

π̂SsL 0.855 3.219(s)

αSsLl 0.83 0.829(s)

αSsLo 0.85 0.835(s)

αSsLh 0.824 0.833(s)

απSsLl 0.819 2.081(s)

απSsLo 0.839 2.111(s)

απSsLh 0.814 2.058(s)

Table 8.35: F1-score and Execution Time average multi-class RF with all features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.791 0.276

Best active learning αSsLo <0.003 2.979

Table 8.36: Wilcoxon Statistics multi-class RF with all features

except for the model that uses raw pixels where the model requiring more time is the one
that uses all pseudo-labels.

The Wilcoxon statistics provided in Tables 8.28, 8.30, 8.32, 8.34 and 8.36 show that in all cases
using pseudo-labelling does not provide any enhancements, while active learning is detrimental.
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8.2.2 SVM results

Method F1-score Execution time

SL 0.374 22.485(s)

SL 0.242 1.153(s)

SsL 0.233 14.27(s)

πSsL 0.232 5.461(s)

π̂SsL 0.205 8.012(s)

αSsLl 0.182 2.641(s)

αSsLo 0.189 2.676(s)

αSsLh 0.181 2.631(s)

απSsLl 0.183 5.671(s)

απSsLo 0.187 5.685(s)

απSsLh 0.179 5.602(s)

Table 8.37: F1-score and Execution Time average multi-class SVM with GLCM features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.319 1.008

Best active learning αSsLo <0.001 4.758

Table 8.38: Wilcoxon Statistics multi-class SVM with GLCM Features

Method F1-score Execution time

SL 0.428 19.61(s)

SL 0.271 1.055(s)

SsL 0.263 13.309(s)

πSsL 0.246 5.706(s)

π̂SsL 0.239 9.673(s)

αSsLl 0.233 2.335(s)

αSsLo 0.224 2.365(s)

αSsLh 0.2 2.37(s)

απSsLl 0.211 9.399(s)

απSsLo 0.215 9.424(s)

απSsLh 0.2 9.366(s)

Table 8.39: F1-score and Execution Time average multi-class SVM with LBP features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.468 0.738

Best active learning αSsLl 0.01 2.573

Table 8.40: Wilcoxon Statistics multi-class SVM with LBP Features

Tables 8.37, 8.39, 8.41 and 8.43 present the following observations:

• In all scenarios, the most effective ‘pure’ pseudo-labelling technique is observed in the model
that utilizes all pseudo-labels;
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Method F1-score Execution time

SL 0.863 14.823(s)

SL 0.783 1.172(s)

SsL 0.787 14.864(s)

πSsL 0.778 6.125(s)

π̂SsL 0.781 11.947(s)

αSsLl 0.728 3.237(s)

αSsLo 0.74 3.237(s)

αSsLh 0.728 3.148(s)

απSsLl 0.729 5.954(s)

απSsLo 0.739 5.959(s)

απSsLh 0.725 5.866(s)

Table 8.41: F1-score and Execution Time average multi-class SVM with HOG features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.414 -0.817

Best active learning αSsLo <0.001 4.015

Table 8.42: Wilcoxon Statistics multi-class SVM with HOG Features

Method F1-score Execution time

SL 0.38 35.097(s)

SL 0.229 1.755(s)

SsL 0.221 22.984(s)

πSsL 0.218 8.593(s)

π̂SsL 0.194 12.805(s)

αSsLl 0.18 4.099(s)

αSsLo 0.184 4.13(s)

αSsLh 0.169 4.089(s)

απSsLl 0.178 9.731(s)

απSsLo 0.185 9.758(s)

απSsLh 0.177 9.625(s)

Table 8.43: F1-score and Execution Time average multi-class SVM with all features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.454 0.76

Best active learning απSsLo <0.001 3.61

Table 8.44: Wilcoxon Statistics multi-class SVM with all features

• The best active learning method is for all the cases the one that uses mid-confidence labels,
except in the case of the model using LBP features, where the most effective technique
involves low-confidence labels and int the case of the model using all the features, where the
most effective is the pseudo-active learning technique that uses mid-confidence labels;

• Models relying on high-confidence labels exhibit poorer performance in most instances.
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• The model that demands the most time is consistently the upper bound model in all sce-
narios, except for the model utilising HOG features, where the pseudo-labelling model using
all pseudo-labels takes that position.

The Wilcoxon statistics provided in Tables 8.38, 8.40, 8.42 and 8.44 depict consistent trends
across different scenarios. These analyses reveal that the utilisation of pseudo-labelling fails to
yield any discernible enhancements across all cases examined. Additionally, the incorporation of
active learning appears to have a detrimental effect on the outcomes, undermining the performance
rather than providing any notable improvements.

8.2.3 KNN results

The KNN model employed in the multi-class classification scenario is configured with parameter
’k’ set to 5 and utilises the Euclidean distance metric.

