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Abstract

In recent years, machine learning models for Jet tagging in high-energy physics have
gained considerable attention. However, many existing approaches overlook the
physical invariants that jets must adhere to, particularly the fundamental spacetime
symmetry governed by Lorentz transformations. Setting this statement as the
starting point of this work, it is proposed a model-agnostic training strategy that
incorporates theory-guided data augmentation to simulate the effects of Lorentz
transformations on jet data.

The study starts with focusing on the state-of-the-art baseline ParticleNet, a
neural network architecture designed for the direct processing of particle clouds for
Jet tagging. To evaluate the effectiveness of the proposed approach, several exper-
iments are conducted with different augmentation strategies and assess the perfor-
mance of the augmented models on the widely used top-tagging and quark-gluon
reference datasets. The results show that even a small application of the data aug-
mentation strategy increases the robustness of the model to Lorentz boost attacks,
i.e., high transformation β. While the accuracy of the baseline model decreases
rapidly with increasing intensity of the transformation β, the augmented models
exhibit more stable performance. Remarkably, models that underwent a moderate
level of augmentation demonstrated a statistically significant performance boost on
transformations beyond the ones seen at train time. Then the same experimental
setup is applied to a second state-of-the-art baseline LorentzNet, a neural network
architecture developed to be invariant to Lorentz transformations by design. The
performance of the model are also evaluated both on the top quark tagging and
quark-gluon reference datasets, making possible a full comparison between each
experimental setup applied to the two chosen models. The results shows that
LorentzNet is more robust to Lorentz boost attacks than ParticleNet, as it is ex-
pected to be. Nevertheless the application of the data augmentation strategy to
an already invariant architecture, tends to further increase the robustness of the
model.

This finding highlights the potential of the model-agnostic data augmentation
strategy in enhancing model accuracy and robustness while preserving the essential
physical properties of the jets.
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Chapter 1

Introduction

This chapter presents the main issues addressed by this master’s thesis. The re-

search project focuses on the Theory-Guided Data Science area, which employs

techniques to enhance machine learning and deep learning models with domain

knowledge. The task at hand is Jet tagging, where the goal is to classify particles

produced by collisions in particle accelerators in the field of high-energy particle

physics. Specifically, the aim is to impart Lorentz invariance, a physical property

of jets, to an unaware model. To this end, it has been selected to use the data

augmentation technique, a method yet to be explored in the literature.

1.1 Theory-Guided Data Science

The foundation for this master’s thesis lies within the realm of Theory-Guided Data

Science [1], a branch emerging from the extensive and highly popular field known

as Data Science.

From satellites in space to wearable computing devices and from credit card

transactions to electronic health-care records, data has become ubiquitous in ev-

eryday life [2]. The capacity to gather, retain, and retrieve vast amounts of in-

formation is now a fundamental feature of contemporary society. The exponential
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growth of information is being propelled by improved sensor technologies, more

powerful computing platforms, and greater online connectivity. The analysis of

data is becoming increasingly crucial, and this is predicted to continue in the near

future. This era in history may be known as the "golden age of data science" as we

progress further into the twenty-first century.

In recent times, this field has become increasingly vital in the development of

scientific knowledge. Throughout history, the scientific process has advanced by

initially creating hypotheses or theories and subsequently gathering data to verify

or disprove them. In the era of big data, the continuous collection of extensive

information without a particular theory or hypothesis in mind could present fur-

ther opportunities for uncovering new knowledge. Based on the achievements of

data science in domains where Internet-scale data is accessible (with billions or

even trillions of samples), for example, natural language translation, optical char-

acter recognition, object tracking, and lately, autonomous. With advancements

in driving technology, there is an increasing expectation of similar achievements

in scientific fields. However, purely data-driven approaches can have their lim-

itations or produce unsatisfactory outcomes in various situations. For instance,

an evident case is when there is inadequate data to develop models that perform

well and have enough generalization. Another crucial aspect to consider is that a

solely data-driven model may not adhere to constraints imposed by natural laws or

regulations, which are essential for trustworthy AI.

Representing relationships among physical variables is a prevalent challenge in

scientific fields. For instance, such relationships can exist between variables like

the combustion pressure and launch velocity of a rocket or the shape of an air-

craft wing and its corresponding air drag. The standard practice for illustrating

such connections is to adopt theory-based models, grounded in scientific knowl-

edge, which identify cause-effect associations between variables that have either

been experimentally proven or deduced from basic principles. These models range
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from solving closed-form equations (for instance, using the Navier–Stokes equation

to study laminar flow) to running computational simulations of dynamical systems

(such as the use of numerical models in climate science, hydrology, and turbulence

modeling). An alternative approach involves using a set of training examples with

input and output variables for learning a data science model that can automatically

extract relationships between them. Theory-based and data science models are two

opposing approaches to knowledge discovery, each relying solely on one of the two

sources of information available in any scientific problem, either scientific knowledge

or data. Despite their individual strengths, theory-based and data science models

have limitations when applied to scientific problems of great relevance where both

theory and data are currently lacking. Some scientific problems involve complex

processes that are not yet entirely understood. In such circumstances, theory-

based models are frequently compelled to make numerous simplifying suppositions

regarding the physical mechanisms, leading to not only inadequate performance

but also rendering the model arduous to comprehend and analyze. If "black-box"

data science models were to be utilized in scientific research, a distinctive collection

of challenges would manifest due to the limited capacity of the data at hand to rep-

resent the intricate territory of hypotheses encountered. Moreover, since most data

science models only capture associative relationships between variables, they do not

fully achieve the objective of understanding the causative relationships in scientific

problems. Therefore, in complex scientific applications, knowledge discovery can-

not be deemed sufficient with a data-only or a theory-only approach. Instead, it is

crucial to examine the continuum between theory-based and data-driven models,

wherein both theory and data are utilized in synchronization.

These problems have prompted more research on enhancing machine learning

models by incorporating prior knowledge into the learning procedure. Despite the

fact that integrating knowledge into machine learning is prevalent, for example,

through labeling or feature engineering, a significant gap still needs to be made. As
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a consequence, there is a rising interest in the incorporation of additional knowl-

edge, particularly in the form of formal knowledge representations. For instance,

constraints such as logic rules [3, 4], or algebraic equations [5, 6] have been incor-

porated into loss functions. Knowledge graphs have the ability to enrich neural

networks with relevant information regarding interconnections between instances

[7]. This is particularly significant when it comes to image classification [8]. In

addition, physical simulations have been employed to improve training data [9].

The recent growth of research activities shows that the combination of data- and

knowledge-driven approaches has become relevant in more and more areas. All

methods that endeavor to integrate theory-based (e.g., laws of physics) domain ex-

pertise into blind, data-driven models can be categorized under the paradigm of

Theory-Guided Data Science (TGDS), as depicted by Karpatne et al. [1].

Von Rueden et al. [10] categorized each approach inherent to the TGDS paradigm

according to (i) the source of the integrated knowledge, (ii) the representation of

the knowledge, and (iii) its integration, i.e., where it is integrated into the learning

pipeline.

(i) Knowledge source: The Knowledge source category pertains to the origin of

prior knowledge integrated into machine learning. According to the authors,

the source of prior knowledge can arise from an established knowledge domain

or from individuals with respective experience. The authors also affirm that

prior knowledge often stems from the sciences or is a form of world or expert

knowledge. Consequently, they propose the below-mentioned categorization.

• Scientific Knowledge. Typically, this category of study is formalized and

validated through scientific experiments and analytical demonstrations.

It encompasses all subjects within science, technology, engineering, and

mathematics.
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• World Knowledge. This type of knowledge is typically intuitive and per-

tains to human reasoning about the observable world, such as the fact

that a feline possesses two ears and can vocalize with a meow. This cate-

gory also encompasses linguistics, with syntax and semantics being prime

examples.

• Expert Knowledge. Expert knowledge tends to be exclusive, lacking for-

malization. Formalization can be achieved through interfaces between

humans and machines and validated through the expertise of a specialist

group.

