
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

Graph Neural Network for
Event-based Vision

Supervisors

Prof. Luciano Lavagno
Fabrizio Ottati
M. Usman Jamal
Filippo Minnella

Candidate

Daniele Busacca

December 2023

Summary

In recent years, event cameras, also known as silicon retinas, have emerged as a
novel paradigm for capturing visual information in a sparse and asynchronous way,
offering significant advantages in applications such as robotics and computer vision.
These cameras differ from standard ones in how they capture visual information.
Instead of sampling all pixels simultaneously, as conventional cameras do, they
detect changes in brightness for each pixel with microsecond resolution. Conse-
quently, the output from the event cameras is a continuous stream of events. These
novel bio-inspired devices offer several key advantages, including low latency, low
power consumption, high temporal resolution and high dynamic range. However,
to exploit their full potential, the development of innovative algorithms is required.
The most effective learning algorithms developed for event cameras typically use
Spiking Neural Networks (SNNs) for an event-by-event processing or start by trans-
forming events into dense representations, which are subsequently processed using
conventional Convolutional Neural Networks (CNNs). Nonetheless, the SNNs don’t
provide a back-propagation learning mechanism and the CNNs result in the loss of
both the inherent sparsity and the fine-grained temporal resolution of events im-
posing a substantial computational load and latency introduction. For this regard,
this thesis proposes a Machine Learning (ML) algorithm based on Graph Neural
Networks (GNNs) to process event data streams from event cameras. GNNs
work on data with irregular shape and dimension and they can process events as
spatio-temporal graphs, which are inherently sparse. The primary focus is on event
classification, which involves determining the class which input data belongs to
based on a model trained on a dataset of event streams. The study employs the IBM
DVS Gesture dataset, consisting on numerous event sequences representing var-
ious hand gestures. Each event stream is associated with a label, for a total eleven
distinct classes. Despite being inherently event-based, the dataset is converted into
a graph-based format to ensure compatibility with Graph Neural Networks. This
conversion involves a preprocessing phase, composed by several sub-steps such as
event sub-stream selection, sub-sampling, time normalization and graph creation.

iii

Part of the whole event stream coming from an hand gesture is therefore sampled,
discretized in the time domain and then used to create an event-graph using the
radius-neighborhood algorithm. Each of these sub-steps is characterized by one or
more parameters, which can heavily affect the system performance. The primary
objective of this research is therefore to classify event-graphs generated from event
sub-streams. The performance of the model is given by its accuracy, evaluated
based on the ratio of correctly predicted labels to the total processed data. The
model is comprised of four graph convolutional layers, one pooling layer to coarse
and convert the irregular structure of the graph into a predefined representation,
and a Multi-Layer Perceptron, composed by three linear layers, for classification.
The model’s parameters are refined through a preliminary learning process which
is characterized of several hyperparameters, such as the batch size, the learning
rate, the optimizer, among others. The initial preprocessing phase relies on Python
libraries such as Numpy, while the subsequent stages, including the GNN model
architecture design, training, and evaluation, are conducted using PyTorch and
PyTorch Geometric libraries.

G
C
O
N
V

TIME WINDOW
SELECTION

SUB-SAMPLING TIME
NORMALIZATION

GRAPH
CREATION

G
C
O
N
V

G
C
O
N
V

G
C
O
N
V

G
C
O
N
V

P
O
O
L

N
N

L
I
N
E
A
R

N
N

GNN MODEL

N
N

. . .

DVS GESTURE DATASET

CLASSIFICATION

Figure 1: Overview of the thesis approach.

iv

The study demonstrates that the model’s performance, referring to the accu-
racy result, significantly depends on the setup configuration. This configuration
includes the values of preprocessing and training hyperparameters, along with the
model architecture. Consequently, the aim of the research is to fine-tune these
hyperparameters to identify the setup configuration that yields the best solution.
The configuration highlighted in Table 1 represents the best setup found in this
thesis, showcasing an accuracy of 90.31%.

TW TNR LR LRS BS OPT CONV #CONV #LIN ACC (%)
Best Setup 1e6 32 1e-3 CAWR 16 AdamW GATv2 4 3 90.31

TW: Time Window, in µs;
TNR: Time Normalization Range;
LR: Initial Learning Rate;
LRS: Learning Rate Scheduler;
BS: Batch Size;
OPT: Optimizer;
CONV: Graph Convolutional Model;
#CONV: Number of Graph Convolutional Layers;
#LIN: Number of Linear Layers;
ACC: Test Accuracy.

Table 1: Setup configuration giving the best accuracy.

In the initial two chapters, an overview of the essential theoretical foundations
required for the thesis, the Event-based Vision and Graph Neural Networks, is pro-
vided. Moving forward, the third and fourth chapters delves into the details of the
DVS Gesture dataset and the associated preprocessing steps needed to transform
it into a graph-based representation. The fifth chapter is dedicated to presenting
the model’s architecture and the corresponding results obtained in the study. The
conclusion, suggestions for potential improvements, and future steps are discussed
in the sixth chapter. The seventh chapter, serving as the Appendix, contains addi-
tional details, including a more comprehensive table of results.

v

Contents

List of Tables 1

List of Figures 3

I Theoretical Foundations 7

1 Event Cameras 9
1.1 Principles . 9
1.2 Advantages . 10
1.3 Different event camera designs . 11
1.4 Event Representation . 12
1.5 Event Processing . 14
1.6 Algorithms and Application . 15

2 Deep Learning for Graphs 17
2.1 Deep Learning . 17

2.1.1 Principles . 18
2.1.2 Neural Networks . 20
2.1.3 Convolutional Neural Networks 26

2.2 Graph Neural Networks . 28
2.2.1 Graph Structure . 28
2.2.2 Network Architecture . 30

II Event-based GNN 35

3 DVS Gesture Dataset 37
3.1 Structure . 37

vi

4 Event2Graph 39
4.1 Preprocessing Phase . 39

4.1.1 Denoising . 42
4.1.2 Time Window Selection . 43
4.1.3 Sub-Sampling . 46
4.1.4 Time Normalization . 48
4.1.5 Edge creation . 49
4.1.6 Node and Edge features . 51
4.1.7 Output graph structure . 52

4.2 Preprocessing Hyperparameters . 53
4.3 Graph Dataset Structure . 54

5 Graph Neural Network Model 57
5.1 Model architecture . 57

5.1.1 GATv2 Convolution . 58
5.1.2 Pooling Method . 59
5.1.3 MLP . 62
5.1.4 Model Size . 62

5.2 Training Hyperparameters . 63
5.3 Results . 65

III Conclusion 67

6 Conclusion 69
6.1 Possible improvements . 69
6.2 Future steps . 70

7 Appendix 71
7.1 Comparison between different setups 71

vii

List of Tables

1 Setup configuration giving the best accuracy. v

4.1 One-Hot Encoded labels. 40
4.2 Number of graphs per label and set. 56

5.1 Best test accuracy values for each graph convolutional model. . . . 66

7.1 Comparison between different setups. 71

1

2

List of Figures

1 Overview of the thesis approach. iv

1.1 Event Camera Operation. Image taken form [1]. 10
1.2 DVS Event Camera Schematic. Image taken from [1]. 12
1.3 Several event representations. (1) Events in a (x,y,t) space: pos-

itive events are represented in blue and the negative ones in red.
(2) Event frame. (3) Time surface: each pixel is associated with
last timestamp; the darker the pixel, the more recent the time. (4)
Interpolated voxel grid. (5) Motion-compensated event image. (6)
Reconstructed image. Image taken from [1]. 14

2.1 Learning process. 18
2.2 The dataset is splitted in two parts. (1) The train set is used for

parameter optimization, (2) the validation set is then deployed to
give performance evaluation. 20

2.3 Neuron architecture. 21
2.4 Example of Fully-Connected Neural Network Layer and its corre-

sponding matrix representation. As one can see, the 2D input [x0,
x1] is firstly converted into a 3D vector by means of matrix multi-
plication by W ∈ R2,3 and then the bias vector B ∈ R3 is added to
produce a 3D output vector [y0, y1, y2]. This layer has an overall of
9 parameters. The activation function in the matrix representation
is here omitted. 22

2.5 Example of Multi-Layered Neural Network with one input, hidden
and output layer, thus depth equal to 3, with a 1D vector as input
and a 2D vector as output. Each circle represents a neuron. 23

2.6 Some of the most common activation functions. The sigmoid, and
also its corresponding multiclass version (the softmax), is mostly
used to output probabilities since it forces its output to stay in a
range (0,1). 24

3

List of Figures

2.7 Weight matrix and a general patch from an input data. 26
2.8 Example of convolution where a pixel of interest is updated by means

of pixel neighborhood information and kernel matrix. 27
2.9 Example of max pooling operation. The input data is divided in

smaller regions and, for each of them, the max value is selected. . . 27
2.10 Example of a simple CNN composed by one convolutional and pool-

ing layer followed by a 2-layer neural network, giving a 4D output
classification or prediction. 28

2.11 Example of a graph with five nodes, with no directed and weighted
edges, and its corresponding 5x5 adjacency matrix. Since the graph
is undirected, the adjacency matrix is symmetric, because for every
couple of connected nodes i and j there’s also a couple of edges ei,j

and ej,i. If there are not self-loops the diagonal of the adjacency
matrix will always be composed by zeroes. 29

2.12 Example of graph with five nodes and 4D node feature vectors and
its corresponding 5x4 node feature matrix. 29

2.13 The target node (in red) gathers information from its 1-hop neigh-
borhood (in blue) to get its updated version (in purple). The same
procedure is applied for the nodes in the graph. 31

2.14 Example of graph pooling. Nodes within clusters are aggregated
together to obtain a single node. Here the connectivity of the pooled
graph follows that of the original graph, meaning that if there are
edges connecting two clusters then the respective pooled nodes will
also be connected. 32

2.15 Example of a simple Graph Neural Network for graph-level classifi-
cation composed by two graph convolutional and one pooling layers,
followed by a readout operation and a 2-layer neural network, pro-
ducing a 4D output vector. Here every node of the input graph is
characterized by a 4-dimensional node features vector. The dimen-
sionality of the embeddings increases to eight after the first graph
convolutional layer and still remains the same after the second graph
convolution. The red nodes in the graph represent the target nodes,
whereas the blue ones represent the 1-hop neighborhood. Then the
pooling operator reduces the size of the graph and the readout func-
tion outputs a vector with dimensionality equal to the final node
embeddings length. 34

4

List of Figures

3.1 Two-seconds snippets of the first ten classes. The eleventh class is
not present because it depends from the subject. Image taken from
[2]. 38

4.1 Preprocessing Scheme. 41
4.2 Denoising process. Original event stream (on the top) vs denoised

event stream (on the bottom). 43
4.3 Time Window Selection with overlapping time windows. TW1 stands

for Time Window 1, and TW2 means Time Window 2. They are
two successive time windows. TS is the Time Step. In this case,
TS < TW . 44

4.4 Time Window Selection with not overlapping time windows. In this
case, TS > TW . 45

4.5 Sub-sampling process. Original event stream (on the top) vs sub-
sampled event stream (on the bottom) with SSF = 5. 47

4.6 Edge Creation with Radius Neighborhood Algorithm. 50
4.7 Node feature vector and node feature matrix representation. The

red nodes are positive events, therefore their node feature vectors
are equal to [+1]; the blue nodes are negative events associated to
[-1]. The node feature matrix is a 1-dimensional array. 51

4.8 Edge Features Representation. Node i and j are two events within
a spatio-temporal range defined by the radius value R. 52

4.9 Event-based graph and its embedding matrix structures. 53
4.10 Distribution of the Graph Dataset. 55

5.1 Model Architecture. 58
5.2 Node feature vector dimensionality through convolutional layers. . . 58
5.3 Input and Output of the pooling layer. 60
5.4 Pooling Method. N represents the number of nodes inside a voxel,

whereas F is the embedding dimensionality. 61
5.5 MLP dimensionality through the linear layers. 62

5

6

Part I

Theoretical Foundations

7

Chapter 1

Event Cameras

Researches on the behavior of human brain and on how we perceive reality has
always been a visionary challenge. For this purpose, in 1991, in the cover of the
Scientific American the image of cat was acquired by a novel “Silicon Retina”,
trying to mimic the behavior of the human eye. These new bio-inspired silicon
retinas, mostly known as event cameras, have opened up new possibilities for
performing computations in a more efficient and biologically inspired way, igniting
a significant advancement in the field of neuromorphic engineering. This new vision
paradigm has became crucial to face different tasks in robotics and computer vision
where high-speed motion, low light and high-dynamic-range scenes is present, or in
always-on applications where low power is needed.

