
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Exploring the Razor Approach for
Better Than Worst-Case Design in
Latency-Insensitive Digital Circuits

Supervisors Candidate
Prof. Luciano Lavagno Marco Massetti
Phd. Filippo Minnella

December 2023

Abstract

The advancement of technology has led to an exponential growth in the demand for

computing power, pushing to the limit the capabilities of existing hardware. Digital

circuits have met these performance requirements by architectural improvements

and by technology scaling. But, as semiconductor technology continues to shrink,

the sensitivity of the circuits to small deviations in manufacturing processes, supply

voltage, and operating temperature becomes more pronounced.

Traditional design methodologies that rely on worst-case scenarios may result in sub-

optimal performance or excessive power consumption due to their overly conservative

nature.

Instead of always considering the worst-case, it is possible to design considering a

better-than-worst-case condition, to allow the generation of errors, and implement a

method to correct them. If the correction of errors does not introduce a too large

overhead, a meaningful increase in efficiency is achievable.

The objective of this thesis work is to apply the Razor error detection and correction

technique, tackling the timing violations caused by the introduction of the error

detection by utilizing a novel optimization flow called Mix & Latch. To reduce the

impact on performance caused by the error correction, Razor is applied to latency-

insensitive designs, in such designs an error in a block of logic will slow down only

that block, while the rest of the circuit will operate without interruptions. Given

that latency-insensitive designs are commonly created with a high-level synthesis

framework, this paradigm is exploited to create the designs used in this thesis.

The results of the flow are validated using post-layout simulations to evaluate the

area, performance and power overhead caused by the addition of error detection

and correction to the designs. Both the possible gains in performance attainable by

increasing the clock frequency and the reduction in power consumption achievable

by voltage scaling are studied.

i

Table of Contents

List of Figures iii

List of Tables iv

List of Acronyms v

1 Introduction 1
1.1 Overview . 1
1.2 Alternatives to the worst-case approach 1
1.3 Razor . 2
1.4 Mix & Latch . 5
1.5 Latency-insensitive design . 6
1.6 High-level synthesis . 8

2 Related Work 9

3 Implementation 10
3.1 Error detection . 10

3.1.1 Razor architecture . 10
3.1.2 Edits to the Mix & Latch flow 12

3.2 Error detection and correction . 17
3.2.1 Razor architecture . 18
3.2.2 Extension of the design flow 20

4 Results 24
4.1 Error detection . 24
4.2 Error detection and correction . 31

4.2.1 FIR filters . 31
4.2.2 RISC-V processor . 39

5 Conclusions and Future Work 48

Bibliography 49

ii

List of Figures

1.1 Behavior of a Razor error detection cell 3
1.2 Hold timing constraint . 4
1.3 Mix & Latch flow . 6
1.4 Communication between blocks in the design 7

3.1 Error detection circuit . 11
3.2 Timing constraints . 12
3.3 Modified Mix & Latch flow . 13
3.4 Insertion of the Razor cells . 14
3.5 Error caused by NTL sampling . 15
3.6 Effect of reduced NTL time borrowing 15
3.7 Behavior in case of error . 17
3.8 Error path for dataflow circuits . 18
3.9 Logic used for the enable of Razor cells 22

4.1 Schematic of the RCA . 24
4.2 RCA simulation - Violations detected by Razor 28
4.3 RCA simulation - Error rate . 29
4.4 RCA simulation - Power consumption 30
4.5 Schematic of the FIR filter circuit . 32
4.6 FIR simulation - Error rate . 35
4.7 FIR simulation - Execution time . 35
4.8 FIR simulation - Energy consumption 36
4.9 FIR simulation - Voltage scaling . 38
4.10 FIR simulation - Power consumption 38
4.11 Schematic of the RISC-V processor 40
4.12 RISC-V simulation - Error rate . 43
4.13 RISC-V simulation - Execution time 44
4.14 RISC-V simulation - Energy consumption 45
4.15 RISC-V simulation - Voltage scaling 46
4.16 RISC-V simulation - Power consumption 47

iii

List of Tables

4.1 Number of elements in the RCA . 25
4.2 Area occupied by the different elements in the RCA 25
4.3 Power consumption of the RCA . 31
4.4 Number of elements in the filters . 32
4.5 Area occupied by the different elements in the filters 33
4.6 Power consumption of the filters . 37
4.7 Number of elements in the processor 41
4.8 Area occupied by the different elements in the processor 41
4.9 Power consumption for the FFT benchmark 45
4.10 Power consumption for the matrix multiplication benchmark 45
4.11 Power consumption for the quicksort benchmark 46

iv

List of Acronyms

PVT Process Voltage Temperature

TRC Tunable Replica Circuit

EDA Electronic Design Automation

PETF Positive clock Edge Triggered Flip-flop

NETF Negative clock Edge Triggered Flip-flop

PTL Positive clock phase Transparent Latch

NTL Negative clock phase Transparent Latch

STA Static Timing Analysis

ILP Integer Linear Programming

LI Latency Insensitive

SLD System Level Design

HLS High Level Synthesis

RTL Register Transfer Level

HDL Hardware Description Language

RCA Ripple Carry Adder

FIR Finite Impulse Response

FIFO First In First Out

v

Chapter 1

Introduction

1.1 Overview

The relentless advancement of technology in recent years has led to an exponential

growth in the demand for computing power across various sectors. From artificial in-

telligence to data analytics and complex simulations, the computational requirements

have consistently pushed to the limit the capabilities of existing hardware. In the

last years digital circuits have met these performance requirements by architectural

improvements and by technology scaling, but as semiconductor technology continues

to shrink and more transistors are integrated on a single chip, power dissipation has

emerged as a critical bottleneck [1].

Moreover, as feature sizes continue to shrink, the sensitivity of the circuit to small

deviations in manufacturing processes, supply voltage, and operating temperature

(PVT) becomes more pronounced [2]. This poses a formidable challenge for circuit

design, as the traditional design methodologies that rely on worst-case scenarios may

result in suboptimal performance or excessive power consumption due to its overly

conservative nature.

1.2 Alternatives to the worst-case approach

Since the performance of every transistor can change greatly even on the same die

[3], in the worst-case approach the design needs to be realized adding safety margins

to consider these variations, in this way there is the certainty that the device will

work, but, since in most of cases not all the transistors will have the worst possible

characteristics, it also causes excessive requirements.

Adaptive design techniques have emerged as a response to the challenges posed

by increasing PVT variations and the limitations of traditional worst-case design

1

1 – Introduction

methodologies. Since the variability of the process impacts the performances in a

static way, in the sense that it does not change during the lifetime of the device, it

can be compensated using adaptive design techniques; this approach consists in the

variation of the working voltage and frequency at run-time, this way it is possible to

adjust the operating point depending on the performance of the transistors. One of

these techniques is the use of tunable replica circuits (TRCs) [4] also called ”canary

circuits”, here a replica of the critical path is used to check how much it is possible

to increase the clock frequency (or reduce the supply voltage) before the circuit fails.

The downside of this approach is that the replica path must always fail before the real

critical path to guarantee the absence of errors, so also with adaptive designs some

safety margins must be included. Moreover, this technique can compensate only for

some of the issues to which digital circuits are subject. Supply voltage fluctuation,

temperature variations, IR drop, clock jitter, crosstalk noise; they are particularly

troublesome because they can change quickly at run-time and be localized for a

specific region of the die, so they cannot be evaluated by techniques like the canary

circuits.

A solution to these problems is using a better than worst-case design approach.

In this case the generation of errors is allowed and a method to correct them is

implemented. This technique is already used for communications to deal with data

corruption during transmission across noisy channels, but in these applications usu-

ally algorithmic solutions, such as error correcting codes are used; but for general

purpose computing this solution is likely to add an excessive area and power overhead,

for this type of designs it is possible to use solutions like Razor.

1.3 Razor

Razor [5] is a timing speculation technique that can be used to dynamically adjust

the working conditions of digital circuits according to the number of errors that it

detects. The idea at the base of this design methodology is that at the end of the

setup critical paths it is possible to sample the data at two different times, it is

sampled a first time by the flip-flop originally present in the design and it is sampled

a second time by a ”shadow latch”, these two sequential elements share the same

2

1 – Introduction

data signal but they use different clocks. To be able to detect errors caused by late

arrival of the data the two instants where the input is sampled are shifted in time

one from the other, the flip-flop will sample speculating that the data has already

concluded the propagation along the preceding combinational logic stage, while the

shadow latch will sample the data later, at a time that ensures that the correct data

has reached the end of the combinational path. The output of the shadow latch is

not directly connected to the rest of the circuit, but it is compared to the output of

the main flip-flop, if there is a difference in the two signals it means that the timing

speculation was too aggressive, and that the error must be corrected. An example of

error detection cell and of its behavior are depicted in figure 1.1.

D Q
SHADOW

LATCH

D

CLK

Q

ERROR

CLK_DEL

D Q
MAIN

FF

cycle 1 cycle 2 cycle 3 cycle 4

CLK

CLK_DEL

D

FF_Q

LATCH_Q

ERROR

Figure 1.1: Behavior of a Razor error detection cell

Using this technique it is possible to increase the working frequency (or decrease

the supply voltage) until errors are detected, moreover, if the losses in performance

caused by the recovery mechanism are lower than the gains caused by the increase

in frequency, it is possible to accept the errors until the error recovery overhead

becomes too prominent.

It is clear how this solution is advantageous compared to static adaptive design

techniques, it allows to eliminate completely the safety margins and, since it is

applied directly on the critical paths, it can also detect errors caused by fast changes

and it is not dependent on its location in the die.