The Tables 8.45, 8.47, 8.49, 8.51 and 8.53 reveal the following insights:

• For all the scenarios, the best ‘pure’ active learning technique is the one that uses all the
pseudo-labels;

• The active learning technique that proves most effective appears to be the utilisation of
mid-confidence labels in three cases (raw pixels, HOG features and combined features) and
low-confidence labels in the remaining two;

• Similar to the other models, the methods utilising high-confidence labels consistently showed
poorer performance;

• The models demanding more time are consistently the ones combining pseudo-labelling with
active learning.

As reflected in the Wilcoxon Statistics outlined in Tables 8.46, 8.48, 8.50, 8.52 and 8.54 the
trend aligns with the previously observed patterns in Random Forest and Support Vector Machine

Method F1-score Execution time

SL 0.757 0.002(s)

SL 0.671 0.001(s)

SsL 0.672 8.474(s)

πSsL 0.67 8.474(s)

π̂SsL 0.67 8.476(s)

αSsLl 0.643 5.853(s)

αSsLo 0.644 5.853(s)

αSsLh 0.629 5.853(s)

απSsLl 0.638 18.958(s)

απSsLo 0.638 18.958(s)

απSsLh 0.624 18.958(s)

Table 8.45: F1-score and Execution Time average multi-class KNN with Raw Pixels.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.8 -0.253

Best active learning αSsLo <0.001 3.587

Table 8.46: Wilcoxon Statistics multi-class KNN with Raw Pixels
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Method F1-score Execution time

SL 0.894 0.005(s)

SL 0.806 0.003(s)

SsL 0.814 0.525(s)

πSsL 0.806 0.525(s)

π̂SsL 0.809 0.529(s)

αSsLl 0.776 0.549(s)

αSsLo 0.778 0.549(s)

αSsLh 0.754 0.549(s)

απSsLl 0.775 0.949(s)

απSsLo 0.775 0.949(s)

απSsLh 0.756 0.949(s)

Table 8.47: F1-score and Execution Time average multi-class KNN with HOG features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.127 -1.526

Best active learning αSsLo 0.001 3.362

Table 8.48: Wilcoxon Statistics multi-class KNN with HOG Features

Method F1-score Execution time

SL 0.793 0.015(s)

SL 0.692 0.004(s)

SsL 0.699 0.539(s)

πSsL 0.685 0.534(s)

π̂SsL 0.691 0.546(s)

αSsLl 0.66 0.552(s)

αSsLo 0.659 0.552(s)

αSsLh 0.64 0.552(s)

απSsLl 0.65 0.979(s)

απSsLo 0.649 0.98(s)

απSsLh 0.634 0.98(s)

Table 8.49: F1-score and Execution Time average multi-class KNN with LBP features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.292 -1.053

Best active learning αSsLl 0.001 3.474

Table 8.50: Wilcoxon Statistics multi-class KNN with LBP Features

analyses. In these instances, both active learning and pseudo-labelling follow a similar trajectory
to what was observed previously, showcasing a lack of positive impact from pseudo-labelling
strategy on the model’s efficacy, and a detrimental impact of active learning.
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Method F1-score Execution time

SL 0.783 0.004(s)

SL 0.673 0.003(s)

SsL 0.678 0.504(s)

πSsL 0.668 0.503(s)

π̂SsL 0.674 0.507(s)

αSsLl 0.641 0.54(s)

αSsLo 0.64 0.54(s)

αSsLh 0.623 0.54(s)

απSsLl 0.633 0.994(s)

απSsLo 0.631 0.994(s)

απSsLh 0.619 0.994(s)

Table 8.51: F1-score and Execution Time average multi-class KNN with GLCM features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.547 -0.603

Best active learning αSsLl <0.001 3.508

Table 8.52: Wilcoxon Statistics multi-class KNN with GLCM Features

Method F1-score Execution time

SL 0.809 0.006(s)

SL 0.689 0.003(s)

SsL 0.693 0.536(s)

πSsL 0.683 0.534(s)

π̂SsL 0.689 0.54(s)

αSsLl 0.65 0.537(s)

αSsLo 0.651 0.537(s)

αSsLh 0.631 0.537(s)

απSsLl 0.64 0.958(s)

απSsLo 0.641 0.958(s)

απSsLh 0.626 0.958(s)

Table 8.53: F1-score and Execution Time average multi-class KNN with all features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.562 -0.58

Best active learning αSsLo <0.001 3.812

Table 8.54: Wilcoxon Statistics multi-class KNN with all features

8.2.4 HGBM results

The HistGradientBoosting has been set with a maximum of 100 iterations of the boosting process
and a learning rate of 0.1.

