
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Design and Implementation of Trusted
Channels in the Keystone Framework

Supervisor
Prof. Antonio Lioy
Ing. Silvia Sisinni
Ing. Enrico Bravi

Candidate

Giacomo Bruno

Academic year 2022-2023

To my beloved family

Summary

Nowadays, the spread of remote services and network connections has led to the need for a higher
level of protection for the transmitted data. Even if the secure channels can guarantee confiden-
tiality, integrity, and authenticity of the information exchanged over the connection, there are
no assurances that the endpoint is devoid of malware or that it is not under the control of an
adversary. In that case, if the other party sends sensitive information, this may be compromised
with the risk of causing severe damage to both endpoints. For these reasons, the research is
moving forward with trusted channels development, secure channels in which evidence of plat-
form trustworthiness is exchanged during the connection establishment. This proof is produced
according to the attestation process provided by technologies such as Trusted Platform Modules
(TPMs) or Trusted Execution Environments (TEEs). In particular, the latter can execute appli-
cations securely and isolated from the rest of the system, reducing the attack surface available
for the adversaries, and those executables are therefore called Trusted Applications (TAs). The
purpose of this Master’s thesis is to develop a protocol that can be adopted to issue certificates
used during the setup of a trusted channel in which at least one peer is a TA. The work starts
with an analysis of TEE technologies and their main elements, and a description of how these
have been implemented in the products developed by companies and research groups. Then,
different publications about trusted channels have been analyzed in order to highlight which are
their main requirements, as well as their advantages and disadvantages. Based on this study, I
designed the protocol described above, in which the involved entities are the TA, the Certificate
Authority (CA), and the verifier. The implementation of TAs was carried out on the Keystone
framework, an open-source project that allows the creation of customizable TEEs. Moreover, to
identify the device and TEE components and to generate the key pair to be certified, the Device
Identifier Composition Engine (DICE) architecture has been included in the protocol by using
a custom version of the Keystone framework compliant with DICE. It consists of specifications
published by the Trusted Computing Group (TCG) that describe how each layer in the system
can be identified, how those values are generated, and how key pairs can be derived from the
identifiers and certified. Finally, the developed protocol has been tested to verify its functionality
and performance.

4

Acknowledgements

I would like to thank Professor Antonio Lioy for suggesting and permitting me to work on this
topic and for his appreciated advice.

I would like to sincerely thank Dr. Silvia Sisinni and Dr. Enrico Bravi for their support and their
guidance throughout this work.

I would like to express my deepest gratitude to my parents, for all the support they have given me
in my academic journey and beyond, and without whom I would never have achieved my goals.

A special thanks goes to all my friends, both long-standing and newer, with whom I have shared
this journey.

5

Contents

1 Introduction 10

2 Trusted Execution Environment (TEE) 11

2.1 TEE concept and key features . 11

2.1.1 Introduction to Trusted Execution Environments 11

2.1.2 Key feature: Trust . 12

2.1.3 Building blocks . 12

2.1.4 Use Cases . 13

2.1.5 Attacks . 15

2.2 Global Platform specifications . 17

2.2.1 Trusted Execution Environment (TEE) . 17

2.2.2 Secure Element (SE) . 19

2.2.3 Trusted Platform Services (TPS) . 21

2.3 Existing TEE solutions . 23

2.3.1 Commercial TEEs (proprietary) . 23

2.3.2 Academic TEEs (open source) . 28

2.3.3 Trade-offs in existing TEEs . 31

3 Keystone 34

3.1 Framework for Customizable TEEs . 34

3.2 Keystone requisites . 35

3.2.1 RISC-V . 35

3.2.2 Root of Trust . 38

3.3 Threat Model . 38

3.4 Keystone design . 39

3.4.1 Security Monitor . 40

3.4.2 Modular Runtime . 44

3.5 Security Evaluation . 45

6

4 Trusted Channels: Beyond Secure Channels 46

4.1 Trusted channel . 46

4.1.1 Motivations . 46

4.1.2 Definition and Requirements Analysis . 47

4.2 Proposed Solutions . 48

4.2.1 Linking Remote Attestation to Secure Tunnel Endpoints 48

4.2.2 A possible design of Remote Trusted Channel 49

4.2.3 An efficient implementation of Trusted Channels 50

4.2.4 Trusted Channels for Remote Sensing Devices 52

4.2.5 Integration of SGX’s Remote Attestation in TLS 53

4.2.6 HTTPA: HTTPS Attestable Protocol . 54

4.3 Security and Performance Evaluation . 56

5 Device Identifier Composition Engine (DICE) 58

5.1 DICE Architectures Work Group objective . 58

5.2 Hardware requirements for DICE . 58

5.2.1 Introduction to DICE . 58

5.2.2 Requirements . 60

5.3 DICE Layering Architecture . 60

5.3.1 Layering Architecture . 61

5.3.2 Keys and Credentials . 62

5.3.3 Layered Certification . 64

5.3.4 Considerations about DICE Architecture’s implementation 66

5.4 DICE Certificate Profiles . 67

5.4.1 Certificate’s fields . 67

5.5 DICE Attestation Architecture . 68

5.5.1 Layered Device Attestation Evidence . 68

5.5.2 Layered Device Attestation Endorsements 69

5.5.3 Attesting Environment . 70

6 Architectural Design of the Solution 71

6.1 Initial Design . 71

6.1.1 Requirements . 71

6.1.2 Actors and Protocol . 71

6.1.3 Security Considerations . 72

6.2 DICE Integration . 74

6.2.1 Starting Design . 74

6.2.2 LDevID . 76

6.3 Final Design . 76

6.3.1 Protocol . 76

6.3.2 Security Considerations . 82

7

7 Integration of the Design in the Keystone TEE 83

7.1 Initial version of Keystone: DICE Integration . 83

7.1.1 Algorithms and Libraries . 83

7.1.2 Root of Trust . 83

7.1.3 Security Monitor . 87

7.2 New integration to existing implementation . 91

7.2.1 Runtime . 91

7.2.2 SDK . 92

7.2.3 UUID . 93

7.3 Mbed TLS . 93

7.3.1 Integration of libraries in Keystone . 93

7.3.2 Mbed TLS for Enclave Applications . 94

7.3.3 Mbed TLS for Host Applications . 95

8 Implementation of Protocol Applications 96

8.1 Enclave Application . 96

8.1.1 Execution Flow . 96

8.1.2 Ocalls . 97

8.2 Software CA . 98

8.2.1 Execution Flow . 98

8.3 Verifier . 99

8.3.1 Execution Flow . 99

8.4 Network communication . 101

8.4.1 TLS channels and Trusted Certificates . 101

9 Test and Validation 102

9.1 Testbed . 102

9.2 Testing Certification Protocol . 102

9.2.1 Functional Tests . 102

9.2.2 Performance Tests . 103

9.3 Testing Trusted Channel . 105

9.3.1 Performance Tests . 107

10 Conclusions 111

Bibliography 113

A User Manual 117

A.1 System Deployment . 117

A.1.1 Install Keystone . 117

A.1.2 Install Keystone-CA . 118

A.1.3 Run the demo . 118

A.2 Running Tests . 119

A.2.1 Functional Tests . 119

A.2.2 Performance Tests . 120

8

B Developer Manual 121

B.1 Chain of Environment Calls . 121

B.1.1 Runtime . 121

B.1.2 SDK . 123

B.2 The Ocall Execution Process . 124

B.3 Mbed TLS patches . 130

B.3.1 Host’s Mbed TLS . 130

B.3.2 Enclave’s Mbed TLS . 138

B.4 UUID . 139

B.4.1 Security Monitor . 139

B.4.2 Linux-Keystone-Driver . 140

B.4.3 SDK . 142

B.5 Applications . 144

B.6 HTTP messages . 149

B.6.1 TA - XCA Communication . 149

B.6.2 XCA - Ver Communication . 149

9

Chapter 1

Introduction

Trusted Execution Environments (TEEs) are a technology developed in the last years and con-
tinue to interest both the academic and the commercial worlds. Many products can be found in
the market, and many research papers and articles have been published to analyze proprietary so-
lutions or propose open-source technologies. They aim to provide a secure execution environment
where the application can be run isolated from the rest of the system and where the integrity of
the components they are made up of is checked. A functionality provided by TEEs is remote at-
testation in which an external entity, called the verifier, can assert the platform’s trustworthiness
by verifying reports containing system measures signed by a trusted component.

There are several contexts where TEEs can be adopted, for example, cloud, remote services,
mobile devices, and embedded systems. However, proprietary solutions such as the ones developed
by ARM, Intel, or AMD cannot be adopted for use cases different from the ones for which they have
been designed. To overcome this problem, open-source TEEs have been published by universities
and research groups, and one of these is the Keystone framework. Among the several advantages
of this project, the RISC-V Instruction Set Architecture (ISA) adoption allows the deployment
in many different platforms since it is an open-source standard that more and more products
are implementing. A context that may benefit from this framework is embedded systems, whose
use is increasing and brings many attack vectors to adversaries due to the reduced presence of
protection mechanisms in those devices.

A new challenge in trusted computing research that may reduce this risk is the trusted channel,
a secure channel merged with the remote attestation process. This new protected communication
guarantees not only the identity of the endpoint and the confidentiality of data in transit but also
the trustworthiness of the party to whom we are sending sensitive information, having proof that
it can protect it.

The objective of this Master’s thesis is to design a protocol that the certificate authorities can
adopt to issue certificates for applications running on a TEE. These certificates can be used to
establish a trusted channel based on Transport Layer Security (TLS) in which confidential infor-
mation is exchanged. The context in which the solution focuses is the embedded and Internet
of Things (IoT) devices, which have constrained resources and few protection mechanisms. The
protocol design required an analysis of some publications about trusted channels, comparing the
several design choices that the authors made, and a summary of the Device Identifier Composi-
tion Engine (DICE) architecture, a specification about device identifiers implementation even in
constrained environments like IoT. This last technology has been used to provide an identity to
the device and its components that can be used when communicating with other parties. Addi-
tionally, a proof of concept of the designed solution is implemented on the Keystone framework
to test its functionalities and performances.

This work starts with a TEE technology description, which considers its main elements, the
current standards, and available solutions from companies and universities. More importance is
given to Keystone, the one that has been used in the protocol implementation.

10

Chapter 2

Trusted Execution Environment
(TEE)

Nowadays, IT systems and devices, from smartphones to servers, are widely diffused. They offer
an extensible and versatile operating environment, called Rich Execution Environment (REE),
which brings many advantages but also several security threats. Data is protected at rest or
when transmitted over the network, but fewer defenses are available during their usage. For
this reason, companies and academic groups started to develop a new security control: Trusted
Execution Environments (TEEs). They reside alongside the REE, protecting the device’s assets
in a secure area and executing trusted code.

In this chapter, TEE technologies are introduced with a focus on their main features and
current standards. Later on, there are listed the leading existing solutions.

2.1 TEE concept and key features

2.1.1 Introduction to Trusted Execution Environments

One of the first concepts of TEEs was introduced by the Open Mobile Terminal Platform (now
transferred to GSMA) in two documents [1, 2], in which it described the set of requirements for
the development of this new technology. Even if many descriptions of TEEs have been published,
one possible definition can be found in a paper presented at TrustCom in 2015 [3]:

“Trusted Execution Environment (TEE) is a tamper-resistant processing environment
that runs on a separation kernel. [. . .]”

In this phrase, it is possible to notice one of the main components: the Separation Kernel
(SK). It consists of a security kernel, the basic element that implements the security procedures
and access control in the system. This component enables the coexistence of different partitions
on the same platform, each of them with its security level. It guarantees strong isolation between
partitions and manages the interface for inter-partition communications. This behavior is called
isolated execution.

The security policies for Separation Kernels [4], according to [3] can be summarized in:

• Data (spatial) separation: partitions cannot access data that is not their own;

• Sanitization (temporal separation): shared resources cannot provide partition infor-
mation;

• Control of information flow: unauthorized communication cannot take place between
partitions;

11

Trusted Execution Environment (TEE)

• Fault isolation: other partitions cannot be affected by security breaches in one of them.

The main purposes of the Separation Kernel are isolation and secure storage, which means that
the execution environment is protected from unauthorized access or possible interactions between
partitions.

The main features of TEEs are secure execution, openness, and trust. This means that un-
trusted code cannot alter the system’s state, like the execution of instructions or traps, but also
that TEE can be securely updated, allowing non-static content. Despite this, the threat model of
TEE includes software attacks and physical attacks performed on memory.

2.1.2 Key feature: Trust

To achieve all their security properties, TEEs need to guarantee one fundamental property, trust,
which is present even in their name. However, it is complex to obtain since that property is
subjective and non-measurable.

Trust can be static or dynamic. The first one is measured once before the deployment. To
guarantee this, international standards, such as Common Criteria (CC), are responsible for
comprehensively evaluating a set of security requirements. They assign to these sets a security
assurance level, which in the case of CC ranges from Evaluation Assurance Level 1 (EAL1) to
EAL7, representing the trust in how system security has been implemented and evaluated.
The second one measures the system’s trustworthiness during the whole life cycle, trying to
evaluate a state that changes over time. Trust in this case is based on the expectation that the
system is in a secure state. It cannot be guaranteed without the Root of Trust (RoT), a
tamper-resistant hardware module which is the core element that must be trusted a priori, and
responsible for computing the evidence for the state of the system. In this case, the evidence is
based on trust measurements and the computation of a trust score. If the first ones are influenced
by an attacker the second one has no value, and for this reason, the security and trustworthiness
of RoT are extremely important.

TEEs implement a hybrid trust that is composed of static and dynamic parts. Static trust is
provided through the verification of the security level which is based on the comparison with a
certified Protection Profile, such as the one published by Global Platform, and containing the set
of security requirements for TEEs [5]. In addition, the RoT verifies if the loaded TEE is certified
by the platform provider, protecting its integrity. At run time this property is guaranteed by the
separation kernel, which also protects the trust level, which is not supposed to change. For this
reason, it can be considered a semi-dynamic trust.

In this case, trust measurements and trust scores represent the code’s integrity. The first ones
are values computed over the code, and the seconds are flags representing the system’s integrity.
In this way, if an attacker modifies a system’s component, its trust measurement will change and
consequently the trust score, representing that the system is no longer unbroken.

2.1.3 Building blocks

As mentioned above, the Separation Kernel and Root of Trust are the two main components of the
systems that allow to achieve isolation and integrity of partitions, noticing possible modifications
of them. They are also the basis for TEE building blocks, which will be described in this section.

Secure Boot

Secure Boot consists of verifying the integrity of code at boot time, and stopping the bootstrap if a
modification is detected. This mechanism allows to establish a chain of trust between components,
which can be represented as:

I0 = True;

Ii+1 = Ii ∧ Vi(Li+1)

where:

12

Trusted Execution Environment (TEE)

• Ii represents the integrity of layer i. In particular, I0 is used to denote the initial boot whose
value is guaranteed by a tamper-resistant hardware module, the RoT;

• Li represents the ith layer;

• Vi represents the verification function of layer i, which computes the trust measurement (a
cryptographic hash) and compares it with the reference measure of that layer.

In this way, TEE guarantees the identification of firmware and Trusted Applications (TAs),
providing integrity and authenticity.

Secure Scheduling

It assures that processes running in the TEE do not affect the responsiveness of the host Opera-
tive System, guaranteeing efficient and balanced coordination between TEEs and the rest of the
system. In this way, the real-time performances are not compromised.

Inter-Environment Communication

It manages the communication between the TEE and the rest of the system. Even if this feature
introduces several benefits, it increases the security risk, adding new threats that can damage the
system. In literature are proposed different models of communication, such as, for example, the
Global Platform TEE Client API [6].

Secure Storage

It guarantees confidentiality, integrity, and freshness of data. A possible implementation is sealed
storage [7], which consists of using two basic operations: seal (used to protect data) and unseal
(used to unprotect data). The main difference compared to symmetric or asymmetric primitives
is the possibility of specifying limitations on which software environment can access sealed data.

Trusted I/O Path

It protects communications between TEE and peripherals (e.g. keyboard, sensors, . . .), providing
authenticity, and optionally confidentiality. In this way, the users can directly communicate with
applications executed in the TEE.
This feature protects against several classes of attacks such as:

• Screen-capture attack [8]: it is a set of attacks in which adversaries use screen capture
techniques to collect information about the target device, such as applications running in
the foreground, user data, or credentials;

• Key logging attack [9]: it is a type of input capture attack in which an adversary can log
the typed keystrokes, to intercept credentials of other sensitive information;

• Overlaying attack [10]: it is another type of input capture attack, also known as GUI
Input Capture. The attacker emulates common GUI components to ask for sensitive data
such as credentials or bank account information, mimicking real applications;

• Phishing attack [11]: it consists of messages containing malicious attachments or links
that are typically used to execute malicious code on the victim’s system.

2.1.4 Use Cases

TEEs are used in many different contexts, especially in smartphones, to guarantee a high level
of security. Examples of their usage are ticketing, online transactions, data protection, and
authentication. There is also a trend to use TEE in various embedded system platforms such as
sensors and Internet Of Things devices [3].

13

Trusted Execution Environment (TEE)

Figure 2.1. Main blocks of TEE and their relationship (source: [3]).

Securing Vital Data on Mobile Devices: Media Industry

The viability and profitability of the media industry have been threatened by electronic devices,
by which digital media content can be easily duplicated and disseminated.
A way of protecting these data is described in [12]. In this paper, the authors proposed the usage
of ARM TrustZone, a commercial TEE, to provide a secure storage for data files and licenses,
and to protect the integrity of the license file checker. In this way, an adversary cannot access
data protected by copyright, nor bypass the license check used to access that data. This solution
reduces the amount of losses by preventing the distribution and the copies of digital media content.

Mobile Online Transactions: Privacy-Preserving Mobile Payment

In the private business environment, mobile users may have many credentials such as IDs, billing
and delivery addresses, credit card information, secret keys, etc. The protection of this data is
crucial for the security of online transactions, but another important aspect to consider is the
privacy of these operations. A solution that is proposed in [13] uses ARM TrustZone to provide
secure storage for sensitive data and to communicate with the payment trustlet.

Authentication: Trusted Execution Environment-Based Authentication Gauge

Traditionally, users contact a remote service to authenticate themselves, providing authentication
data (password, fingerprint, etc.). In the remote device, the received data is compared with an
authentication template stored where this operation is performed. Then user access is granted or
denied depending on the comparison’s result.
This architecture has the disadvantage of being vulnerable to phishing attacks since the remote
device is not authenticated. An adversary masquerading himself as a legitimate service provider
may obtain the user’s authentication data. Another issue comes from the credentials transmission
in the local network: an attacker can capture the packets in the network in raw format and try to
send them to the service. Or he can even try a brute force attack on the authentication service
to discover the victim’s credentials.
A new paradigm for authentication is proposed in [14], in which the authors change the au-
thentication location, moving it from the remote device to the local device. To do this, the
authentication data is sent to a TEE in the device, which is responsible for comparing them with
previously-secure-stored authentication templates and sends the result to both parties.

14

Trusted Execution Environment (TEE)

Figure 2.2. Taxonomy of attacks against TEE implementations (source: [15]).

2.1.5 Attacks

As mentioned before, TEEs bring various benefits to the security of devices, such as isolated
execution, secure storage, and platform integrity. Despite these properties, the TEE can still be
attacked. A taxonomy of attacks (that mainly affect ARM TrustZone) is proposed in [15], based
on the classification into four main groups:

• Software-based attacks: they exploit bugs in the code, at different levels of the software
stack;

• Architectural attacks: they exploit flaws in the design of the system;

• Side-channel attacks: they exploit the collection of metrics about the system behavior,
such as execution time or power consumption, to discover details about the system imple-
mentation;

• Micro-architectural attacks: they exploit micro-architectural elements such as the cache
of the Branch Target Buffer.

In Figure 2.2 it is possible to see a list of attacks and their classification under these four
categories. Now, the most relevant cases are described for each of them.

Software-based attacks

It might be possible that even the code responsible for the TEE contains bugs and vulnerabilities,
which can appear at different levels of the system, such as trusted kernel, boot loader, or applica-
tions themselves. For this reason, an adversary who exploits them can get sensitive information
or can even attack the kernel. According to [15], the most relevant cases are kernel attacks and
attacks using system calls.

Kernel attacks are direct attacks on the system kernel. The first example is privilege es-
calation, in which the adversary starts from having zero permission, and after having exploited
software vulnerabilities, he obtains kernel privileges. Another possibility is kernel exploit, which
consists of a chain of exploits that allow to take control of the system kernel. The last case is

15

Trusted Execution Environment (TEE)

next-generation rootkits, a type of malware used to take control of the system in a way that goes
unnoticed.

A first instance of attacks using system calls is syscall hijacking, in which an adversary
can extract any keys residing in TEE. In this way, the attacker can perform other actions, such
as the decryption of the disk thanks to the disclosure of the full disk encryption key. Another
example is Trustnone, an attack against the TrustZone kernel that allows the adversary to write
as many zeros as wanted in a memory area. It is also possible that functions have implementation
bugs, which can be very dangerous, especially if they affect inter-partition communications.

Architectural attacks

The previous section describes some possible attacks that can be mounted thanks to implemen-
tation bugs, but it is also possible that the vulnerability is already present in the design of the
component. This category of attacks can be classified into isolation-focused attacks and attacks
on memory protection mechanisms.

Isolation-focused attacks compromise the isolation between TEE and Rich Execution En-
vironment. They include memory exposures due to how applications in the REE map the physical
memory, and information leakage produced by debugging mechanisms in TEE.

Attacks to memory protection mechanisms exploit bugs in software drivers, that are
executed in kernel space, or others in shared interfaces. A first example of this type of attack
is the downgrade attack, which consists of executing old buggy versions of applications, which
are correctly loaded. To protect against this, a version control mechanism is implemented, and
developers have to update the version number of applications. Another problem that allows these
types of attacks is the size of components, which may increase the likelihood of vulnerabilities as
the size increases.

Side-Channels attacks

These attacks are based on data collected from the system such as power consumption, to leak
information about operations performed on the device or cryptographic material. A particular
kind of attack is fault injection, which consists of inducing faults in the system (physical- or
software-based) to leak secret information. For example, the application of high temperatures,
voltage, or electromagnetic pulse exposes physical components to unexpected conditions. Some
examples of this category of attacks are CLKskew, Platypus attack, and BADFET.

CLKskew is an attack in which the adversary overclocks and undervolts the CPU to produce
erroneous behavior. Thanks to this, the attacker can even get secret keys, that will be used
to modify the RSA signature chain to create illegitimate firmware, which is accepted thanks to
correct signatures.

Platypus attack is an attack that analyzes the power consumption of the system, since
performing a statistical study about energy variations it is possible to identify which operations
are performed or even sensitive data such as secret keys.

BADFET is an ElectroMagnetic Fault Injection (EMFI) attack that targets components of
the system that are used by the CPU during sensitive operations. It is mounted in two phases:
firstly an EMFI attack against the system’s RAM exposes the debugging Command Line Interface
to adversaries, which is used to switch between the Trusted and Rich Execution Environment.
Then a SW vulnerability is exploited through a buffer overflow attack, which provides the read,
write, and execute privileges to the attacker, obtaining a new CLI fully capable of executing
commands.

Micro-architectural attacks

The last group of attacks targets micro-architectural elements such as Branch Target Buffer (BTB)
units, caches, etc. A possible classification which is proposed in [15] is reported here.

16

Trusted Execution Environment (TEE)

Cache timing attacks are based on the extraction of hardware information, such as cache
access attempts or timing consumption, which are used to infer secrets stored in the secure world.
They are executed in two phases: the first one consists of sending raw data, for example, to be
encrypted, and measuring the time consumption for each operation, which depends also on the
number of cache hits and misses. Later on, when the number of measures is high enough, the
attacker, together with the knowledge about cached data, can compare the time spent on the
current operation to the past values, to guess the secret cryptographic material.

Attacks against separation barrier, such as prime and count, are used to test the existence
of a side channel between normal world and secure world. Another possible attack is TruSpy, which
is used to break the isolation between the two execution environments.

Speculative execution attacks exploit speculative execution in processors. This optimiza-
tion anticipates the execution of future instructions, but the prediction done on the branch may
be wrong, and the changes are reversed. However, some of them can leave traces that can provide
useful information to the attacker.

Out-of-order execution attacks are a subtype of the previous case in which adversaries
exploit the accessibility to memory (before being freed) used for transient instruction by other
processes. An example is Foreshadow, which reads protected memory in Intel SGX TEE, permit-
ting an attacker to get even the private attestation key. Another one is the Load value injection
attack, which injects erroneous data into the victim’s memory.

2.2 Global Platform specifications

To develop an international standard for trusting and securely managing digital services and
devices, over 100 companies have joined GlobalPlatform (GP) [16] which is a non-profit industry
association. It aims to standardize and certify secure components, which are a security hardware
and firmware combination.

2.2.1 Trusted Execution Environment (TEE)

Standardization

Over the years, several versions of TEE technology have been proposed, forcing application de-
velopers to adapt their products to different architectures and APIs. In addition, these providers
have also to be sure about the level of security of different TEE solutions, being forced to per-
form a security assessment on each platform, leading to an increasing complexity and workload
to deploy an application in different architectures. But thanks to several security benefits that
they bring, TEEs become an essential environment provided in all devices.
These reasons have led to the development of a common standard by GP, and in this way, de-
vice manufacturers can adopt a standardized and certified TEE [17]. On the other side, service
providers can develop their solution once and deploy it across different devices, with the assurance
that all of them meet the desired security level.

In addition to standards, GlobalPlatform promotes also a certification program, which is used
to create an open ecosystem of trusted services and devices. It is verified whether a product
adheres to specifications and configuration published by the association, for example, to the
Protection Profile recognized by Common Criteria [5]. In this way, the service provider can select
the product that better meets its privacy and security needs.

GP has created also the TEE Management Framework (TMF), which defines standard
methods to support the application of the TEE in different deployment models such as one or
many actors, connected or unconnected, symmetric or asymmetric cryptography, etc. In this way,
it presented a standard that answers the requirements of different markets and use cases, such as
payments, telecoms, transportation, smart cities, government, and enterprise ID.

17

Trusted Execution Environment (TEE)

Figure 2.3. Architecture of TEE (source: [17]).

Definition

According to the paper published by GP [17]:

“The TEE is a secure area of the main processor of a connected device that ensures
sensitive data is stored, processed, and protected in an isolated and trusted environ-
ment. As such, it offers protection against software attacks generated in the Rich
Operating System (Rich OS).”

The main property provided by TEEs is the isolation of the execution environment that is
used to protect Trusted Applications (TAs), which are authorized security software. In this
way, we can guarantee many security properties, such as system integrity, confidentiality, privacy,
authenticity, and data access rights.

In addition to the properties already defined in Section 2.1.3, in the paper published by GP
[17] we can identify also these others:

• Isolation from the Rich OS, in this way, all TAs and their data are separated from the
REE;

• Isolation from other TAs and also from the TEE itself;

• Application management control, which means that only authenticated entities can
modify TAs or the TEE;

• State-of-the-art cryptography adds value to services offered by TEEs.

A TEE in a consumer device can offer a Trusted Interface mechanism, called Trusted UI,
that is used to protect the I/O path and it guarantees that input and output are managed by
only one TA at a time, for example, the output on the screen is produced by only that TA or that
the input typed on the keyboard is received by the one we want to communicate with.

18

Trusted Execution Environment (TEE)

Technology

Since 2010, GP has been in charge of driving TEE standardization, and during this period it
has published several documents that describe TEE technology. These are summarized in the
following paragraphs.

In that year, Global Platform published the first version of Client API specification [18] in
which it standardized the set of APIs (TEE APIs) for the communication between client appli-
cations running in the Rich Execution Environment and the ones running on the TEE, but also
how a TA can access the secure services offered by TEE.

Document [19] explained TEE System Architecture, concerning both hardware and soft-
ware architectures that build the TEE, answering to security and functional requirements. This
is relevant since it explains how to provide a secure area in the device to execute trusted code
and protect assets.

The TEE Management Framework is a collection of standard methods used to manage
the TEE, defining the life cycles of entities, the involved stakeholders, and which operations they
can perform on TEEs or TAs. The defined protocols and interfaces are accessed through the APIs
defined in TEE Client API or as extensions of TEE Internal Core API. In this way, users can
install and update trusted applications, having a framework of well-defined operations that they
can perform.

A set of implementation requirements is published in the TEE Initial Configuration. It
is a document used to improve interoperability and security in TEEs and help meet the require-
ments of GP’s Device Specification. In particular, it merges and updates TEE Client API and
Internal Core Specifications in response to feedback from the testing and compliance ecosystem’s
implementations.

The TEE Protection Profile [5] is a common Protection Profile (PP) that in 2015 was
certified by Common Criteria with a security assurance level of EAL2+. It specifies typical threats
to TEEs and the security objective that developers must meet to reach the certified security
level. This document, together with the certification program, helps in meeting the different
requirements of the variety of markets in which TEEs are used. In this way, the deployment of
certified TEE should be accelerated to achieve full market adoption.

As stated in [19], adopting GP’s TEE PP, developers obtain a TEE that is not restricted to
specific hardware or software implementations, with the following properties:

• Authenticity: before being executed, the code is authenticated;

• Integrity: the assets’ integrity is protected through isolation, cryptography, or other mech-
anisms like these. This property does not hold in case the asset is shared with entities in
the REE;

• Data confidentiality: it is guaranteed in the same way as the integrity;

• TA code confidentiality: it is obtained through capabilities of TEE, such as cryptographic
protections or isolation;

• Security: the TEE resists a set of software and hardware attacks;

• Debug and Trace: code and assets are protected from debug and control operations
performed in an unauthorized way through the debug and test features of the device.

2.2.2 Secure Element (SE)

Definition

A Secure Element (SE) [20] is a tamper-resistant platform that is used to host in a secure way
applications and their sensitive data according to the requirements set by trusted authorities. It

19

Trusted Execution Environment (TEE)

is an evolution of the smart card’s chip, which has been modified to satisfy the requirements of
different contexts, such as mobile devices, wearables, cars, and other IoT devices. SEs have been
developed in different form factors to suit the needs of various markets and business implementa-
tions. Some examples are smart cards, smart microSD, SIM/UICC, or embedded and integrated
SEs. They can be used in identification, authentication, PIN management, and signature since
all of them need to operate securely in a protected environment.

Standardization

Similarly to the case of TEE, GlobalPlatform’s work helps standardize SE technologies and targets
many different markets, from payments to healthcare, thereby improving interoperability between
different SEs. Thanks to this, deploying into different platforms does not increase the development
costs.
The GP’s SE Certification Program verifies the compliance of the SE to the requirements
published by GlobalPlatform, certifying the product’s security level. It helps device manufacturers
to guarantee that their products meet digital service providers’ needs. On the other side, it enables
service providers to select the product that better matches their requirements.

Technology

Many documents about SE specifications are developed starting from the GlobalPlatform Card
Specification v2.2, in which are defined components and interfaces. This document describes a
technology that is as neutral as possible, trying to target any type of industry and deployment.
To support the update of the applications running on the card, this specification also includes
dynamic post-issuance card management. In the following paragraphs a set of documents about
SE, published by GlobalPlatform, is reported.

The development of a secure E2E infrastructure was demanded by the market. Having a well-
defined framework that describes actors and technology specifications helps service providers and
issuers in deploying faster their implementations. The End-to-End (E2E) Frameworks specify
what is required to develop secure mobile services to be aligned with GlobalPlatform standards
and to deploy them on SEs.

Since an increasing number of secure applications are loaded on mobile devices, the providers
of these services need a way to confidentially and independently manage their applications and
take responsibility for their products. For this reason, the new standardized framework, described
in Confidential Card Content Management (Amendment A), provides a way to do it on
GP-compliant SE. It explains also how a “space” can be created and controlled by a Secure
Element issuer.

NFC Managing Entity Specifications is a document that ensures that a device can support
many different contactless services simultaneously, which coexist and operate as they should. It
also allows to detect any possible conflict. In this way, service providers can realize Near Field
Communication (NFC) services more cleanly and easily. Others who benefit from this are Original
Equipment Manufacturers (OEMs), who realize devices that support this technology.

Digital identity services, like ePassports or eID documents, must be updated frequently due
to the increasing attention to privacy and the constant change of the laws in this regard. For this
reason, Privacy Framework and Privacy-Enhanced ID Configuration have been published
to help program managers be aligned with the latest requirements in this field. The first one
is more oriented to the integration of requirements and protocols in SE architecture, while the
second focuses on how SE must be configured to implement the features explained in the Privacy
Framework.

The spread of embedded SEs has led to the demand for being able to modify the firmware even
after the production of the device. Thanks to the specification about the OFL protocol published
in Open Firmware Loader for Tamper Resistant Elements (OFL), the SE firmware can
be replaced or securely transferred to be used in other devices. This document describes also the
usage of a standardized loader which allows the loading of firmware in an interchangeable way.

20

Trusted Execution Environment (TEE)

All of this is also compliant with current data regulations (GDPR), providing confidentiality and
forward secrecy.

The Consumer Centric Model gives the consumers control over which secure applications
are used, maintaining the expected level of security. In this way, each of the various applications
hosted in a SE can be managed differently depending on the end user’s requirements. This concept
is very important since it moves the center of the model from the issuer to the consumer. To
manage the applications a PIN-protected interface module controls an isolated security area of
the SE.

The Web API for Accessing Secure Element defines a standard interface that allows web
developers to access SEs. In this way, web services are improved by a higher level of security since
sensitive data is processed and stored in a Secure Element. This is extremely important in mobile
devices, and in particular in the IoT because the security risk level and attack surface are directly
proportional to the number of connected devices. The features described in this document are
complementary to the standard of the World Wide Web Consortium (W3C).

The market requires that the product must be deployed as fast as possible but at the same
time its security should be improved and tested. For this reason, GlobalPlatform published the
Composition Model, in collaboration with EMVCo and GSMA, and approved by ETSI, Euro-
pean Payments Council, and SIMalliance. In particular, this document simplifies the evaluation
requirements through a modular approach, in which Common Criteria and EMVCo results can
be re-used. Thanks to this, security evaluations need only to test the combination of SE and the
new application. It is very important since in SE many different applications can interfere with
each other.

2.2.3 Trusted Platform Services (TPS)

SE and TEE, as described above, are standardized secure components that offer services to the
device. To access these, GlobalPlatform has published open specifications which are created
and maintained by the Trusted Platform Services (TPS) Committee [21]. In this way,
application developers and service providers can take advantage of the strong security technology
that is linked to their products. In particular, the trustworthiness of this model is guaranteed by
a Chain of Trust achieved through the Device Trust Architecture (DTA).

Some examples of the work of this committee are the SE Remote Application Manage-
ment [22] and the SE Access Control [23]. The first one specifies a protocol that allows the
development of remote administration platforms. These are used to remotely manage applications
in any type of SE. For example, it delivers scripts to the secure component which can exchange
data or install an application, such as access applications, transit applications, or payment appli-
cations. The second specification reduces the risk of unauthorized access to secure APIs offered
by SEs, protecting the resources in the secure component. They are used together with existing
protection mechanisms, typically preventing DoS attacks such as PIN blocking. Other documents
about TPS can be found at this link [24].

Device Trust Architecture (DTA)

Due to the rapid expansion of connected devices and the sensitive nature of communications
between them, the presence of standardized security has become increasingly important. To
develop a successful service, cloud platform providers, service providers, and device makers have
to guarantee the security of their products but this is also based on the trust in the product’s
security at the underlying layers. For this reason, these stakeholders have to collaborate on
securing digital services.

The GP DTA framework [25] allows stakeholders to interact with each other seamlessly, inde-
pendently by the device type or the market. Essentially it uses GP-standardized technologies to
build a Chain of Trust capable of protecting digital services and devices. It consists of a secure
component that offers security services at different levels of the Chain of Trust (CoT) (boot,
OS, application layer).

21

Trusted Execution Environment (TEE)

Figure 2.4. GlobalPlatform Device Trust Architecture (source: [25]).

Figure 2.5. DTA’s Chain of Trust (source: [25]).

The first step consists of protecting the boot through the secure component, which in this case
is considered a Root of Trust. This assures the integrity of the boot chain process of the device,
and also the protection against several attacks such as malware infection.
The next step consists of providing secure services to the OS to protect assets and operations.
In case service providers want to offer Value-Added Services (VAS), applications need security
services that are tailored and optimized for the specific case. For this reason, secure components
offer also the possibility to load those services, which are made accessible to applications.

When a new application is loaded and wants to connect to the Chain of Trust, the attestation
process is used. It consists of providing the status of a part of the system, such as applications
or OS integrity, to the ones that request it. Then it is verified by a trusted third party, which
demonstrates the authenticity of the received response.

Considering this Chain of Trust [25], it is particularly important for device manufacturers since
it ensures different security capabilities of their products, for example, the support of different
device OS in a secure way, or data privacy and secure communications.
In the case of service providers, it is particularly relevant due to the need to create a secure channel
for service delivery. In this way, they are sure to interact securely with the right customers. CoT
solves also the key requirements for Cloud Platform Providers, in particular:

• it ensures secure device enrollment, thanks to device identification and secure storage of

22

Trusted Execution Environment (TEE)

credentials;

• the device can be securely and remotely managed since end-points are trusted, being sure
that there are no compromises in the update process;

• secure services of the device can be used to authenticate the user, providing even non-
repudiation.

2.3 Existing TEE solutions

2.3.1 Commercial TEEs (proprietary)

In this first section, the main TEE technologies developed by processor manufacturers, in partic-
ular ARM’s TrustZone, AMD’s SEV, and Intel’s SGX and TDX, are presented.

TrustZone

TrustZone (TZ) is an example of a TEE developed by ARM. It consists of a hardware security
extension technology, which is deployed on different types of ARM architectures. Since those
are principally used in mobile and micro-controller devices, TZ is designed to provide security in
these contexts. In this case, the trusted execution environment offered by the secure component is
called secure world, while the Rich Execution Environment is called normal world. The physical
processor is shared in a time-sliced fashion, in this way, both the secure world and the normal
world have the illusion of owning it. The processor to manage these two worlds uses a state that
represents the current execution mode and to protect the resources of the secure world from the
normal world TrustZone uses hardware barriers that prevent access to [26]:

• regions of memory that are assigned to the secure world;

• secure world’s system controls;

• state switching, except the few approved.

Several components are used to implement the security features, and the ones described in a
paper published in 2016 [26] are summarized in the following paragraphs.

AXI to APB Bridge allows the CPU to securely communicate with peripherals. Accord-
ing to the Advanced Micro-controller Bus Architecture (AMBA) specification, the main system
bus (Advanced eXtensible Interface, AXI) is connected to the Advanced Peripheral Bus (APB)
through a bridge. The AXI bus has a bit that indicates if the read/write operations involve secure
memory or not, then the bridge denies access to the resource in case of invalid permissions.

Cache controller has a bit to indicate the involved world as in the previous case. Since
caches are shared, this bit is used to increase the length of the address as the two execution
environments access a separate memory area.

Direct Memory Access (DMA) Controller is used to permit access to secure memory
only to secured requests. It manages at the same time both secure and non-secure events.

TrustZone Address Space Controller (TZASC) allows to partition memory an arbitrary
number of times, mapping in memory secure and non-secure devices.

TrustZone Memory Adapter (TZMA) is used to divide static on-chip memory into secure
and non-secure areas.

Generic Interrupt Controller (GIC) is responsible for serving secure and non-secure in-
terrupts, blocking unauthorized accesses.

TrustZone Protection Controller (TZPC) manages signals in the device.