1.1 Principles
Event cameras are asynchronous sensors that behave differently from standard
frame-based cameras. Instead of capturing images at a synchronous rate, event
cameras respond asynchronously and independently for every pixel at brightness
changes.

Particularly, each pixel memorizes the logarithmic intensity of its photocurrent
L = log(I), that can be simply referred as brightness. When a change of brightness
∆L exceeds a certain threshold in a pixel location, the camera reports an event.
To be more detailed, an event is triggered at pixel xk(xk, yk) and time tk when a
brightness increment or decrement overcomes a threshold C.

|∆L| = |L(xk, yk, tk)− L(xk, yk, tk −∆T)| > C (1.1)

The polarity pk of the event is determined by the triggering of a positive or

9

1 – Event Cameras

negative spike: it’s a binary value assuming +1 for photocurrent increasing, -1
otherwise.

Figure 1.1: Event Camera Operation. Image taken form [1].

Therefore an event can be encoded by a tuple of four elements: the spatial
location (xk, yk), the timestamp tk and the polarity pk.

ek = (xk, yk, tk, pk)

and the output of event camera is a binary stream of events:

{ek}N = {xk, yk, tk, pk}N

The events are transmitted outside the camera by using an address-event repre-
sentation (AER) readout protocol that can range from 2MHz to 1200MHz.

1.2 Advantages
Due to their sparse and asynchronous nature, event cameras present several bene-
fits, especially if compared with frame-based cameras.

Thanks to their microsecond time resolution, event cameras are much faster than
standard cameras. The high temporal resolution allows to capture the motion
of very fast-moving objects without suffering from motion blur.

Also, being every pixel completely asynchronous and independent, i.e. there’s
no need to wait for a global exposure time, event cameras are low latency devices:
as soon as a brightness change is detected, an event is transmitted ([1]).

10

1.3 – Different event camera designs

Since each pixel respond only to brightness changes, there’s no transmission of
redundant data, leading to a low power consumption. Therefore event cameras are
also low power devices. Generally, event-based camera systems can have power
consumption ranging around 100mW.

Event cameras, just like biological retinas, can adapt to very dark and light
scenarios, due to the logarithmic scale each pixel works with. The High Dynamic
Range (HDR) can reach values of 120dB which overcomes the 60dB of standard
cameras.

1.3 Different event camera designs
The Dynamic Vision Sensor (DVS) event camera was one of the first proto-
types for this new type of bio-inspired sensors. In these devices a continuous-time
photoreceptor is capacitively coupled to a readout circuit which is reset every time
a pixel is sampled. Nevertheless, some applications cannot be solved by only re-
lying on DVS events, but they also require an “absolute” brightness. To face this
problem, new types of event camera has been developed in order to output both
dynamic and static information. In any case, the DVS is always used as sub-module
of these new vision sensors.

The pixels of the Asynchronous Time Based Image Sensor (ATIS) are
composed by two sub-blocks. The DVS sub-pixel, here called change detector (CD),
is responsible of capturing brightness changes. When this happens, another sub-
pixel, called exposure measurement (EM), is triggered to read the absolute intensity.
The trigger resets a capacitor to high voltage and this charge is bled away from the
capacitor by another photodiode ([1]). The final result is that two more events are
transmitted and they code the temporal interval between crossing the two threshold
voltages. The larger the interval, the darker the absolute brightness, and vice-versa.
The advantage is that it’s now possible to reach HDR values greater than 120dB.
On the other hand the area needed to build the ATIS sensor is now doubled with
respect to the DVS cameras; also, if the reading of the absolute intensity is too
long, it can be interrupted by new incoming events.

The Dynamic and Active Pixel Vision Sensor (DAVIS) integrates the
Dynamic Active Pixel (APS) and the DVS pixel into the same pixel, by having
an area overhead of only 5% with respect to the DVS camera. The APS pixel
can be triggered both on demand and at constant frame; when the latter readout
configuration is applied, there’s redundancy if the pixel doesn’t change. The only
disadvantage involves the High Dynamic Range, now comparable with frame-based
cameras (∼55dB).

11

1 – Event Cameras

Anyway, besides more complex vision sensors has been introduced (ATIS and
DAVIS), they are generally referred as DVS cameras.

Figure 1.2: DVS Event Camera Schematic. Image taken from [1].

1.4 Event Representation
As already mentioned in section 1.1 and 1.2, the output of an event camera is an
asynchronous and sparse stream of events, with very high temporal resolution and
low latency. The way in which the events are processed is very important in order
to exploit the temporal aspect.

Generally, two types of event representations can be distinguished, depending
on how many events are processed simultaneously. The event-by-event basis
processing can modify the state of the system with the arrival of only one event
and it’s the one that can achieve the lowest latency; the groups or packets of
events processing waits for the arrival of a certain amount of events and processes
them at the same time, with the introduction of some latency. In the latter, the
use of more than one event let the model rely on additional information, i.e. past
events or extra knowledge, instead of depending only on one event which could not
provide enough information.

To facilitate the extraction of meaningful information, events can be represented
in several ways.

Individual Events is a event-by-event processing method which takes as input
a single event ek = (xk, yk, tk, pk). It’s mainly used by probabilistic filters and
Spiking Neural Networks (SNN): they contain additional information given by past
events that, together with the incoming event, generate an output.

The Event Packet method aggregates a certain number N of events E = {ek}N
k=1

in a a spatio-temporal neighborhood to produce an output. By grouping events

12

1.4 – Event Representation

together, spatial and temporal relationships can be analyzed simultaneously.
Differently, in Event Frame/Image or 2D Histogram events in a spatio-

temporal range are shrunk into an image-like representation, where each pixel value
represents the number of events or the polarity accumulation in that determined
spatial location. This is compatible for classical computer vision algorithms, other
than being a simple way to convert streams of events into a 2D representation,
containing spatial information about scene edges and to inform about the presence
and absence of events. Nevertheless, this kind of representation may discard the
sparse and asynchronous nature of event cameras.

Similar to 2D Histogram, the Time Surface (TS) representation also con-
verts an event stream into an image-based structure. In this case each pixel value
represents the timestamp of the last event that occurred in that spatial location.
Thus, the more recent the event, the higher the “intensity” of that pixel. Only the
timestamp of the last event is saved.

The Voxel Grid represents instead events in space-time (3D) histograms, where
each voxel corresponds to a pixel within a certain time interval. This representation,
preserves better the temporal information with respect to 2D Histogram.

Events are instead represented as points embedded in a spatio-temporal space
(x, y, t) ∈ R3 in 3D Point Set: in this way the temporal dimension becomes
a geometric one. Similarly, Point Set on Image Plane represents events as
evolving 2D structures.

The Motion-compensated event image representation can give motion esti-
mations. It doesn’t rely only on events but on motion hypothesis too. When an edge
moves and triggers an event, the motion estimation of the edge can be produced by
warping the events into a reference time and by maximizing their alignment. This
results in a sharper image that can be better fit a candidate motion.

Instead, a motion-invariant representation can be given by Reconstructed Im-
ages. Absolute brightness of pixels can be computed by integrating events over
time.

These various event representations and processing techniques offer different
trade-offs in terms of latency, information utilization, and compatibility with dif-
ferent algorithms and applications. The choice of representation depends on the
specific task and requirements of the system which is working at the output of an
event camera.

13

1 – Event Cameras

Figure 1.3: Several event representations. (1) Events in a (x,y,t) space: positive
events are represented in blue and the negative ones in red. (2) Event frame. (3)
Time surface: each pixel is associated with last timestamp; the darker the pixel,
the more recent the time. (4) Interpolated voxel grid. (5) Motion-compensated
event image. (6) Reconstructed image. Image taken from [1].

1.5 Event Processing
Event processing methods can mainly follow two directions, depending on the rep-
resentation choice and available hardware platforms.

Event-by-event-based methods, where events need to be asynchronously
processed, are used in order to obtain a minimum latency and an high computa-
tional efficiency. Therefore they need dedicate hardware to be able to satisfy these
characteristics. Probabilistic filters and Spiking Neural Network are a good choice
to process events in a event-by-event fashion since they naturally deal with asyn-
chronous inputs. In any case, these methods rely on additional information to be
combined with inputs to produce an output.

Anyway, single events represent only a very small part of the whole event streams
and can be subject to noise. Methods for groups of events gather events alto-
together and are capable to get a better signal-to-noise ratio. They don’t even
require the need of additional data and, since there are several representations as
described in section 1.4, many algorithms are available. Event frames representa-
tions, that convert event streams into image-like structures, can be used in various
tasks and are well suitable to be used in many learning methods, such as DNN,
SVM or Random Forest. The time surfaces are instead used for motion analysis
and shape recognition tasks, since they can well detect scene edges and motion flow.
They were also recently used as feature extractors in Convolution Neural Network
for optical flow estimation. Methods based on voxel grids rely on 3D structures,
therefore they need a greater computational effort with respect to lower dimensional
representation, but at the same time the temporal information is preserved. Voxel
grids are often used in Deep Neural Networks as multi-channel input/output.

14

1.6 – Algorithms and Application

1.6 Algorithms and Application
Thanks to their advantages, described in section 1.2, DVS devices can be used in
many applications such as feature detection and tracking. The asynchronicity
of event cameras allows them to see in the “blind” time between two subsequent
frames of a standard camera, making them faster but also less power consuming.
Tracking requires the establishment of correspondences between events (or features
built from the events) at different times [1]. For complex algorithms, such as
tracking cars on an highway, the shape of the object is user-defined in order to
reduce the complexity of the algorithm. For simpler algorithms, a moving object is
instead considered as a evolving stream of events with no predefined shape.

In other applications, like the Optical Flow Estimation for object velocity
detection, the geometry and the motion of a object is not known a priori. In
classical algorithms, the problem is faced by analysing consecutive frames but this
is not naturally feasible with event cameras. A possible approach can be that one to
preprocess events to transform them into image-like representation to be deployed
to classical image-based algorithms. Other approaches use instead learning-based
methods to predict optical flow estimation by directly using events.

Dynamic Vision Sensors are also applied for 3D Reconstruction, but the prob-
lem of depth estimation can be approached in several ways. Instantaneous stereo
involves the use of two or more attached and synchronous cameras and the depth
estimation is performed in a very narrow amount of time by trying to find a corre-
lation between events. Differently, the Monocular Depth Estimation uses a single,
moving camera whose events are integrated over time to obtain the 3D map of the
scene.

Another application consists on the Image Reconstruction. The event stream
of the DVS cameras can be seen as way to compress the visual information of
a scene since there’s removal of redundancy for pixels which don’t change their
brightness. Therefore, in order to reconstruct (or “decompress”) the visual data
and to get an absolute brightness of every location in the camera array, a pixel-
per-pixel integration is performed: if there’s a positive event then the absolute
brightness increases, and decreases for a negative event. The reconstructed images
can capture high speed motion (the frame rate can range from 2kHz and 5kHz) and
HDR scenes, resulting advantageous in many applications.