Tables 8.55, 8.57, 8.59 and 8.61 provide the following observations:
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Method F1-score Execution time

SL 0.818 6.221(s)

SL 0.745 9.286(s)

SsL 0.749 18.218(s)

πSsL 0.751 20.685(s)

π̂SsL 0.749 28.59(s)

αSsLl 0.717 15.884(s)

αSsLo 0.717 15.933(s)

αSsLh 0.702 15.925(s)

απSsLl 0.712 29.012(s)

απSsLo 0.713 29.935(s)

απSsLh 0.712 29.905(s)

Table 8.55: F1-score and Execution Time average multi-class GB with LBP features.

Method p-value z-value

Best ‘pure’ pseudo-labelling πSsL 0.303 -1.03

Best active learning αSsLo <0.001 3.745

Table 8.56: Wilcoxon Statistics multi-class GB with LBP Features

Method F1-score Execution time

SL 0.878 7.044(s)

SL 0.811 9.239(s)

SsL 0.814 17.169(s)

πSsL 0.814 20.74(s)

π̂SsL 0.815 27.298(s)

αSsLl 0.791 17.105(s)

αSsLo 0.791 17.042(s)

αSsLh 0.772 16.748(s)

απSsLl 0.783 30.027(s)

απSsLo 0.786 29.741(s)

απSsLh 0.784 29.64(s)

Table 8.57: F1-score and Execution Time average multi-class GB with GLCM features.

Method p-value z-value

Best ‘pure’ pseudo-labelling π̂SsL 0.489 -0.693

Best active learning αSsLo 0.004 2.923

Table 8.58: Wilcoxon Statistics multi-class GB with GLCM Features

• No single dominant model exists for the optimal ‘pure’ pseudo-labelling technique;

• In most instances, the preferred active learning approach utilizes mid-confidence labels,
except in combined features, where the low-confidence label method proves most effective;

• Coherently with the other models, the methods that use high-confidence labels show the
poorest performance;
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Method F1-score Execution time

SL 0.913 12.037(s)

SL 0.841 8.663(s)

SsL 0.848 20.562(s)

πSsL 0.845 22.284(s)

π̂SsL 0.848 32.726(s)

αSsLl 0.819 16.949(s)

αSsLo 0.819 16.993(s)

αSsLh 0.792 16.585(s)

απSsLl 0.813 33.064(s)

απSsLo 0.815 32.86(s)

απSsLh 0.809 33.077(s)

Table 8.59: F1-score and Execution Time average multi-class GB with HOG features.

Method p-value z-value

Best ‘pure’ pseudo-labelling π̂SsL 0.13 -1.515

Best active learning αSsLo 0.006 2.787

Table 8.60: Wilcoxon Statistics multi-class GB with HOG Features

Method F1-score Execution time

SL 0.938 12.611(s)

SL 0.879 10.158(s)

SsL 0.884 22.489(s)

πSsL 0.882 23.401(s)

π̂SsL 0.883 34.856(s)

αSsLl 0.861 18.17(s)

αSsLo 0.861 18.063(s)

αSsLh 0.835 17.506(s)

απSsLl 0.856 35.552(s)

απSsLo 0.857 35.79(s)

απSsLh 0.851 35.118(s)

Table 8.61: F1-score and Execution Time average multi-class GB with all features.

Method p-value z-value

Best ‘pure’ pseudo-labelling SsL 0.205 -1.267

Best active learning αSsLl 0.004 2.878

Table 8.62: Wilcoxon Statistics multi-class GB with all Features

• The models requiring more time are the ones that combine pseudo-labelling and active
learning.

The Wilcoxon statistics provided in Tables 8.56, 8.58, 8.60 and 8.62 consistently uphold the
observed trends, showing that pseudo-labelling fails to offer enhancements while active learning
poses a detrimental impact across these scenarios.
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8.3 Summary: Traditional Machine Learning

This section aims to summarise the results obtained from both multiple binary classification and
multi-class classification, focusing on highlighting the prevailing trends observed across various
experiments and analyses.

Multiple Binary Classifiers

From the analysis of the results of the traditional machine learning algorithms reported in Sections
8.1.1, 8.1.2, 8.1.3 and 8.1.4 it is possible to observe that:

• For the binary classification, the Random Forest model achieved the greatest F1-score,
followed by the Gradient Boosting but with a larger execution time. Support Vector Machine
has smaller performance and overfitting issues when using HOG features and raw pixels,
while K-Nearest Neighbours overfit in any case;

• In the majority of the scenarios, active learning provide a small enhancement on the baseline
SL, except for most of the cases regarding Gradient Boosting;

• In Random Forest and Gradient Boosting, the standout performing texture feature is HOG.
In both cases, using the combined features improve the performance;

• For both the Random Forest model and GB, using raw pixels displays slightly lower perfor-
mance compared to the most effective feature, but with a marginally higher execution time
for the first one and a considerably higher execution time for the second one;

• Interestingly, active learning and pseudo-active learning methods using high-confidence la-
bels lead to poorest results;

• Employing SMOTE occasionally yields small enhancements. Specifically, its utilisation
alongside the Gradient Boosting, where initially the Wilcoxon test indicated a lack of dis-
cernible benefits, a notable positive effect emerged, improving the active learning method
and augmenting its efficacy.