23

Trusted Execution Environment (TEE)

This leads to a more resource-efficient solution than having two separate processors. Fur-
thermore, these modules are particularly important in protecting not only the memory but also
peripherals, controlling the communication buses and their accesses.

Regarding the software architecture, this model allows to boot off a general OS in the normal
world, such as Linux or Android, and a security subsystem/customized OS in the secure world.
The main services offered by these devices are the secure boot of the OS and dedicated commu-
nications between secure and normal worlds.
These functionalities are essential to protect the device from loading malicious versions of soft-
ware, that an adversary can exploit to mount an attack against the system. Also, a set of APIs
(TZAPI) is defined in TrustZone to make easier the exchange of information with the secure
world.

TrustZone has two different architectures depending on the family of the processor in which
it is deployed. In Cortex-M processors the state of the execution (secure or non-secure) depends
on the area of the memory in which is stored the code that is currently executed. In this way,
applications can directly execute functions in the other world. In the case of the Cortex-A family,
TrustZone implements the monitor mode, which is a transitional mode used to switch between
the two execution environments. Here the information about the current state is kept through
a bit in a configuration register, isolated from the normal world. Furthermore, TZ can be used
as virtualization technology since it allows two OS to boot off, which are managed through the
monitor mode process, which acts as a Virtual Machine Monitor (VMM).

The main difference between TrustZone and Secure Element is that TZ does not run on
dedicated hardware, while the SE does. For this reason, the second one has less computational
capabilities since it cannot access the main CPUs. On the other side, SEs provide the root of
trust and secure key storage, that TrustZone cannot guarantee. Furthermore, secure components
can be integrated into TZ, providing the features that are missing.

Software Guard Extensions (SGX)

Software Guard Extensions is another case of architecture extensions provided by Intel processors
that are used to guarantee freshness, integrity, and confidentiality to execution environments in
which the privileged software (OS, hypervisor, etc.) is potentially malicious. Its main purpose
is to provide secure remote computation in a cloud scenario, and this is done through secure
containers, called enclaves, in which users upload their data and desired computations through
a remote computation service. This mechanism allows the user to access the resources of an
untrusted third party, being sure that his operations are protected [27].

The main feature on which SGX relies is software attestation. It is used to prove the
identity and the integrity of the software we are communicating with, running in one of those
secure containers. The proof consists of a signed cryptographic hash of the container’s content.
In case this value does not match the expected value, the communication is interrupted since the
trust in that party is lost. Only the trusted hardware knows the private key used to compute the
signature and the certificate for that key pair is issued by the trusted hardware’s manufacturer.

The enclave’s life cycle starts with the copy of the container’s pages from untrusted memory
into the Enclave Page Cache (EPC). It is an area of memory reserved for enclave pages that are
held in the Processor Reserved Memory (PRM) and whose access is protected by the CPU. Each
of these pages is tracked by the processor in the Enclave Page Cache Metadata (EPCM), ensuring
that each of those is assigned to at most one enclave.

When this process finishes, the enclave is marked as initialized. During the loading of the
enclave, its content is hashed to compute the measurement hash, which will be used in software
attestations. The enclaves are executed in a protected mode, similar to the secure world in Trust-
Zone, and the switch between this mode and the “normal” one happens like for user and kernel
mode.
Another characteristic of SGX consists of adding cryptographic protection to EPC pages, needed
when the OS evicts and reloads the pages. In particular, while they are stored in untrusted mem-
ory, the TEE guarantees their freshness, confidentiality, and authenticity. Only pages belonging
to enclaves not in execution can be moved since SGX performs checks on their state.

24

Trusted Execution Environment (TEE)

Figure 2.6. Runtime execution in SGX (source: [28]).

Unfortunately, SGX is vulnerable to several physical and software attacks, however, most of
the attacks are side-channel based [29]. An example from the first group is the port attack, which
consists of connecting a device to a port of the system and using it as an attack vector. While
the second category includes attacks such as the rowhammer DRAM bit-flipping attack, which
exploits the fact that rewriting continuously a cell of memory affects the value of the adjacent
cells.

Mitigation to those attacks has been proposed and applied, in some cases through patches of
SGX microcode, and in others at the enclave level. Furthermore, some patches have not been
released (considering the publication date of the paper [27]) and new attacks are continuously
discovered. For this reason, in an article [30] published in 2022, Intel confirmed that SGX will
not be supported in the next PC’s processors, but only by the Intel Xeon family.

Secure Encrypted Virtualization (SEV)

AMD’s response to the request for a higher level of security in computing systems had been
Secure Encrypted Virtualization. It allows the developers to create encrypted virtual machines,
integrating AMD’s Secure Memory Encryption (SME) and AMD-V virtualization architecture,
without modifications to the software. In this way, virtual machines are protected not only from
threats in the external world but also from the hypervisor and other VMs.

SME is a memory encryption technology that protects DRAM, allowing the encryption of its
contents. It uses dedicated hardware to perform AES encryption and decryption during memory
accesses and it is activated through the bit 47 (aka C-bit) of the physical address stored in the page
table. The value ’1’ means that the area of memory is protected, so in case of a write operation,
the content will be encrypted and then decrypted in a read operation. In this way it is possible
to protect the whole DRAM setting the C-bit in all addresses, or only a subset of it, providing
flexibility. For example, the system may want to encrypt only the memory corresponding to a
Guest VM.

One of the most important innovations introduced by SEV is the isolation between the hyper-
visor and the guest levels. Traditionally a more privileged level can access not only its resources
but also the ones of lower privileged levels. In case the hypervisor level is compromised, an at-
tacker can access also all the guests present in the system. To defend against this threat, SEV
introduced this separation, but also a controlled communication channel between the two levels
to operate as expected.
A tag and an encryption key are associated with each VM and the hypervisor. The tag is stored

25

Trusted Execution Environment (TEE)

Guest

Hypervisor

Traditional
Model

Hypervisor Guest

AMD SEV
Model

Figure 2.7. SEV Security Model (source: [31]).

together with data and used to identify who can access it. In this way SEV can ensure that only
a specific VM can use that data, guaranteeing a strong isolation.

As described before, SME allows VMs to encrypt their pages, protecting them from unautho-
rized read operations. Through SEV, a VM can decide which pages should be kept confidential
since it has access to the page table and consequently to the C-bit. A VM can also control which
of them are restricted only to itself and which are shared with other VMs or with the hypervisor.
To allow this two different keys are used: the VM’s key (private pages) and the hypervisor’s key
(shared pages).

SEV offers also other protections that are enforced by its firmware. The main three, according
to [31], are summarized in the next paragraphs.

Platform’s authenticity is essential in preventing malicious software or devices from mas-
querading as legitimate ones and is proved by an identity key. To demonstrate its authenticity,
AMD and the platform owner sign the key’s certificate thus it is guaranteed which platform it is
and who its administrator is.

Like SGX, SEV offers the possibility of remotely performing guest attestation. In this case,
the guest owner can verify the state of the guest VM, being sure that the hypervisor or malicious
code has not interfered with the loading of SEV or the VM. In case the guest is in the expected
state, the owner can then send his confidential information, such as the disk encryption key, that
is used to start the execution of the guest.

As explained before, confidentiality of the guest’s data is ensured since they are encrypted
using keys that are stored securely in SEV, preventing access to the sensitive data from the
outside (hypervisor or other VMs). However, this data can be migrated into another platform
that supports SEV through functionality offered by the SEV management interface. It is possible
thanks to the transmission of the information that is kept encrypted. When the remote platform
is authenticated, the keys are sent securely so it can decrypt the data and run the guests.

Two of the environments that take advantage of the benefits offered by SEV are Cloud and
Sandboxing. In the first context, but especially in Infrastructure-as-a-Service (IaaS), users do not
always trust service providers so they need to have guarantees about how their data is managed and
if the several processes are securely isolated from each other but also from the hosting software.
In the same way, SEV protects sandbox environments, in which secure isolation is the most
important property that needs to be guaranteed.

Trust Domain Extensions (TDX)

In 2015 Intel SGX made it harder for platform owners to introspect the computations in appli-
cations. In fact, following the paradigm of Confidential Computing, the owner of the platform
and the owner of data on the platform are two distinct entities. To protect the confidentiality

26

Trusted Execution Environment (TEE)

of the operations of the second one, Intel has developed another architectural technology called
Trust Domain Extensions. It allows the deployment and management of Trust Domains (TDs),
which are Virtual Machines that are hardware-isolated from non-TD software like a hypervisor
or Virtual Machine Manager.

To host this new security service module, Intel has introduced Secure-Arbitration Mode
(SEAM) which is a new CPU mode that helps in enforcing the security policies. In the SEAM-
memory range, an area of memory identified by a SEAM register, TDX is hosted having confi-
dentiality and integrity protections. Furthermore, a module called SEAM Loader is used to load
TDX, verifying even its digital signature.

The main capabilities of TDs guaranteed by TDX that are summarized in [32] are reported in
the next paragraphs.

Integrity and confidentiality of memory are achieved through an engine that uses AES-
XTS-128 to encrypt pages and SHA3-256 as MAC, but the output is truncated to 28 bits. Each
of these AES keys is identified by a KeyID and generated by the CPU in a unique and ephemeral
way. There are two types of keys: private or shared. Private keys can be used only by TDX
modules or TDs, otherwise, any attempt to access them from the untrusted world raises a page-
fault exception. Another protection of memory is implemented through a 1-bit TD-ownership
tag that identifies if a page is assigned to a TD. These defenses protect the system from many
different hardware-based and software-based attacks, such as content modifications and DRAM
analysis, however, they do not protect from areplay of memory attacks.

TDX provides TD with two types of memory, private memory which is used to store and
protect sensitive information as explained before, and shared memory which is used to exchange
data with untrusted entities. The second one in particular is used to perform I/O operations.
For this reason, TDs have two extended page tables (EPTs), one for each type of memory and
they cannot be stored in shared memory, as the code. Then TDX offers management functions
to the VMM to operate on the secure EPT, being sure that security policies are enforced. This
architecture provides a secure mapping ensuring address-translation integrity, and allowing
the mapping of pages into these EPTs with the same overhead as traditional systems.

During the creation of a TD, the TDX module requires the VMM to have a set of pages to
host control structures. To avoid the simultaneous allocation of these pages to different TDs, the
initialization of these is done using the private key assigned to that TD. In this way integrity
and confidentiality of CPU state are provided.

TDX provides an Advanced Programmable Interrupt Controller virtualization (VMX-APIC)
to emulate many registers and states of the APIC and to efficiently ensure secure interrupt
and exception delivery. To do this, the CPU uses a page initialized using a TD-private key.
This architecture allows VMM or devices to deliver interrupts to a TD, in fact reacting to a
notification interrupt, the CPU processes the posted-interrupt descriptor and then delivers TD’s
virtual interrupts through the virtual APIC. It protects also from delivering interrupts in an
unauthorized way.

Remote attestation is used by relying parties to establish that the platform they want to
send their data to is Intel-TDX-enabled and the workload is running on a TD. It allows also
them to determine which version of the software is used to secure their data. In the attestation
response, the TD-associated data is provided, such as public keys used to open communication
channels, and measurements and state of the TD that are provided by the TDX module and used
to prove the trust of the TD.

Considering the threat model, TDX tries to protect TDs from two main adversaries: System
Software Adversaries (SSA) and Hardware Adversaries (HA). System software adversaries could be
BIOS, VMM, administrative insiders, or any other entity that has access and control of memory
and CPU state and registries. Examples of attacks that can be mounted are EPT remapping
attacks, injection or capture and replay of contents/memory. The other type of adversaries,
hardware adversaries, can access the platform physically, allowing them to perform critical attacks
on the system, but TDX implements protections only against a limited set of them.

27

Trusted Execution Environment (TEE)

2.3.2 Academic TEEs (open source)

In the last section Commercial TEEs have been presented, here some of the Academic TEEs that
are developed by research groups are listed.

Aegis

Aegis is a single-chip secure processor in which all secret keys and security features are included,
protecting them from physical attacks, while all the other components outside the chip are consid-
ered insecure. Like the other solutions already discussed, the purposes of Aegis are to authenticate
the platform and software and to protect integrity and privacy from software and physical attacks.
Designers wanted to produce a processor that would be secure but also relatively cheap and to
avoid the usage of expensive components such as EEPROM to store the cryptographic material,
they have decided to adopt Physical Unclonable Functions (PUFs).

Since storing secret keys on non-volatile memory makes them vulnerable to physical attacks,
the one used to identify the device is obtained through PUFs. They are static mapping functions
whose values depend on physical systems, making them random and unique for each instance.
The main advantages that their usage brings are that attacking them is more complex than those
mounted against physical memory, and special manufacturing or programming processes are not
required. However, how are implemented is susceptible to environmental changes, such as voltage
or temperature fluctuations, leading to bit flipping. For this reason, PUF values are not suitable
to be used as keys, also because they do not satisfy some mathematical properties as required
for example by RSA. For this reason, designers added two additional steps: the error correction
process and the key-generation process. The first one is used to stabilize the output, making it
constant even in case of environmental changes. While the second one generates cryptographic
keys starting from PUF’s output. These keys are then used to authenticate the platform and the
application running on it, signing attestation reports containing the measures of security kernel
(trusted part of OS) and trusted applications.

Aegis protects data and programs both in storage and when used. To do this it provides 4
execution modes:

• Standard (STD): it does not implement any additional security protections;

• Tamper Evident (TE): it has all the capabilities of the previous mode but it provides
also program state integrity. This mode has also the privilege of performing read and write
operations on verified memory;

• Private Tamper-Resistant (PTR): in addition to the security measures of the STD and
TE, it ensures also privacy. The resources it can access include PUF instructions and private
memory;

• Suspended Secure Processing (SSP): it allows applications in TE or PTR mode to
execute untrusted parts of applications safely.

In particular, TE and PTR modes implement different protection mechanisms. They consist of
checks of access permissions, Memory Encryption (ME), and Integrity Verification (IV), however,
they are not executed at startup but when there is a switch to that mode. There are specific
memory regions in which ME and IV are guaranteed and they are applied as soon as a page is
copied into those areas. The two main causes of performance overhead are both related to memory
protection mechanisms. The first one is the bus contention between IV and ME mechanisms since
they store metadata in the same area of memory. The other is the memory latency due to data
encryption.

Another way in which memory regions are partitioned is read-only (static)/read-write (dy-
namic) and verified (IV)/private (ME). Even if user and supervisor spaces have distinct static
and dynamic regions in virtual memory, physical memory is divided only into three parts: user
static memory, supervisor static memory, and dynamic memory which is shared by the two levels.

28

Trusted Execution Environment (TEE)

This is possible because the trusted security kernel manages secure multitasking, isolating each
user process and protecting their resources.

In the paper published in 2007 [33], it is stated also that the research work was moving
towards protection mechanisms against physical attacks and an infrastructure for easily certifying
processors’ public keys.

Bastion

Bastion is an architecture whose purpose is to manage and secure trusted software modules, based
on VMs. In particular, it provides them with a fine-grained memory compartment and persistent
storage area which are secured through different protection mechanisms. To do this, researchers
have developed and enhanced both microprocessor hardware and hypervisor software. The secured
microprocessor is used to protect the enhanced hypervisor from potential attacks, and in turn,
its secured execution environment is used to protect trusted software modules, providing them an
area on the untrusted disk in which they can store their data securely.

The support for virtualization offered by the CPU, which provides different privilege levels,
ensures that the hypervisor level, being the most privileged one, is not accessible by the others. In
particular, it is that level that allows VMs to access resources as if they were unrestricted, while
the hypervisor implements controls on resource use. For example, it is responsible for mapping
guest virtual memory that is managed by VM’s OS to machine physical memory.

Being the hypervisor a critical element, Bastion provides several protection mechanisms to
secure it and one of the most important is secure launch. In particular, they are activated
through the secure_launch instruction that is called after the loading of the hypervisor in the
main memory. As the first operation, the routine executed by that instruction computes the
hash of the hypervisor state and stores it in a Bastion register. It will be used to bind the
secure storage to the hypervisor, in this way if this function is skipped or a different hypervisor
is loaded, that value will be different or missing, blocking access to the secure storage area since
it does not correspond to the reference measure. Then the routine invoked by secure_launch

generates a key to encrypt hypervisor memory. At the end of start-up, the hypervisor can create
an arbitrary number of VMs and if one of them wants a secure execution compartment, it calls the
SECURE_LAUNCH hypercall, which separates that area from the software stack and does operations
similarly to the secure_launch instruction (computation of hash, memory encryption, etc).

However, the modules managed by Bastion can be of different sizes, from a security-critical
function to a trusted OS or trusted application. Despite the size of the data and code, the most
important thing is that only the needed parts should be present, removing the others to reduce
the attack surface and possibly to verify it with formal methods. They are identified through the
module id, a number represented on 8 to 20 bits (5 bits in paper’s implementation [34]) which
is used by the hypervisor to specify access rights to resources and to implement compartment,
for example, it is added into TLB entries to identify page owners. Moreover, to secure physical
memory Bastion uses two hardware engines, one to encrypt and decrypt its content and the other
to check the integrity of pages through hash trees. Then Bastion uses two bits (i bit and c bit)
to specify if a page needs to have integrity and/or confidentiality and guarantees them in the L2
cache, main memory, and disk.

Another feature that is offered by Bastion is secure inter-module control flow. To invoke
a secure module, the VM uses the CALL_MODULE hypercall, which takes as arguments the callee’s
module hash and virtual address of the entry point. The operations performed by the hypervisor
include checking that the entry point is among those authorized by the callee and managing the
Module State Table, which contains the list of desired transitions. Instead, the RETURN_MODULE

hypercall is used by secure modules to return to the caller. Hypervisor is also responsible for
saving and restoring the state of secure modules when preempted, to prevent a malicious OS from
observing or modifying it.

Considering the memory, Bastion offers a secure persistent area where the hypervisor can store
its secrets and sensitive information ensuring integrity and confidentiality. The encryption keys
and the hash of the memory area are stored in non-volatile registers and to access them Bastion

29

Trusted Execution Environment (TEE)

Figure 2.8. Sanctum’s Software stack (source: [35]).

implements a check on the hash of the hypervisor. If the measure of the current hypervisor
matches the one to which the secure area belongs, they are provided, otherwise, they are moved
to avoid that others can access that data. Similarly, the protected memory of secure modules is
managed by the hypervisor, which saves in its secure storage the tuples composed of encryption
key, cryptographic hash, and module’s identity of each area. Thanks to this it is possible to have
an arbitrary number of secure storage since are needed only the two registers for the hypervisor’s
memory. To do this, modules can use hypercalls to read and write keys and hashes.

As a threat model, Bastion considers both hardware and software attacks. However, only
the microprocessor, which is considered free of design flaws or malware, is protected by physical
attacks, while all other components like disks, buses, and peripherals are not included in the
security perimeters, making them vulnerable to physical attacks. The only attacks that are not
considered in the paper [34] are developmental attacks, denial of service attacks, and side-channel
attacks.

Sanctum

Sanctum is an academic TEE that uses Intel SGX as a model, to allow several software mod-
ules to run concurrently and to share resources, providing also a strong isolation between them.
Differently from SGX, Sanctum architecture minimizes the modifications to the hardware that
in this case is based on RISC-V, without changing major CPU blocks thanks to modules added
between them. Sanctum also executes the security monitor as trusted software, which is easier
to analyze than SGX’s microcode. The only exception to the isolation offered by Sanctum is
a set of APIs that allow outside software to interact with enclaves exchanging encrypted data.
Other types of communication are denied by the TEE, in fact in its threat model [35, Sec. 3] are
considered both hardware and software attacks against the system, but not the ones related to
bugs or vulnerabilities in the enclave’s software such as information leakage through its APIs, or
in the hardware such as rowhammer because the platform is considered secure. Sanctum protects
also from the loading of an untrusted security monitor through the attestation process, in which
it is possible to notice that and then stop the operations in case the security monitor is not the
expected one.

Sanctum’s security monitor is only responsible for checking the correctness of operations such
as memory accesses, while their management is left to untrusted system software. In particular,
memory is divided into enclave’s memory, which is split among enclaves in an exclusive way, and
OS memory which is the unprotected one. Security monitor also manages the switches between
the host application and the enclave thanks to security monitor calls invoked by the two parties.
For example, it offers a way for host applications to enter enclaves having a context switch, while
enclaves are allowed to execute system calls using the host applications as proxies. In this way the

30

Trusted Execution Environment (TEE)

security monitor prevents unauthorized access to the enclave execution environment, protecting
from software attacks coming from the REE.

Since the security monitor has the highest privilege level, its protection and security are very
important and are given by the measurement root (mroot). This is a piece of software that is
stored on ROM and it is the root of the chain of trust. Among its duties, there are the computation
of the cryptographic hash of the security monitor and the generation of its certified attestation
key pair, which is used to sign remote attestations of the platform’s modules. Starting from that
hash, mroot computes also a symmetric key used to store secrets of the security monitor in the
untrusted memory, being sure that its value can be recomputed in the next booting.

Among the tasks of the security monitor, there is also the provision of APIs to OS and enclaves
for the management of secure modules and memory. Through hardware extensions, Sanctum
ensures that no more than one entity is assigned to each memory area at a time, whether it is the
OS or an enclave. However, the security monitor does not perform operations, such as accessing
enclave data or others that depend on attestation key material, to prevent timing attacks, a
particular type of side-channel attacks. Even if many different solutions have been proposed to
perform data-independent access, Sanctum’s designers have preferred not to use them since are
not trivial. For this reason for example it is introduced the signing enclave, which consists of an
enclave that the security monitor uses to sign attestations. In particular, this module receives the
attestation private key through an API call which verifies even the identity of the caller enclave,
and the key is passed through a data-independent memory operation (e.g. memcpy).
Sanctum does not allow the security monitor to perform cryptographic operations that use keys
and this has brought to the usage of mailboxes, which are a mechanism that the SM offers to
enclaves for exchanging messages, for example, the data for attestation that the attested enclave
sends to the signing enclave. In particular, the area of memory in which messages are stored
before the delivery is reserved for the security monitor, and no one else can access it.

Keystone

Since it is the TEE in which this thesis is implemented, it will be described in a more detailed
way in the next section.

2.3.3 Trade-offs in existing TEEs

Traditional computer systems use the operating system kernel to ensure the isolation of processes,
using it as the first line of defense from software attacks. However, it could be possible that adver-
saries can break down that protection thanks to vulnerabilities in the kernel, physical attacks, or
side-channel attacks. To enforce a higher level of defense, isolating untrusted software components
from each other, solutions such as TEEs or SEs have been proposed. In these cases, the isolation
is no longer provided only by software but it is assisted also by hardware.

The first distinction that we can make is between commercial and academic TEEs. The first
ones are developed by several companies such as, as described previously, Intel, ARM, and AMD.
The main characteristics of these solutions are:

• they target specific processors, the ones developed by the producing company, forcing the
consumers to adopt their technology;

• the access to their implementation is limited only to the documentation published by the
developer company, making difficult their improvement in terms of vulnerability and bug
fixing.

Instead, academic TEEs are developed by research groups and are open source, this means
that:

• most of them adopt open standard instruction set architectures like RISC-V (described in
Section 3.2.1), being more flexible in hardware implementation;

31

Trusted Execution Environment (TEE)

ARM Intel AMD Intel
TrustZone SGX SEV TDX

Target devices Mobile devices Client PCs & Cloud and Client PCs &
Cloud and enterprises Cloud and
enterprises servers enterprises
servers servers

Trust anchor TZ hardware CPU hardware Platform security CPU Hardware,
and ARM and microcode processor TDX Module,
trusted SEAM Loader
firmware and TD

attestation SW

Cache side-channel No No No No
protection

Multiple security No Yes Yes Yes
domains

Secure peripherals Yes No No No

Table 2.1. Comparison of Commercial TEE architectures.

Aegis Bastion Sanctum Keystone

Target devices Mobile devices Undefined Undefined Undefined
(Undefined)

Trust anchor CPU hardware Processor chip CPU hardware CPU hardware
and optionally and hypervisor and and
security kernel security monitor security monitor

Cache side-channel No No Yes Yes
protection

Multiple security No Yes Yes Yes
domains

Secure peripherals No No No No

Table 2.2. Comparison of Academic TEE architectures.

• in many cases, they try to improve already existing commercial solutions, as in the case of
Sanctum which uses Intel SGX as its starting model.

In Table 2.1 and Table 2.2, some characteristics of the described TEEs are reported. One
of them is target devices that principally are embedded systems/mobile devices, contributing to
protecting widely diffused products, and cloud/enterprise environments since they help in isolating
VMs not only from each other but also from the untrusted service provider.
Among the TEEs discussed, only some of the academic TEEs offer protection against cache side-
channel attacks, highlighting the increasing interest in the defense against these attacks. Instead,
the only TEE that secures access to peripherals is TrustZone since it uses hardware protection
for that purpose and includes peripherals’ drivers into the trusted OS.

32

Trusted Execution Environment (TEE)

Comparing how many security domains they offer it is possible to see that most of them provide
a mechanism to create several security domains through VM or container approaches, as, for
example, Intel SGX and Sanctum. Others like TrustZone, instead offer only a “secure world” in
which are run trusted applications.

In conclusion, it is possible to notice that the TEEs are becoming more and more improved,
leading to a possible increase in their use. The next challenges in research that are highlighted in
[36] are:

• protecting also from other kinds of attacks, such as cache side-channel attacks and transient
execution attacks;

• working on the trade-off between strong isolation of different domains and resource sharing,
to provide a high level of security without decreasing the system performance.

33

Chapter 3

Keystone

In recent years, TEEs have been adopted in many different contexts, from IoT to the Cloud, and
every solution has to satisfy only a small section of the many different requirements that these use
cases introduce. This constrains the software developer or the cloud provider forcing them to work
around the limits of the adopted TEE, and in many cases, it is not so trivial or even possible.
Another limitation is that, in the case of commercial TEEs, only the developer company can
update design trade-offs, forcing the users to wait for a new version of the product. These limits
have brought the development of new TEEs based on open-source ISAs such as OpenSPARC and
RISC-V, however, the constraint of fixed design remains. To overcome this problem, instead of
point-wise solutions it has been proposed to provide security primitives via hardware, becoming
the starting point of use-case customization of TEEs.

This chapter will describe the Keystone framework, an open-source project that allows the
building of customizable TEEs.

3.1 Framework for Customizable TEEs

As already discussed in Section 2.3, solutions like Intel SGX are mainly adopted in server envi-
ronments that require heavy workloads, such as the ones that adopt cloud technologies and in
which the cloud service provided may be untrusted. In this case, the TEEs offer the possibility
to create multiple isolated domains, with the disadvantage of having a large Trusted Computing
Base (TCB), which is the trusted part of the system that is used to provide the security proper-
ties. On the contrary, TEEs like TrustZone, being more flexible, are widely used in mobile or IoT
devices, but these technologies allow the creation of only one secure domain.
In both cases, developers have to implement by themselves adaptations to their needs at the
stack’s higher level, such as user-space applications or trusted OS. Otherwise, they must con-
sider trade-offs between their requirements and TEE features. However, a promising solution can
be using a trusted thin layer (a monitor) responsible for the enforcement of security properties.
Thanks to this, the model ensures better compatibility and at the same time introduces a low
TCB.

The customizable TEE model is proposed as the solution to the problem described before. In
particular, thanks to modularity the TEE can be adapted to different use cases, requirements,
trust models, and threat models, which may change even between different applications with the
same security monitor in the same platform. To better understand the customization of TEEs,
here are described the five logical roles involved in the TEE lifecycle:

• Hardware manufacturers: they produce the hardware platforms in which the TEE will
be executed and are in charge of implementing proprietary blocks such as the ones for trusted
boot, and also of providing basic primitives that will be used in upper layers;

• Keystone platform providers: they are the entities that purchase and manage the hard-
ware, configure the security monitor, and make the platform available to their customers;

34

Keystone

• Keystone programmers: they are the developers on different layers of Keystone, which
are Security Monitor (SM), Runtime (RT), and Enclave Applications (eapps);

• Keystone users: they are the ones that configure and instantiate the enclaves developed
by Keystone programmers into the hardware of Keystone platform providers;

• Eapp users: they are the end customers and use the services offered by the application
running in Keystone TEE’s enclave.

In real-world cases, the same entity may perform several roles. For example in a cloud context,
the cloud service provider may be both the Keystone platform provider and the programmer of
SM and RT.

In summary, the main contributions that the research group has brought are:

• Customizable TEEs: in this paradigm, the developer of various stacks (hardware, security
monitor, trusted applications) can adapt the TEE design to their needs;

• Keystone framework: it is the first framework that allows configuring, building, and
instantiating TEEs that are adapted to different sets of requirements. This is possible
thanks to the modularity of the framework;

• Open-source implementation: Keystone is designed to support configurations that are
adapted to minimize the Trusted Computing Base. In this particular context is added to
an enclave-bound application a TCB of about 12-15 K lines of code;

• Benchmarking and Real-world applications: the research group evaluated the frame-
work on different benchmarks and demonstrated the protection from cache side-channel and
physical adversaries.

3.2 Keystone requisites

Keystone does not require modifications to the existing hardware, such as memory controllers or
CPU cores, in particular, is based on RISC-V, which is an open-source ISA that will be described
in Section 3.2.1. Its platform needs only a secret key reserved for the trusted boot and different
for each device, a trusted boot process, and a hardware source of randomness. Keystone leverages
RISC-V primitives to provide security features and uses the PMP unit to enforce memory isolation.

3.2.1 RISC-V

RISC-V is an open standard ISA that can be adopted by both academia and industry. In particu-
lar, it consists of the interface visible by the software and avoids defining implementation details,
leaving those choices to developers. This standard is described in two volumes: one defines the
unprivileged instructions [37] that are usable in all privilege levels and architectures, as well as
unprivileged ISA extensions. The second one [38] instead describes the privileged architecture.

Considering the last one, it allows the implementation of different privileged software stacks.
To abstract the possible implementations, each layer interacts with the lower one through binary
interfaces:

• Application Binary Interface (ABI): it is used by applications to access the services
offered by the Application Execution Environment (AEE) and is usually implemented by
the host OS. It includes user-level RISC-V ISA;

• Supervisor Binary Interface (SBI): it offers the services of the Supervisor Execution
Environment (SEE) to the OS. In addition to the function calls and the user-level ISA, the
SBI comprises even supervisor-level ISA. Usually, the SEE is a bootloader/BIOS or a virtual
machine provided by the hypervisor;

35

Keystone

...

8

pmp2cfgpmp3cfg pmp0cfgpmp1cfg pmpcfg0
0781516232431

8888

8

pmp6cfgpmp7cfg pmp4cfgpmp5cfg pmpcfg1
0781516232431

888

pmp62cfgpmp63cfg pmp60cfgpmp61cfg pmpcfg15
0781516232431

888

Figure 3.1. Layout of PMP configuration registers in RV32 (source: [38]).

• Hypervisor Binary Interface (HBI): it allows abstracting of the details of the hardware
platform. In this way, the hypervisor accesses it, now called the Hypervisor Execution
Environment (HEE), since it is isolated from the current hardware implementation.

RISC-V implements also different privilege levels, that each hardware thread (hart) has.
Thanks to this mechanism it is guaranteed that exceptions will be thrown in case of unauthorized
operations due to the current mode. These are, from the highest privileges to the lowest: Machine
level (M-mode), Supervisor Level (S-mode), and User level (U-mode).
Furthermore, a trap can be served at the same level as the current privileged mode (horizontal
trap) or at a more privileged level (vertical trap).

Control and Status Registers (CSRs)

Control and Status Registers are a special area of the memory that is used especially in privileged
architecture to implement registers that are accessible depending on the current mode of the hart.
The most relevant for this thesis are:

• pmpcfg0, pmpcfg1, . . . , pmpcfg15: they are used to configure the physical memory
protection that is described in the next paragraph;

• pmpaddr0, . . . , pmpaddr63: they store the address corresponding to the physical mem-
ory protection configuration;

• time: it stores the wall-clock real time that has passed from an arbitrary start time in the
past and it is read by the rdtime instruction.

Physical Memory Protection (PMP)

Physical Memory Protection unit is an optional feature that RISC-V offers to limit the physical
memory area that is accessible by a hart and to specify which operations it is allowed to execute
on it (read, write, execute). The control on the target address is performed when the hart is in
S-mode or U-mode and every violation of these constraints is always reported through traps at
the processor.

To store these permissions, the unit uses the CSRs pmpcfg0, pmpcfg1, . . . , pmpcfg15 in case
of 32-bit architecture or pmpcfg0, pmpcfg2, . . . , pmpcfg14 in the 64-bit one. This memory is
used to package the 64 8-bit PMP configuration registers, as shown in Figure 3.1 and Figure 3.2.
In each of these configuration registers are stored the access permissions of the memory area

36

Keystone

...

8

pmpcfg0pmp2cfgpmp3cfg pmp0cfgpmp1cfg

0781516232431

pmp6cfgpmp7cfg pmp4cfgpmp5cfg

3239404748555663

pmpcfg2pmp10cfgpmp11cfg pmp8cfgpmp9cfg

0781516232431

pmp14cfgpmp15cfg pmp12cfgpmp13cfg

3239404748555663

pmpcfg14pmp58cfgpmp59cfg pmp56cfgpmp57cfg

0781516232431

pmp62cfgpmp63cfg pmp60cfgpmp61cfg

3239404748555663

8888888

88888888

88888888

Figure 3.2. Layout of PMP configuration registers in RV64 (source: [38]).

X (WARL) R (WARL)W (WARL)

012

L (WARL)

34567

A (WARL)0 (WARL)

111221

Figure 3.3. Format of PMP configuration registers (source: [38]).

they refer to: bits 2:0, if set, represent respectively the permission to perform execution (X),
write (W), and read (R) instructions; bits 4:3 (A bits) represent the matching mode of the
address, that is how an arbitrary address is included or not in the memory area represented by
the corresponding PMP address register. Thanks to this, it is possible to support memory regions
of different sizes; bit 7 (L bit) locks the PMP entry, which means that any write operation to
pmpXcfg and pmpaddrX is ignored. If it is set it assures also that the permissions are extended
to all privileged levels, including M-mode, otherwise, it is applied only to S-mode and U-mode,
and the accesses in M-mode always succeed.

Instead, the CSRs pmpaddr0-pmpaddr63 are used to store the physical address corresponding
to the memory region in which the constraint is applied, in particular, it includes the bits 33:2
of the 34-bit physical address in RV32 architecture and bits 55:2 of the 56-bit address in RV64.
They correspond to the PMP configuration register with the same index and the memory region
is identified according to the address matching mode described by A bits.

The success of access depends on the lowest-numbered PMP entry that includes all bytes of
the desired operation. If there are no entries that match them, the permission to operate depends
on the privilege mode in which it is executed. In M-mode, the access succeeds, otherwise, it fails
if at least an entry is implemented.
Then the L, R, W, and X bytes of the matched entry are considered to allow or deny the operation.
The L bit is used only to ignore the other bits when it is unset and the privileged level is M-mode.
In the other cases, the possibility to perform the access depends on the bits 2:0. An exception is
generated in case of a failed operation.

Environment Calls

As explained before, through contained traps it is possible to raise an exception that will be
served by the next more privileged level, for example, a user-mode hart will be served by a
handler running in supervisor-mode. The ecall instruction can be used to do this, passing the
parameters for the handler as described in the Execution Environment Interface (EEI).

RISC-V in Keystone

The main advantages that the adoption of RISC-V brings are:

• through PMP it is possible to implement efficient isolation;

37

Keystone

address [33:2] (WARL)

031

32

Figure 3.4. Format of PMP address registers in RV32 (source: [38]).

0 (WARL) address [55:2] (WARL)

0535463

5410

Figure 3.5. Format of PMP address registers in RV64 (source: [38]).

• being RISC-V a community-driven and evolving ISA, it is possible to suggest new ideas
about security features that can be added to the standards themselves;

• Keystone can be adapted to a wide variety of platforms since RISC-V is becoming more and
more implemented in hardware.

Furthermore, RISC-V offers three privilege levels that can increase the isolation and security
level of the system components since the processor runs in only one of these at a time. Considering
the Keystone components, the security monitor runs in M-mode, while in the enclave the runtime
is executed in S-mode and the eapps in U-mode.

3.2.2 Root of Trust

The Root of Trust is the component on which the Chain of Trust of the system is based, and
its security is one of the most important goals of the design of the TEE. Keystone supports
both tamper-proof software, such as a bootloader, and tamper-proof hardware, such as a crypto
engine. Among its tasks, there is the measurement of the SM image and the generation of a fresh
attestation key which is stored in the private memory of the SM. Currently, Keystone implements
the first option, a first-stage bootloader that can be found at the following link [39].

The main function of that component is void bootloader() in which, as explained before,
the RoT computes the measurement of the SM through a SHA3 function, then starting from this
value and the secret key of the device, it generates the SM’s ed25519 key pair. Finally, it signs
the measurement and the SM’s public key using the device’s secret key.

3.3 Threat Model

Two of the main assumptions that are made by Keystone are the trust in PMP specifications
and the absence of bugs in hardware implementations of RISC-V and PMP. They are the starting
point of the system’s Chain of Trust. The only software component that directly trusts them
is the security monitor, which in turn is trusted only after the correctness of its measurement
has been verified together with its version. The other components that trust it are the host and
the runtime. At the top layer, there are the enclave applications, which trust both runtime and
security monitor.

As explained before, Keystone can be adapted to defend against several threats, according to
a threat model that may change depending on the use case. For example, if the TEE is used in
a trusted private structure, the probability of a physical attack is very low, so it can be removed
from the threat model, and the defenses are modified accordingly.
In particular, in the paper in which the threat model of Keystone is described [40], the researchers
have divided attackers into four categories:

38

Keystone

• Physical attackers: they can access passively or actively the signals exchanged with the
chip package. However, they cannot compromise the internal components of the chip;

• Software attackers: it is supposed that they have control of the Rich Execution Environ-
ment, for example, they can launch adversarial enclaves, modify unprotected memory, or
modify the messages that are exchanged by the host application and the eapp;

• Side-channel attackers: the adversaries can obtain information through the observation
of trusted and untrusted components. It can be of three types: cache side-channel, timing
side-channel, and controlled side-channel;

• Denial-of-service attackers: these attackers can disrupt the functionality of enclaves and
host OS. In particular, the OS can DoS enclaves since it can deny enclave applications to
access services such as ocalls.

Among the attacks not included in the threat model there are speculative execution attacks
and timing side-channel attacks. Another critical feature is the possibility to call untrusted syscall
from the runtime, giving an entry point for attackers. Furthermore, Keystone assumes also that
the trusted software components are bug-free; it is very difficult to achieve but it can be done
through formal verification techniques.

3.4 Keystone design

In the next paragraphs, the main design principles of Keystone are summarized.

It takes advantage of isolation primitives and programmable layers below the untrusted
code. The security monitor is designed to apply the TEE guarantees on the platform, leveraging
different properties offered by the RISC-V M-mode. In particular, it is in charge of controlling
the delegation of exceptions and interrupts in the system, which are implemented in hardware, as
well as managing memory isolation through RISC-V PMP.

It decouples security checks and resource management. The security monitor can be
programmed, being able to implement the highest privileged level with the minimum increase of
code size. To enforce this, it is responsible almost only for the security features. The management
of the enclave is implemented by the runtime, which is responsible, for example, for memory
management and communication with the SM interface.

It designs modular layers. The different Keystone layers allow us to adapt each software
component to the specific need. The security-aware abstractions that each layer offers are used
by the ones above it and are based on and checked by lower levels’ services. In this way, it is
possible to implement the required levels of privileges.