(ii) Knowledge representation: The Knowledge representation category corre-

sponds to the formalized element of the prior information. Different represen-

tations can be adopted depending on the knowledge available for each specific

task. The proposed alternatives are briefly described below.

• Algebraic Equations. Algebraic Equations convey knowledge as relation-

ships of equality or inequality between mathematical expressions com-

prised of variables or constants. They serve to define general functions or

to restrict variables to a feasible set and are occasionally referred to as

algebraic constraints.

• Differential Equations. Differential Equations encompass a subset of al-

gebraic equations that detail the connections between functions and their

derivatives in terms of space or time. Two well-known instances are the

heat equation, which is a partial differential equation (PDE), and New-

ton’s second law, an ordinary differential equation (ODE). In both situ-

ations, there is a set of functions, which may be empty, that solve the

differential equation for a given initial or boundary condition.

• Simulation Results. Simulation Results depict the numerical output of

a computer simulation, which approximates the behavior of a real-world
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process. A simulation engine solves a mathematical model using numerical

methods and generates outcomes for situation-specific parameters. Its nu-

merical output, the simulation result, serves as the ultimate representation

of knowledge. Illustrative instances include the flow field of a simulated

fluid or depictions of simulated traffic scenes.

• Spatial Invariances. Spatial Invariances refer to properties that remain

unchanged during mathematical transformations like translations and ro-

tations. If a geometric object remains unchanged under certain trans-

formations, it exhibits symmetry (such as a triangle that is symmetrical

under rotation). A function is capable of. A function can be called in-

variant, if it has the same result for a symmetric transformation of its

argument. Equivariance is a related property that is tied to invariance.

• Logic Rules. Logic offers a method for formalizing facts and relationships

and enables the translation of everyday language (e.g., if A THEN B) into

formal logic regulations (e.g., A ⇒ B). Generally, Logic Rules comprise

Boolean expressions (A, B) linked with logical connectives (∧,∨,⇒). The

terms logic constraints or logic sentences may also be used interchangeably.

• Knowledge Graphs. A graph is a pair (V,E), where V represents the ver-

tices and E represents the edges connecting them. In a Knowledge Graph,

vertices (or nodes) typically describe concepts, while edges depict abstract

relationships between these concepts. In a standard weighted graph, edges

determine the strength and polarity of the relationship between nodes.

• Probabilistic Relations. The central idea of Probabilistic Relationships

pertains to a random variable X, from which one can draw samples x

based on an underlying probability distribution P (x). Two or more ran-

dom variables X and Y can exhibit interdependence through their joint

distribution (x, y) ∼ P (X, Y ). Assumptions regarding the conditional can

serve as prior knowledge in this scenario. Prior knowledge may include
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assumptions regarding the conditional independence or the correlation

structure of the random variables or even a comprehensive description of

the joint probability distributions.

• Human Feedback. Human Feedback refers to technologies that facili-

tate knowledge transformation through direct interfaces between people

and machines. The selection of input methods determines how informa-

tion gets transmitted. Common input methods include keyboard, mouse,

and touchscreen, as well as speech and computer vision, such as motion-

tracking devices. In principle, knowledge could also be transferred directly

through brain signals using brain-computer interfaces.

(iii) Knowledge integration: The category of Knowledge integration refers to

the point in the machine learning pipeline where knowledge is incorporated.

The Authors’ survey of the literature found that integration methods can be

organized into four components: training data, hypothesis set, learning algo-

rithm, and final hypothesis. The following gives a first conceptual overview.

• Train data. A common method of integrating knowledge into machine

learning is by embedding it in the training data. While traditional ma-

chine learning employs the classic approach of feature engineering to create

relevant features based on expertise, our definition of an informed ap-

proach involves utilizing hybrid information from both the original data

set and an external, separate source of prior knowledge. This additional

source of prior knowledge facilitates the accumulation of information, thus

generating a secondary data set that can be utilized in conjunction with

or added to the original training data. A notable technique to achieve

this is through simulation-assisted machine learning. Learning where the

training data is expanded with simulation results.
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• Hypothesis set. Incorporating knowledge into the hypothesis set is preva-

lent, typically accomplished through defining the architecture and hyper-

parameters of a neural network. For instance, a convolutional neural net-

work utilizes knowledge of object location and translation invariance in

images. More generally, knowledge can be integrated through the selec-

tion of model structure. One notable example is the development of a

network architecture that incorporates a mapping of knowledge elements.

as symbols of a logical rule–to specific neurons.

• Learning algorithm. Learning algorithms often involve a loss function

that can be altered with additional knowledge, such as creating a suitable

regularizer. In informed machine learning, algebraic equations, such as

the laws of physics, can be integrated by adding loss terms.

• Final hypothesis. The final hypothesis of a learning pipeline can undergo

benchmarking or validation. For instance, discrepancies between predic-

tions and known constraints may be disregarded or flagged as questionable

to ensure that findings align with prior knowledge.

This taxonomy serves as a classification framework for Theory-Guided Data

Science and structures approaches according to the three above analysis questions

about the Knowledge source, Knowledge representation and Knowledge integra-

tion. The Authors combined this taxonomy with a Sankey diagram, reported in

Figure 1.1, in which the paths connect the elements across the three dimensions

and illustrate the approaches that they found, based on a comparative and iterative

analysis of relevant literature. The broader the path, the more papers adopted the

approach. Main paths (at least four or more papers with the same approach across

all dimensions) are highlighted in darker grey and represent central approaches of

Theory-Guided Data Science.

Following the aforementioned taxonomy, this study belongs to the branch of
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Scientific Knowledge in terms of knowledge source. As far as knowledge represen-

tation is concerned, it can be defined as the incorporation of algebraic equations

and spatial invariance. Regarding knowledge integration, it can be classified as an

application for training data.

Figure 1.1: The diagram aims to illustrate the most frequent route within the
Theory-Guided Data Science approach. Main paths are highlighted in darker grey.

The Figure is taken from [10].

1.2 Jet tagging

Within the context of Theory-Guided Data Science, this master’s thesis is developed

in the field of High Energy Physics (HEP), particularly discussing and developing

the Jet tagging task.

The field of high-energy physics is devoted to the study of the elementary con-

stituents of matter. The field strives to unravel the fundamental properties of the
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physical universe by exploring the structure of matter and the laws that govern its

interactions. High-energy physicists rely on modern accelerators, which collide pro-

tons and/or antiprotons to generate exotic particles that only occur at extremely

high energy densities. Observing these particles and measuring their properties may

uncover crucial insights regarding the fundamental nature of matter [11]. These dis-

coveries demand potent statistical methods, with machine learning tools playing an

essential role, so High Energy Physics (HEP) is entering a new data-driven era [12].

Many of the applications in the scientific community are connected to the top

quark due to its extensive phenomenology both within and beyond the standard

model of particle physics (SM). The ATLAS [13] and CMS [14] collaborations

feature numerous top quark physics applications that can be divided into three

paradigms. Firstly, machine learning (ML) applications are utilized as tagging al-

gorithms to detect top quarks. Secondly, ML is used for the reconstruction of top

quark properties. Finally, machine learning is utilized to construct observables that

possess a significant separation between signal and background processes, thereby

further enhancing the statistical power of analyses [15]. The initial application

domain outlined above is thus identified as Jet tagging: the problem of discrimina-

tion and identification of high energy jet-like objects observed at the Large Hadron

Collider (LHC) [16].

The jets are the experimental signatures of quarks and gluons produced in high-

energy processes such as head-on proton-proton collisions. As quarks and gluons

have a net color charge and cannot exist freely due to color confinement, they

are not directly observed in nature. Instead, they come together to form color-

neutral hadrons, a process called hadronization that leads to a collimated spray of

hadrons called a jet [17]. Modern techniques often endeavor to simplify representa-

tion by exploiting theoretical knowledge or employing deep learning architectures.