However, some considerations must be done while applying this technique: with the

increase in frequency there are problems of metastability on the flip-flops; and since

the clock for the shadow latch is delayed there is the risk of hold violations. If the

3

1 – Introduction

clock frequency is higher than the nominal one there is the possibility that the data

at the input of the flip-flop will change near the sampling edge of the clock, this

will cause the output to become metastable, if no countermeasures are implemented

this metastability will propagate in the following stages of logic and in the error

signal. The metastability problem cannot be completely resolved, but its probability

to propagate can be reduced using skewed gates and double sampling the flip-flop

output signal. For the hold violations the situation is more complicated, the clock

provided to the shadow latch must be delayed enough to be able to sample the correct

data also with a higher working frequency, this means that if a higher frequency

increase is desired, the clock to the latch must be delayed further. The problem with

a higher clock delay is that the data propagating along short paths that ends in

shadow latches must not reach the latch before the data launched in the previous

clock cycle has been correctly sampled. While both the issues must be tackled to

obtain a working design, this thesis will focus on the hold constraint issue.

Short PathIntended Path
CLK

CLK_DEL

tholdtdelay

tmin-delay

Figure 1.2: Hold timing constraint

To resolve the hold violations it is required to increase the delay of the shortest

paths, this can be achieved inserting buffers, however this solution comes at the cost

of an increased area and power overhead. A second possible solution to the problem

is inserting latches transparent on the clock level opposite to the shadow latches

on the short paths, this solution has a lower impact on the system performance,

but it cannot be automatically done by commercial electronic design automation

(EDA) software. Automated flows that can be used to place latches to correct hold

violations do exist, the one that is exploited in this thesis is the Mix & Latch flow.

4

1 – Introduction

1.4 Mix & Latch

Mix & Latch [6] is an optimization flow that exploits mixed polarity latches and

flip-flops to increase the working frequency of digital circuits. Sequential circuits can

store data using two different elements: flop-flops and latches, while the later offers

reduced area, power and delay than the former, it also has more complex timing

constraints and this limits theirs use in commercial applications. Mix & Latch is

able to automatically convert a flip-flop based design to a latch based one, that is

faster and can also have a reduced area compared to the original one. Traditional

latch designs require particular clocking schemes to avoid the hold violations caused

by the transparent phase of the latches: it is possible to reduce the clock duty cycle

to obtain short pulses, this solves the hold issues, but it also reduces the performance

benefits of time borrowing; a second choice is to use two non-overlapped clocks and

alternate the one used from the paths between latches, but this causes the design

procedure to become difficult. Mix & Latch solves the hold timing violations by using

a single clock with 50% duty cycle and inserting latch transparent on the negative

clock level along the hold critical paths.

The flow is represented in figure 1.3 and proceeds according to these steps:

• From the original positive edge triggered flip-flop (PETF) based netlist all the

sequential elements are replaced with latches transparent on the positive clock

phase (PTL), this will cause the generation of a netlist with hold violations

due to the paths between the PTLs.

• Using static timing analysis (STA) a graph representation of the timing of the

entire circuit is created, a sub-graph with only the pins and edges that belongs

to paths violating the hold constraint is also created.

• Using an integer linear programming (ILP) algorithm [7] the locations where

latches transparent on the negative clock phase (NTL) must be inserted to fix

the hold violations are found. Solving an ILP generally requires a high runtime,

but in this particular case it is structured in a way close to a max-flow min-cut

problem, which has polynomial complexity.

• In the points where there are adjacent PTLs and NTLs, the two sequential

elements are merged in flip-flops sensible to the rising edge or falling edge to

5

1 – Introduction

reduce the area occupation.

RTL

Synthesis

Post-syn
netlist

Place and
Route

PETF
layout

Substitute PETFs
with PTLs

Optimize

PTL-based
netlist

Extract timing
information and

NTLs list

Generate new
netlist

Mixed
netlist

Place and
Route

Mixed
layout

Figure 1.3: Mix & Latch flow

Experimental results show that after the flow the circuits have simultaneously

smaller area and higher working frequency compared to their original form.

In this thesis this flow is not exploited for these improvements, but it is useful due

to its capability of fixing the hold violations via the introduction of latches along the

hold critical paths. This solution is advantageous compared to the traditional buffer

insertion due to its reduced area and power overhead.

1.5 Latency-insensitive design

The Latency-insensitive (LI) design approach is used in digital systems to minimize

the impact of timing delays and ensure reliable operation even in the presence of

variable latency. This type of circuit has been introduced as solution for the challeng-

ing task of guarantee consistent timing in complex structures such as system-on-chip,

where the interconnections represent a significant cause of delay [8], but it can also

6

1 – Introduction

be used for the design of traditional pipelined logic.

LI circuits are designed in such a way that they operate correctly and efficiently

regardless of the time it takes for signals to propagate through various parts of the

circuit, this means that they don’t depend on precise timing, making them resilient

to variable delays. This is achieved using communication protocols between different

blocks of the circuit, they involve the exchanging of signals between sender and

receiver to confirm data transfer. Such channels can space from simple wires to

FIFOs that can manage the different data production/request of blocks and allow

for different clock domains in the design. Each block of the circuit can operate

independently, and these protocols ensure that a block that finishes its operation

doesn’t proceed in the next operation until the receiver is ready to accept the data

that has been just produced.

CLK

Data D1D0

Data

Ready

Valid Block
B

Ready

Valid

Block
A

Figure 1.4: Communication between blocks in the design

In systems using Razor, maintaining correct operation and avoiding degrading the

performance when errors are detected is crucial. Applying Razor to LI designs avoids

such issues, the stalling of instruction execution that is caused by the error correction

can be handled by the flow control mechanism inherent in the operation of the

communication channels. This avoids the need for a global stall signal that in large

systems can impact the maximum operating frequency. Moreover, since the stalls are

localized in a single block rather than to the entire system, the loss of performance

7

1 – Introduction

is limited and, if other blocks require more clock cycles to terminate their operation

than the one that has committed the error, the stall does not cause any performance

degradation. Finally, another advantage of leveraging the LI methodology is that, if

a block of the design is a bottleneck for the performance due to its low throughput,

it is possible to speedup only that block by providing it with a faster clock and by

inserting Razor cells. All of this can be done without any impact on the rest of the

design by using clock domain crossing FIFOs at the interfaces of that block.

A common use case for the LI approach is in designs created with flows that exploit

high-level synthesis (HLS), in such design flows the HLS tool automatically schedules

the operations, and this means that the latency of each logic block is not known a

priori.

1.6 High-level synthesis

The increase of complexity of modern devices has led to the exploration of new

design methodologies to accelerate the design procedure and to reduce the time to

market. System-level design (SLD) is a valid alternative to the traditional bottom-up

approach, this design paradigm involves creating algorithmic descriptions using high-

level programming languages (C, C++, ...) and then, using HLS tools, converting

these descriptions into a hardware register transfer level (RTL) representation.

In addition to speed up design, this methodology also enables to reduce the time

required for verification. It is now possible to execute the software that describes the

device instead of running a slower hardware description language (HDL) simulation.

Moreover, design space exploration is also easier, from the same algorithmic descrip-

tion it is possible to obtain different hardware realizations by specifying to the HLS

tool the desired characteristics (latency, throughput, area, ...).

Because SLD is often used to create LI designs, and it is always becoming more

relevant due to its use for machine learning and digital signal processing application,

this design methodology is used to produce test circuits to which apply the flow that

has been developed.

8

Chapter 2

Related Work

Several methods that focus on the reduction of the timing margin have been previously

studied. The TRC technique [9, 4] can reduce, but not completely eliminate, the

guard bands, and it is not capable of handling fast changing and local timing

variations. The use of Razor technique [5, 10, 11] allows to eliminate completely the

timing margin and it provides in situ error detection, therefore also local timing

variations can be handled. The error detection circuits proposed in [5] and [11]

require two clock signals to function, the error detection architecture that is exploited

in this thesis is the ”DSTB” proposed in [12] that can work with only one clock.

Regarding the correction of the hold violations, the most used solution is to insert

chain of buffers to increase the delay of short paths, other solutions involve the use of

latches to reduce or eliminate the padding required to the short paths. Using latches

the solutions that have been studied vary from using only one clock [6], to others

using two [13, 11] or three [14] clock phases; with the addition of more clock phases

the timing closure becomes easier, but this causes an increase of complexity in the

clock tree and of its power consumption.

To correct the errors that are detected different methods have been used: the simplest

is global clock gating [5], but it may not be usable in larger circuits; solutions like

counterflow pipelining [5] and instruction replay [12] can be scaled for larger systems

but they add large area and power overhead. The idea of localizing the error

recovery to smaller circuit’s blocks has been studied in [15] and [16], where Razor

is applied respectively to SoCs and LI designs using communication protocols, and

stall mechanisms, different from the ones exploited in this thesis.

9

Chapter 3

Implementation

The complete flow capable of automatically insert Razor error detection to a circuit,

solve the hold violations, and implement an error recovery mechanism, has been

realized in two development steps:

1. Error detection: development of a flow capable of inserting the Razor cells at

the end of the setup critical paths, fix the hold violations and adding a signal

that indicates if an error has occurred.

2. Error detection and correction: expanding the flow by developing a mechanism

to correct the errors detected by Razor.

3.1 Error detection

For this first step the design flow has been realized in order to be able, starting from

a valid RTL description of the hardware, to produce a working gate level netlist

where the flip-flops at the end of the setup critical paths have been replaced with

Razor cells, and where the error signals of all the Razor cells are merged together

and connected to an output port. At this stage no error correction is planned.