It allows fine-grained TCB configuration. In Keystone the TCB of the TEEs that are
instantiated can be adapted to the specific use case and optimized removing the unnecessary code
and features, such as choosing the best runtime for the current use case, removing the unused
libraries in the eapp or not including dynamic memory management in lower layers if not needed.
This way, the TBC is reduced to a minimum, while still providing the required features.

Looking at the Keystone repository [41], it is possible to notice the several software components
that are used to build the modular layers in Keystone TEE. In particular, the directories that are
present in the project are:

• qemu: it is the emulator and virtualizer for the RISC-V platform;

• bootrom: it is the bootROM for the RISC-V virtual board and it is responsible for starting
the trusted boot chain. It is described in Section 3.2.2;

• sm: it is the Keystone security monitor and includes OpenSBI which is the interface to
RISC-V hardware. It is described in Section 3.4.1;

• buildroot: it builds a working version of Linux for the target platform;

39

Keystone

Figure 3.6. Overview of Keystone Software Stack (source: [42]).

• linux: it is the host OS;

• linux-keystone-driver: it is the interface between the host and the SM, implemented as
a loadable kernel module that has /dev/keystone as the device endpoint ;

• runtime: it is the modular runtime developed by the Keystone research group. It is
described in Section 3.4.2;

• sdk: set of functions and libraries that are used to develop and build enclaves.

3.4.1 Security Monitor

The Security Monitor (SM) is the software component with the highest privileges as well as the
core of Keystone TEE, It depends only on RISC-V features, and for this reason, it can be ported
to other RISC-V platforms. In case the developers want additional security features to protect
against a specific type of attack, Keystone can integrate additional hardware without requiring
any changes to the application level.
One of the main features that are offered by Keystone is memory isolation, which relies on security
primitives offered by the RISC-V hardware, in particular on the PMP unit. Then the management
of the resources is left to enclaves and untrusted software, while the SM is in charge of validating
the decisions.

Memory Isolation

The usage of the PMP unit allows more efficient management of the memory regions that can be
partitioned into areas of different sizes and they can be assigned discontinuously and reconfigured
at each execution. During the boot of SM, the first PMP entry is used to protect its memory,
which mainly contains secret keys and enclave metadata, denying in this way access from S-mode
and U-mode. Then the last entry, the one with the lower privileges, representing the rest of the
memory is assigned to OS. When a host application wants to start a new enclave, the OS allocates
an area of memory that will be assigned to another PMP entry with higher privileges. In this
way, the untrusted world cannot access enclaves’ data and code. Keystone assures also that valid
requests cannot contain overlaps of memory regions.

In Figure 3.7 it is possible to see two configurations of PMP entries. On the left is represented
the untrusted context in which only the entry for OS is enabled. This prevents the OS from
accessing the memory assigned to the trusted world. Instead on the right is represented the
enclave context in which the accessible regions of memory are the enclave’s ones and the memory
that is shared with the host application associated with the enclave. At enclave destruction the

40

Keystone

pmpXcfg pmpaddrX

Priority

PMP registers

...

SM E2
Physical
Memory E1

Untrusted Context

SM E2 E1

Enclave (E1) Context

U1

pmpcfg perm.

rwx = 000

rwx = 111

Figure 3.7. Examples of PMP entries usage (source: [40]).

corresponding PMP entry is freed, making the memory accessible to the OS. The presence of
PMP unit constraints also the maximum number of enclaves that can be instantiated at the same
time. Being N the number of PMP entries available, there can be at most N-2 enclaves since two
are reserved for SM and OS.

Thanks to this protection Keystone leaves the management of memory to the enclaves, specif-
ically to the runtime of the enclave, which bases it on the page tables provided by the host at the
creation of the enclave. The benefits produced by this solution are flexible memory management
and protection from side-channel attacks since the host cannot access the address mapping.

Several features exposed by the platform hardware can be used to improve the security of the
system and Keystone leverages the SM customization to access them. A first example is secure
on-chip memory that keeps the enclave data and code in the chip package, protecting against
physical attackers that have access to DRAM. Another one is cache partitioning, which consists
of separating the memory of the trusted world and the untrusted world, and this solution protects
against cache side-channel attacks. A last example of these extensions does not involve security
but performance, Keystone through the SM supports the dynamic resizing of enclave memory,
removing the constraint of static enclave size and consequently the pre-allocation of memory.

Enclave lifecycle

The SM is also responsible for the creation of the enclave, which are isolated environments with
their private memory and composed by a runtime and an enclave application. At the beginning
the SM measures the enclave memory to ensure the correct loading of its binaries into physical
memory, then it validates the page table provided by the OS to ensure the absence of invalid or
duplicated mappings. At the end of the process of initialization, the enclave starts its execution.
Instead, the destruction of the enclave, in which is executed the secure deallocation of resources
is asked by the OS itself.

Security features

Memory isolation and enclave creation and destruction are not the only features provided by the
security monitor. The different functions that it makes available through the Environment calls
are reported in the lists below, in particular, they are divided depending on the possibility of
being called by the enclave or by the host OS.

Functions callable only by the host OS:

41

Keystone

Invalid

Allocated

Fresh

Running

Stopped

Destroying

encl_alloc_eid
(create_enclave)

create_enclave after
validate and hash

destroy_enclave
(first step)

encl_free_eid
(destroy_enclave

last step)

run_enclave

resume_enclave
exit /

stop_enclave

destroy_enclave
(first step)

destroy_enclave
(first step)

Figure 3.8. Keystone Enclave Lifecycle (source: [42]).

• Create Enclave: it is the function called by the host application when it wants to create
a new enclave, in which it passes the addresses of the code to be loaded and the memory
regions allocated to the enclave;

• Destroy Enclave: it is called to securely free the resources allocated to the enclave;

• Run Enclave: it is used to start the execution of the enclave, updating its state and
performing a context switch from host to enclave context;

• Resume Enclave: it is used to resume the execution of a stopped enclave.

Functions callable only by the runtime:

• Random: it returns a random 64-bit number, but the generic platform in the Keystone
repository does not have an entropy source;

• Attest Enclave: it generates an attestation report which will be described in the section
“Remote attestation”;

• Get Sealing Key: it is used to generate a sealing key as described in “Data Sealing and
Keystone Key Hierarchy”;

• Stop Enclave: it is used to stop the execution of the enclave, freezing its state. It can be
done due to a timer interrupt, an edge call request, etc;

• Exit Enclave: it is used to terminate the execution of the enclave.

There is also the call_plugin function that can be called by both runtime and host OS but is
not used actually.

All these services are called by static int sbi_ecall_keystone_enclave_handler(), which is
the handler that is used to serve the ecalls in M-mode. This function checks also that the caller
is in the expected context (host context -host OS- or enclave context -runtime-).

42

Keystone

Figure 3.9. Keystone Key Hierarchy (source: [42]).

Figure 3.10. Sealing Key derivation (source: [42]).

Data Sealing and Keystone Key Hierarchy

Data Sealing is a process that uses an enclave when it needs to store data in untrusted memory
and it wants to encrypt it with a key that derives from some enclave secrets. In particular, thanks
to the seed used to compute it, the key is bound to the processor, the SM, and the enclave. In
this way, only the encrypted data is stored, and the key can be recomputed each time it is needed
for storing into or reading from untrusted memory.

In Figure 3.9 and Figure 3.10 it is possible to see how the keys are generated. Starting from
the processor secret key (SKD) and the measurement of the security monitor (HSM), the security
monitor key pair is computed through an Elliptic Curve Cryptography Key Generation function
and it is used especially in the attestation. In this way, the newly generated keys refer to the
processor and the SM itself. Then the SM secret key is used together with the hash of the enclave
and a key identifier to generate the sealing key. The first two inputs bind the key to the processor,
SM, and enclave, while the key identifier is passed by the enclave to being able to generate different
keys.

Remote attestation

The SM supports also a remote attestation scheme which allows the verification of components’
integrity when asked by another party. The generated report to attest the trust in the system
contains:

• the public key of the device (PKD);

• the hash of SM and public key of the attestation key pair (PKSM) that are both signed
using the device private key (SKD);

43

Keystone

• the hash of the enclave and raw data received from the enclave, both signed with attestation
private key (SKSM).

In this way, a verifier can notice if the SM or the enclave are corrupted, or if a different version
of them is used. It is also possible to avoid replay attacks thanks to the raw data in the report,
which is sent by the verifier and is different for each request.

An example of the attestation process can be found in the Keystone examples [43] or in the
keystone-demo repository [44].

3.4.2 Modular Runtime

The M-mode of RISC-V is assigned to SM which, as described in the last section, is in charge
of enforcing isolation and providing security primitives. However, Keystone in its stacks includes
also a software component running in S-mode, called runtime, that acts as a kernel inside the
enclave. The advantages that this module brings are the abstraction of the lower layers for eapps
and the possibility to remove unnecessary code, reducing the TCB, and implementing only the
desired features. Although it is designed to support several runtimes, such as seL4 microkernel,
the only one that is included in the Keystone project [41] is Eyrie RT [45].

Among its tasks there is memory management, and in particular the management of pages
in enclave memory. For instance, it may encrypt and protect the integrity of pages in case of a
page out in which the page is moved to an untrusted backing store. Another important feature
provided by the runtime is the handler for the ecalls invoked by the eapp, and here are reported
the various functions included in that interface:

• Exit Enclave: the wrapper of SM’s “Exit Enclave” function;

• Ocall: it is used to call functions declared and executed in the host application. It will be
described in the next paragraph;

• Copy From Shared: it copies the content of shared memory into the enclave one;

• Attest Enclave: the wrapper of SM’s “Attest Enclave” function;

• Get Sealing Key: the wrapper of SM’s “Get Sealing Key” function.

Among these functions, one of the most important is Edge Call (internally called ocall -
outbound call- since it is only implemented from enclave to host application). which is used by
the eapp to invoke functions that are declared in the host application. To do this it uses the shared
memory, in which it stores the edge call number corresponding to the invoked function and the
arguments to be passed. Then the runtime stops the enclave, executing in this way a context
switch to the host. Resuming the control, the host application understands that was invoked an
edge call and dispatches it through a handler that extracts the data from the shared memory,
calls the corresponding function, sets up the return value, and performs the context switch to the
enclave. In the end, the runtime reads the returned data and provides it to the eapp. Thanks to
this feature the eapp can access also the memory and the functionalities of the Rich Execution
Environment, with the disadvantage of increasing the attack surface since are used untrusted
functions.
The shared memory is assigned at enclave creation and is protected through a separated PMP
entry to be able to allow both runtime and OS to access it. Each enclave has its shared region
and the only way for the eapp to access it is through the RT.

The handler of RT makes also available the interface of the SM through wrapper functions
that call the methods provided by that layer. Furthermore, it provides also a way for the eapp
to invoke directly Linux syscalls. The complete list of functions that are included in the runtime
interface is in the function handle_syscall() in runtime/call/syscall.c [46].

A last feature that is ensured by the RT is the multi-threading of eapp. In this way, secure
applications can split their execution into different threads, but unfortunately, Keystone does not
support parallel execution of enclaves on multi-core platforms.

44

Keystone

3.5 Security Evaluation

Keystone, like the other TEEs, offers protection mechanisms at different levels of the trusted
software stack, and all of these are enforced through the security features provided by the trusted
hardware. First of all, Keystone leverages the platform features and the modified bootloader to
protect against physical attackers. In particular, data and code are stored in on-chip memory,
including the scratchpad memory used by SM to keep decrypted contents. In case the enclave’s
pages cannot be stored in the on-chip memory because it has become full, the runtime is respon-
sible for moving them into a backing store, encrypting them, and adding integrity protections. In
this way, the memory outside the chip is untrusted, or confidentiality and integrity are guaranteed.

Regarding the SM, its memory is protected through a PMP which isolates it from all other
software components. Being also small enough, it can be formally verified, reducing the possibility
of vulnerabilities in the code. For these reasons, it is defended against software attackers, cache
and time side-channel attackers, and even denial-of-service attackers since it is only a reference
monitor and does not require the scheduling of its execution time. PMP provides also the isolation
of enclave memory, which defeats any access by software attackers as in the case of SM. Other
attacks on the enclave that Keystone defends against are:

• Mapping attacks: the protection against these attacks is ensured by the runtime since it
checks the validity of mappings and cleans the content of pages when they are reassigned to
the OS;

• Syscall tampering attacks: due to the usage of untrusted syscalls in runtime, the system
becomes vulnerable to this kind of attack, but the shielding systems already developed can
be added as runtime modules to protect the system;

• Side-channel attacks: this protection is ensured through the isolation of enclaves from
the untrusted world, which is enforced by the SM since it performs a clean context switch
without leaking any information to the host. Controlled side-channel attacks are impossible
thanks to the page tables that are managed by runtime and stored in enclave memory.

45

Chapter 4

Trusted Channels: Beyond Secure
Channels

Nowadays, with the spread of remote services, the usage of secure channels has become an essential
element for protecting the communication between the user and the service provider. They ensure
several security properties, including confidentiality, integrity, and mutual authentication, but it
is missing information about the reliability of the endpoint. An adversary can attack the system,
compromising it without the other party knowing about it. The only way to discover it is through
remote attestation which is done thanks to a trusted computing element or a TEE.

This chapter describes trusted channels, which are a way to include the state of the endpoint
in secure channels’ creation and maintenance.

4.1 Trusted channel

4.1.1 Motivations

Thanks to the secure channel it is possible to know the identity of the endpoint through au-
thentication processes that use public key signatures, which are certified by trusted certificate
authorities. Instead, to trust the system, a remote attestation is necessary in which a trusted
computing element or a TEE provides the measurements of the software components, which are
usually obtained by computing the hash of the contents of memory. In this way, the other party
can verify the integrity of the endpoint together with the version of the software by comparing
the received and expected values. Through this process, it is possible to notice if the endpoint
has been corrupted or old vulnerable versions of the software components have been loaded, since
it is easier for an adversary to attack the entities rather than to attack the channel.

As already stated in a paper published in 2006 [47], this solution has two main problems:

• determining the identity of the endpoint is not linked to remote attestation of the platform,
becoming vulnerable to relay attacks in which the two operations are performed with two
different servers, one for the secure channel and one for the remote attestation;

• frequently issuing and revoking server certificates, as well as maintaining and distributing
certificate revocation lists leads to scalability issues, especially in virtual machine environ-
ments in which there is the dynamic creation and destruction of virtual servers.

In protocols like TLS or IPsec, the authentication is done through challenge signatures in
which the endpoint has to demonstrate the possession of the private key associated with the
certificate that is provided during the creation of the channel. While in remote attestation the
endpoint provides the measurements signed with the attestation key of the platform. Then the

46

Trusted Channels: Beyond Secure Channels

TLS Cert AIK Cert

System Properties

Attestation Request

TLS Transaction

Relay Attestation

Figure 4.1. Example of relay attack when SSL/TLS Tunnel and Attestation Endpoints
are disconnected (source: [47]).

other endpoint needs to verify the attributes inserted in the certificates and the attestation re-
port. Unfortunately, this requires the verification of two signatures and two certificate chains.
Furthermore, it may happen that in the case of long-lived connections, the state of the system
changes and this should be continuously verified.

Another possible problem of performing remote attestations is that they depend on trusted
computing technologies which are not designed to work together, but only with platforms that
adopt the same solution. This reduces the flexibility and the adaptability to different contexts,
in which a technology may be better than another one. However, in literature solutions like [48]
have been proposed to overcome this problem.

4.1.2 Definition and Requirements Analysis

The main objective of the trusted channel is to ensure that we are communicating with a trusted
entity and that untrusted ones, either between or within the endpoints cannot violate the security
of the communication. Furthermore, a list of the characteristics of trusted channels can be found
in [49] and is the following:

• it ensures the same security properties that are offered by a secure channel;

• it binds the measurement values of the endpoint to the secure channel;

• it ensures that while the channel is open any modification of one endpoint is reported to
the other;

• it reduces the amount of sensitive information that is disclosed by the entity.

Considering these assumptions, and again according to [49], the main requirements for trusted
channels can be summarized in:

• Secure channel properties: in particular, it has to provide freshness, confidentiality,
integrity, and authenticity within the endpoint and during transmission;

• Secure channel and configuration information have to be linked authentically:
the configuration information has to be included in channel creation in an authentic way,
which means that it prevents relay attacks in which the adversaries cheat the information
of a third party. Then during communication, all state changes have to be reported to the
other endpoint;

47

Trusted Channels: Beyond Secure Channels

• Privacy: has to be disclosed only the minimum amount of configuration information that
is needed to create and maintain the channel.

Furthermore, in [50] the authors proposed also a set of functional requirements that come from
the different contexts in which secure channels, and in particular TLS channels, are used:

• Fast deployment support: the protocol has to adopt existing specifications, requiring
minimal modifications to the software and hardware of existing environments. It has also
to support all the relevant techniques for key exchange;

• Minimal costs: the approach does not have to require additional costs for its implemen-
tation, such as expensive certifications, hardware or software;

• Minimal overhead during handshake: the introduction of the trusted channel has to
change as little as possible the performance that the secure channel alone would have;

• Flexible configuration/integrity reporting: the protocol has to be adaptable to differ-
ent use-case designs and systems, and to do so it has to support several integrity reporting
approaches;

• Backward compatibility: the entities that support trusted channels have to be able to
communicate even with peers that do not do it, establishing traditional secure channels.

4.2 Proposed Solutions

In this section are described different solutions proposed in the literature. They may involve the
certificates used in secure channel setup, extensions to TLS records, adaptation of application
layer protocols, or new custom protocols.

4.2.1 Linking Remote Attestation to Secure Tunnel Endpoints

In the paper published in 2006 [47], the researchers proposed to solve the previously mentioned
problems (Section 4.1.1) using new certificates that are linked to the SSL endpoint properties and
the attestation key that is used to sign attestation reports. These are called Platform Property
Certificates and contain:

• the properties of the endpoint that are also present in the SSL endpoint certificate;

• the attestation public key that is used to verify the report signature;

• the signature by the trusted CA.

In this way, the properties of the endpoint are linked to the attestation process, making it
impossible to mount a relay attack since the server involved in the creation of the secure channel
and the one that is remotely attested must be the same. Furthermore, if the secret key that is
used to open the channel is compromised it is not needed to revoke even the Platform Property
Certificate since it depends only on the attestation key which is securely stored in the platform.
The client with this solution has to validate three certificates: the secure channel endpoint cer-
tificate, the attestation key certificate, and the Platform Property Certificate. Since the first
one does not add anything that is not already certified in the others, they proposed to make it
self-signed and include it (or only the public key) in the attestation report.

The benefits of this solution are not only on the client side where is required the verification of
two certificate chains instead of three, but also on the server side. Now, it can choose which key
to use in the channel and update it as frequently as it wants, as well as having distinct keys for
each channel. However, this solution is not based on TEE but on secure cryptoprocessors called
Trusted Platform Modules (TPM).

48

Trusted Channels: Beyond Secure Channels

4.2.2 A possible design of Remote Trusted Channel

In [49] the authors identify with the term “compartment” a software component that is logically
isolated by the other ones. Then they distinguish two types of trusted channels: a Local Trusted
Channel is established between two compartments that run on top of the same TCB, while a
Remote Trusted Channel concerns compartments on two different TCBs.
A possible implementation of the second category of channels consists of the TCB that manages
the secret keys and cryptographic material while an untrusted Communication Software (CS) is
used to establish the channel for the transfer of protected data. In this way, the TCB ensures
that only the specific compartment with a defined state can access keys and credentials, allowing
it to establish a trusted channel. Also in this case, like in the previous solution is used the TPM
to perform the attestation.

The handshake can be split into four phases, which are described in the next paragraphs.

Before the handshake begins, in the first phase, Negotiating Security Parameters, the
endpoint generates Kenc := (PKenc, SKenc) which is bound to the TCB configuration confTCB

and it is used to exchange the credentials. In this way, the secret key SKenc is available only
if the TCB has that specific configuration. Furthermore, this key pair is certified by a trusted
authority. Then they start the handshake establishing which party has to provide configuration
information. The certificate containing PKenc and confTCB is exchanged and validated during
this step, evaluating the trustworthiness of the other endpoint.

During Configuration Exchange, the parties encrypt the compartment configuration conf
using the public key of the counterpart and then it is sent to the other endpoint.

In Configuration Information phase, the counterpart’s compartment configuration is eval-
uated to decide if it has a security policy that meets expectations.

At the end, there is the Secure Session in which a session key KS is computed by TCB,
which returns only an identifier to be used by Communication Software. Then, the two parties
exchange confirmation messages in which is checked that they have computed the same key.

Furthermore, this solution allows the update of conf of a compartment but this must be
communicated to the counterpart to update the key KS . The new conf ′ is transmitted encrypting
it with PKenc of the receiver, and it happens in the phase Notify State Change in which the other
party may choose to close the channel due to an unacceptable new state. Then the key is updated
to K ′

S by the two endpoints during the phase Updating Session Key.

Without giving too many details about the implementation, this solution requires the defini-
tion of extensions both to secure channel (TLS) and certificates (X.509).
Regarding TLS, the extensions involve ClientHello/ServerHello records as well as ServerKeyEx-
change/ClientKeyExchange:

• state change extension: it is used to transmit the data related to the update of the state
in an endpoint;

• binding extension: it conveys the certificates that are used to verify the identity and
the state of the endpoint and to obtain the public key to be used during the handshake.
It also contains information about the type of attestation that is required (server-sided,
client-sided, or mutual);

• Extensions to insert Confidential Data Structures (CDS): they include the com-
partment’s configuration and ID in ClientKeyExchange/ServerKeyExchange records.

Instead, the following extensions are added to X.509 certificates:

• Subject Key Attestation Evidence (SKAE) extension [51]: it consists of a signature
of the configuration of the endpoint that is generated using the attestation key of the module;

• Attestation Encryption Key (AEK) extension: it is made up of the pair (PKenc,
sign{PKenc}SKbind

) and is used to link the Attestation Encryption Key Kenc to the Binding
Key Kbind which is the key used in TLS handshake.

49

Trusted Channels: Beyond Secure Channels

Figure 4.2. Remote Trusted Channel (source: [49]).

4.2.3 An efficient implementation of Trusted Channels

The main problems in most of the published works are:

• insecure linkage of configuration information to the secure channel;

• performance overhead and increased cost to implement the protocol, such as using too
many certificates that require continuous issuance by a CA or adopting costly cryptographic
hardware (see Motivations in [50, Sec. 1]).

Even if the previous solution satisfies all the security requirements, it presents other problems
related to performance and costs. In particular:

• the protocol uses features that are not defined in TLS specifications which requires the mod-
ification of TLS records and computations, e.g. integrity data included in the computation
of the session key. This approach requires the re-specification of all processes as well as a
security evaluation, becoming time-consuming and costly;

• it supports only RSA key transport while many other algorithms can be used, such as
Diffie-Hellman (DH);

• it does not consider the functional requirements described in Section 4.1.2, e.g. the re-
certification that is required at every system update is costly.

For this reason, the protocol that is described in Section 4.2.2 is modified to satisfy the
functional requirements and to conform to TLS specifications. Furthermore, they extend it to
support all relevant key exchange methods, and the forward secrecy of session keys is made
stronger since they are held by hardware that protects them from disclosure.

In Figure 4.3 it is possible to see the full handshake and here the main phases in which the
handshake is split are reported in the next paragraphs.

The handshake begins with the Negotiating Security Parameters phase in which the
two endpoints exchange ClientHello and ServerHello records to negotiate the attributes of the
channel. The main difference with standard TLS is the introduction of the Attestation Extension
(AttestExt) which contains details about integrity/configuration information that is used to set
up the channel. Furthermore, the nonce is obtained by the RNG provided by the TCB.

Then in Configuration and Key Exchange phase, to exchange evidence about the integrity
and the configuration of the endpoint, called Attestation Data (AttestData) are used Supplemen-
talData records. Subsequently, the parties provide the certificates that are used to authenticate
themselves and then after computing the DH values (or whatever other key exchange algorithm),
they exchange the public part in ServerKeyExchange/ClientKeyExchange records. To provide
evidence of possessing the secret key (SKC

sign) related to the certificate, the client signs the digest
computed over the previously exchanged messages.

50

Trusted Channels: Beyond Secure Channels

Client Server

nonceC, AttestExtC, AttestDataC

Negotiation Phase

ServerHello(nonceS, AttestExtS)
nonceS, AttestExtS, AttestDataS

ClientHello(nonceC, AttestExtC)

Configuration and Key Exchange

certSTC-TLS
SupplementalData(AttestDataS, SigSAttestData)

Certificate(certSTC-TLS)

DHS
public, DHS

secret

SigS
DH := sign(DHS

public; SKSsign)

certCTC-TLS

DHC
public, DHC

secret

ver(SigS
DH ; PKSsign)

ServerKeyExchange(DHS
public, SigS

DH)

CertificateRequest()

ServerHelloDone()

SupplementalData(AttestDataC, SigCAttestData)

Certificate(certCTC-TLS)

ClientKeyExchange(DHC
public)

CertificateVerify(Sigprev)Sigprev := sign(prev; SKCsign)

ver(Sigprev; PKCsign)
Session Key Computation

ms := PRF('ms', nonceC, nonceS, DHresult)

compute(SeK)

ms := PRF('ms', nonceC, nonceS, DHresult)

compute(SeK)
[ChangeCipherSpec]

Finished

Figure 4.3. TLS DHE-RSA Handshake adapted to trusted channel implementation (source: [50]).

In the end, there is the Session Key Computation phase. After having exchanged the
parameters, both parties compute through a Pseudo-Random Function (PRF) the TLS master
secret (ms) using the two nonces (nonceC and nonceS), a string to indicate that it is a master
secret and the result of DH computation. Then they derive the session key (SeK) from the ms
and send ChangeCipherSpec and Finished records to indicate the end of the handshake.

Also this solution, as the previous one, considers the case of the state update which could
be for instance due to another software that is run inside the same compartment. To propagate
this information is used a re-handshake that works like the Negotiating Security Parameters
phase. The new configuration is encrypted using the current SeK and transmitted into the State
Change Extension. The counterpart may choose to compute the new session key and resume
the communication or tear down the channel because the new state does not satisfy the security
policy of the endpoint.

In this case, the extensions and modifications to TLS protocol are minimal concerning the
previous solution, in particular, it uses only Attestation and State Change Extensions in Hello
records. The first one is used to agree on the type of attestation, which party has to perform it,
and other specifications about the trusted channel. Instead, the second extension is used to carry
the new configuration information to inform the other endpoint about the update.
All the data that is needed to attest the parties is transmitted inside SupplementalData records,
which are described by RFC-4680 [52].

In particular, the attestation data present in that message is used to evaluate the trustworthi-
ness of the endpoint. It consists in:

• The concatenation of the server nonce and client nonce: they are the ones that are
exchanged in the Hello records and are used to guarantee the freshness of the message;

• Subject Key Attestation Evidence (SKAE): it is used to cryptographically bind the
security assertions to the certificate of the attestation key KAIK and this happens thanks
to signing configuration information with this key;

51

Trusted Channels: Beyond Secure Channels

• certAIK: it is the certificate of attestation key KAIK and is needed for the verification of
the signature in SKAE;

• PKSKAE: it is used to verify the signatures computed with the SKAE secret key;

• SigSESK: it is the signature of the public parts of secure encryption key Kenc and secure
signature key Ksign with SKAE secret key SKSKAE . It is used to bind the keys to the TCB
identified by SKAE, guaranteeing also that they are stored and managed securely. These
two keys are then used for authentication during the creation of the channel;

• The properties of the endpoint: they will be evaluated to decide if they meet the
security policy of the counterpart and consist of the measurement values provided by TCB,
which will be compared to the corresponding reference values.

Then, the attestation data is signed using the secret key of Ksign, which binds the secure
channel to AttestData.

Furthermore, the researchers have proposed a procedure to update the TCB without compro-
mising the TLS key and consequently the certificate’s validity. It is based on a changelog that
consists of a list of names and hash values of the software components that are installed or re-
moved, linked to a trusted third party (e.g. the manufacturer) through its certificate. This entity
guarantees the correctness and authenticity of those values. When the component is updated
Ksign and Kenc are unsealed, then the new hash is added to the changelog. After computing the
new SKAE and KSKAE , the secure encryption and signature keys are sealed to the new state,
and their public keys are signed to obtain the new SigSESK .

4.2.4 Trusted Channels for Remote Sensing Devices

The solutions described so far base their trust on the TPM but others have been published in the
literature which strengthen their security properties via TEE. One of these is described in [53] and
targets IoT sensing devices since they are widely diffused and the protection of the transmitted
data from those devices is crucial to guarantee the security and correctness of their functions.
In particular, the authors have designed a protocol that establishes a secure and trusted channel
providing through a TEE the security assurance and the secure storage of keys and cryptographic
material. One of the main problems of the TPM is the large TCB that it uses, which provides
a large attack surface to adversaries and requires frequent updates, while TEEs provide native
isolated execution, secure storage, secure I/O, etc. Thanks to this it is possible to protect the
endpoint from a wide range of attacks. However, one of the main problems of using TEEs is the
absence of a standard for remote attestation, which depends on the adopted technology.

In addition to the requirements that are defined in Section 4.1.2, researchers also have empha-
sized the following ones:

• Forward Secrecy: compromising a session key does not affect past or subsequent sessions;

• Denial-of-Service (DoS) prevention: the two endpoints should minimize resource allo-
cations to avoid the rise of the DoS conditions;

• Session Resumption: the protocol should allow the endpoint to resume a session securely
without the need to restart it. However, sessions have to be re-established regularly to
reduce the likelihood of a compromised session.

In this case, the protocol does not include standard secure channels like TLS or IPsec, and even
if it satisfies all requirements highlighted in the paper [53], the solution requires an implementation
from scratch since there are not any products already developed that can be used.
At the beginning, the trusted application on the Sensing Device (SD) sends to the one running
on the Remote Entity (RE) the following data:

• identity of the two endpoints IDSD and IDRE ;

52

Trusted Channels: Beyond Secure Channels

• nonce generated by the sensing device nSD;

• Diffie-Hellman exponentiation of SD gSD;

• Attestation Request for Remote Entity ARRE .

Furthermore, it generates also a Session Cookie Scookie that may be used to resume the session.
It consists of the hash of the IDs, nonce, and exponentiation.
In the same way, the Remote Entity sends the two identities, its nonce nRE and exponentiation
gRE . It also transmits two signatures which are encrypted and protected with MAC. The first one
is computed over the identities, nonces, and exponentiation of the two parties, while the second
one covers the two nonces and the quote (attestation report) generated from the TA state. In
the case of a Bi-directional Trust Protocol, the SD attestation is asked for through the request
ARSD. In the end, the sensing device computes the same signatures on its data, transmitting
them encrypted and MAC-protected together with the session cookie. Furthermore, this protocol
has been formally verified using the Scyther tool which did not find any attacks that can be
performed against it.

Compared to TLS and SSH channels, the implementation of this protocol introduces x4 over-
head. According to the authors, it may be due to different cryptographic implementations of the
protocols (OpenSSL is used for TLS and SSH, while LibTomCrypt is used in the adopted TEE),
and to context switches between trusted and untrusted world as well as the communication be-
tween them.

4.2.5 Integration of SGX’s Remote Attestation in TLS

In the last section, the protocol does not adopt any existing secure channel but now a possible
solution will be described [54] to integrate the attestation performed by Intel SGX with TLS
through extensions in X.509 certificates exchanged during TLS handshake. In this case, the
authors analyzed a client-server model in which the server is run into an enclave that is also the
channel endpoint.

The main goals of this solution are:

• linking between the RA-TLS key to the specific instance of the enclave;

• the attested party must provide attestation evidence during the handshake to convince the
other party that is communicating with a veritable enclave.

The binding between the key and enclave is achieved by inserting the public key into the
attestation report that will be signed by the SGX quoting enclave. In this way, the counterpart
has the evidence about who is using a specific key pair. The fact that the keys are generated at
every startup instead of persisting them increases their security since they are not exposed outside
the enclave. Instead, the attestation evidence is provided as an extension of X.509 certificates,
in this way the implementation of the solution does not require modifications to existing TLS
libraries since the verification is done through hooks.

The attestation evidence can be based on Enhanced Privacy ID (EPID) or Elliptic Curve
Digital Signature Algorithm (ECDSA). The first one is used in privacy-sensitive client platforms
in which the system is identified as an SGX platform without its identity being revealed. The
other is used to allow the building of non-Intel attestation infrastructure by third parties, and
this is useful in environments such as data centers in which privacy is not needed or there are
deployment constraints. Whatever method is used, in the report even the certificate of RA-TLS
public key is inserted to bind the enclave to the identity of the channel endpoint.

In the case of EPID attestation evidence, the certificate includes:

• Attestation Verification Report: it is obtained by Intel Attestation Service (IAS);

• Attestation Verification Report Signature: it is generated by IAS and ensures that
the report is authentic and unmodified;

53

Trusted Channels: Beyond Secure Channels

• Attestation Report Signing Certificate: it is used to validate the signature above.

Then to verify the attestation evidence the counterpart has to verify the validity of the At-
testation Report Signing Certificate and then it is used to verify the signature of the report to
ascertain its authenticity and integrity.

Instead, in the ECDSA attestation evidence the items inserted are:

• Quote: it is an attestation data structure signed by the quoting enclave using the attestation
key and containing the enclave identity and other attributes;

• TCB info: it includes attributes on the state of the platform and is examined by the verifier
to trust or not the platform;

• A set of certificates: they are used to validate the signatures on TCB Info and a Certificate
Revocation List to know compromised keys;

• Quoting Enclave Identity: it includes its version number and code measurement and is
used to assess the security of that enclave.

In this case, the verification starts from the chain of signatures of the quote and certificates up
to the Intel-issued Platform Certification Key (PCK) certificate, including even the verification of
the absence of revoked ones. Then, the quoting enclave’s trustworthiness and the TCB’s status
are verified.

Concerning the security properties of the protocol, in this design, the freshness of attestations
is guaranteed through timestamps instead of using nonce like in the previous solutions. Further-
more, the RA-TLS key is protected by the SGX enclave and can be compromised only through
vulnerabilities in the Intel SGX security model or at the application level. Instead, the perfor-
mance overhead due to issuing and revoking certificates is removed thanks to using as the Root
of Trust the SGX hardware, and thus the certificate can be self-signed. In this way, it is possible
to use short validity periods, regenerating them periodically.

The usage of X.509 extensions allows us to decide if a peer that does not recognize the field in
the certificate has to abort the connection or not through the setting of the critical extension field.
In this way, it is possible to force the usage of a trusted channel or permit the establishment of a
channel even in a legacy system. Unfortunately, as a consequence, it increases the traffic volume
since the certificate size is bigger than the one without the extensions. Another problem comes
from the usage of self-signed certificates in the attested enclave which may be aborted by legacy
peers. One of the solutions to overcome this dilemma is to use the Automatic Certificate Man-
agement Environment (ACME) (RFC-8555 [55]) to automatically issue certificates by a trusted
CA. But also certificate validity is a problem since verifying the timestamp and getting current
CRLs can be solved only by introducing a trusted time source within the enclave.

4.2.6 HTTPA: HTTPS Attestable Protocol

Until now, the solutions that are proposed involve only network protocols that operate over
the transport layer, but other designs that have been published are based on application layer
protocols such as HTTP. In a paper published by Intel researchers [56], the integration of SGX
or TDX attestation into HTTPS has been proposed to improve the security of web services. This
new protocol, called HTTPS Attestable (HTTPA), merges the secure communication properties
of HTTPS i.e. the ones of TLS to the secure computation properties provided by the TEE. Since
is used based on the HTTP protocol, the use case that is considered is the World Wide Web.

In its threat model, the attackers on the server side are assumed to be privileged, having the
possibility to read and modify the untrusted memory, while the enclave’s workload is considered
trusted only after having verified its certificate validity. Furthermore, the client is allowed to
establish or close connections in the case the security configuration of the counterpart, which is
provided during channel setup, does not meet its security policies.

54

Trusted Channels: Beyond Secure Channels

Figure 4.4. HTTPA Handshake and traffic exchange (source: [56]).

In particular, the choice of HTTPS to implement the trusted channel is because this protocol
alone is not sufficient to remove the security risks present in web services, which nowadays are
widely diffused. Although the new protocol does not ensure fully secure computation, it reduces
sufficiently the risks thanks to the verification of assurances provided by the parties.
In standard HTTPS, the HTTP messages are exchanged over a TLS channel which protects the
communication between the two parties. In this new protocol, the authors have introduced new
HTTP methods that are used to negotiate and set up new trusted channels.

The main difference between this solution and the others that work at lower layers, such as
the ones that extend TLS, is that in this case, it is possible to create several trusted channels
over the same secure channel since it is not affected by any modifications to integrate the remote
attestation.

As introduced before, the three new HTTP methods that are designed to perform the HTTPA
handshake are:

• HTTP preflight request/response: it has nothing to do with security or web services,
but it is needed only to check if both parties are HTTPA-aware, which means that they can
recognize HTTPA messages;

• HTTP attest request/response: it is used to provide and verify attestation quotes;

• HTTP trusted session request/response: it allows the establishment of a trusted
session, which is accessible only by the code with that particular verified TCB.

Then, trusted channels are created starting from the trusted session, using the key generated
for it.

In Figure 4.4, the HTTPA handshake is shown. In particular, it begins with the client that
sends an HTTP preflight request to discover if the server supports HTTPA. In the case of a positive
response, the protocol continues since the server can attest itself. Then, during the HTTP Attest
phase, the client sends an HTTP attest request, which contains the Attest-session-Id which
identifies a session to resume or it is null otherwise, the Attest-Random used for key derivation,
and Attest-Cipher-Suites which consists of the list of encryption algorithms supported and
accepted by the client. Optionally, it may include also Attest-Quote which is the attestation
report used by the other party to verify the trust on the endpoint, Attest-Date which is when
the attestation quote is generated, Attest-Pubkey which consists of a public key managed by

55

Trusted Channels: Beyond Secure Channels

the TEE and bound to the TCB. These last values are inserted in client request in the case of
mutual HTTPA, that is the case in which both client and server provide attestation evidence,
otherwise, only the server is required to attest itself.
After having received the request, the server sends the response containing the same information
that is present in the request, including the ones that are optional for the client. In particular, in
this message, the Attest-Session-Id contains the session id of the current session (that may be
the same as the resumed one), and Attest-Cipher-Suite contains the algorithm that is chosen
by the server.

The server’s Attest-Pubkey is then used by the client to encrypt a pre-session secret that only
the TEE running on the server can access since it is the owner of the corresponding secret key.
This ciphertext is sent to the server into the Attest-Secret header of the HTTP trusted session
request. In the end, the HTTP trusted session response is used as an acknowledgment message to
confirm the secret reception. If the verification of one of the messages that are exchanged during
the handshake fails, the communication is interrupted. Furthermore, if the error is detected by
the server, it will send the response containing a status code different by 200 OK. In particular,
to verify the quotes that are sent by the server and the client, both endpoints may rely on a
third-party verifier that receives the attestation data and returns the verification result.

After having exchanged all the data, both parties through a PRF can compute the “trusted
session keys”, which are obtained from a “key block” that in case of server attestation is generated
in this way:

key_block = PRF(pre_session_secret, "trusted session keys", ClientAttest.random

+ ServerAttest.random)

Instead, in mutual authentication it is computed as follows:

key_block = PRF(server_pre_session_secret, client_pre_session_secret, "trusted

mutual session keys", ClientAttest.random + ServerAttest.random)

These values are used to obtain MAC keys, encryption keys, and IV for the initialization of
cipher blocks which are different for client and server.