Nonetheless, current methods frequently neglect significant physical invariants, such

as the fundamental spacetime symmetry that inheres in jets. In particular, they do
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not acknowledge that the physics that underpins jets remains constant even after

Lorentz transformations. This last statement forms the basis of this work of mas-

ter’s thesis, which seeks to integrate the physical property of Lorentz invariance

into a deep learning model that currently lacks it.

1.3 Lorentz invariance

Lorentz invariance is a fundamental element of modern physics and holds a crucial

role in comprehending space, time, and the theory of relativity. The concept is

named after the celebrated Dutch physicist Hendrik Lorentz, who first proposed

it at the beginning of the 20th century, asserting that the laws of the discipline

should remain unaltered under Lorentz transformations. Mathematically, a Lorentz

transformation pertains to how the coordinates of an event in spacetime alter when

observed from various non-accelerating inertial reference frames. Put simply, the

basic rules of physics should appear identical to all observers, regardless of their

relative motion. This principle represents a crucial concept in the special theory of

relativity, which was formulated by Albert Einstein in 1905 and unifies space and

time into a singular four-dimensional continuum known as spacetime.

Lorentz invariance has a significant impact on particle physics, particularly in the

progress of quantum field theory (QFT). QFT joins quantum mechanics with special

relativity to illustrate the conduct of subatomic particles and their interactions. In

QFT, the particles’ fields should adhere to the principle of Lorentz invariance,

ensuring that their behavior aligns with the core principles of special relativity.

This symmetry also imposes restrictions on the kinds of interactions that particles

may undergo, determining the makeup of the standard model of particle physics.

This framework is effective in depicting the fundamental constituents and forces of

nature, except for the force of gravity, which still needs to be reconciled with the

quantum description.
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In the context of Jet tagging, it is highly desirable that the model be independent

of these transformations, much like computer vision architectures should be robust

to translations and rotations in input images. By being independent of Lorentz

transformations, the model can effectively capture the underlying physical proper-

ties of jets regardless of their orientation or boost, leading to improved accuracy

and reliability in Jet tagging tasks.

1.4 The contribution

Having set out the framework to which this master’s thesis adheres, it is now feasible

to explain its composition and the development of this innovative approach.

The task at hand is to enable a deep learning model used for the Jet tagging task

to capture the physical property of Lorentz invariance that characterizes particle

jets. Therefore, it was decided to employ ParticleNet[18], a model not explicitly

designed to have this property, and apply it a novel training strategy involving

theory-based transformations of the input data.

The data augmentation technique, explained in chapter 3, involves applying a

random Lorentz transformation to the jet data. These transformations are de-

scribed by a square matrix. They depend on a parameter β, which represents the

relative velocity of the jet with respect to the speed of light. The higher the β,

the more the original data distribution shifts, leading to a decline in model perfor-

mance. By integrating basic principles of physics and expert domain knowledge,

this approach strives to enhance prediction accuracy whilst upholding Jet tagging

precision in a model-agnostic environment.

The encouraging results obtained were subsequently compared to the perfor-

mance of LorentzNet[19], a deep learning model that is designed to be Lorentz

invariant. To enforce the model-agnostic feature of the developed technique, the

same training strategy is employed to LorentzNet, which provides valuable insights
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into the usefulness of a domain-aware augmentation technique on models that are

already invariant-aware by design.

The thesis is organized as follows. Chapter 2 provides a comprehensive overview

of the related works in the field of jet tagging, highlighting the advancements in

various representation approaches and symmetry-preserving deep learning mod-

els. In Chapter 3, the proposed methods are presented, focusing on the novel data

augmentation technique designed to enhance the performance of state-of-the-art ar-

chitectures that lack inherent invariance preservation and on the analysis method

developed to assess the impact of the aforementioned technique. Chapter 4 pro-

vides an overview of the experimental setup. Chapter 5 presents the results of the

experiments, evaluating the effectiveness and improvements achieved through the

proposed approach. Finally, in Chapter 6, the findings of this study are summa-

rized, discussing the implications, and providing conclusions regarding the potential

impact of this work on the field of Jet tagging.
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Chapter 2

Related works

This second chapter provides a literature review regarding the Jet tagging task.

It explores the theme of deep learning applied to the task, with a following intro-

duction of the most commonly used data representation and architecture in this

context.

2.1 Jet tagging with deep learning

Deep learning techniques have been widely proposed to enhance Jet tagging for

particle physics experiments [20]. The efficiency and effectiveness of machine or

deep learning techniques on jet physics depends heavily on the jet’s representation

[18]. Therefore, the models and techniques used in this area of research are intro-

duced by subdividing them through the type of representation employed. What

follows is a review of the most common representations of jets with an introduction

to recently formulated particle cloud representation. Furthermore, new approaches

to the Jet tagging problem will be described, including an additional introduction

of domain knowledge.
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Image-based representation

The origin of image representation lies in the reconstruction of jets using calorime-

ters, which measure the energy deposition of a jet on finely-grained spatial cells.

Treating the energy deposition on each cell as pixel intensity naturally creates an

image of the jet. When forming jets from particles reconstructed with full detector

information (such as through a particle-flow algorithm), a jet image can be created

by mapping each particle onto its corresponding calorimeter cell and summing up

the energy when multiple particles are mapped to the same cell. Various studies

[21, 22] investigated convolutional neural networks (CNNs) with different architec-

tures and found that they significantly improve performance compared to tradi-

tional multivariate methods using observables based on QCD theory. However, the

CNN architectures investigated in these studies are generally much shallower com-

pared to state-of-the-art ones used in image classification tasks. Examples of such

architectures include ResNet [23] or Inception [24]. Therefore, it remains to be seen

if deeper architectures can enhance performance to a greater extent. Although the

image-based representation shows promise, it has two main shortcomings. When

a jet is measured only by the calorimeter, the image-based representation can in-

clude all information without loss. However, once the jet constituent particles are

reconstructed, it is unclear how to incorporate additional information about the

particles, as it involves combining non-additive quantities (such as particle type)

of multiple particles entering the same cell. Moreover, representing jets as images

results in a sparse representation. A typical jet contains O(10) to O(100) particles,

whereas a jet image needs O(1000) pixels (e.g., 32 × 32) to capture the jet infor-

mation fully. As a result, more than 90% of the pixels are blank, making CNNs

highly computationally inefficient for analyzing jet images.
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Particle-based representation

A more natural approach to representing a jet during particle reconstruction is to

view it as a collection of its constituent particles. This strategy permits the inclusion

of any feature for each particle, thus rendering it considerably more flexible than

the image representation. Although this method is more concise in comparison to

the image representation, it is variable in length as each jet may have a different

number of particles. A collection of particles is a broad notion. To apply a deep

learning algorithm, however, a specific data structure must be selected. Typically, a

sequence is preferred, where particles are ordered according to a particular criterion

(e.g., decreasing transverse momentum) and assembled in a one-dimensional list.

Particle sequences have been used as inputs to address Jet tagging tasks through the

utilization of recurrent neural networks (RNNs) [25], 1D CNNs [26], and physics-

focused neural networks [27]. One important aspect to consider regarding the

sequence representation is that the particles must be arranged in some manner,

as the order of the particles is utilized implicitly in the corresponding RNN or 1D

CNNs. However, it should be noted that the constituent particles within a jet lack

intrinsic order. Therefore, any manually imposed order may prove sub-optimal and

could ultimately hinder performance.