3.1.1 Razor architecture

The type of Razor circuit that has been used and an example of its behavior, are

shown in figure 3.1. Compared to the error detection circuit displayed before (figure

1.1), in this structure only one clock signal is used for both the sequential elements,

the output data is taken from a PTL instead of a flip-flop, and the shadow latch has

been replaced by a PETF.

10

3 – Implementation

D Q

D

CLK

Q

ERROR

D Q

cycle 1 cycle 2 cycle 3 cycle 4

CLK

D

FF_Q

LATCH_Q

ERROR

D Q
PTL

D Q
PETF

Figure 3.1: Error detection circuit

Also in this case the element that speculates over the arrival time of the data is

the flip-flop, it samples the incoming data on the rising clock edge, meanwhile, the

PTL remains transparent and permits the flow of data to its output for the entire

high clock phase. When the transparency phase of the latch has ended, it is possible

to detect if data has arrived late by comparing the outputs of the two sequential

elements.

Compared to the original Razor cell there is a lower area and power overhead since

only one clock signal is required. Moreover, the main advantage of this type of circuit

is that, since the output of the latch is the input for the next stage of logic, the

possibility of having a metastable signal on the datapath is eliminated. It is still

possible to have a metastable error signal since the sampling for the flip-flop occurs

earlier and the data can change in proximity of the clock edge. Another advantage

of this architecture is that the output data has always the correct value because the

timing speculation is done on the FF, this will be important for the error correction

phase because it makes possible to ensure the correct operation of the circuit by

issuing only a one clock cycle stall.

To ensure the correct behavior of this circuit it is mandatory to guarantee a maximum

and minimum arrival time for the data to the Razor cell.

While using this structure the setup timing constrains for the EDA tolls are still

based on the rising clock edge, and the window for which it is possible to detect errors

is equal to the high clock phase. The maximum path delay in the worst conditions

(slow PVT corner, clock jitter, ...) that allows for the correct detection of error, must

guarantee that the maximum data arrival time to the endpoint will remain inside the

transparency phase of the latch, this delay can be calculated with the equation 3.1.

11

3 – Implementation

Tmax ≤ Tcycle · (1 +DC)− Tsetup,ptl (3.1)

Where Tcycle is the clock period, DC is the duty cycle, Tsetup,ptl is the setup time of

the latch.

To avoid that data propagating along short paths will be sampled by the latch during

the wrong clock cycle, the minimum delay of all the paths the end up in a Razor

cell must be at least equal to the transparent phase of the latch, as defined in the

equation 3.2.

Tmin ≥ Tcycle ·DC + Thold,ptl (3.2)

Where Thold,ptl is the hold time of the latch based on the falling clock edge.

A visual representation of these two timing constraints is depicted in figure 3.2.

Startpoint

Endpoint
tmin

thold
tsetup

tmax

Figure 3.2: Timing constraints

3.1.2 Edits to the Mix & Latch flow

The flow that has been implemented for Mix & Latch is a suitable starting point for

the flow required for the insertion of Razor to the circuit, however, some modifications

have been required. The modified flow can be represented with the flowchart in

figure 3.3, the edits made from the original flow are explained below.

12

3 – Implementation

RTL

Synthesis

Post-syn
netlist

Place and
Route

PETF
layout

Detect
setup critical

endpoints

Insert
Razor cells

Razor netlist
(hold violat.)

Extract timing
information and

NTLs list

Generate new
netlist

Mixed
netlist

Place and
Route

Mixed
layout

Figure 3.3: Modified Mix & Latch flow

Insertion of Razor endpoints to setup critical paths

In the original flow, after the first synthesis, all the flip-flops are replaced with latches.

This step has been removed, instead, all the endpoints of combinational paths that

have a setup slack less than a threshold specifiable by the user are detected. These

are the flip-flops that are more prone to capture a wrong value in case of slow

propagation of the signals in the datapath, for this reason these flip-flops will be

replaced with Razor cells.

To enable the error detection, the netlist is modified replacing the critical FF with

Razor cells, then, if more than one FF has been replaced, all the error signals of the

Razor cells are merged together using a tree of OR gates. Finally, an output port is

added to the design, and the global error signal is connected to it. This replacing

step is summarized in figure 3.4.

13

3 – Implementation

D Q
PTL

D Q
PETF

D_1

CLK

Q_1

ERROR_1 ERROR_OUT

D Q
PTL

D Q
PETF

D_2

CLK

Q_2

ERROR_2

D Q
PTL

D Q
PETF

D_n

CLK

Q_n

ERROR_n

D Q
PETF

D_1 Q_1

D Q
PETF

D_2 Q_2

D Q
PETF

D_n Q_n

Setup critical endpoints

Razor
Insertion

Figure 3.4: Insertion of the Razor cells

Additional timing constraints

After the insertion of Razor, to guarantee that the final device will behave as expected,

it is required to add a few timing constraints for the EDA tools:

• Time borrowing for the PTL of Razor cells: since the time available for each

combinatorial path must not change from the original design, it is required to

avoid the time borrowing at the PTL added to the circuit, this way the setup

constraint is still equal to the rising clock edge

• Time borrowing for NTL: by default the Mix & Latch flow considers that a

time borrowing equal to the entire low clock phase is possible on the NTLs

that it will add to resolve the hold violations. However, this can lead to the

condition were the NTLs become the endpoints for the setup critical paths.

14

3 – Implementation

In this condition if there is a slow propagation of the data, it is possible that

the transparency window of the NTL closes before the data has been able

to propagate through the latch, as in figure 3.5. In such cases the late ar-

riving of the data will not be detectable by the Razor cell at the end of the path.

CLK
Slow propagation

D QD Q
Razor

Clk

D QD Q
PETF

D Q
NTL

D QD Q
PETF

Setup critical path

Hold critical path

NTL_D

NTL_Q

Figure 3.5: Error caused by NTL sampling

To prevent this condition, the time borrowing margin for in NTLs is reduced

to a value specified by the user, this will force the Mix & Latch flow to reduce

the length of the path ending in the NTLs. In case of slow data propagation

there is a still a guard band time in which errors are avoided. Since the latches

are placed only on short paths this reduction of time does not introduce a

reduction in the design’s performance. The effect of this constraint is displayed

in figure 3.6

Slow propagation
D QD Q

Razor

Clk

D QD Q
PETF

D Q
NTL

D QD Q
PETF

Setup critical path

Hold critical path

CLK

NTL_D

Borrowing reduction

NTL_Q

Figure 3.6: Effect of reduced NTL time borrowing

• Minimum setup slack for non-Razor endpoints: as explained before, the Razor

technique works only if the Razor elements are placed at the end of the setup

critical paths. Since the design flow is composed by multiple synthesis and a

final layout, it is possible to obtain different circuits that satisfy the design

constraints, this can be a problem since paths different from the ones that ends

15

3 – Implementation

in Razor cells can become setup critical. Since after the first synthesis all the

paths that have not been selected to become sampled by Razor have a setup

slack higher that the threshold chosen by the designer, a constraint is added

for the following steps to force all the non-Razor paths to have a setup slack at

least equal to that threshold, this constraint can be formulated as in equation

3.3.

Tmax,non−razor ≤ Tcycle · (1− Threshold) (3.3)

For instance, if all the endpoints that have a setup slack less than 30% of clock

period are selected to be replaced with Razor cells, than all the other endpoints

must always have a setup slack greater than 30% of the clock period

Extraction of timing information

Since the design has different timing constraints from what expected from the original

Mix & Latch flow, the generation of the timing graph requires some changes to match

the newly added timing constraint. The original flow replaced all the sequential

elements of the design with PTLs, and it considered the possibility of a maximum

time borrowing equal to the high clock phase. For the reasons already discussed, after

the insertion of Razor it is no more possible to have time borrowing, therefore the

maximum time borrowing is zeroed. A second difference is that the time borrowing

window available for the NTLs is no more equal to the full low phase of the clock, so

it is now considered equal to the value specified by the user.

Avoiding merging of NTL with Razor PTL

At the end of the Mix & Latch flow, merging of adjacent PTLs and NTLs is done to

reduce the circuit’s area. In this step if a PTL is connected to the output of a NTL

a PETF is placed instead of the two latches, while if an NTL is connected to the

output of a PTL a negative edge triggered flop (NETF) is inserted.

This step must now be avoided for the latches that form the Razor cells, the

effectiveness of the error detection is based on the fact that each Razor cell is formed

by a PETF and a PTL, if this structure is altered in any way the error detection

mechanism will no longer work.

16

3 – Implementation

3.2 Error detection and correction

The goal for this second development step is to expand the flow previously described

to be able to correct the errors that it detects.

The error correction has been realized in order to work with latency-insensitive

circuits. This type of design is composed by multiple logic blocks that can work

concurrently on different sets of data, the data transfers between different blocks is

managed by synchronous handshakes. This type of structure is often used in designs

generated with HLS tools, in this thesis the designs has been realized using the

Mentor Catapult HLS tool.

In the type of Razor cell that has been chosen for this thesis the value of the output

data signal is always correct (because the timing speculation is done by the FF on

the error path). However, a late arrival of the data can cause the following stage of

logic to not have enough time to conclude correctly its operation, for this reason, it

is required to stall all the registers of the block where the error has been detected for

one clock cycle, like shown in figure 3.7. Since the circuit works in dataflow style

with LI interfaces between the blocks, it is also required to block the handshake

signals to avoid that other blocks in the design can read or send data to the stalled

block.