4.3 Security and Performance Evaluation

The main adversary model in these protocols is a third party, who could also be the platform
administrator, that eavesdrops the communication or even controls one of the endpoints. Among
the possible attacks, there are all the ones related to the transfer of data, such as replay, relay,
replace, eavesdropping, or data manipulation attacks. Instead, the attacks against the hardware
are not considered. Among these threats, the most critical for trusted channels is probably the
relay attack, which is an example of a Man-in-the-Middle (MitM) attack in which the adversary
relays the configuration of a trustworthy third party. This could be mounted in the case of an
insecure linkage between the configuration information and the secure channel in the design of
the protocol.

Unfortunately, even if the protocol provides a high-security level, performances should be
considered to make possible its adoption and concrete implementation. In particular, the solution
should require as few changes to current standards as possible, to avoid the increase in costs to
align the available products to the protocol design. For example, the modification of how the
session keys are computed during TLS handshake requires the updating of all the libraries that
are used for that purpose.

Regarding X.509 certificates, the issuance and revocation of them could be a problem since
they introduce a considerable overhead that might reduce the performance of the system. If the
certificate is bound to the TCB configuration, an update of the system will make it lose its valid-
ity. Furthermore, if this operation is done regularly and frequently, the overhead grows further,
requiring the adoption of another solution. Despite this, the linkage of the remote attestation

56

Trusted Channels: Beyond Secure Channels

through extensions of X.509 certificates and TLS records seems to be the best option since it does
not modify any existing standards and their verification can be performed using hooks.

Summarizing the observation that was done in the previous section, the three ways in which
trusted channel can be implemented are:

• Design of new protocols: solutions like [53] implement their trusted channel from scratch,
but this requires the implementation of custom libraries without the possibility of adopting
existing products;

• Extensions/Modifications to secure channels protocols: in Section 4.2 many so-
lutions of this type have been described. Probably, they are the best option since are a
trade-off in providing security capabilities and adapting to different contexts with slight
changes to the available products;

• Extensions/Modifications to application layer protocols: protocols like [56] do not
require the adaptation of secure channels, leaving the choice of the one to be used to the
user. However, they are bound to a specific context, such as web services in the case of
HTTPA.

57

Chapter 5

Device Identifier Composition
Engine (DICE)

The Trusted Computing Group (TCG) [57] is a not-for-profit organization that develops
and publishes standards and specifications for interoperable trusted computing platforms. This
way, these technologies are made open, vendor-neutral, and shared by the global industry. For
example, among those, there is the Trusted Platform Module (TPM) cited in Section 4.
Furthermore, one of TCG’s working groups is developing a standard to establish a strong device
identity that can be used in software attestation and update verification. This is called Device
Identifier Composition Engine (DICE) and will be described in this chapter.

5.1 DICE Architectures Work Group objective

Before describing what are the objectives of the DICE Architectures Work Group, is helpful to
explain better what TPMs are. Trusted Platform Modules [58] are microcontrollers that allow
users to securely store confidential data such as passwords, encryption keys, and certificates, but
also platform measurements that are used to ensure platform trustworthiness. They provide also
a way to authenticate and to attest the platform. The first one is used to ensure that the platform
is the one that it claims to be, while the second consists of proving its trustworthiness.

TPMs provide several security capabilities, however, they are not present in all systems due
to restrictions on silicon-based capabilities. For this reason, the DICE Architectures Work Group
[59] is working on developing new technologies that provide security and privacy, requiring min-
imal silicon capabilities, to systems with or without a TPM. In particular, thanks to software
techniques, even simple hardware can ensure a cryptographically strong device identity,
which can be used in verifying software updates or in attesting the software. This applies princi-
pally to contexts like IoT, in which the devices’ functionalities are constrained by security, power,
and resource capabilities.

5.2 Hardware requirements for DICE

5.2.1 Introduction to DICE

Among the several specifications that the workgroup has published, there is “Hardware Require-
ments for a Device Identifier Composition Engine” [60]. In that document, the authors have
described the set of requirements for creating the Compound Device Identifier (CDI), which
is an identity value of the device. The DICE is responsible for generating it starting from two
different values:

58

Device Identifier Composition Engine (DICE)

Figure 5.1. CDI Derivation Process (source: [60]).

• Unique Device Secret (UDS): it is a value that represents the device, and it is known
only to DICE and possibly to the manufacturer/owner who provisioned it;

• Measurement of the First Mutable Code (FMC): it consists of a cryptographic rep-
resentation (hash value) of the code which is executed after the DICE and considered un-
trusted.

The process of deriving the CDI is shown in Figure 5.1. In the beginning, the DICE measures
the First Mutable Code and optionally, other configuration information. The obtained value, to-
gether with the UDS, is then used to generate the CDI through a one-way function. Subsequently,
the UDS is protected by a hardware mechanism and the memory is cleaned to avoid any leakage
of confidential data and temporary computations. In the end, the control is transferred to the
First Mutable Code, passing also the computed CDI.

Computing the CDI in this way ensures that any modification to the UDS or the First Mutable
Code results in a different generated value. Thanks to this, if an adversary modifies the FMC,
the CDI value changes highlighting it. However, this behavior results also in the need for a secure
update process in which a verified trusted update is installed, and the CDI value is modified
accordingly.
Furthermore, the generation function also has to make impossible the recovery of the UDS from
the CDI and the measurement. There are two possible ways to implement it:

• Secure hash function:

CDI = H(UDS || H(FMC))

59

Device Identifier Composition Engine (DICE)

the CDI is computed as the hash (H(value)) of the concatenation of the UDS and the hash
of the First Mutable Code;

• Secure HMAC function:

CDI = HMAC(UDS, H(FMC))

the CDI is computed as the HMAC value (HMAC(key, value)) of the hash of the First
Mutable Code, using the UDS as the HMAC key.

Even if the HMAC computation is more time-consuming than the simple hash function, it results
in a stronger level of protection of the UDS.

However, a problem arises when it is wanted to update the DICE. In this case, a modification
of its code or dependencies is not reflected in an alteration of the CDI value, making this update
process extremely critical.

5.2.2 Requirements

Regarding the UDS, it must be statistically unique and uncorrelated to the others, and each value
must not be used by any other device. Since it identifies the entity, it should not be rewritable,
and in particular, any changes to it would prevent access to the stored device secrets, which are
bound to the past UDS. For this reason, a valid implementation is a one-time programmable value.
Considering its security, the strength of the UDS must be at least the same as the attestation
process since this secret influences it. In case the process cannot be determined by the device
manufacturer, the UDS should be at least 256 bits long.

On the contrary, the specification [60] does not include any normative requirements for the
CDI but provides only some notes for its protection. In particular, its access should be protected
via hardware if possible, otherwise, by the First Mutable Code. If that value is leaked, an
adversary may mount a replay attack or an impersonation and to avoid this, device manufacturers
should adopt best practices, such as avoiding errors and erasing the CDI from volatile memory
immediately after its use. Anyway, in case the CDI is leaked, it can be replaced by updating the
First Mutable Code. In this way, two problems are solved: the leakage of the value and the cause
of it.

The requirements for the DICE are split considering the mutable and immutable alternatives.
Those that must be satisfied in both cases are exclusive access to read the UDS and the impossi-
bility of reading the UDS from debug mode, even from DICE. If the DICE is immutable, it shall
be so by the end of the device’s manufacturing process. Instead, only an update process that
is controlled by the manufacturer shall modify an updatable engine, and the CDI should not be
changed by this operation.
Considering its operation, the specifications state that the DICE shall execute without any in-
terruption or modifications at each device’s reset and before the mutable code. In particular, the
computation of the CDI shall be performed before the First Mutable Code execution and applies
the same security considerations that have been done for the UDS about the security strength
and minimum size. Other operations that shall be done before the execution of the First Mutable
Code are the disablement of access to the UDS until the next reset, the secure erasing of values
that could leak information about the UDS, and the writing of the CDI into a location to which
the First Mutable Code has exclusive access.

5.3 DICE Layering Architecture

In another specification [61] that is published by TCG, the workgroup has described the archi-
tecture that is used in the processes of device identification and attestation which are executed
at each layer since the device’s boot. In particular, the document details the transition between
layers and how they can be identified through created seed values. Furthermore, from these seeds

60

Device Identifier Composition Engine (DICE)

are generated the keys that are used in the attestation process. The trust obtained with this last
one begins with the DICE and the device’s identity that are described in Section 5.2.

In this case, the construction of the CDI applies also to the transitions between other compo-
nents of the device’s TCB, whether they are software, firmware, hardware, or configuration. In
this context, the measurement of one of these is called TCB Component Identifier (TCI),
and it can be a digest of the code, a hardware product identifier, or something similar. Like
what DICE does, each layer combines the current CDI value with the measurement of the next
component, providing the new computed value to it. These CDI values can then be used as seeds
of key generation functions, and their outputs can be enrolled, for example, as device identity
credentials according to IEEE 802.1AR [62] and/or be used in certification, authentication, and
attestation.

Considering the nomenclature, a device is supposed to be organized in a layered structure, in
which a layer is composed of one or more components, and is numbered starting from the one
that is executed immediately after DICE (First Mutable Code = Layer 0).

5.3.1 Layering Architecture

This architecture assumes that a layer is in a trustworthy state before transitioning to the next
one, i.e. Layer n is trusted before passing the control to Layer n+1. In particular, the DICE is
considered the Root of Trust, which means that it must be trusted a priori since it is not possible
to recognize its misbehaviors.

In the specific case of the TCB, it is assumed that its capabilities are protected by a secure
execution environment, as well as the interaction between different layers. In particular, among
the TCB resources that each TCB layer must have trusted access to, there are:

• TCB Component Identifier (TCI): a Layer n must be able to compute the TCI of the
succeeding Layer n+1, and this must be done in a way in which a modification to a TCB
component will result in a different TCI value;

• Compound Device Identifier (CDI): this value must be computed and passed, using
a trustworthy mechanism, similar to the process used by DICE which is described in Sec-
tion 5.2. In this case, the UDS is replaced with the CDI received by the previous layer;

• One-Way Function (OWF): it is a cryptographic pseudo-random function that is used to
compute the CDI value starting from the previous CDI and the TCI of the next component.

Computing the CDI in this way makes it dependent not only on UDS and TCI values, which
identify the device and the components but also on their execution order. In Figure 5.2 it is
possible to see, among different layers, the process of CDI computation that has been described
earlier.

The specifications of DICE Layering Architecture [61] include also the set of requirements that
each layer must satisfy, even the DICE. This last one, in particular, should not access any layer
secrets other than the CDI value. Instead, regarding its manufacturing and configuration, the
DICE must have a secure entropy source if it generates keys. Furthermore, its trustworthiness
properties should be asserted by the manufacturer or the vendor, and the secrets must be provided
securely and not visible outside the DICE.

Instead, the other requirements regard layers from 0 to n. A layer must be constructed using
protected capabilities and a location where it is safe to operate on sensitive data. Furthermore,
from Layer 1 onward, it is possible to use the same capabilities and locations of the previous
layers, except Layer 0. Secrets, keys, and trust anchors must be created by the specific layer
or received by the previous ones since the ones executed after it must be considered untrusted.
More specific requirements apply to the CDI since each layer is obliged to protect it and the keys
from which they derive. Furthermore, the n-th CDI value must be used in the computation of
the n+1-th. Other specifications regarding Certificate Authorities and Attestation Processes will

61

Device Identifier Composition Engine (DICE)

Figure 5.2. TCB Layering Architecture (source: [61]).

be described in the next sections. Instead, requirements that apply only to Layer 0 regard the
DeviceID key that is described in Section 5.3.2.

This architecture gives the layers the possibility to generate keys and certify them, binding the
TCB identity to the cryptographic material. Furthermore, since a TCB layer can be certified only
by the previous one (referred to as Embedded Certificate Authority), this process creates a link
even between these two entities. In particular, these certificates contain also information about
the possibility of using the keys for attestation, authentication, or certification of other keys.

5.3.2 Keys and Credentials

As anticipated in the last section, the DICE Layering Architecture allows TCB layers to create
different types of keys, and their usage becomes an implicit statement of the identity of the layer
when they are deterministically created from CDI and TCI values. Each layer generates its keys
using a different process depending on what it needs.

Key Types and Key Generation Processes

Firstly, asymmetric keys can be:

• Embedded Certificate Authority (ECA) Keys: they are used to sign certificates of
the current TCB layer of the subsequent ones. They must sign only the data known by the
layer, i.e. they cannot sign raw data that is not defined in the layer;

• Attestation Keys: they are used to sign attestation evidence, and like ECA Keys, they
cannot sign raw data from outside the layer. However, it is possible to include it in the
signed data, such as the nonce in the attestation report;

• Identity Keys: they are used to sign authentication challenges to demonstrate the layer’s
identity. An example is the leaf certificate used in TLS client authentication.

In Table 5.1 the keys’ usages are reported. In particular, the ECA Keys can also be used
for attestation and identification of the layer, while the Attestation Keys are for attestation and
identification only.

Furthermore, specific instances of these keys are DeviceID and Alias Keys. DeviceID Key
is an asymmetric key derived from CDIL0 (i.e. the one computed by DICE) and it is used as
the Root ECA Key of the device, certified during the manufacturing. It may be used to sign
certificates that contain attestation evidence and for this reason, it is also an Attestation Key.
The requirement for Layer 0 states that its creation must be done by a manufacturer-controlled
process and changes to the Layer 0 TCB must be propagated to the DeviceID key. Furthermore, if
it is not possible to modify this layer outside a manufacturer-controlled process, even the DeviceID

62

Device Identifier Composition Engine (DICE)

Certification Attestation Identity Notes

ECA Keys Yes Yes Yes Only sign known data

Attestation Keys Yes Yes Only sign known data

Identity Keys Yes May sign opaque challenge

Table 5.1. Asymmetric key types and their usages.

key and its certificate cannot be modified outside of it. Instead, Alias Key is the Attestation Key
generated from the CDI value of the last TCB component, so its certificate contains attestation
information about the top-level firmware of the device.

Since the TCI values might not be secret, contrary to the CDI, a seed to the Key-Derivation
Function can be obtained by a combination of those. However, a key pair to be an implicit identity
key must be created including also the TCI of the layer that it refers to. In particular, the keys
are obtained starting from the CDI value that is received by the previous layer (which in turn
depends on the TCI). RSA and ECDSA are two examples of key types that can be used.

Regarding symmetric keys, they can be classified into:

• Symmetric Alias Keys: they are the symmetric version of the Alias Keys and are gener-
ated from the CDI value and optionally a Pre-Shared Key ID Hint decided by the verifier;

• Wrapping Keys: they are symmetric keys that are created from CDI values to persist
asymmetric keys. In this way, the layer is not obliged to compute them at each boot, and
if the CDI changes, it is not possible to decrypt them, as expected and wanted.

In this case, the key generation process involves not only the CDI but also the TCI of the layer
that wants to generate the symmetric key. This is done to avoid the cryptographic overlapping
of the computed values and the seeds.

Furthermore, these keys can be used also for credentials that are compliant with IEEE 802.1AR
standard [62]. They are:

• Initial Device Identifier (IDevID): it is used to identify the device and its provenance
and contains the DeviceID key, whose certificate must be compliant with the standard;

• Locally-significant (or Local) Device Identifier (LDevID): it is a device identifier
controlled by the device owner and created at a Layer n (n > 0). The key is derived from
the DeviceID.

Security Considerations

If an adversary discovers the TCB context values (e.g. TCI, CDI, UDS, . . .), he can compute
or derive the keys, and consequently impersonate the layer. For this reason, the protection of
this data is a fundamental functionality that each layer must implement, for example, it must
not expose them to the layers above the one that is considered trusted for their protection.
Furthermore, the layers must remove temporary values and copies in volatile memory to avoid
leakages of useful information to derive the keys.

Since it is not required that the layers recompute the key pairs at each reset, several strategies
allow to speed up the boot times. One of these is key wrapping, which consists of encrypting
and decrypting the key pairs using symmetric keys computed from the CDI. In this way, if the
TCB component is modified, this event is propagated to the CDI value and consequently, it is
not possible to recompute the same symmetric key to unwrap the previously stored values.
However, there are some restrictions on the persistence of secret values. They cannot persist
in unprotected locations beyond the lifetime of their DICE layer. In the case of manufacturer-
provided secrets, they are allowed to persist only in the device’s shielded locations.

63

Device Identifier Composition Engine (DICE)

Figure 5.3. Certificate Hierarchy with Embedded CA (source: [61]).

Figure 5.4. Layered certification example (source: [61]).

5.3.3 Layered Certification

During manufacturing, the trustworthiness assertions of the device are included by the manu-
facturer in identity (e.g. DeviceID or IDevID) and attestation certificates, and to issue these,
it should implement its Root Certificate Authority and CA Hierarchy. Thanks to this, the veri-
fier can check the device’s provenance, ensuring that the subsequent certificates in the chain are
trusted since at least one of them is signed by the manufacturer’s CA certificate.

Additionally, the device owner must be able to configure the device identity (e.g. LDevID)
and attestation certificate within the owner’s domain, as well as to manage the device and trust
practices. Some examples of the operations that may be supported are firmware update, recon-
figuration, and reattestation.

Those subordinate CAs, which belong to the manufacturer’s CA Hierarchy, may sign not only
the device’s certificates but also manifests that include reference assertions. Furthermore, these
operations can also be done by the ECAs inside the device, which extend the certificate chain.
Depending on the specific use case, it will be chosen which CA to use (external or embedded). In
Figure 5.3 is shown this hierarchy. To authenticate an ECA-issued certificate, its trust is traced
from the layer that issued it to the DICE manufacturer, whose certificate is needed to terminate
the chain’s validation.

An example of this chain is shown in Figure 5.4, in which each TCB has its specific identity
key that has been generated according to the process described in the previous sections, and

64

Device Identifier Composition Engine (DICE)

implements an ECA. The chain begins with the certificate of Layer 0 that was issued by the
manufacturing certificate (CAMFGCertL0). Then each ECA (ECAL(i)) issues the certificate of the
ECA of its next layer (ECAL(i+1)). It is also possible that an external CA (in this case the device
owner’s CA) issues a certificate for a LDevID (CAOWNCertL2).

According to the specification [61], certificates are not restricted to an exclusive standard,
however, the X.509.v3 [63] is the one that is used in the paper to describe their formats.

Embedded CA Certification

This type of certification allows a TCB to extend the trust to the next ones. The specification
includes two models to do this:

• Direct Layered Certificate by an ECA: when and how a certificate should be issued is
described by ECA policies;

• Layered TCB Certification using CSR: the certificate is issued after a Certificate
Signing Request (CSR) is received from a higher TCB layer.

In the first case, the issuance of the certificate is automatically authorized by the ECA, which
generates also the to-be-certified key. Then, it provisions the CDI, the private key, and the
certificate to the higher TCB layer. The key may be also recomputed by the certified TCB layer
from the CDI. Instead, in the second case, the ECA receives the CSR from the higher TCB layer,
and then before issuing the certificate, it must verify the provenance of the request and the validity
of the reported information, such as layer identity, key pair, and TCI (as attestation evidence).
Further details about these methods can be found in [61, Sec. 9.2.2].

The main disadvantages of this solution are:

• the issued certificates may not be remembered by the ECA, introducing the possibility of
re-issuing them. For this reason, attributes like Subject, Issuer, Serial Number, or Validity
Period may be selected to avoid this problem since have deterministic properties;

• the lifetime of an ECA key may be reduced by excessive usage since it gives more material
to cryptanalysis;

• some key usages like the attestation one may be not defined by the certificates’ standard
(e.g. X.509 [63]). To overcome this problem, this information can be added as Common
Name parameters to the Subject field or as certificate extensions;

• the ECA may not support certificate revocation requests and this may be included in the
certificates. For example, the cRLSign attribute of KeyUsage may be set to false and
another certificate revocation distribution point may be specified.

External CA Certification

Device identities of TCB layers may also be certified by an external CA, following the same
methods as the previous case:

• the device receives its keys and identity while it is not operative (e.g. during manufacturing);

• the device generates the keys and sends a credential creation request to create its identity.

The three approaches described in the paper are summarized in the next paragraphs. The
first one is Manufacturer Issued IDevID Certificate with Device Generated Keys. This
solution is useful when the provisioning system adopted by the manufacturer is not trusted to
protect the device’s secret keys. The Layer 0 computes its CDI value and IDevID key pair, and
then it sends a CSR to the manufacturer’s CA, which issues the IDevID certificate. However, the

65

Device Identifier Composition Engine (DICE)

Figure 5.5. Owner’s CA issues a LDevID certificate (source: [61]).

self-signature of the CSR with the private key of IDevID does not attest to the security properties
that are adopted to protect the device’s secret.

Another possible solution is a Manufacturer Issued IDevID Certificate with Provi-
sioned Keys. This case is the one adopted when the manufacturer’s provisioning system is
trusted, i.e. the manufacturer can securely provide the secrets to the device. In particular, after
having computed TCIL0, CDIL0, and IDevIDL0 = (PKL0, SKL0), it issues the IDevIDL0 certificate
and provides all this data to the device through a manufacturing process.

The last use case is the Owner Issued LDevID Certificate. The device’s owner may want
to issue a LDevID certificate using a CA of its choice, which may include attestation attributes.
This certification process is shown in Figure 5.5, and begins with the LDevID layer sending a
CSR to the CA (1). This includes also the TCI of that layer, which will be used in the validation
process. Then, the CA sends a nonce to the device (2) to be included in the attestation report,
together with the attestation evidence of all the layers in the certificate chain, which terminates
with the RoT layer (3). In the end, if the verification of the CSR (4) and attestation (5) is
completed successfully, the LDevID certificate is issued (6) and sent to the LDevID layer (7).
However, the authentication of the device in the owner’s network will not be possible until the
LDevID layer (e.g. Layer 2) completes the boot since it is the one in which the private key resides.

5.3.4 Considerations about DICE Architecture’s implementation

The DICE Layering Architecture’s specification [61] also provides design guidance on how it should
be implemented. They include:

• External Communication: the DICE HRoT and Layer 0 should be kept as simple as
possible, and for this reason, the code for network communication should not be implemented
there since it would add unnecessary complexity;

• Privacy: the device firmware is responsible for managing the device state and communi-
cating securely with external services, and consequently, it also has the responsibility of
satisfying the requirements for privacy;

• Single Cloud Infrastructure: in case the device will communicate with only an infras-
tructure for its whole lifetime, it may happen that it will be traced. To overcome this
problem, the keys may be certified by external CAs to provide the same trust assurances
but at the same time hide the hardware platform;

• Factory Reset: in the paper, there are also suggestions about how the device reset should
be implemented in case it would be re-provisioned. They are needed to protect from the
stealing of the old device identity.

66

Device Identifier Composition Engine (DICE)

5.4 DICE Certificate Profiles

Another specification [64] that has been published by the TCG contains the description of which
information has to be included in the certificates that have been cited in the previous sections.
In particular, the format presumed by the document is X.509.v3.

5.4.1 Certificate’s fields

Serial Number

This field is needed to distinguish the certificates, for this reason, each CA must include unique
serial numbers in the issued certificates. However, certificates with the same serial number may
be issued by different ECAs.

Validity Period

The value of this field depends on the presence of a secure local clock in the device. If not
available, the notBefore portion may be set to the TCB build time or whatever other known
time in the recent past. Furthermore, the notAfter portion may be set to the GeneralizedTime
(99991231235959Z) which is defined in X.509 format to indicate that the expiration time is not
defined. However, in both cases, the certificates expire when the device firmware is updated.

Subject Name

This field is used to identify the component that the certificate refers to, and for this reason, it
should be made unique. Some details that it may contain are the device vendor name, device serial
number, firmware identifiers, or DICE layering coordinates. One case in which the uniqueness of
the names is particularly important and must be guaranteed is in Root ECAs.
If the SubjectAltName is present in the certificate, the interaction between these two fields has
to refer to the RFC of X.509 [63]. Additionally, during the attestation verification process, these
two fields should not be used as attestation claims and it must be possible to compare their values
as byte arrays.

Issuer Name

The same rules for the SubjectName apply also in this case. In particular, there must be a match
between the IssuerName field of layer n+1’s certificate and the SubjectName of layer n’s one.
Furthermore, the RFC-5280 [63] describes also how this field and IssuerAltName must interact
when they are present in the certificate, and they should not be used as attestation claims by the
attestation verifier.

Policy OID Extension

This extension contains a set of the following policy Object Identifiers (OIDs) that the certifi-
cate issuer uses to inform the verifiers about the purpose of the TCB layer. The ones that are
introduced in the “DICE Certificate Profiles” are:

• Initial Identity Policy OID (identityInit): this value represents an IDevID Key, which
must be bound to the subject during manufacturing and certified by the manufacturer or
one of its ECAs;

• Local Identity Policy OID (identityLoc): this value represents an LDevID Key, which
should be bound to the subject post-manufacturing and certified by a local issuer or one of
its ECAs;

67

Device Identifier Composition Engine (DICE)

• Initial Attestation Policy OID (attestInit): this value represents an Attestation Key,
which must be bound to the subject during manufacturing and certified by the manufacturer
or one of its ECAs. The key is used to sign attestation evidence such as SW hash and product
name;

• Local Attestation Policy OID (attestLoc): this value represents an Attestation Key,
which should be bound to the subject post-manufacturing and certified by a local issuer or
one of its ECAs. The key is used to sign attestation evidence such as SW hash and product
name;

• Initial Assertion Policy OID (assertInit): this value represents an Attestation Key,
which must be bound to the subject during manufacturing and certified by the manufacturer.
The key is used to sign reference measurements;

• Local Assertion Policy OID (assertLoc): this value represents an Attestation Key,
which should be bound to the subject post-manufacturing and certified by a local issuer.
The key is used to sign reference measurements;

• Embedded Certificate Authority Policy OID (eca): this value represents a key that
is used by an ECA to issue certificates for the device’s components. The key that is used
by the issuer of the certificate must be certified by the manufacturer or the local issuer.

Depending also on the usage of the certificates for the layers, it is possible to specify the
Certificate Profiles, i.e. the format that a certificate should have, and the constraints on the
value of the fields. In particular, the four cases that are reported in the document [64] are:

• IDevID Certificates: this profile shall be applied when an external CA issues an IDevID
certificate;

• LDevID Certificates: this profile shall be applied when an external CA issues an LDevID
certificate;

• ECA Certificates: this profile shall be applied when a CA, either external or embedded
issues a certificate of an ECA;

• Attestation Certificates: this profile shall be applied when a CA, either external or
embedded issues an attestation certificate.

5.5 DICE Attestation Architecture

In previous sections of this chapter, how the CDI and keys must be computed and how they are
certified have been described according to the TCG specifications. In another of these documents
[65], the group has published the architecture to be adopted to attest to the different layers of
DICE. In this case, a layer is attested by the previous one until the DICE RoT is reached, creating
a chain in which the trust in a layer is based on that of previous ones.

5.5.1 Layered Device Attestation Evidence

There are three possible ways to provide attestation evidence to the verifier, which is the entity
responsible for validating it and conveying the attestation result to the relying party. They are:

• evidence as extensions of X.509 identity certificates and Certificate Revocation Lists (CRLs);

• evidence as X.509 attribute certificates;

• evidence as manifest.

68

Device Identifier Composition Engine (DICE)

Evidence as X.509 Certificate Extensions

Those extensions are introduced to include into X.509 structures the attestation evidence about
DICE layers, which consist of values that will be evaluated by the Verifier. Additionally, extensions
to CRLs are defined to convey information about trustworthiness claims that are no longer valid
and that caused the revocation of the certificate. In this way, the party that will receive those
certificates and CRLs can know also the state of the environment that protects the certificate’s
private key. Furthermore, these extensions are compliant with the X.509.v3’s RFC ([63]). The
ones that are introduced by the specification [65] are described in the next paragraphs, and they
can be inserted in both certificates and CRLs.

The TCB Info Evidence Extension (DiceTcbInfo) is used to include the subject’s attes-
tation evidence in the certificate according to a specific format, and it should be marked critical
and included in CRLs. The extension describes the software/firmware that is executed in the
TCB layer. For example, one of its fields is the Operational State, which states how the attested
TCB layer is or will be operating (e.g. not-secure, debug, . . .). The verifier will use some of
this data to query the database containing the endorsements. In this way, it will get the refer-
ence values that will be used to validate the evidence. Furthermore, if DiceTcbInfo is used, the
AuthorityKeyIdentifier certificate extension must be included to locate the signer’s certificate.
In particular, the keyIdentifier field of that extension must be used to identify the Issuer public
key. Including the DiceTcbInfo extension in the CRL, the verifier can discard certificates even
in case of matching of these fields instead of the usual issuer and serial number.

The Multiple DiceTcbInfo Structures Extension (DiceTcbInfoSeq) conveys the state
of the TCB layer when is composed of or dependent on multiple elements. The measurements of
each of these are defined in a sequence of DiceTcbInfo structures. For this reason, the presence
of both these extensions is not recommended, however, in that case, the first element of the
DiceTcbInfoSeq list shall be the measurement defined in DiceTcbInfo.

TheUEID Evidence Extension (TcgUeid) contains the identifier (Universal Entity ID [66])
of the device that owns the private key corresponding to the certificate. If it is included in a CRL,
the device is identified by the serial number of that certificate. The usage of this extension means
that its value contributes to the computation of the CDI from which the key pair is derived.

The CWT Claims Set Evidence Extension (UccsEvidence) provides another way of
formatting the evidence, according to the CBOR (Concise Binary Object Representation) Web
Token (CWT) specification [67], but more precisely, to the Unprotected CWT Claims Set (UCCS)
format. Even in this case, the presence of this extension in the certificate means that these fields
contribute to the computation of the CDI.

The Manifest Evidence Extension (DiceManifestEvidence) includes the evidence as a
manifest, i.e. a structure that is used to represent evidence, endorsements, or attestation results.
In this case, the manifest must not be signed because it will be protected by the certificate
signature. It should contain the same information as the DiceTcbInfo and DiceTcbInfoSeq

extensions, which must be used in the computation of the CDI.

Evidence as X.509 Attribute Certificates or Manifests

The evidence may also be provided as an X.509 attribute certificate or manifest, which are both
signed by the attestation key of the Attesting environment, which usually is one of the layers
below the attested one.

5.5.2 Layered Device Attestation Endorsements

The verifier needs reference values to validate the evidence that is received by the attester. Those
are called Endorsement values and are provided by the endorsers (e.g. manufacturers or suppliers)
in three possible ways:

• Endorsement values in extensions of X.509 identity certificates;

69

Device Identifier Composition Engine (DICE)

• Endorsement values in X.509 attribute certificates;

• Endorsement values in manifests.

Endorsements as X.509 Certificate Extensions

The “DICE Attestation Architecture” specifies two methods to include the Endorsement values
in the certificate extension, as manifest or as Endorsement URI.

The Endorsement Manifest Extension (DiceEndorsementManifest) includes the mani-
fest that is signed by the Endorser and contains the reference values that are used to verify the
evidence in the DiceTcbInfo extension. Furthermore, the format of the manifest is described by
the format fields of the DiceEndorsementManifest extension.

The Endorsement URI Extension (DiceEndorsementManifestUri) specifies the URI in
which can be found the manifest containing the reference values.

Endorsements as X.509 Attribute Certificates or Manifests

As for evidence, also the Endorsement values can be specified as X.509 attribute certificates or
manifests.

5.5.3 Attesting Environment

The environment that is responsible for providing the attestation evidence (i.e. Attester) must
ensure that the CDI depends on each non-constant evidence field. This implies that what is
asserted and the actual conditions are consistent with each other since a change in the CDI value
means that at least an evidence field has changed and vice versa. The Attester must also ensure
that the attested environment is measured whenever it is modified, updating the non-constant
field’s values.

Security Considerations

The trust in the attested environment depends also on the trust in the attesting environment and
for this reason, it is recommended to validate the last one which should also be compliant with a
standard set of security requirements. For example, the specification might describe cryptographic
key generation and key storage. Instead of recomputing a key at each restart, it can be stored and
protected by retrieval mechanisms that make it impossible to retrieve the key if the CDI value
changes.

One possible implementation of that control is the encryption of the asymmetric key using a
symmetric one that is derived from the CDI. If that value changes, the computed symmetric key
will change too, preventing the decryption of the secret. However, if the ciphertext is stored in
untrusted memory, even other protection mechanisms are required, such as integrity checks. An-
other way of implementing these retrieval mechanisms is through a logical safeguard mechanism,
which provides the asymmetric key only after receiving a valid retrieval token that proves the
integrity of the components used in the key creation. While the first approach needs a symmetric
key generation function to derive the sealing key from the CDI value, the second one may use
directly the CDI as the retrieval token. Independently by the retrieval mechanism that is used,
the protected storage supports integrity checks, detecting if the stored values are modified without
permission.

70

Chapter 6

Architectural Design of the
Solution

The purpose of this solution is to provide a protocol that can be adopted by Certificate Authorities
to issue certificates that contain attestation evidence of the subject. These will be exchanged later
during the setup of a TLS channel, allowing the peers to trust the other party since the certificate
used to set up the channel binds the subject’s key pair with the identity of the enclave. So, the
other party is sure about the integrity and trustworthiness of the endpoint with which it will
communicate. The various steps that led to the protocol design are described in this chapter,
focusing on the advantages and disadvantages of the available models and why several choices
have been made.

6.1 Initial Design

The starting point on which the final solution is based is described in this section, including the
initial requirements and the involved actors.

6.1.1 Requirements

As mentioned in the introduction, the main purpose of these certificates is to set up a trusted
channel between two peers. This means that the requirements described in Section 4.1.2 are valid
even in this context.

6.1.2 Actors and Protocol

The design of the protocol is based on the actors that are shown in Figure 6.1, which are:

• Trusted Application (TA): it is the application that is executed in the enclave and wants
to certify its key pair;

• Security Monitor (SM): it is the layer of the TCB that is responsible for providing secure
functions to compute and protect the key pair and is the Attester of the TA;

• Rich Application (RA): it is the application in the Rich Execution Environment that
creates the enclave and starts its execution. It also acts as a proxy for the enclave sending
and receiving the messages in the network;

• Verifier (Ver): it is the node in the network that is responsible for verifying the attestation
evidence that is received from the enclave and generating the attestation result containing
the information about the trustworthiness of the component;

71

Architectural Design of the Solution

Root of Trust

Security Monitor

Trusted
Application

Rich
Application

(Proxy)

1. Ask for
PK and SK

Device

2.5. Ask for
attestation
evidence

Verifier

Certificate
Authority

2. Remote
Attestation

3. Certify PK including
attestation result

Figure 6.1. Certification process actors.

• Certificate Authority (CA): it issues the certificate for the enclave after having received
the corresponding Certificate Signing Request.

That Figure contains even the interactions between them and the operations on which the
final version of the protocol should be based. Initially, (1) the TA generates the key pair = (PK,
SK), which must be protected from potential attacks that may compromise its security. For this
purpose, it invokes secure functions provided by the Security Monitor. Then, (2) the TA must
contact the Verifier to be attested, and consequently, it receives the attestation result that proves
its trustworthiness. As part of this process, the TA receives a nonce from the Verifier, which must
be included in the attestation report generated by the Security Monitor (2.5). In the last step,
(3) the TA sends the CSR to the CA, together with the attestation result signed by the Verifier.
After having established the correctness of all the fields, the CA issues the certificate containing
the evidence of the TA’s trustworthiness.

The steps described in the last paragraph are shown in Figure 6.2, in which the Rich Ap-
plication is removed only to reduce the complexity of the diagram, assuming that the protected
communications from and to the network pass through that entity.

6.1.3 Security Considerations

However, these specification presents several criticalities that are due to the context and the
purpose for which the protocol will be used. One of the main problems that must be solved regards
enclave migration. Many publications describe how the execution of the trusted application
can be continued on other platforms, with the transfer of TA’s code and data (e.g. [68]). This
behavior breaks the assumption of having the binding between the identity of the TA (i.e. TA, SM,
Device, etc.) and the certified key pair. This implies that the peer that uses that secret key may
not correspond to the certificate subject. To overcome this possible scenario, the management
of the secret key has been delegated to the Security Monitor, which is a trusted component, and
its behavior is considered secure and reliable. In this solution, the Trusted Application uses an
interface offered by the SM to create the keys and to encrypt or decrypt data with them.

Another possible question about the protocol is how the attestation keys are certified, i.e. how
the Verifier can be sure about the identity of the owner of the key used to sign the attestation

72

Architectural Design of the Solution

Figure 6.2. Initial version of the protocol.

report. A solution can be adopting the “DICE Layering Architecture” that is described in Sec-
tion 5.3. Thanks to this, the Verifier (or another relying party) can authenticate the attestation
key starting from the Device manufacturer’s certificate and verifying the whole certificate chain
of DICE.

Furthermore, another assurance of the correctness of the attestation report is given by the
nonce that is sent by the Verifier. In particular, that value is used to guarantee the freshness
of the attestation report that is received by the Trusted Application. It also ensures that an
adversary cannot mount a replay attack copying an attestation report of another entity.

A last consideration is about the Certificate Authority, which, in this context, must know the
Verifier that has produced the attestation report to verify its signature and trust in its evaluation.

73

Architectural Design of the Solution

Root of Trust Security Monitor Enclave

DICE Layer 0 Layer 1

Cert DevRoot

UDS

TCI SM Signature

Cert SM ECA

SM ECA keys

Manufacturer

Cert Man

Man keys

DevRoot keys

CDI L0

Cert LAK

LDevID PK

LAK

LDevID SK

Cert LDevID

Figure 6.3. Integration of DICE design.

6.2 DICE Integration

How the DICE architecture can be adopted and which is the current implementation is described
in this section.

6.2.1 Starting Design

The TORSEC group of Politecnico di Torino has developed a version of Keystone that integrates
the DICE specifications [69]. In that design, the DICE is mapped to the Root of Trust, Layer 0
refers to the Security Monitor, while Layer 1 is the enclave. To overcome the problem of trusting
the attestation key, the current design has integrated the DICE implementation to provide a
device’s chain of trust.

In the next paragraphs is reported only a summary of that work to understand better which
are the involved components and keys. Furthermore, the architecture of that design is shown in
Figure 6.3. The values that are preceded by an arrow are the ones that are provided by the lower
layers, furthermore, the DICE chain of certificates is highlighted by darker arrows. In the notation
of this chapter, “keys” refer to a key pair e.g. Man keys = (PKMan, SKMan), but sometimes is
omitted, e.g. LAK = (PKLAK, SKLAK).

Manufacturer

The manufacturer is responsible for producing the physical device, and it has a certified key pair
(Man keys, CertMan). During the manufacturing of the device, it computes the key pair that is
associated with the device’s Root of Trust (since it has all the data that is needed) and certifies it
using CertMan (DevRoot keys, CertDevRoot). Then, it signs the reference measure of the SM
using SKMan that will be used by the Root of Trust during the secure boot process. So, the data
that is provisioned to the Root of Trust during manufacturing is:

74

Architectural Design of the Solution

• CertMan: the manufacturer’s certificate that is used to verify its signatures;

• CertDevRoot: the certificate of the device’s Root of Trust key pair issued by the manufac-
turer;

• UDS: the Unique Device Secret that is described by DICE specifications;

• TCISM Signature: the signature of the reference measurement of the SM computed using
SKMan.