Particle cloud representation

An even more natural representation than particle sequences would be an un-

ordered, permutation-invariant set of particles. This method shares all the ad-

vantages of particle-based representations, including the flexibility to include any

arbitrary features for each particle. This representation is referred to as "particle

cloud", which is analogous to the point cloud representation of 3D shapes used

in computer vision. They are fundamentally similar since both are essentially un-

ordered sets of entities irregularly distributed in space. In both clouds, the elements
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are not unrelated individuals but instead are correlated since they represent higher-

level objects (i.e., jets or 3D shapes) with rich internal structures. Consequently,

deep learning algorithms created for point clouds will probably be advantageous for

particle clouds, specifically jets. The Deep Sets [28] and Dynamic Graph CNN [29]

architectures are then adapted for Jet tagging, resulting in the creation of the En-

ergy Flow Network [30] and the state-of-the-art ParticleNet [18]. The Energy Flow

Network relies on the Deep Sets approach, which has the limitation of not explic-

itly exploit the local spatial structure of particle clouds, processing only the particle

clouds in a global way. ParticleNet is derived from the Dynamic Graph CNN archi-

tecture, which overcomes this limitation introducing the process of particle-based

features. Nevertheless, the architecture lacks of the preservation of jets physical

properties as the Lorentz invariance, which will be the focus of this master’s thesis

work.

Integrating domain knowledge

Recently, researchers have increasingly focused on integrating inductive biases based

on physics principles into architectural design. This includes implementing the

Lund jet plane [31], the Lorentz group symmetry [32, 19], and rotational sym-

metry, among others. LorentzNet is the state-of-the-art for symmetry-preserving

deep learning models for jet tagging. Relying on the particle cloud representation,

achieves the best tagging performance and improves over existing state-of-the-art

algorithms such as ParticleNet. The performance of the model comes at the cost

of an increasing demand for resources, training and inference time.

Deep Learning in the search for new physics

Deep learning-based Jet tagging algorithms have been widely adopted in real-world

data analysis at the LHC. Using ParticleNet, CMS achieves the first observation

of Z boson decay to a pair of charm quarks at a hadron collider. The network is
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also used by CMS to probe the quartic interaction between the Higgs and vector

bosons, indirectly confirming its existence for the first time. Clearly, advances in

Jet tagging have a crucial impact on accelerating the comprehension of elementary

particles, the fundamental components of nature. In this framework, the aim of

this study is to introduce the physical principle of Lorentz invariance into a model

such as ParticleNet, which currently lacks this feature, by using a novel training

technique through data augmentation. The purpose of this approach is to align the

performance of the model with others that possess this property by architectural

design.
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Chapter 3

Methods

The third chapter presents the methods utilized to achieve the objective of the mas-

ter’s thesis. It initiates with a theoretical presentation of the Lorentz group and

its associated invariance property. Graph neural networks are subsequently intro-

duced, outlining their key characteristics and application in Jet tagging. Then the

architectures of the models chosen to conduct this study are introduced. To con-

clude the data augmentation technique employed is meticulously analyzed, followed

by an in-depth discussion of the evaluation method used to measure its effectiveness.

3.1 The Lorentz group

The mathematical formulation of the principles of special relativity that govern the

behavior of jet particles involves unifying space and time in a 4-dimensional space-

time framework. In this framework, the Minkowski metric replaces the classical

Euclidean dot product. Within this paradigm, the Lorentz group represents the

transformations of space and time coordinates between different inertial reference

frames, with the key requirement that the underlying physics remains unchanged

in all inertial frames.
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The Minkowski metric

Considering the 4-dimensional space-time R4 with basis ei
3
i=0, it is defined a bilinear

form η R4ÖR4 → R as follows. For u, v ∈ R4 it is setted η(u, v) = uTJv, where

J = diag(1,−1,−1,−1) is the Minkowski metric. The Minkowski inner product

of two vectors u = (t, x, y, z) and v = (t′, x′, y′, z′) is defined as ⟨u, v⟩ = η(u, v) =

tt′ − xx′ − yy′ − zz′. The Minkowski norm of a vector u = (t, x, y, z) is defined to

be ∥u∥ =
ñ
η(u, u) =

√
t2 − x2 − y2 − z2.

Lorentz transformation

Lorentz transformations are linear transformations ∆µ
ν that preserve the bilinear

form η. Restricting the inertial frames to be positively oriented and positively time-

oriented, the orthochronous Lorentz group is obtained, denoted as SO(1,3)+. The

infinitesimal transformations in SO(1,3)+ include six degrees of freedom. From the

physics interpretation, these include three types of rotation in the space dimensions

and three types of Lorentz boosts involving the time dimension (denoted as x-t, y-t

and z-t boost).
Given two inertial frames, the relative velocity β = v/c, where c is the speed

of light, and the boost factor γ = (1 − β2)−1/2, taking x-t Lorentz boost and x-y
rotation as examples, then the x-t boost is represented by the matrix

Qβ =



γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1


, (3.1)

and the x-y rotation has the form

Qα =



1 0 0 0

0 cos α − sin α 0

0 sin α cos α 0

0 0 0 1


. (3.2)
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The above-discussed matrix formalization of the Lorentz transformation consti-

tutes the key element enabling the development of the proposed data-augmentation

strategy.

3.2 Graph Neural Network for particle cloud

Graphs are widely used in science, engineering, and various problem domains [33].

A graph G = (V,E) is essentially comprised of a group of nodes V and edges E

that are adjacent to pairs of nodes. Richer types of graphs include several special

cases. For instance, one is the tree, where only one sequence of edges joins any

two nodes. Another is the directed graph, where the two nodes associated with an

edge are ordered. Additional ones are attributed graphs, which include node-level,

edge-level, or graph-level attributes, multigraphs, where multiple edges may exist

between nodes, and hypergraphs, where more than two nodes are associated with

an edge. Crucially, graphs provide a natural and potent method for expressing

numerous intricate systems, such as trees that depict the evolution of species or

the hierarchical makeup of sentences. They also include lattices and meshes to

exhibit the regular and irregular discretization of space, respectively, and dynamic

networks to relay traffic on roads and social relationships over time. A jet may be

represented as a graph when its constituent particles are viewed as nodes. For the

particle with index i, the coordinate of node i in Minkowski space is its 4-momenta

vector vi = (Ei, pi
x, p

i
y, p

i
z). The scalars, including mass, charge, and particle identity

information, that make up the node attributes are denoted by si = (si
1, s

i
2, . . . , s

i
α).

The essential features for tagging are then contained in fi = vi ⊕ si. The edges

denote the message passing between two particles, indicating the interaction of two

individual sets of particle-wise features. If there is no interaction, there will be

no edge between the corresponding nodes. The graph is considered to be fully

connected as there are no assumed prior interactions among the particles.
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Graph Neural Networks (GNNs), as described in literature [34, 35], are deep

learning architectures that implement powerful relational inductive biases for learn-

ing functions that operate on graphs. These models use a parameterized message-

passing mechanism, propagating information across the graph. This enables the

computation of advanced edge, node, and graph-level outputs. Within a GNN,

there are typically one or more standard building blocks for neural networks known

as fully connected layers. These building blocks are responsible for executing mes-

sage computations and propagation functions.

Given a graph G = (V,E), assuming L steps in total, the l-th message passing

step on the graph can be described as [36]:

ml+1
i =

Ø
j∈[N(i)]

Ml(hl
i, h

l
j, eij) (3.3)

hl+1
i = Ul(hl

i,m
l+1
i ) (3.4)

where h0
i = fi is the input feature, eij is the edge feature, N(i) is the set of neighbors

of node i, and Ml, Ul are neural networks. For a classification problem, the output

ŷ can be obtained by applying the softmax function after decoding hL
i ; i ∈ [N ].

3.2.1 ParticleNet

ParticleNet [18] is a customized neural network architecture that operates directly

on particle clouds for Jet tagging. Motivated by the success of convolutional neural

networks (CNNs), the Authors implemented a comparable strategy for learning

from point cloud data. However, standard convolution operations cannot be utilized

for point clouds due to the non-uniform distribution of points, unlike the uniform

grid points in an image. As a result, the foundation for convolution, that is the

"local patch" of each point upon which the convolution kernel functions, must be

established for point clouds. Additionally, a conventional convolution operation,

expressed as q
j Kjxj where K represents the kernel and xj denotes the features

of each point, is not invariant when the points are permuted. Consequently, the
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convolution form should be adjusted to maintain the permutation symmetry of the

point clouds.