Multi-class classification

In reviewing the results of the traditional machine learning algorithms as detailed in Sections
8.2.1, 8.2.2, 8.2.3, and 8.2.4, the following trends emerge:

• Random Forest and Gradient Boosting provide the better scores, but GB with a longer
execution time;

• SVM performs exceptionally poorly, except when utilizing HOG features where its perfor-
mance significantly improves;

• Once again, HOG emerges as the superior performer among texture features. There is also
a performance enhancement observed upon integrating combined features, except for SVM
and KNN;

• As the previous binary scenario, both active learning and pseudo-active learning techniques
employing high-confidence labels yield the least favorable outcomes;

• Across all scenarios, active learning proves detrimental, and pseudo-labelling fails to demon-
strate any improvements.

• Implementing SMOTE occasionally leads to slight enhancements in the results, although
there is not a significant alteration.
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Another important aspect to note is that in handling raw pixel data, the considerable dimen-
sionality introduces substantial obstacles, notably in terms of execution time, especially when
employing complex models like SVM and GB. In achieving notable results in distinguishing be-
tween malware families, the computational overhead due to the high dimensionality of the raw
pixel data was particularly pronounced. The models exhibited significantly extended execution
times during training and prediction phases. This increase in computational demand derived from
the inherent nature of raw pixel data, which inherently translates into a vast number of features.

8.4 Convolutional Neural Network results

The CNN model, despite its success in achieving competitive classification accuracies and ef-
fectively discerning between diverse malware families, presented an inherent challenge regarding
computational demands. The intricate architecture and depth of the convolutional neural network
introduced a substantial computational overhead, due to the iterative process of the framework.

This challenge persisted despite attempts to mitigate complexity, such as changing hyperpa-
rameters or simplifying the model architecture significantly. Even with these adjustments, the
computational resources required for the CNN remained notably high, posing limitations in terms
of scalability and computational efficiency.

8.5 Blended dataset results

Using the blended dataset with the multiple binary classifiers approach does not solve the over-
fitting issue with the algorithms; this is due to the high degree of similarity within the malware
families in the MaleVis dataset.

Therefore, I employed this dataset in the multi-class classification context with the traditional
machine learning algorithms and the CNN, in order to increase diversity and improve generalisa-
tion.

The results of these experiments for both the traditional machine learning and deep learning
scenarios are as follows:

8.5.1 Traditional machine learning algorithms

• In the Random Forest model, the performance improved across all cases except for the model
using GLCM features;

• Support Vector Machine model performance showed improvement consistently with the
blended dataset in all cases;

• For the Gradient Boosting model, performance remained equivalent or slightly better overall,
except for a decrease observed in HOG features;

• K-Nearest Neighbours model performance improved consistently, except for the model using
raw pixels.

However, the trend remains consistent with the model trained only on MaleVis dataset. The util-
isation of pseudo-labelling failed to yield improvements, while active learning techniques showed
counterproductive effects on the outcomes.

8.5.2 Convolutional Neural Network

The incorporation of a combined dataset from MaleVis and Malimg into the CNN model presents
several advantageous potentials for enhancing performance compared to the use of the MaleVis
dataset alone.
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The merging of these datasets offers a wider range of malware samples, encompassing diverse
families and variations present in both repositories. This wider diversity increases the model’s
learning capacity, enabling it to capture a more comprehensive understanding of malware features.
The expanded dataset size and diversity augment the model’s ability to generalise across various
malware families.

However, the inclusion of diverse datasets necessitates meticulous preprocessing to address
inconsistencies in labelling, feature representations, and data quality, ensuring the model’s ro-
bustness and effectiveness in discerning malware characteristics as reported next in Section 9.2.
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Chapter 9

Conclusions

In this thesis, the objective was to evaluate the efficacy of a Semi-Supervised Learning (SsL)
approach within the domain of image-based malware classification. The evaluation employed the
CEF-SsL framework, which had previously been introduced in a related work within the current
state-of-the-art. This framework was utilised to conduct a statistically validated benchmark of 9
SsL approach.

To adapt this framework, originally designed for a binary classification task, two distinct
approaches were implemented. The first approach employed multiple binary classifiers, each re-
sponsible for distinguishing a specific malware family from the benign class. This One-vs-One
strategy was iteratively applied for each malware family, and the results from these binary clas-
sifiers were aggregated to make predictions for multi-class classification. However, this approach
had limitations, particularly in oversimplifying the classification task by not considering potential
relationships or shared characteristics between malware families. To address these limitations,
the framework was further adapted for multi-class classification, allowing for the simultaneous
consideration of all malware families and providing a more comprehensive perspective on the
classification task.