Root of Trust

During the boot process, the Root of Trust measures the SM (i.e. computes its TCI) and verifies
the signature that has been provided by the manufacturer. In case of a failure the boot is stopped,
otherwise it proceeds. Then, the RoT computes its key pair and the CDI of the Layer 0 (CDIL0)
corresponding to the Security Monitor. In the end, it generates the key pair for the Embedded
Certificate Authority of the Security Monitor and issues its certificate using the DevRoot keys
(SM ECA keys, CertSM ECA).

In brief, the data that is generated by the Root of Trust is:

• CDIL0: the Compound Device Identifier associated to the Security Monitor;

• DevRoot keys: it is the key pair associated with the Root of Trust and used to sign the
certificate of the SM’s ECA;

• CertSM ECA: the certificate of the SM’s ECA.

Instead, the ones that are passed to the SM are only the CDIL0 and the CertSM ECA.

Security Monitor

Like the Root of Trust, even the Security Monitor computes the key pair associated with its
certificate (i.e. SM ECA keys). Then, during the creation of each enclave, it generates a Local
Attestation Key (LAK) that will be used to sign the attestation evidence corresponding to that
specific component and certifies it using the SM ECA (CertLAK). Furthermore, in the interface
that is provided to the enclave, the SM implements a function that generates an LDevID key pair
for the specific enclave, returning only the public key and the corresponding certificate. Since the
LDevID is owned by the enclave, it needs a way to execute cryptographic operations and it is
provided through other functions of the same interface.

In summary, the data that the SM generates is:

• SM ECA keys: it is the key pair that is used by the ECA of the SM to issue the certificates
of Local Attestation Keys;

• LAK: it is the Local Attestation Key that is managed by the SM but is used to sign only
the attestation evidence of the enclave that it refers to. It is computed at enclave creation;

• CertLAK: it is the certificate corresponding to the LAK and it was issued during the
creation of the enclave;

• LDevID: it is a key pair that can be used as a Local Device Identifier and generated when
the enclave invokes a specific function of the SM interface;

• CertLDevID: it is the certificate corresponding to the LDevID and it was issued after the
creation of the key pair.

75

Architectural Design of the Solution

Trusted Applications

As described previously, the Trusted Application that is executed in the enclave can access only
a limited set of information, that is the following:

• Chain of DICE certificates: the SM provides a way for the enclave to retrieve all the
certificates of this chain up to the Device Root of Trust;

• PKLDevID: it is the public key corresponding to the LDevID key pair;

• Cryptographic operations with LDevID: the encryption and decryption operations
that use the LDevID are executed as functions in the Security Monitor’s interface.

In Figure 6.3, the values that refer to the enclave but that are not accessible by that entity are
highlighted with a darker background.

6.2.2 LDevID

The design of the integration of DICE in the Keystone framework has been described in the last
section. It helps in providing a trusted chain of certificates from the CertMan to the CertLAK,
which is shown in Figure 6.3. However, using this chain gives information about the identities of
the manufacturer, the device, and the Security Monitor that is executed. Even if it is useful during
the process of remote attestation, it may be more critical for privacy during the establishment
of secure channels. In particular, the other peer having that data can profile the enclave and/or
device. For this reason, the developed protocol adopts a Local Device Identifier certified by an
External Certificate Authority (XCA). Thanks to this, the privacy of the device and enclave is
ensured by the new chain of certificates provided by the usage of the XCA. At the same time,
the identity of the device is guaranteed by the usage of the certified key pair since all the keys
that belong to the DICE architecture are generated starting from the CDIs and TCIs of the
components i.e. if one of those elements changes, it will be impossible the re-computation of the
same key pair. Furthermore, the protection of the SKLDevID in the SM avoids the problem that
is caused by the enclave migration.

Since the keys in the SM are computed at runtime, it will not be possible to re-obtain the last
value of the SK, making the possession of the certificate useless.

6.3 Final Design

6.3.1 Protocol

Here, the choices that led to the final protocol will be described, passing through the high-level
version and ending with the protocol containing the details of attestation evidence that is used
and the calls to the SM’s SBI.

Topology Model

According to the “DICE Attestation Architecture” [65], the initial version of the protocol adopts
the Passport Model (Figure 6.4), in which the Attester (i.e. the entity that executes the
attestation) sends the attestation evidence to the Verifier which responses with the attestation
result. Then, the Attester will provide that structure to the relying party which in the protocol’s
context is the Certificate Authority. The advantages that this model may bring are:

• the Attester exchanges the component’s information (e.g. measurements, configuration, . . .)
only with the Verifier, while the relying party only knows the verifier and the result of the
attestation;

76

Architectural Design of the Solution

Attester Relying Party

Verifier

1. Attestation
Evidence

2. Attestation
Result

3. Attestation
Result

Figure 6.4. Passport Model.

Attester Relying Party

Verifier

1. Attestation
Evidence

3. Attestation
Result

2. Attestation
Evidence

Figure 6.5. Background Check Model.

• the relying party does not have to validate any attestation evidence since it has already
obtained the result of the attestation.

On the contrary, one of the disadvantages of this solution is that the relying party must be sure
of the freshness of the attestation result which may be forwarded sometime after the response of
the Verifier.

Another possible solution is the Background Check Model (Figure 6.5) in which the At-
tester provides the attestation evidence directly to the relying party that forwards it to the Verifier
and obtains the result. In this case, the advantage may be the freshness of the attestation response
which is directly sent to the relying party. Instead, the disadvantage is the increment of the load
at the relying party, which now has to manage two different connections. However, the knowledge
of attestation evidence at the relying party may be both an advantage and a disadvantage. In
particular, even if there is the sharing of attestation data with a third party, this one has more
information that can be used to discard the peers with whom it is communicating.

Considering these reflections, the Background Check Model has been chosen for the final
version of the protocol.

High-level Protocol

The new version of the protocol is reported in Figure 6.6, in particular, it is possible to see that
Steps 2 and 3 are merged. In this scenario, the TA communicates only with the CA, which in turn
contacts the Verifier to verify the attestation report included in the CSR. However, the CA needs
to know which are the Verifiers in which the TA is registered to be able to successfully attest the
system. Another difference from the first version is that in this case the nonce is generated by
the CA which sends it both to the TA and Verifier for the validation of the evidence, speeding up
the protocol since a Round Trip Time (RTT) is removed.

77

Architectural Design of the Solution

Figure 6.6. Final version of the protocol, high level.

Certificate and CSR fields

There is a last aspect that must be considered which is the information conveyed in the DICE
certificates, CSR, and LDevID certificate. In the design of the integration of DICE described in
Section 6.2.1, the fields that are signed in the certificates are:

• Version: the version of X.509 of the encoded certificate, all of them have version 3;

• Serial Number: the serial number of the certificate;

• Signature Algorithm ID: the identifier of the algorithm that was used to sign the certifi-
cate;

• Issuer Name: the name of the entity that issued the certificate;

78

Architectural Design of the Solution

• Validity Period: the time interval in which the certificate is valid;

• Subject Name: the entity associated with the public key of the certificate;

• Subject Public Key Info: it carries the public key and the identifier of the algorithm in
which it is used;

• Extensions: these certificates include the Basic Constraints extension and the new custom
TCI extension.

Considering the extensions individually:

• Basic Constraints Extension: it specifies if the subject of the certificate is a CA and the
maximum deep of the chain of valid certificates;

• TCI Extension: it is a new custom extension that contains the measurement of the TCB
component that corresponds to the subject of the certificate. For this reason, it is used only
in the certificates that belong to Layer 0 or 1.

Regarding the Certificate Signing Request, the fields that it contains are:

• Version: the version of the CSR, that in this case is set to 0;

• Subject Name: the entity that has generated the CSR;

• Subject Public Key Info: it carries the public key and the identifier of the algorithm in
which it is used;

• Extensions: it includes the Key Usage extension and other new custom extensions;

In this case, the CSR extensions are:

• Key Usage Extension: it describes the purposes for which the certified key will be used
(e.g. digital signature, data encipherment, key agreement, . . .);

• Nonce Extension: it is a new custom extension that contains the nonce that is sent by
the Verifier;

• Attestation Evidence Signature Extension: it is a new custom extension that contains
the signature of the attestation evidence;

• DICE Certificates Extension: it is a new custom extension that contains the chain of
DICE certificates that is needed to verify the Attestation Evidence Signature.

The nonce that is inserted in the CSR is the one that has been received from the CA. Having
this data in the CSR, the CA can stop immediately the certification process without contacting
the Verifier to validate the other fields. Then, the attestation claim inserted in the Attestation Ev-
idence Signature extension consists of a signature (sign(data, private key)) of the hash (H(data))
of the concatenation of different values using the private key of the enclave’s LAK stored in the
SM:

claim = sign(H(nonce || TCIL1 || PKLDevID) , SKLAK)

The signed data is the concatenation of:

• nonce: the nonce received from the CA for the attestation. It guarantees the freshness of
the signature and consequently, binds the TCI and PK to the current request;

• TCIL1: it is the measurement of the enclave in which the TA is executed. It is the only
value among these that discriminates an intact enclave from a corrupt one, guaranteeing its
trustworthiness;

79

Architectural Design of the Solution

• PKLDevID: it is the LDevID public key included in the CSR. It guarantees that the CSR
is for the LDevID and not another key pair.

In particular, this signature is computed by the Security Monitor which acts as Attester for the
TA, using all the values that it has, except the nonce which is passed by the TA when invokes
that function. The Verifier to validate this field will use the nonce that it has received from the
CA, the reference value of the TCIL1, and the public key in the CSR.

Even if the measurement of the SM is not included in that signature, it can be retrieved from
the TCI Extension of CertSM ECA. This is possible because it is issued at each boot and the SM is
no longer measured, always reporting that value. The other purposes of the DICE certificate chain
provided into the CSR are to retrieve the PKLAK to validate the signature described previously
and to create a chain of Trust up to the manufacturer which is considered the trusted entity that
allows the validation of all the other DICE certificates.

To provide all these functionalities, the SM has to extend the interface that is accessible by
the enclave, introducing these methods:

• Create LDevID: the TA must be allowed to ask for LDevID generation, otherwise, it
should be generated at enclave creation time like the LAK;

• Get DICE certificates: the TA must have access to the DICE certificate to provide a
chain of trust;

• Generate Attestation Evidence Signature: the TA must be able to ask the SM to
generate the claim passing the nonce;

• Execute cryptographic operations with LDevID: to demonstrate the possession of
SKLDevID, the TA must invoke specific methods offered by the SM in which it passes the
data and receives the corresponding ciphertext/plaintext.

Final version of the Protocol

The final version of the protocol with some low-level details is shown in Figure 6.7. In that
diagram it is possible to see when the four methods of the SM are invoked:

• the LDevID is created during Step 1, in which the TA only wants to have an asymmetric
key pair that is bound to its CDI;

• the DICE certificates can be retrieved whenever before the creation of the CSR since they
must be included in that request. If one of those certificates is used to authenticate the
client during the setup of the trusted channel, they must be obtained at the beginning of
the Step 2;

• the attestation evidence signature is generated after having received the nonce from the CA;

• the SKLDevID is used to sign the CSR before sending it to the CA.

The CA to attest the enclave sends to the Verifier a request which contains the name of the
subject (i.e. TA), the PKLDevID, the nonce that it sent to the TA, and all the extensions that are
needed to attest the TA’s enclave. To check its correctness, the CA will proceed in this way:

1. verify the signature of CSR using the public key in Subject Public Key Info;

2. verify that the nonce contained in the extension is the same that it sent previously to the
TA;

3. verify the chain of DICE certificates, to speed up this process the CertMan can be used as a
trusted certificate;

4. send a request to the Verifier to validate the attestation evidence signature.

80

Architectural Design of the Solution

Figure 6.7. Final version of the protocol, complete diagram.

Instead, the steps that are done by the Verifier are:

1. verify the chain of DICE certificates, to speed up this process the CertMan can be used as

81

Architectural Design of the Solution

a trusted certificate. In this process, the Verifier compares the TCI values contained in the
extension with the corresponding reference values;

2. verify the attestation evidence signature using the nonce that it has received from the CA,
the PK in the attestation request, and the reference measure that corresponds to the subject.
The public key to verify the signature is retrieved from the DICE certificates.

At the end of this process, the CA will receive the attestation result containing the status
of the CSR (i.e. trusted/corrupted). Then, the issued certificate will include the TCI extension
that has been introduced in the integration of DICE. In this way, the peers can distinguish the
certificates that were generated using this process, obtaining also the endorsement value of the
enclaves since they are signed by trusted entities (i.e. CAs).

6.3.2 Security Considerations

The usage of the extensions that have been described in the previous sections should allow notic-
ing any possible misbehavior, however, those can be modified or extended to adapt to other
context/use cases. The protocol that has to be considered in this situation is the one in Step 2
in Figure 6.6 since there are no references to concrete values of attestation evidence or key pair.
In particular, it can be adapted to certify even keys that are managed only by the enclave or
provide other claims in the attestation report that is generated by the SM. However, the DICE
architecture is a useful integration to the protocol since it provides a chain of trust that can be
verified by external entities using the certificate of the manufacturer as a starting point.

However, a DoS attack can be mounted, even if TLS mutual authentication is used. An adver-
sary may provide fake DICE certificates that are detected only after their verification. Instead, if
many requests come from the same node, it is possible to filter the incoming traffic. Despite this,
the better solution is using the TLS mutual authentication and the nonce related to the single
request.

82

Chapter 7

Integration of the Design in the
Keystone TEE

This chapter includes all the modifications to the standard Keystone framework that integrate the
design described in Chapter 6. In particular, it contains a summary of the updated Keystone’s
components and the patches for the Mbed TLS library.

7.1 Initial version of Keystone: DICE Integration

All the code described in this section refers to the work done by the TORSEC group. Princi-
pally, their modifications of Keystone [41] concern the Root of Trust (bootrom) and the Security
Monitor (sm). These were done to add support for the secure boot process and the creation of
DICE certificates. In this description, the configuration and compilation files are omitted (e.g.
CMakeFiles, Makefiles, . . .).

7.1.1 Algorithms and Libraries

Keystone framework includes in its components the SHA3 [70] and Ed25519 [71] cryptographic
algorithms used respectively to compute the hash of data and to write and verify signatures. Since
they are considered secure algorithms, they were adopted also in that implementation.

Instead, Keystone does not provide any support for the creation and parsing of X.509 cer-
tificates. For this reason, in that version, the x509custom folder was added and includes all the
functions needed for this purpose. In particular, they operate on data in the DER (Distinguished
Encoding Rules) format, one of the encodings supported by the X.509 standard. Those functions
are a custom version of the ones in the Mbed TLS library [72], an open-source project that can
be found at this link [73].

7.1.2 Root of Trust

The main modification done on this component is in the int bootloader() function, which is
invoked at the boot of the device. The new functionalities that were introduced are:

1. Secure Boot: the bootloader verifies the measure of the SM, and if it does not match the
one provided by the manufacturer, the system hangs;

2. Computing the key pairs: in this function, both DevRoot keys and SM ECA keys are
generated;

83

Integration of the Design in the Keystone TEE

SM memory

SHA3

Ed25519
sign

data

Man keys
key pair

TCI SM

TCI SM Signature

Manufacturer

SM memory

SHA3

TCI SM

PK Man
Ed25519

verify

signature

datapublic key

success / failure

Figure 7.1. Secure Boot Process.

3. Issuing of CertSM ECA: the RoT computes the SM ECA key and issues the corresponding
certificate;

4. Retrieving of CertDevRoot: since the CDI changes at any SM modification, to speed up
the development, the CertDevRoot is recomputed at each boot.

The Secure Boot process is shown in Figure 7.1. The RoT computes the hash (SHA3(data))
of the memory of the SM obtaining its TCI. Then, it verifies the signature generated by the
manufacturer using that value. If the operation completes successfully, the boot process continues,
otherwise the system hangs.

Furthermore, the key generation’s process is summarized in Figure 7.2. The seed to create the
DevRoot Keys is the CDIL0, which is computed as follows:

CDIL0 = SHA3(UDS || TCISM)

And the SM ECA Keys are generated from:

seedSMECA = SHA3(CDIL0 || TCISM)

The whole new process that was integrated into Keystone’s Root of Trust is reported in
Figure 7.3 in which it is possible to see that after the generation of the key pair, the RoT issues
the certificate for the SM ECA.

84

Integration of the Design in the Keystone TEE

TCI SM

+

UDS

SHA3

CDI L0

Ed25519
create key pair

DevRoot keys

+

SHA3

seed SM ECA

Ed25519
create key pair

SM ECA keys

Figure 7.2. DICE Keys Generation Process.

However, for developing purposes, the operations that must be executed by the manufacturer
(i.e. signing the SM reference measure and issuing the certificate for the device RoT) are done in
the bootloader function.

Then, it sets the values to be securely provided to the SM, and the new ones are:

• CDIL0: the CDI computed by the RoT;

• PKSM ECA: the public key used by the ECA of the SM;

• PKDevRoot: the public key used by the ECA of the RoT;

• CertMan: the certificate of the manufacturer;

• CertDevRoot: the certificate of the device Root of Trust;

• CertSM ECA: the certificate of the ECA of SM.

The code in bootrom folder that was modified is in the following files:

• bootloader.S: it is the assembly file that invokes the bootloader function and was extended
to support the secure boot;

• bootloader.c: the file that contains the int bootloader() function executed at the boot
of the device and was updated to integrate the DICE architecture and the secure boot;

85

Integration of the Design in the Keystone TEE

Secure Boot

Keys Generation

DevRoot keys

SM ECA keys

Issue X.509
certificate

Issue X.509
certificate

Man keys

Subject Key

Subject Key

Issuer Key

Issuer Key

Cert DevRoot

Cert SM ECA

Manufacturer

SUCCESS

Figure 7.3. DICE Flow Diagram.

• sanctum params.lds: a file that describes how the variables are stored in memory and adds
the data corresponding to DICE certificates and keys;

• string.h: a file containing functions that operate on memory (e.g. memcpy, memset, . . .)
and was extended with other functions;

• test dev key.h: the file containing the values of device keys and extended with the certifi-
cates of the manufacturer and Root of Trust;

• use test key.h: the file that retrieves the values of keys and certificates.

These files were added to introduce new functionalities:

• myString.c: a file containing functions that operate on memory (e.g. memmove, memcmp,
. . .) and strings (e.g. strlen, strcmp, . . .);

• myString.h: header file of myString.c;

• sm sign and pk man.h: header file containing the values provided by the manufacturer used
for tests;

• x509custom/: a folder containing the functions that parse and write X.509 certificates.

86

Integration of the Design in the Keystone TEE

Retrieve values
from memory

Verify DICE
certificates chain

Generate
SM ECA keys

SUCCESS

SUCCESS

Figure 7.4. DICE architecture’s process during SM initialization.

7.1.3 Security Monitor

To retrieve the values provided by the Root of Trust, the folder of OpenSBI (RISC-V Open
Source Supervisor Binary Interface) was updated. This was done because that module contains
the functions that allow the SM to communicate with the underlying hardware. In this way, the
modifications add support to the Secure Boot and the possibility of retrieving the new values
generated by the RoT. The updated patch can be found at:

patches/sm/opensbi/opensbi-firmware-secure-boot.patch

Considering the SM component (sm folder), the main features that were introduced are:

• retrieving the DICE architecture’s values provided by the RoT and their verification;

• integration of DICE architecture in create_enclave function;

• declaration of new methods that extend the SM interface.

During the initialization of the Security Monitor, the function void sm_init(bool cold_boot)

is executed to prepare its environment. In the new version, CertMan, CertDevRoot, and CertSM ECA

are parsed and validated to verify if something anomalous happened during the boot and if they
have the correct values. In the end, it computes the ECA SM keys. This process is shown in
Figure 7.4.

Instead, the computation of enclave keys and certificates is executed in create_enclave func-
tion. The part of code that was added computes the CDIL1, then generates the LAK and issues
its certificate using the ECA of the SM. This process is shown in Figure 7.5.
The seed to generate this key pair is the CDIL1, which is computed as the hash of the concatena-
tion of CDIL0 and TCIenclave:

CDIL1 = SHA3(CDIL0 || TCIenclave)

The last features that were added to this layer are three new functions of the SBI provided
by the Security Monitor to the upper layers. This interface works like system calls, in which
the Runtime or the Linux’s Keystone driver can invoke those methods setting the values of the
registers with the arguments of the function and the identifier that corresponds to the desired SBI
call. This process in the SM is principally managed in sbi_ecall_keystone_enclave_handler

function. It contains a switch that invokes the method depending on the identifier that has been
received. Here are listed the new supported functionalities:

87

Integration of the Design in the Keystone TEE

CDI L0

Enclave Memory

SHA3

Ed25519
create key pair

TCI enclave

+

CDI L1

LAK

Issue X.509
certificateECA SM keys

Subject Key

Issuer Key

Cert LAK

SHA3

Figure 7.5. LAK generation and certification process.

• SBI_CREATE_KEYPAIR - 3007: it generates key pairs using as seed some secrets of the SM
and a value provided by the caller;

• SBI_GET_CHAIN - 3008: it provides the chain of DICE certificates;

• SBI_CRYPTO_INTERFACE - 3009: it executes cryptographic operations using the secret key
that corresponds to the public one provided as a parameter.

The SBI_CREATE_KEYPAIR receives as parameters the pointer to the array of bytes in which
the public key must be stored (pk) and an integer value (seed enc) that is included in the process
of key generation to compute different keys. This function allows the computation of several keys
but the first that is generated is considered the LDevID. Furthermore, in this function, the SM
ECA issues the certificate for the generated key pair and returns it using the pointer received as
a parameter. These operations are shown in Figure 7.6.

88

Integration of the Design in the Keystone TEE

CDI L1

Ed25519
create key pair

seed_enc

+

seed_key_pair

Key pair

SHA3

PK

pk

Key pair

enclave's
metadata in SM

Issue X.509
certificateECA SM keys

Subject Key

Issuer Key

Cert key pair
Cert key pair

issued_crt

Figure 7.6. create_keypair process.

The SBI_GET_CHAIN returns in two buffers the DICE certificates and their sizes. The argu-
ments that it receives are a vector of pointers to byte arrays (certs) for the certificates and a
vector of integer (sizes) in which the exact lengths of the certificates are returned. The output is
organized as follows:

• certs[0] ⇐ CertLAK, sizes[0] = length of CertLAK;

• certs[1] ⇐ CertSM ECA, sizes[1] = length of CertSM ECA;

• certs[2] ⇐ CertDevRoot, sizes[2] = length of CertDevRoot.

The SBI_CRYPTO_INTERFACE receives many parameters which are the flag to choose the cryp-
tographic operation that must be done, the input data and its length, the pointer to the output
buffer, and the pointer to the variable in which the output length is returned, and the public key
of the key pair that must be used. The possible values of the flag are:

• flag = 1: the function computes the attestation evidence signature described in Section 6.3.1
using SKLAK. In this case, the input data is the nonce, and the public key is the PKLDevID

(Figure 7.7);

• flag = 2: the function computes the signature of data using the private key corresponding
to pk.

89

Integration of the Design in the Keystone TEE

data (nonce) TCI enclave PK LDevID

+

SHA3

hash value

Ed25519
sign

LAK

Attestation evidence
signature

key pair

Figure 7.7. Computation of Attestation Evidence Signature.

The access control to these operations is implemented by the SM, which retrieves only the cryp-
tographic material of the enclave that has called the function.

The files that were extended with new functionalities are:

• src/ed25519/sign.c: it is a file of Ed25519 implementation in which the signature verifi-
cation function was added;

• src/ed25519/ed25519.h: header file of the Ed25519 implementation;

• src/enclave.c: this file contains the functions that operate on the enclave. The new
implementations extended the create_enclave function and included create_keypair,
get_cert_chain, and do_crypto_op;

• src/enclave.h: header file corresponding to src/enclave.c;

• src/sm-sbi-opensbi.c: it is the file that contains the handler function for the SM’s SBI
called sbi_ecall_keystone_enclave_handler. That function was extended with the new
SBI calls;

• src/sm-sbi.c: this file includes the wrapper functions that are invoked in the SBI handler
function;

• src/sm-sbi.h: header file corresponding to src/sm- sbi.c;

• src/sm.c: it contains the functions that are executed during the boot of the SM. In the
new version, sm_init, sm_print_hash, and sm_copy_key were updated and validation

function was implemented from scratch;

• src/sm.h. header file corresponding to src/sm.c in which are defined the identifiers of SBI
functions.

90

Integration of the Design in the Keystone TEE

The new files are:

• src/oid custom.h: a file of x509custom implementation;

• src/x509custom.c: a file of x509custom implementation;

• src/x509custom.h: a file of x509custom implementation;

• src/string.c: this file contains the functions that operate on strings and memory contents;

• src/string.h. header file corresponding to src/string.c.

7.2 New integration to existing implementation

The integration of DICE specifications in the Keystone framework has been described in Sec-
tion 7.1. However, in that solution, the enclaves cannot invoke the new functions that were
added to the SBI. To make it possible, the Runtime and Software Development Kit for enclave
applications have been updated.

7.2.1 Runtime

The Runtime module (runtime folder) is included in each enclave to manage the execution of the
TA and let it communicate with the SM. It declares the SBI_CALL macro that receives five argu-
ments, stores them in hardware registers, and executes the ecall assembly instruction. Thanks
to this, the Runtime can call the methods of the SBI as system calls. The five values that it
receives are:

• ext. the identifier of the extension in SM that should be used to handle the request (i.e.
which handler method should be executed). In all wrappers, it is always set to the handler
function described in Section 7.1.3 (i.e. SBI_EXT_EXPERIMENTAL_KEYSTONE_ENCLAVE);

• which: it is the identifier of the method that must be executed;

• arg0, arg1, arg2: the arguments that are passed to the invoked function in that specific
order.

Since the SBI_CRYPTO_INTERFACE method receives six values instead of just three, to pass more,
the SBI_CUSTOM_CALL macro has been defined. The calls to the SBI methods have been wrapped
in functions sbi_create_keypair, sbi_get_cert_chain, and sbi_crypto_interface.

Like in the Security Monitor, also the Runtime contains handler functions for the environ-
mental calls raised by the enclave application. It is defined in call/syscall.c and called
handle_syscall. To make the new SM methods available to the TA, new functions have been
added to the Runtime interface:

• RUNTIME_SYSCALL_CREATE_KEYPAIR - 1005: it invokes the SBI_CREATE_KEYPAIR method
of the SBI;

• RUNTIME_SYSCALL_GET_CHAIN - 1006: it invokes the SBI_GET_CHAIN method of the SBI;

• RUNTIME_SYSCALL_CRYPTO_INTERFACE - 1007: it invokes the SBI_SM_CRYPTO_INTERFACE

method of the SBI;

• RUNTIME_SYSCALL_PRINT_STRING - 1008: it prints the string passed by the enclave appli-
cation.

The files that have been updated in this new version are:

91

Integration of the Design in the Keystone TEE

• call/sbi.c: it contains the functions that call the methods of the SM’s SBI. It is extended
with the ones of the DICE implementation;

• call/syscall.c: the file contains the handler method of the interface provided to the
enclave applications. It is extended to let the enclave invoke the SM methods;

• util/rt util.c: it is extended with new copy buffers;

• include/call/sbi.h: header file of call/sbi.c;

• include/call/syscall.h: header file of call/syscall.c;

• include/util/rt util.h: header file of util/rt util.c.

7.2.2 SDK

The Software Development Kit (sdk folder) is a set of libraries that are created to allow the
development of applications that use the features provided by the Keystone framework. For
example, it includes the functions that host applications invoke to create, run, or destroy enclaves,
but also the ones that raise ocalls in the enclave application.

Like in the Runtime, the SYSCALL macro is defined to invoke the methods of the underlying
interface. But in this case, it receives only the identifier of the method to be invoked and five
arguments that are passed to it. As said in the previous layer, the crypto interface needs six
arguments and for this reason, the CUSTOM_SYSCALL macro has been introduced extending the
number of passed values to six. The functions that have been defined to wrap these calls are:

• create_keypair: wrapper of the call to RUNTIME_SYSCALL_CREATE_KEYPAIR;

• get_cert_chain: wrapper of the call to RUNTIME_SYSCALL_GET_CHAIN;

• crypto_interface: wrapper of the call to RUNTIME_SYSCALL_CRYPTO_INTERFACE;

• rt_print_string: wrapper of the call to RUNTIME_SYSCALL_PRINT_STRING.

In this folder, the files that have been updated are:

• src/app/syscall.c: the file that contains the methods to raise the environmental call of
the Runtime;

• include/app/syscall.h: header file of src/app/syscall.c.

A simplified stack of the Environment Calls in Keystone is shown in Figure 7.8. Even if
many intermediate functions are not represented, it is possible to understand how this process
works. In the beginning, the TA invokes an ecall provided by the SDK (crypto interface in
the example), which corresponds to an ecall RISC-V instruction that triggers the execution of
the underlying handler. In this case, the Runtime handler (handle_syscall) is executed and
invokes the function that corresponds to the received identifier (SYSCALL_CRYPTO_INTERFACE in
the example) that in this case corresponds to another ecall. This time the SM’s handler is triggered
since the execution has the Runtime’s privileges (RISC-V S-mode). Like in the Runtime, the SM’s
handler (sbi_ecall_keystone_enclave_handler) invokes the functions that correspond to the
identifier provided by the caller, which may be different from the one used in the Runtime. When
that function returns, the value is provided to the ecall caller up to the first layer in the stack.

92

Integration of the Design in the Keystone TEE

SDK (TA)

Runtime

void handle_syscall(struct encl_ctx* ctx) {...}

SBI_CUSTOM_CALL(SBI_EXT_EXPERIMENTAL_KEYSTONE_ENCLAVE, SBI_SM_CRYPTO_INTERFACE, flag, data,
data_len, out_buf, out_buf_len, pk);

Security
Monitor

static int sbi_ecall_keystone_enclave_handler(unsigned long extid, unsigned long funcid,
const struct sbi_trap_regs *regs, unsigned long *out_val, struct sbi_trap_info *out_trap)

{...}

unsigned long do_crypto_op(enclave_id eid, int flag, unsigned char* data, int data_len,
unsigned char* out_data, int* len_out_data, unsigned char* pk) {...}

CUSTOM_SYSCALL(SYSCALL_CRYPTO_INTERFACE, flag, data, data_len, out_buf, out_buf_len, pk);

Figure 7.8. Example of an Environment Calls stack in Keystone.

7.2.3 UUID

To differentiate the enclaves that contact the CA, the functions to create the enclave in the Host’s
sdk, linux-keystone-driver, and sm have been modified, introducing a Universally Unique
Identifier (UUID) [74]. This value will be inserted in Subject Name field of DICE certificates and
CSR, more in particular, in the Organization attribute, in this way “O=Enclave-<UUID>”, where
UUID is the representation of that code in hexadecimal characters (8-4-4-4-12). An example is
the following “O=Enclave-01234567-89ab-cdef-0123-456789abcdef”. This code allows the identi-
fication of the several keys belonging to an enclave since the Organization attribute distinguishes
the enclaves, and the Common Name specifies the key’s type (LAK, LDevID, or others).

7.3 Mbed TLS

7.3.1 Integration of libraries in Keystone

Despite the security controls provided by the TEE, if there are bugs or vulnerabilities in the
code of libraries or applications, the adversaries may break the normal execution causing serial
damages before being detected. For this reason, one of the fundamental requirements that have
been defined for the implementation is to reduce as much as possible the amount of code that is
included in the executable to reduce the possibility of bugs and give the opportunity to formally
verify the code. Another advantage of this choice is the possibility of using the applications even
in embedded systems, IoT devices, or whatever other context in which the available memory is
constrained.

Furthermore, another requirement that has been set is the compilation of the enclave applica-
tion without the C standard library (libc) for two main reasons:

• the previous requirement about the size of the code;

• to reduce as much as much as possible the interactions between the enclave and the Linux
operating system.

When functions such as printf are executed, internally they invoke system calls that are redi-
rected to the Linux OS, increasing the attack surface for the adversaries. To remove all these
vulnerabilities, in the implementation, the trusted application is built as a “native” Keystone

93

Integration of the Design in the Keystone TEE

enclave application i.e. without libc and using ocalls to execute functions that are declared in the
host application.

However, parsing and writing X.509 data structures, and establishing TLS channels are com-
plex operations that with custom code are difficult to implement and maintain. For these reasons,
and for having been used in sm and bootrom, the Mbed TLS library was chosen to be used in all
applications of this implementation. In particular, two patches have been created to include the
new features, one for host applications running on Linux OS, and one for enclave applications.
Considering these new implementations compared to the x509custom folder defined in DICE inte-
gration, now the original Mbed TLS functions are integrated with the new features making them
able to support both the standard version and the customized one. The only big difference is the
declaration of the new function mbedtls_pk_parse_ed25519_key to parse Ed25519 keys instead
of modifying mbedtls_pk_parse_public_key.

7.3.2 Mbed TLS for Enclave Applications

The new features that are added to standard Mbed TLS, both by the DICE integration and by
this implementation, are:

• Ed25519: the implementation is copied from the one defined in the Keystone framework,
then it has defined the Ed25519 pk context that can be used by Mbed TLS functions (from
DICE integration);

• SHA3: the hash algorithm present in Keystone has been added to Mbed TLS to be used
by its functions (from DICE integration);

• Adapted to enclave envirment: through configuration files, the standard functions are
removed or replaced with an alternative version for enclave applications (this implementa-
tion);

• Integration of new certificate and CSR extensions: the new extensions described in
Section 6.3.1 have been implemented and included in the library (from DICE integration
and this implementation);

• Declaration of Verifier functions: the prototype of functions that are used by the Verifier
has been defined, and then a mock implementation has been included to test the functions
(this implementation).

The main functions that have been modified in this implementation are:

• x509_crt_verify_chain: this function is used to verify a chain of certificates. It is extended
including the comparison of TCI extensions with reference values;

• x509_csr_parse_extensions: it is used to parse extensions in DER format and is extended
to recognize even the new CSR ones.

Furthermore, the new ones for the management of the CSR extensions are:

• mbedtls_x509write_csr_set_nonce: it sets the nonce extension value in the struct that
represents the CSR;

• mbedtls_x509write_csr_set_attestation_proof: it sets the attestation evidence signa-
ture extension value in the struct that represents the CSR;

• mbedtls_x509write_csr_set_dice_certs: it sets the DICE certificates extension value in
the struct that represents the CSR;

• mbedtls_x509_get_nonce: it is used internally to retrieve the value of the nonce from the
extension in the CSR;

94

Integration of the Design in the Keystone TEE

• mbedtls_x509_get_attestation_proof: it is used internally to retrieve the value of the
attestation evidence signature from the extension in the CSR;

• mbedtls_x509_get_dice_certs: it is used internally to retrieve the values of the DICE
certificates from the extension in the CSR.

In this version, Mbed TLS is extended to support the TCI verification functions that are used
during the validation of the certificate chain and CSR. These are:

• checkTCIValue: it receives the name of the component and the provided TCI and returns
the result of the comparison with the subject’s reference value;

• getAttestationPublicKey: given a chain of DICE certificates, it retrieves the public key
used for verifying attestation and returns it;

• getReferenceTCI: it returns the reference value corresponding to the CSR’s subject.

The last modification that has been implemented is the inclusion of a custom version of the
standard library’s functions to overcome their absence in the enclave environments. This has been
done in two ways:

• definition of setter function in which is passed the function to be used at run-time;

• custom implementation of the function directly in the Mbed TLS library.

An example of the first solution is mbedtls_platform_set_printf which receives the pointer
of the printf function that must be used and assigns it to the mbedtls_printf wrapper that is
present in the library. Instead, examples of the second case are the string manipulation functions
which are included in library/platform.c. However, further details about Mbed TLS patches
can be found in the Developer Manual B.3.

7.3.3 Mbed TLS for Host Applications

The same features of the version for the Trusted Application have been included also in the one
for Linux, except for the modifications that have been done for the execution in the enclave
environment. Furthermore, this library is built both for RISC-V (build riscv folder) and Linux
(build linux folder) to be included in applications that are executed in the two systems. This
is not done for the enclave since those applications can be executed only on RISC-V platforms.

95

Chapter 8

Implementation of Protocol
Applications

This chapter describes three applications developed as a protocol proof of concept. They are the
enclave application (i.e. TA), the software CA, and the verifier.

8.1 Enclave Application

8.1.1 Execution Flow

The enclave-Alice.ke is the TA that wants to contact an external CA (XCA) to certify the
LDevID key pair. Its execution flow is shown in Figure 8.1. Initially, the main function sets
the values of Mbed TLS wrappers, such as mbedtls_printf, because of the absence of Linux
syscalls. Then, it tries to read the LDevID certificate in memory, and if that data is not found,
the main starts the protocol to obtain it from XCA. Firstly, the LDevID is generated by invoking
the create_keypair function of Keystone’s SDK, which returns the corresponding public key
and certificate issued by SM’s ECA. Furthermore, the get_cert_chain is executed to retrieve
the other DICE certificates that are needed after. In particular, those values are used during the
setup of the TLS channel since the TA authenticates itself using the LDevID DICE certificate.
The XCA to validate the client’s certificate uses the manufacturer’s trusted one, so it also needs
the certificates of Device Root of Trust and SM’s ECA to complete the chain.

Once the connection to the XCA is established, the TA sends the request for obtaining the
nonce that must be used in the attestation evidence. If all works out, the application should
receive the response containing the value. Then, the CSR can be generated by populating it with
the fields already described in Section 6.3.1. The values that are set are:

• Subject Name: it is set to: Common Name = “Alice”, Organization = “Enclave-aaaaaaaa-
aaaa-aaaa-aaaa-aaaaaaaaaaaa”;

• Subject Public Key Info: it contains the Ed25519 LDevID public key;

• Key Usage Extension: only digitalSignature attribute is set;

• Nonce Extension: it contains the nonce received from the CA;

• Attestation Evidence Signature Extension: it contains the value computed by the SM
as described in Section 7.1.3;

• DICE Certificates Extension: it contains the certificates of Device RoT, SM’s ECA,
and the enclave’s LAK.

If the verification of the CSR received by the other endpoint terminates successfully, the TA
should receive the response containing the LDevID certificate issued by the XCA. Finally, that
data can be stored in memory to be used hereafter.

96

Implementation of Protocol Applications

Set Mbed TLS functions

Try to retrieve the certificate
from memory

Generate LDevID and get
DICE certificate chain

Establish connection to XCA

Not Found

Send request to
get the nonce

Read nonce from the
response

Generate CSR

Send certification request
containing CSR

Read certificate from the
response

Store the certificate
in memory

Close the connection to XCA

Figure 8.1. Execution flow of TA.

8.1.2 Ocalls

As already mentioned in the last chapters, the TA must be executed in an isolated environment,
which means that invoking Linux syscalls may compromise the application’s security since they
are included in the REE. However, during the execution, the TA may want to communicate in
the network or do other operations that involve the untrusted world. To do this, the Keystone
framework provides a mechanism to the enclave application for invoking functions defined in the
host application that has created it.

In this case, eight functions have been defined in the host application: six to communicate in
the network and two to read and write the certificate in memory. More in detail, they are:

• OCALL_NET_CONNECT: it wraps the mbedtls_net_init function, opening a new socket to
the server;

• OCALL_NET_SEND: it wraps the mbedtls_net_send function, sending a buffer of raw bytes
in the socket;

• OCALL_NET_RECV: it wraps the mbedtls_net_recv function, receiving a buffer of raw bytes
in the socket;

• OCALL_NET_FREE: it wraps the mbedtls_net_free function, freeing the socket resources;

• OCALL_NET_BIND: it wraps the mbedtls_net_bind function, binding the server to the lis-
tening port;

• OCALL_NET_ACCEPT: it wraps the mbedtls_net_accept function, waiting for an incoming
connection;

• OCALL_STORE_CRT: it stores a buffer of raw bytes in the host memory;

• OCALL_READ_CRT: it reads a buffer of raw bytes in host memory.