CLK

Slow propagation

Err

PTEF_A_Q

D QD Q
Razor

Clk Err

D QD Q
PETF

A
En

D QD Q
PETF

B
En

Razor_Q

PTEF_B_Q

D2 D3 D4 D5

D2 D3 D4D1

D1 D2 D3D0

Figure 3.7: Behavior in case of error

17

3 – Implementation

3.2.1 Razor architecture

The basic error detection cell is still the same as the previous circuit, but, in order

to correct the error, more considerations have to be made. The complete error path

is depicted in figure 3.8, each section of the circuit is explained in detail below.

Register
Enable

D Q
PTL

D Q
PETF

D_1

CLK

Q_1

ERROR_1

D Q
PTL

D Q
PETF

CLK

Q_n

ERROR_n

0

1

D_n 0

D Q
NTL

RST

1

output_valid

input_ready

input_ready'

Error detection Glitch
Filtering

Control
Signals

output_valid'

Figure 3.8: Error path for dataflow circuits

Register enable

To stall the registers of the block that has committed a timing violation, all the

flip-flops in that block must have an enable signal to select if it is required to sample a

new input or to maintain the last value previously stored. While for all the non-Razor

registers in the design this can be achieved by using a traditional FF with enable port

and connecting it to the error signal, the Razor cells must use a different approach.

For razor cells the enable functionality is achieved by adding a 2-to-1 multiplexer to

select which signal has to be sampled the next clock edge, one input is connected to

the input data line of the Razor cell and the second input is a feedback from the

output of the Razor PTL. As for the other FF, the enable function is managed by

the error signal of the block. This type of structure can simultaneously stall the

pipeline and restart it after one clock cycle. The stall is achieved by making the

PTL sample its output value. To restart the execution after a stall of one cycle the

18

3 – Implementation

output of the PETF must assume the same value of the PTL, since the output of

the multiplexer is connected to both PETF and PTL, at the rising clock edge after

the error has been detected all the flip-flops will sample the correct value that is

stored in the latches.

Channels control signals

Since in case of errors the communication channels at the input and output of the

hierarchical block must be stopped, it is required to reset the control signals sent

to them. Similarly to the enable of the registers, the control signals of each block

are gated using the error signal of the same block. The gates required to stop the

validation signals depend on the protocol used for the communication, in this thesis,

channels from the Catapult synthesis library and from the MatchLib connections

library have been tested, in both cases active high signals are used, so AND gates

are inserted to reset them.

Glitch in error signal

One problem that comes from this Razor architecture is that, if after the rising clock

edge the outputs of the PETF and PTL do not reach the XOR gate at the same

time, there is the possibility that a glitch would propagate on the error line. Since

this issue is present for all the Razor cells, the error signal of the hierarchical block

can have more than one edge. Since this signal is connected to the enable of the

registers this can lead, at best to an increase in power consumption, and at worst

this can trigger the enable of the Razor cells and cause an erroneous sampling of the

PETF.

To avoid these ”glitches” an NTL is added along the error path in order to sample

the error signal only when the high clock phase has ended. If a flip-flop was chosen as

barrier, it would have implied that the propagation of the error must end before the

falling clock edge, this is a strict timing constrain because the PTLs at the beginning

of the error chain will be transparent until the falling clock edge. Using an NTL

removes this constraint since it allows for time borrowing, it is however required to

resolve the borrowing before the following rising clock edge to have a stable register

enable signal. One issue that is generated by this latch is that now there is a loop in

19

3 – Implementation

the error path (starting from Razor PTL, error NTL, and back to the Razor PTL).

It is a problem since when the device is started, the value stored in the error NTL is

uncertain and it will cause the circuit to behave in an unpredictable way, to avoid

this issue it is sufficient to add a reset signal to the error NTL.

A second issue is that the control signals for the channel can require more time than

what is available (can be calculated with the constraint 3.3 ,but where Tcycle is equal

only to the low clock phase due to the NTL barrier), for this reason the control

signal are gated using the error signal bypassing the NTL.

3.2.2 Extension of the design flow

Due to the edits in the architecture of the error path, it is required to adjust the

design flow accordingly.

Hierarchy preservation and enable signals

Considering that the different sections of the circuit will run concurrently, and it is

required to stall only the section where an error has been detected without stopping

the rest of the circuit, it is needed to work preserving the hierarchy of the design, at

least until the netlist has been modified adding the Razor cells.

Since it is important to have a strict control over the enable signals that are used in

the design the RTL produced by Catapult is requested without any enable signal.

After a first synthesis, the enable mechanism is added by replacing the flip-flops in

the design with ones with enable pins, and the control signal for the channels are

provided with the logic required to stall them. This procedure is done only for the

hierarchical block that the user has specified to be considered for the insertion of

Razor.

Then, the detection of the setup critical endpoints is done on a block by block basis,

again only the specified blocks are considered.

Insertion of Razor endpoints to setup critical paths

The procedure that is executed to insert the Razor mechanism in the design is

described in the following pseudo code:

20

3 – Implementation

Algorithm 1 Insertion of Razor cells

Require: List of instances to check, list of registers to replace with Razor
1:

2: for all Instances in design to check do
3: for all Setup critical FF in this instance do
4: Replace FF with Razor cell
5: end for
6: if More than one Razor cell inserted in this instance then
7: Create OR tree to merge errors
8: end if
9: Create NTL to filter out glitches

10: Connect enable signal to all the registers
11: Connect enable signal (bypass NTL) to all the interfaces
12: end for
13: Flatten hierarchy

The first step of the algorithm is to insert the Razor cells, the only difference

from the previous implementation is that this step is done for each hierarchical block

specified by the user, and that the logic gates required to form the multiplexer are

created and connected to the enable signal.

In line 9 the NTL to eliminate the glitches and the logic to reset it are created. One

of these latches is created for each hierarchical block where Razor is added.

Since the enable signals for the registers and the interfaces have been previously

added to the design, now it is sufficient to connect these signals to the corresponding

error signal (lines 10 and 11).

The last step is to flatten the design, this step is required by the Mix & Latch flow

to work correctly.

Additional timing constraints

The constraints that have been added for this new architecture are:

• Constraining PTL feedback loop: the loop generated by the enable mechanism

of each Razor cell represents an issue for the hold constraint because the output

of the latch would reach its input before the end of the transparency phase. In

normal conditions this can represent an issue since the value that should be

stored will be overwritten by the one caused by the feedback. Looking at the

21

3 – Implementation

working principle of the error correction mechanism it is possible to understand

that this condition does never occur, during normal operation the multiplexer

will propagate the input coming from outside the razor cell, the signal from

the feedback loop propagates to the PTL’s input only the clock cycle after one

error is detected, in that case it is correct that the output of the PTL reaches

its input during the transparency phase.

It is however important to relax only the hold constraint for the loops that

connect output and input of the same PTL and are used for the enable

mechanism, because otherwise this will impact also loops that are external to

the Razor cell. Since the multiplexer has been realized using three NAND gates

as shown is figure 3.9, only the hold constraint for the loop that goes through

the gate ”1” has been relaxed, this way all the other loops can maintain their

original constraints.

D QD Q
PTL

Enable

1

2

3

Figure 3.9: Logic used for the enable of Razor cells

• Maximum time borrowing for error NTL: to avoid that the error signal will

change too close to the rising clock edge and cause setup violations due to the

propagation as enable signal, the time borrowing on the NTL that filters the

glitches is limited.

Extraction of timing information

In the original Mix & Latch flow the timing data was extracted assuming that only

PTL were present as sequential elements, since this is no longer true, some edits are

required to extract the timing data correctly. The changes required to consider the

22

3 – Implementation

PETF have already been discussed previously. Other changes have been made to

consider the presence of NTLs, in particular: the amount of possible time borrowing

on such elements is fixed to a value selected by the user, the arrival time for data that

has been launched by the NTLs has been corrected to consider that the propagation

starts on the falling clock edge, the insertion of NTLs to fix the hold violations

has been prevented along the path that begin and end at NTLs used for the Razor

mechanism.

23

Chapter 4

Results

The flow has been tested via post-layout simulations using a 28 nm FDSOI CMOS

technology. To perform the logic synthesis from RTL code, Design Compiler from

Synopsys has been used, then, Innovus from Cadence is used to perform place and

route. For the circuits created with the SLD methodology, Catapult HLS from

Mentor has been used to translate from high-level language to HDL code. The

simulations have been performed using Questasim from Mentor.

More details on the design and testing methodology will be given for each test circuit.

4.1 Error detection

As circuit to test the error detection mechanism a simple 16-bit ripple carry adder

(RCA) described in SystemVerilog has been used.

16

A_Reg

RCA

B_Reg

S_Reg

A_IN B_IN

S_OUT

16

16

Figure 4.1: Schematic of the RCA

24

4 – Results

Optimization flow

To evaluate its impact on the results, different values for the setup slack threshold

(from 0% to 30% of the clock period) are used to evaluate the endpoints to replace

with Razor cells. The time borrowing allowed for the NTLs has been set to 25% of

the clock period.

Threshold
Cell Count

PETF PTL NTL Gates Buff.+Inv. Total Increase
0% 48 0 0 122 89 259 0%
5% 48 2 2 148 68 268 3.47%
10% 48 2 5 148 52 255 -1.54%
15% 48 4 8 155 88 303 16.99%
20% 48 5 12 161 81 307 18.53%
25% 48 5 12 159 60 284 9.65%
30% 48 7 10 167 59 291 12.35%

Table 4.1: Number of elements in the RCA

Threshold
Cell Area (µm2)

PETF PTL NTL Gates Buff.+Inv. Total Increase
0% 127.30 0 0 125.83 73.44 326.56 0%
5% 127.94 2.94 2.94 155.53 30.52 319.87 -2.05%
10% 126.64 2.94 7.34 143.62 24.81 305.35 -6.49%
15% 126.96 5.88 12.08 153.90 43.41 342.23 4.80%
20% 130.29 7.34 17.63 146.55 39.33 338.15 3.55%
25% 128.93 7.34 18.61 169.08 35.25 359.20 9.99%
30% 127.29 10.28 14.69 193.07 32.48 377.81 15.69%

Table 4.2: Area occupied by the different elements in the RCA

From the tables 4.1 and 4.2 it is possible to evaluate how the number of elements

and their area has changed for the different setup thresholds. In the original design

(threshold = 0%), only flip-flops are used as sequential elements in the circuit. After

the insertion of the Razor the number of flip-flops does not change, but one PTL

and an XOR gate are added for every endpoint that has been replaced with a Razor

cell; if more than one endpoint has been added, OR gates are inserted to merge all

25

4 – Results

the errors signal into one.