The traditional algorithms employed in the evaluation included Random Forest, Gradient
Boosting, K-Nearest Neighbours, and Support Vector Machine. These algorithms were trained
directly on raw pixel values extracted from grayscale image representations of malware, as well
as on texture feature descriptors such as Local Binary Pattern, Histogram of Oriented Gradients,
Gray Level Co-occurrence Matrix, and combinations thereof.

While in the context of deep learning, a simple Convolutional Neural Network comprising
two convolutional layers followed by two fully connected layers was employed. The network is
fine-tuned through the use of a cross-entropy loss function, coupled with the optimisation power
of the Adam optimizer.

The MaleVis dataset served as the basis for training and testing these algorithms.

In Chapter 8, the outcomes and analysis of the results are presented, revealing distinctive
patterns for each algorithm. In the context of multiple binary classifiers, for the random forest
algorithm, it is possible to observe that using raw pixels does not yield benefits from incorporating
unlabelled data. This observation may be attributed to the high-dimensionality of raw pixels,
posing a challenge for the model to extract meaningful information from unlabelled instances.
Additionally, a sophisticated model such as Random Forest may derive more significant advantages
when the features effectively capture the underlying patterns or structures in the data.

Conversely, the K-Nearest Neighbours algorithm encounters overfitting issues when utilising
both texture features and raw pixels. The local structure captured by KNN may lack sufficient
distinctiveness for effective classification.

The results of the Support Vector Machines algorithm indicate its susceptibility to overfitting
in high-dimensional feature spaces, such as those involving HOG features and raw pixels. On the
contrary, active learning emerges as the most effective strategy in the other case. Using GLCM
features and combined features, pseudo-labelling also provides improvements.
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As for the Gradient Boosting algorithm, it fails to showcase any discernible benefits when
incorporating unlabelled data, except in instances involving raw pixels.

In the multi-class context using active learning is always detrimental: this highlights the fact
that in a multi-class context the complexity of the task increases and pseudo-labels introduce
errors that are more complex to correct when dealing with multiple classes that have complex
interaction, or more complex decision boundaries. Also, trying different metrics, macro and
weighted F1-score, different model hyperparameters does not improve the results.

The deployment of Convolutional Neural Networks in malware classification, while promis-
ing, has encountered challenges as evidenced by the long execution time. Experimentation with
hyperparameters, including variations in batch size, learning rate, and image size, did not yield
improvements.

9.1 Challenges

Numerous challenges emerged throughout the course of this research, covering various aspects:

Dataset

A significant challenge comes from the MaleVis dataset. Grayscale images often exhibit high de-
gree of similarity within a family, and the model becomes too able to distinguish the samples. This
difficultness has already been outlined in related work [32] specifically addressing the similarities
among images within the Malimg dataset. This raises concern about overfitting and potential lack
of generalisation. This challenge becomes especially critical in the context of real-world scenarios,
where diverse samples are essential for robust model training and deployment. To address this
challenge, considerations are made towards augmenting the dataset with a more diverse set of
images. The goal is to introduce variability that better simulates the complex nature of malware
instances in practical settings.

Classifier

Overfitting issues were observed, especially with the KNN algorithm, particularly when dealing
with two specific malware families that demonstrated remarkably similar features. This problem
is emphasised when using raw pixels, which are more similar than texture feature descriptors.
Even if pixel values are similar, variations in texture features can reveal subtle differences in
patterns, providing more discriminative information. In fact, as can be seen from the results, the
efficiency of the classification process is highly related to the effectiveness of the feature extraction
techniques, which is another problem in this context. Changing the hyperparameter or the image
size did not solve this issue.

Execution Time

Execution time remains a significant challenge in this work, particularly when employing algo-
rithms such as SVM and Gradient Boosting within a high-dimensional space. The complexity
further amplifies due to the iterative nature of the framework, necessitating various methods and
conducting numerous iterations, which inevitably intensifies computational demands.

Similar concerns extend to Convolutional Neural Networks as well. While exceptionally potent
in their predictive capabilities, CNNs involve extensive computations.
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9.2 Future Works

Combining Diverse Malware Datasets

Expanding the dataset used for training and evaluation is a critical step to address the limitations
associated with the relatively small size of the MaleVis data set and the homogeneity within the
same family of images. By incorporating a more extensive and diverse dataset, researchers can
introduce a wider range of scenarios and instances, making the model more resilient to variations
and better preparing it for real-world challenges. However, it is essential to carefully curate
and annotate the additional data to ensure its quality and relevance to the problem. Moreover,
considerations should be given to potential biases introduced by the new dataset and how they
might impact the model’s performance.

The absence of a standardised convention to name malware families further complicates the
combination of diverse datasets. Different datasets often employ distinct labelling conventions or
taxonomies to categorise malware. Integrating these labels is critical to creating a unified and
coherent dataset, necessitating efforts to map or standardise the diverse family names.

Moreover, disparities in the sets of features or attributes used to describe malware samples
across different datasets pose challenges during integration. Variations in structures, formats, and
metadata further increase the complexity. Proper alignment of these differences is essential to
ensure a consistent and compatible dataset for meaningful analysis and model development.