These implementations work with buffers of raw bytes. i.e. there is no logic in that functions
except the operations of reading and writing, or resource management needed to do them. For
this reason, these methods can be seen as wrappers of the “standard” read and write functions.

97

Implementation of Protocol Applications

The six network ocalls are used to wrap the corresponding Mbed TLS functions responsible for
managing the communication in the network, and the other two are used to open a file, read or
write a buffer of bytes, and close the generated file descriptor.

On the enclave side, the functions that invoke the network ocalls are used in Mbed TLS to
open, close, and exchange records over the socket. Instead, the ocalls that operate on memory
are used to persist the certificate received by the XCA. In this case, the wrappers add an HMAC
to the data in plaintext since it is stored in untrusted memory and it can be corrupted. In this
way, the original data is integrity-protected and any modification can be detected. Other security
properties like confidentiality are not needed because the certificate is public information, so a
possible leakage will not be a problem. The HMAC generation process uses as key a sealing key
generated by the SM through the SBI_SM_GET_SEALING_KEY function.

8.2 Software CA

8.2.1 Execution Flow

The server-CA is a Linux executable defined to simulate the behavior of the XCA used to issue
the LDevID certificate. Differently from a standard server, it can handle only one request at a
time, and issues only the certificates for the protocol defined previously. The two APIs that it
implements are:

• GET /nonce: the API that the client enclave calls to retrieve the nonce;

• POST /csr: the API that the client enclave uses to send the CSR, receiving into the
response, if successful, the corresponding certificate.

The execution flow of the server application is shown in Figure 8.2. Initially, it sets the binding
to the listening port (8067 in the proof of concept), then it waits for an incoming connection. When
the client contacts the server, the two endpoints perform the TLS handshake, and then the XCA
receives the request for the nonce. It uses an RNG function provided by the Mbed TLS library
to generate that value and sends it into the response. As the next step, it receives the CSR into
the request for certification and then starts to verify:

1. the signature using the LDevID public key contained in the CSR;

2. the nonce, comparing it with the one previously sent;

3. the DICE certificates;

4. the attestation evidence signature.

However, to validate the attestation evidence signature, it must contact the Verifier, so after
having generated the request and opened the TLS channel, it sends that signature and receives
the response confirming or disproving the enclave’s trustworthiness. Finally, if all is correct, the
XCA can issue the certificate and send it to the client. In case of any error during any step of
this process, the execution stops and goes back to waiting for a new connection.

The fields that are present in the issued certificate are:

• Version: it is set to X509 version 3;

• Serial Number: it is set to a value of a variable that increases at each issued certificate;

• Signature Algorithm ID: it is set to “ECDSA with SHA512”;

• Issuer Name: it is set to: Common Name = “CA”, Organization = “CertificateAuthority”,
Country = “IT”;

98

Implementation of Protocol Applications

Set binding to listening port

Wait for incoming connections

Establish connection to client

Receive request for the nonce

Receive request

Generate nonce

Send response
containing nonce

Receive certification request
containing CSR

Verify CSR fields except
attestation evidence signature

Establish connection
to verifier

Send verification request
 to the verifier

Generate request to
validate evidence

Read CSR from the request

Read attestation result in the
response

Close the connection
to verifier

Issue certificate

Send certification response
containing the certificate

Close the connection
to client

Figure 8.2. Execution flow of XCA.

• Validity Period: the certificate is valid from January 1st, 2023 to January 1st, 2024;

• Subject Name: it is set to: Common Name = “Alice”, Organization = “CertificateAu-
thority”, Country = “IT”;

• Subject Public Key Info: it contains the Ed25519 public key inserted in the CSR;

• TCI Extension: it contains the TCI of the client enclave;

• Key Usage Extension: it contains the same value inserted in the CSR;

• Basic Constraints Extension: it specifies that the certificate is not for a CA.

8.3 Verifier

8.3.1 Execution Flow

Like the XCA, the Verifier has been implemented as a Linux executable named server-verifier.
In this case, the only API that it provides is POST /attest which is used by the XCA to verify
the attestation evidence signature. The values that are passed in its body are:

• Subject Name: it contains the name of the subject and is used to retrieve the reference
TCI;

• Public Key: it is the public key inserted in the CSR;

99

Implementation of Protocol Applications

Set binding to listening port

Wait for incoming connections

Establish connection to client

Receive request for the
attestation verification

Receive request

Read data from request

Verify data correctness

Send response containing
verification result

Close the connection
to client

Figure 8.3. Execution flow of Verifier.

• Nonce: it is the nonce generated by the XCA;

• Attestation Evidence Signature: it is the value inserted in the CSR extension;

• CertDevRoot: the DICE Device Root of Trust certificate;

• CertSM ECA: the DICE SM’s ECA certificate;

• CertLAK: the DICE LAK certificate of the enclave that generated the CSR.

The execution flow is shown in Figure 8.3. The first steps are similar to those done by the
XCA, and then the Verifier receives the request for attestation verification, extracts the values
from the body, and verifies their correctness:

1. it verifies the DICE certificate chain using the CertMan as a trusted certificate;

2. it computes the hash needed to verify the attestation evidence signature;

3. it verifies that signature and generates the response.

The hash in 2 is computed as follows:

referenceHash = H(nonce || TCIL1 || PKLDevID)

in which nonce is the value generated by the XCA and received in the request, TCIL1 is the
reference value corresponding to the subject enclave, and PKLDevID is the public key sent in the
CSR and provided in a request field. Then, this value is used to verify (verify(signature, data,
pk)) the signature:

result = verify(attestationEvidenceSignature, referenceHash, PKLAK)

In this case, PKLAK is retrieved from the LAK certificate.

If the signature is correct, the Verifier sends a 200 OK response, otherwise a 403 Forbidden

to specify that the value is wrong. Finally, the server goes back to the waiting state.

100

Implementation of Protocol Applications

8.4 Network communication

8.4.1 TLS channels and Trusted Certificates

The TLS channel is established using Mbed TLS functions, however, at the moment, this library
does not fully support TLS 1.3. For this reason, the implementation adopted version 1.2, which
could be updated as soon as the features will become available.

The protocol needs two TLS channels, one between the TA and the XCA, and one between
the XCA and the Verifier. Both of them use the same configuration, i.e. they use mutual authen-
tication of the endpoints, and TLS-ECDHE-ECDSA-WITH-CHACHA20-POLY1305-SHA256 is the cipher
suite that is chosen. This means that both the client and server must authenticate themselves
and the algorithms that are used in the channels are:

• Key exchange/agreement: Ephemeral Diffie-Hellman on Elliptic Curves;

• Authentication: Elliptic Curve Digital Signature Algorithm;

• Stream cipher: ChaCha20-Poly1305, an AEAD algorithm;

• Message authentication: SHA256.

The XCA waits for new connections on port 8067, using for server authentication a self-signed
certificate of its P-521 ECC keys. The values that are set are:

• Signature Algorithm ID: it is set to “ECDSA with SHA256”;

• Issuer Name: it is set to: Common Name = “CA”, Organization = “CertificateAuthority”,
Country = “IT”;

• Validity Period: the certificate is valid from January 1st, 2023 to January 1st, 2024;

• Subject Name: it is set to: Common Name = “CA”, Organization = “CertificateAuthor-
ity”, Country = “IT”;

• Subject Public Key Info: it contains the P-512 XCA’s key;

• Basic Constraints Extension: it specifies that the certificate is for a CA, and the maxi-
mum length of the certificate path below it is 10.

So the client TA uses that certificate as a trusted one to authenticate the server during the
TLS handshake. Instead, the XCA to authenticate the TA uses the manufacturer certificate issued
for the DICE implementation. So, it receives the LDevID certificate issued by the SM’s ECA,
together with the CertSM ECA and CertDevRoot to complete the chain.

The certificate of the XCA is also used during the establishment of the channel to the Verifier,
in which it is sent as the client certificate since it is the one considered trusted by the Verifier,
which is listening on port 8068.

Also this last uses a self-signed certificate for the TLS authentication, and in this case, the
values are:

• Signature Algorithm ID: it is set to “ECDSA with SHA256”;

• Issuer Name: it is set to: Common Name = “Ver”, Organization = “Verifier”, Country
= “IT”;

• Validity Period: the certificate is valid from January 1st, 2023 to January 1st, 2024;

• Subject Name: it is set to: Common Name = “Ver”, Organization = “Verifier”, Country
= “IT”;

• Subject Public Key Info: it contains the P-512 Verifier’s key;

• Basic Constraints Extension: it specifies that the certificate is not for a CA.

In turn, this certificate is considered trusted by the XCA without having intermediate CA
certificates.

101

Chapter 9

Test and Validation

This chapter contains the results of several tests conducted on the proof of concept. Initially,
they are focused on the functionality and performance of the certification protocol, in which they
verify the responses in case of errors in client enclaves’ data and the time required to execute each
step. Furthermore, the chapter includes even an analysis of a TLS channel in which the issued
certificates are used, comparing it with the performances of a channel established with “standard”
certificates. The only party analyzed is the TA since both the XCA and the Verifier applications
are mocks of the real servers that will be used.

9.1 Testbed

The tests have been conducted on a single machine, in which the server-CA and server-verifier

have been run as standard Linux executables, and the enclaves have been run on the QEMU
emulator [75] included in the Keystone project. The testbed was a Samsung Galaxy Book
(NP750XDA-KDGIT) with the following specifications:

• Processor: Intel Core i7-1165G7 @ 2.80GHz;

• RAM: 16 GB LPDDR4x;

• Storage: 1 TB SSD (128 GB for Linux partition);

• OS: Ubuntu 20.04.6 LTS, 64-bit.

The results of the TA performance being obtained on an emulator may be different from the
ones that a physical deployment may produce, and this should be considered in the sections about
the performance tests.

9.2 Testing Certification Protocol

9.2.1 Functional Tests

These functional tests verify the correctness of the protocol even in case of malicious requests,
and to run them, three terminals are required, one in which QEMU is launched with the TA and
the other two to execute the XCA and the Verifier.

The first test analyzes the behavior of the XCA and Verifier in case the SM has been modified
(i.e. its measure has changed), causing the loss of trust in the system. When the TA tries
to contact the CA, the enclave uses an SM’s ECA certificate with a wrong TCI value, which
causes a failure in the certificate verification. The partial output can be seen in Figure 9.1.

102

Test and Validation

Figure 9.1. XCA output in case of SM modification.

Figure 9.2. TA output in case of SM modification.

On the other side of the channel (Figure 9.2), the handshake of the TA terminates with error
MBEDTLS_ERR_NET_CONN_RESET which means that the connection has been reset by the other
peer. The same result is obtained when the enclave is modified since the TCI in the DICE
LDevID certificate changes. The output of this case is shown in Figure 9.3 and Figure 9.4. Other
tests, like the usage of valid certificates by another TA, are omitted since the results will be the
same as in the case of standard certificates.

Another test conducted regards the replay of an old CSR, even from the same node. In this
case, the certification process is stopped by the XCA since the nonce in the CSR is no longer
valid. The terminal of the XCA is shown in Figure 9.5. During the verification of the CSR, the
nonce value doesn’t match an expected one, so the process is stopped, and the response status
code is set to 403 Forbidden. The response received by the TA can be seen in Figure 9.6. The
same result is obtained even in the case of a new CSR but with a nonce different from the one
sent. However, if a request is copied and resent, and the TLS mutual authentication is used, the
client can be detected, and its messages can be filtered.

In the last test of this section, the TA generates a CSR for a key pair created by the enclave
and different from the expected one managed by the SM, so the enclave has both the public key
and private key. Unfortunately for the TA, the Verifier notices a failure in the attestation evidence
signature verification, detects this behavior, and notifies the XCA. This happens even in case of
a wrong signature, causing the stop of the process. The three outputs are shown in Figure 9.7,
Figure 9.8, and Figure 9.9.

9.2.2 Performance Tests

The protocol performance in the TA is measured by reading the number of ticks in the RISC-V
time Control and Status Register and converting them in milliseconds since the frequency of the
emulated processor is 10 MHz. The values are converted by applying this formula:

time [s] =
#Ticks [1]

frequency [Hz]

The following results are generated by executing enclave-Alice.ke ten times and looking at
the ticks elapsed. Firstly, the overall time is measured, which comprises:

• the generation of the LDevID;

• the retrievement of the DICE certificate chain;

103

Test and Validation

Figure 9.3. XCA output in case of enclave modification.

Figure 9.4. TA output in case of enclave modification.

• the channel setup: data structures initialization, channel configuration, and handshake;

• the obtainment of the nonce through the GET /nonce API;

• the generation of the CSR;

• the obtainment of the certificate through the POST /csr API;

• the closure of the channel;

• other instructions like prints and time readings used for debugging purposes.

Even those single steps are evaluated, producing the results reported in Figure 9.10. In that
graphic, it is possible to see that the invocation of the two SBI functions that generate the
LDevID and get the DICE chain are negligible compared to the other times. The most significant
one is for the channel establishment, which requires 287 ms on average. The other step that takes
longer compared to other performances is the request for certification (POST /csr).

However, those values do not represent perfectly the reality. Firstly, the “Others” ms in
Figure 9.10 are not needed in the execution in non-debug mode since they comprise only prints
and time measurements, increasing the overall time. Secondly, the time for GET /nonce and
POST /csr requests is spent mainly waiting for the response, making those values dependent on
XCA and Verifier implementations. So, the overall time in Figure 9.10 should be reduced to 430
ms, in which 310 is the average minimum ms needed for TA execution, and 120 are the ms spent
waiting for the responses of the XCA, and that depends on the RTT and the implementation of the
servers. Those considerations are reported in Figure 9.11, in which the milliseconds are divided
into the ones needed to execute instructions of the TA, the ones needed to establish the channel
(the same as Figure 9.10), and the ones in which the TA is waiting for XCA’s API responses.

Another analysis has been conducted to compare the performances of the enclaves that are
executed after the platform boot and the ones executed as seconds or more. The main difference is
in the channel establishment step, which is reduced in the second case probably because the host
already knows which is the peer that it must contact. The average time is reported in Figure 9.12.

A last unexpected result regards the comparison between the time spent signing with a key
pair known by TA and the time spent doing it using the crypto interface provided by the SM. In
the first case, the average milliseconds after ten executions are 4.36, while in the second one are
0.94, more or less 4.6 times faster. This behavior is probably due to the execution of the SM in a
privileged mode with no interruptions, making the overhead of the SBI call negligible compared
with the performance increase. The enclaves are stopped regularly when the counter reaches a
threshold value, passing to the execution of the host to avoid the enclave blocking the REE. The
measures of the ten executions are shown in Figure 9.13.

104

Test and Validation

Figure 9.5. XCA output in case of CSR replay.

Figure 9.6. TA output in case of CSR replay.

9.3 Testing Trusted Channel

Other tests that have been conducted regard the performance of the Trusted Channel that is
established using the certificates issued by the XCA. Two enclaves have been used to implement
this: enclave-Alice.ke and enclave-Bob.ke, which are executed on two different QEMU in-
stances. Both of them certify the LDevID in the same way by contacting the XCA, but in the
establishment of the channel, enclave-Alice.ke acts as the TLS server, and enclave-Bob.ke

as the client. After the protected communication setup, Bob sends a hello message, “Hello, I’m
Bob!” and then, Alice receives it and responds with “Hello, I’m Alice!”.

The four nodes are shown in Figure 9.14. The two servers are the first executables launched,
then enclave-Alice.ke is started since it must wait for incoming connections, and finally,
enclave-Bob.ke is run.

Two different channels have been opened between the enclaves, a traditional secure channel
in which both parties authenticate themselves using traditional certificates for an EC key pair
that they know, and a trusted channel in which both client and server use the LDevID certificates
issued with the previously described protocol. The only differences between the two cases are
the presence of the TCI certificate extension in the second and the algorithm of the key pair,

105

Test and Validation

Figure 9.7. Ver output in case of wrong key certification.

Figure 9.8. XCA output in case of wrong key certification.

the P-512 curve in the secure channel, and Ed25519 in the trusted channel. Furthermore, the
validation of the new extension is not necessary in this case since that value is provided by a
trusted entity (i.e. the XCA).

106

Test and Validation

Figure 9.9. TA output in case of wrong key certification.

0

100

200

300

400

500

600

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

m
s

Performance of the Certification Protocol, TA

LDevID Generation DICE Chain Retrievement Channel Setup GET /nonce

CSR Generation POST /csr Channel Teardown Others

Figure 9.10. Execution time divided by operation, TA.

9.3.1 Performance Tests

Looking at the performances of both channels, the results reported in Figure 9.15 show the
milliseconds for the whole communication, i.e. the data structures initialization, the handshake,
the exchange of messages, and the deallocation of resources. The step that requires more time
is the channel establishment, which comprises its configuration and the handshake. Even if the
server performance seems worse than the one of the client, the difference between the two is given
by the time when the server is waiting for an incoming connection. If those ms are not considered,

107

Test and Validation

0

100

200

300

400

500

600

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

m
s

Performance of TA by type of instructions

TA instructions Channel Setup Waiting

Figure 9.11. Execution time divided by type of operation, TA.

0

100

200

300

400

500

600

First execution Subsequent executions Average overall executions

A
ve

ra
ge

 t
im

e
(m

s)

Average Performance of the Certification Protocol, TA

LDevID Generation DICE Chain Retrievement Channel Setup GET /nonce

CSR Generation POST /csr Channel Teardown Others

Figure 9.12. Average execution time depending on execution order, TA.

the two performances are more or less the same.

An unexpected result comes from the comparison between the performances of the trusted
channel and the secure channel, which are worse in the second case. There are two possible reasons
for this behavior, the first one is the key pair usage in the SM, which may yield a small overall
improvement, as seen in Figure 9.13. The other is the change in the authentication algorithm

108

Test and Validation

0

1

2

3

4

5

6

7

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

m
s

Comparison between performance of
 ed25519_sign - TA and crypto_interface - SM

ed25519_sign - TA crypto_interface - SM

Figure 9.13. Execution time for signature functions, TA.

enclave-Alice.ke

enclave-Bob.ke

server-verifier

server-CA

1

2

3

Figure 9.14. Nodes in the performance tests.

given by the different keys in the certificates. However, this result can be better analyzed in future
works that regard the implementation and usage of the trusted channel.

109

Test and Validation

0

500

1000

1500

2000

2500

TC - Server TC - Client SC - Server SC - Client

A
ve

ra
ge

 t
im

e
(m

s)

Comparison between performance

Others Channel Setup Accept/Connect

Secure Channel (SC)Trusted Channel (TC)

Figure 9.15. Average execution time in secure channel and trusted channel.

110

Chapter 10

Conclusions

This work started with the state-of-the-art technologies analysis, especially Keystone and DICE,
used to design and implement the certification protocol. As part of this description, the publica-
tions about the trusted channels have been summarized to highlight the possible advantages and
disadvantages of the design choices that the authors made. That study has led to the usage of
extensions in the certificates used to establish the TLS channels.

From the developed high-level certification protocol, in which there is no reference to the
fields of the CSR, attestation report, and certificate, the final version has been designed and im-
plemented, introducing the certificate’s TCI extension, and the CSR’s nonce, attestation evidence
signature, and DICE certificates extensions. It is relevant to highlight the interest of the research
groups in these fields since, if trusted channels will be adopted by the market products, there is
a need for a standard that describes how the attestation evidence must be included as extensions
of certificates and CSRs. For this reason, the high-level protocol developed in this thesis may be
extended by including works about new standard extensions. Furthermore, it will be helpful to
formally verify the developed protocol to prove the absence of possible attacks or, on the contrary,
to discover them and fix the design.

The design has been implemented in the Keystone framework, starting from a version of that
project developed by the TORSEC group to integrate the DICE specifications. Only a few changes
have been made to allow the application to use the new functionalities provided by the security
monitor and to include a UUID of the enclaves. Then, this framework was used to implement the
trusted application that needs an externally certified LDevID. The XCA and the Verifier have
been implemented as mocks since the main objective of the thesis work is focused on the trusted
execution environment and the certification protocol. The demo can be extended to a complete
framework by adopting real-case products for the XCA and Verifier.

One of the leading purposes of this work is the creation of TLS channels in the enclave
applications that have been established using functions of a patched version of the Mbed TLS
library and ocalls that use the Rich Application as a proxy of the communication between the
network and the enclave. Other improvements can be made to the Mbed TLS library patches since
only the functions used in the application implementations have been modified. Thus, the whole
library support may be helpful in the development of new application functionalities. As already
said, the protocol implementation is a proof-of-concept useful to demonstrate the functionality
and performance of the certification protocol and trusted channel establishment inside a Trusted
Application. Some relevant results concern the performances of the SBI cryptographic interface
and the setup of the trusted channel between two enclaves, which are faster than the original
functions.

This thesis work can be a starting point for many other projects. Its objective was to provide
an enclave with a credential that not only represents its identity but also its trustworthiness, and
this has been reached. However, there are many scenarios in which it can be applied and extended.
Another work done by the TORSEC group regards the runtime attestation by which it is possible
to obtain runtime measures of the Keystone’s enclaves, and merging that implementation in the

111

Conclusions

trusted channel could be a promising future work, being able to provide not only an endorsement
value in the TLS certificates but also a fresh attestation measure at the channel establishment.

In conclusion, trusted channels are an emerging topic that many research groups are devel-
oping, and this thesis’s work has tried to contribute to it. They may be a promising evolution
of network communication, improving the security of the information exchanged in the channel,
not only when transmitted but also when managed by the other endpoint since it is known to be
trusted.

112

Bibliography

[1] OMTP Limited, “Trusted Environment: OMTP TR0”, May 28, 2009, https://www.gsma.
com/newsroom/wp-content/uploads/2012/03/omtptrustedenvironmentomtptr0v12.pdf

[2] OMTP Limited, “Advanced Trusted Environment: OMTP TR1”, May
28, 2009, https://www.gsma.com/newsroom/wp-content/uploads/2012/03/

omtpadvancedtrustedenvironmentomtptr1v11.pdf

[3] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution Environment: What It is,
and What It is Not”, IEEE Trustcom/BigDataSE/ISPA, Helsinki (Finland), August 20-22,
2015, pp. 57–64, DOI 10.1109/Trustcom.2015.357

[4] NIAP, “U.S. Government Protection Profile for Separation Kernels in Environments Requir-
ing High Robustness”, June 29, 2007, https://www.niap-ccevs.org/MMO/PP/pp_skpp_hr_
v1.03.pdf

[5] GlobalPlatform, “TEE Protection Profile Version 1.3”, July 2020, https://

globalplatform.org/wp-content/uploads/2016/12/GPD-TEE-Protection-Profile-v1.

3.zip

[6] GlobalPlatform, “TEE Client API Specification”, July 2010, https://globalplatform.

org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf

[7] P.England, “Sealed Storage”, Encyclopedia of Cryptography and Security (H. Tilborg and
S.Jajodia, eds.), pp. 1087–1088, Springer US, 2011, DOI 10.1007/978-1-4419-5906-5 494

[8] The MITRE Corporation, “Screen Capture”, March 20, 2023, https://attack.mitre.org/
techniques/T1513/

[9] The MITRE Corporation, “Input Capture: Keylogging”, March 20, 2023, https://attack.
mitre.org/techniques/T1417/001/

[10] The MITRE Corporation, “Input Capture: GUI Input Capture”, March 20, 2023, https:
//attack.mitre.org/techniques/T1417/002/

[11] The MITRE Corporation, “Phishing”, April 14, 2023, https://attack.mitre.org/

techniques/T1566/

[12] W. H. Wan Hussin, R. Edwards, and P. Coulton, “E-Pass Using DRM in Symbian v8 OS and
TrustZone : Securing Vital Data on Mobile Devices”, International Conference on Mobile
Business, Copenhagen (Denmark), June 26-27, 2006, pp. 14–14, DOI 10.1109/ICMB.2006.14

[13] M. Pirker and D. Slamanig, “A Framework for Privacy-Preserving Mobile Payment on Secu-
rity Enhanced ARM TrustZone Platforms”, IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, Liverpool (UK), June 25-27, 2012,
pp. 1155–1160, DOI 10.1109/TrustCom.2012.28

[14] R. A. Balisane and A. Martin, “Trusted Execution Environment-Based Authentication Gauge
(TEEBAG)”, NSPW-2016: New Security Paradigms Workshop, Granby (Colorado, USA),
September 26-29, 2016, pp. 61–67, DOI 10.1145/3011883.3011892

[15] A.Muñoz, R.Ŕıos, R.Román, and J.López, “A survey on the (in)security of trusted ex-
ecution environments”, Computers & Security, vol. 129, June 2023, p. 103180, DOI
10.1016/j.cose.2023.103180

[16] GlobalPlatform, https://globalplatform.org/
[17] GlobalPlatform, “Introduction to Trusted Execution Environments”,

May 2018, https://globalplatform.org/wp-content/uploads/2018/05/

Introduction-to-Trusted-Execution-Environment-15May2018.pdf

[18] GlobalPlatform, “TEE Client API Specification”, July 2010, https://globalplatform.

org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf

113

https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtptrustedenvironmentomtptr0v12.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtptrustedenvironmentomtptr0v12.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://doi.org/10.1109/Trustcom.2015.357
https://www.niap-ccevs.org/MMO/PP/pp_skpp_hr_v1.03.pdf
https://www.niap-ccevs.org/MMO/PP/pp_skpp_hr_v1.03.pdf
https://globalplatform.org/wp-content/uploads/2016/12/GPD-TEE-Protection-Profile-v1.3.zip
https://globalplatform.org/wp-content/uploads/2016/12/GPD-TEE-Protection-Profile-v1.3.zip
https://globalplatform.org/wp-content/uploads/2016/12/GPD-TEE-Protection-Profile-v1.3.zip
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://doi.org/10.1007/978-1-4419-5906-5_494
https://attack.mitre.org/techniques/T1513/
https://attack.mitre.org/techniques/T1513/
https://attack.mitre.org/techniques/T1417/001/
https://attack.mitre.org/techniques/T1417/001/
https://attack.mitre.org/techniques/T1417/002/
https://attack.mitre.org/techniques/T1417/002/
https://attack.mitre.org/techniques/T1566/
https://attack.mitre.org/techniques/T1566/
https://doi.org/10.1109/ICMB.2006.14
https://doi.org/10.1109/TrustCom.2012.28
https://doi.org/10.1145/3011883.3011892
https://doi.org/10.1016/j.cose.2023.103180
https://globalplatform.org/
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf

Bibliography

[19] GlobalPlatform, “TEE System Architecture v1.3”, May 2022, https://globalplatform.
org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_

PublicRelease_signed.pdf

[20] GlobalPlatform, “Introduction to Secure Elements”, May 2018, https://globalplatform.
org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf

[21] GlobalPlatform, “GlobalPlatform TPS Committee”, 2023, https://globalplatform.org/
technical-committees/trusted-platform-services-tps-committee/

[22] GlobalPlatform, “Secure Element Remote Application Management”, Novem-
ber 2015, https://globalplatform.org/wp-content/uploads/2015/11/GPD_SE_

RemoteApplnMgmt_v1.0.1.pdf

[23] GlobalPlatform, “Secure Element Access Control”, September 2014, https://

globalplatform.org/wp-content/uploads/2014/10/GPD_SE_Access_Control_v1.1.pdf

[24] GlobalPlatform, “GlobalPlatform Specification Library”, 2023, https://globalplatform.
org/specs-library/?filter-committee=tps

[25] GlobalPlatform, “An Introduction to GlobalPlatform’s Device Trust Architec-
ture”, July 2019, https://globalplatform.org/wp-content/uploads/2018/07/

Introduction-to-Device-Trust-Architecture-20July2018.pdf

[26] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “TrustZone Explained: Archi-
tectural Features and Use Cases”, CIC-2016: IEEE 2nd International Conference on Collab-
oration and Internet Computing, Pittsburgh (PA, USA), November 01-03, 2016, pp. 445–451,
DOI 10.1109/CIC.2016.065

[27] V. Costan and S. Devadas, “Intel SGX Explained”, Cryptology ePrint Archive, Paper
2016/086, 2016, https://eprint.iacr.org/2016/086.pdf

[28] Intel Corporation, “Enhanced Security Features for Confidential Computing”, February 2022,
https://cdrdv2.intel.com/v1/dl/getContent/723693?fileName=product-brief-SGX.

pdf

[29] A.Nilsson, P.N.Bideh, and J.Brorsson, “A Survey of Published Attacks on Intel SGX”,
arXiv:2006.13598, June 24, 2020, DOI 10.48550/arXiv.2006.13598

[30] Intel Corporation, “Rising to the Challenge - Data Security
with Intel Confidential Computing”, January 20, 2022, https://

community.intel.com/t5/Blogs/Products-and-Solutions/Security/

Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141

[31] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption”, white paper, Ad-
vanced Micro Devices, October 18, 2021. https://www.amd.com/system/files/TechDocs/
memory-encryption-white-paper.pdf

[32] Intel Corporation, “Intel Trust Domain Extensions”, February 2023, https://

cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf

[33] G.E.Suh, C.W.O’Donnell, and S.Devadas, “Aegis: A Single-Chip Secure Processor”, IEEE
Design & Test of Computers, vol. 24, November-December 2007, pp. 570–580, DOI
10.1109/MDT.2007.179

[34] D. Champagne and R. B. Lee, “Scalable architectural support for trusted software”, HPCA-
2010: 16th International Symposium on High-Performance Computer Architecture, Banga-
lore (India), January 09-14, 2010, pp. 1–12, DOI 10.1109/HPCA.2010.5416657

[35] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware Extensions for Strong
Software Isolation”, 25th USENIX Security Symposium, Austin (TX, USA), August 10-12,
2016, pp. 857–874

[36] P.Jauernig, A.Sadeghi, and E.Stapf, “Trusted Execution Environments: Properties, Appli-
cations, and Challenges”, IEEE Security & Privacy, vol. 18, March-April 2020, pp. 56–60,
DOI 10.1109/MSEC.2019.2947124

[37] A. Waterman and K. Asanović, “The RISC-V Instruction Set Manual Volume I: Un-
privileged ISA”, ISA specification, RISC-V Foundation, December 13, 2019. https:

//github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/

riscv-spec-20191213.pdf

[38] A. Waterman, K. Asanović, and J. Hauser, “The RISC-V Instruction Set Manual Vol-
ume II: Privileged Architecture”, ISA specification, RISC-V International, December 4,
2021. https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/
riscv-privileged-20211203.pdf

114

https://globalplatform.org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_PublicRelease_signed.pdf
https://globalplatform.org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_PublicRelease_signed.pdf
https://globalplatform.org/wp-content/uploads/2022/05/GPD_SPE_009-GPD_TEE_SystemArchitecture_v1.3_PublicRelease_signed.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/technical-committees/trusted-platform-services-tps-committee/
https://globalplatform.org/technical-committees/trusted-platform-services-tps-committee/
https://globalplatform.org/wp-content/uploads/2015/11/GPD_SE_RemoteApplnMgmt_v1.0.1.pdf
https://globalplatform.org/wp-content/uploads/2015/11/GPD_SE_RemoteApplnMgmt_v1.0.1.pdf
https://globalplatform.org/wp-content/uploads/2014/10/GPD_SE_Access_Control_v1.1.pdf
https://globalplatform.org/wp-content/uploads/2014/10/GPD_SE_Access_Control_v1.1.pdf
https://globalplatform.org/specs-library/?filter-committee=tps
https://globalplatform.org/specs-library/?filter-committee=tps
https://globalplatform.org/wp-content/uploads/2018/07/Introduction-to-Device-Trust-Architecture-20July2018.pdf
https://globalplatform.org/wp-content/uploads/2018/07/Introduction-to-Device-Trust-Architecture-20July2018.pdf
https://doi.org/10.1109/CIC.2016.065
https://eprint.iacr.org/2016/086.pdf
https://cdrdv2.intel.com/v1/dl/getContent/723693?fileName=product-brief-SGX.pdf
https://cdrdv2.intel.com/v1/dl/getContent/723693?fileName=product-brief-SGX.pdf
https://doi.org/10.48550/arXiv.2006.13598
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://cdrdv2-public.intel.com/690419/TDX-Whitepaper-February2022.pdf
https://doi.org/10.1109/MDT.2007.179
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1109/MSEC.2019.2947124
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

Bibliography

[39] The Keystone Enclave project, “Keystone’s BootROM”, https://github.com/

keystone-enclave/keystone/tree/master/bootrom

[40] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An Open Frame-
work for Architecting Trusted Execution Environments”, EuroSys-2020: 15th European
Conference on Computer Systems, Heraklion (Greece), April 27-30, 2020, pp. 1–16, DOI
10.1145/3342195.3387532

[41] The Keystone Enclave project, “keystone GitHub repository”, https://github.com/

keystone-enclave/keystone

[42] The Keystone Enclave project, http://docs.keystone-enclave.org/en/latest/index.

html

[43] The Keystone Enclave project, “Keystone’s Attestation example”, https://github.com/
keystone-enclave/keystone/tree/master/sdk/examples/attestation

[44] The Keystone Enclave project, “keystone-demo GitHub repository”, https://github.com/
keystone-enclave/keystone-demo

[45] The Keystone Enclave project, “Eyrie-RT”, https://github.com/keystone-enclave/

keystone/tree/master/runtime

[46] The Keystone Enclave project, “Keystone’s Runtime syscall handler”, https://github.

com/keystone-enclave/keystone/blob/master/runtime/call/syscall.c

[47] K. Goldman, R. Perez, and R. Sailer, “Linking Remote Attestation to Secure Tunnel End-
points”, STC-2006: 1st ACM Workshop on Scalable Trusted Computing, Alexandria (Vir-
ginia, USA), November 03, 2006, pp. 21–24, DOI 10.1145/1179474.1179481

[48] P. G. Wagner and J. Beyerer, “Towards Heterogeneous Remote Attestation Protocols”,
SECRYPT-2022: 19th International Conference on Security and Cryptography, Lisbon (Por-
tugal), July 11-13, 2022, pp. 586–591, DOI 10.5220/0011289000003283

[49] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan, “Beyond Secure Chan-
nels”, STC-2007: 2nd ACMWorkshop on Scalable Trusted Computing, Alexandria (Virginia,
USA), November 02, 2007, pp. 30–40, DOI 10.1145/1314354.1314363

[50] F. Armknecht, Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, G. Ramunno, and D. Vernizzi,
“An Efficient Implementation of Trusted Channels Based on Openssl”, STC-2008: 3rd ACM
Workshop on Scalable Trusted Computing, Alexandria (Virginia, USA), October 31, 2008,
pp. 41–50, DOI 10.1145/1456455.1456462

[51] Trusted Computing Group, “TCG Infrastructure Workgroup Subject Key Attestation Ev-
idence Extension”, June 16, 2005, https://trustedcomputinggroup.org/wp-content/

uploads/IWG_SKAE_Extension_1-00.pdf

[52] S. Santesson, “TLS Handshake Message for Supplemental Data”, RFC-4680, September 2006,
DOI 10.17487/RFC4680

[53] C. Shepherd, R. N. Akram, and K. Markantonakis, “Establishing Mutually Trusted Chan-
nels for Remote Sensing Devices with Trusted Execution Environments”, ARES-2017: 12th
International Conference on Availability, Reliability and Security, Reggio Calabria (Italy),
August 29 - September 01, 2017, pp. 1–10, DOI 10.1145/3098954.3098971

[54] T.Knauth, M.Steiner, S.Chakrabarti, L.Lei, C.Xing, and M.Vij, “Integrating Remote
Attestation with Transport Layer Security”, arXiv:1801.05863, July 26, 2019, DOI
10.48550/arXiv.1801.05863

[55] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten, “Automatic Certificate Man-
agement Environment (ACME)”, RFC-8555, March 2019, DOI 10.17487/RFC8555

[56] G. King and H. Wang, “HTTPA: HTTPS Attestable Protocol”, FICC-2023: Future of Infor-
mation and Communication Conference (Advances in Information and Communication), San
Francisco (CA, USA), March 02-03, 2023, pp. 811–823, DOI 10.1007/978-3-031-28073-3 54

[57] Trusted Computing Group, https://trustedcomputinggroup.org/

[58] Trusted Computing Group, “Trusted Platform Module (TPM) Sum-
mary”, 2008, https://trustedcomputinggroup.org/wp-content/uploads/

Trusted-Platform-Module-Summary_04292008.pdf

[59] Trusted Computing Group, “The DICE Architectures Work Group”, https://

trustedcomputinggroup.org/work-groups/dice-architectures/

[60] Trusted Computing Group, “Hardware Requirements for a Device Identifier Compo-
sition Engine”, March 22, 2018, https://trustedcomputinggroup.org/wp-content/

115

https://github.com/keystone-enclave/keystone/tree/master/bootrom
https://github.com/keystone-enclave/keystone/tree/master/bootrom
https://doi.org/10.1145/3342195.3387532
https://github.com/keystone-enclave/keystone
https://github.com/keystone-enclave/keystone
http://docs.keystone-enclave.org/en/latest/index.html
http://docs.keystone-enclave.org/en/latest/index.html
https://github.com/keystone-enclave/keystone/tree/master/sdk/examples/attestation
https://github.com/keystone-enclave/keystone/tree/master/sdk/examples/attestation
https://github.com/keystone-enclave/keystone-demo
https://github.com/keystone-enclave/keystone-demo
https://github.com/keystone-enclave/keystone/tree/master/runtime
https://github.com/keystone-enclave/keystone/tree/master/runtime
https://github.com/keystone-enclave/keystone/blob/master/runtime/call/syscall.c
https://github.com/keystone-enclave/keystone/blob/master/runtime/call/syscall.c
https://doi.org/10.1145/1179474.1179481
https://doi.org/10.5220/0011289000003283
https://doi.org/10.1145/1314354.1314363
https://doi.org/10.1145/1456455.1456462
https://trustedcomputinggroup.org/wp-content/uploads/IWG_SKAE_Extension_1-00.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_SKAE_Extension_1-00.pdf
https://doi.org/10.17487/RFC4680
https://doi.org/10.1145/3098954.3098971
https://doi.org/10.48550/arXiv.1801.05863
https://doi.org/10.17487/RFC8555
https://doi.org/10.1007/978-3-031-28073-3_54
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf

Bibliography

uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_

For-Publication.pdf

[61] Trusted Computing Group, “DICE Layering Architecture”, July 23, 2020, https://

trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_

pub.pdf

[62] IEEE Computer Society, “IEEE Standard for Local and Metropolitan Area Networks - Secure
Device Identity - Redline”, IEEE Std 802.1AR-2018 (Revision of IEEE Std 802.1AR-2009) -
Redline, August 2018, pp. 1–163

[63] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile”, RFC-
5280, May 2008, DOI 10.17487/RFC5280

[64] Trusted Computing Group, “DICE Certificate Profiles”, July 23, 2020, https://

trustedcomputinggroup.org/wp-content/uploads/DICE-Certificate-Profiles-r01_

pub.pdf

[65] Trusted Computing Group, “DICE Attestation Architecture”, March
01, 2021, https://trustedcomputinggroup.org/wp-content/uploads/

DICE-Attestation-Architecture-r23-final.pdf

[66] L. Lundblade, G. Mandyam, J. O’Donoghue, and C. Wallace, “The Entity Attestation Token
(EAT)”, Internet-Draft draft-ietf-rats-eat-21, Internet Engineering Task Force, June 30, 2023.
https://datatracker.ietf.org/doc/draft-ietf-rats-eat/21/

[67] M. B. Jones, E. Wahlstroem, S. Erdtman, and H. Tschofenig, “CBOR Web Token (CWT)”,
RFC-8392, May 2018, DOI 10.17487/RFC8392

[68] J.-Y.Gu, H.Li, Y.-B.Xia, H.-B.Chen, C.-G.Qin, and Z.-Y.He, “Unified Enclave Abstraction
and Secure Enclave Migration on Heterogeneous Security Architectures”, Journal of Com-
puter Science and Technology, vol. 37, April 2022, pp. 468–486, DOI 10.1007/s11390-021-
1083-8

[69] V. Donnini, “Integration of the DICE specification into the Keystone framework”, 2023,
https://webthesis.biblio.polito.it/secure/27657/1/tesi.pdf

[70] M. Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions”, NIST FIPS 202, August 2015, DOI 10.6028/NIST.FIPS.202

[71] S. Josefsson and I. Liusvaara, “Edwards-Curve Digital Signature Algorithm (EdDSA)”, RFC-
8032, January 2017, DOI 10.17487/RFC8032

[72] MBed TLS, https://mbed-tls.readthedocs.io/en/latest/
[73] MBed TLS, “mbedtls GitHub repository”, https://github.com/Mbed-TLS/mbedtls
[74] P. J. Leach, R. Salz, and M. H. Mealling, “A Universally Unique IDentifier (UUID) URN

Namespace”, RFC-4122, July 2005, DOI 10.17487/RFC4122
[75] QEMU, https://www.qemu.org/
[76] H. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys, P. J. Leach, and

T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1”, RFC-2616, June 1999, DOI
10.17487/RFC2616

[77] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings”, RFC-4648, October 2006,
DOI 10.17487/RFC4648

116

https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://doi.org/10.17487/RFC5280
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Certificate-Profiles-r01_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Certificate-Profiles-r01_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Certificate-Profiles-r01_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Attestation-Architecture-r23-final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Attestation-Architecture-r23-final.pdf
https://datatracker.ietf.org/doc/draft-ietf-rats-eat/21/
https://doi.org/10.17487/RFC8392
https://doi.org/10.1007/s11390-021-1083-8
https://doi.org/10.1007/s11390-021-1083-8
https://webthesis.biblio.polito.it/secure/27657/1/tesi.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.17487/RFC8032
https://mbed-tls.readthedocs.io/en/latest/
https://github.com/Mbed-TLS/mbedtls
https://doi.org/10.17487/RFC4122
https://www.qemu.org/
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC4648

Appendix A

User Manual

This chapter contains the guide to install, build, run, and test the project implemented in this
thesis. The main requirement is to use the Ubuntu OS at version 20.04, 18.04, or 16.04. The one
suggested and used during the development and testing is the 20.04.