Network architecture

The Edge convolution. Recently, Ref. [29] proposed the edge convolution

("EdgeConv") as a convolution-like operation for point clouds. EdgeConv repre-

sents a point cloud as a graph, where the points themselves are the vertices and

the edges are connections between each point and its k nearest neighboring points.

This creates a local patch necessary for convolution for each point, defined as the

k nearest neighboring points connected to it. The EdgeConv operation for each

point xi then has the form

x
′

i = □k
j=1hΘ(xi, xij

) (3.5)

where xi ∈ RF denotes the feature vector of the point xi and i1, . . . , ik are the

indices of the k nearest neighboring points of the xi. The edge function hΘ is some

function parametrized by a set of learnable parameters Θ, and □ is a channel-wise

symmetric aggregation operator, e.g., max, sum, or mean. The parameters Θ of

the edge function are shared for all points in the point cloud. This, together with

the choice of a symmetric aggregation operator □, makes EdgeConv a permuta-

tionally symmetric operation on point clouds. The ParticleNet Authors have used

a specialized form of the edge function following the work of [29],

hΘ(xi, xij
) = h

′

Θ(xi, xij
− xi) (3.6)

where the feature vectors of the neighbors, xij
, are substituted by their differences

from the central point xi and h
′
Θ can be implemented as a multilayer perceptron

(MLP) whose parameters are shared among all edges. For the aggregation operator

□, the choice is set to be the mean, as it showed better performance than the max

operation used in the original paper.
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A critical aspect of the EdgeConv operation is its ease of stacking, similar to

regular convolutions. This is because EdgeConv can be interpreted as a point

cloud mapping to another point cloud with an equal number of points, potentially

altering the feature vector dimension for each point. Subsequently, an additional

EdgeConv operation can be applied, facilitating deep network construction using

EdgeConv operations to learn point cloud attributes hierarchically. The stackability

of EdgeConv operations presents another possibility. Essentially, the feature vectors

that EdgeConv learns can serve as new coordinates for the points in a latent space.

Consequently, the distances between points, which are used to determine the k-

nearest neighbors, can then be calculated in this latent space. In other words,

EdgeConv operations can dynamically teach the proximity of points. Ref. [29]

demonstrates that this leads to better performance than keeping the graph static.

The model. The ParticleNet architecture extensively utilizes EdgeConv oper-

ations while also adopting the dynamic graph update approach. Several design

choices were made in ParticleNet as compared to the original DGCNN to improve

the suitability for the Jet tagging task. These design choices include alterations in

the number of neighbors, configuration of the MLP in EdgeConv, and use of short-

cut connections. Figure 3.1 (a) illustrates the structure of the EdgeConv block

implemented by the Authors. The EdgeConv block begins by identifying the k

closest neighboring particles for each particle, utilizing the “coordinates” input of

the EdgeConv block to determine distances. Next, the “edge features” inputs to

the EdgeConv operation are constructed from the “features” input utilizing the

k nearest neighboring particle indices. The EdgeConv operation is implemented

as a three-layer MLP. Each layer comprises a linear transformation, followed by

batch normalization, and then a rectified linear unit (ReLU). Inspired by ResNet,

each block includes a shortcut connection running parallel to the EdgeConv op-

eration. This allows the input features to pass directly through. An EdgeConv

block is defined by two hyperparameters: the number of neighbors (k) and the
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number of channels (C = C1, C2, C3), which correspond to the units in each linear

transformation layer.

The architecture presented by the Authors is illustrated in Figure 3.1 (b), con-

sisting of three EdgeConv blocks. The initial EdgeConv block calculates distances

using the spatial coordinates of the particles in the pseudorapidity-azimuth space,

while the following blocks use learned feature vectors as coordinates. The number

of nearest neighbors k remains fixed at 16 across all three blocks, with the number

of channels C varying for each EdgeConv block: (64, 64, 64), (128, 128, 128), and

(256, 256, 256), respectively. After applying the EdgeConv blocks, a channel-wide

global average pooling operation aggregates the features learned over all particles

within the cloud. Next, a fully connected layer with 256 units and the ReLU ac-

tivation function is utilized. To prevent overfitting, a dropout layer with a drop

probability of 0.1 is incorporated. A fully connected layer with two units, followed

by a softmax function, generates the binary classification output.
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(a) (b)

Figure 3.1: (a): The EdgeConv block structure;
(b): The architecture of ParticleNet.

The figures are taken from [18].
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3.2.2 LorentzNet

LorentzNet [19] is a symmetry-preserving deep learning model for Jet tagging. Us-

ing the particle cloud representation of jets, the model directly scalarizes the input

4-vectors to ensure Lorentz symmetry. Specifically, the authors designed Minkowski

dot product attention to aggregate the four 4-vectors with weights learned from

Lorentz-invariant geometric quantities under the Minkowski metric. The construc-

tion of LorentzNet is guided by the universal approximation theory on Lorentz

equivariant mapping, which guarantees LorentzNet’s equivariance and universality.

Compared to LGN [32], a Lorentz equivariant neural network architecture built

with tensor products of Lorentz group representations, which necessitates compu-

tationally expensive tensor products of the geometric quantities to achieve notable

expressiveness, LorentzNet solely demands the Minkowski inner product of two

vectors. Thus, it is more efficient in terms of both training and inference.

Network architecture

The Lorentz Group Equivariant Block. Defining the notation first, the Au-

thors use hl = (hl
1, h

l
2, . . . , h

l
N) to denote the node embedding scalars, and xl =

(xl
1, x

l
2, . . . , x

l
N) to denote the coordinate embedding vectors in the l-th LGEB layer.

When l = 0, x0
i equals the input of 4-momenta, and h0

i equals the embedded input

of the scalar variables si. LGEB aims to learn deeper embeddings hl+1, xl+1 via

current hl, xl.

Motivated by the principle of Lorentz invariance, LorentzNet’s message passing

is expressed as follows. Denoting as mij the edge message between particle i and

j, i.e.,

ml
ij = ϕe(hl

i, h
l
j, ψ(∥xl

i − xl
j∥2), ψ(⟨xl

i, x
l
j⟩)) (3.7)

where ϕe(·) is a neural network and ψ(·) = sgn(·)log(| · |+ 1) is to normalize large

numbers from broad distributions. The operation ⟨xl
i, x

l
j⟩ is defined as Minkowski
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dot product, while the ∥xl
i−xl

j∥2 is included due to the fact that interaction between

particles relies on this term.

The Authors further designed a Minkowski dot product attention as

xl+1
i = xl

i + c
Ø

j∈[N ]
ϕx(ml

ij · xl
j) (3.8)

where ϕx(·) ∈ R is a scalar function modeled by neural network. The hyperparam-

eter c is introduced to control the scale of xl+1
i .

The scalar features for particle i are forward as

hl+1
i = hl

i + ϕh(hl
i,

Ø
j∈[N ]

wijm
l
ij) (3.9)

where ϕh(·) is also modeled by neural networks whose output dimension equals

the dimension of hl+1
i . For efficient computation, the summation q

j∈[N ] wijm
l
ij is

operated to aggregate ml
ij. The neural network ϕm(·) is introduced to learn the

edge significance from node j to node i, i.e., wij = ϕm(ml
ij) ∈ [0,1]. This both

ensure the permutation invariance and also ease the implementation for jets with

a different number of particles.

The model. LorentzNet is mainly constructed by the stack of Lorentz Group

Equivariant Block (LGEB) along with encoder and decoder layers. The inputs into

the network are 4-momenta of particles from a collision event and may include

scalars associated with them (such as label, charge, . . . ). After stacks of LGEB

for L layers, the obtained node embedding hL is decoded. First, average pooling is

used to get

hav = 1
N

Ø
i∈[N ]

hL
i (3.10)

Then, dropout is applied to hav to prevent overfitting. A decoding block with

two fully connected layers, followed by a softmax function, is used to generate the

output for the binary classification task.
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(a)

(b)

Figure 3.2: (a): The Lorentz Group Equivariant Block (LGEB);
(b): The architecture of LorentzNet.