15

16

Chapter 2

Deep Learning for Graphs

In recent years, the advent of Artificial Intelligence (AI) has brought about signif-
icant changes across various disciplines. However, the term “AI” actually covers a
wide range of sub-classes or paradigms. One of the most interesting and impactful
sub-classes is the deep learning, which specifically focuses on training deep neu-
ral networks (DNN). DNNs have a complex structure and are trained on large
amount of data to approximate highly intricate functions, enabling accurate pre-
dictions or classifications. While DNNs are commonly applied to fixed and grid-like
data representations, such as in Convolutional Neural Networks (CNNs), there have
been advancements in learning methods that can handle data with irregular shapes,
which can be represented as graphs. This particular branch is known as Graph
Neural Networks (GNNs) or geometric deep learning. GNNs have shown
promise in various applications, including social network analysis, recommendation
systems, molecular chemistry, and computer vision tasks.

2.1 Deep Learning
Learning algorithms are based on networks composed by a certain number of pa-
rameters (or weights) that need to be adjusted and optimized in order to complete a
determined task. The powerful characteristics of deep learning is that at the begin-
ning of the training procedure, the model is general, even if has to be specialized in
a specific task. In fact, it can be trained to become highly specialized through the
iterative optimization of their parameters using input samples. This adaptability
and capacity to learn complex representations make deep learning models powerful
tools in various fields, including computer vision, natural language processing, and
speech recognition.

17

2 – Deep Learning for Graphs

2.1.1 Principles
To be more detailed, the training process is divided is several steps. First, a dataset
of input data and their corresponding desired outputs (ground truth) is needed. For
example, in a supervised learning task, the input data could be images, and the
desired outputs could be their respective labels. Also, the model has learnable
parameters called weights: initially, these weights are randomly initialized or set to
some predefined values. Then the input data are fed into the model which performs
a forward pass through its layers. Each layer applies transformations to the input
data using the current weights, producing an output. A loss function is used to
measure the error between the model’s output and the desired output. This error
represents how well the model is currently performing on the given input data.
Then, the gradient of the error with respect to the weights is computed using the
chain rule for the derivative of a composite function. This gradient tells us how the
error changes with a unit change in each weight. It is calculated by propagating
the error gradients in a backward way through the layers of the model. This step
is known as backward pass. The weights are therefore updated in the direction
that minimizes the error. This is done by taking small steps proportional to the
negative gradient of the error with respect to the weights. This process is repeated
until the loss value decreases to a certain threshold or the accuracy on unseen data
overcomes an acceptable level.

LOSS
FUNCTION

ERROR

WEIGHT ADJUSTMENT

INPUT DATA GROUND TRUTH

 FORWARD

 BACKWARD

Figure 2.1: Learning process.

This method is iteratively applied for each training sample of the reference
dataset. The training iteration in which the parameters are updated for all of
the input data is known as an epoch. Generally, the training of a neural network is

18

2.1 – Deep Learning

performed for a certain number of epochs in the training loop.

Loss function

The loss function, also known as cost function, is a function that computes the
difference between the output of the model and the ground truth when feeding
samples into the neural network. The measured error is a positive value also known
as loss value. In essence, a loss function serves as a mechanism for prioritizing the
errors to address within the training samples. It guides the parameter updates in
such a way that the adjustments mainly focus on the outputs with the higher losses.
As example, common loss functions include mean squared error or cross-entropy.

Optimization function

The main idea consists on calculating the rate of change of the loss with respect
to each parameter, which involves computing the derivatives. Subsequently, the
goal is to adjust each parameter in such a way that it moves in the direction of de-
creasing loss. By iteratively updating the parameters based on their corresponding
derivatives, the model aims to minimize the loss value and enhance its performance
over time. Thus the concept is to navigate the parameter space towards configu-
rations that result in lower loss values, thereby improving the overall effectiveness
of the model. If the change is negative, then we need to increase that particular
parameter, and decrease otherwise. The rate of change is actually scaled by a fac-
tor known as learning rate. The next equation shows the updating parameter
function where w represents the weight to be updated, l is the learning rate and L
denotes the loss value.

w ← w − l · ∂L

∂w
(2.1)

In general, multiple optimization algorithms are available, and each algorithm
takes as input a list of parameters that require optimization. These optimiza-
tion algorithms employ various techniques and strategies to iteratively update the
parameter values in order to minimize the loss function. The choice of optimiza-
tion algorithm depends on factors such as the nature of the problem, the size
of the dataset, and computational considerations. Some commonly used optimiza-
tion algorithms include gradient descent, stochastic gradient descent (SGD), Adam,
AdamW and many others. Each algorithm offers different advantages and trade-offs
in terms of convergence speed, robustness, memory requirements, and handling of
noisy or sparse data.

19

2 – Deep Learning for Graphs

Train, Validation and Test Sets

To ensure the model’s generalization to unseen data during the training process,
in addition to the training set, used for adjusting the model parameters through
the backward pass, a separate validation set is utilized. This is the concept of
cross-validation which involves setting aside a portion of the available samples
to validate the model’s performance on independent data. This approach helps to
determine how well the model performs on unseen examples. In fact, while a neural
network has the potential to approximate functions of various shapes, training the
network using the entire dataset doesn’t guarantee good performance on unseen
data, leading to the risk of encountering overfitting. Therefore, by employing a
separate validation set, the model’s performance can be evaluated on independent
data, helping to mitigate overfitting and giving an unbiased evaluation.

TRAIN SET VAL SET

MODEL TRAINED
MODEL

PERFORMANCE

(1) (2)

PARAMETERS
OPTIMIZATION

Figure 2.2: The dataset is splitted in two parts. (1) The train set is used for
parameter optimization, (2) the validation set is then deployed to give performance
evaluation.

In addition to the train and validation sets, a test set can also be utilized.
The primary distinction between the validation and test sets lies in their purpose.
The validation set is mainly used to fine-tune the hyperparameters of the network,
indirectly influencing the model. On the other hand, the test set is employed solely
for a golden evaluation.

2.1.2 Neural Networks
The main structure of deep learning algorithms are neural networks (NNs).
These are mathematical entities able to represent complex functions by composing
simpler operations.

20

2.1 – Deep Learning

Neuron

The basic building block of neural networks is a simple mathematical function
referred as neuron. A neuron takes an input x, applies a linear transformation
by multiplying the input by a weight w and adding a bias b and then passes the
result through a non-linear activation function σ to produce the output y.

y = σ(w · x + b) (2.2)

The weight w and the bias b are learnable parameters.
The activation function introduces non-linearity to the neuron, enabling it to

learn complex relationships between inputs and outputs, instead of applying only
a linear transformation.

NEURON

x y

w, b σ

Figure 2.3: Neuron architecture.

When multiple neurons are stacked together, forming a layer, the weights and
biases become multidimensional, allowing the layer to represent multiple neurons
collectively. Each neuron in the layer performs the same linear transformation and
applies the same activation function to its input, but with its own set of weights
and biases. Also, the layer is said to be fully-connected when each input sample will
be transformed by all the neurons of the layer itself. Overall, the neural network’s
ability to learn and generalize comes from the combination of these basic building
blocks, where the neurons collectively process the input data through multiple
layers, with each layer performing a non-linear transformation of the preceding
layer’s output.

In terms of mathematical operations, feeding an M-dimensional vector to a neu-
ral network means performing a matrix multiplication by a weight matrix W
∈ RM,N and a vector summation by a bias vector B ∈ RN , followed by an element-
wise activation function, to output an N-dimensional vector.

21

2 – Deep Learning for Graphs

x0

x1

y0

y1

y2

MATRIX REPRESENTATION

FULLY CONNECTED LAYER

x0

x1

w00

w10

w01

w11

w02

w12

b0

b1

b2

y0

y1

y2

x + =

Figure 2.4: Example of Fully-Connected Neural Network Layer and its correspond-
ing matrix representation. As one can see, the 2D input [x0, x1] is firstly converted
into a 3D vector by means of matrix multiplication by W ∈ R2,3 and then the bias
vector B ∈ R3 is added to produce a 3D output vector [y0, y1, y2]. This layer has
an overall of 9 parameters. The activation function in the matrix representation is
here omitted.

Multi-Layered Neural Network

A multi-layered neural network, also known as a deep neural network, is a
structure consisting on multiple layers of interconnected neurons. Each layer in the
network is composed by a set of stacked neurons that perform computations on
the input data, exactly as shown in equation 2.2. The output of one layer serves
as the input to the next layer, creating a sequential flow of information through
the network. Therefore the information moves only in one direction, from the
input layer to the output layer, without any cycles or loops. This architecture is
also known as a feedforward neural network or multilayer perceptron (MLP). The
intermediate layers between the input and output layers are called hidden layers.
The depth of the network refers to the considered number of layers.

22

2.1 – Deep Learning

y = σ(wn · (. . . σ(w2 · (σ(w1 · x + b1)) + b2) · · ·+ bn) (2.3)

x

y0

y1

Figure 2.5: Example of Multi-Layered Neural Network with one input, hidden and
output layer, thus depth equal to 3, with a 1D vector as input and a 2D vector as
output. Each circle represents a neuron.

Activation function

The activation function plays two important roles:

• in the inner parts of the model, it introduces non-linearity to the computations
performed by the neurons. A linear function would only be able to represent
linear relationships between the inputs and outputs, which limits the expressive
power of the network. However, by using activation functions with different
slopes, neural networks can approximate more complex and non-linear func-
tions. These activation functions enable the network to capture and represent
intricate patterns and relationships in the data.

• at the last layer of the network, it serves the role of mapping the outputs of the
preceding linear operations into a specific range or distribution. The choice
of activation function at the output layer depends on the nature of the task.
For example, in binary classification problems, a sigmoid activation function is
commonly used to squash the output values between 0 and 1, representing the
probability of belonging to a particular class. In multi-class classification prob-
lems, the softmax activation function is often used to produce a probability
distribution over multiple classes.

Activation functions used in neural networks are typically chosen to be nonlinear
and differentiable. There are two main reasons for this:

23

2 – Deep Learning for Graphs

• non-linear activation functions allow neural networks to learn and represent
complex and non-linear relationships in the data. In this way it’s possible to
introduce non-linearity into the network, enabling it to capture and approxi-
mate highly nonlinear functions.

• differentiability is crucial for training neural networks using gradient-based op-
timization algorithms, such as backpropagation. In fact, by using differentiable
activation functions, gradients can be computed throughout the network, fa-
cilitating the optimization process.

ReLU Leaky ReLU Sigmoid Tanh Elu

Figure 2.6: Some of the most common activation functions. The sigmoid, and
also its corresponding multiclass version (the softmax), is mostly used to output
probabilities since it forces its output to stay in a range (0,1).

As one can see from the image 2.6, activation functions have a sensitive range.
The sensitivity in this region ensures that small changes in the input can propagate
through the network and contribute to meaningful updates in the weights and
biases, enabling effective learning. Also, many of them also have an insensitive or
saturated range where there are little changes from input to output or no changes
at all. In this range, the activation function becomes flat or approaches a constant
value. The saturation of the activation function can cause the gradient to become
extremely small or zero, leading to the vanishing gradient problem.

This means that this diversity in response ranges allows the network to capture
and represent different aspects or features of the input data. What’s more, during
the learning process, neurons with activation functions having an higher sensitivity
will have larger gradients and, consequently, will experience larger updates.