A.1 System Deployment

The system must be installed in two directories at the same level to work in the expected way,
as shown in Figure A.1. keystone contains the Keystone framework used to develop the TEE,
and keystone-CA includes the file of the four executables used to implement and test the proof
of concept.

< install_dir >

keystone

keystone-CA

Figure A.1. Directories hierarchy.

A.1.1 Install Keystone

As explained previously, the Keystone framework has been modified, including new functionalities.
Thus, the repository that must be installed is different from the one of the Keystone Enclave
Project [41], and the several steps to install and run it are the following:

1. install dependencies:

$ sudo apt update

$ sudo apt install autoconf automake autotools-dev bc \

bison build-essential curl expat libexpat1-dev flex gawk gcc git \

gperf libgmp-dev libmpc-dev libmpfr-dev libtool texinfo tmux \

117

User Manual

patchutils zlib1g-dev wget bzip2 patch vim-common lbzip2 python3 \

pkg-config libglib2.0-dev libpixman-1-dev libssl-dev screen \

device-tree-compiler expect makeself unzip cpio rsync cmake \

ninja-build p7zip-full

2. install the modified version of the Keystone framework. Execute the following commands
from the installation directory:

$ git clone https://github.com/gBruno99/keystone.git

$ cd keystone

$ git checkout thesis

$./fast-setup.sh

$ source source.sh

3. build the Keystone framework:

$ mkdir build

$ cd build

$ cmake ..

$ make

$ make image

In case of any errors during the installation, the output on the terminal should explain the
reason, providing some suggestions on how to fix them. Further documentation about Keystone
can be found at [42].

A.1.2 Install Keystone-CA

After installing and building the Keystone framework, the keystone-CA repository must be cloned
in the same directory, and it contains the applications executed as proof of concept. To do this,
the following commands must be run:

1. install the repository. Execute the following commands from the installation directory:

$ git clone https://github.com/gBruno99/keystone-CA.git

$ cd keystone-CA

$ git checkout thesis

$./quick-start.sh

2. build the demo:

$./build_working_demo.sh

A.1.3 Run the demo

To run the demo, four terminals are needed. Here, the order in which they must be started is
reported, and which commands must be executed in each of them.

1. Verifier. From the keystone-CA directory run:

$./build/server-verifier/server-verifier

2. XCA. From the keystone-CA directory run:

$./build/server-CA/server-CA

3. TA Alice. From the build directory of keystone run:

118

User Manual

$./scripts/run-qemu-Alice.sh

Then, log in using the credentials:

• buildroot login: root

• Password: sifive

Finally, launch these commands:

insmod keystone-driver.ko

./enclave-Alice.ke

4. TA Bob. From the build directory of keystone run:

$./scripts/run-qemu-Bob.sh

Then, log in using the credentials:

• buildroot login: root

• Password: sifive

Finally, launch these commands:

insmod keystone-driver.ko

./enclave-Bob.ke

To stop the instances of QEMU, the command poweroff must be used.

A.2 Running Tests

A.2.1 Functional Tests

In this version of the Keystone framework, the images/executables built for the functional tests
of the protocol are inserted in a directory named tests trusted channel. The folders that it
contains are:

• sm corrupted: the test in which the SM has a measure different from the reference value;

• eapp corrupted: the test in which the TA has a measure different from the reference value;

• csr replay: the test in which the TA sends an old CSR, failing thanks to the nonce verifi-
cation;

• wrong key: the test in which the TA inserts in the CSR a PK which is different from the
ones managed by the SM.

To run the desired test, only three terminals are required:

1. Verifier. From the chosen test’s directory run:

$./server-verifier

2. XCA. From the chosen test’s directory run:

$./server-CA

3. TA. From the chosen test’s directory run:

$./run-qemu.sh

Then, log in using the credentials:

119

User Manual

• buildroot login: root

• Password: sifive

Finally, launch these commands:

insmod keystone-driver.ko

./enclave-Alice.ke

A.2.2 Performance Tests

To see the number of ticks for each step, three constants have been defined in the enclave files
and can be set to 0 (disabled) or 1 (enabled):

• PERFORMANCE_TEST: if enabled, it inserts the prints of the number of ticks. It can be found
in riscv time.h of enclave-Alice and enclave-Bob directories;

• COMPARE_CRYPTO_OP: if enabled, it inserts the prints of the number of ticks for the two
cryptographic instructions (ed25519 sign and crypto interface). It can be found in eapp.c

of enclave-Alice/eapp directory;

• TRUSTED_CHANNEL: if enabled, it uses the LDevID certificate issued by the XCA to establish
the TLS channel towards the other enclave. In the other case, it uses a normal certificate.
It can be found in eapp.c of enclave-Alice/eapp and enclave-Bob/eapp directories.

After setting the desired configuration, it is necessary to re-build the demo and run it as
explained in Section A.1.2 and Section A.1.3.

120

Appendix B

Developer Manual

B.1 Chain of Environment Calls

The ecall chain used to invoke the SBI functions offered by the SM is described in this section,
focusing on the modifications that have been done to execute the DICE version methods from the
enclave application.

B.1.1 Runtime

The call/sbi.c file defines the functions used to wrap the execution of the ecall instruction.
They consist of wrappers of the MACRO SBI_CALL, which has been extended (Lst. B.1) to receive
in input more parameters, as already described in Section 7.2.1.

Listing B.1. SBI_CUSTOM_CALL, runtime/call/sbi.c.

#define SBI_CUSTOM_CALL(___ext, ___which, ___arg0, ___arg1, ___arg2, ___arg3,

___arg4, ___arg5) \

({ \

register uintptr_t a0 __asm__("a0") = (uintptr_t)(___arg0); \

register uintptr_t a1 __asm__("a1") = (uintptr_t)(___arg1); \

register uintptr_t a2 __asm__("a2") = (uintptr_t)(___arg2); \

register uintptr_t a3 __asm__("a3") = (uintptr_t)(___arg3); \

register uintptr_t a4 __asm__("a4") = (uintptr_t)(___arg4); \

register uintptr_t a5 __asm__("a5") = (uintptr_t)(___arg5); \

register uintptr_t a6 __asm__("a6") = (uintptr_t)(___which); \

register uintptr_t a7 __asm__("a7") = (uintptr_t)(___ext); \

__asm__ volatile("ecall" \

: "+r"(a0) \

: "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5), "r"(a6),

"r"(a7) \

: "memory"); \

a0; \

})

The three new functions (Lst. B.2) that are declared to do this are:

• sbi_create_keypair: wrapper of SBI_CREATE_KEYPAIR;

• sbi_get_cert_chain: wrapper of SBI_GET_CHAIN;

• sbi_crypto_interface: wrapper of SBI_CRYPTO_INTERFACE.

121

Developer Manual

Listing B.2. Runtime’s SBI wrappers, runtime/call/sbi.c.

uintptr_t

sbi_create_keypair(uintptr_t pk, uintptr_t index, uintptr_t issued_crt,

uintptr_t issued_crt_len){

return SBI_CUSTOM_CALL(SBI_EXT_EXPERIMENTAL_KEYSTONE_ENCLAVE,

SBI_SM_CREATE_KEYPAIR, pk, index, issued_crt, issued_crt_len, 0, 0);

}

uintptr_t

sbi_get_cert_chain(uintptr_t certs, uintptr_t sizes){

return SBI_CUSTOM_CALL(SBI_EXT_EXPERIMENTAL_KEYSTONE_ENCLAVE,

SBI_SM_GET_CHAIN, certs, sizes, 0, 0, 0, 0);

}

uintptr_t

sbi_crypto_interface(uintptr_t flag, uintptr_t data, uintptr_t data_len,

uintptr_t out_buf, uintptr_t out_buf_len, uintptr_t pk){

return SBI_CUSTOM_CALL(SBI_EXT_EXPERIMENTAL_KEYSTONE_ENCLAVE,

SBI_SM_CRYPTO_INTERFACE, flag, data, data_len, out_buf, out_buf_len,

pk);

}

These functions are called in the void handle_syscall(struct encl_ctx* ctx), the han-
dler for the ecalls raised by the enclave application (i.e. TA). That function has a switch that
calls the method depending on the function ID received in the parameters. So, to provide a way
for the TA to invoke the SBI functions, new cases have been added (Lst. B.3).

Listing B.3. Runtime’s ecall handler, runtime/call/syscall.c.

case(RUNTIME_SYSCALL_CREATE_KEYPAIR):

buffer_1_pa = kernel_va_to_pa(rt_copy_buffer_1);

ret = sbi_create_keypair(buffer_1_pa, arg1,

kernel_va_to_pa(rt_copy_buffer_2),

kernel_va_to_pa(rt_copy_buffer_3));

if (!ret) {

copy_to_user((void*)arg0, (void*)rt_copy_buffer_1, PUBLIC_KEY_SIZE);

copy_to_user((void*)arg2, (void*)rt_copy_buffer_2,

((int)rt_copy_buffer_3));

copy_to_user((void*)arg3, (void*)rt_copy_buffer_3, sizeof(int));

}

memset(rt_copy_buffer_1, 0x00, sizeof(rt_copy_buffer_1));

memset(rt_copy_buffer_2, 0x00, sizeof(rt_copy_buffer_2));

memset(rt_copy_buffer_3, 0x00, sizeof(rt_copy_buffer_3));

break;

case(RUNTIME_SYSCALL_GET_CHAIN):

tmp_copy_buf_vec[0] = kernel_va_to_pa(rt_copy_buffer_1);

tmp_copy_buf_vec[1] = kernel_va_to_pa(rt_copy_buffer_2);

tmp_copy_buf_vec[2] = kernel_va_to_pa(rt_copy_buffer_3);

ret = sbi_get_cert_chain(kernel_va_to_pa(tmp_copy_buf_vec),

kernel_va_to_pa(sizes));

if (!ret) {

copy_to_user((void*)arg0, (void*)rt_copy_buffer_1, sizes[0]);

copy_to_user((void*)arg1, (void*)rt_copy_buffer_2, sizes[1]);

copy_to_user((void*)arg2, (void*)rt_copy_buffer_3, sizes[2]);

copy_to_user((void*)arg3, (void*)&sizes[0], sizeof(unsigned long));

copy_to_user((void*)arg4, (void*)&sizes[1], sizeof(unsigned long));

copy_to_user((void*)arg5, (void*)&sizes[2], sizeof(unsigned long));

}

122

Developer Manual

memset(rt_copy_buffer_1, 0x00, sizeof(rt_copy_buffer_1));

memset(rt_copy_buffer_2, 0x00, sizeof(rt_copy_buffer_2));

memset(rt_copy_buffer_3, 0x00, sizeof(rt_copy_buffer_3));

memset(tmp_copy_buf_vec, 0x00, sizeof(tmp_copy_buf_vec));

memset(sizes, 0x00, sizeof(sizes));

break;

case(RUNTIME_SYSCALL_CRYPTO_INTERFACE):

copy_from_user(rt_copy_buffer_1, (void*) arg1, arg2);

copy_from_user(rt_copy_buffer_3, (void*) arg5, PUBLIC_KEY_SIZE);

ret = sbi_crypto_interface(arg0, kernel_va_to_pa(rt_copy_buffer_1),

arg2, kernel_va_to_pa(rt_copy_buffer_2),

kernel_va_to_pa(sizes), kernel_va_to_pa(rt_copy_buffer_3));

if (!ret) {

copy_to_user((void*)arg3, (void*)rt_copy_buffer_2, sizes[0]);

copy_to_user((void*)arg4, (void*)sizes, sizeof(unsigned long));

}

memset(rt_copy_buffer_1, 0x00, sizeof(rt_copy_buffer_1));

memset(rt_copy_buffer_2, 0x00, sizeof(rt_copy_buffer_2));

memset(rt_copy_buffer_3, 0x00, sizeof(rt_copy_buffer_3));

memset(sizes, 0x00, sizeof(sizes));

break;

B.1.2 SDK

As introduced in Section 7.2.2, the Keystone’s SDK contains the functions that the applications
use to access the features provided by the SM. Even in this case, the wrapper of the ecall

instruction has been modified (Lst. B.4). Then, the functions (Lst. B.5) to execute Runtime’s
methods have been defined similarly to the ones in the Runtime for the SM.

Listing B.4. SDK’s ecall wrapper, sdk/include/app/syscall.h.

#define CUSTOM_SYSCALL(which, arg0, arg1, arg2, arg3, arg4, arg5) \

({ \

register uintptr_t a0 asm("a0") = (uintptr_t)(arg0); \

register uintptr_t a1 asm("a1") = (uintptr_t)(arg1); \

register uintptr_t a2 asm("a2") = (uintptr_t)(arg2); \

register uintptr_t a3 asm("a3") = (uintptr_t)(arg3); \

register uintptr_t a4 asm("a4") = (uintptr_t)(arg4); \

register uintptr_t a5 asm("a5") = (uintptr_t)(arg5); \

register uintptr_t a7 asm("a7") = (uintptr_t)(which); \

asm volatile("ecall" \

: "+r"(a0) \

: "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5), "r"(a7) \

: "memory"); \

a0; \

})

Listing B.5. SDK’s wrappers, sdk/src/app/syscall.c.

int

create_keypair(void* pk, unsigned long index, void* issued_crt, void*

issued_crt_len){

return CUSTOM_SYSCALL(SYSCALL_CREATE_KEYPAIR, pk, index, issued_crt,

issued_crt_len, 0, 0);

}

int

123

Developer Manual

get_cert_chain(void* cert_1, void* cert_2, void* cert_3, void* size_1, void*

size_2, void* size_3){

return CUSTOM_SYSCALL(SYSCALL_GET_CHAIN, cert_1, cert_2, cert_3, size_1,

size_2, size_3);

}

int

crypto_interface(unsigned long flag, void* data, size_t data_len, void*

out_buf, size_t* out_buf_len, void* pk){

return CUSTOM_SYSCALL(SYSCALL_CRYPTO_INTERFACE, flag, data, data_len,

out_buf, out_buf_len, pk);

}

B.2 The Ocall Execution Process

The ocalls that have been developed and described in Section 8.1.2 are reported in this section.
Before explaining the code, the ocall’s process is summarized to better understand what happens
beyond that function. The SDK provides a wrapper to invoke the ocall method implemented
by the Runtime, similar to the ones already described in Section B.1. The function reported in
Lst. B.6 receives in input the id of the ocall to be executed in the host application, the input data
for that function as a void buffer and its length, and the buffer in which the result must be saved
with its size. Then, that component copies the values in the shared memory to let the host retrieve
them as expected. This process is shown in Figure B.1, in which in the second row there is the
state of the shared buffer before switching to the host. The Runtime sets the call ID received in
parameters, then copies the data in the free memory (addr data) setting the offset in the buffer and
the data length in the specific fields at the beginning of the buffer. When the host application’s
function terminates, and the Runtime resumes the execution, in the call status address it will
find the status in which the host has terminated (success or error), then in call ret offset and
call ret size it will find the offset and the size of the return data that has to be retrieved.

The network ocalls that have been designed and implemented are:

• OCALL_NET_CONNECT: it is a wrapper of mbedtls_net_connect. It receives in input the
port to which it must connect and returns the associated socket descriptor (Listings B.7
and B.15);

• OCALL_NET_SEND: it is a wrapper of mbedtls_net_send. It receives in input the socket
descriptor and the buffer to send in the network and returns the return value of the function
(Listings B.8 and B.16);

• OCALL_NET_RECV: it is a wrapper of mbedtls_net_recv. It receives in input the socket
descriptor and returns the return value of the function and the received data (Listings B.9
and B.17);

• OCALL_NET_FREE: it is a wrapper of mbedtls_net_free. It receives in input the socket
descriptor to be deallocated. (Listings B.10 and B.18);

• OCALL_NET_BIND: it is a wrapper of mbedtls_net_bind. It receives in input the port to
which it would bind and returns the associated socket descriptor (Listings B.11 and B.19);

• OCALL_NET_ACCEPT: it is a wrapper of mbedtls_net_accept. It receives in input the lis-
tening socket descriptor and returns the socket descriptor representing the client connection
(Listings B.12 and B.20).

The ocalls for reading and storing the certificate are more complex than the network ones.
The OCALL_STORE_CRT in the host application (Lst. B.21) is responsible only for storing a buffer
of bytes in untrusted memory. This can be done for the certificate since it is public information,

124

Developer Manual

call_id call_arg_offset call_arg_size call_status call_ret_offset call_ret_size data

shared_buffer addr_data

...

call_id addr_data -
shared_buffer data_len data

addr_data + data_len

return status
value offset return_data_len return data

shared_buffer+offset

shared_buffer+offset
+return_data_len

Figure B.1. Layout of Shared Memory.

however, its integrity can be compromised and for this reason, an HMAC is appended to the
certificate in the TA’s function (Lst. B.13) that invokes the ocall. The OCALL_READ_CRT in the
host (Lst. B.22) reads only the buffer of bytes in memory, and then the TA’s functions (Lst. B.14)
verifies the certificate’s integrity recomputing the HMAC and comparing it with the stored value.

Listing B.6. ocall, sdk/src/app/syscall.c.

int

ocall(

unsigned long call_id, void* data, size_t data_len, void* return_buffer,

size_t return_len) {

return SYSCALL_5(

SYSCALL_OCALL, call_id, data, data_len, return_buffer, return_len);

}

Listing B.7. custom_net_connect - TA, enclave-Alice/eapp/eapp net.c.

int custom_net_connect(mbedtls_net_context *ctx, const char *host, const char

*port, int proto) {

// ...

memcpy(tmp, port, 5);

ret = ocall(OCALL_NET_CONNECT, tmp, 5,(void*) &retval,

sizeof(net_connect_t));

ret |= retval.retval;

if(ret) {

return ret;

} else {

ctx->fd = retval.fd;

}

return 0;

}

Listing B.8. custom_net_send - TA, enclave-Alice/eapp/eapp net.c.

int custom_net_send(void *ctx, const unsigned char *buf, size_t len) {

// ...

*fd = ((mbedtls_net_context *) ctx)->fd;

memcpy(tmp_buf+sizeof(int), buf, len);

ret = ocall(OCALL_NET_SEND, (unsigned char *)tmp_buf, len+sizeof(int),

&retval, sizeof(int));

return ret|retval;

}

125

Developer Manual

Listing B.9. custom_net_recv - TA, enclave-Alice/eapp/eapp net.c.

int custom_net_recv(void *ctx, unsigned char *buf, size_t len) {

// ...

*fd = ((mbedtls_net_context *) ctx)->fd;

ret = ocall(OCALL_NET_RECV, tmp_buf, len, tmp_buf, len + sizeof(int));

int retval = * ((int*)tmp_buf);

memcpy(buf, tmp_buf+sizeof(int), len);

return ret|retval;

}

Listing B.10. custom_net_free - TA, enclave-Alice/eapp/eapp net.c.

void custom_net_free(mbedtls_net_context *ctx) {

int fd = ((mbedtls_net_context *) ctx)->fd;

ocall(OCALL_NET_FREE, (unsigned char *) &fd, sizeof(int), NULL, 0);

}

Listing B.11. custom_net_bind - TA, enclave-Alice/eapp/eapp net.c.

int custom_net_bind(mbedtls_net_context *ctx, const char *bind_ip, const char

*port, int proto) {

// ...

memcpy(tmp, port, 5);

ret = ocall(OCALL_NET_BIND, tmp, 5,(void*) &retval,

sizeof(net_connect_t));

ret |= retval.retval;

if(ret) {

return ret;

} else {

ctx->fd = retval.fd;

}

return 0;

}

Listing B.12. custom_net_accept - TA, enclave-Alice/eapp/eapp net.c.

int custom_net_accept(mbedtls_net_context *bind_ctx, mbedtls_net_context

*client_ctx, void *client_ip, size_t buf_size, size_t *ip_len) {

int fd = ((mbedtls_net_context *) bind_ctx)->fd;

// ...

ret = ocall(OCALL_NET_ACCEPT, (unsigned char *) &fd, sizeof(int), (void*)

&retval, sizeof(net_connect_t));

ret |= retval.retval;

if(ret) {

return ret;

} else {

client_ctx->fd = retval.fd;

}

return 0;

}

Listing B.13. store_crt - TA, enclave-Alice/eapp/eapp crt.c.

int store_crt(unsigned char *crt, size_t crt_len) {

// ...

const mbedtls_md_info_t *md_info =

mbedtls_md_info_from_type(MBEDTLS_MD_SHA256);

unsigned long hmac_len = mbedtls_md_get_size(md_info);

126

Developer Manual

if((ret = get_sealing_key(&key_buffer, sizeof(key_buffer),

(void*)HMAC_KEY_SEED, strlen(HMAC_KEY_SEED))) != 0) {

return -2;

}

memcpy(tmp, crt, crt_len);

if((ret = mbedtls_md_hmac(md_info, key_buffer.key, SEALING_KEY_SIZE, crt,

crt_len, tmp+crt_len)) != 0) {

return -3;

}

ocall(OCALL_STORE_CRT, tmp, crt_len+hmac_len, &ret, sizeof(unsigned

long));

if(ret != (crt_len+hmac_len))

return -1;

return 0;

}

Listing B.14. read_crt - TA, enclave-Alice/eapp/eapp crt.c.

int read_crt(unsigned char *crt, size_t *crt_len) {

// ...

const mbedtls_md_info_t *md_info =

mbedtls_md_info_from_type(MBEDTLS_MD_SHA256);

ocall(OCALL_READ_CRT, NULL, 0, tmp, 1024+sizeof(unsigned long));

len = *((unsigned long *) tmp);

if(len == -1)

return -1;

if((ret = get_sealing_key(&key_buffer, sizeof(key_buffer),

(void*)HMAC_KEY_SEED, strlen(HMAC_KEY_SEED))) != 0) {

return -2;

}

hmac_len = mbedtls_md_get_size(md_info);

*crt_len = len-hmac_len;

if((ret = mbedtls_md_hmac(md_info, key_buffer.key, SEALING_KEY_SIZE,

tmp+sizeof(unsigned long), *crt_len, hmac)) != 0) {

return -3;

}

if(memcmp(hmac, tmp+sizeof(unsigned long)+(*crt_len), hmac_len)!=0) {

return -4;

}

memcpy(crt, tmp+sizeof(unsigned long), *crt_len);

return 0;

}

Listing B.15. net_connect_wrapper - RA, enclave-Alice/host/net.cpp.

void

net_connect_wrapper(void* buffer) {

// ...

mbedtls_net_context server_fd;

mbedtls_net_init(&server_fd);

/* Pass the arguments from the eapp to the exported ocall function */

ret_val = mbedtls_net_connect(&server_fd, SERVER_NAME, (char*) call_args,

MBEDTLS_NET_PROTO_TCP);

net_connect_t ret;

ret.fd = server_fd.fd;

ret.retval = ret_val;

// ...

}

127

Developer Manual

Listing B.16. net_send_wrapper - RA, enclave-Alice/host/net.cpp.

void

net_send_wrapper(void* buffer) {

// ...

mbedtls_net_context server_fd;

server_fd.fd = *((int*)call_args);

/* Pass the arguments from the eapp to the exported ocall function */

ret_val = mbedtls_net_send(&server_fd, (unsigned char *)

call_args+sizeof(int), arg_len-sizeof(int));

// ...

}

Listing B.17. net_recv_wrapper - RA, enclave-Alice/host/net.cpp.

void

net_recv_wrapper(void* buffer) {

// ...

unsigned char recv_buffer[RECV_BUFFER_SIZE+sizeof(int)] = {0};

mbedtls_net_context server_fd;

server_fd.fd = *((int*)call_args);

if(arg_len > RECV_BUFFER_SIZE)

ret_val = -1;

else {

ret_val = mbedtls_net_recv(&server_fd, recv_buffer+sizeof(int), arg_len);

}

((int)recv_buffer) = ret_val;

// ...

}

Listing B.18. net_free_wrapper - RA, enclave-Alice/host/net.cpp.

void

net_free_wrapper(void* buffer) {

// ...

mbedtls_net_context server_fd;

server_fd.fd = *((int*)call_args);

mbedtls_net_free(&server_fd);

ret_val = 0;

// ...

}

Listing B.19. net_bind_wrapper - RA, enclave-Alice/host/net.cpp.

void

net_bind_wrapper(void* buffer) {

// ...

mbedtls_net_context server_fd;

mbedtls_net_init(&server_fd);

/* Pass the arguments from the eapp to the exported ocall function */

ret_val = mbedtls_net_bind(&server_fd, NULL, (char*) call_args,

MBEDTLS_NET_PROTO_TCP);

net_connect_t ret;

ret.fd = server_fd.fd;

ret.retval = ret_val;

// ...

}

128

Developer Manual

Listing B.20. net_accept_wrapper - RA, enclave-Alice/host/net.cpp.

void

net_accept_wrapper(void* buffer) {

// ...

mbedtls_net_context client_fd;

mbedtls_net_context server_fd;

mbedtls_net_init(&client_fd);

server_fd.fd = *((int*)call_args);

/* Pass the arguments from the eapp to the exported ocall function */

ret_val = mbedtls_net_accept(&server_fd, &client_fd, NULL, 0, NULL);

net_connect_t ret;

ret.fd = client_fd.fd;

ret.retval = ret_val;

// ...

}

Listing B.21. store_cert_wrapper - RA, enclave-Alice/host/crt.cpp.

void

store_cert_wrapper(void* buffer) {

// ...

size_t ret;

FILE *fd = fopen(CERT_FILENAME, "w");

if(fd == NULL){

ret = -1;

goto end_store_crt;

}

ret = fwrite((void*) &arg_len, sizeof(size_t), 1, fd);

if(ret != 1) {

ret = -1;

goto end_store_crt;

}

ret = fwrite((void*) call_args, sizeof(unsigned char), arg_len, fd);

if(ret != arg_len) {

ret = -1;

goto end_store_crt;

}

end_store_crt:

if(fd != NULL) fclose(fd);

// ...

}

Listing B.22. read_cert_wrapper - RA, enclave-Alice/host/crt.cpp.

void

read_cert_wrapper(void* buffer) {

// ...

unsigned char tmp[1024+sizeof(size_t)] = {0};

size_t crt_len = sizeof(size_t);

size_t *ret_val = (size_t*) tmp;

size_t ret;

FILE *fd = fopen(CERT_FILENAME, "r");

if(fd == NULL) {

ret = -1;

goto end_read_crt;

}

ret = fread((void*) &crt_len, sizeof(size_t), 1, fd);

if(ret != 1) {

129

Developer Manual

ret = -1;

goto end_read_crt;

}

ret = fread((void*) tmp+sizeof(size_t), sizeof(unsigned char), crt_len, fd);

if(ret != crt_len) {

ret = -1;

goto end_read_crt;

}

end_read_crt:

*ret_val = ret;

if(fd != NULL) fclose(fd);

// ...

}

B.3 Mbed TLS patches

This section describes the Mbed TLS patches that have been introduced in Section 7.3. Firstly,
the new features in the host version are analyzed, then, they are compared to the ones of the
enclave version.

B.3.1 Host’s Mbed TLS

The modification of the Mbed TLS library regards:

• Keystone’s Ed25519 and SHA3 implementations;

• custom extensions of certificates and CSRs;

• Verifier’s functions.

Cryptographic Algorithms

To add support for the two Keystone’s cryptographic algorithms, first of all, the implementation
of Ed25519 and SHA3 have been copied into the library:

• include/mbedtls/ed25519.h

• include/mbedtls/sha3.h

• library/ed25519/

• library/sha3.c

Among the modifications that have been done to allow the usage of these new functions, there
is the extension of the two enums (Listings B.23 and B.24) that identify the md and pk algorithms
with the two new constants MBEDTLS_MD_KEYSTONE_SHA3 and MBEDTLS_PK_ED25519 that repre-
sent respectively the SHA3 and Ed25519 implementations. Furthermore, the info about those
algorithms has been declared in two new constants, mbedtls_keystone_sha3_info (Lst. B.25)
which contains the digest size and block size of SHA3 and mbedtls_ed25519_info (Lst. B.26)
which includes the functions that operate on Ed25519 key pair defined in library/ed25519.c

that were introduced in the DICE integration in Keystone.

Other functions/constants that have been modified or declared are the following:

130

Developer Manual

• struct mbedtls_ed25519_context: the context for the Ed25519 key pair defined in the
DICE integration;

• const hash_entry hash_table[]: it contains the info about the md algorithms that are
retrieved by util functions;

• mbedtls_md: this function computes the digest of the data received in input;

• mbedtls_pk_parse_subpubkey: it is a function used to parse the public key written in
certificates or CSR;

• mbedtls_pk_write_pubkey: it is a function used to write the public key in DER format in
certificates or CSR;

• mbedtls_pk_parse_ed25519_key: it is the function defined in the DICE integration that
is used to create a pk context containing an Ed25519 key pair.

Another constant that has been defined is mbedtls_x509_crt_profile_keystone (Lst. B.27),
a profile used in certificate verification that accepts only signatures computed with Ed25519 and
SHA3. It is needed in the verification of the DICE chain of certificates.

Listing B.23. mbedtls_md_type_t, include/mbedtls/md.h.

typedef enum {

MBEDTLS_MD_NONE=0, /**< None. */

MBEDTLS_MD_MD5, /**< The MD5 message digest. */

MBEDTLS_MD_SHA1, /**< The SHA-1 message digest. */

MBEDTLS_MD_SHA224, /**< The SHA-224 message digest. */

MBEDTLS_MD_SHA256, /**< The SHA-256 message digest. */

MBEDTLS_MD_SHA384, /**< The SHA-384 message digest. */

MBEDTLS_MD_SHA512, /**< The SHA-512 message digest. */

MBEDTLS_MD_RIPEMD160, /**< The RIPEMD-160 message digest. */

MBEDTLS_MD_KEYSTONE_SHA3, // new_impl: Keystone SHA3 message digest

} mbedtls_md_type_t;

Listing B.24. mbedtls_pk_type_t, include/mbedtls/pk.h.

typedef enum {

MBEDTLS_PK_NONE=0,

MBEDTLS_PK_RSA,

MBEDTLS_PK_ECKEY,

MBEDTLS_PK_ECKEY_DH,

MBEDTLS_PK_ECDSA,

MBEDTLS_PK_RSA_ALT,

MBEDTLS_PK_RSASSA_PSS,

MBEDTLS_PK_OPAQUE,

MBEDTLS_PK_ED25519, // new_impl: Ed25519

} mbedtls_pk_type_t;

Listing B.25. mbedtls_keystone_sha3_info, library/md.c.

const mbedtls_md_info_t mbedtls_keystone_sha3_info = {

"KEYSTONE_SHA3",

MBEDTLS_MD_KEYSTONE_SHA3,

KEYSTONE_HASH_MAX_SIZE,

200 - 2*KEYSTONE_HASH_MAX_SIZE,

};

Listing B.26. mbedtls_ed25519_info, library/pk wrap.c.

const mbedtls_pk_info_t mbedtls_ed25519_info = {

131

Developer Manual

MBEDTLS_PK_ED25519,

"ED25519",

ed25519_get_bitlen,

ed25519_can_do,

ed25519_verify_wrap,

ed25519_sign_wrap,

ed25519_decrypt_wrap,

ed25519_encrypt_wrap,

ed25519_check_pair_wrap,

ed25519_alloc_wrap,

ed25519_free_wrap,

ed25519_debug_wrap,

};

Listing B.27. mbedtls_x509_crt_profile_keystone, library/x509 crt.c.

const mbedtls_x509_crt_profile mbedtls_x509_crt_profile_keystone =

{

MBEDTLS_X509_ID_FLAG(MBEDTLS_MD_KEYSTONE_SHA3),

MBEDTLS_X509_ID_FLAG(MBEDTLS_PK_ED25519),

0,

2048, // not supported

};

Certificate and CSR Extensions

As mentioned in previous chapters, the four new extensions to X.509 certificates and CSRs are:

• TCI Extension: it contains the TCI of the component that the certificate belongs to;

• Nonce Extension: it contains the nonce sent by the XCA;

• Attestation Evidence Signature Extension: it contains the attestation evidence sig-
nature generated by the SM;

• DICE Certificates Extension: it contains the chain of DICE certificates, i.e. CertDevRoot,
CertSM ECA, and CertLAK.

First of all, several constants have been defined to represent the extensions and their identifiers
that are needed in the writing and parsing of the structures, and some of them are reported
in Lst. B.28. Then, to manage those values, new fields containing the new extensions have
been added to struct mbedtls_x509_crt (certificate, Lst. B.29) and struct mbedtls_x509_csr

(CSR, Lst. B.30). To set them, specific functions are used:

• the standard mbedtls_x509write_crt_set_extension: this function is used to set the TCI
in certificates;

• mbedtls_x509write_csr_set_nonce: it is used to set the nonce extension in the CSR to
be written (Lst. B.33);

• mbedtls_x509write_csr_set_attestation_proof: it is used to set the attestation evi-
dence signature extension in the CSR to be written (Lst. B.35);

• mbedtls_x509write_csr_set_dice_certs: it is used to set the DICE certificates extension
in the CSR to be written (Lst. B.37).

132

Developer Manual

During the parsing of the certificates, in the function x509_get_crt_ext used to retrieve the
extensions, the case for the TCI has been added as reported in Lst. B.31. Instead, the parsing of
the CSR extensions uses getter methods that have been defined to retrieve those values according
to the setters described before. The new cases in x509_csr_parse_extensions are shown in
Lst. B.32, and the getters in Listings B.34, B.36, and B.38.

Listing B.28. Extensions’ OID, include/mbedtls/oid.h.

#define MBEDTLS_OID_NONCE "\x2B\x65\x60"

#define MBEDTLS_OID_DICE_CERTS "\x2B\x65\x61"

#define MBEDTLS_OID_ATTESTATION_PROOF "\x2B\x65\x62"

#define MBEDTLS_OID_TCI "\xFF\x20\xFF"

Listing B.29. mbedtls_x509_crt, include/mbedtls/x509 crt.h.

typedef struct mbedtls_x509_crt {

// ...

mbedtls_x509_buf hash; // new_impl: TCI of the subject

// ...

}

mbedtls_x509_crt;

Listing B.30. mbedtls_x509_csr, include/mbedtls/x509 csr.h.

typedef struct mbedtls_x509_csr {

// ...

mbedtls_x509_crt cert_chain; // new_impl: chain of DICE certificates

mbedtls_x509_buf nonce; // new_impl: nonce sent by the verifier

mbedtls_x509_buf attestation_proof; // new_impl: attestation evidence

// ...

}

mbedtls_x509_csr;

Listing B.31. x509_get_crt_ext, library/x509 crt.h.

// ...

switch (ext_type) {

// ...

case MBEDTLS_OID_X509_EXT_TCI:

crt ->hash.p = *p;

crt ->hash.len = 64;

*p += 64;

break;

// ...

}

// ...

Listing B.32. x509_csr_parse_extensions, library/x509 csr.h.

// ...

switch (ext_type) {

// ...

case MBEDTLS_X509_EXT_NONCE: // new_impl

/* Parse nonce */

if((ret = mbedtls_x509_get_nonce(p, end_ext_data,

&csr->nonce)) != 0){

133

Developer Manual

return ret;

}

break;

case MBEDTLS_X509_EXT_DICE_CERTS: // new_impl

/* Parse dice certs */

if((ret = mbedtls_x509_get_dice_certs(p, end_ext_data,

&csr->cert_chain)) != 0){

return ret;

}

break;

case MBEDTLS_X509_EXT_ATTESTATION_PROOF: // new_impl

/* Parse attestation proof */

if((ret = mbedtls_x509_get_attestation_proof(p, end_ext_data,

&csr->attestation_proof)) != 0){

return ret;

}

break;

// ...

}

// ...

Listing B.33. Setter of Nonce Extension, library/x509write csr.h.

// custom new_impl: function to write nonce

int mbedtls_x509write_csr_set_nonce(mbedtls_x509write_csr *ctx, unsigned char

*nonce) {

// ...

c = buf + NONCE_LEN + 2;

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(&c, buf, nonce,

NONCE_LEN));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&c, buf, len));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&c, buf,

MBEDTLS_ASN1_OCTET_STRING));

// ...

ret = mbedtls_x509write_csr_set_extension(ctx, MBEDTLS_OID_NONCE,

MBEDTLS_OID_SIZE(MBEDTLS_OID_NONCE), 0, c, (size_t) len);

return ret;

}

Listing B.34. Getter of Nonce Extension, library/x509 csr.h.

// custom new_impl: function to retrieve nonce

static int mbedtls_x509_get_nonce(unsigned char **p, const unsigned char

*end, mbedtls_x509_buf *nonce) {

// ...

if ((ret = mbedtls_asn1_get_tag(p, end, &len,

MBEDTLS_ASN1_OCTET_STRING)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

}

if (*p + len > end || len != NONCE_LEN) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS,

MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);

}

/* Get actual bitstring */

nonce->len = len;

nonce->p = mbedtls_calloc(NONCE_LEN, 1);

memcpy(nonce->p, *p, NONCE_LEN);

*p += len;

134

Developer Manual

return 0;

}

Listing B.35. Setter of Attestation Evidence Signature Extension, library/x509write csr.h.