The figures are taken from [19].
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3.3 The augmetation strategy

In the discussed point cloud representation of jets, all particles are nodes represented

by a set of features, including their 4-momenta vector vi = (Ei, pi
x, p

i
y, p

i
z) and other

possible additional features such as charge and mass of the particle denoted as

si = (si
1, s

i
2, . . . , s

i
α). The concatenation fi = vi ⊕ si represents the complete set of

features per node.

The data augmentation technique developed to preserve invariances aims to

first perform a rotation in three-dimensional space while preserving the direction

of the particle beam, and then it applies an x-t Lorentz boost to a jet. Then,

at a particular boost value β and rotational angle α, all jet particles undergo the

following transformation:

v′
i = Qα × vi

v′′
i = Qβ × v′

i

fi = v′′
i ⊕ si

(3.11)

where Qβ and Qα are described in equations 3.1 and 3.2. The degree of preservation

of Lorentz invariance can be adjusted by controlling the parameter βmax, represent-

ing the maximum boost that can be applied to the entire jet. Consequently, β can

assume value in the range [0, βmax). To introduce variability, the transformation is

applied with a probability p.

Additionally, regardless of weather the boost is performed, the input features

can be encoded to match the required features of the model. The transformation

is outlined in Algorithm 1.

3.4 The invariance analysis

To evaluate the effectiveness of the proposed method, following the work done in

[19], the model’s performance are further analyzed through a transformed test set.
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Specifically, an x-t Lorentz boost is applied to a sampled test set with different scales

of β. As β increases, the divergence between the distributions of the training data

that is not transformed and the test data becomes more considerable. Therefore,

the task of classification is expected to be more arduous with the increasing of β,

because the model has to capture invariants over a wider spectrum.

The analysis produces a visualization of the accuracy of the model in tagging

the transformed test samples, for β ranging in [0,1]. This evaluation technique

facilitates comparison between the augmented and baseline models, as well as the

confrontation between different augmentation strategies. The invariance analysis

algorithm is outlined in Algorithm 2. The integration of the aforementioned method

and of the presented data augmentation technique into the training pipeline are

represented in Figure 3.3.

Algorithm 1: lorentz_augmentation(jet, βmax, p)
if random(0, 1) < p then

β ← random(0, 1) · βmax;
α← random(0, 180);
Qα ← rotation_matrix(α);
Qβ ← lorenz_transformation(β);
rotated_jet← Qα × jet.v;
transformed_jet← concat(Qβ × rotated_jet⊕ jet.s);

end
jet← feature_transformation(transformed_jet);
return jet;

Algorithm 2: invariance_analysis
betas← range(0, 1, 0.02);
for β in betas do

transformed_test← lorentz_augmentation(test_set, β, p = 1);
accuracy ← model(transfomed_set);
invariance_table← (β, accuracy);

end
return invariance_table;
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Training pipeline

β in range [0, β_max]
probability = 1

Load dataset train and
validation splits

Apply
data augmentation

Train Model

Deployment

Load dataset test split

Apply
data augmentation

Test Model

Invariance analysis

Lorentz-invariant augmentation

β in [0, β_max]
α in [0, 180]
probability = 0.5

fixed β
α in [0, 180]
probability = 1

Figure 3.3: The figure presents the training pipeline created for this master’s thesis
work.
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Experimental setup

Chapter 4 is devoted to outlining the experimental procedures employed in this

research. First, there is a description of the datasets utilized to train the two mod-

els introduced in Chapter 3. Following this, the training framework is presented,

including a discussion of the technological solutions used and the model implemen-

tations.

4.1 Datasets

In this study, two benchmark data sets were used to identify jets. These are the Top

quark tagging dataset and the Quark-gluon tagging dataset, which were previously

used by the Authors of the models selected for this work. This decision allowed for

easier implementation and execution of the experiments.

4.1.1 Top quark tagging dataset

The Top quark tagging dataset [37], proposed in [20], contains 1.2M training en-

tries, 400k validation entries, and 400k testing entries, each of these representing a

single jet whose origin is either an energetic top quark, a light quark or a gluon.
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Consequently, the classification task is a binary classification task. Jets in this

dataset are generated using the Pythia8[38] Monte Carlo event generator, while

the ATLAS detector response is modelled with the DELPHES[39] software package.

The jets in the reference dataset are clustered using the anti-kT algorithm, with a

radius of R = 0.8. For each jet, the 4-momenta are saved in Cartesian coordinates

(E, px, py, pz) for up to 200 constituent particles selected by the highest transverse

momentum. For jets with less than 200 constituents a zero padding is applied.

4.1.2 Quark-gluon tagging dataset

The Quark-gluon tagging dataset [40], proposed in [30], address the task of dis-

criminating jets initiated by quarks and by gluons. The classification task consists

in a binary classification task. The signal (quark) and background (gluon) jets are

generated with Pythia8 using the Z(→ νν) + (u, d, s) and Z(→ νν) + g processes,

respectively. No detector simulation is performed. The final state non-neutrino par-

ticles are clustered using the anti-kT algorithm with R = 0.4. The dataset consists

of 2 million jets in total, with half signal and half background. The recommended

split is followed, obtaining 1.6M training entries, 200k validation entries and 200k

testing entries. The major difference is that the Quark-gluon tagging dataset in-

cludes the 4-momenta vectors alongside with the particle identification information

(PIDs), namely the type of each particle (i.e., electron, photon, pion, . . . ).

Top quark tagging Quark-gluon tagging

Number of entries 1.2 million 2 million

Features 4-momenta 4-momenta and PIDs

Task Binary classification Binary classification

Table 4.1: The table provides a summary of the datasets insights.
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4.2 Training setup

The training setup has been developed taking advantage of the PyTorch Light-

ning framework [41]. PyTorch Lightning is a deep learning framework designed

for professional AI researchers and machine learning engineers seeking maximum

flexibility without compromising performance at scale.

Within this framework, the Weight & Biases [42] platform has been implemented

and extensively utilized. This platform enables real-time tracking of experiments

with live visualizations of metrics, logs, and system statistics. It also includes a

tool that allows automatic hyperparameter search, known as "Sweep", which was

used in this study to automatically perform the training of various augmentation

setups on the same model.

The trainings are carried out on a machine with an Intel Core i9-10980XE CPU

and an Nvidia RTX A6000 graphics card.

4.2.1 ParticleNet implementation

The implementation of the ParticleNet model is obtained following the ones pro-

posed in [43] that makes use of the PyTorch Geometric framework [44]. PyTorch

Geometric is a library built upon PyTorch to easily write and train Graph Neural

Networks, it consists of various methods for deep learning on graphs and other

irregular structures.

The model parameters are set according to the authors’ original configuration.

The EdgeConv blocks in the architecture consist of three layers, with the number

of channels set as (64, 64, 64), (128, 128, 128), and (256, 256, 256), respectively. All

three blocks have a fixed number of nearest neighbours k = 16 to build the graphs

over the particle point clouds. After applying the EdgeConv blocks, a channel-wide

global average pooling operation aggregates the features learned over all particles

within the cloud. Next, a fully connected layer with 256 units and the ReLU
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activation function is utilized. To prevent overfitting, a dropout layer with a drop

probability of 0.1 is incorporated. A fully connected layer with two units, followed

by a softmax function, generates the binary classification output.

The input required by the model consists in seven variables derived from the

4-momenta vector, to which are concatenated the PIDs information in the case of

the Quark-Gluon tagging task. The preliminary features utilized to compute the

inputs to the model are
pT =

ñ
p2

x + p2
y

η = arctan pz

E

ϕ = arctan py

px

∆R =
ñ

∆η2 + ∆ϕ2

(4.1)

The inputs are listed in Table 4.2.