All the endpoints that have been replaced are flip-flops that sample the output

of the adder, since the time that is required to compute the sum increases from

less significant bits (LSBs) to most significant bits (MSBs), if the setup threshold

increases, Razor cells are naturally inserted starting from the MSBs and gradually

replacing FF toward the LSBs.

After the Mix & Latch flow the hold violations have been resolved by inserting an

amount of NTLs that increases with the number of PTL.

Due to the variability of the flow the area and number of elements in the design does

not follow a monotone trend, but it is visible as an increase in Razor endpoints there

is an increase in circuit area due to the additional latches and logic gates.

Simulation

To evaluate the results, all the layouts obtained at the end of the flow have been

simulated. All the simulations have been run on the same sequences of inputs values

(100K random values). For both the original circuit, and the one modified with

Razor, the clock frequency has been swept from the nominal value, up to 1.7 times

the nominal value.

A testbench has been realized in SystemVerilog to count the number of violations

detected by Razor, the number of errors in the computation of the sum, and how

many of that errors are on bits where Razor is not added. Errors cannot be detected

by Razor either because there are violations in FF where the error detection has not

been inserted, or because there are violations in the NTLs.

Since the metastability in the sequential elements caused by the increase of frequency

is not addressed in this thesis, and that its presence will make the results unclear,

the simulations are run in a way that eliminates the metastability. If the input

of a cell changes near the clock edge that triggers the sampling (or that ends the

transparent phase of a latch), the resulting output of the cell will always be the input

value immediately before that edge, even if the setup or hold time are not meet. The

presence of violations is nevertheless reported in the simulation logs, so it can be

used to formulate additional considerations.

26

4 – Results

Preliminary considerations on the simulation As shown from the plot in

figure 4.3 the original design will produce errors with a frequency increase of 12%.

Since the critical path of the design has a setup slack close to zero, theoretically

the circuit should fail even with a small increase of the frequency, this does not

happen for two reasons: the avoidance of the generation of undetermined values in

the simulation implies the removal of the setup times, this results in a higher working

frequency before circuit’s failure. The second reason is: due to the high number of

input combinations, it has not been possible to find an input transition capable of

causing the propagation along the entire critical path.

While the first cause of uncertainty cannot be removed, the second could be partially

eliminated increasing the number of tested input combinations. Since the effect of

Razor is visible also with these results, this level of uncertainty has been considered

acceptable.

Error detection The increase in frequency at which the effect of Razor starts is

visible in figure 4.2, here it is shown the number of times where the Razor mechanism

has detected a change in the signal’s value after the sampling of the PETS, in this

condition the error signal is asserted. The frequency increase required to cause

violations changes depending on the setup threshold that has been chosen, also in

this case this is due to the effects explained before, because, if the critical path had

been consistently stimulated, even a small increase in frequency would have caused

the detection of the error at the setup critical endpoint were Razor has been inserted.

It is nevertheless possible to see how an increase in threshold corresponds to a

detection of errors at lower frequencies and a faster increase in detection count with

the rise in frequency. This is because the shorter combinational paths are stimulated

more frequently than the longer ones, when more flip-flops at the output of the adder

are replaced with Razor cells, all the violations in the shorter paths can be detected

and the uncertainty caused by the small number of input combinations is reduced.

The sudden drop in detections at high frequencies (from 50% increase and above)

is caused by the impossibility of the input registers to correctly sample the inputs

provided to the adder. This event is visible in all the plots and will be mentioned for

all of them in their corresponding paragraph.

27

4 – Results

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Normalized frequency

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f
vi

ol
at

io
ns

 d
et

ec
te

d
by

 R
az

or

Violations detected by Razor

Threshold=5%
Threshold=10%
Threshold=15%
Threshold=20%
Threshold=25%
Threshold=30%

Figure 4.2: RCA simulation - Violations detected by Razor

Errors in the output value The number of times that a wrong value for the result

of the addition has been detected, is displayed in figure 4.3. Here the trend is almost

inverse to the one of the error detection, a higher number of endpoints replaced with

Razor cells corresponds to a higher frequency increase before the generation of errors.

This is simply because the output data of a Razor cell is sampled using the latch,

and, due do the possibility of time borrowing, it is always correct until the constraint

3.1 is satisfied. As expected, in all the tested cases the detection of timing violations

has been triggered before any error have effectively reached the output signals, the

interval of frequency in which the violations are detected before any error occurs

widens with the increase in setup threshold.

One important thing to study is from where those errors come from. For this reason,

for every circuit that have been simulated, two types of error are counted and are

traced in the plot. A first line indicates how many times there is an error in the

addition’s result, a second line indicates how many of those times there is an error

also on the output values of FF that are not replaced by razor cells. An error that

is not detectable by Razor can be caused by different things: error in sampling of

the input registers, error in the sampling of the NTLs, error in the sampling of

28

4 – Results

output flip-flops that are not replaced with Razor. These two lines are sufficient to

understand which element is responsible for the error.

For lower setup thresholds these two lines are almost overlapped for all the frequency

range, the only difference is above a 50% increase where the constraint 3.1 is no

longer satisfied, this means that all the errors are caused by a wrong sampling of the

output bits where the error detection is not present. For the higher threshold, the

two lines split apart at lower frequencies, in such cases not all the errors are on the

lower bits, before the previously mentioned 50% increase limit, all the errors that are

generated are caused by the early closing of the NTLs that has been explained in

section 3.1.2, with higher thresholds the limit to the time borrowing becomes more

challenging to satisfy and it causes a degradation of the performance for the error

detection. At higher frequencies there is 100% error rate because of the error in

sampling the inputs, the precise frequency from which this happens is not visible in

this plot but it is known from the detection rate (4.2).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Normalized frequency

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 e

rro
r r

at
e

Error rate

Errors (Original design)
Errors (Thr.=5%)
Errors non Razor bits (Thr.=5%)
Errors (Thr.=10%)
Errors non Razor bits (Thr.=10%)
Errors (Thr.=15%)
Errors non Razor bits (Thr.=15%)
Errors (Thr.=20%)
Errors non Razor bits (Thr.=20%)
Errors (Thr.=25%)
Errors non Razor bits (Thr.=25%)
Errors (Thr.=30%)
Errors non Razor bits (Thr.=30%)

Figure 4.3: RCA simulation - Error rate

Power consumption To evaluate the power overhead caused by the insertion

of Razor, during all the simulations that have been performed the activity of each

29

4 – Results

node of the circuit has been recorded and it has been used to calculate the power

consumption.

Since in this circuit no error correction is present, the detection of errors does not

cause changes in power consumption, so for all the simulations there is only a linear

increase in power due to the higher frequencies. For every frequency point it is visible

the power overhead caused by Razor, this overhead rises with the increase in setup

threshold, this is because in those conditions a higher number of elements are present

in the circuit (as displayed in the table 4.1). It is visible how there is a maximum

power overhead equal to 27% compared to the original design. Also in this case, the

error in the sampling of the inputs is visible, this time its effect is a drop in power

consumption since in this condition no elements in the design are switching.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Normalized frequency

0

0.5

1

1.5

2

2.5

To
ta

l p
ow

er
 v

ar
ia

tio
n

(%
)

Power consumption

Original design
Threshold=5%
Threshold=10%
Threshold=15%
Threshold=20%
Threshold=25%
Threshold=30%

Figure 4.4: RCA simulation - Power consumption

The different contributions to the power have been separately calculated for the

circuit working at nominal frequency without any error detected, they are then

reported in the following table. The contribution that undergoes the biggest change

is the leakage with a maximum increase of 60%, the following biggest increase is

the one related to the switching of the capacitance with a 49% increase, finally, the

30

4 – Results

smallest increase is the one internal to the gates with an increase of 12%. Since the

leakage power is only a minor part of the total power, the total increase in between

the switching and internal power contributions.

Since this circuit is really simple, and with the higher thresholds the error detection

is inserted to many of the FF, the overhead is substantial. A more reasonable amount

of overhead is visible in more realistic test cases for this flow that are going to be

analysed below.

Threshold
Powers (mW)

Internal Switching Leakage Total Increase
0% 1.014 0.666 3.023e-3 1.683 0%
5% 1.011 0.798 3.821e-3 1.813 7.72%
10% 0.968 0.769 3.453e-3 1.741 3.45%
15% 1.062 0.832 4.178e-3 1.898 12.77%
20% 1.051 0.756 4.012e-3 1.811 7.60%
25% 1.109 0.860 4.385e-3 1.974 17.29%
30% 1.141 0.991 4.846e-3 2.136 26.92%

Table 4.3: Power consumption of the RCA

4.2 Error detection and correction

To verify the error correction capabilities of the flow, two different designs have

been exploited: a cascade of two finite impulse response (FIR) filters and a RISC-

V processor. The two circuits have been realized starting from high level code

(C++ and SystemC) and, using an HLS tool, a hardware description in Verilog

has been generated. Both designs are organized in a dataflow manner and are

latency-insensitive, but they differs in the type of communication channels between

hierarchical blocks; the differences will be explained in detail in the corresponding

sections.