Learning in Neural Networks

Building models using stacks of linear transformations followed by differentiable
activations has proven to be a powerful approach in deep learning. By combining
multiple layers of linear transformations and nonlinear activations, deep neural
networks can learn hierarchical representations of the input data. The success
of deep learning is partly due to the effectiveness of gradient descent optimization

24

2.1 – Deep Learning

algorithms, such as backpropagation, in estimating the parameters of these models.
Through backpropagation, gradients are computed and used to update the model’s
parameters, iteratively minimizing a loss function. This process allows the model
to learn from large-scale data and adapt its parameters to fit the training data well.

Therefore training a neural network involves finding optimal values for its weights
and biases so that the network can accurately perform a given task. The objective
is to generalize well on unseen data, meaning the network should produce correct
outputs on new examples of the same type of that ones which was used during
training. During the training process, the network learns to capture the features
of the data by adjusting the weights and biases. When the network is successfully
trained, its weights and biases reflect the acquired knowledge about the data. This
knowledge allows the network to generalize well to previously unseen data samples.
This is what learning is meant to be, since a general model is specialized in a
specific task.

Neural Networks Limitations

As described above, a neural network is composed of one or more layers of inter-
connected neurons. The network architecture can vary in terms of the size of the
input data, the number of layers, the number of neurons in each layer, and the
connections between them. However, the neural networks can face the overfitting
problem, i.e. the potential of memorizing the training set without generalizing on
the validation or test set. Going into the details, there are two main causes that
could limit the effectiveness of neural networks. Firstly, depending on the number
and dimension of the layers, the model could have too many parameters, hence
becoming too complex and learning to fit the data too closely. Secondly, the neural
networks, by themselves, are inherently translation variant. This means that small
changes in the input data, such as shifting an image or text, can lead to significantly
different representations.

To combat these problems, it is essential to carefully design the neural network
architecture, consider regularization techniques, validate the model’s performance
on unseen data, and employ strategies such as data augmentation, cross-validation,
and model selection based on validation performance.

However, a better method could be instead to address the translation variance is-
sue in neural networks by replacing the dense, fully connected affine transformation
with convolutional layers.

25

2 – Deep Learning for Graphs

2.1.3 Convolutional Neural Networks
Convolutional neural networks (CNNs) are specifically designed to capture
spatial relationships in data, such as images. The main operation of a CNN is
the convolution operation which consists on sliding a small window, called filter or
kernel, across each position of the input data and computing element-wise multipli-
cations and summations. The convolution in CNNs is a local and, more important,
translation invariant linear operator.

More precisely, the convolution consists for a 2D grid-like structure as the scalar
product of a kernel function (weight matrix) with the receptive field of the reference
pixel, which is determined by the region of the input image that influences the
computation at a specific position. For example, a kernel of MxM dimension has
a receptive field of MxM pixel neighborhood. In general, the size of the weight
matrix can be of any dimension, taking into account that the height and the width
are necessarily odd numbers.

i00 i01 i02

i10 i11 i12

i20 i21 i22

w00 w01 w02

w10 w11 w12

w20 w21 w22

INPUT PATCH KERNEL MATRIX

*

Figure 2.7: Weight matrix and a general patch from an input data.

If considering the figure 2.7, the target pixel of the input patch (i11) is trans-
formed in the output image as:

o11 =i00 · w00 + i01 · w01 + i02 · w02+
i10 · w10 + i11 · w11 + i12 · w12+
i20 · w20 + i21 · w21 + i22 · w22

(2.4)

26

2.1 – Deep Learning

1 0 1

0 1 1

1 0 1

1 2 3

4 5 6

7 8 9

INPUT PATCH
(RECEPTIVE FIELD)

KERNEL
MATRIX

*
0 11

0

1

1 1

0 1

31

INPUT DATA OUTPUT DATA

Figure 2.8: Example of convolution where a pixel of interest is updated by means
of pixel neighborhood information and kernel matrix.

The kernel matrix is the same for each reference pixel and its weights are learned
during the training process, as the same way as the neural network parameters.
Therefore, the advantage of convolutional neural network is that this weight sharing
property greatly reduces the number of parameters and enables the network to
capture spatial patterns more efficiently.

Furthermore, CNNs often incorporate other operations like pooling and non-
linear activations to further enhance their ability to extract relevant features. Pool-
ing layers downsample the feature maps, reducing their spatial dimensions. Specif-
ically, this is generally done by averaging or summing pixels in a neighborhood
or by taking the pixel with maximum features. Non-linear activations introduce
non-linearities into the network, allowing it to learn complex and non-linear rela-
tionships between the input and output.

2 3 4 0

3 7 0 2

1 1 3 5

0 2 2 9

7 4

2 9

2 3

3 7

1 1

0 2

4 0

0 2

3 5

2 9

MAX POOL

Figure 2.9: Example of max pooling operation. The input data is divided in smaller
regions and, for each of them, the max value is selected.

Anyway, reducing the feature map of the input data through convolutional and
pooling layers alone does not directly produce probabilities or predictions for a
specific task. In fact, convolutional and pooling layers are responsible for feature

27

2 – Deep Learning for Graphs

extraction and spatial preservation. That’s why at least one fully connected layer
is needed in the last stage of the model: it takes the flatten (or unrolled) 1D output
of the last convolutional or pooling layer and transforms it into a suitable format
for making predictions.

P
O
O
L

INPUT DATA KERNEL
MATRIX CONVOLUTED DATA POOLED & FLATTEN DATA

CONVOLUTION
OPERATOR

POOLING
OPERATOR

NEURAL
NETWORK

OUTPUT

*

Figure 2.10: Example of a simple CNN composed by one convolutional and pooling
layer followed by a 2-layer neural network, giving a 4D output classification or
prediction.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) are a generalization of the traditional Convo-
lution Neural Networks to deal with data of arbitrary size and complex topological
structures. Unlike the CNN, which uses a kernel matrix to update a pixel by
exploiting information of neighborhood pixels, the GNN uses neighborhood node
features (can also edge features) to update the attributes of the target node by
means of aggregation and updating functions.

2.2.1 Graph Structure
Graph Neural Networks work on graph-structured data. A graph G is a network
composed by a set of vertices (or nodes) V and a set of edges E.

G = (V, E)

The set of edges E describes the connectivity between nodes in the graph and
has a matrix representation known as adjacency matrix A ∈ RN,N , where N is
the number of nodes in the network (N = |V |). The entry A[i,j] in the adjacency
matrix represents the presence or absence of an edge between nodes i and j. In
other words, A[i,j]=1 if there is an edge connecting node i and j, and A[i,j]=0
otherwise. Also, the adjacency matrix can be further extended to incorporate
additional information, such as edge weights or edge types.

28

2.2 – Graph Neural Networks

0

1

3

2

4

0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

1 0 1 0 1

0 0 0 1 0

GRAPH ADJACENCY
MATRIX

Figure 2.11: Example of a graph with five nodes, with no directed and weighted
edges, and its corresponding 5x5 adjacency matrix. Since the graph is undirected,
the adjacency matrix is symmetric, because for every couple of connected nodes
i and j there’s also a couple of edges ei,j and ej,i. If there are not self-loops the
diagonal of the adjacency matrix will always be composed by zeroes.

Each node in V carries information which can be represented by a 1-dimensional
array called node feature vector x⃗ ∈ RF , where F represents the number of
features of every node in the network. All feature vectors can be stacked together
to form the node feature matrix X ∈ RN,F of the whole graph. Therefore, the
kth row of the node feature matrix corresponds to the feature vector of the kth node
of the graph.

0

1

3

2

4

GRAPH NODE FEATURE
MATRIX

Figure 2.12: Example of graph with five nodes and 4D node feature vectors and its
corresponding 5x4 node feature matrix.

The same accounts for the edges: they can give information on the relationship
or properties between connected nodes, rather than only connectivity information.
The edge feature vector for an edge linking nodes i and j can be denoted as
eij ∈ RFe , where Fe represents the number of features associated to each edge. All

29

2 – Deep Learning for Graphs

edge feature vectors can be stacked together to form the edge feature matrix
E ∈ RN,N,Fe .

2.2.2 Network Architecture
The top-level structure of a Graph Neural Network shares similarities with Con-
volutional Neural Networks. GNNs also employ convolutional, pooling, and fully-
connected layers, but the implementation of these layers is different in GNNs, while
still having similar concepts. In fact, in CNNs, convolutional layers operate on reg-
ular grid-like structures such as images, where filters slide over local receptive fields
to extract local patterns. In GNNs, the convolutional operation is adapted to work
on graph-structured data. Instead of applying convolution on regular grids, GNNs
perform convolution on the graph’s nodes and their local neighborhoods. For what
concerns pooling layers, in CNNs they are typically used to downsample the input
and reduce its spatial dimensions. In GNNs, the concept of pooling is different
because graphs don’t have a fixed spatial structure. However, in GNNs, fully-
connected layers are often used after the graph-based operations to transform the
node features into the desired output format for the given task. GNNs are in fact
capable of making predictions at three different levels within a graph: node-level,
edge-level and graph-level predictions. It’s possible to classify individual nodes and
edges in the graph or to capture global properties of the entire graph. In the latter
case, a readout operation is needed in order to aggregate node-level embeddings and
therefore get a fixed-size representation of the whole graph which may be deployed
into a multilayer perceptron.

Graph Convolutional Layer

A Graph Convolutional Layer is mainly composed by two operations: aggregation
and updating.

The aggregation operation involves gathering information from the 1-hop neigh-
borhood of each node in the input graph. This is achieved through message
passing, where the node features of neighboring nodes, and also the features of
the target node, are exchanged and aggregated to create a representation of the
neighborhood. The purpose of aggregation is to capture the collective information
from neighboring nodes and incorporate it into the target node’s representation.
It’s very important to ensure the permutation invariance, i.e. the final result
must not change by reordering the node messages, and a common approach is to
perform a permutation-invariant aggregation operation such as summation or av-
eraging. In these operations, the order of the neighboring nodes does not affect the

30

2.2 – Graph Neural Networks

result.

zi = fAGG(xi, fMSG(xj, eij)), ∀j ∈ N(i) (2.5)

The updating operation consists on applying a transformation to the aggregated
information to obtain the updated node features, also known as embeddings. The
update function can be implemented as a neural network layer, where the aggre-
gated information is passed through a set of learnable parameters. According to the
graph convolutional layer design, the dimensionality of the embeddings can change
when applying the neural network to the input node feature vector. Generally a
weight matrix W (l) ∈ RF,F ′ , where F is the dimensionality of the input embeddings,
F’ is the dimensionality of the output emmbeddings and l denotes the layer index,
is used to alter the embedding dimensionality. This weight matrix is the same for
all nodes in the graph within a layer. The output of the update function is there-
fore the updated node feature vector, which could then be used as input for the
subsequent layers.

x′
i = fUP D(zi) (2.6)

AGGREGATION UPDATING

Figure 2.13: The target node (in red) gathers information from its 1-hop neigh-
borhood (in blue) to get its updated version (in purple). The same procedure is
applied for the nodes in the graph.

By iteratively applying aggregation and updating operations in multiple GNN
layers, the network can propagate and refine information across the graph, enabling
it to capture both local and global dependencies in the data, similarly to the case
of CNNs.

Pooling

Pooling in Graph Neural Networks refers to the process of aggregating information
from multiple nodes or sub-graphs to create a coarser representation of the graph.

31

2 – Deep Learning for Graphs

Pooling is often used in GNNs to reduce the size or resolution of the graph while
retaining important structural and semantic information in order to produce graph-
level representations. Specifically, given a graph G, its nodes are clustered in smaller
sub-graphs G1, G2, ..., GN ∈ G. The clustering can be based on various criteria
such as node similarity, node features, or graph structure. Then, for each sub-graph
Gi, the node embeddings are aggregated using pair-wise operations to produce a
single node representation at coarsen level. Common pooling functions are the
sum, the average and the maximum operations. Finally, the pooled nodes need
to be connected to create the output graph. This step involves determining the
edges between the pooled nodes that can depend on several criteria such as the
connectivity of the original graph or learned weights.