Multi-modal data

The exploration of features beyond image-based characteristics could be useful for enhancing the
model’s understanding of malware samples. Integrating alternative features, such as behavioural
patterns, network activity, or code structures, can provide a more comprehensive view of malware,
capturing aspects that may not be evident in image representations alone. However, the challenge
lies in selecting and extracting meaningful features that complement the image data. Careful
consideration should be given to feature engineering techniques and the incorporation of multi-
modal data.

Concept drift considerations

Incorporating timestamped data into the framework offers a valuable approach to investigate the
impact of concept drift on machine learning models. By considering the temporal dimension into
the train-test split, it is possible to evaluate the performance of the model over time.

However, the main challenge encountered in this work is related to the acquisition of time-
stamped data, particularly for benign samples. Although some data sets offer time-stamped
malware binaries, the unavailability of time-stamped benign files poses significant challenges.

Moreover, handling timestamps in the context of machine learning for cybersecurity comes with
its own set of challenges. The timestamp approach is a critical issue, as it is not straightforward
to determine with absolute precision and reliability. For example, in VirusTotal each file may
have the following timestamps associated:

• creation date: extracted when possible from the file’s metadata. Indicates when it was
built or compiled;

• first submission date: date when the file was first seen in VirusTotal;

• last analysis date: most recent scan date;

• last modification date: date when the object itself was last modified;

• last submission date: most recent date the file was posted to VirusTotal.
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The choice of timestamp methodology plays a crucial role in influencing the overall performance
of concept drift models. While these timestamps are sourced from an external service, making
them resistant to manipulation, certain issues persist. For instance, the creation date can be
faked by malware creators. Additionally, the first submission date and the last submission date
are vulnerable to significant delays and temporal misalignments due to users being required to
submit files for analysis.
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Appendix A

User Manual

The original CEF-SsL framework is available at https://github.com/hihey54/CEF-SsL.

A.1 System Requirements

This program is compatible with all the operating systems. It requires Python 3.10 or later.
Additionally, the following dependencies need to be installed:

• Numpy

• Scipy

• scikit-learn

• scikit-image

• imbalanced-learn

• pandas

• Opencv-python

• Matplotlib

• Pytorch

You can install these dependencies using the following command in your terminal:

$ pip install <library>

Replace < library > with the name of the library you want to install.

A.2 Installation

The framework is available at https://github.com/MLetiziaColangelo/CEF-SsL-MCC. You
can download it with the following command:

$ git clone https://github.com/MLetiziaColangelo/CEF-SsL-MCC.git
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A.3 Configuration

Before executing the framework it is essential to configure it. According to your needs, you can
specify various parameters:

classification type: It specifies whether the malware classification framework is executed
with a direct multi-class classification approach or through the use of multiple binary classifiers;

classifier name: A string specifying the type of classifier you want to use, e.g., ‘all’ for
executing all available classifiers comprehensively, ‘svm’ (Support Vector Machine), ‘knn’ (K-
Nearest Neighbors), ‘rf’ (Random Forest), or ‘gb’ (HistGradientBoosting);

feature name: A string indicating the feature extraction method, e.g., ‘lbp’ (Local Binary
Pattern), ‘hog’ (Histogram of Oriented Gradients), ‘glcm’ (Gray-Level Co-occurrence Matrix), or
‘combined’ to use a combination of them.

Use command-line options to specify the desired settings. The available options are:

• --classification:

– multiclass: Run multiclass classification;

– binary: Run binary classification.

• --features:

– lbp: Use lbp features for classification;

– glcm: Use glcm features for classification;

– hog: Use hog features for classification;

– combined: Use all the features for classification;

– raw: Use raw pixels directly for classification;

• --classifier:

– all: Use all the classifiers;

– knn: Use only the K-Nearest Neighbors classifier;

– svm: Use only the Support Vector Machine classifier;

– gb: Use only the HistGradientBoosting classifier;

– rf: Use only the Random Forest classifier;

You can execute your script from the command line by combining these options. For example:

$ python main.py --classification multiclass --features lbp --classifier rf

To run multi-class classification with lbp features data using the Random Forest classifier. Or:

$ python main.py --classification binary --features raw --classifier all

To run binary classification with raw pixels using all the classifiers.

A.4 Result

The function outputs evaluation metrics such as F1-score, and execution times for each combina-
tion of classifier and feature extraction method.

Moreover, it will show the Wilcoxon RankSum test comparing the baseline supervised learning
vs. the pure semi-supervised learning and the baseline supervised learning vs. the best active
learning method.