Variable Definition TOP QG

∆η difference in pseudorapidity between the particle and the jet axis ✓ ✓

∆ϕ difference in azimuthal angle between the particle and the jet axis ✓ ✓

log pT logarithm of the particle’s transverse momentum ✓ ✓

log E logarithm of the particle’s energy ✓ ✓

log pT

pT (jet) logarithm of the particle’s pT relative to the jet pT ✓ ✓

log E
E(jet) logarithm of the particle’s energy relative to the jet energy ✓ ✓

∆R angular separation between the particle and the jet axis ✓ ✓

q electric charge of the particle ✓

isElectron if the particle is an electron ✓

isMuon if the particle is a muon ✓

isChargedHadron if the particle is a charged hadron ✓

isNeutralHadron if the particle is a neutral hadron ✓

isPhoton if the particle is a photon ✓

Table 4.2: Input variables used in the Top quark tagging task (TOP) and the
Quark-gluon tagging task (QG) with PIDs information.

Consequently, follow the feature-extraction method proposed by the authors,

the data augmentation technique proposed in Chapter 3 is equipped with the

feature_transformation method.
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The training of ParticleNet consists in a maximum of 35 epochs, using an early

stopping strategy based on the validation loss. The Adam optimizer is employed

with a weight decay of 0.0001, along with the negative log-likelihood loss function.

The initial learning rate is set to 3×104, and a reduce-on-plateau scheduler is used.

The training is conducted with a batch size of 256.

4.2.2 LorentzNet implementation

The implementation of the LorentzNet model follows the one officially published

by the authors in [19]. The network is implemented with PyTorch. It consists in

6 Lorentz group equivariant blocks (L = 6). The scalar embedding is implemented

as one fully connected layer which maps the inputs to latent space of width 72, i.e.,

Linear(scalar_num, 72). The neural network ϕx, ϕe and ϕh, discussed in 3.2.2, are

implemented as Linear(72,72) → ReLU → BatchNorm1D(72) → Linear(72,72).

The neural network ϕm is implemented as Linear(72,1)→ Sigmoid. The decoding

layers are Linear(72,72) → ReLU → Linear(72,2). The dropout rate is set to be

0.2. The hyperparamater c in equation 3.8 is chosen to be 5 × 10−3 for the Top

quark tagging task and 1× 10−3 for the Quark gluon tagging task.

The input required by the model is the 4-momenta vector, alongside the PIDs

information in the case of the Quark gluon tagging task. Consequently, the data

augmentation technique proposed employs the feature_transformation method

as the Identity function I.

The training of LorentzNet is performed for 35 epochs. Firstly a linear warm-up

period of 4 epochs is applied to reach the initial learning rate 1 × 10−3. Then a

CosingeAnnealingWarmRestarts learning rate schedule with T0 = 4, Tmult = 2

is adopted for the next 28 epochs. Finally, an exponential learning rate decay with

γ = 0.5 is used for the last 3 epochs. The Adam optimizer is employed with a

weight decay of 0.01 to minimize the cross-entropy loss. The training is conducted

with a batch size of 128.
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Results

Chapter 5 presents the results of the experiments carried out in this master’s thesis.

After presenting the baseline used as a reference for the improvements obtained,

the impact of the developed data augmentation technique on ParticleNet and its

subsequent application on LorentzNet is shown.

5.1 The baseline

In this section of the results obtained from the master’s thesis, it will be presented

the initial accuracy baseline and the models’ response to the invariance analysis

when trained without implementing the data augmentation technique. All the

results reported for each configuration are obtained by averaging the performance

of 3 runs.

Both ParticleNet and LorentzNet are trained to perform the Top quark tagging

task and the Quark-gluon tagging task. Concerning the latter, the dataset contains

PIDs features. The values of accuracy obtained setting the baseline for the following

experiments and their relative training time are reported in Table 5.1.

Based on the findings of this initial phase, it is evident that the LorentzNet

model outperforms ParticleNet as expected. As described by the authors [19],
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model
Top quark

tagging
Quark-gluon

tagging training time

ParticleNet 0.929 0.819 3.6 hours

LorentzNet 0.945 0.857 17.2 hours

Table 5.1: The table shows the accuracy baselines for the experiments proposed. The
values are obtained by averaging the performance of three runs.

LorentzNet is indeed able to achieve better tagging accuracy on both datasets.

However, the main focus is not to align the performance of the two models on

untransformed datasets. Instead, it aims to increase ParticleNet’s awareness of the

physical property of Lorentz invariance and align the models’ performance in the

invariance analysis. This specific goal enables the acquisition of a more robust and

replaceable version of ParticleNet to LorentzNet, while retaining the advantage of

being lighter and faster in inference.

The outcomes of the invariance analysis of two models not trained with aug-

mentation are subsequently detailed, with the comparison between ParticleNet and

LorentzNet on the identical datasets presented in a single figure. Figure 5.1 (a)

illustrates the robustness of the two models in the Top quark tagging task, through

an evaluation on the test set transformed at increasing beta values, as detailed in

Chapter 3. Figure 5.1 (b) showcases the robustness of both models in the Quark-

gluon tagging task, where the dataset is equipped with PIDs features. The obtained

results demonstrate the anticipated patterns. As claimed, LorentzNet is more ro-

bust than ParticleNet in both experiments, but it is worth mentioning that the

addition of the PIDs features in the case of the Quark-gluon tagging task makes

Particlenet slightly more robust to invariance and LorentzNet significantly more

performant in the analysis conducted.
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Figure 5.1: The plots show the comparison between the robustness of
ParticleNet (blue) and LorentzNet (green) to the Lorentz invariance in the Top quark

tagging task (a) and Quark-gluon tagging task (b). The results are obtained by
averaging the outcomes of three runs.
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5.2 The data-augmentation impact

This section will showcase the outcomes achieved by applying the proposed data

augmentation technique in the model training phase. The results will be quanti-

fied via model accuracy on the test set and invariance analysis, scrutinizing the

experimental outcomes one by one.

To assess the impact of applying the data augmentation technique in the training

phase, it was decided to train ParticleNet with augmentation at different values of

βmax. Recalling that β is a parameter that ranges from 0 to 1, where zero indicates

no augmentation, to cover the entire range, the chosen βmax values are 0.25, 0.50,

0.75, and 1. The base model is indicated as ParticleNet-base, while the augmented

model are denoted as ParticleNet-βaug. The model performance is then compared

to LorentzNet one, concluding with the train and evaluation of the LorentzNet

model with βmax = 1 augmentation, to assess the benefit of the developed technique

to the already invariance aware architecture.

5.2.1 Top quark tagging task

Presenting the results attained for the Top quark tagging task, Table 5.2 displays

the accuracy achieved on the test set for ParticleNet trained with diverse aug-

mentation levels, alongside the respective training time. It can be seen that the

application of data augmentation does not noticeably affect the accuracy results

obtained, even when applied at maximum beta, when the dissimilarity between

the distributions of the untransformed training data and the test data becomes

more pronounced. Furthermore, the model achieved its best accuracy value when

the augmentation was applied at β = 0.75, indicating the benefit to the model of

injecting the physical property of invariance and reinforcing the idea that the trans-

formation at β = 1 is equivalent to imposing extreme conditions that the model

can hardly interpret.
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In addition, Figure 5.2 (a) presents the findings of the conducted invariance

analysis. As can be seen, the augmented models near β = 0 show comparable

performance to the base model. However, the focus is on values β > 0. When β >

0.1, the baseline model begins a drastic degradation of performance. In contrast,

all augmented models consistently and largely outperform the base ParticleNet,

with accuracy remaining at the highest level until βmax and even beyond. The

augmented models exhibit an expected degradation in performance at different β

values, coherently with their own training βmax. The degradation along the β axis

is observed quite beyond the βmax value for each model, indicating that they can

generalize further with respect to the training range. Finally, it is worth noting a

different pattern for the 1.00-augmented model. In contrast to other models, this

configuration shows degradation in performance before reaching β = 1, i.e., its βmax,

as it is intuitively expected since extreme conditions requires specific solutions.

model accuracy std

ParticleNet-base 0.926 0.002

ParticleNet-0.25aug 0.926 0.002

ParticleNet-0.50aug 0.927 0.002

ParticleNet-0.75aug 0.928 0.001

ParticleNet-1.00aug 0.925 0.002

Table 5.2: The table shows the performance measured on the Top quark tagging test set
for ParticleNet trained with diverse augmentation levels. The values are obtained by

averaging the results of three runs.
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5.2.2 Quark-gluon tagging task

To present the results obtained for the quark-gluon tagging task, Table 5.3 shows the

accuracy achieved on the test set for ParticleNet, which was trained with different

levels of augmentation. The results show that the technique did not affect the

obtained accuracy, even at maximum beta. The accuracy values remained stable

when compared to the previous experiment, with a slight decrease at β = 1.