Figure 2.14: Example of graph pooling. Nodes within clusters are aggregated
together to obtain a single node. Here the connectivity of the pooled graph follows
that of the original graph, meaning that if there are edges connecting two clusters
then the respective pooled nodes will also be connected.

Readout

A readout operation refers to the process of generating a fixed-size representation
of the entire graph based on the information learned from its nodes and edges. The
readout step is typically performed after the last graph convolutional or pooling
layer and it aims to capture global properties and patterns in the graph. To be
more detailed, the readout process can be seen as a global pooling where the
embeddings of every node in the graph are gathered to obtain a graph-level rep-
resentation of the network. The readout can then be used for various downstream
tasks such as graph classification. The choice of readout operation depends on the
specific problem and the desired properties to be captured. As in the case of pool-
ing, common readout operation are the sum, the average and the maximum. Often,

32

2.2 – Graph Neural Networks

after the readout, a fully-connected (or multi-layered) neural network is applied to
its output to increase the expressiveness of the Graph Neural Network.

Overall architecture

Summarizing, the basic approach of a Graph Neural Network is to take as input
the node feature matrix containing all the input node features vectors:

h
(0)
i = xi (2.7)

then apply graph convolutional layers to get higher-level feature representations:

h
(l+1)
i = GConv(l+1)(h(l)

i), ∀l ∈ {0, ..., L− 1} (2.8)

to get the final node embeddings after the Lth layer of neighborhood aggregation:

zi = h
(L)
i (2.9)

If graph-level predictions has to be performed, graph pooling operations can
be used between convolutional layers to reduce the graph dimension while keeping
its structural information. Then a readout function is used to represent the entire
graph with a fixed size representation that can be also delivered to a fully-connected
neural network to increase the expressiveness power of the GNN.

33

2 – Deep Learning for Graphs

P
O
O
L

.

.

.

R
E
A
D
O
U
T

GRAPH
CONVOLUTION

GRAPH
POOLING

GRAPH
READOUT

NEURAL
NETWORK

INPUT GRAPH CONVOLUTED GRAPH POOLED GRAPH OUTPUT
GLOBAL
POOLED

FEATURES

.

.

.

GRAPH
CONVOLUTION

CONVOLUTED GRAPH

Figure 2.15: Example of a simple Graph Neural Network for graph-level classifi-
cation composed by two graph convolutional and one pooling layers, followed by
a readout operation and a 2-layer neural network, producing a 4D output vector.
Here every node of the input graph is characterized by a 4-dimensional node fea-
tures vector. The dimensionality of the embeddings increases to eight after the
first graph convolutional layer and still remains the same after the second graph
convolution. The red nodes in the graph represent the target nodes, whereas the
blue ones represent the 1-hop neighborhood. Then the pooling operator reduces
the size of the graph and the readout function outputs a vector with dimensionality
equal to the final node embeddings length.

34

Part II

Event-based GNN

35

Chapter 3

DVS Gesture Dataset

The DVS Gesture Dataset is a collection of event streams representing hand
gestures, presented in 2017 by Amir et Al. in [3]. The events are generated by
using a DVS128 camera which is characterized by a 128x128 grid structure.

3.1 Structure
The DVS Gesture Dataset contains 1342 event streams of a set of 11 hand ges-
tures. The samples are collected by 29 people under 3 different light conditions
combining natural light, fluorescent light and LED light. Each trial involves one
subject standing against a stationary background and sequentially performing all
11 gestures under the same light condition. The gestures include hand waving (both
arms), large straight arm rotations (both arms, clockwise and counterclockwise),
forearm rolling (forward and backward), air guitar, air drums, and a last gesture
created by the subject ([3]). The duration of an event stream can range between
about 3 to 8 seconds for an overall average of approximately 6 seconds. For cross-
validation purposes, the dataset is divided in training and test sets (80% and 20%
respectively): 23 subjects are selected for the training set and remaining 6 subjects
for the test set.

37

3 – DVS Gesture Dataset

Figure 3.1: Two-seconds snippets of the first ten classes. The eleventh class is not
present because it depends from the subject. Image taken from [2].

38

Chapter 4

Event2Graph

The DVS Gesture dataset, described in chapter 3, provides samples which are
nothing but streams of events. Nevertheless, the Graph Neural Network model
used in this work, and presented in chapter 5, accepts only graph-based structures
at its input. Thus, before effectively training the model, it’s necessary to apply a
preprocessing step in order to treat events as graphs in a three-dimensional space
(x, y, t) ∈ R3. This preprocessing phase involves several sub-steps which gather a
certain number of events from a event stream and process them to finally obtain
the event graph. This procedure is applied to each sample of the dataset. The final
results consists on translating an event-based dataset to a graph-based dataset.

Anyway, the DVS Gesture dataset is partitioned in training and test sets with
a percentage of 80% and 20% respectively (1078 samples for training and 264 for
testing), and there’s not a validation set. Therefore, the training set is further sliced
in order to create the validation set: the ratio between the number of samples per
label in a set and the overall number of samples per set is, in any case, the same for
the training, test and validation sets, accounting now for the 60%, 20% and 20%
respectively (814 samples for training, 264 for testing and 264 for validation).

4.1 Preprocessing Phase
The preprocessing phase is needed to process events in order to finally output them
in a graph-based representation. A sliding time window is used to select batches of
events from a sample, then for each of them a series of transformations are applied
to remodel events in a suitable form for being applied to a Graph Neural Network.

Each sample of the event dataset is defined by an integer label, i.e. the ground
truth, ranging from 0 to 10 accounting for a total of 11 classes. Since the goal

39

4 – Event2Graph

of this work refers to a classification task, the labels are converted into a one-hot
encoding representation. Precisely, each event stream is now associated with a 11D
vector containing all 0s, except 1 in the location pointed by the original integer
label.

Old Label New Label
0 100000000000
1 01000000000
2 00100000000
3 00010000000
4 00001000000
5 00000100000
6 00000010000
7 00000001000
8 00000000100
9 00000000010
10 00000000001

Table 4.1: One-Hot Encoded labels.

All the graphs generated by the same event sequence share the same label be-
cause they represent a part of the same gesture.

40

4.1 – Preprocessing Phase

DENOISING TIME WINDOW
SELECTION SUB-SAMPLING TIME

NORMALIZATION

.....

EVENT DATASET

EDGE CREATION

Figure 4.1: Preprocessing Scheme.

Figure 4.1 represents the block scheme of the preprocessing phase. An event-
sample at the time is withdrew from the dataset and it’s passed through several sub-
steps, including denoising, time window selection, sub-sampling, time normalization
and edge creation. This preprocessing is iteratively executed for a certain number of
times for each event stream, according to the number of consecutive time windows,
as better explained in section 4.1.2. Multiple graph-based structures are therefore
generated from a single event sequence, each representing part of the input event-
based sample.

41

4 – Event2Graph

Algorithm 1 Event2Graph
Input: ED ▷ ED : EventDataset→ [EDtrain, EDtest, EDval]

procedure Event2Graph(ED)
▷ GD : GraphDataset→ [GDtrain, GDtest, GDval]
for set in [train, test, val] do

for ein in EDset do ▷ ein: input sample
▷ e{in},i[t]: temporal information of the ith input event
tstart ← 0
tend ← TW
tlast ← ein,N−1[t]
while tend < tlast do

etw ← TWSelection(ein, tstart, tend)
ess ← SubSampling (etw, SSF)
etn ← TimeNorm (ess, TNR)
G← EdgeCreation (etn, R, Dmax)
push(G, GDset)
tstart ← tstart+ TS
tend ← tend+ TS

end while
end for

end for
end procedure

4.1.1 Denoising
Event cameras can be affected by noisy events which are generally isolated by the
main flow of the sequence. Therefore, before effectively preprocessing the event
streams, a transformation to the dataset is applied in order to reduce the noise. In
this case, denoising the samples means performing a space-time filtering. Specifi-
cally, an event triggered at a certain pixel is dropped if none of the neighborhood
pixels is triggered within a filter time.

In general, this operation may prevent the model to learn also the noise, if too
powerful, thus not generalizing and causing overfitting.

42

4.1 – Preprocessing Phase

(x,y)

t

(x,y)

t

Figure 4.2: Denoising process. Original event stream (on the top) vs denoised event
stream (on the bottom).

4.1.2 Time Window Selection
After withdrawing a sample from the dataset and applying transformations to it,
the next step is to select a sub-set of the entire event stream and process it to
create a graph. In fact, not the whole event sequence is used to create a single
graph, but the sample is sliced in smaller sequences which are then converted in
graph-based structures. In order to accomplish that, a fixed length time window

43

4 – Event2Graph

slides through the temporal dimension of the event stream and pick only the events
within the current start and end values of the time window itself.

However, the sliding window doesn’t move in a event-by-event fashion, but it
slides by a fixed size time step. If the dimension of the time step is smaller than
the time window, then two or more successive sliding windows are overlapped: in
this case, one or more events can be part of two different graphs. The solution of
sliding the time window by a time step factor may be executed only for training
purposes, so that the training times are reduced.

(x,y)

t

TW2

TW1

TS

Figure 4.3: Time Window Selection with overlapping time windows. TW1 stands
for Time Window 1, and TW2 means Time Window 2. They are two successive
time windows. TS is the Time Step. In this case, TS < TW .

44

4.1 – Preprocessing Phase

(x,y)

t
TW2TW1

TS

Figure 4.4: Time Window Selection with not overlapping time windows. In this
case, TS > TW .

The choice of the time window length can influence the performances of the
model in terms of reactivity and accuracy results; it’s therefore a trade-off between:

• latency: a smaller time window leads to a more reactive system because less
events are captured, thus less computation effort is required;

• accuracy: a larger time window allows to explore in a more complete way the
temporal evolution of the event stream to better understand its features, thus
probably giving better classifications.

The dimension of the time step is choosed to have a reasonable amount of samples
for the graph-based dataset. The smaller the time step, the greater the number of
slices of the event stream caused by the sliding window; thus the greater the number
of graphs and the larger the event-graph dataset. The relation between the final
size of the graph dataset is inversely proportional to the time step value. Actually,
also the size of the time window influences the dimension of the final number of
graphs.

n◦graphs = len(sample)− TimeWindow

TimeStep
(4.1)

45

4 – Event2Graph

Algorithm 2 Time Window Selection
Input: {ein}N ▷ N : number of input events
Output: {eout}M ▷ M : number of output events

function TWSelection(ein, tstart, tend)
▷ e{in,out},i[t]: temporal information of the ith input or output event
j ← 0
for i← 0 to N -1 do

if ein,i[t] > tstart and ein,i[t] < tend then
eout,j ← ein,i

j ← j + 1
end if

end for
M ← j
return eout

end function

4.1.3 Sub-Sampling
After selecting part of the event stream by means of a time window, it’s generally
necessary to reduce the number of events by sub-sampling operations. The large
amount of events coming out a DVS sensor, in fact, could be difficult to process if
not handled in a determined way. Basically, from a set of N events {ei}N , a sub-set
of M of representative events {ei}M is sampled, with M ≪ N . In general, two sub-
sampling methods exist. The uniform sub-sampling consists on selecting an event
at regular intervals or with equal spacing; the non-uniform sub-sampling involves
selecting events in a non-regular manner. In this work, the events are uniformly
sampled by an integer factor SSF, which stands for Sub-Sampling Factor.

There are several reasons for the application of the sub-sampling step. First of
all, reducing the number of events also reduces the computational cost to process
them, because less number of operations are needed, as well as the storage to
save them. Additionaly, although it removes events, it may be critical to prevent
overfitting since the model will focus on more informative events, instead of trying
to learn on less important or isolated parts of the input data. It also helps to reduce
the noise of the event stream, since event cameras are naturally noisy; nevertheless,
in this work a denoising transformation is performed over the whole dataset before
the sub-sampling operation.