The averages of the F1-scores and execution times for each model are plotted and saved
in the f1 score execution time/ directory, while the results of the Wilcoxon tests for each
methods are saved in the wilcoxon text/ directory. These directories can be found within the
result/output images multiclass/ folder for multi-class classification and the result/out-
put images binary/ folder for binary classification.
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Developer Manual

The CEF-SsL-MCC project directory has the following structure:

CEF-SsL-MCC/

data/

malware dataset.csv

benign dataset.csv

results/

output images multiclass/

f1 score execution time/

...

wilcoxon test/

...

output images binary/

f1 score execution time/

...

wilcoxon test/

...

utils/

functions

feature extraction.py

plotting functions.py

classification/

features classification.py

rawpixels classification.py

main.py

README.md

Here’s an overview of each directory:

1. data/: this directory contains the datasets in CSV format, that associates each image path
to the family label;

2. results/: this directory includes images generated plotting average values for f-scores and
execution time for each model. Additionally, this directory contains the results of the
Wilcoxon test, which is used to compare the performance of different methods. These
results consider both direct multi-class classification and the utilisation of multiple binary
classifier for multi-class classification;

3. utils/: this folder contains functions used throughout the project for both multi-class and
binary classification scenarios. It also includes the feature extraction code and the functions
to plot both Wilcoxon test statistics table and the table containing the average values of
F1-score and execution time for each method;
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4. classification/: this directory contains the main functions for different scenarios. These
functions handle both direct multi-class classification and using multiple binary classifiers for
multi-class classification. Furthermore, they are subdivided to manage malware classification
with both feature extraction and with raw pixels directly as input;

5. main.py is the main entry point for running the framework.

B.1 List of Functions

In this section, I will provide a detailed overview of the functions in the Utils directory:

• feature extraction.py: this file contains various functions to extract the different image
feature descriptors I employed in my project;

• plotting functions.py: this file consists of two functions, one for plotting the table of
Wilcoxon statistics and another for displaying the table of average values for F1-score and
execution time for each method implemented in the framework;

• functions.py: this is derived from the original framework, it contains general functions
used in the algorithm, including data preprocessing. For the model training and testing, as
well as active learning, it handles both binary and multi-class scenario. For the first case,
it is modified to handle the training One-vs-One between each specific malware family and
the benign class; for the second one it is modified to consider all the classes simultaneously.

B.1.1 feature extraction.py

B.1: Function 1

def extract_features_from_dataframe(df, feature):

This function iterates over the dataframe and calls the feature-specific

extraction function based on the input feature type.

:param image: Dataframe containing the image paths and their

corresponding labels.

:param feature: Feature to extract

:return: Features extracted

B.2: Function 2

def extract_lbp_features(image):

This function extracts the LBP features and then computes the histogram

of LBP features.

:param image: Grayscale image.

:return: LBP histogram.

B.3: Function 3

def extract_hog_features(image):

This function extracts the HOG features.

:param image: Grayscale image.

:return: HOG features.
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B.4: Function 4

def extract_pca_features(hog, n_components):

This function applies PCA for dimensionality reduction to the HOG

features.

:param image: HOG features.

:param n_components: number of components to initilise the PCA object

:return: PCA features.

B.5: Function 5

def extract_glcm_features(image):

This function extracts the GLCM features.

:param image: Grayscale image.

:return: GLCM features.

B.1.2 plotting functions.py

B.6: Function 6

def plot_average(avg_f1, avg_time):

This function creates a table containing the average values for f1-score

and execution time for each method.

:param avg_f1: List of the average f1-score for all methods.

:param feature: List of the average execution times for all methods.

:return: None

B.7: Function 7

def plot_wilcoxon(best_pseudo, best_active, pseudo_p, pseudo_z, active_p,

active_z):

This function creates a table for the Wilcoxon statistics comparing the

baseline Supervised Model with the best "pure" pseudo-learning model

and the best active learning model.

:param best_pseudo: The best "pure" pseudo-learning model.

:param best_active: The best active learning model.

:param pseudo_p: The p-value of the best "pure" pseudo-learning model.

:param pseudo_z: The z-value of the best "pure" pseudo-learning model.

:param active_p: The p-value of the best active learning model.

:param active_z: The z-value of the best active learning model.

:return: None

B.1.3 functions.py

As already mentioned, the content of this file is based on the original framework. The following
functions have been added or modified to align with my objectives, while the remaining functions
that I am not reporting in this section remain unchanged. The functions active learning binary

and active learning multiclass share identical structures to the original ones except for the
train test functions they invoke.
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B.8: Function 8

def load_and_preprocess_image(image_path):

This function loads the image using OpenCV converting it to grayscale,

and then resizes it to the desired dimension.

:param image: The image path extracted from the CSV dataset file.

:return: NumPy array representing the loaded image.

B.9: Function 9

def convert(df):

The purpose of the function is to load and preprocess each image from a

dataframe containing the image path and the corresponding label. For

images that are loaded successfully, it creates a new DataFrame with

columns "Image" and "Label" and appends the preprocessed image along

with its label.

:param image: The dataframe containing the path of an image along with

its label.