4.2.1 FIR filters

The two filters have the same structure: they work on 18 bits samples and use two 18

bits coefficients, the output of the first filter is sent to a FIFO that is then connected

31

4 – Results

to the input of the second filter. At the input and output of the whole chain the

same synchronization signals as the FIFO are used to manage the flow of data, a

schematic of the design is displayed in figure 4.5. All the communication channels

that are used have been taken from the Catapult logic synthesis library.

FIR
Filter 1 FIFO

input_rsc_lz

input_rsc_vz

output_rsc_vz

output_rsc_lz

input_rsc_z

vdin

ldin

ldout

vdout

dinoutput_rsc_z dout

FIR
Filter 2

input_rsc_lz

input_rsc_vz

output_rsc_vz

output_rsc_lz

input_rsc_z output_rsc_z

Figure 4.5: Schematic of the FIR filter circuit

Optimization flow

As for the RCA test case, different setup thresholds (from 0% to 30% of the clock

period) for the insertion of Razor have been tested, the allowable time borrowing on

the NTLs used to fix the hold violations is again equal to 25% of the clock period,

time borrowing to the NTLs that filter glitches has not been allowed. The insertion

of Razor has been permitted only in the two filters to avoid changes to the structure

of the FIFO.

Threshold
Cell Count

PETF PTL NTL Gates Buff.+Inv. Total Increase
0% 491 0 0 2855 1554 4900 0%
10% 491 11 49 3355 1644 5550 13.26%
20% 491 33 125 3418 1524 5591 14.10%
30% 491 57 142 3522 1786 5998 22.41%

Table 4.4: Number of elements in the filters

32

4 – Results

Threshold
Cell Area (µm2)

PETF PTL NTL Gates Buff.+Inv. Total Increase
0% 1599.58 0 0 4438.55 1087.54 7125.80 0%
10% 1592.43 17.14 72.63 5428.19 954.56 8065.02 13.18%
20% 1566.56 52.39 186.23 5502.94 923.55 8231.65 15.52%
30% 1542.82 84.71 210.39 5483.52 1131.63 8453.11 18.63%

Table 4.5: Area occupied by the different elements in the filters

As for the RCA case with an increase of the number of Razor cells that are

inserted there is an increase in the area occupied by the circuit. In this case there

is a big increase (13%) of area when the first Razor cells are inserted. Since the

following increases caused by additional error detection cells are more gradual, this

first jump is probably due to the insertion of the error correction mechanism. In this

case the area occupied by the PETF decreases with the increase of inserted Razor

cell, this is caused by the type of cells that are used. The standard FF are equipped

with a mechanism to manage the enable, while the PETF in the Razor cells do not

have an internal enable logic since they use an external multiplexer.

Simulation

Since the circuit has been realized using HLS, an automated flow to simulate the

circuit is provided. This flow, starting from C++ code of the test procedure,

automatically generates a tetstbench capable of handling the I/O interfaces to the

supply the input and read the outputs of the circuit at the correct times, it also

generates the scripts required to run the simulation software (also in this case

Questasim from Mentor).

As for the previous case, all the simulations have been run with the same sequence

of input samples (1K random values), while the coefficients for the filters are kept

constant; the metastability has been again not considered in the simulations.

Preliminary considerations on the simulation To visualize the results two

different plots are generated, if figure 4.6 it is displayed the percentage of samples

where some error in the computation has occurred, unlike the RCA case, here it

is not possible to easily detect the cause of the error. A second plot (figure 4.7)

33

4 – Results

shows the variation in the amount of time required to complete the simulation, with

the increase in clock frequency this time should ideally decrease going towards zero,

but, since the error correction implies the addition of a stall, when the penalty of

recovering from the errors becomes greater than the advantage of a higher frequency,

the simulation time will start to increase.

As the plot in 4.6 shows, in the original circuit no errors occur until the frequency

is increased by 12%, also in this case the sources of this uncertainty are the same

as the RCA (small number of input combinations, removal of undetermined values).

Nevertheless, the effect of Razor can be correctly appreciated.

To evaluate only data that is meaningful, not all the result of the simulations have

been inserted in the plots: for both the simulation times (4.7) and energy consumption

(4.8), the results are reported only up to the point where the first error occurs.

Error detection By looking at the trend of the simulation times, it is possible

to see how all the designs follow the ideal line up to a 10% increase, at that point

errors are generated in the design without Razor. In all the other designs no errors

are detected until the frequency is increased by at least 16%. After that point it is

possible to observe how the circuits can work without generating errors, but with an

increasing number of stalls.

Contrary to the RCA case, the frequency from which the detection of timing viola-

tions starts does not change much depending on the setup threshold, but it is still

true that a higher threshold causes a higher interval where the detection occurs and

no errors are committed by the circuit.

Increasing the frequency further causes the generation of errors also in the designs

with Razor, inspecting the causes of the circuit’s failures by looking at the simulator

logs it emerged that: for the design with threshold 10% the errors are caused by the

endpoints that are not replaced by Razor cells, instead, for the other two designs,

the errors are caused by the sampling of the NTLs. This behavior where a higher

setup threshold causes the point of failure to become the latches placed to fix the

hold violations is consistent to what seen in the case of the adder.

34

4 – Results

1 1.1 1.2 1.3 1.4 1.5 1.6
Normalized frequency

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 e

rro
r r

at
e

Error rate

Original
Threshold=10%
Threshold=20%
Threshold=30%

Figure 4.6: FIR simulation - Error rate

1 1.1 1.2 1.3 1.4 1.5 1.6
Normalized frequency

-40

-35

-30

-25

-20

-15

-10

-5

0

Ex
ec

ut
io

n
tim

e
va

ria
tio

n
(%

)

Execution time

Original
Threshold=10%
Threshold=20%
Threshold=30%
Ideal time

Figure 4.7: FIR simulation - Execution time

35

4 – Results

Power consumption Also for this design the power consumption has been com-

puted studying the activity of the circuit. Since in this case the time required to

terminate the simulation is important, due to the insertion of stall cycles to correct

the errors, the power consumption is multiplied by the simulation time to compute

the energy that the circuit has consumed.

With the increase in clock frequency, it is visible how initially the energy remains

constant since the power consumption increases but the time required to conclude

the simulation decreases. When errors start to being detected, the number of stalls

increases accordingly, causing the increase in total energy.

1 1.1 1.2 1.3 1.4 1.5 1.6
Normalized frequency

-2

0

2

4

6

8

10

12

14

En
er

gy
 v

ar
ia

tio
n

(%
)

Energy consumption

Original
Threshold=10%
Threshold=20%
Threshold=30%

Figure 4.8: FIR simulation - Energy consumption

Also in this case the different contribution of the power consumption are evaluated

at nominal frequency and in absence of errors. The increase for the different power

contributions reflects what previously seen in the RCA case, but, the maximum

overhead is reduced compared to the previous case since a reduced number of

endpoints has been replaced.

36

4 – Results

Threshold
Powers (mW)

Internal Switching Leakage Total Increase
0% 6.05 7.84 0.14 14.03 0%
10% 6.37 8.20 0.18 14.75 5.13%
20% 6.07 8.21 0.16 14.43 2.85%
30% 6.46 8.12 0.19 14.76 5.20%

Table 4.6: Power consumption of the filters

Voltage scaling As stated in the introduction of this thesis, a major issue for

digital circuits is the power dissipation, and that Razor is a valid solution to this

problem. To evaluate the possible advantages that Razor can bring, a different type

of simulation is executed.

To reduce the power consumption a solution that can be used in conjunction with

Razor is dynamic voltage scaling, in this technique the voltage supplied to the circuit

can be decreased in order to reduce the power consumption. However, with a lower

voltage, the speed of the gates is reduced, and if no countermeasures are taken this

will cause an erroneous behavior of the circuit. Razor is a valid way to monitor that

the reduction in the circuit’s speed does not introduce unrecoverable errors.

To check the effect that the reduction of voltage has on the behavior of the circuit,

the delays of all the gates and interconnections in the final layout of the circuit are

calculated using the data from different library corners. These different libraries have

the same process corner and operating temperature condition, but have a different

voltage supplied to the cells.

Due to the limited availability of different operating points for the library, it has

been possible to simulate only for three different supply voltages. The design flow

has been executed for a voltage of one volt, so this is considered as the nominal

condition. At the end of the design flow, the timing parameters have been extracted

also for 0.9 V and 0.8 V.

The simulations have been executed using the same procedure of the previous ones

but the frequency is not swept, instead it is fixed at the nominal one.

37

4 – Results

0 2 4 6 8 10 12 14 16 18 20
Voltage reduction (%)

0

5

10

15

20

25

Ex
ec

ut
io

n
tim

e
va

ria
tio

n
(%

)

Execution time

Original
Threshold=10%
Threshold=20%
Threshold=30%

0 2 4 6 8 10 12 14 16 18 20
Voltage reduction (%)

-30

-20

-10

0

10

En
er

gy
 v

ar
ia

tio
n

(%
)

Energy consumption

Original
Threshold=10%
Threshold=20%
Threshold=30%

Figure 4.9: FIR simulation - Voltage scaling

0 2 4 6 8 10 12 14 16 18 20
Voltage reduction (%)

-50

-40

-30

-20

-10

0

10

To
ta

l p
ow

er
 v

ar
ia

tio
n

(%
)

Power consumption

Original
Threshold=10%
Threshold=20%
Threshold=30%

Figure 4.10: FIR simulation - Power consumption

To evaluate the results, two plots that display the same variations to the ones

in figure 4.7 and 4.8 have been produced, but this time on the horizontal axis the

38

4 – Results

voltage is shown instead of the frequency. This time no plot is produced for the count

of errors since, if even an error is generated, the results would become meaningless.