46

4.1 – Preprocessing Phase

(x,y)

t

(x,y)

t

Figure 4.5: Sub-sampling process. Original event stream (on the top) vs sub-
sampled event stream (on the bottom) with SSF = 5.

47

4 – Event2Graph

Algorithm 3 Sub-Sampling Algorithm
Input: {ein}N ▷ N : number of input events
Output: {eout}M ▷ M : number of output events

function SubSampling(ein, SSF)
▷ e{in,out},i: ith input or output event
j ← 0
for i← 0 to N -1 do

if i % SSF == 0 then
eout,j ← ein,i

j ← j + 1
end if

end for
M ← j
return eout

end function

4.1.4 Time Normalization
The sub-sampled events are used to create a graph. Nonetheless, the resolution of
the temporal dimension (1µs) differs from that of spatial dimension (1 pixel) by
several order of magnitude, i.e. timing accuracy is much higher than spatial grid
resolution. Therefore, in order to compensate the temporal and spatial resolution
and use the edge creation algorithm described in 4.1.5, a time normalization sub-
step is needed. Basically, to map the temporal dimension in a similar range as the
spatial coordinates, the timing information of the sub-sampled events is discretized
by shrinking it to stay in a range [0, TNR), where TNR it’s an integer number
representing the Time Normalization Range, that is the discretized temporal range.
The main concept is to divide the sub-sampled events into TNR successive slices
and, for each of them, replace their high resolution temporal information with a
discretized temporal information.

The choice of the Time Normalization Range can influence the training phase.
In fact, a less extended normalized temporal dimension, i.e. lower TNR factor, may
lead to a better temporal correlation between events (when creating edges between
events) because of the shorter time-distance, thus eventually better accuracy results.
However, reducing the temporal normalization factor too much could produce the
opposite effect to that for which this sub-step is performed, i.e. the resolution of
the spatial dimension becomes increasingly greater than the temporal dimension,
and this would become very similar to the event-frame representation (section 1.4).

48

4.1 – Preprocessing Phase

Algorithm 4 Time Normalization Algorithm
Input: {ein}N ▷ N : number of input and output events
Output: {eout}N

function Time Normalization(ein, TNR)
▷ e{in,out},i[t]: temporal information of the ith input or output event
tmin ← ein,0[t]
tmax ← ein,N−1[t]
trange ← tmax − tmin

for i← 0 to N -1 do
tshift ← ein,i[t]− tmin

tnorm ← tshift · T NR
trange

eout,i[t]← tnorm

end for
return eout

end function

4.1.5 Edge creation
Events are now ready to be converted in a graph-based representation, where each
event can be considered as a node in the output graph. Anyway, a graph-based
structure is composed by both nodes and edges, therefore a method to define the
network connectivity is needed. Being the event stream treated as a 3D Point
Set representation (see 1.4), a reasonable strategy to be used is the Radius-
Neighborhood Algorithm which allows to create edges within a determined
spatio-temporal range. This allows to exploit both the spatial and temporal corre-
lation between nodes. To be more detailed, two nodes i and j are connected by an
edge eij if their Euclidean distance dij is less than a radius distance R.

dij =
ñ
|xi − xj|2 + |yi − yj|2 + |ti − tj|2 < R (4.2)

In addition, in order to limit the size of the graph, the maximum connectivity
degree is set to a value Dmax. This is mainly performed for computational efficiency
since for highly event-dense regions an huge amount of edges may be created and
this would lead to an high computational load when performing the graph convo-
lution.

49

4 – Event2Graph

R

Figure 4.6: Edge Creation with Radius Neighborhood Algorithm.

Algorithm 5 Edge Creation Algorithm
Input: {ein}N ▷ N : number of input events
Output: G(V, E)

function Edge Creation(ein, R, Dmax)
▷ ein,i[x, y, t]: spatio-temporal information of the ith input event
V ← ein ▷ events are the nodes of the graph
for i← 0 to N -1 do

d← 0 ▷ d: node degree
for j ← 0 to N -1 do

if i /= j then
if (norm(ein,i[x, y, t], ein,j[x, y, t]) < R) and (d < Dmax) then

connect(Vi, Vj) ▷ E structure is updated
d← d + 1

end if
end if

end for
end for
return G(V, E)

end function

50

4.1 – Preprocessing Phase

4.1.6 Node and Edge features
The edge creation step creates an event graph. However, it’s necessary to associate
node and edge features to each node and edge in the network.

Each event in the network is represented by a four-dimensional tuple (x, y, t∗, p),
where t∗ refers to the normalized time. The (x, y, t∗) information collocates an event
in a determined position of the spatio-temporal space. The remaining value p is
assigned as the initial node feature vector, i.e. x⃗ = [p]. This means that each node
has a feature vector outlined by a one-dimensional value representing the polarity
of the associated event, thus it can only assume {-1,+1} values. It follows that the
node feature matrix is a one-dimensional array.

42

5

8

7

3

1

9 10

0 6

[+1] [-1]

NODE FEATURE VECTOR

+1

-1

+1

+1

-1

+1

-1

-1

-1

+1

+1

NODE FEATURE MATRIX

Figure 4.7: Node feature vector and node feature matrix representation. The red
nodes are positive events, therefore their node feature vectors are equal to [+1];
the blue nodes are negative events associated to [-1]. The node feature matrix is a
1-dimensional array.

The connectivity of the nodes is assigned by exploiting the spatio-temporal po-
sition between nodes in a 3D space (x, y, t∗). For this reason, edge features can
be defined as the relative distance of two nodes i and j in each spatio-temporal
dimension, i.e. eij = [∆x, ∆y, ∆t].

51

4 – Event2Graph

i

j

Δt
Δx

Δy eij = [Δx, Δy, Δt]

EDGE FEATURE VECTOR

Figure 4.8: Edge Features Representation. Node i and j are two events within a
spatio-temporal range defined by the radius value R.

4.1.7 Output graph structure
The event graphs are composed by a variable number of nodes, or events, depending
both on the composition of the input event stream and the preprocessing parame-
ters.

The structure of these graph-based networks can be described by several matrix
structures (see 2.2.1). Being N the number of nodes (or events), the connectivity is
determined by the adjacency matrix A ∈ RN,N , the node feature matrix X ∈ RN,1

is composed by bipolar values ±1, whereas the edge feature matrix E ∈ RN,N,3 can
be seen as an extension of the adjacency matrix representing edge features instead
of just giving information on connectivity. PyTorch Geometric allows to describe
A and E in a COO format which is used to represent sparse matrices; therefore,
ACOO ∈ R2|e|,2 and ECOO ∈ R2|e|,3. In addition, the position matrix P ∈ RN,3

gives information about the location of each node embedded in the spatio-temporal
space. Also, a one-hot encoded vector L ∈ R11 is used as label of the event graph.

52

4.2 – Preprocessing Hyperparameters

...
...

3

POSITION MATRIX

...

...

...
...
...
...

3

...

NODE FEATURE
MATRIX

...

...

...
...

...

...

...

...
...
...N

N

N

1

N

N

N

11

ADJACENCY MATRIX

EDGE FEATURE
MATRIX

LABEL

EVENT GRAPH

Figure 4.9: Event-based graph and its embedding matrix structures.

4.2 Preprocessing Hyperparameters
The preprocessing phase is characterized by a certain number of steps and each
of them is characterized by one or two parameters. The Time Window Selection
step involves the use of the TW and TS parameters, the Sub-Sampling and the
Time Normalization operations uses the SSF and the TNR factors respectively,
and the Edge Creation block utilizes the R and Dmax values. The choice of those
parameters can heavily influence the performance of the system, therefore they can
be considered as preprocessing hyperparameters.

Expanding the time window allows for a more comprehensive analysis of the
temporal progression of the event stream. However, this extension can potentially
introduce latency in the architecture due to the greater number of events to be
processed.

The sub-sampling factor serves for the purpose of enhancing computational ef-
ficiency and mitigating noise. It should be fine-tuned in conjunction with the time
window value. When adjusting the time window size, it’s essential to correspond-
ingly modify the sub-sampling factor to maintain a roughly constant number of
events.

The time step parameter (TS) primarily defines the dataset dimensions. A

53

4 – Event2Graph

larger TS value results in a smaller graph-based dataset, while a smaller TS value
yields a larger dataset. Excessively high TS values may lead to a limited number
of samples, compromising the model’s ability to generalize during testing.

The time normalization factor (TNR) effectively compresses events along the
temporal dimension, aligning it more closely with the spatial dimension. This
parameter should be chosen along-side the radius value in the edge generation step.
Lower TNR values allow the linking of temporally distant events without altering
the R parameter, thereby increasing temporal correlation and potentially improving
accuracy. In addition, a larger radius value facilitates the connection of events that
are more distant in the spatio-temporal space. However, if the temporal dimension
becomes significantly smaller than the spatial dimension (i.e., lower TNR values),
the resulting event graph will exhibit much higher temporal correlation than spatial
correlation.

The node maximum degree Dmax is instead choosed to a reasonable maximum
number of neighboring nodes.

The preprocessing hyperparameters values used in this work are:

• TW : 1000000 (µs)

• TS : 20000 (µs)

• SSF : 20

• TNR: 32

• R: 10

• Dmax: 32

Those parameters allow to embed the output event-graph, whose events are
taken by a time window of 1s, into a 128x128x32 (x,y,t) space.

4.3 Graph Dataset Structure
The choice of the time window and time step hyperparameters determines the di-
mension of the graph-based dataset, as described before. According to the values
pointed in 4.2, the preprocessing phase is able to generate 372227 graph samples
complessively, divided in 222373, 76866 and 72988 samples for train, test and vali-
dation sets respectively, accounting for a percentage of about 59.74%, 20.68% and
19.61%.

54

4.3 – Graph Dataset Structure

The length of an event stream and its number of events is not constant and it
changes sample by sample. This means that the event-graphs generated by the pre-
processing phase don’t contain the same number of nodes. Furthermore, being the
time window value constant and the temporal length of the event stream variable,
it follows that the label distribution of the graph-based dataset is unbalanced, thus
the number of graphs differ according to the label. That could mean that the GNN
model may be more specialized to learn from a certain graph structure than other
ones.

Figure 4.10: Distribution of the Graph Dataset.

55

4 – Event2Graph

Set
Train Test Val Tot

Label

0 15596 4933 5271 25800
1 20296 6692 6165 33153
2 19847 6257 7300 33404
3 26943 9164 7872 43979
4 21126 7821 6869 35816
5 23104 8265 7008 38377
6 20991 7573 6245 34809
7 21505 7191 6732 35428
8 20141 7174 6698 34013
9 19345 6898 6614 32857
10 13479 4898 6214 24591
Tot 222373 76866 72988 372227

Table 4.2: Number of graphs per label and set.

56

Chapter 5

Graph Neural Network
Model

The preprocessing step, as elaborated in chapter 4, involves the creation of graph-
based structures derived from an event-based dataset. A portion of these generated
graphs serves the purpose of fine-tuning model parameters through a learning pro-
cess, while the remaining subset is reserved for testing and validation. To effectively
classify any graph, representing an aspect of the hand gesture, a Graph Neural Net-
work (GNN) model becomes essential. The model’s performance is determined by
its accuracy, defined as the ratio of correct classifications to the total number of
graphs. It’s important to note that the training process, like the preprocessing
phase, is also characterized by several hyperparameters, each of which can exert
significant influence on the model’s overall performance.

5.1 Model architecture
The architecture of the Graph Neural Network model consists of four graph convo-
lutional layers, each followed by a batch normalization layer and a ReLU activation
function. These are succeeded by a pooling layer and a Multi-Layer Perceptron
(MLP) comprising three linear layers. The output of the MLP layer produces an
11-element vector, which represents the graph classification.