:return: New dataframe containing the loaded image and the corresponding

label

B.10: Function 10

def train_test_binary(train_df, train_labels, test_df, test_labels, messages,

base_clf):

This function performs training and testing and compute different

performance metrics.

:param train_df: The dataframe containing the training data.

:param train_labels: Numpy array containing the labels associated with

the training samples.

:param test_df: The dataframe containing the evaluation data.

:param test_labels: Numpy array containing the labels associated with the

evaluation samples.

:param message: Depending on this variable, the function will print

different informations.

:param base_clf: The classifier

:return: Sets of classification performance metrics.

B.11: Function 11

def train_test_multiclass(train_df, train_labels, test_df, test_labels,

messages, base_clf):

This function performs training and testing and compute different

performance metrics. It is the same as the above function but in a

multi-class classification scenario. So the performance metrics are

the weighted means of those values.

:param train_df: The dataframe containing the training data.

:param train_labels: Numpy array containing the labels associated with

the training samples.

:param test_df: The dataframe containing the evaluation data.

:param test_labels: Numpy array containing the labels associated with the

evaluation samples.
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:param message: Depending on this variable, the function will print

different informations.

:param base_clf: The classifier

:return: Sets of classification performance metrics.

B.12: Function 12

def assign_confidence_binary(df, high_confidence_window,

low_confidence_window, probability_column_name = "Probability",

confidence_column_name = "Confidence", debug=True, split=True):

This function computes the range boundaries for the numerical confidence

scores. Based on these values, it associates each probability value

with a confidence score among "high", "mid" and "low".

:param df: The dataframe containing the probability values for each class

associated to the images.

:param high_confidence_window: value to define the range boundaries of

the confidence score.

:param low_confidence_window: value to define the range boundaries of the

confidence score.

:param probability_column_name: The column name of the dataframe that

contain the probability values.

:param confidence_column_name: The column name of the dataframe in which

the confidence score will be stored.

:param debug: Parameter to print different informations.

:param split: If it is set to True, the function will create three

separate DataFrames: df_high, df_mid, and df_low. Each DataFrame

contains the rows of the original DataFrame df that correspond to

data points falling into the respective confidence categories (high,

mid, or low).

:return: The dataframe containing the new column "confidence" and the

three dataframes corresponding to the samples with high, mid and low

confidence.

B.13: Function 13

def assign_confidence_multiclass(df, high_confidence_window,

low_confidence_window, probability_column_name = "Probability",

confidence_column_name = "Confidence", debug=True, split=True):

This function is the same of the one described earlier, with the key

difference that it is tailored for multi-class classification

scenarios. In this context, it identifies the maximum probability

value across all classes and assigns a corresponding confidence score.

:param df: The dataframe containing the probability values for each class

associated to the images.

:param high_confidence_window: value to define the range boundaries of

the confidence score.

:param low_confidence_window: value to define the range boundaries of the

confidence score.

:param probability_column_name: The column name of the dataframe that

contain the probability values.

:param confidence_column_name: The column name of the dataframe in which

the confidence score will be stored.

:param debug: Parameter to print different informations.
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:param split: If it is set to True, the function will create three

separate DataFrames: df_high, df_mid, and df_low. Each DataFrame

contains the rows of the original DataFrame df that correspond to

data points falling into the respective confidence categories (high,

mid, or low).

:return: The dataframe containing the new column "confidence" and the

three dataframes corresponding to the samples with high, mid and low

confidence.

B.14: Function 14

def active_learning_binary_raw(confidences_df, baseTrain_df, validation_df,

trials = 5, ssl = True, samples=50, label_name = "label", base_clf=None,

messages=0):

The function is designed for active learning with multiple trials, where

samples are selected based on confidence values and integrated into

the training process to improve model performance. Differently from

the versions with texture features, before invoking train_test

function the raw pixels are reshaped to the correct form.

:param confidences_df: The dataframe containing the samples associated to

a specific confidence value (low, mid, high).

:param baseTrain_df: The dataframe containing the labelled samples.

:param validation_df: The dataframe used for validation.

:param trials: Numbers of trials for active learning.

:param ssl: If set to true, the model uses both labeled and unlabeled

data to learn.

:param samples: Number of samples selected from the confidence_df.

:param label_name: The column name associated to the label.

:param clf: The classifier.

:param messages: For debugging messages.

:return: Precision, recall, F1-score, and training time.

B.2 features classification.py.

It includes the implementation of the framework evaluating and comparing the performance of
different classifiers and feature extraction methods when applied to a specific dataset. This
updated version of the framework is tailored for handling two approaches: (i) the original strategy,
that iterates over each malicious family, effectively treating the problem as a series of binary
classifications; (ii) a multi-class classification task addressing the challenge of classifying instances
into multiple categories simultaneously.

B.3 rawpixel classification.py.

Like the previous one, but the input is the image directly as raw pixels without any feature
extraction method. This is done by flattening each image from a 2D array into a 1D array.

B.4 main.py

The entry point of the framework.
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