Instead, only the data points of the simulation where no errors have been detected

are inserted in the plots.

The effect of a reduction in voltages should be the same as an increase in frequency

and, even from the small number of data points, this is visible as an increase in

simulation time due to the addition of stall cycles to correct errors. Instead of

an increase in performance the goal of the voltage scaling is a decrease in power

consumption, from figure 4.10 it is visible how even with a small reduction in voltage

it is possible to have a reduction in power much bigger than the overhead introduced

by Razor.

On first site these results can seem underwhelming, at best a 40% reduction in power

with a reduction of 25% in speed, since power consumption depends quadratically

with voltage while speed depends linearly (at least when supply voltage is higher

than the threshold voltage) a 25% decrease in speed should ideally be met with a 50%

decrease in power. It is important to notice that the case shown by the simulation

represents the worst possible case, in real condition in most of the cases there will be

a reduction in power without any reduction in performance, this is because in a real

circuit not all the transistor in the design will behave like the slowest process corner.

4.2.2 RISC-V processor

As second test circuit for the error correction mechanism an open source RISC-V

core has been used.

The processor that has been chosen is called DRIM4HLS, it is a high-level description

in SystemC of an in-order 32-bit RISC-V processor based on the HL5 core from

Columbia University. LI channels have been used to exchange data between the

different stages of the pipeline and to communicate with the memories. In this case

the channels are simple combinatorial signals taken from the MatchLib Connections

library. The instruction and data memory are not part of the processor, they are

only used for simulation.

39

4 – Results

Fetch Decode Execute

Instruction
Memory

Writeback

Data
Memory

Figure 4.11: Schematic of the RISC-V processor

Changes made to the core

Unfortunately, Razor cannot be applied to the processor as it is. This is because,

while it is true that the processor is LI, it can tolerate additional latency only if it is

generated from specific operations or from the memories, this means that if latency

is added by the error correction mechanism of Razor this will ruin the execution.

The cause of this issue is the way some of the channels are read. All the blocks

that receive a feedback from a stage later in the pipeline read the communication

channel in a non-blocking manner, this means that they will continue the execution

even if no data is available in the channel. An example is the fetch stage, if no data

is available from the feedback coming from the decode stage, the program counter

will be incremented to continue sequentially in the process execution. Otherwise, if

data is available, a jump to the memory address specified by the decode stage is

performed. This implies that, if in the design with Razor a stall is inferred in the

decode stage, it can cause the execution of the jump operation to not be correctly

performed.

To fix this issue, all the non-blocking read have been replace with blocking operations.

Moreover, checks have been added to avoid deadlock at the beginning of the execution.

One advantage of the style of communication used previously was that, in some

cases, it is possible to reduce the power consumption by avoiding sending data to

following pipelining stages if no operations are requested. For example, if in the

decode stage a jump instruction is requested, no data will be sent to the execute stage

and the execution will go on without unnecessary activate the following pipeline

40

4 – Results

stages. Unfortunately removing the non-blocking operations do not permit this

functionality, to avoid deadlocks it is necessary that all the stages will propagate

data even if no operations are required.

The edits brought to the design will degrade the performances of the processor;

while this degradation can be reduced with an improved processor design it is now

overlooked since the interest of this work is only to evaluate the impact of the addition

of Razor to the device.

Optimization flow

Since this last test circuit is several times more complex that the previous ones, in

this case, to limit the time required to execute the flow and to simulate the final

circuit, only one setup threshold has been evaluated for the insertion of the error

detection. Since from the FIR filters case the setup threshold that provided the best

result is the 30% one, this is used also for this design. The same timing constraints

have also been used (time borrowing on the NTLs added by Mix & Latch equal to

25% of the clock period, time borrowing to the NTLs that filter glitches not allowed).

Threshold
Cell Count

PETF PTL NTL Gates Buff.+Inv. Total Increase
0% 6755 0 0 19829 11676 42075 0%
30% 6755 246 245 21206 15491 44447 5.64%

Table 4.7: Number of elements in the processor

Threshold
Cell Area (µm2)

PETF PTL NTL Gates Buff.+Inv. Total Increase
0% 23817 0 0 22547 8039 54403 0%
30% 23537 361 362 27591 9859 61710 13.43%

Table 4.8: Area occupied by the different elements in the processor

With the parameters that have been chosen to run the flow all the setup critical

endpoints have been found in the execute stage. In this case 246 out of the 6755

flip-flops that form the design have been replaced with Razor cells, considering all the

other logic cells required to fix the hold violations and to create the error correction

mechanism an area overhead of 13% can be observed.

41

4 – Results

Simulation

Also for this last design the performances of Razor have been evaluated by simulating

the circuit with different clock frequencies. This has been done for three different

software benchmarks to see if it can influence the impact that the stalls caused by

the error correction have on the execution time.

The three software that are executed are: fast Fourier transform (FFT) of 1024

samples, multiplication of two 256 x 256 arrays, sorting (using the quicksort algorithm)

of a list of 512 values. These software are selected as benchmarks since they require

arithmetic computations that should stimulate the paths where the Razor cells have

been inserted. The programs have been written in C language and compiled using

the standard RISC-V GNU toolchain.

In the original testbench provided with the core no latency is assumed for the two

memories, instead, a random latency is applied for each access. This random behavior

would make the reading of the results unclear, to eliminate this uncertainty a fixed

latency of two clock cycles is applied for the instruction memory and a latency of five

clock cycles is applied for the data memory. Whit this change, the only element in

the design that can cause an increment in the simulation time is the error correction

mechanism.

Unfortunately, due to the high complexity of the design it was not possible to

consistently stimulate the generation of timing violation by the critical paths. To still

be able to evaluate the performance penalty of the error correction, the generation of

stalls has been manually forced during simulation. The rate at which the stalls are

inferred has been chosen by inspecting the results obtained from the previous test

cases and from the trend that the timing violations have in publications regarding

this topic. After these considerations, it has been chosen to generate timing violations

with a rate that increases exponentially with the increase in clock frequency, reaching

a stall rate of 100% (one stall for every clock cycle) at a frequency increase of 30%.

Such trend is shown in figure 4.12, the point corresponding a 30% frequency increase

has not been simulated because it would have required a considerable amount of

time since with an exponential increase in stalls also the time required to terminate

the simulations increases exponentially.

42

4 – Results

0 5 10 15 20 25 30
Frequency increase (%)

100

101

102

Pe
rc

en
ta

ge
 e

rro
r r

at
e

Error rate

Figure 4.12: RISC-V simulation - Error rate

Error detection Since the simulation time required to terminate the execution is

different for each of the three benchmarks and it is not important to analyze the

performance of Razor, it has been normalized to the time used to terminate the

execution at the nominal clock frequency, it is than shown in figure 4.13 to see how

the stalls impact the performances.

The results are consistent from what observed from the FIR test case, the simulation

time initially reduces due to the increase in clock frequency. When the number of

timing violations rises, the penalty introduced by the error correction is greater than

the benefits of increased frequency, so the simulation time stops reducing and later

it rises back.

It is possible to notice that the reduction in throughput caused by the stalls is not

equal in magnitude with the number of stalls. For example, looking at the right

most point all the software require 30% more time to terminate compared to the

ideal completion time, but this happens when a stall is inferred for 50% of clock

cycles. The difference between stall rate and throughput reduction in this case is

caused by the number of cycles where the processor is waiting to receive data from

the memories, because in such case a stall in the execution stage will be masked by

43

4 – Results

the stall caused by the I/O operation. This confirms that the Razor mechanism can

be successfully used in LI applications to reduce the performance penalty that is

introduced by the error correction mechanism.

1 1.05 1.1 1.15 1.2 1.25 1.3
Normalized frequency

-25

-20

-15

-10

-5

0

5

Ex
ec

ut
io

n
tim

e
va

ria
tio

n
(%

)

Execution time

Matmul
Quicksort
FFT
Ideal

Figure 4.13: RISC-V simulation - Execution time

Power consumption Evaluating the power consumption for the three benchmarks,

and multiplying it with the matching simulation time, the dissipated energy has

been computed. To eliminate its dependence from the software that has been run, it

is then normalized to the energy dissipated to terminate the execution at nominal

clock frequency.

Since the errors are manually asserted at the end of the error path, the trend of the

consumed energy is almost the same as the one of the simulation time. It is again

possible to see the reduction of overhead caused by the LI nature of the design.

44

4 – Results

1 1.05 1.1 1.15 1.2 1.25 1.3
Normalized frequency

-5

0

5

10

15

20

25

30

En
er

gy
 v

ar
ia

tio
n

(%
)

Energy consumption

Matmul
Quicksort
FFT

Figure 4.14: RISC-V simulation - Energy consumption

In the following tables (4.9, 4.10, 4.11) are displayed the different power contribu-

tions for both the original circuit and the one where Razor has been inserted. It is

possible to see that the power consumption does not change by much depending on

the software, a maximum variation of 4% is observed. The introduction of Razor

to the circuit has only a small impact on the power, a maximum of 7% increase in

power consumption can be observed from the three cases.