The next figure shows the block diagram of the model architecture.

57

5 – Graph Neural Network Model

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

P
O
O
L

N
N

N
N

N
N

G
A
T
v2

C
O
N
V

B
A
T
C
H

N
O
R
M

R
E
L
U

L
I
N
E
A
R

B
A
T
C
H

N
O
R
M

R
E
L
U

INPUT

OUTPUT

Figure 5.1: Model Architecture.

The input node feature vector corresponds to the polarity of each event, resulting
in a dimensionality of 1. The first graph convolutional layer enhances the feature
dimension of each node from 1 to 32, maintaining this dimension throughout the
subsequent layers. Consequently, the second, third, and fourth convolutional layers
receive and output node embeddings with a dimensionality of 32.

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

...

32 32 32 321

Figure 5.2: Node feature vector dimensionality through convolutional layers.

5.1.1 GATv2 Convolution
This work uses the GATv2 (Graph Attention Network v2) graph convolutional
layer presented by Brody et Al. in 2021 ([4]), which is an improvement of the
original GAT graph convolution introduced by Veličković et Al. in 2017 ([5]). An
attention mechanism enables the model to focus on the most relevant aspects of
the input data by assigning varying weights to neighboring nodes: this means that
nodes within a neighborhood can possess varying degrees of importance. According

58

5.1 – Model architecture

to this, the adjacency matrix can be seen as a weighted structure, where connections
between two nodes are not necessarily equal to 1.

The convolutional model can be applicable for both transductive and inductive
problems, thus including tasks where the model works on data which are completely
unseen during the training process.

The GATv2 node-wise formulation is presented in equation 5.1.

x
(l+1)
i = σ(

Ø
j∈Ñ

αijW
(l)x

(l)
j), Ñ = N(i) ∪ {i} (5.1)

The αij parameter indicates the importance of the message exchanged between
nodes i and j and it’s determined by a learnable attention mechanism represented
by a single-layer feed-forward neural network parameterized by a weight vector
a ∈ RF ′ .

αij = softmax(eij) = exp(aT LeakyReLU(W (l) · [xi||xj||eij]))q
k∈Ñ exp(aT LeakyReLU(W (l) · [xi||xk||eik])) (5.2)

The GATv2 convolution, as shown in equation 5.2, enables the incorporation
of edge features, enhancing its overall capabilities. In this case, an additional
weight matrix for the edge features becomes necessary to align the edge features
dimensionality with that one of the output node features.

Furthermore, PyTorch Geometric provides the flexibility to choose whether shared
weight matrices should be employed. In the convolutional model utilized in this
study, shared matrices are not used. Consequently, two distinct matrices are ap-
plied, one to the source node and the other one to the target node for each edge.
In this configuration, the equation 5.1 changes as follows:

x
(l+1)
i = σ(αiiW

(l)
ii x

(l)
j +

Ø
j∈N

αijW
(l)
ij x

(l)
j) (5.3)

It’s important to note that along each weight structure, i.e. the weight matrices
for node, edge features and the attention mechanism, also a bias vector is being
used by the GATv2 convolution operator.

5.1.2 Pooling Method
The goal of the convolutional layers is to update the node features by gathering
information from the k-hop neighborhood, also changing the dimensionality of the
node feature vector, as previously described. Anyway, the data structure after the
last convolutional layer is still a graph having an arbitrary shape and dimension

59

5 – Graph Neural Network Model

and it cannot be delivered to a MLP layer which instead only accepts an input
fixed-size structure. Consequently, a pooling layer is essential to both limit the
size of the output graph and transform its irregular structure into a vector with
predefined dimensions.

P
O
O
L

.

.

.

Figure 5.3: Input and Output of the pooling layer.

The chosen pooling method consists on segmenting the spatio-temporal space, in
which the graph is embedded, into uniformly sized 3D voxels; each one represents
a distinct sub-space within the original spatio-temporal domain. These voxels can
cluster a specific number of nodes and, if any, a max-pooling operation is executed.
Specifically, when one or multiple nodes are situated within the same sub-space,
a maximum-wise operation is performed across all node embeddings within that
sub-space.

60

5.1 – Model architecture

...

...

...

...

...

...

N

F

MAX MAX MAX MAX

NODE FEATURE MATRIX
OF THE VOXEL

POOLED NODE
FEATURE VECTOR

y

t

x

Figure 5.4: Pooling Method. N represents the number of nodes inside a voxel,
whereas F is the embedding dimensionality.

Hence, each voxel outputs a vector with the same node feature dimensionality as
the final convolutional layer, which is 32. Subsequently, the outputs coming from
all voxels are concatenated to produce an one-dimensional array. This implies that
the output vector dimensionality after the pooling layer is equal to the product of
the number of voxels and the embedding dimensionality.

nout = nvoxels · nfeatures (5.4)

The spatio-temporal space that embeds the event-graph measures 128x128x32,
while the chosen voxel size is 32x32x8: this results in a total of 64 voxels. Given
that the embedding dimensionality is set to 32, the output of the pooling layer
consists of 64 · 32 = 2048 elements.

It’s important to note that this number can change by varying the voxel dimen-
sion and/or the embedding dimensionality of the last convolutional layer.

61

5 – Graph Neural Network Model

5.1.3 MLP
The pooling layer outputs a fixed-size vector to be delivered to a Multi-Layer Per-
ceptron. The purpose of the MLP is to compress the output of the pooling layer
into a vector corresponding to the graph classification. Specifically, it takes the
2048-dimensional vector from the pooling layer and reduces its dimensionality to
eleven, which matches the number of classes.

The MLP is composed by three linear layers: the first one performs a compression
from 2048 to 512 dimensions, the second one from 512 to 128, while the third one
further reduces it from 128 to 11 dimensions. This compression process is achieved
using three weight matrices and three bias vectors.

Actually, the first and the second linear layers of the MLP are both followed
by a batch normalization layer and a ReLU activation function (see figure 5.1).
The third layer doesn’t need to be followed by any of those layers since it directly
outputs the final classification.

.

.

.

L
A
Y
E
R

3

12
8

.

.

.

L
A
Y
E
R

2

51
2

.

.

.

L
A
Y
E
R

1

20
48

.

.

.

11

Figure 5.5: MLP dimensionality through the linear layers.

5.1.4 Model Size
The model architecture is composed by several layers and each of them is charac-
terized by more structures, as described in the previous sections. These structure
contain a certain number of parameters (or weights), which are optimized during
the learning process. The pooling layer, differently from the convolutional, batch
normalization and MPL layers, doesn’t require any learning parameters.

The GATv2 convolution layer comprises the following components, each associ-
ated with its respective bias vector:

• Wii ∈ RF,F ′ : weight matrix for self loop message;

62

5.2 – Training Hyperparameters

• Wij ∈ RF,F ′ : weight matrix for neighboring messages;

• We ∈ RFe,F ′ : weight matrix for aligning edge features dimension to the node
features dimension during the attention mechanism;

• a ∈ RF ′ : attention vector;

• Bii ∈ RF ′ : bias vector associated to Wii;

• Bij ∈ RF ′ : bias vector associated to Wij;

• Be ∈ RF ′ : bias vector associated to We;

• ab ∈ RF ′ : bias vector associated to a.

However, it’s important to note that the dimensions of the embeddings vary
throughout the network. Consequently, the size of the arrays differs for each con-
volution layer. Specifically:

• for the first layer: F = 1, F ′ = 32, Fe = 3;

• for the three subsequent layers: F ′ = 32, F ′ = 32, Fe = 3.

This leads to a total of 3360 parameters only needed for convolutional layers.
The batch normalization layers, placed after each convolutional layer, normalizes

the convoluted data. This is done by computing the mean and variance of each
mini-batch and applying a scaling and a shifting to get zero mean and unitary
variance in that mini-batch. The parameters to be learned are therefore γ ∈ R32

and β ∈ R32, corresponding to the scaling and shifting vectors. Given four batch
normalization layers, a total of 256 parameters are involved.

The MLP layer is instead composed by the weight matrices W1 ∈ R2048,512,
W2 ∈ R512,128, W3 ∈ R128,11, along with the bias vectors B1 ∈ R512, B2 ∈ R128,
B3 ∈ R11. Also the batch normalization layers through the MLP linear layers must
be taken into account. It follows that there are additional parameters described by
the matrices γ1 ∈ R512, γ2 ∈ R128 and β1 ∈ R512, β2 ∈ R128. This results in combined
total of 1117451 parameters.

Finally, the network size accounts for 1121067 parameters.

5.2 Training Hyperparameters
The model is tuned through a training process. This training loop, as briefly de-
scribed in section 2.1.1, is responsible for optimizing the model parameters and is

63

5 – Graph Neural Network Model

also characterized by several hyperparameters that influence the weight optimiza-
tion.

One crucial aspect is the selection of the loss function, which determines the
error to be back-propagated for parameter adjustment. In this work, the Cross
Entropy (CE) loss function is employed. CE is commonly used when dealing with
multi-dimensional arrays that require comparison. The model’s output, in this case,
consists of an 11-dimensional vector, which is compared with an array of the same
dimension, that is the graph label, to compute the error value.

l(x, y) =
qN

n=1 ln
N

ln = −
CØ

c=1
log

exp(xn,c)qC
i=1 exp(xn,i)

yn,c

(5.5)

The two equations in 5.5 illustrate how PyTorch performs the Cross Entropy loss
function. In these equations, x represents the model’s classification, y corresponds
to the label, C denotes the number of classes, and N stands for the number of
training samples per batch.

In fact, during the training process, the model does not receive one sample at
a time. Instead, it randomly selects a certain number of samples, often referred
to as a batch or mini-batch, from the dataset. Consequently, the loss value is
calculated not on an individual sample but for the entire batch. This batch-wise
approach aids in improving generalization. The specific size of a batch is known as
the batch size. In this work, a batch size of 16 is employed.

Another important parameter is the learning rate which, as highlighted in 2.1,
is a value proportional to the gradient of the loss. Initially, a common learning rate
of 1e-3 is employed throughout the training process. However, a widely adopted
technique involves the use of a learning rate scheduler, which dynamically ad-
justs the learning rate value during training, epoch per epoch. Several types of
learning rate schedulers are available and, in this study, the Cosine Annealing
Warm Restart ([6]) method is utilized.

ηt = ηmin + 1
2(ηmax − ηmin)

3
1 + cos

3
Tcur

Ti

44
(5.6)

The equation 5.6 describe the learning rate behavior. The ηt, ηmax and ηmin

parameters refer to the current, initial and minimum learning rate, whereas Tcur is
the number of epochs since the last restart and Ti is the number of epochs between
two warm restarts. This approach schedules the learning rate to gradually decrease
it with each epoch, exhibiting a cosine-like behavior until it reaches a minimum
value, set to 1e-6. After a defined number of iterations, or epochs, the learning rate

64

5.3 – Results

resets to its initial value. The number of epochs is set to 200, meaning that the
model is trained, tested and validated over the whole dataset for 200 times. The
number of epochs needed to make the learning rate restart from its initial value is
set to 15.

The used optimizer is the AdamW ([7]), which is an updated version of the
common Adam optimizer ([8]). A weight decay, consisting in a regularization
method that penalizes the loss, is set to a common value of 5e-4.

Actually, another regularization technique is used during the training loop: the
dropout. It’s applied to the MLP layer when dealing only with training sam-
ples and consists on randomly removing neurons from each layer with a certain
probability. In this work, the dropout probability is set to 0.5.

Summarizing:

• loss function: Cross Entropy;

• batch size: 16;

• learning rate: 1e-3, with Cosine Annealing scheduler;

• number of epochs: 200;

• optimizer: AdamW;

• weight decay: 5e-4;

• dropout: 0.5.