Additionally, the results of the invariance analysis are shown in Figure 5.2 (b).

As can be observed, the augmented models near β = 0 show lower but still com-

parable performance to the base model. When β > 0.1 the augmented models

outperform the base ParticleNet, showing the same trend of the Top quark tagging

task. Nevertheless, in this particular case, the model tends to be more robust when

it is already trained with the minimum β transformation, showing a degradation in

performance at values well above its training βmax. Introducing additional features

like PIDs in contrast to solely four-momentum, arguably, makes the model more

robust initially, thus amplifying the effects of data augmentation.

model accuracy std

ParticleNet-base 0.819 0.002

ParticleNet-0.25aug 0.817 0.003

ParticleNet-0.50aug 0.816 0.001

ParticleNet-0.75aug 0.817 0.004

ParticleNet-1.00aug 0.813 0.005

Table 5.3: The table shows the performance measured on the Quark-gluon tagging test
set for ParticleNet trained with diverse augmentation levels. The values are obtained by

averaging the results of three runs.
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Figure 5.2: Accuracy at different values of β for ParticleNet models trained with
different βmax values using Lorentz augmentation in the Top quark tagging task (a) and

in the Quark-gluon tagging task (b). The results are obtained by averaging the
outcomes of three runs.

46



Results

5.2.3 The comparison with LorentzNet

After discussing the results of data augmentation and its impact on the model’s

ability to be invariant to Lorentz transformations, now are here compared Parti-

cleNet’s new property directly with LorentzNet’s existing capability. In conducting

this analysis, ParticleNet-1.00aug was selected as the reference model. Although it

does not perform best in terms of accuracy on the untransformed test set, it was

found to be the most robust to Lorentz invariance in both the Top quark tagging

task and the Quark-gluon tagging task.

Figure 5.3 (a) shows the comparison between the two model on the Top quark

tagging task. LorentzNet outperforms ParticleNet for β values below 0.5. How-

ever, within the 0.5 to 0.75 range, ParticleNet demonstrates superior performance,

indicating more stability against transformations at high β values.

Figures 5.3 (b) illustrates the comparison between the two model on the Quark-

gluon tagging task. The observation that LorentzNet outperforms ParticleNet in

this task is reaffirmed herein, as the former handles nearly the entire spectrum of

transformations. However, ParticleNet demonstrates the same trend as LorentzNet,

starting from a lower accuracy value. Therefore, the success of data augmentation

in this experiment can also be affirmed.
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Figure 5.3: The plots show the comparison between the robustness of
ParticleNet-1.00aug (blue) and LorentzNet (green) to the Lorentz invariance in the Top
quark tagging task (a) and Quark-gluon tagging task (b). The results are obtained by

averaging the outcomes of three runs.
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5.2.4 Augmented LorentzNet

In this analysis, LorentzNet is trained using the data augmentation technique with

β = 1. The base model is indicated as LorentzNet-base, while the augmented model

is denoted as LorentzNet-1.00aug. The aim is to verify and quantify the impact

of the aforementioned technique on a model that is already robust to invariance

analysis.

Figure 5.4 (a) displays the results obtained in the Top quark tagging task. The

use of data augmentation technique has a considerable impact. It is observed that

the base model performs slightly better at β under 0.25, but a marked performance

downturn is elicited thereafter. In contrast, the augmented model is robust across

the entire β spectrum, outmatching LorentzNet-base, and exhibiting consistent

performance up to the approach of betas to one. Therefore, it can be argued that

despite the awareness of the invariance property within the architecture, the imple-

mentation of the data augmentation technique enhanced the model’s performance

by fully utilizing the neural network’s capacity to learn. This outcome is inconsis-

tent with LorentzNet’s assertion of already being equivariant by design. Neverthe-

less, the model’s architecture ought not be impacted by the introduction of data

augmentation. Considering the experiment as an adversarial attack conducted via

data augmentation, the initial reduction in performance followed by improvement

with the increasing β augmentation indicates the necessity for further analysis on

the LorentzNet equivariant block and its actual operation in future works.

Figure 5.4 (b) shows the results obtained in the Quark-gluon tagging task. In

this instance, the implementation of the data augmentation technique failed to en-

hance the model’s pre-existing perfect robustness towards invariance analysis. It is

evident that the augmented model exhibits slightly worse performance than its base

model counterpart, with performance alignment observed for β greater than 0.75.

This outcome is likely a result of the dataset’s property of having PIDs features,

which, alongside the 4-momenta vector, enables LorentzNet to distinguish jets more
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effectively, even when transformed. Consequently, the data augmentation technique

acts as noise in the training stage, leading to decreased model performance. Also

the findings of this experiment do not support the claims of LorentzNet. While

the augmented and baseline models demonstrate a similar trend in the invariance

analysis, the initial drop in performance was unexpected. Future researches will

focus on exploring equivariant blocking and the impact of PIDs features on the

model’s performance.
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Figure 5.4: Accuracy at different values of β for LorentzNet models trained without
data augmentation and with βmax value equals to 1 in the Top quark tagging task (a)
and in the Quark-gluon tagging task (b). The results are obtained by averaging the

outcomes of three runs.
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Chapter 6

Conclusions

This master’s thesis work presents a novel theory-guided training strategy for jet

tagging tasks using a model-agnostic data augmentation technique. The goal is to

investigate whether a model without inherent invariance preservation, i.e., Parti-

cleNet, can effectively capture the essential physical properties of a jet, regardless of

its orientation or Lorentz boost, acquiring properties similar to an invariant aware

architecture as it is LorentzNet. Furthermore, the same training strategy is applied

to the already invariant model, to enforce its model-agnostic property and explore

the benefit of introducing more domain knowledge into a fully domain-aware archi-

tecture. By using this approach, the potential to enable deep learning models to

understand the underlying physics of jets independent of specific transformations

has been explored.

The experiments performed on the Top quark tagging dataset and on the Quark-

gluon tagging dataset show that even a minimal application of the data augmen-

tation strategy leads to a significant improvement in the robustness of a model

that lacks of invariance preservation without compromising performance. These

results show that the proposed approach has the potential to increase performance

and improve generalization capabilities of the model. The outcomes are different

when the same training strategy is applied to an invariant aware architecture. The
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data augmentation strategy brings improvement in performance where the model

can potentially perform better, while it acts as noise when there is no scope for

improvement. Furthermore, considering the application of the data augmentation

as an adversarial attack to LorentzNet, the obtained results are inconsistent with

the model assertion of already being invariant by design.

As part of future research, the functioning of the Lorentz equivariant blocks will

be better investigated, trying to explain the anomalous behavior obtained in the

last experiment. Subsequently, it is intended to integrate these functional blocks

into the ParticleNet architecture, resulting in a hybrid model that combines the

property of invariance by design with ParticleNet’s time and resource efficiency.

Furthermore, it is planned to investigate in more detail the impact of the proposed

technique of introducing domain knowledge through data augmentation in other

physics application, aiming to exploit the ability to learn during the training phase

of deep learning models. This will consolidate the effective applicability of the

technique in other tasks related to the physics world and on different models.
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