// custom new_impl: function to write attestation evidence

int mbedtls_x509write_csr_set_attestation_proof(mbedtls_x509write_csr *ctx,

unsigned char *attest_proof) {

// ...

c = buf + ATTESTATION_PROOF_LEN + 2;

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(&c, buf,

attest_proof, ATTESTATION_PROOF_LEN));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&c, buf, len));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&c, buf,

MBEDTLS_ASN1_OCTET_STRING));

// ...

ret = mbedtls_x509write_csr_set_extension(ctx,

MBEDTLS_OID_ATTESTATION_PROOF,

MBEDTLS_OID_SIZE(MBEDTLS_OID_ATTESTATION_PROOF), 0, c, (size_t) len);

return ret;

}

Listing B.36. Getter of Attestation Evidence Signature Extension, library/x509 csr.h.

// custom new_impl: function to retrieve attestation evidence

static int mbedtls_x509_get_attestation_proof(unsigned char **p, const

unsigned char *end, mbedtls_x509_buf *attestation_proof) {

// ...

if ((ret = mbedtls_asn1_get_tag(p, end, &len,

MBEDTLS_ASN1_OCTET_STRING)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

}

if (*p + len > end || len != ATTESTATION_PROOF_LEN) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS,

MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);

}

/* Get actual bitstring */

attestation_proof->len = len;

attestation_proof->p = mbedtls_calloc(ATTESTATION_PROOF_LEN, 1);

memcpy(attestation_proof->p, *p, ATTESTATION_PROOF_LEN);

*p += len;

return 0;

}

Listing B.37. Setter of DICE Certificates Extension, library/x509write csr.h.

// custom new_impl: function to write a single DICE certificate

static int write_certs(unsigned char **p, const unsigned char *start,

unsigned char *cert, int size){

// ...

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(p, start, cert,

size));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, size));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start,

MBEDTLS_ASN1_OCTET_STRING));

return (int) len;

}

// custom new_impl: function to write DICE certificates

135

Developer Manual

int mbedtls_x509write_csr_set_dice_certs(mbedtls_x509write_csr *ctx, unsigned

char *certs[], int *sizes) {

// ...

unsigned char *c = buf + 1024;

MBEDTLS_ASN1_CHK_ADD(len, write_certs(&c, buf, certs[2], sizes[2]));

MBEDTLS_ASN1_CHK_ADD(len, write_certs(&c, buf, certs[1], sizes[1]));

MBEDTLS_ASN1_CHK_ADD(len, write_certs(&c, buf, certs[0], sizes[0]));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&c, buf, len));

MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&c, buf,

MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE));

unsigned char *parsed_certs = buf;

int dif_certs = 1024-len;

parsed_certs += dif_certs;

ret = mbedtls_x509write_csr_set_extension(ctx, MBEDTLS_OID_DICE_CERTS,

MBEDTLS_OID_SIZE(MBEDTLS_OID_DICE_CERTS), 0, parsed_certs, len);

return ret;

}

Listing B.38. Getter of DICE Certificates Extension, library/x509 csr.h.

// custom new_impl: function to parse DICE certificate

static int get_certs(unsigned char **p, const unsigned char *end,

mbedtls_x509_crt *cert_chain) {

// ...

if ((ret = mbedtls_asn1_get_tag(p, end, &len,

MBEDTLS_ASN1_OCTET_STRING)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

}

if (*p + len > end) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS,

MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);

}

if((ret = mbedtls_x509_crt_parse_der(cert_chain, *p, len)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

}

*p += len;

return 0;

}

// custom new_impl: function to retrieve DICE certificates

static int mbedtls_x509_get_dice_certs(unsigned char **p, const unsigned char

*end, mbedtls_x509_crt *cert_chain) {

// ...

mbedtls_x509_crt_init(cert_chain);

if ((ret = mbedtls_asn1_get_tag(p, end, &len,

MBEDTLS_ASN1_CONSTRUCTED |

MBEDTLS_ASN1_SEQUENCE)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

}

end_ext_data = *p + len;

if((ret = get_certs(p, end_ext_data, cert_chain)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

}

if((ret = get_certs(p, end_ext_data, cert_chain)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

}

if((ret = get_certs(p, end_ext_data, cert_chain)) != 0) {

return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_X509_INVALID_EXTENSIONS, ret);

136

Developer Manual

}

return 0;

}

Verifier’s functions

The functions that have been defined to verify the TCI extensions and the attestation evidence
signature are:

• int checkTCIValue(const mbedtls_x509_name *id, const mbedtls_x509_buf *tci):
it receives in id the certificate’s subject name and in tci the TCI contained in its extension.
It returns 0 if the TCI matches the reference value, -1 otherwise;

• int getAttestationPublicKey(mbedtls_x509_crt *crt, unsigned char *pk): given
a chain of DICE certificates crt, it returns in pk the public key that must be used to verify
the attestation evidence extension (i.e. the LAK’s pk);

• int getReferenceTCI(char *subject, unsigned char *tci): it returns in tci the ref-
erence value corresponding to subject.

However, these functions have been implemented as mocks to support the functionality of the
proof of concept. Their code can be found in Listings B.39, B.40, and B.41. Furthermore, an
example of their usage is in function x509_crt_verify_chain (Lst. B.42), which is used to verify
a chain of certificates.

Listing B.39. checkTCIValue, library/verifier utils mock/verifier utils mock.c.

int checkTCIValue(const mbedtls_x509_name *id, const mbedtls_x509_buf *tci) {

char *id_name = (char *) id->val.p;

size_t id_len = id->val.len;

unsigned char * tci_value = tci->p;

size_t tci_len = tci->len;

if(id_len == 12 && strncmp(id_name, "Manufacturer", 12) == 0){

return 0;

}

if(id_len == 13 && strncmp(id_name, "Root of Trust", 13) == 0){

return 0;

}

if(id_len == 16 && strncmp(id_name, "Security Monitor", 16) == 0){

return checkWithRefMeasure(tci_value, tci_len, sm_reference_value,

sm_reference_value_len);

}

if(id_len == 44 && strncmp(id_name,

"Enclave-aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa", 44) == 0){

return checkWithRefMeasure(tci_value, tci_len, alice_reference_value,

alice_reference_value_len);

}

if(id_len == 44 && strncmp(id_name,

"Enclave-bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb", 44) == 0){

return checkWithRefMeasure(tci_value, tci_len, bob_reference_value,

bob_reference_value_len);

}

return -1;

}

Listing B.40. getAttestationPublicKey, library/verifier utils mock/verifier utils mock.c.

int getAttestationPublicKey(mbedtls_x509_crt *crt, unsigned char *pk) {

137

Developer Manual

mbedtls_x509_crt *cur = crt;

while(cur != NULL) {

char *id_name = (char *) (cur->subject).val.p;

size_t id_len = (cur->subject).val.len;

if(id_len == 44 && strncmp(id_name, "Enclave-", 8) == 0) {

memcpy(pk, mbedtls_pk_ed25519(cur->pk)->pub_key, PUBLIC_KEY_SIZE);

return 0;

}

cur = cur->next;

}

return 1;

}

Listing B.41. getReferenceTCI, library/verifier utils mock/verifier utils mock.c.

int getReferenceTCI(char *subject, unsigned char *tci) {

if(strncmp(subject, "Enclave-aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa",

44)==0) {

memcpy(tci, alice_reference_value, alice_reference_value_len);

return 0;

} else if(strncmp(subject,

"Enclave-bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb", 44)==0) {

memcpy(tci, bob_reference_value, bob_reference_value_len);

return 0;

}

return -1;

}

Listing B.42. x509_crt_verify_chain, library/x509 crt.h.

// ...

if((child->sig_pk == MBEDTLS_PK_ED25519) && checkTCIValue(&child->subject,

&child->hash)){

*flags |= MBEDTLS_X509_BADCERT_OTHER;

}

// ...

B.3.2 Enclave’s Mbed TLS

The only main difference between the Enclave’s and Host’s versions is the usage of configuration
and functions to overcome the absence of stdlib, and even the presence of the crypto_interface
function in the ed25519 context.

The configuration of the Mbed TLS library is set in include/mbedtls/mbedtls config.h. By
defining or not constants in that file, it is possible to enable different features of the code, for in-
stance, it is possible to declare setters for some standard functions such as printf, calloc, free,
. . . . One of them is exactly for printf, which is replaced in the enclave with a proper implemen-
tation, and is set through int mbedtls_platform_set_printf(int (*printf_func)(const

char *, ...)), which is a function that receives the function pointer that is used to invoke the
printf when needed. Custom implementation of other functions have been directly added to the
library, and they are: atoi, rand, srand, strcmp, strncmp, strncpy, strchr, and strstr.

Another difference to the host’s version is the usage of the crypto_interface function, which
is missing in the other implementation since it is not in an enclave environment. However, since the
Keystone’s SDK is not included in the library, that function is replaced with a wrapper similar to
how Mbed TLS manages standard functions. Lst. B.43 shows the keystone_crypto_interface

wrapper that is used in the library, and mbedtls_platform_set_keystone_crypto_interface

that is used during development to set the correct function that must be invoked.

138

Developer Manual

Listing B.43. crypto_interface wrapper, library/ed25519.c.

static int std_crypto_interface(unsigned long flag, void* data, size_t

data_len, void* out_buf, size_t* out_buf_len, void* pk) {

(void) flag;

(void) data;

(void) data_len;

(void) out_buf;

(void) out_buf_len;

(void) pk;

return 0;

}

#define STD_CRYPTO_INTERFACE std_crypto_interface

int (*keystone_crypto_interface)(unsigned long flag, void* data, size_t

data_len, void* out_buf, size_t* out_buf_len, void* pk) =

STD_CRYPTO_INTERFACE;

int mbedtls_platform_set_keystone_crypto_interface(int

(*crypto_interface_func)(unsigned long flag, void* data, size_t data_len,

void* out_buf, size_t* out_buf_len, void* pk)){

keystone_crypto_interface = crypto_interface_func;

return 0;

}

B.4 UUID

Since two different enclaves are used for testing purposes, they have to be identified to distinguish
their certificates and TCI values. To do this, the enclave data structures have been extended to
include the UUID, and consequently, the functions responsible for the enclave creation have been
modified.

B.4.1 Security Monitor

The struct enclave (Lst. B.44) has been extended with the uuid field to persist that value,
making the SM able to use it whenever it is necessary. The identifier is received in the parameters
(Lst. B.45) of the create_enclave function (Lst. B.46), in which it is copied into the enclave’s
field. An example of its usage can be already seen in that method since it is used to generate the
LAK certificate’s subject.

Listing B.44. struct enclave, sm/src/enclave.h.

struct enclave

{

// ...

byte uuid[36];

// ...

};

Listing B.45. struct keystone_sbi_create, sm/src/sm.h.

struct keystone_sbi_create

{

struct keystone_sbi_pregion epm_region;

struct keystone_sbi_pregion utm_region;

139

Developer Manual

uintptr_t runtime_paddr;

uintptr_t user_paddr;

uintptr_t free_paddr;

unsigned char uuid[36]; // new implementation

struct runtime_va_params_t params;

unsigned int* eid_pptr;

};

Listing B.46. create_enclave, sm/src/enclave.c.

unsigned long create_enclave(unsigned long *eidptr, struct

keystone_sbi_create create_args)

{

// ...

my_strncpy(crt_subject, "CN=LAK,O=Enclave-", 17);

my_strncpy(crt_subject+17, (char*) create_args.uuid, 36);

// ...

my_strncpy((char*) enclaves[eid].uuid, (char*) create_args.uuid, 36);

// ...

ret =

mbedtls_x509write_crt_set_subject_name_mod(&enclaves[eid].crt_local_att,

crt_subject);

if (ret != 0)

{

return 0;

}

// ...

}

B.4.2 Linux-Keystone-Driver

The main modification in this component regards structs (Listings B.47, B.48, B.49) and the func-
tion int keystone_finalize_enclave(unsigned long arg) in keystone-ioctl.c (Lst. B.50).
They have been extended to set the UUID values received into the parameters and forward it to the
SM. In this case, it is important to notice that struct keystone_sbi_create in SM (Lst. B.45)
and struct keystone_sbi_create_t in LKD (Lst. B.49) have the same fields in the same order
because it is the format in which they exchange the values in memory, so having a different layout
of the two structs would make impossible for the SM to retrieve correctly the inputs.

Listing B.47. struct keystone_ioctl_create_enclave, linux-keystone-driver/keystone user.h.

struct keystone_ioctl_create_enclave {

uintptr_t eid;

//Min pages required

uintptr_t min_pages;

// virtual addresses

uintptr_t runtime_vaddr;

uintptr_t user_vaddr;

uintptr_t pt_ptr;

uintptr_t utm_free_ptr;

140

Developer Manual

//Used for hash

uintptr_t epm_paddr;

uintptr_t utm_paddr;

uintptr_t runtime_paddr;

uintptr_t user_paddr;

uintptr_t free_paddr;

uintptr_t epm_size;

uintptr_t utm_size;

// Runtime Parameters

struct runtime_params_t params;

unsigned char uuid[36]; // new implementation

};

Listing B.48. struct enclave, linux-keystone-driver/keystone.h.

struct enclave

{

unsigned long eid;

int close_on_pexit;

struct utm* utm;

struct epm* epm;

bool is_init;

unsigned char uuid[36]; // new implementation

};

Listing B.49. struct keystone_sbi_create_t, linux-keystone-driver/keystone-sbi.h.

struct keystone_sbi_create_t

{

// Memory regions for the enclave

struct keystone_sbi_pregion_t epm_region;

struct keystone_sbi_pregion_t utm_region;

// physical addresses

uintptr_t runtime_paddr;

uintptr_t user_paddr;

uintptr_t free_paddr;

unsigned char uuid[36]; // new implementation

// Parameters

struct runtime_params_t params;

};

Listing B.50. keystone_finalize_enclave, linux-keystone-driver/keystone-ioctl.c.

int keystone_finalize_enclave(unsigned long arg)

{

// ...

create_args.params = enclp->params;

/** new implementation **/

for(int i = 0; i<36; i++) {

create_args.uuid[i] = enclp->uuid[i];

enclave->uuid[i] = enclp->uuid[i];

}

/***********************/

141

Developer Manual

ret = sbi_sm_create_enclave(&create_args);

// ...

}

B.4.3 SDK

The SDK has been modified to allow the host application to provide the UUID of the enclave
during its creation. Like the LKD, even these structs and functions have been extended to support
this feature. The first update that is highlighted is in struct keystone_ioctl_create_enclave

(Lst. B.53), which is equal to struct keystone_ioctl_create_enclave in the LKD (Lst. B.47)
for the same reason already mentioned for the struct keystone_sbi_create between the LDK
and the SM. Then, the class Params (Lst. B.52) has been extended with two new methods to
set and get the UUID field. These can be used by developers in the main of the host application.
Furthermore, the classes Enclave (Listings B.51, B.54) and KeystoneDevice (Lst. B.55) have
been modified to forward the UUID to the LKD.

Listing B.51. class Enclave, sdk/include/host/Enclave.hpp.

class Enclave {

private:

// ...

unsigned char uuid[UUIDSIZE]; // new implementation

// ...

public:

// ...

};

Listing B.52. class Params, sdk/include/host/Params.hpp.

class Params {

public:

// ...

void setUUID(uint8_t _uuid[]) { // new implementation

for(int i = 0; i < 36; i++){

uuid[i] = _uuid[i];

}

}

// ...

uint8_t* getUUID() {return uuid; } // new implementation

private:

// ...

uint8_t uuid[36]; // new implementation

};

Listing B.53. struct keystone_ioctl_create_enclave, sdk/include/host/keystone user.h.

struct keystone_ioctl_create_enclave {

uintptr_t eid;

// Min pages required

uintptr_t min_pages;

// virtual addresses

uintptr_t runtime_vaddr;

uintptr_t user_vaddr;

142

Developer Manual

uintptr_t pt_ptr;

uintptr_t utm_free_ptr;

// Used for hash

uintptr_t epm_paddr;

uintptr_t utm_paddr;

uintptr_t runtime_paddr;

uintptr_t user_paddr;

uintptr_t free_paddr;

uintptr_t epm_size;

uintptr_t utm_size;

// Runtime Parameters

struct runtime_params_t params;

unsigned char uuid[36]; // new implementation

};

Listing B.54. Enclave::init, sdk/src/host/Enclave.cpp.

Error

Enclave::init(

const char* eapppath, const char* runtimepath, Params _params,

uintptr_t alternatePhysAddr) {

// ...

strncpy((char*) uuid, (char*) _params.getUUID(), 36);

// ...

if (pDevice->finalize(

pMemory->getRuntimePhysAddr(), pMemory->getEappPhysAddr(),

pMemory->getFreePhysAddr(), uuid, runtimeParams) != Error::Success) {

destroy();

return Error::DeviceError;

}

// ...

}

Listing B.55. KeystoneDevice::finalize, sdk/src/host/KeystoneDevice.cpp.

Error

KeystoneDevice::finalize(

uintptr_t runtimePhysAddr, uintptr_t eappPhysAddr, uintptr_t

freePhysAddr, uint8_t uuid[],

struct runtime_params_t params) {

// ...

strncpy((char*)encl.uuid, (char*)uuid, 36);

if (ioctl(fd, KEYSTONE_IOC_FINALIZE_ENCLAVE, &encl)) {

perror("ioctl error");

return Error::IoctlErrorFinalize;

}

return Error::Success;

}

143

Developer Manual

B.5 Applications

In this section, the primary functions that have been implemented in the host and enclave ap-
plications are described. The one used by the TA to generate the CSR is shown in Lst. B.56.
Essentially, it generates an mbedtls_x509write_csr structure that contains the CSR fields, and
then, those values are written in DER format to be sent to the XCA.

Listing B.56. create_csr, enclave-Alice/eapp/eapp.c.

int create_csr(unsigned char *pk, unsigned char *nonce, unsigned char

*certs[], int *sizes, unsigned char *csr, size_t *csr_len){

// ...

unsigned char key_usage = MBEDTLS_X509_KU_DIGITAL_SIGNATURE;

const char subject_name[] =

"CN=Alice,O=Enclave-aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa";

mbedtls_printf("2.11 Generating attestation evidence signature...\n");

crypto_interface(1, nonce, NONCE_LEN, attest_proof, &attest_proof_len,

pk);

// ...

mbedtls_x509write_csr_set_md_alg(&req, MBEDTLS_MD_KEYSTONE_SHA3);

mbedtls_printf("Setting md algorithm\n");

ret = mbedtls_x509write_csr_set_key_usage(&req, key_usage);

mbedtls_printf("Setting key usage - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_csr_set_subject_name(&req, subject_name);

mbedtls_printf("Setting subject - ret: %d\n", ret);

// ...

ret = mbedtls_pk_parse_ed25519_key(&key, pk, PUBLIC_KEY_SIZE,

ED25519_PARSE_PUBLIC_KEY);

mbedtls_printf("Setting PK - ret: %d\n", ret);

// ...

mbedtls_x509write_csr_set_key(&req, &key);

mbedtls_printf("Setting PK context\n");

ret = mbedtls_x509write_csr_set_nonce(&req, nonce);

mbedtls_printf("Setting nonce - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_csr_set_attestation_proof(&req, attest_proof);

mbedtls_printf("Setting attestation evidence signature - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_csr_set_dice_certs(&req, (unsigned char **)certs,

sizes);

mbedtls_printf("Setting chain of DICE certs - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_csr_der(&req, out_csr, CSR_MAX_LEN, NULL, NULL);

mbedtls_printf("Writing CSR - ret: %d\n", *csr_len);

// ...

}

Then, the XCA uses the verify_csr function (Lst. B.57) to validate the nonce and DICE
certificates fields in the received CSR.

Listing B.57. verify_csr, server-CA/host/host.c.

int verify_csr(mbedtls_x509_csr *csr, unsigned char *nonce, int *msg) {

// ...

mbedtls_printf("2.19 Verifying CSR...\n");

ret = mbedtls_md(mbedtls_md_info_from_type(csr->MBEDTLS_PRIVATE(sig_md)),

csr->cri.p, csr->cri.len, csr_hash);

mbedtls_printf("Hashing CSR - ret: %d\n", ret);

144

Developer Manual

// ...

ret = mbedtls_pk_verify_ext(csr->MBEDTLS_PRIVATE(sig_pk),

csr->MBEDTLS_PRIVATE(sig_opts), &(csr->pk),

csr->MBEDTLS_PRIVATE(sig_md), csr_hash, KEYSTONE_HASH_MAX_SIZE,

csr->MBEDTLS_PRIVATE(sig).p, csr->MBEDTLS_PRIVATE(sig).len);

mbedtls_printf("Verify CSR signature - ret: %d\n", ret);

// ...

// Verify nonces equality

ret = csr->nonce.len != NONCE_LEN;

mbedtls_printf("Verify nonce len - ret: %d\n", ret);

// ...

ret = memcmp(csr->nonce.p, nonce, NONCE_LEN);

mbedtls_printf("Verify nonce value - ret: %d\n", ret);

// ...

// Parse trusted certificate

mbedtls_x509_crt_init(&trusted_certs);

ret = mbedtls_x509_crt_parse_der(&trusted_certs, ref_cert_man,

ref_cert_man_len);

mbedtls_printf("Parsing Trusted Certificate - ret: %d\n", ret);

// ...

// Verify chain of certificates

ret = mbedtls_x509_crt_verify_with_profile(&(csr->cert_chain),

&trusted_certs, NULL, &mbedtls_x509_crt_profile_keystone, NULL,

&flags, NULL, NULL);

mbedtls_printf("Verifying Chain of Certificates - ret: %u, flags = %u\n",

ret, flags);

// ...

}

The attestation evidence signature is verified by sending a request to the Verifier, which checks
it using the verify_attest_evidence(Lst. B.58). That function generates the same hash that
the enclave is expected to have used and verifies the signature using this value.

Listing B.58. verify_attest_evidence, server-verifier/host/host.c.

int verify_attest_evidence(unsigned char *buf, size_t buf_len, unsigned char

*resp, size_t *resp_len) {

// ...

mbedtls_printf("\n2.21 Reading attestation message...\n");

if (sscanf((const char *)buf, POST_ATTESTATION_REQUEST_START, &body_len)

!= 1) {

// ...

}

// ...

if((ret = get_encoded_field(buf, buf_len, &len,

POST_ATTESTATION_REQUEST_SUBJECT, o, &o_len, 0)) != 0) {

// ...

}

mbedtls_printf("O: %s, %lu\n", o, o_len);

if((ret = get_encoded_field(buf, buf_len, &len,

POST_ATTESTATION_REQUEST_PK, pk, &pk_len, 1)) != 0) {

// ...

}

print_hex_string("PK", pk, pk_len);

if((ret = get_encoded_field(buf, buf_len, &len,

POST_ATTESTATION_REQUEST_NONCE, nonce, &nonce_len, 1)) != 0) {

// ...

}

print_hex_string("nonce", nonce, nonce_len);

145

Developer Manual

if((ret = get_encoded_field(buf, buf_len, &len,

POST_ATTESTATION_REQUEST_ATTEST_SIG, attest_evd, &attest_evd_len, 1))

!= 0) {

// ...

}

print_hex_string("attest_evd_sign", attest_evd, attest_evd_len);

if((ret = get_encoded_field(buf, buf_len, &len,

POST_ATTESTATION_REQUEST_CRT_DEVROOT, tmp_crt, &tmp_crt_len, 1)) != 0

||

(ret = mbedtls_x509_crt_parse_der(&dice_certs, tmp_crt, tmp_crt_len))

!= 0) {

// ...

}

print_hex_string("DevRoot crt", tmp_crt, tmp_crt_len);

tmp_crt_len = CERTS_MAX_LEN;

if((ret = get_encoded_field(buf, buf_len, &len,

POST_ATTESTATION_REQUEST_CRT_SM, tmp_crt, &tmp_crt_len, 1)) != 0 ||

(ret = mbedtls_x509_crt_parse_der(&dice_certs, tmp_crt, tmp_crt_len))

!= 0) {

// ...

}

print_hex_string("SM ECA crt", tmp_crt, tmp_crt_len);

tmp_crt_len = CERTS_MAX_LEN;

if((ret = get_encoded_field(buf, buf_len, &len,

POST_ATTESTATION_REQUEST_CRT_LAK, tmp_crt, &tmp_crt_len, 1)) != 0 ||

(ret = mbedtls_x509_crt_parse_der(&dice_certs, tmp_crt, tmp_crt_len))

!= 0) {

// ...

}

print_hex_string("LAK crt", tmp_crt, tmp_crt_len);

if(memcmp(buf+len, POST_ATTESTATION_REQUEST_END,

sizeof(POST_ATTESTATION_REQUEST_END)) != 0){

// ...

}

len += sizeof(POST_ATTESTATION_REQUEST_END);

if(body_len != (len-(sizeof(POST_ATTESTATION_REQUEST_START)-1+digits)-1))

{

mbedtls_printf("Received less bytes than expected 2\n\n");

// ...

}

// Start fields validation

mbedtls_printf("\nValidating fields...\n");

ret = mbedtls_x509_crt_parse_der(&trusted_certs, ref_cert_man,

ref_cert_man_len);

mbedtls_printf("Parsing Trusted Certificate - ret: %d\n", ret);

// ...

// Verify chain of certificates

ret = mbedtls_x509_crt_verify_with_profile(&dice_certs, &trusted_certs,

NULL, &mbedtls_x509_crt_profile_keystone, NULL, &flags, NULL, NULL);

mbedtls_printf("Verifing Chain of Certificates - ret: %u, flags = %u\n",

ret, flags);

// ...

// Verify attestation evidence signature

// Get LAK public key

ret = getAttestationPublicKey(&dice_certs, verification_pk);

mbedtls_printf("Getting LAK PK - ret: %d\n", ret);

// ...

146

Developer Manual

// Get enclave reference TCI

ret = getReferenceTCI((char*) o, reference_tci);

mbedtls_printf("Getting Enclave Reference TCI - ret: %d\n", ret);

// ...

// Compute reference attestation evidence

sha3_init(&ctx_hash, KEYSTONE_HASH_MAX_SIZE);

sha3_update(&ctx_hash, nonce, NONCE_LEN);

sha3_update(&ctx_hash, reference_tci, KEYSTONE_HASH_MAX_SIZE);

sha3_update(&ctx_hash, pk, PUBLIC_KEY_SIZE);

sha3_final(fin_hash, &ctx_hash);

// Verify signature of the attestation evidence

ret = mbedtls_pk_parse_ed25519_key(&key, verification_pk,

PUBLIC_KEY_SIZE, ED25519_PARSE_PUBLIC_KEY);

mbedtls_printf("Parsing LAK PK - ret: %d\n", ret);

// ...

ret = mbedtls_pk_verify_ext(MBEDTLS_PK_ED25519, NULL, &key,

MBEDTLS_MD_KEYSTONE_SHA3, fin_hash, KEYSTONE_HASH_MAX_SIZE,

attest_evd, attest_evd_len);

mbedtls_printf("Verifying attestation evidence signature - ret: %d\n\n",

ret);

// ...

gen_resp:

mbedtls_x509_crt_free(&trusted_certs);

mbedtls_x509_crt_free(&dice_certs);

mbedtls_pk_free(&key);

switch(msg) {

case STATUS_OK:

memcpy(resp, HTTP_RESPONSE_200, sizeof(HTTP_RESPONSE_200));

*resp_len = sizeof(HTTP_RESPONSE_200);

break;

case STATUS_BAD_REQUEST:

memcpy(resp, HTTP_RESPONSE_400, sizeof(HTTP_RESPONSE_400));

*resp_len = sizeof(HTTP_RESPONSE_400);

break;

case STATUS_FORBIDDEN:

memcpy(resp, HTTP_RESPONSE_403, sizeof(HTTP_RESPONSE_403));

*resp_len = sizeof(HTTP_RESPONSE_403);

break;

default:

memcpy(resp, HTTP_RESPONSE_500, sizeof(HTTP_RESPONSE_500));

*resp_len = sizeof(HTTP_RESPONSE_500);

break;

}

return ret;

}

If the XCA receives a successful response from the Verifier, it issues the certificate using the
issue_crt function (Lst. B.58) similar to the ones used by DICE ECAs.

Listing B.59. issue_crt, server-CA/host/host.c.

int issue_crt(mbedtls_x509_csr *csr, unsigned char *crt, size_t *crt_len) {

// ...

serial[2] = num_crt;

num_crt++;

print_hex_string("serial", serial, 3);

if(strncmp((char*)csr->subject.val.p, "Alice", 5)==0) {

mbedtls_printf("crt is for Alice!\n");

strncpy(crt_subject, "CN=Alice,O=CertificateAuthority,C=IT", 37);

147

Developer Manual

} else if(strncmp((char*)csr->subject.val.p, "Bob", 3)==0) {

mbedtls_printf("crt is for Bob!\n");

strncpy(crt_subject, "CN=Bob,O=CertificateAuthority,C=IT", 35);

}

// ...

// Get enclave reference TCI

ret = csr_get_organization(csr, (unsigned char *) o, &o_len);

// ...

ret = getReferenceTCI(o, reference_tci);

mbedtls_printf("Getting Reference Enclave TCI - ret: %d\n", ret);

// ...

ret = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy,

(const unsigned char *) pers,

strlen(pers));

mbedtls_printf("Seeding RNG - ret: %d\n", ret);

// ...

// Set certificate fields

mbedtls_printf("Setting Certificate fields...\n");

ret = mbedtls_x509write_crt_set_issuer_name(&cert_encl,

"CN=CA,O=CertificateAuthority,C=IT");

mbedtls_printf("Setting issuer - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_crt_set_subject_name(&cert_encl, crt_subject);

mbedtls_printf("Setting subject - ret: %d\n", ret);

// ...

ret = mbedtls_pk_parse_key(&issu_key, (const unsigned char *) ca_key_pem,

ca_key_pem_len, NULL, 0,

mbedtls_ctr_drbg_random, &ctr_drbg);

mbedtls_printf("Parsing issuer key - ret: %d\n", ret);

// ...

ret = mbedtls_pk_parse_ed25519_key(&subj_key,

mbedtls_pk_ed25519(csr->pk)->pub_key, PUBLIC_KEY_SIZE,

ED25519_PARSE_PUBLIC_KEY);

mbedtls_printf("Parsing subject PK - ret: %d\n", ret);

// ...

mbedtls_x509write_crt_set_subject_key(&cert_encl, &subj_key);

mbedtls_printf("Setting subject key\n");

mbedtls_x509write_crt_set_issuer_key(&cert_encl, &issu_key);

mbedtls_printf("Setting issuer keys\n");

ret = mbedtls_x509write_crt_set_serial_raw(&cert_encl, serial, 3);

mbedtls_printf("Setting serial - ret: %d\n", ret);

// ...

mbedtls_x509write_crt_set_md_alg(&cert_encl, MBEDTLS_MD_SHA512);

mbedtls_printf("Setting md algorithm\n");

ret = mbedtls_x509write_crt_set_validity(&cert_encl, "20230101000000",

"20240101000000");

mbedtls_printf("Setting validity - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_crt_set_extension(&cert_encl, MBEDTLS_OID_TCI, 3,

0, reference_tci, KEYSTONE_HASH_MAX_SIZE);

mbedtls_printf("Setting TCI - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_crt_set_key_usage(&cert_encl, csr->key_usage);

mbedtls_printf("Setting key usage - ret: %d\n", ret);

// ...

ret = mbedtls_x509write_crt_set_basic_constraints(&cert_encl, 0, 0);

mbedtls_printf("Setting basic constraints- ret: %d\n", ret);

148

Developer Manual

// ...

// Writing certificate

ret = mbedtls_x509write_crt_der(&cert_encl, cert_der, len_cert_der_tot,

mbedtls_ctr_drbg_random, &ctr_drbg);

mbedtls_printf("Writing Enclave Certificate - ret: %d\n", ret);

// ...

}

B.6 HTTP messages

The data in the TLS channels is exchanged using HTTP messages, which are reported below. In
particular, they use HTTP/1.1 [76], and the buffers of bytes are base64 encoded [77]. Furthermore,
in the responses, all the other headers or body fields are omitted to simplify the verification in the
client because the leading purpose of those messages is to carry the response status for security
reasons, not for being user-friendly.

B.6.1 TA - XCA Communication

The GET request that the TA uses to retrieve the nonce is shown in Lst. B.60. The only headers
that it has are Host, mandatory in HTTP 1.1, and Content-Length which is set to 0 since there
is not the request’s body. An example of the response received is shown in Lst. B.61 in which the
nonce is provided as a JSON object in the body. Similarly are generated the certification request
and its response, and can be seen in Lst. B.62 and Lst. B.63. The request contains only the CSR
base64 encoded, and in the response the TA can find the issued certificate.

The XCA can also send responses with status codes different from 200 OK, and they are:

• 400 Bad Request: it is used to highlight a badly formatted request, for example, a certifi-
cation request without CSR;

• 403 Forbidden: it is used when the parsing of the request terminates successfully but the
fields’ values are not the expected ones, for example, the nonce in the CSR is not the one
sent by the CA;

• 500 Internal Server Error: it is used when there are errors in the base64 encoding or
the communication XCA-Verifier.

B.6.2 XCA - Ver Communication

The request used in the protocol for verifying the attestation evidence signature is reported in
Lst. B.64. The fields in its body are:

• subject o: it contains the Organization of the CSR subject, i.e. the enclave’s UUID;

• pk: it contains the public key in the CSR;

• nonce: it is the nonce generated by the CA and must be used to verify the attestation
evidence signature;

• attest evd sign: the attestation evidence signature in the CSR;

• dice cert devroot: the DICE CertDevRoot in the CSR;

• dice cert sm: the DICE CertSM ECA in the CSR;

• dice cert lak: the DICE CertLAK in the CSR.

149

Developer Manual

In case the verification ends successfully, the Verifier sends a 200 OK response as the one shown
in Lst. B.65. However, the other possible responses that the XCA can receive are:

• 400 Bad Request: it is used to highlight a badly formatted request, for example, a missing
field;

• 403 Forbidden: it is used when the parsing of the request terminates successfully, but the
fields’ values are not the expected ones, for example, the verification of the DICE certificate
chain or attestation evidence signature fails;

• 500 Internal Server Error: it is used when there are errors in the Verifier’s internal
functions.

Listing B.60. Example of HTTP request for nonce.

GET /nonce HTTP/1.1

Host: www.ca.org

Content-Length: 0

Listing B.61. Example of HTTP response for nonce.

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 67

{

"nonce": "tDa7MFS9bogOIhrOt/p4a6k+9hmY2tPj/XJxU/MZQWw="

}

Listing B.62. Example of HTTP request for certification.

POST /csr HTTP/1.1

Host: www.ca.org

Content-Type: application/json

Content-Length: 1685

{

"csr": "MIIE3DCC ... AYxezbEF"

}

Listing B.63. Example of HTTP response for certification.

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 681

{

"crt": "MIIB6jCC ... Jq4lLH5I="

}

Listing B.64. Example of HTTP request for attestation verification.

POST /attest HTTP/1.1

Host: www.ver.org

Content-Type: application/json

Content-Length: 1543

{

"subject_o": "Enclave-aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa",

"pk": "ua31gh9cjcSa/8tcyNybPtOdCmmlEKEWydhsn0z6lUo=",

150

Developer Manual

"nonce": "tDa7MFS9bogOIhrOt/p4a6k+9hmY2tPj/XJxU/MZQWw=",

"attest_evd_sig": "rWAuf9jQ ... at714PBw==",

"dice_cert_devroot": "MIH7MIGs ... rzpdBQg=",

"dice_cert_sm": "MIIBSDCB ... vlIv9Ac=",

"dice_cert_lak": "MIIBLjCB ... tTPWKboG"

}

Listing B.65. Example of e successful HTTP response for attestation verification.

HTTP/1.1 200 OK

Content-Length: 0

Listing B.66. Example of Bad Request HTTP response.

HTTP/1.1 400 Bad Request

Content-Length: 0

Listing B.67. Example of Forbidden HTTP response.

HTTP/1.1 403 Forbidden

Content-Length: 0

Listing B.68. Example of Internal Server Error HTTP response.

HTTP/1.1 500 Internal Server Error

Content-Length: 0

151

	Introduction
	Trusted Execution Environment (TEE)
	TEE concept and key features
	Introduction to Trusted Execution Environments
	Key feature: Trust
	Building blocks
	Use Cases
	Attacks

	Global Platform specifications
	Trusted Execution Environment (TEE)
	Secure Element (SE)
	Trusted Platform Services (TPS)

	Existing TEE solutions
	Commercial TEEs (proprietary)
	Academic TEEs (open source)
	Trade-offs in existing TEEs

	Keystone
	Framework for Customizable TEEs
	Keystone requisites
	RISC-V
	Root of Trust

	Threat Model
	Keystone design
	Security Monitor
	Modular Runtime

	Security Evaluation

	Trusted Channels: Beyond Secure Channels
	Trusted channel
	Motivations
	Definition and Requirements Analysis

	Proposed Solutions
	Linking Remote Attestation to Secure Tunnel Endpoints
	A possible design of Remote Trusted Channel
	An efficient implementation of Trusted Channels
	Trusted Channels for Remote Sensing Devices
	Integration of SGX's Remote Attestation in TLS
	HTTPA: HTTPS Attestable Protocol

	Security and Performance Evaluation

	Device Identifier Composition Engine (DICE)
	DICE Architectures Work Group objective
	Hardware requirements for DICE
	Introduction to DICE
	Requirements

	DICE Layering Architecture
	Layering Architecture
	Keys and Credentials
	Layered Certification
	Considerations about DICE Architecture's implementation

	DICE Certificate Profiles
	Certificate's fields

	DICE Attestation Architecture
	Layered Device Attestation Evidence
	Layered Device Attestation Endorsements
	Attesting Environment

	Architectural Design of the Solution
	Initial Design
	Requirements
	Actors and Protocol
	Security Considerations

	DICE Integration
	Starting Design
	LDevID

	Final Design
	Protocol
	Security Considerations

	Integration of the Design in the Keystone TEE
	Initial version of Keystone: DICE Integration
	Algorithms and Libraries
	Root of Trust
	Security Monitor

	New integration to existing implementation
	Runtime
	SDK
	UUID

	Mbed TLS
	Integration of libraries in Keystone
	Mbed TLS for Enclave Applications
	Mbed TLS for Host Applications

	Implementation of Protocol Applications
	Enclave Application
	Execution Flow
	Ocalls

	Software CA
	Execution Flow

	Verifier
	Execution Flow

	Network communication
	TLS channels and Trusted Certificates

	Test and Validation
	Testbed
	Testing Certification Protocol
	Functional Tests
	Performance Tests

	Testing Trusted Channel
	Performance Tests

	Conclusions
	Bibliography
	User Manual
	System Deployment
	Install Keystone
	Install Keystone-CA
	Run the demo

	Running Tests
	Functional Tests
	Performance Tests

	Developer Manual
	Chain of Environment Calls
	Runtime
	SDK

	The Ocall Execution Process
	Mbed TLS patches
	Host's Mbed TLS
	Enclave's Mbed TLS

	UUID
	Security Monitor
	Linux-Keystone-Driver
	SDK

	Applications
	HTTP messages
	TA - XCA Communication
	XCA - Ver Communication