5.3 Results
All experiments within this work have been conducted using the GeForce RTX 4090
GPU. The model definition and the training loop have been elaborated mostly with
the contribution of two Python libraries: PyTorch and PyTorch Geometric
(PyG), both renowned machine learning frameworks for constructing and training
deep neural networks. Specifically, PyG serves as an extension of PyTorch for
dealing with Graph Neural Networks.

Throughout the experiments, various configurations were employed, varying
across preprocessing and training hyperparameters, neural network depth, the se-
lected convolutional model, and other setup parameters. The objective was a grad-
ual improvement in accuracy on the test set. Therefore, the experimental processes
involved fine-tuning the model configuration, preprocessing, and training hyperpa-
rameters. The final setup values are highlighted in section 4.2 and 5.2, as well as

65

5 – Graph Neural Network Model

final model architecture in section 5.1, and in the table below are represented by
Setup 4.

TW TNR LR LRS BS OPT CONV #CONV #LIN ACC (%)
Setup 1 8e5 128 1e-3 Poly2 128 Adam GCN 4 2 73.87
Setup 2 1e6 128 1e-3 Poly2 128 Adam GAT 3 2 80.39
Setup 3 1e6 32 1e-3 CAWR 16 AdamW GATv2 3 2 87.50
Setup 4 1e6 32 1e-3 CAWR 16 AdamW GATv2 4 3 90.31

TW: Time Window, in µs;
TNR: Time Normalization Range;
LR: Initial Learning Rate;
LRS: Learning Rate Scheduler, Poly2: Polynomial of 2nd order;
BS: Batch Size;
OPT: Optimizer;
CONV: Graph Convolutional Model;
#CONV: Number of Graph Convolutional Layers;
#LIN: Number of Linear Layers;
ACC: Test Accuracy.

Table 5.1: Best test accuracy values for each graph convolutional model.

Table 5.1 shows the best test accuracy results obtained by using three different
graph convolutional models: GCN ([9]), GAT and GATv2. It’s crucial to highlight
that not only a change in the graph convolution impacts the final accuracy, but
the variation in setup, including preprocessing and training hyperparameters, also
plays a significant role. While not all setup parameters are listed in the table, only
those with the most substantial impact on the final result are included. A more
comprehensive table detailing how accuracy results fluctuate with the tuning of
such hyperparameters is provided in section 7 (Table 7.1).

In any case, the experiments reveal a superior performance of the system when
utilizing GAT convolution (Setup 2) over GCN (Setup 1), and notably, its enhanced
version, GATv2 (Setup 3 and Setup 4). Furthermore, the model employing GATv2
demonstrates improved results with an increased depth in the neural network, both
in the graph convolutional and the MLP layers. Transitioning from 3 to 4 graph
convolutional layers and from 2 to 3 linear layers, in fact, enables the system to
achieve a test accuracy of 90.31%, that is the highest result attained in this
study.

66

Part III

Conclusion

67

Chapter 6

Conclusion

In the course of this study, a comprehensive exploration of Graph Neural Network
models for Neuromorphic Vision has been conducted. The primary focus was on
developing a method working on the DVS Gesture dataset for gesture classification.
The research journey mainly faced three phases: the conversion of events to graphs,
the definition of the model architecture, and the tuning of hyperparameters, all
aimed at enhancing the overall system performance. Therefore the core objective
of this thesis has been to identify the optimal setup configuration that lead to
the highest test accuracy. This involved carefully looking at different setups, each
playing a part in how the model works together. The culmination of these efforts
resulted in the identification of the most effective setup, achieving a test accuracy
of 90.31%.

This work underscores the significance of thoughtful setup configuration and
hyperparameter tuning in optimizing the performance of Graph Neural Network
models for event stream classification.

6.1 Possible improvements
Design Space Exploration In this study, various setup configurations were
explored. Numerous hyperparameters were adjusted to enhance the system’s per-
formance, but this process may not have yielded the optimal solution. A more
effective strategy involves exploring the preprocessing space. This can be accom-
plished by fixing the model and systematically varying each preprocessing hyper-
parameter to identify the values that yield the best accuracy. Once the optimal
preprocessing configuration is determined, a similar process can be applied to train-
ing hyperparameters. This method can also be extended to the model architecture

69

6 – Conclusion

by experimenting with the number of convolutional and linear layers, as well as the
embedding dimensionality across layer or the pooling size dimensions.

Implementing such an approach is expected to result in optimal accuracy, sur-
passing the performance achieved in this work.

6.2 Future steps
Validation on other datasets This work has focused on evaluating the pro-
cess from event to graph conversion and model architecture using the DVS Gesture
dataset exclusively. However, it’s important to note that the effectiveness of this
approach can be further validated by considering additional datasets. Several neu-
romorphic datasets are accessible, such as N-Cars, N-Caltech101, Gen1 for object
detection and recognition, N-Mnist for digit recognition, among others. Expand-
ing the evaluation to these datasets would provide a broader understanding of the
method’s generalizability and effectiveness across different tasks and scenarios.

Hardware implementation This study primarily focuses on the training aspect
of a Graph Neural Network model, serving as the initial phase in a broader project
aimed at realizing a hardware implementation of the neural network. However,
before effectively transitioning to the digital representation, another crucial step
needs consideration, that is the quantization. During the training process, PyTorch
utilizes 32-bit values to represent the model’s parameters. To optimize the area and
power consumption of the subsequent digital circuit, it becomes essential to reduce
the bit-length of the model’s weight. This reduction can be achieved through two
main approaches: post-training quantization and quantization-aware training. It’s
essential to note that this quantization process may impact accuracy, prompting the
use of specialized frameworks to mitigate performance losses. Once the quantized
parameters are obtained, the hardware implementation of the neural network can
be realized. Given the dataflow nature of this system, High-Level Synthesis tools
emerge as the optimal choice for hardware implementation.

70

Chapter 7

Appendix

7.1 Comparison between different setups

TW TS TNR LR LRS BS OPT CONV #CONV #LIN ACC (%)
Setup 1 1e5 1e5 128 1e-3 Poly2 256 Adam GCN 4 2 55.42
Setup 2 1.5e5 7.5e5 128 1e-3 Poly2 256 Adam GCN 4 2 59.20
Setup 3 5e5 5e5 128 1e-3 Poly2 256 Adam GCN 4 2 72.14
Setup 4 8e5 7.5e4 128 1e-3 Poly2 128 Adam GCN 4 2 73.87
Setup 5 8e5 7.5e4 128 1e-3 Poly2 128 Adam GAT 4 2 74.60
Setup 6 1e6 5e4 128 1e-3 Poly2 128 Adam GAT 3 2 80.39
Setup 7 1e6 5e4 128 1e-3 Poly2 128 AdamW GATv2 3 2 81.28
Setup 8 1e6 5e4 64 1e-3 Poly2 128 AdamW GATv2 3 2 82.67
Setup 9 1e6 5e4 32 1e-3 Poly2 128 AdamW GATv2 3 2 83.20

Setup 10 1e6 5e4 32 1e-3 Poly2 16 AdamW GATv2 3 2 85.52
Setup 11 1e6 5e4 32 1e-3 Poly1 16 SGD GATv2 3 2 71.65
Setup 12 1e6 5e4 32 1e-3 CAWR 16 AdamW GATv2 3 2 87.50
Setup 13 1e6 5e4 32 1e-2 CAWR 16 AdamW GATv2 3 2 80.52
Setup 14 1e6 5e4 32 1e-3 Multistep 16 AdamW GATv2 3 2 86.79
Setup 15 1e6 5e4 32 1e-3 CAWR 128 AdamW GATv2 3 2 84.53
Setup 16 1e6 5e4 32 1e-3 CAWR 16 AdamW GATv2 4 2 88.05
Setup 17 1e6 5e4 32 1e-3 CAWR 16 AdamW GATv2 4 3 88.97
Setup 18 1e6 2e4 32 1e-3 CAWR 16 AdamW GATv2 4 3 90.31

TW: Time Window, in µs;
TS: Time Step, in µs;
TNR: Time Normalization Range;
LR: Initial Learning Rate;
LRS: Learning Rate Scheduler, Poly<n>: Polynomial of < n >nd order;
BS: Batch Size;
OPT: Optimizer;
CONV: Graph Convolutional Model;
#CONV: Number of Graph Convolutional Layers;
#LIN: Number of Linear Layers;
ACC: Test Accuracy.

Table 7.1: Comparison between different setups.

71

7 – Appendix

Various configurations were explored, as outlined in Section 5.3. Table 7.1 illus-
trates how distinct setups can impact the system’s performance. In each column
of the table, highlighted cells signify a change in that particular hyperparameter
compared to another setup sharing the same highlighted column. Upon initial ob-
servation, it becomes apparent that variations in the time window value have a
significant impact on the final accuracy, with higher values correlating to improved
accuracy. Generally, optimizing results involve reducing the time normalization
range and batch size values, opting for the Cosine Annealing learning rate sched-
uler over Polynomial or Multi-Step alternatives, and selecting the AdamW optimizer
instead of Adam and SGD (Stochastic Gradient Descent). The initial learning rate
plays also an important role in the training process; a higher value compared to the
used one results in a noticeable percentage decrease. The last two setups in the ta-
ble highlight that decreasing the Time Step value, effectively increasing the number
of samples in the training process, contributes to improved outcomes. The effect of
the graph convolutional model, as well as depth of the graph neural network, has
been already outlined in section 5.3.

72

Bibliography

[1] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew J. Davison, Jörg Conradt,
Kostas Daniilidis, and Davide Scaramuzza. Event-based vision: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1):154–
180, 2022.

[2] Qinyi Wang, Yexin Zhang, Junsong Yuan, and Yilong Lu. Space-time event
clouds for gesture recognition: From rgb cameras to event cameras. pages
1826–1835, 01 2019.

[3] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry,
Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Gar-
reau, Marcela Mendoza, Jeff Kusnitz, Michael Debole, Steve Esser, Tobi Del-
bruck, Myron Flickner, and Dharmendra Modha. A low power, fully event-
based gesture recognition system. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[4] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491, 2021.

[5] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[6] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with
warm restarts. arXiv preprint arXiv:1608.03983, 2016.

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

73

BIBLIOGRAPHY

[9] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[10] Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza. Aegnn: Asynchronous
event-based graph neural networks. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 12361–12371, 2022.

[11] Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng Cui, Hujun Bao,
and Guofeng Zhang. Graph-based asynchronous event processing for rapid
object recognition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 934–943, 2021.

[12] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, and Yiannis An-
dreopoulos. Graph-based object classification for neuromorphic vision sensing.
In Proceedings of the IEEE/CVF international conference on computer vision,
pages 491–501, 2019.

74

	List of Tables
	List of Figures
	I Theoretical Foundations
	Event Cameras
	Principles
	Advantages
	Different event camera designs
	Event Representation
	Event Processing
	Algorithms and Application

	Deep Learning for Graphs
	Deep Learning
	Principles
	Neural Networks
	Convolutional Neural Networks

	Graph Neural Networks
	Graph Structure
	Network Architecture

	II Event-based GNN
	DVS Gesture Dataset
	Structure

	Event2Graph
	Preprocessing Phase
	Denoising
	Time Window Selection
	Sub-Sampling
	Time Normalization
	Edge creation
	Node and Edge features
	Output graph structure

	Preprocessing Hyperparameters
	Graph Dataset Structure

	Graph Neural Network Model
	Model architecture
	GATv2 Convolution
	Pooling Method
	MLP
	Model Size

	Training Hyperparameters
	Results

	III Conclusion
	Conclusion
	Possible improvements
	Future steps

	Appendix
	Comparison between different setups