Threshold
FFT (Powers in mW)

Internal Switching Leakage Total Increase
0% 11.06 7.69 0.74 19.49 0%
30% 11.30 8.07 0.88 20.25 3.89%

Table 4.9: Power consumption for the FFT benchmark

Threshold
Matrix Multiplication (Powers in mW)

Internal Switching Leakage Total Increase
0% 10.73 6.95 0.74 18.42 0%
30% 10.93 7.28 0.87 19.08 3.58%

Table 4.10: Power consumption for the matrix multiplication benchmark

45

4 – Results

Threshold
Quicksort (Powers in mW)

Internal Switching Leakage Total Increase
0% 11.02 7.61 0.74 19.37 0%
30% 11.25 7.94 0.88 20.06 3.56%

Table 4.11: Power consumption for the quicksort benchmark

Voltage scaling Following the same procedure as the FIR filters it is possible to

simulate the possible power gains achievable with voltage scaling. The three bench-

marks have been run on the processor equipped with Razor at nominal frequency

with supply voltage equal to 1, 0.9 and 0.8 volts. The same benchmarks have been

run on the original processor at supply voltage 1 V to evaluate the power overhead

caused by the insertion of Razor.

0 2 4 6 8 10 12 14 16 18 20
Voltage reduction (%)

0

10

20

30

40

Ex
ec

ut
io

n
tim

e
va

ria
tio

n
(%

)

Execution time

Matmul
Quicksort
FFT

0 2 4 6 8 10 12 14 16 18 20
Voltage reduction (%)

-50

-40

-30

-20

-10

0

En
er

gy
 v

ar
ia

tio
n

(%
)

Energy consumption

Matmul
Qsort
FFT

Figure 4.15: RISC-V simulation - Voltage scaling

46

4 – Results

0 2 4 6 8 10 12 14 16 18 20
Voltage reduction (%)

-60

-50

-40

-30

-20

-10

0

10

To
ta

l p
ow

er
 v

ar
ia

tio
n

(%
)

Power consumption

Matmul (Original)
Matmul (Razor)
Qsort (Original)
Qsort (Razor)
FFT (Original)
FFT (Razor)

Figure 4.16: RISC-V simulation - Power consumption

With a voltage reduction of 10%, from the STA, a slowdown of 13% is observable,

while for a reduction of 20% the circuit is 40% slower than in nominal condition.

By using again the same model in 3.7, the error rates are equal to 3% and 100%

respectively for 0.9 V and 0.8 V.

The trend of the plots in figure 4.15 is similar to the one of the filters. It is again

possible to see how the simulation time does not increase as much as the amount

of stall cycles (there is a 37% decrease in performance with a stall rate of 100%).

This time, contrary to what seen for the FIR filters, since the amount of stalls is

much higher, it is possible to see how a bigger reduction in voltage does not mean a

reduction in energy because of the penalty caused by the stalls.

47

Chapter 5

Conclusions and Future Work

In this thesis work the Razor technique has been adopted in non-traditional methods

to improve performance and energy efficiency. An automated flow has been developed

to transform a traditional flip-flop design to an error-tolerant one that can be deployed

in conjunction with frequency scaling and dynamic voltage scaling. A novel approach

has been used to deal with the timing issues caused by the double sampling of the

signals, latches transparent on the negative clock level are used to avoid early arrival

of data to the Razor cells at the end of the setup critical paths. A new methodology

has been tested to deploy the Razor mechanism to latency-insensitive circuits. The

compartmentalization of the circuit in smaller blocks of logic unlocks potential for

a low performance overhead error recovery that is achieved by a stall of one clock

cycle only in the block where the error is detected, while the rest of the circuit can

continue without halting. This error recovery is also scalable to bigger or aggressively

clocked designs, since it does not rely on a global stall signal that would degrade the

maximum working frequency.

The results that have been observed from the simulations of the filters confirm that

the flow has been capable of automatically introduce the Razor error correction and

correction mechanism to the circuits. From the simulation of the processor is instead

evidenced that the application of Razor to latency insensitive designs can reduce

the performance penalty introduced by the error correction. Finally, for both of the

circuits, the possible performance gains obtainable with frequency scaling, and power

consumption improvements achievable with voltage scaling have been proven.

This work can be improved in different ways: the metastability of the error signal

should be investigated and its threat to the functionality of the circuit eliminated,

the area occupation and power consumption after the insertion of Razor can be

further optimized, more thorough testing on the failing of the critical paths to reduce

the uncertainty in the results should be made.

48

Bibliography

[1] Jörg Henkel et al. “New trends in dark silicon”. In: Proceedings of the 52nd

Annual Design Automation Conference. 2015, pp. 1–6.

[2] K. Bernstein et al. “High-performance CMOS variability in the 65-nm regime

and beyond”. In: IBM Journal of Research and Development 50.4.5 (2006),

pp. 433–449. doi: 10.1147/rd.504.0433.

[3] Sani R Nassif. “Design for variability in DSM technologies [deep submicron

technologies]”. In: Proceedings IEEE 2000 First International Symposium on

Quality Electronic Design (Cat. No. PR00525). IEEE. 2000, pp. 451–454.

[4] Keith A Bowman et al. “A 45 nm resilient microprocessor core for dynamic

variation tolerance”. In: IEEE Journal of Solid-State Circuits 46.1 (2010),

pp. 194–208.

[5] D. Ernst et al. “Razor: a low-power pipeline based on circuit-level timing spec-

ulation”. In: Proceedings. 36th Annual IEEE/ACM International Symposium

on Microarchitecture, 2003. MICRO-36. 2003, pp. 7–18. doi: 10.1109/MICRO.

2003.1253179.

[6] Filippo Minnella et al. “Mix & Latch: An Optimization Flow for High-Performance

Designs With Single-Clock Mixed-Polarity Latches and Flip-Flops”. In: IEEE

Access 11 (2023), pp. 35830–35840. doi: 10.1109/ACCESS.2023.3265809.

[7] KA Sakallah, TN Mudge, and OA Olukotun. “optimal Clocking”. In: Ann

Arbor 1001 (1990), pp. 48109–2122.

[8] Luca P. Carloni et al. “A Methodology for Correct-by-Construction Latency In-

sensitive Design”. In: The Best of ICCAD: 20 Years of Excellence in Computer-

Aided Design. Ed. by Andreas Kuehlmann. Boston, MA: Springer US, 2003,

pp. 143–158. isbn: 978-1-4615-0292-0. doi: 10.1007/978-1-4615-0292-

0_12. url: https://doi.org/10.1007/978-1-4615-0292-0_12.

49

https://doi.org/10.1147/rd.504.0433
https://doi.org/10.1109/MICRO.2003.1253179
https://doi.org/10.1109/MICRO.2003.1253179
https://doi.org/10.1109/ACCESS.2023.3265809
https://doi.org/10.1007/978-1-4615-0292-0_12
https://doi.org/10.1007/978-1-4615-0292-0_12
https://doi.org/10.1007/978-1-4615-0292-0_12

BIBLIOGRAPHY

[9] James Tschanz et al. “Tunable replica circuits and adaptive voltage-frequency

techniques for dynamic voltage, temperature, and aging variation tolerance”.

In: 2009 Symposium on VLSI Circuits. 2009, pp. 112–113.

[10] David Blaauw et al. “Razor II: In Situ Error Detection and Correction for

PVT and SER Tolerance”. In: 2008 IEEE International Solid-State Circuits

Conference - Digest of Technical Papers. 2008, pp. 400–622. doi: 10.1109/

ISSCC.2008.4523226.

[11] Matthew Fojtik et al. “Bubble Razor: Eliminating Timing Margins in an ARM

Cortex-M3 Processor in 45 nm CMOS Using Architecturally Independent

Error Detection and Correction”. In: IEEE Journal of Solid-State Circuits 48.1

(2013), pp. 66–81. doi: 10.1109/JSSC.2012.2220912.

[12] Keith A. Bowman et al. “Energy-Efficient and Metastability-Immune Resilient

Circuits for Dynamic Variation Tolerance”. In: IEEE Journal of Solid-State

Circuits 44.1 (2009), pp. 49–63. doi: 10.1109/JSSC.2008.2007148.

[13] Yanqing Zhang and Benton H. Calhoun. “Hold time closure for subthreshold

circuits using a two-phase, latch based timing method”. In: 2013 IEEE SOI-

3D-Subthreshold Microelectronics Technology Unified Conference (S3S). 2013,

pp. 1–2. doi: 10.1109/S3S.2013.6716531.

[14] Huimei Cheng et al. “Converting Flip-Flop to Clock-Gated 3-Phase Latch-Based

Designs Using Graph-Based Retiming”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 41.4 (2022), pp. 979–992. doi:

10.1109/TCAD.2021.3068109.

[15] Vivek Kozhikkottu, Sujit Dey, and Anand Raghunathan. “Recovery-based

design for variation-tolerant SoCs”. In: Proceedings of the 49th Annual Design

Automation Conference. 2012, pp. 826–833.

[16] Yuankai Chen, Xuan Zeng, and Hai Zhou. “Recovery-based resilient latency-

insensitive systems”. In: 2014 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE. 2014, pp. 1–6.

50

https://doi.org/10.1109/ISSCC.2008.4523226
https://doi.org/10.1109/ISSCC.2008.4523226
https://doi.org/10.1109/JSSC.2012.2220912
https://doi.org/10.1109/JSSC.2008.2007148
https://doi.org/10.1109/S3S.2013.6716531
https://doi.org/10.1109/TCAD.2021.3068109

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview
	Alternatives to the worst-case approach
	Razor
	Mix & Latch
	Latency-insensitive design
	High-level synthesis

	Related Work
	Implementation
	Error detection
	Razor architecture
	Edits to the Mix & Latch flow

	Error detection and correction
	Razor architecture
	Extension of the design flow

	Results
	Error detection
	Error detection and correction
	FIR filters
	RISC-V processor

	Conclusions and Future Work
	Bibliography

